高考物理轻绳、轻弹簧、轻杆模型
高考物理 模型系列之对象模型 专题03 轻绳、轻杆、轻弹簧、接触面模型(2)学案
专题03 轻绳、轻杆、轻弹簧、接触面模型(2)3.轻绳、轻杆、接触面形成的临界与极值问题 (i )轻绳形成的临界与极值由轻绳形成的临界状态通常有两种,一种是轻绳松弛与绷紧之间的临界状态,其力学特征是绳仍绷直但绳中张力为零;另一种是轻绳断裂之前的临界状态,其力学特征是绳中张力达到能够承受的最大值.(ii )轻杆形成的临界与极值与由轻绳形成的临界状态类似,一种杆对物体产生拉力与推力之间的临界状态,力学特征是该状态下杆对物体的作用力为零;另一种是轻杆能承受的最大拉力或最大压力所形成的临界状态.(iii )接触面形成的临界与极值 由接触面形成的临界状态相对较多:①接触面间分离形成的临界,力学特征是接触面间弹力为零②接触面间滑动形成的临界.力学特征是接触面间静摩擦力达到最大值③接触面间翻转、滚动形成的状态,力学特征是接触面间弹力的等效作用点与瞬时转轴重合.或说是接触面间弹力的作用线通过瞬时转轴.例10.物体A 质量为kg m 2=,用两根轻绳B 、C 连接到竖直墙上,在物体A 上加一恒力F ,若图中力F 、轻绳AB 与水平线夹角均为︒=60θ,要使两绳都能绷直,求恒力F 的大小。
【答案】N F N 1.236.11≤≤【解析】:要使两绳都能绷直,必须0021≥≥F F ,,再利用正交分解法作数学讨论。
作出A 的受力分析图,由正交分解法的平衡条件:例10题图例11.如图所示,绳子AB能承受的最大拉力为1000N, 轻杆AC能承受的最大压力为2000N, 问:A点最多能悬挂多重的物体?例11题图【答案】1366N【解析】:以结点A为研究对象,作出其受力图如图所示。
例11答图A点受三个力作用而平衡,且F N和T的合力大小为G。
若T取临界值时,G的最大值为G T;若F N取临界值时,G的最大值为G N,那么A点能悬挂的重物的最大值是G T和G N中的较小值。
在如图所示的力三角形中,由三力平衡条件得:75sin 60sin G F N =,75sin 45sin GF = 当F Nmax = 2000N 时,G N = F Nmax sin75°/sin60°= 2230N 当F max =1000N 时,G T = F max sin75°/sin45° =1366N.当F 最大时,重物的最大重力只能是1366N, 若挂上重2230N 的重物时,AB 绳早被拉断。
轻绳_轻杆_轻弹簧三种模型的特点及其应用
轻绳、轻杆、轻弹簧三种模型的特点及其应用在中学物理中,经常会遇到绳、杆、弹簧三种典型的模型,在这里将它们的特点归类,供同学们学习时参考。
一. 三种模型的特点1. 轻绳(或细绳)中学物理中的绳和线,是理想化的模型,具有以下几个特征:①轻:即绳(或线)的质量或重力可以视为等于零。
由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等;②软:即绳(或线)只能受拉力,不能承受压力。
由此特点可知:绳(或线)与其他物体的相互间作用力的方向总是沿着绳子;③不可伸长:即无论绳(或线)所受拉力多大,绳子(或线)的长度不变。
由此特点可知:绳(或线)中的张力可以突变。
2. 轻杆具有以下几个特征:①轻:即轻杆的质量和重力可以视为等于零。
由此特点可知,同一轻杆的两端及其中间各点的张力大小相等;②硬:轻杆既能承受拉力也能承受压力,但其力的方向不一定沿着杆的方向;③轻杆不能伸长或压缩。
3. 轻弹簧中学物理中的轻弹簧,也是理想化的模型。
具有以下几个特征:①轻:即弹簧的质量和重力可以视为等于零。
由此特点可知,向一轻弹簧的两端及其中间各点的张力大小相等;②弹簧既能承受拉力也能承受压力,其方向与弹簧的形变的方向相反;③由于弹簧受力时,要发生形变需要一段时间,所以弹簧的弹力不能发生突变,但当弹簧被剪断时,它所受的弹力立即消失。
二. 三种模型的应用例1. 如图1所示,质量相等的两个物体之间用一轻弹簧相连,再用一细线悬挂在天花板上静止,当剪断细线的瞬间两物体的加速度各为多大?解析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。
此类问题应注意两种模型的建立。
先分析剪断细线前两个物体的受力如图2,据平衡条件求出绳或弹簧上的弹力。
可知,F mg 2=,F F mg mg 122=+='。
剪断细线后再分析两个物体的受力示意图,如图2,绳中的弹力F 1立即消失,而弹簧的弹力不变,找出合外力据牛顿第二定律求出瞬时加速度,则图2剪断后m 1的加速度大小为2g ,方向向下,而m 2的加速度为零。
高中物理必考模型:轻绳、轻弹簧、轻杆联系与区别全解析
高中物理必考模型:轻绳、轻弹簧、轻杆联系与区别全解析轻绳特点轻绳模型的建立轻绳或称为细线,它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
轻绳模型的特点①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
轻杆特点轻杆模型的建立轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
轻杆模型的特点①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
轻弹簧特点轻弹簧模型的建立轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
