八年级下学期数学模拟试题

合集下载

2024届北京市第七中学八年级数学第二学期期末综合测试模拟试题含解析

2024届北京市第七中学八年级数学第二学期期末综合测试模拟试题含解析

2024届北京市第七中学八年级数学第二学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.2.药品研究所开发一种抗菌新药,经过多年的动物实验之后首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药后的时间x(时)之间的函数关系如图所示,则当16x≤≤,y的取值范围是()A.864311y≤≤B.64811y≤≤C.883y≤≤D.816y≤≤3.若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为()A.0 B.1 C.±1 D.﹣14.如图,在平面直角坐标系中,直线y=-3x+3与坐标轴分别交于A,B两点,以线段AB为边,在第一象限内作正方形ABCD,直线y=3x-2与y轴交于点F,与线段AB交于点E,将正方形ABCD沿x轴负半轴方向平移a个单位长度,使点D落在直线EF上.有下列结论:①△ABO的面积为3;②点C的坐标是(4,1);③点E到x轴距离是12;④a=1.其中正确结论的个数是()A.4个B.3个C.2个D.1个5.如图,正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形,则∠AED=()A.60°B.65°C.70°D.75°6.下列各式中,正确的是()A.122ba b a=-+B.22112236dd d d++=C.a b a bc c-++=-D.22111(1)a aa a+-=--7.如图,在平行四边形ABCD中,DE平分∠ADC交BC于E,AF⊥DE,垂足为F,已知∠DAF=50°,则∠B=()A.50°B.40°C.80°D.100°8.如图,已知菱形ABCD的周长是24米,∠BAC=30°,则对角线BD的长等于()A.3B.3C.6米D.3米9.如图,腰长为2的等腰直角三角形ABC绕直角顶点A顺时针旋转45︒得到AB C''∆,则图中阴影部分的面积等于()A .422-B .2C .22D .222- 10.对于二次函数()212y x =--+的图象与性质,下列说法正确的是( )A .对称轴是直线1x =,最大值是2B .对称轴是直线1x =,最小值是2C .对称轴是直线1x =-,最大值是2D .对称轴是直线1x =-,最小值是2 二、填空题(每小题3分,共24分)11.关于x 的一元二次方程(x+1)(x+7)= -5的根为_______________.12.若关于x 的方程21122x m x x +-=++有增根,则m 的值为________. 13.①_________;②_________;③_________. 14.己知三角形三边长分别为6,6,23,则此三角形的最大边上的高等于_____________.15.已知,四边形ABCD 中,AB ∥CD ,AB =8,DC =4,点M 、N 分别为边AB 、DC 的中点,点P 从点D 出发,以每秒1个单位的速度从D →C 方向运动,到达点C 后停止运动,同时点Q 从点B 出发,以每秒3个单位的速度从B →A 方向运动,到达点A 后立即原路返回,点P 到达点C 后点Q 同时停止运动,设点P 、Q 运动的时问为t 秒,当以点M 、N 、P 、Q 为顶点的四边形为平行四边形时,t 的值为________。

江苏省泰州市泰州中学附属初级中学2023-2024学年八年级下学期第一次月考模拟数学试题(解析版)

江苏省泰州市泰州中学附属初级中学2023-2024学年八年级下学期第一次月考模拟数学试题(解析版)

八年级数学第一次月度检测模拟试卷第Ⅰ卷(选择题)一、选择题:本题共5小题,每小题3分,共15分.在每小题给出的选项中,只有一项是符合题目要求的.1. 下列四个图案中,既是轴对称图形又是中心对称图形的图案是( )A. B. C. D.【答案】B【解析】【分析】本题考查中心对称图形和轴对称图形的知识,解题的关键是掌握中心对称图形的定义和轴对称图形的定义,进行判断,即可.【详解】中心对称图形的定义:旋转后能够与原图形完全重合,∴A 、是中心对称图形,不是轴对称图形,不符合题意;B 、即是中心对称图形也是轴对称图形,符合题意;C 、即不是中心对称图形也不是轴对称图形,不符合题意;D 、是轴对称图形,不是中心对称图形,不符合题意.故选:B .2. 为了解某地一天内的气温变化情况,比较适合使用的统计图是( )A. 条形统计图B. 折线统计图C. 扇形统计图D. 频数分布直方图【答案】B【解析】【分析】根据题意中的“变化情况”直接选择折线统计图.【详解】为了解某地一天内的气温变化情况,180应选择的统计图是折线统计图,故选:B .【点睛】本题考查了条形统计图,扇形统计图,折线统计图,频数直方图的概念,根据实际选择合适的统计图,根据题意中的“变化情况”选择统计图是解题的关键.折线统计图用折线的起伏表示数据的增减变化情况不仅可以表示数量的多少,而且可以反映数据的增减变化情况.3. □ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A. BE =DFB. AE =CFC. AF //CED. ∠BAE =∠DCF 【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A 、如图,∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵BE =DF ,∴OE =OF ,∴四边形AECF 是平行四边形,故不符合题意;B 、如图所示,AE =CF ,不能得到四边形AECF 是平行四边形,故符合题意;C 、如图,∵四边形ABCD 是平行四边形,∴OA =OC ,∵AF //CE ,∴∠FAO =∠ECO ,又∵∠AOF =∠COE ,∴△AOF ≌△COE,∴AF =CE ,∴四边形AECF 是平行四边形,故不符合题意;D 、如图,∵四边形ABCD 是平行四边形,∴AB =CD ,AB //CD ,∴∠ABE =∠CDF ,又∵∠BAE =∠DCF ,∴△ABE ≌△CDF ,∴AE =CF ,∠AEB =∠CFD ,∴∠AEO =∠CFO ,∴AE //CF ,∴四边形AECF 是平行四边形,故不符合题意,故选B .【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.4. 在对60个数进行整理的频数分布表中,这组的频数之和与频率之和分别为( )A. 60,1B. 60,60C. 1,60D. 1,1【答案】A【解析】【分析】本题是频数与频率基础应用题,难度一般,主要考查学生对频数与频率的定义的理解和运用能力. 根据频数与频率的定义即可得到结果.【详解】解:在对个数据进行整理的频率分布表中,各组的频数之和等于,频率之和等于1,故选A .5. 如图,在△ABC 中,∠CAB =65°,将△ABC 在平面内绕点A 旋转到△AB ′C ′的位置,使CC ′∥AB,则旋的6060转角的度数为( )A. 30°B. 40°C. 50°D. 65°【答案】C【解析】【分析】根据两直线平行,内错角相等可得∠ACC ′=∠CAB ,根据旋转的性质可得AC ′=AC ,然后利用等腰三角形两底角相等求∠CAC ′,再根据∠CAC ′、∠BAB ′都是旋转角解答.【详解】解:∵CC ′∥AB ,∴∠ACC ′=∠CAB =65°,∵△ABC 绕点A 旋转得到△AB ′C ′,∴AC =AC ′,∴∠CAC ′=180°-2∠ACC ′=180°-2×65°=50°,∴∠CAC ′=∠BAB ′=50°故选:C .【点睛】本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.二、填空题:本题共10小题,每小题3分,共30分6. 函数x 的取值范围是__________.【答案】x ≥-2且x ≠1【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出结论.【详解】解:由题意可得解得x ≥-2且x ≠1故答案为:x ≥-2且x ≠1.【点睛】此题考查的是求自变量的取值范围,掌握二次根式有意义的条件和分式有意义的条件是解决此题的关键.y =2010x x +≥⎧⎨-≠⎩7. 一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率是________.【答案】【解析】【分析】先求出总球的个数,再根据概率公式进行计算即可得出答案.【详解】解:∵有两个红球和一个黄球,共3个球,∴从中任意取出一个是黄球的概率是;故答案为.【点睛】本题考查了概率公式.用到的知识点为:概率=所求情况数与总情况数之比.8. “校园安全”受到全社会的广泛关注,某校对400名学生和家长就校园安全知识的了解程度进行了随机抽样调查,并绘制成如图所示的统计图(不完整),根据统计图中的信息,若全校有2050名学生,请你估计对校园安全知识达到“非常了解”和“基本了解”的学生有______人.【答案】1350【解析】【分析】本题考查的是条形统计图运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据. 求得调查的学生总数,则可得对“校园安全”知识达到“非常了解”和“基本了解”所占的比例,利用求得的比例乘以2050即可得到.【详解】解:∵调查的家长的总人数是:(人)∴调查的学生的总人数是:(人)对“校园安全“知识达到“非常了解”和“基本了解”的学生是(人),全校2050学生中达到“非常了解”和“基本了解”的学生人数为:(人).故答案为:.9. 在中,,则的度数为______.【答案】##135度1313138377314195+++=400195205-=2055416135--=13520501350205´=1350ABCD Y :A B ∠∠=3:1C ∠135︒【解析】【分析】本题考查平行四边形的知识,根据平行四边形的性质,则,则,再根据,求出,;最后根据平行四边形的性质,即可.【详解】∵四边形是平行四边形,∴,,∴,∵,∴,,∴.故答案为:.10. 如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x - 6上时,线段BC 扫过的面积为_______【答案】16【解析】【分析】根据题意,线段扫过的面积应为一平行四边形的面积,其高是的长,底是点平移的路程.求当点落在直线上时的横坐标即可.【详解】解:如图所示.AD BC ∥180A B ∠+∠=︒:A B ∠∠=3:1A ∠B ∠ABCD AD BC ∥A C ∠=∠180A B ∠+∠=︒:A B ∠∠=3:1135A ∠=︒45B ∠=︒135C ∠=︒135︒BC AC C C 26y x =-点、的坐标分别为、,.,,∴由勾股定理可得:..点在直线上,,解得.即...即线段扫过的面积为16.故选:C .【点睛】此题考查平移的性质及一次函数的综合应用,解决本题的关键是明确线段扫过的面积应为一平行四边形的面积.11. 如图,将绕点顺时针旋转后得到,点与点是对应点,点与点是对应点.如果,那么______°.