轻弹簧的特点①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k 为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
特别提醒:橡皮筋与轻弹簧极为相似,只是橡皮筋不能被压缩静止或匀速运动例1、如图所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。
解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。
由平衡条件可知,绳子对小球的弹力为F=mg,方向是沿着绳子向上。
若将轻绳换成轻弹簧,其结果是一样的。
例2、如图所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。
当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。
解析:以小球为研究对象,可知小球受到杆对它一个的弹力和重力作用,由平衡条件可知小球受力如图所示。
则可知杆对小球的弹力为F=mg,方向与重力的方向相反即竖直向上。
注意:在这里杆对小球的作用力方向不是沿着杆的方向。
以加速度a做匀加速直线运动时,求轻绳对小球的作用力的大小和方向。
怎样区别轻绳、轻杆、轻弹簧
例2、如图所示,细杆的一端与小球相连,另一端可绕过O 点的水平轴自由转动,现给小球一个初速度,使它做圆周运 动,图中a、b分别表示小球运动的最低点和最高点,则杆对 球的作用力可能是( A、B )
A、由位置A到位置B重力做功为mgh,
B、由位置A到位置B重力势能减少
1 mv2 2 C、由位置A到位置B小球克服弹力做功为mgh 1 D、小球到达位置B时弹簧的弹性势能为mgh2 mv2
图8
作业:第一单元力、物体的平衡 第 一讲三种常见性质力 五年高考A组B 组;三年模拟A组B组。
A、a处为拉力,b处为拉力; B、 a处为拉力,b处为推力; C、 a处为推力,b处为拉力; D、 a处为推力,b处为推力;
(2)轻绳弹力的方向总是指向绳收缩的方向;轻杆弹力 的方向由运动状态决定;轻弹簧弹力的方向总是沿 弹簧指向反抗形变的方向。 例3、如图3所示,小车顶端悬挂 一个小球,当小车以加速度a做 匀变速运动时,悬线与竖直方 向成某一固定角θ,若小球质量 为m,求悬线对小球的拉力。
例4、如图4所示,小车上固定一弯折硬杆ABC,杆 的C端固定一质量为m的小球,已知θ恒定,当小 车水平向左做匀加速直线运动时,BC杆对小球的 作用力方向( D ) A、一定沿杆向上 B、一定竖直向上 C、可能水平向上 D、随加速度a的改固定的大环半 径为R,轻弹簧原长为L(L<2R),其劲度系 数为K,接触光滑,求小环静止时,弹簧与 竖直方向的夹角。
一、三种模型的相同点
(1)轻绳、轻杆和轻弹簧的“轻”,指的是质量可 以忽略,重力不计. (2)他们对物体的作用力都是弹力,属于接触力、 被动力。
专题04 轻绳、轻杆、轻弹簧、接触面的暂态模型-高考物理模型法之实物模型法(解析版)
高中物理系列模型之实物模型3.轻绳、轻杆、轻弹簧、接触面的暂态模型一、模型界定本模型是指由轻绳、轻杆、轻弹簧连接的物体(或系统)或直接接触的两物体系统,当外界条件发生突变时,物体的瞬时状态的判定的问题。
二.模型破解按照能否发生明显的形变,可将此模型分为两类:一类是由不可伸长的细线、轻质细绳、轻质细杆、刚性接触面连接的系统,他们的特征是在外力作用下产生的微小形变可以忽略,进而可以忽略外界条件变化时系统由一种稳定状态过渡到另外一种稳定状态的短暂的暂态过程,可认为系统是由一种稳定状态直接突变为另一种稳定状态。
他们的不同之处轻质细线(或细绳)只能对物体施加拉力,且方向一定沿细线方向;轻质细杆对物体的作用力可以是拉力也可以是推力,作用力的方向却不一定沿杆的方向,具体方向与物体的运动状态有关;接触面的弹力只能是推力,方向一定与接触面(或其切平面)垂直。
再一类是由轻弹簧、轻质弹性细线、橡皮筋连接的系统,他们的特征是外力作用时形变明显,外界条件变化时系统从一种稳定状态变化到另稳定状态时所需时间较长,状态的变化是一个渐变过程,外界条件发生变化的瞬时前后他们的弹力相同。
他们的不同之处在于弹簧可以是被拉伸也可以是被压缩的,其弹力的方向通常是沿其轴线方向的,而弹性细线与橡皮筋只能是被拉伸的,其弹力方向只能是沿其所在的直线。
1.从状态稳定后的物体运动性质来分析以细线为代表的暂态过程2.从弹力在瞬时不变来分析以弹簧为代表的暂态过程。
例1.如图所示,将两相同的木块a 、b 置于粗糙的水平地面上,中间用一轻弹簧连接,两侧用细绳固系于墙壁。
开始时a 、b 均静止。
弹簧处于伸长状态,两细绳均有拉力,a 所受摩擦力fa F ≠0,b 所受摩擦力fb F =0,现将右侧细绳剪断,则剪断瞬间A .fa F 大小不变B .fa F 方向改变C .fb F 仍然为零D .fb F 方向向右 例1题图【答案】AD【解析】剪断右侧细绳的瞬间,弹簧弹力不变,物体b 立即向左滑动或具有向左滑动的趋势,物体b 立即受到向右的滑动摩擦力或静摩擦力的作用,C 错误D 正确.由于弹簧的弹力不变,物体a 受力情况不变,地面对a 的摩擦力及左侧绳对a 的拉力都不变,A 正确B 错误.例2.如图所示,质量为m 的小球与轻质弹簧Ⅰ和水平细线Ⅱ相连,Ⅰ、Ⅱ的另一端分别固定于P 、Q ,当仅剪断Ⅰ、Ⅱ中的一根的瞬间,球的加速a 应是A .若剪断Ⅰ,则a =g ,竖直向下B .若剪断Ⅱ,则a =g tan θ,方向水平向左C .若剪断Ⅰ,则a =θcos g ,方向沿Ⅰ的延长线 D .若剪断Ⅱ,则a =g ,竖直向上【答案】AB例3.如图所示,物体AB 的质量分别为m 、2m ,中间用一轻质弹簧连接,用竖直向上的力向上拉A 物体使AB 一起向上以加速度a 做匀加速直线运动。