【答案】【解析】A B (1,0)(4,0)3AB ∴=90CAB ∠=︒ 5BC =4AC =4A C ∴''= C '26y x =-264x ∴-=5x =5OA '=514CC ∴'=-=4416BCC B S ''∴=⨯= BC BC ABC A 80︒ADE V B D C E 35EAB ∠=︒DAC ∠=125【分析】本题考查旋转的性质,解题的关键是掌握:旋转变换只改变图形的位置不改变图形的形状与大小.据此解答即可.【详解】解:∵将绕点顺时针旋转后得到,∴,∵,∴,∴.故答案为:.12. 在平行四边形中,,已知,,将沿翻折至,使点落在平行四边形所在的平面内,连接.若是直角三角形,则的长为______.【答案】或【解析】【分析】根据平行四边形中,,要使是直角三角形,则,,画出图形,分类讨论,即可.【详解】当,,延长交于点,∵四边形是平行四边形,∴,,∴,∵沿翻折至,∴,,∴,,∴,在中,,设,∴,ABC A 80︒ADE V 80CAE ∠=︒35∠=︒BAE 803545EAD CAB CAE BAE ∠=∠=∠-∠=︒-︒=︒453545125DAC CAB BAE DAE ∠=∠+∠+∠=︒+︒+︒=︒125ABCD AB BC <30B ∠=︒AB =ABC AC AB C 'V B 'ABCD B D 'AB D 'V BC 23AB BC <AB C 'V 90B AD '∠=︒90AB D '∠=︒①90B AD '∠=︒AB BC <B A 'BC G ABCD AD BC ∥AD BC =90B AD B GC ''∠=∠=︒ABC AC AB C 'V AB AB '==30B AB C '∠=∠=︒BC B C'=12AG AB ==2B C GC '=B G AB AG ''=+==Rt B GC ' 222B C B G CG ''=+GC x =2B C x '=∴,解得:,∴,∴;当时,设交于点,∵四边形是平行四边形,∴,,∵沿翻折至,∴,,∴,∵,∴,∴,∴,∴,∴,∵,∴,∴,∴,∵,,∴,()2222x x =+32x =3B C '=3BC =②90AB D '∠=︒AD B C 'O ABCD AD BC ∥AD BC =ABC AC AB C 'V BC B C '=2BCA ∠=∠AD BC B C '==AD BC ∥1BCA ∠=∠12BCA ∠=∠=∠AO CO =DO B O '=3=4∠∠AOC DOB '∠=∠1234∠=∠=∠=∠'∥AC B D 90B AC BAC '∠=∠=︒30B ∠=︒AB =12AC BC =设,∴,∴,∴解得:,∴.综上所述,当的长为或时,是直角三角形.【点睛】本题考查平行四边形、直角三角形的知识,解题的关键是掌握平行四边形的性质,直角三角形的性质,等腰三角形的性质,直角三角形中,所对的直角边是斜边的一半,即可.13. 如图,平行四边形,点F 是上的一点,连接平分,交于点E ,且点E 是的中点,连接,已知,则__.【答案】4【解析】【分析】本题主要考查了平行四边形的性质,全等三角形的判定与性质以及等腰三角形的性质的综合运用,解决问题的关键是作辅助线构造全等三角形,利用全等三角形的对应边相等,对应角相等进行推算.延长交于点,判定,即可得出,再根据三线合一即可得到即可解答.详解】解:如图,延长交于点,【AC x =2BC x =222BC AC AB =+()2222x x =+1x =2BC =BC 23AB D 'V 30︒ABCD BC 60AF FAD AE ∠=︒,,FAD ∠CD CD EF 53AD CF ==,EF =AE BC ,G ADE GCE △≌△5CG AD AE GE ===,FE AG ⊥AE BC ,G∵点是的中点,∴,∵平行四边形中,,∴,∵,∴,∴,∵平分,,∴,∴,∵是的中点,∴,∴中,,故答案为:.14. 在平面直角坐标系中,一次函数的图像过和两点,该一次函数的表达式为______;若该一次函数的图像过点,则的值为______.【答案】① ②. 【解析】【分析】本题考查待定系数法求一次函数解析式,一次函数图像上点的坐标特征,分别将点和点的坐标代入得到关于、的二元一次方程组,求解即可;将点代入所求得的一次函数表达式即可得到的值.掌握待定系数法确定一次函数解析式是解题的关键.【详解】解:∵一次函数的图像过和两点,.E CD DE CE =ABCD AD BC ∥D ECG ∠=∠AED GEC ∠=∠()ASA ADE GCE ≌5CG AD AE GE ===,AE FAD ∠AD BC ∥1302FAE DAE G DAF ∠=∠=∠=∠=︒358AF GF ==+=E AG FE AG ⊥Rt AEF 142EF AF ==4xOy ()0y kx b k =+≠()0,5A ()1,2B -(),11C m m 35y x =+2A B ()0y kx b k =+≠k b (),11C m m ()0y kx b k =+≠()0,5A ()1,2B -∴,解得:,该一次函数的表达式为,∵该一次函数的图像过点,∴,解得:.故答案为:;.15. 如图,E 为外一点,且,,若,则的度数为______.【答案】##度【解析】【分析】根据四边形内角和求出度数,再借助平行四边形的性质可知即可得到结果.【详解】解:在四边形中,,,所以.四边形是平行四边形,.故答案为:.【点睛】本题主要考查了平行四边形的性质、四边形内角和,解题的关键是掌握特殊四边形的角度问题,一般借助旋转转化角,进行间接求解.三、解答题:本题共10小题,共80分.解答应写出文字说明,证明过程或演算步骤.16. 某同学在解关于的分式方程,去分母时,由于常数漏乘了公分母,最后解得,试求的值,并求出该分式方程正确的解.【答案】,52b k b =⎧⎨-+=⎩35k b =⎧⎨=⎩35y x =+(),11C m 1135m =+2m =35y x =+2ABCD Y EB BC ⊥ED CD ⊥65E ∠=︒A ∠115︒115360︒C ∠A C ∠=∠BCDE 65E ∠=︒90EBC EDC ∠=∠=︒360659090115C ∠=︒-︒-︒-︒=︒ ABCD 115A C ∴∠=∠=︒115︒360︒x 3622x m x x -+=--6=1x -m 2m =177x =【解析】【分析】本题考查分式方程,根据题意,按照该同学的解法解这个分式方程,将解代入,求出的值.再将值代入原方程,求出其正确的解即可.求出的值、掌握解分式方程的步骤是求解题的关键.【详解】解:由题意得,是该同学去分母后得到的整式方程的解,∴,解得:,∴.方程两边同乘以,得:,解得:,检验:当时,代入得:,∴是该分式方程正确的解.17. 先化简,再求值:(1),其中;(2),其中.【答案】(1), (2),【解析】【分析】本题考查分式的化简求值:(1)先根据分式的加法法则,进行化简,再代值计算即可;(2)先根据分式的加法法则,进行化简,再根据,得到,代入计算即可.【小问1详解】解:=1x -m m m =1x -36x m -+=36x m -+=2m =32622x x x -+=--()2x -()3622x x -+-=177x =177x =()2x -1732077-=≠177x =221211a a a a a -+-+-2a =2224224n m mn m n n m n m +++--15m n =11a a +-322n m n m +-11915m n =5n m =221211a a a a a -+-+-,当时,原式;【小问2详解】,,,原式.18. 如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别是A (-3,2),B (-1,4),C (0,2).(1)将△ABC 以点C 为旋转中心旋转180,画出旋转后对应的△A 1B 1C ;(2)平移△ABC ,若A 的对应点A 2的坐标为(-5,-2),画出平移后的△A 2B 2C 2;(3)若将△A 2B 2C 2绕某一点旋转可以得到△A 1B 1C ,请直接写出旋转中心的坐标.