轻绳、轻杆和轻弹簧模型(修)
轻绳、轻杆和轻弹簧模型的应用一、三个模型的相同点1、“轻”—不计质量,不受重力。
2、在任何情况下,沿绳、杆和弹簧伸缩方向的张力、弹力处处相等。
二、三个模型的不同点1、形变特点轻绳—可以任意弯曲,但不能伸长,即伸长形变不计。
轻杆—不能任意弯曲,不能伸长和缩短,即伸缩形变不计。
轻弹簧—可以伸长,也可以缩短,且伸缩形变不能忽略不计。
2、施力和受力特点轻绳—只能产生和承受沿绳方向的拉力。
轻杆—不仅能产生和承受沿杆方向的拉力和压力,还能产生和承受不沿杆方向的拉力和压力。
轻弹簧—可以产生和承受沿弹簧伸缩方向的拉力和压力。
3、力的变化特点轻绳—张力的产生、变化、或消失不需要时间,具有突变性和瞬时性。
轻杆—拉力和压力的产生、变化或消失不需要时间,具有突变性和瞬时性。
轻弹簧—弹力的产生、变化或消失需要时间,即只能渐变,不具有瞬时性,且在形变保持瞬间,弹力保持不变。
(注意:当弹簧的自由端无重物时,形变消失不需要时间)4、连接体的运动特点轻绳—轻绳平动时,两端的连接体沿绳方向的速度(或速度分量)总是相等,且等于省上各点的平动速度;轻绳转动并拉直时,连接体具有相同的角速度,而线速度与转动半径成正比。
轻杆—轻杆平动时,连接体具有相同的平动的速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比。
轻弹簧—在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大,即弹性势能最大时,两端连接体的速率相等;在弹簧转动时,连接体的转动半径随弹力变化,速度方向不一定垂直于弹力。
5、作功和能量转化特点轻绳—在连接体作匀速率和变速率圆周运动的过程中,绳的拉力都不作功;在绳突然拉直的瞬间,有机械能转化为绳的内能,即机械能不守恒。
轻杆—在连接体作匀速率和变速率圆周运动的过程中,轻杆的法向力对物体不作功,而切向力既可以对物体作正功,也可以对物体作负功,但系统机械能守恒。
轻弹簧—弹力对物体作功,系统机械能守恒;弹力作正功,弹性势能减少,物体动能增加;弹力作负功,弹性势能增加,物体动能减少。
力学中常见的三种模型
力学中常见的三种模型作者:曹力峰来源:《课程教育研究·中》2013年第09期【中图分类号】G633.7 【文献标识码】A 【文章编号】2095-3089(2013)09-0160-01不计质量的杆、绳、弹簧称为轻杆、轻绳、轻弹簧,是高中物理教学中常见的理想模型。
它们三者都能发生形变而对与之接触的物体产生弹力的作用,同时自身也受到与之接触物施加的弹力作用。
对它们的正确理解有利于处理和解决许多力学问题。
一、三理想模型的形变1.轻杆的形变可以是拉伸、压缩、弯曲、扭转形变,与之对应杆上的弹力的方向具有多向性,可以在杆上,也可在杆外。
例1:如图1,小车在地面上向右运动,杆A端用一轻杆固定一质量为m的小球,试求下列两情况下小球受到的弹力。
(1)小车在平面上匀速运动。
(2)小车在平面上以加速度a匀加速运动。
解析:(1)小车匀速运动,小球受合力为零,所以小球受弹力与重力等大、反向。
(2)小球也向右匀加速运动,根据牛顿第二定律,小球的弹力应随加速度大小有多种情况,如图所示(只显示两种情况)。
2.轻绳的形变高中阶段只考虑拉伸形变,绳上的弹力表现为拉力,方向在绳上并指向绳子收缩的方向。
3.轻弹簧的形变高中阶段只考虑压缩与拉伸两种情况,弹力表现为拉力或压力,其大小根据胡克定律求解。
二、弹力作用效果与实际应用1.轻绳上的弹力变化具有瞬时性(突变)例2:如图4,物体的质量为m,由两绳系住处于静止状态,OA水平,OB与竖直方向成θ角,当剪断绳OA瞬间,绳上OB的拉力大小?解析:没有剪断OA时,小球处于三力平衡,BO上的拉力大小为mg/cosθ。
当剪断绳OA 瞬间,小球开始做圆周运动。
沿绳的方向,小球的加速度为零,此时,绳BO对小球的拉力大小为mgcosθ。
(如图5所示)2.轻弹簧上的弹力变化具有缓慢性(不突变)瞬间,当引起弹簧形变的原因变化后,弹簧上的弹力不可能马上恢复形变,导致弹力的变化有一时间过程。
例3:将例2中的BO绳换成轻弹簧,剪断OA绳瞬间,求绳上的拉力大小。
轻绳模型、轻杆模型和弹簧模型-2024年高考物理一轮复习考点通关卷(解析版)
轻绳模型、轻杆模型和轻弹簧模型建议用时:50分钟考点序号考点题型分布考点1轻绳模型10单选考点2轻杆模型7单选考点3轻弹簧模型4单选+3多选考点01:轻绳模型(10单选)一、单选题1(2023·甘肃·统考一模)如图所示,一轻绳的一端系在竖直墙上M点,轻绳穿过一轻质光滑圆环O,另一端系一质量为m的物体A。
现用力F拉住轻环上一点,使物体A从图中虚线位置缓慢上升到实线位置。