()()21111a a a a -=+--111a a a =+--11a a +=-2a =21321+==-2224224n m mn m n n m n m +++--()()()()()()()()2224222222n n m m n m mnn m n m n m n m n m n m -+=+++-+-+-()()22422422n mn mn m mn n m n m -+++=+-()()()2222n m n m n m +=+-22n m n m+=- 15m n =5n m ∴=∴1010119m m m m +=-=︒【答案】(1)答案见解析;(2)答案见解析;(3)(-1,0).【解析】【分析】(1)根据图中的网格结构分别找出点A、B绕点C旋转180°后的对应点A1、B1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C平移后的位置,然后顺次连接即可;(3)根据旋转的性质,确定出旋转中心即可.【详解】解:(1)△A1B1C如图所示;(2)△A2B2C2如图所示;(3)如图所示,旋转中心为(﹣1,0).【点睛】本题考查作图﹣旋转变换,作图﹣平移变换.19. 某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A ,B ,C ,D 四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整).(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D 班选择环境保护的学生人数,并补全折线统计图;(3)若该校共有学生4000人,试估计该校选择文明宣传的学生人数.【答案】(1);(2)15人,见解析;(3)1520人【解析】【分析】(1)由折线图得出选择交通监督的人数,除以总人数得出选择交通监督的百分比,再乘以360°即可求出扇形统计图中交通监督所在扇形的圆心角度数;(2)用选择环境保护的学生总人数减去A ,B ,C 三个班选择环境保护的学生人数即可得出D班选择环境97.2保护的学生人数,进而补全折线图;(3)先求出四个班中选择文明宣传的百分比,用4000乘以样本中选择文明宣传的学生所占的百分比即可.【详解】解:(1)由折线图可得选择交通监督的各班学生总数为12+15+13+14=54人,在四个班人数的百分比为54÷200×100%=27%,扇形统计图中交通监督所在扇形的圆心角度数=;(2)由扇形统计图中选择环境保护的占30%,∴选择环境保护的学生人数为200×30%=60人,∴D 班选择环境保护的学生人数为60-15-14-16=15(人),补全折线统计图如图;(3)四个班中选择文明宣传的学生人数所占百分比为1-30%-5%-27%=38%,该校4000人选择文明宣传的学生人数为:(人).【点睛】本题考查折线统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.20. 已知,按要求完成下列尺规作图(不写作法,保留作图痕迹).(1)如图①,B ,C 分别在射线、上,求作;(2)如图②,点是内一点,求作线段,使P 、Q 分别在射线、上,且点O 是的中点.【答案】(1)见解析(2)见解析【解析】36027%97.2⨯= 400038%1520⨯=MAN ∠AM AN ABDC O MAN ∠PQ AM AN PQ【分析】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定与性质.(1)分别以、点为圆心,以、为半径画弧,两弧相交于点,则四边形满足条件;(2)连接,以点O 为圆心,为半径画弧,交延长线于点G ,再作,交于,连接并延长交于,则满足条件.【小问1详解】解:如图①,平行四边形为所作;∵,∴四边形为平行四边形;【小问2详解】图②,为所作.∵,,,∴,∴,即点是的中点.21. 2016年是中国工农红军长征胜利80周年,某商家用1200元购进了一批长征胜利主题纪念衫,上市后果然供不应求,商家又用2800元购进了第二批这种纪念衫,所购数量是第一批购进量的2倍,但单价贵了5元.(1)该商家购进的第一批纪念衫单价是多少元?(2)若两批纪念衫按相同的标价销售,最后剩下20件按标价八折优惠卖出,如果两批纪念衫全部售完利润不低于640元(不考虑其它因素),那么每件纪念衫的标价至少是多少元?【答案】(1)该商家购进第一批纪念衫单价是30元;(2)每件纪念衫的标价至少是40元.【解析】【分析】(1)设未知量为x ,根据所购数量是第一批购进量的2倍得出方程式,解出方程即可得出结论,此题得以解决.-B C AC AB D ABDC AO AO AO PGA OAN ∠=∠GP AM P PO AN Q PQ ABDC ,AB CD AC BD ==ABDC PQ POG QOA ∠=∠OA OP =PGA OAN ∠=∠()ASA OPG OQA ≌OP OQ =O PQ(2)设未知量为y ,根据题意列出一元一次不等式,解不等式可得出结论.【详解】(1)设该商家购进第一批纪念衫单价是x 元,则第二批纪念衫单价是(x +5)元,由题意,可得:,解得:x =30,检验:当x =30时,x (x +5)≠0,∴原方程的解是x =30答:该商家购进第一批纪念衫单价是30元;(2)由(1)得购进第一批纪念衫的数量为1200÷30=40(件),则第二批的纪念衫的数量为80(件)设每件纪念衫标价至少是a 元,由题意,可得:40×(a ﹣30)+(80﹣20)×(a ﹣35)+20×(0.8a ﹣35)≥640,化简,得:116a ≥4640解得:a ≥40,答:每件纪念衫的标价至少是40元.【点睛】本题考查分式方程的应用,一元一次不等式的应用,解决此类题的关键是要根据题意找出题目中的等量或不等量关系,根据关系列方程或不等式解决问题.22. 如图,在平行四边形ABCD 中,点E 、F 在对角线BD 上,且BE =DF ,(1)求证:AE =CF ;(2)求证:四边形AECF 是平行四边形.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据平行四边形的性质可得AB =CD ,AB ∥CD ,然后可证明∠ABE =∠CDF ,再利用SAS 来判定△ABE ≌△DCF ,从而得出AE =CF .(2)首先根据全等三角形的性质可得∠AEB =∠CFD ,根据等角的补角相等可得∠AEF =∠CFE ,然后证明AE ∥CF ,从而可得四边形AECF 是平行四边形.【详解】(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD.1200280025x x ⨯=+∴∠ABE =∠CDF .在△ABE 和△CDF 中,,∴△ABE ≌△DCF (SAS ).∴AE =CF .(2)∵△ABE ≌△DCF ,∴∠AEB =∠CFD ,∴∠AEF =∠CFE ,∴AE ∥CF ,∵AE =CF ,∴四边形AECF 是平行四边形.【点睛】此题考查了平行四边形的判定与性质,解题的关键是掌握平行四边形的判定方法与性质.23. 如图,在平行四边形ABCD 中,E ,F 为BC 上两点,且BE=CF ,AF=DE求证:(1)△ABF ≌△DCE ;(2)四边形ABCD 是矩形.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据等量代换得到BE=CF ,根据平行四边形的性质得AB=DC .利用“SSS”得△ABF ≌△DCE .(2)平行四边形的性质得到两边平行,从而∠B+∠C=180°.利用全等得∠B=∠C ,从而得到一个直角,问题得证.