则在此过程中,绳中张力F T、力F和力F与水平方向夹角θ的变化情况正确的是()A.F T保持不变,F保持不变,夹角θ逐渐减小B.F T保持不变,F逐渐增大,夹角θ逐渐增大C.F T逐渐增大,F逐渐减小,夹角θ逐渐减小D.F T逐渐减小,F保持不变,夹角θ逐渐增大【答案】B【详解】F T等于物体A的重力,故保持不变;因为圆环两边绳子的拉力相等,故当物体A从图中虚线位置缓慢上升到实线位置时,两边绳子的夹角减小,由力的合成知识可知,两边绳子的合力变大,即F变大;因F 的方向总是在两边绳子夹角的平分线向上的方向,故当物体A从图中虚线位置缓慢上升到实线位置时,夹角θ逐渐增大。
故选B。
2(2023·全国·高三专题练习)如图所示,光滑半圆形轨道MAN固定在竖直平面内,MN为水平直径,一轻质小环A套在轨道上,轻绳一端固定在M点,另一端穿过小环系一质量为m的小球恰好静止在图示位置,不计所有摩擦,重力加速度大小为g。
下列说法正确的是()mg B.轻绳对M点拉力的大小为2mgA.轻绳对M点拉力的大小为32C.轻绳对小环A作用力的大小为3mgD.轻绳对小环A作用力的大小为2mg【答案】C【分析】本题考查共点力的平衡,从重物端开始受力分析,得到绳上的力后对轻环受力分析即可。
【详解】AB.因为小球恰好静止,绳上拉力等于小球重力,轻绳上拉力处处相等,轻绳对M点的拉力为mg,所以AB错误;CD.轻环受轻绳的两股力以及轨道的支持力共三个力而平衡,绳上的两股力的合力与环的支持力等大反向,所以绳的合力沿AO方向,又绳上的力相等,所以AO是两股绳夹角的角平分线,所以∠OAM=30°,所以合力F=2mg cos30°=3mg,所以C正确,D错误。
(完整版)轻绳、轻杆和轻弹簧模型
浅析轻绳、轻杆和轻弹簧模型的应用山西泽州县第一中学成文荣李智涛 048000轻绳、轻杆和轻弹簧,是力学中三个重要的理想模型,在高中物理解题中有着重要的地位,为了帮助学生正确地分析和解决与轻绳、轻杆和轻弹簧有关的问题,笔者对三个模型的相同点和不同点进行了总结,并想通过一定的实例,对学生学习和应用给与启迪思考。
一、三个模型的相同点1、“轻”- 不计质量,不受重力。
2、在任何情况下,沿绳、杆和弹簧伸缩方向的张力、弹力处处相等.二、三个模型的不同点1、形变特点轻绳—可以任意弯曲,但不能伸长,即伸长形变不计。
轻杆—不能任意弯曲,不能伸长和缩短,即伸缩形变不计。
轻弹簧—可以伸长,也可以缩短,且伸缩形变不能忽略不计。
2、施力和受力特点轻绳 - 只能产生和承受沿绳方向的拉力.轻杆 - 不仅能产生和承受沿杆方向的拉力和压力,还能产生和承受不沿杆方向的拉力和压力。
轻弹簧—可以产生和承受沿弹簧伸缩方向的拉力和压力。
3、力的变化特点轻绳—张力的产生、变化、或消失不需要时间,具有突变性和瞬时性。
轻杆 - 拉力和压力的产生、变化或消失不需要时间,具有突变性和瞬时性.轻弹簧—弹力的产生、变化或消失需要时间,即只能渐变,不具有瞬时性,且在形变保持瞬间,弹力保持不变。
(注意 :当弹簧的自由端无重物时,形变消失不需要时间)4、连接体的运动特点轻绳 - 轻绳平动时,两端的连接体沿绳方向的速度(或速度分量)总是相等,且等于省上各点的平动速度;轻绳转动并拉直时,连接体具有相同的角速度,而线速度与转动半径成正比。
轻杆—轻杆平动时,连接体具有相同的平动的速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比.轻弹簧—在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大,即弹性势能最大时,两端连接体的速率相等;在弹簧转动时,连接体的转动半径随弹力变化,速度方向不一定垂直于弹力。
5、作功和能量转化特点轻绳 - 在连接体作匀速率和变速率圆周运动的过程中,绳的拉力都不作功;在绳突然拉直的瞬间,有机械能转化为绳的内能,即机械能不守恒.轻杆—在连接体作匀速率和变速率圆周运动的过程中,轻杆的法向力对物体不作功,而切向力既可以对物体作正功,也可以对物体作负功,但系统机械能守恒。
(完整版)高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习
高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习 一.轻绳模型1。
轻绳模型的特点:“绳"在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力.它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
2.轻绳模型的规律:①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
3。
绳子的合力一定的情况下,影响绳上拉力大小的因素是绳子的方向而不是绳子的长度。
4.力对绳子做的功,全部转化为绳对物体的做的功。
5.绳连动问题:①当物体的运动方向沿绳子方向(与绳子平行)时,物体的速度与绳子的速度相同。
②当物体的运动方向不沿绳子方向(与绳子不平行)时,物体的速度与绳子的速度不相同,一般以物体的速度作为实际速度,绳的速度是物体速度的分速度,当绳与物体的速度夹角为θ 时,= cos v v θ绳物例1:如图所示,将一根不能伸长、柔软的轻绳两端分别系于A 、B 两点上,一物体用动滑轮悬挂在绳子上,达到平衡时,两段绳子间的夹角为1θ,绳子张力为F 1;将绳子B 端移至C 点,待整个系统达到平衡时,两段绳子间的夹角为2θ,绳子张力为F 2;将绳子B 端移至D 点,待整个系统达到平衡时,两段绳子间的夹角为3θ,绳子张力为F 3,不计摩擦,则( )A .1θ=2θ=3θB .1θ=2θ<3θC .F 1 〉F 2 〉F 3D .F 1 =F 2 〈F 31—1.如图所示,轻绳上端固定在天花板上的O 点,下端悬挂一个重为10 N 的物体A ,B 是固定的表面光滑的小圆柱体.当A 静止时,轻绳与天花板的夹角为30°,B 受到绳的压力是 ( )A.5 NB 。