【详解】(1)∵BE=CF ,BF=BE+EF ,CE=CF+EF ,∴BF=CE .∵四边形ABCD 是平行四边形,∴AB=DC.AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩在△ABF 和△DCE 中,∵AB=DC ,BF=CE ,AF=DE ,∴△ABF ≌△DCE .(2)∵△ABF ≌△DCE ,∴∠B=∠C .∵四边形ABCD 平行四边形,∴AB ∥CD .∴∠B+∠C=180°.∴∠B=∠C=90°.∴平行四边形ABCD 是矩形.24. 如图,已知,点 D 在 y 轴的负半轴上,若将沿直线折叠,点 B 恰好落在 x 轴正半轴上的点 C 处.(1)求直线的表达式;(2)求 C 、D 坐标;(3)在直线上是否存在一点 P ,使得 ? 若存在,直接写出点 P 的坐标;若不存在,请 说明理由.【答案】(1) (2), (3)存在,或【解析】【分析】本题考查的是一次函数综合运用,涉及到图形折叠、面积的计算等,(1)将点A 、B 的坐标代入一次函数表达式,即可得到直线的表达式;(2)由题意得:,故点,设点D 的坐标为,根据,即可得到m 的值;(3)由是的()()3004A B ,,,DAB AD AB DA 10PAB S = 443y x =-+()80C ,()06D -,()14-,()54,y kx b =+AB 5AC AB ==()80C ,()0m ,CD BD =,即可求解.【小问1详解】解:设一次函数表达式:,将点的坐标代入得:,解得:,故直线的表达式为:;【小问2详解】解:,,由题意得: ,,,故点,设点D 的坐标为:,,解得:,故点;【小问3详解】解:存在,理由如下:PAB BDP BDA S S S =- y kx b =+()()3004A B ,,,034k b b =+⎧⎨=⎩434k b ⎧=-⎪⎨⎪=⎩AB 443y x =-+()()3004A B ,,,5AB ∴=CD BD =5AC AB ==358OC OA AC ∴=+=+=()80C ,()0m ,CD BD = 4m\=-6m =-()06D -,设直线的表达式为,由点、的坐标代入得:,解得:,直线的表达式为:,,,,,,点P 在直线上,设,,解得:或5,即点P 的坐标为:或.25. 如图1,在ABC 中,BD 是AC 边上的中线,将DBA 绕点D 顺时针旋转α(0°<α<180°) 得到DEA (如图2),我们称DEA 为DBC 的“旋补三角形”.DEA 的边EA 上的中线DF 叫做DBC 的“旋补中线”.AD 11y k x b =+()30A ,()06D -,111036k b b =+⎧⎨=-⎩1126k b =⎧⎨=-⎩AD 26y x =-()04B ,()06D -,10BD ∴=1103152ABD S \=´´= 10PAB S = DA (),26P a a -13102PAB BDP BDA S S S BD a \=-=´´-= 1a =()14-,()54,(1)在图2,图3,图4中,DEA 为DBC 的“旋补三角形”,DF 是DBC 的“旋补中线”.①如图2,∠BDE +∠CDA = °;②如图3,当DBC 为等边三角形时,DF 与BC 的数量关系为DF = BC ;③如图4,当∠BDC =90°时,BC =4时,则DF 长为 ;(2)在图2中,当DBC 为任意三角形时,猜想DF 与BC 的关系,并给出证明.(3)如图5,在四边形ABCD 中,∠C =90°,∠D =150°,BC =12,CD =DA =6,BE ⊥AD ,E 为垂足.在线段BE 上是否存在点P ,使PDC 是PAB 的“旋补三角形”?若存在,请作出点P ,不需证明,简要说明你的作图过程.【答案】(1)①180;②;③2(2);证明见解析 (3)存在.见解析【解析】【分析】(1)①依据,可得;②当为等边三角形时,可得是等腰三角形,,,再根据,即可得到中,,进而得出;③当时,时,易得,即可得到中,;(2)延长至,使得,连接,,判定四边形是平行四边形,进而得到,再判定,即可得到,进而得出;(3)延长,,交于点,作线段的垂直平分线,交于,交于,连接、、,由定义知当,且时,是的“旋补三角形”,据此进行证明即可.【小问1详解】解:①∵∠ADE +∠BDC =180°,1212DF BC =180ADE BDC ∠+∠=︒180BDE CDA ∠+∠=︒DBC ∆ADE ∆120ADE ∠=︒30E ∠=︒DF AE ⊥Rt DEF ∆12DF DE =12DF BC ==90BDC ∠︒4BC =ADE CDB ∆∆≌Rt ADE ∆122DF AE ==DF G FG DF =EG AG AGED BDC DEG ∠=∠DGE CDB SAS ∆∆≌()BC DG =1122DF DG BC ==AD BC F BC PG BE P BC G PA PD PC PA PD PB PC ==,180DPA CPB ∠+∠=︒PDC ∆PAB ∆∴∠BDE +∠CDA =180°,故答案为:180;②当△DBC 为等边三角形时,BC =DB =DE =DC =DA ,∠BDC =60°,∴△ADE 是等腰三角形,∠ADE =120°,∠E =30°,又∵DF 是△ADE 的中线,∴DF ⊥AE ,∴Rt △DEF 中,DF =DE ,∴DF =BC ,故答案为:;③∵BD 是AC 边上的中线,∴,∵∠BDC =90°,∴ ,在△ADE 和△CDB 中,,∴△ADE ≌△CDB ,∴AE =BC =4,∴Rt △ADE 中,DF =AE =2,故答案为:2;【小问2详解】猜想:DF =AE .证明:如图2,延长DF 至G ,使得FG =DF ,连接EG ,AG ,121212AD CD =90EDA BDC ∠=∠=︒AD CD EDA BDC DE BD =⎧⎪∠=∠⎨⎪=⎩1212∵EF =FA ,FG =DF ,∴四边形AGED 是平行四边形,∴,GE =AD =CD ,∴∠GED +∠ADE =180°,又∵∠BDC +∠ADE =180°,∴∠BDC =∠DEG ,在△GED 和△CDB 中,,∴△DGE ≌△CDB (SAS ),∴BC =DG ,∴DF=DG =BC ;【小问3详解】存在.理由:如图5,延长AD ,BC ,交于点F ,作线段BC 的垂直平分线PG ,交BE 于P ,交BC 于G ,连接PA 、PD 、PC ,由定义知当PA =PD ,PB =PC ,且∠DPA +∠CPB =180°时,△PDC 是△PAB 的“旋补三角形”,∵∠ADC =150°,EG DA ∥DE BD GED CDB GE CD =⎧⎪∠=∠⎨⎪=⎩1212∴∠FDC =30°,在Rt △DCF 中,∵CD =DCF =90°,∠FDC =30°,∴CF =2,DF =4,∠F =60°,在Rt △BEF 中,∵∠BEF =90°,BF =14,∠FBE =30°,∴EF =BF =7,∴DE =EF −DF =3,∵AD =6,∴AE =DE ,又∵BE ⊥AD ,∴PA =PD ,PB =PC ,在Rt △BPG 中,∵BG =BC =6,∠PBG =30°,∴PG =∴PG =CD ,又∵,∠PGC =90°,∴四边形CDPG 是矩形,∴∠DPG =90°,∴∠DPE +∠BPG =90°,∴2∠DPE +2∠BPG =90°,即∠DPA +∠BPC =180°,∴△PDC 是△PAB 的“旋补三角形”.【点睛】本题属于四边形综合题,主要考查了全等三角形的判定和性质、平行四边形的判定和性质、含30°角直角三角形的性质、等边三角形的判定和性质、矩形的判定和性质等知识的综合运用,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题.1212CD PG ∥。

山东省聊城市临清市2023-2024学年八年级下册期中考试数学模拟试题(附答案)

山东省聊城市临清市2023-2024学年八年级下册期中考试数学模拟试题(附答案)

第3题图第8题图A.75°B 9.定义:对于实数a,符号第10题图A .12B .14C .16D .18二、填空题:本题共6小题,每小题3分,共18分.11.若一个正数x 的平方根是与,则x 的值为______.1a +3a -12.已知关于x 的方程的解是非负数,则k 的最小值为______.349k x -=-13.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A ,C ,D 的面积依次为4、6、18,则正方形B 的面积为______.第13题图14.如图,数轴上点A 所表示的数为1,点B ,C ,D 是4×4的正方形网格上的格点,以点A 为圆心,AD 长为半径画圆交数轴于M ,N 两点,则M 点所表示的数为______.第14题图15.关于x 的不等式组有且只有三个整数解,则a 的取值范围是______.23x xx a <-+⎧⎨<⎩16.如图,以△ABC 的三边为边在BC 上方分别作等边△ACD ,△ABE ,△BCF ,且点A 在△BCF 内部.给出以下结论:①四边形ADFE 是平行四边形;②当时,四边形ADFE 是菱形;AB AC =③当时,四边形ADFE 是矩形;90BAC ∠=︒④当AB =AC ,且时,四边形ADFE 是正方形.其中正确结论有______(填上90BAC ∠=︒第16题图第18题图第19题图第21题图22.(本题满分9分)某仓库放置若干个第23题图24.(本题满分12分)综合与实践【问题情境】数学综合与实践活动课上,老师提出如下问题:一个三级台阶,它每一级的长、宽、高分别为20、3、2,A和B是一个台阶两个相对的端点.【探究实践】老师让同学们探究:如图①,若A点处有一只蚂蚁要到B点去吃可口的食物,那么蚂蚁沿着台阶爬到B点的最短路程是多少?(1)同学们经过思考得到如下解题方法:如图②,将三级台阶展开成平面图形,可得到长为20,宽为15的长方形,连接AB,经过计算得到AB长度为______,就是最短路程.【变式探究】(2)如图③,是一只圆柱形玻璃杯,该玻璃杯的底面周长是30 cm,高是8 cm,若蚂蚁从点A出发沿着玻璃杯的侧面到点B,则蚂蚁爬行的最短距离为______.【拓展应用】(3)如图④,圆柱形玻璃杯的高9 cm,底面周长为16 cm,在杯内壁离杯底4 cm的点A处有一滴蜂蜜,此时,一只蚂蚁正好在外壁上,离杯上沿1 cm,且与蜂蜜相对的点B处,则蚂蚁从外壁B处到内壁A处所爬行的最短路程是多少?(杯壁厚度不计);x+1≥①∵AB=AD=13m,证明:∵四边形ABCD是菱形,∴又∵∠B=60°,∴△ABC∵E是BC的中点,∴AE⊥∵DB=DC,∴AF=CD.∵,AF =BD ,AF BD ∥作B 关于EF 的对称点B 在Rt △ABD 中,AD AE =22B A B D AD ''=+=所以B 处到内壁A 处所爬行的最短路程是。