10 NC 。
5错误! ND.10错误! N1—2。
轻杆模型
中学阶段常涉及到“轻绳”、“轻杆”和“轻弹簧”模型,这三种模型都是由各种实际情况中的绳、杆和弹簧抽象出来的理想化物理模型。
但它们的成因和特性并不完全相同,由此导致这类模型在实际应用中有很多同学混淆出错,笔者拟对这三种模型的特点及区别应用作一些简单的讨论。
一、三个模型的正确理解1. 轻绳模型轻绳也称细线,它的质量可忽略不计;轻绳是软的;同时它的劲度系数非常大,可认为在受外力作用时它的形变极微小,看作不可伸长;其弹力的主要特征是:①不能承受压力,不能产生侧向力,只能产生沿绳收缩方向的拉力。
②内部张力大小处处相等,且与运动状态无关。
③轻绳的弹力大小可发生突变。
2. 轻杆模型轻杆的质量可忽略不计,轻杆是硬的,它的劲度系数非常大,可认为在受外力作用时形变极微小,看作不可伸长或压缩;其弹力的主要特征是:①轻杆既可产生压力、也可产生拉力,且能产生侧向力(力的方向不一定沿着杆的方向);②轻杆各处受力大小相等,且与运动状态无关;③轻杆的弹力可发生突变。
3. 轻弹簧模型轻弹簧的质量可忽略不计,可以被压缩或拉伸。
其弹力的主要特征是:①轻弹簧能产生沿弹簧轴线伸缩方向的压力或拉力;②轻弹簧各处受力大小相等,且与弹簧形变的方向相反;③轻弹簧产生的弹力是连续变化的,不能发生突变,只能渐变(除弹簧被剪断外);④在弹性限度内,弹力的大小与弹簧的形变量成正比,即F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量。
二、三种模型的主要区别及应用下面结合例题分析它们的区别及应用:1. 轻绳对物体只能产生沿绳收缩方向的拉力,而轻杆对物体的弹力不一定沿杆的方向。
【例1】如图1所示,轻绳一端系着质量为m的小球,另一端系在固定于小车上一直杆AB的上端;试求当小车以a的加速度水平向左匀加速度直线运动,轻绳对小球作用力的大小和方向?解析:如图2所示,小球受两个力作用:重力mg和绳对小球弹力T。
因为细绳只能被拉伸,则绳的弹力只能是沿绳方向的拉力,设绳与竖直方向的夹角为α。
高中物理 圆周运动中的轻绳、轻杆和轻弹簧
圆周运动中的轻绳、轻杆和轻弹簧圆周运动中常涉及到“轻绳”、“轻杆”和“轻弹簧”模型,“轻绳”“轻杆”及“轻弹簧”是由各种实际情况中的绳、杆和弹簧抽象出来的理想物理模型.作为这一类模型,一般情况下,“轻”往往是(相对其他物体来说)指其质量可以忽略,所受重力可以忽略,而绳和杆则往往是其形体在同一直线上,且其长度不发生变化,而弹簧可以伸长也可以被压缩.由此导致这类模型在圆周运动中具有其特有的关系。
一、轻绳对物体只能产生沿绳收缩方向的拉力【例1】如图1所示,一摆长为L的单摆,摆球的质量为m,要使摆球能在竖直平面内做完整的圆周运动,那么摆球在最底点的速度v0至少要多大?解析小球在最高点的受力情况如图1所示,由牛顿第二定律得mg+T=mv2/L,由于m、L一定,所以小球在最高点的速度v越小,此时绳中拉力T就越小,当T=0时,小球具有不脱离轨的最小速度,因此当v0最小时,在最高点有mg=mv2/L,从最底点到最高点,小球机械能守恒,有(1/2)mv02=2mgL+(1/2)mv2,由以上各式联立解得v0的最小值为v0=.【总结】由于轻绳只能有拉力作用,因此只有当v0≥才能使小球做完整的圆周运动.它的这种规律与竖直平面内放置一半径为L的轨道,小球在内轨做完整的圆周运动情况类似.二、轻杆对物体既可以有拉力也可以有支撑力【例2】在例1中,将轻绳换成轻杆,要使摆球能在竖直平面内做完整的圆周运动,在最底点小球的速度v0至少要多大?解析如图2所示,小球在最高点既可以受到轻杆的拉力,又可以受到轻杆的支撑力,所以小球在最高点的合外力最小可以为零.因此,小球在最高点的速度最小且不脱离轨道,此速度可以为零.而小球在最高点的速度值v=则是小球在最高点受到轻杆对它弹力方向变化的临界值.即v<时,轻杆对它有向上的支撑力;v=时,轻杆对它无作用力;v>时,轻杆对它有向下的拉力.从最底点到最高点,由机械能守恒定律得(1/2)mv02=2mgL,解得v0=.【总结】由于轻杆对物体的作用既可以是拉力,又可以是支撑力,则物体在竖直平面内做完整的圆周运动,在最底点的速度只要大于即可.它的这种规律与竖直平面内放置圆管,小球在圆管内做完整的圆周运动相类似.如图3所示.三、轻弹簧对物体既可以有拉力,也可以有支持力,但长度随力的变化而变化例3有原长为L0的轻弹簧,劲度系数为k,一端系一质量为m的物体,另一端固定图1图2图3图4在转盘上的O点,如图4所示.物块随同转盘一起以角速度ω转动,物块与转盘间的最大静摩擦力为fm,求物块在转盘上的位置范围.【解析】由题意知,物块与转盘间有最大静摩擦力fm,当物块转动半径最小时,设为r1,此时弹簧被压缩的量为L0-r1,对物块而言,受有指向圆心的最大静摩擦力fm及弹簧的弹力F,且F=k(L0-r1),则fm-k(L0-r1)=mr1ω2,解得r1=(fm-kL0)/(mω2-k).当物块转动半径最大时,设为r2,此时弹簧的伸长量为(r2-L0),对物块而言,受有指向圆心的弹簧的弹力F及最大静摩擦力fm,且F=k(r2-L0),则k(r2-L0)-fm=mr2ω2,解得r2=(fm+kL0)/(k-mω2).所以物块所处的位置为(fm-kL0)/(mω2-k)≤r≤(fm+kL0)/(k-mω2).由以上分析可看出,在具体问题中,要注意分清轻绳、轻杆和轻弹簧的区别,现列表如下进行比较:类别特性作用力效果作用力方向形体在同一直线上的变化具体体现轻绳只能是拉力只能沿绳方向不变化轻杆既可以是拉力又可以是支撑力沿杆方向不变化轻弹簧既可以是拉力又可以是“推”力沿弹簧方向变化。
轻绳、轻杆、轻弹簧三种模型之比较
轻绳、轻杆、轻弹簧三种模型之比较轻绳、轻杆、轻弹簧作为中学物理最常见的三种典型的理想化力学模型, 在各类题目中都会出现,有必要将它们的特点归类,供同学们学习时参考。
.轻绳(或细绳)中学物理中的绳和线,是理想化的模型,具有以下几个特征:(1)轻:即绳(或线)的质量或重力可以视为等于零。
由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等;例1.如图1所示,PQ 是固定的水平导轨,两端 小定滑轮,物体A 、B 用轻绳连结,绕过定滑轮, 轮的摩擦,系统处于静止时,a =37°,片53°,10N,A 重20N, A 与水平导轨间摩擦因数=0.2 ,的摩擦力()A •大小为4N ,方向向左B •大小为4N ,方向向右C .大小为2N ,方向向左D .大小为2N解析:要分析A 物体所受摩擦力,必须确定两绳子 的拉力情况。
因为两绳均为轻绳,且滑轮摩擦不计, 绳子两端及其中间各点的张力大小相等,只要对 B 受力分析即可知道绳子拉力大小情况。
如图2所示,B 受重力、两绳拉力F ,、F 2而平衡, 的平衡知识即平行四边形法则可知:F ,=G B S in : =6N , F ,=G B cos 〉=8N 。
再以 A 物体为研 象 ,如图可知,A 物体所受摩擦力为f =F 2 -F^8N -6N =2N ,方向向左。
本题 C 选项符合题意。
(2)软:即绳(或线)只能受拉力,不能承受压力。
由此特点可知:绳(或线)与其他物体的相 互间作用力的方向总是沿着绳子。
注意轻绳“拉紧”和“伸直”的区别:“拉紧”的轻绳,一定而“伸直”的轻绳,还没有发生形变,没有张力。
例2■物体A 质量为m ,用两根轻绳B 、C 连接到墙上,在物体 一个力F ,如图所示,二=60,要使两绳都能伸直,求 小范围。
解析:我们先假设拉力F 较小,则绳C 将松弛,绳B 将有两个 不计滑 若B 重 则A 受因此 物体由力究对 拉紧,因有张力,A 上施加力F 的大图此,拉力F 的最小值F min ,出现在绳C 恰好伸直无弹力,而绳B 张紧时。
高考物理 专题2.6 轻绳、轻杆、轻弹簧 “绳上的‘死结’和‘活结’模型” “活动杆”与“固定杆”问题
专题2.6 轻绳、轻杆、轻弹簧“绳上的‘死结’和‘活结’模型”“活动杆”与“固定杆”问题轻杆、轻绳、轻弹簧模型1.三种模型对比型图型特只能发生微小形变张力大小相等方向特点可以是任意方向2.弹簧与橡皮筋的弹力特点(1)弹簧与橡皮筋产生的弹力遵循胡克定律F=kx。
(2)橡皮筋、弹簧的两端及中间各点的弹力大小相等。
(3)弹簧既能受拉力,也能受压力(沿弹簧轴线),而橡皮筋只能受拉力作用。
(4)弹簧和橡皮筋中的弹力均不能突变,但当将弹簧或橡皮筋剪断时,其弹力立即消失。
【典例1】如图所示为位于水平面上的小车,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆的下端固定有质量为m 的小球。
下列关于斜杆对小球的作用力F 的判断中,正确的是( )A .小车静止时,F =mg sin θ,方向沿杆向上B .小车静止时,F =mg cos θ,方向垂直于杆向上C .小车向右匀速运动时,一定有F =mg ,方向竖直向上D .小车向右匀加速运动时,一定有F >mg ,方向一定沿杆向上 【思路点拨】解答本题时可按以下思路进行:小球的运动状态―→小球所受的合力―――――――→牛顿第二定律或者平衡条件确定弹力的大小和方向【名师点睛】 轻杆弹力的确定方法杆的弹力与绳的弹力不同,绳的弹力始终沿绳指向绳收缩的方向,但杆的弹力方向不一定沿杆的方向,其大小和方向的判断要根据物体的运动状态来确定,可以理解为“按需提供”,即为了维持物体的状态,由受力平衡或牛顿运动定律求解得到所需弹力的大小和方向,杆就会根据需要提供相应大小和方向的弹力。
一、“活结”与“死结”绳是物体间连接的一种方式,当多个物体用绳连接的时候,其间必然有“结”的出现,根据“结”的形式不同,可以分为“活结”和“死结”两种.“活结”“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点.“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的.绳子虽然因“活结”而弯曲,但实际上是同根绳,所以由“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线.“死结”“死结”可理解为把绳子分成两段,且不可沿绳子移动的结点。
经典高三物理模型绳子、弹簧和杆产生的弹力特点 知识点分析
绳子、弹簧和杆产生的弹力特点模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:【案例1】如图所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细绳OA 、OB 上,0B 一端悬挂在天花板上,与竖直方向夹角为θ,OA 水平拉直,物体处于平衡状态,现在将OA 剪断,求剪断瞬间物体的加速度,若将绳OB 换为长度为L 2的弹簧,结果又如何?分析与解答:为研究方便,我们两种情况对比分析。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsin θ,所以a=gsin θ。