2024届内蒙古乌兰察布市北京八中学分校八年级数学第二学期期末统考模拟试题含解析

2024届内蒙古乌兰察布市北京八中学分校八年级数学第二学期期末统考模拟试题含解析

2024届内蒙古乌兰察布市北京八中学分校八年级数学第二学期期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每题4分,共48分)1.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.25B.35C.92D.2542.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟.在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙用16分钟追上甲;③乙走完全程用了30分钟;④乙到达终点时甲离终点还有360米.其中正确的结论有()A.1个B.2个C.3个D.4个3.下列根式中,与不是同类二次根式的是()A.B.C.D.4.若关于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=1必有一根为()A.12019B.2020 C.2019 D.20185.点A(3,y1)和点B(﹣2,y2)都在直线y=﹣2x+3上,则y1和y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定6.比较A组、B组中两组数据的平均数及方差,一下说法正确的是()A.A组,B组平均数及方差分别相等B.A组,B组平均数相等,B组方差大C.A组比B组的平均数、方差都大D.A组,B组平均数相等,A组方差大7.小宸同学的身高为1.8m,测得他站立在阳光下的影长为0.9m,紧接着他把手臂竖直举起,测得影长为1.2m,那么小宸举起的手臂超出头顶的高度为()A.0.3m B.0.5m C.0.6m D.2.1m8.一个多边形的每一个外角都等于40°,则这个多边形的内角和是.()A.360°B.980°C.1260°D.1620°9.若数a使关于x的不等式组232x ax a->⎧⎨-<-⎩无解,且使关于x的分式方程5355axx x-=---有正整数解,则满足条件的整数a的值之积为()A.28 B.﹣4 C.4 D.﹣210.下列各图中,∠1>∠2的是( )A.B.C.D.11.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为()A.4 B.16 C.5D.512.已知点(a﹣1,y1)、(a+1,y2)在反比例函数y=kx(k>0)的图象上,若y1<y2,则a的范围是()A.a>1 B.a<﹣1C.﹣1<a<1 D.﹣1<a<0或0<a<1二、填空题(每题4分,共24分)13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.14.已知a =32-,b =3+2,则a 2-2ab +b 2的值为____________.15.某高科技开发公司从2013年起开始投入技术改进资金,经过技术改进后,其产品的生产成本不断降低,具体数据如下表:请你认真分析表中数据,写出可以表示该变化规律的表达式是____________.16.在平面直角坐标系中,直线l :1y x =-与x 轴交于点1A ,如图所示依次作正方形111A B C O 、正方形2221A B C C 、…、正方形1n n n n A B C C -,使得点123A A A 、、、…在直线l 上,点123C C C 、、、 …在y 轴正半轴上,则点n B 的横坐标是__________________。