高中物理中“轻绳”、“轻杆”和“轻弹簧”问题的分析
高中物理中“轻绳” 、“轻杆”和“轻弹簧”的问题分析中学阶段常涉及到“轻绳” 、“轻杆”和“轻弹簧”模型,这三种模型都是由各种实际情况中的绳、杆和弹簧抽象出来的理想化物理模型。
但它们的成因和特性并不完全相同,由此导致这类模型在实际应用中有很多同学混淆出错,下面对这三种模型的特点及区别应用作一些简单的讨论和分析。
一、三个模型的正确理解1.轻绳模型轻绳也称细线,它的质量可忽略不计;轻绳是软的;同时它的劲度系数非常大,可认为在受外力作用时它的形变极微小,看作不可伸长;其弹力的主要特征是:①不能承受压力,不能产生侧向力,只能产生沿绳收缩方向的拉力。
②内部张力大小处处相等,且与运动状态无关。
③轻绳的弹力大小可发生突变。
2.轻杆模型轻杆的质量可忽略不计,轻杆是硬的,它的劲度系数非常大,可认为在受外力作用时形变极微小,看作不可伸长或压缩;其弹力的主要特征是:①轻杆既可产生压力、也可产生拉力,且能产生侧向力(力的方向不一定沿着杆的方向);②轻杆各处受力大小相等,且与运动状态无关;③轻杆的弹力可发生突变。
3.轻弹簧模型轻弹簧的质量可忽略不计,可以被压缩或拉伸。
其弹力的主要特征是:①轻弹簧能产生沿弹簧轴线伸缩方向的压力或拉力;②轻弹簧各处受力大小相等,且与弹簧形变的方向相反;③轻弹簧产生的弹力是连续变化的,不能发生突变,只能渐变(除弹簧被剪断外);④在弹性限度内,弹力的大小与弹簧的形变量成正比,即F=kx,其中 k 为弹簧的劲度系数, x 为弹簧的伸长量或缩短量。
二、三种模型的主要区别及应用下面结合例题分析它们的区别及应用:1.轻绳对物体只能产生沿绳收缩方向的拉力,而轻杆对物体的弹力不一定沿杆的方向。
【例1】如图1 所示,轻绳一端系着质量为m 的小球,另一端系在固定于小车上一直杆 AB 的上端;试求当小车以 a 的加速度水平向左匀加速度直线运动,轻绳对小球作用力的大小和方向?解析:如图 2 所示,小球受两个力作用:重力mg 和绳对小球弹力T。
经典高中物理模型--绳子、弹簧和杆产生的弹力特点
1.如图所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。
2.如图所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。
3.如图所示,一质量为m的小球用轻绳悬挂在小车顶部,小车向左以加速度a做匀加速直线运动时,求轻绳对小球的作用力的大小和方向。
6.解析:在细线未剪断前,由平衡条件可得
水平细线的拉力
弹簧的拉力
当剪断细线的瞬时,,而弹簧形变不能马上改变,故弹簧弹力F保持原值。在图所示中,。所以在剪断细线的瞬时F和mg的合力仍等于原的大小,方向水平向右。则可知小球的加速度方向沿水平向右,即与竖直成角,其大小为。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg与F2的合力与F1大小相等,方向相反,可以解得F1=mgtgθ。
(2)剪断后瞬间,绳OA产生的拉力F1消失,
对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化, 这时F2将发生瞬时变化,mg与F2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F合=mgsinθ,所以a=gsinθ。
绳子、弹簧和杆产生的弹力特点
模型特点:
1.轻绳
(1)轻绳模型的特点
“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
对弹簧来说,其伸长量大,形变恢复需要较长时间,认为弹簧的长度还没有发生变化。这时F2不发生变化,故mg与F2的合力仍然保持不变,与F1大小相等,方向相反,如图(4)所示,所以F合= F1=mgstgθ,
高三物理轻杆、轻绳、轻弹簧的力学特征
轻杆、轻绳、轻弹簧的力学特征赵斌 (湖南省长沙市第六中学 410000)轻杆、轻绳、轻弹簧都是忽略质量的理想模型,它们的力学特征既有相同又有相异,由不同模型构建的物理情景因而具有不同的性质和规律。
一、力的方向有异1、轻绳提供的作用力只能沿绳并指向绳收缩的方向;2、轻弹簧提供的作用力只能沿弹簧的轴线方向,与弹簧发生形变的方向相反;3、轻杆提供的作用力不一定沿杆的方向,可以是任意方向。
例1、如图1所示,水平轻杆的一端固定在墙上,轻绳与竖直方向的夹角为370,小球的重力为8N ,绳子的拉力为5N ,水平轻弹簧的拉力为6N ,求轻杆对小球的作用力。
解析:小球受四个力作用:重力、绳子的拉力、弹簧的拉力,以及轻杆的作用力,其中只有轻杆的作用力的方向不能确定,如图2所示,重力、弹力、轻绳的拉力三者的合力为:55()F N == 方向与竖直方向成370斜向下,这个力与轻绳的拉力恰好在同直线上。
根据物体平衡的条件,可知轻杆对小球的作用力大小为5N ,方向与竖直方向成370斜向上。
二、力的效果有异1、轻绳只能提供拉力。
2、轻杆、轻弹簧既可以提供拉力,又可以提供推力。
例2、用长为l 的轻绳系一小球在竖直平面内做圆周运动,要使小球能做完整的圆周运动,则小球在最低点的速度v 最小为多少?解析:由轻绳的力学特性可知,要使小球在竖直平面内能做完整的圆周运动,则小球在最高点时有一个临界速度v 0,这个速度对应绳子的张力恰好为零,由重力提供向心力,即有:20mv mg l =,得0v根据机械能守恒定律,易求出小球在最低点时的临界速度为v =即要使小球在竖直平面内能做完整的圆周运动,小球在最低点的速度v 必须大例3、在例2中,把轻绳改为轻杆,要使小球在竖直平面内能做完整的圆周运动,则小球在最低点的速度v 最小为多少?解析:由轻杆的力学特征可知,要使小球在竖直平面内能做完整的圆周运动,则只要小球在最高点时的速度稍微大于零即可,这时杆提供支持力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理轻绳、轻弹簧、轻杆模型
在力学中有很多的研究对象是通过“轻绳”“轻杆”“轻弹簧”连接的,在实际解题过程中,发现不少同学对这三种模型的特点、区别还不够清楚,容易混淆,造成解题错误。
特别提醒:轻杆的弹力方向“三百六十度”无死角。
轻绳特点
轻绳模型的建立轻绳或称为细线,它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
轻绳模型的特点①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
轻杆特点轻杆模型的建立
轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
轻杆模型的特点
①轻杆各处受力相等,其力的方向不一定沿着杆的方向;
②轻杆不能伸长或压缩;
③轻杆受到的弹力的方式有拉力或压力。
轻弹簧特点
轻弹簧模型的建立
轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
轻弹簧
的特点①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
特别提醒:橡皮筋与轻弹簧极为相似,只是橡皮筋不能被压缩!
静止或匀速运动
例1、如图所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速
直线运动时,求绳子对小球作用力的大小和方向。
解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。
由平衡条件可知,绳子对小球的弹力为F=mg,方向是沿着绳子向上。
若将轻绳换成轻弹簧,其结果是一样的。
例2、如图所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。
当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大
小和方向。
解析:以小球为研究对象,可知小球受到杆对它一个的弹力和重力作用,由平衡条件可知小球受力如图所示。
则可知杆对小球的弹力为F=mg,方向与重力的方向相反即竖直向上。
注意:在这里杆对小球的作用力方向不是沿着杆的方向。
匀变速直线运动
例3、如图所示,一质量为m的小球用轻绳悬挂在小车顶部,小车向左以加速度a做匀加速直线运动时,求轻绳对小球的作用力的大小和方向。
解析:以小球为研究对象进行受力分析,如图所示。
根据小球做匀加速直线运动可得在竖直方向Fcosθ=mg
在水平方向Fsinθ=ma
解之得:
轻绳对小球的作用力大小随着加速度的增大而增大,它的方向沿着绳子,与竖直方向的夹角为θ。
例4、若将上题中的轻绳换成固定的轻杆,当小车向左以加速度a做匀加速直线运动时,求杆对球的作用力的大小及方向。
解析:如图,小球受到重力和杆对它的弹力F作用而随小车一起向左做匀加速直线运动。
在竖直方向Fcosθ=mg
在水平方向Fsinθ=ma
解之得:
由解答可知,轻杆对小球的作用力大小随着加速度的增大而增大,它的方向不一定沿着杆的方向,而是随着加速度大小的变化而变化。
只有时a=gtanθ,F 才沿着杆的方向。
弹力的突变
轻绳的弹力会发生突变,而弹簧的弹力不会发生突变。
例5、如图所示,小球在细线OB和水平细线AB的作用下而处于静止状态,则在剪断水平细线的瞬间,小
球的加速度多大?方向如何?解析:在没有剪断之前对小球
进行受力如图所示,由平衡条件可得F=mg/cosθT=mgtanθ
当剪断水平细线AB时,此时小球由于细线OB的限制,在沿OB方向上,小球不可能运动,故小球只能沿着与OB垂直的方向运动,也就是说小球所受到的重力,此时的作用效果是拉绳和沿垂直绳的方向做加速运动,其受力如图8所示。
由图可知mgsinθ=ma,则可得a=gsinθ,方向垂直于OB向下。
绳OB的拉力F。
=mgcos
θ,则可知当剪断水平细线AB时,细线OB的拉力发生了突变。
例6、如图所示,一轻质弹簧和一根细线共同提住一个质量为m的小球,平衡时细线是水平的,弹簧与竖直方向的夹角是,若突然剪断细线,则在剪断的瞬间,弹簧拉力的大小是__________,小球加速度与竖直方向夹角等于_________。
解析:在细线未剪断前,由平衡条件可得水平细线的拉力:T=mgtanθ弹簧的拉力:F=mg/cosθ当剪断细线的瞬时,T=0,而弹簧形变不能马上改变,故弹簧弹力F保持原值。
在图所示中,F=mg/cosθ。
所以在剪断细线的瞬时F和mg的合力仍等于原T的大小,方向水平向右。
则可知小球的加速度方向沿水平向右,即
与竖直成90度角,其大小为a=gtanθ。