重庆八中2024年八年级下学期期中数学试题+答案

重庆八中2024年八年级下学期期中数学试题+答案

重庆市第八中学2023-2024学年八年级下学期数学期中模拟试卷A 卷一、选择题1.(4分)下列设计的图案中既是中心对称图形又是轴对称图形的是( )A .B .C .D .2.(4分)把多项式322ax ax ax −+分解因式,结果正确的是( )A .()22ax x x −B .()22ax x −C .()()11ax x x +−D .()21ax x − 3.(4分)下列式子的变形正确的是( )A .22b b a a = B .22a b a b a b +=++ C .2422x y x y x x−−= D .22m n n m −=− 4.(4分)下列说法中,错误的是( )A .有一组邻边相等的平行四边形是菱形B .两条对角线互相垂直且平分的四边形是菱形C .对角线相等的平行四边形是矩形D .有一组邻边相等的菱形是正方形5.(4分)如图,正方形ABCD 中,E 为对角线BD 上一点,70BEC ∠=°,那么DAE ∠=( )A .10°B .15°C .25°D .30°6.(4分)估计的值应在( ) A .1和2之间 B .2和3之间C .3和4之间D .4和5之间 7.(4分)2024年中国青少年足球联赛预选赛第一阶段比赛近日在贵州全部结束,重庆一中足球队获得该阶段比赛冠军,以南区第一名的优秀赛绩成为首批晋级全国总决赛的队伍.联赛主办方原计划为参赛队伍准备40箱足球,平均分配给各支队伍作为训练用球,但为了保证比赛期间各支队伍训练不受影响,临时又增加了16箱足球,使得每支队伍比原计划多领取2箱足球,设共有x 支队伍参加本次南区预选赛,根据题意可列方程为( )A .4040162x x +=+B .4040162x x+=− C .4040162x x +=− D .4040162x x +=+ 8.(4分)如图.在ABC △中,60ACB ∠=°,1AC =,D 是边AB 的中点,E 是边BC 上一点.若DE 平分ABC △的周长,则DE 的长为( )A .1BCD .539.(4分)如图,在正方形ABCD 中,E 为BC 边上靠近点B 的三等分点,将线段AB 绕点A 逆时针旋转得到线段AF ,使得BAE FAE ∠=∠,连接EF 和CF ,令BAE α∠=,则FCD ∠为( )A .1203α°−B .3902α°− C .230α+° D .45α+°10.(4分)如图,把矩形ABCD 纸对折,设折痕为MN ,再把B 点叠在折痕上,得到Rt ABE △,EB 延长线交AD 或AD 的延长线于F ,则EAF △是( )A .底边与腰不相等的等腰三角形B .各边均不相等的三角形C .或是各边不相等的三角形,或是底边与腰不相等的等腰三角形D .等边三角形二、填空题11.(4分)如图,已知AC 为正六边形ABCDEF 的一条对角线,则ACB ∠=______.12.(4分)若方程2288x m x x =+−−有增根,则m =______.13.(4分)直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式()120k k x b −+>的解集为______.14.(4分)如图,在ABC △中,AC =2BC =,点D 是AB 边的中点,连接CD ,点E 为BC 延长线上一点且2BC CE =,连接DE 交AC 于点F ,连接AE ,且AE BC =,则CEF △的周长为______.三、解答题15.(8分)计算:(1)201(2024π)33− −−−−; (2)2925222a a a a a −− ÷−− −−. 16.(8分)解方程: (1)15121x x =−+; (2)2162142x x x ++=−−. 17.(8分)如图,矩形ABCD 的对角线AC 、BD 交于点O ,AM BD ⊥于M .(1)尺规作图:过点C 作BD 的垂线,垂足为N ,连接AN 、CM (保留作图痕迹,不写作法,不写结论).(2)补全推理过程:在矩形ABCD 中AD BC ∥ ,AD BC =,∴______,AM BD ⊥ ,CN BD ⊥,90AMD ∴∠=°,90CNB ∠=°,即:______,∴______;在ADM △和CBN △中,AMD CNB ADB CBD AD CB ∠=∠ ∠=∠ =ADM CBN ∴≌△△,∴______,∴四边形AMCN 为平行四边形(______). 18.(10分)如图(1),在矩形ABCD 中,4AB =,3BC =,动点P 以每秒1个单位的速度,从点D出发.按D A B C →→→的顺序在边上运动.与点P 同时出发的动点Q 以每秒12个单位的速度,从点D 出发,在射线DC 上运动.当动点P 运动到点C 时,动点P 、Q 都停止运动.连接PC ,设点P 的运动时间为t 秒,在运动过程中,PDC △的面积记为1S ,三角形ADQ 的面积记为2S .(1)直接写出1S 、2S 与t 之间的函数关系式,并写出自变量t 的取值范围;(2)在如图2的平面直角坐标系中,画出为1S 、2S 的函数图象,并根据图象写出函数1S 的一条性质;(3)根据图象直接写出当21S S ≥时t 的取值范围.19.(10分)如图,在直角AEC △中,90AEC ∠=°,B 是边AE 上一点,连接BC ,O 为AC 的中点,过C 作CD AB ∥交BO 延长线于D ,且AC 平分BCD ∠,连接AD .(1)求证:四边形ABCD 是菱形.(2)连接OE 交BC 于F ,27ACD ∠=°,求CFO ∠的度数.B 卷四、选择填空题20.(4分)若实数a 使关于x 的不等式组3132122x x a x x + +≤ +≤+ 至少有4个整数解,且使关于y 的分式方程32111ay y y −−=−−有整数解,则符合条件的所有整数a 的积为( ) A .5 B .6 C .10 D .2521.(4分)有依次排列的3个整式:x ,6x +,2x −,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串:x ,6,6x +,8−,2x −,则称它为整式串1;将整式串12;以此类推.通过实际操作,得出以下结论:①整式串2为:x ,6x −,6,x ,6x +,14x −−,8−,6x +,2x −;②整式串3共17个整式;③整式串3的所有整式的和比整式串2的所有整式的和小2;④整式串2024的所有整式的和为34046x −;上述四个结论中正确的个数是( )A .1B .2C .3D .422.(4分)如图,正方形ABCD 中,E 为AB 边上一点,过点E 作EF AB ⊥交对角线BD 于点F .连接EC 交BD 于点G ,取DF 的中点H ,并连接AH.若AH =47EG =,则四边形AEFH 的面积为______.23.(4分)如图,矩形ABCD 的边BC 、AD 上有两点E 、F ,沿着直线EF 折叠使得点D 、C 分别落在D ′、C ′,D C ′′交线段AD 于点G ,射线D C ′′恰好经过点B ,作BH 平分ABG ∠交AD 于H ,HG GF =,且H 恰好落在线段EC ′的延长线上,若AB =F 到直线D H ′的距离是______.24.(4分)若一个四位自然数M ,满足个位数字与十位数字之和的平方正好等于M 的千位数字与百位数字组成的两位数,则这个四位数称为“和数”,比如:4952,满足()25249+=;若一个四位自然数N ,满足个位数字与十位数字的平方差正好等于N 的千位数字与百位数字组成的两位数,则这个四位数称为“差数”,比如:7239,满足229372−=;那么最大的“和数”与最小的“差数”之和是______.如果一个“和数”M 与一个“差数”N 的个位数字均为a 、十位数字均为b ,且18228(,)11M N a F M N ++−=,若(),F M N 为整数时,记(,)ab G M N a b=+,则(),G M N 的最大值是______. 五、解答题25.(10分)走洛克之路,赏人间仙境.洛克之路是甘南旅游网红自驾线路,起点为迭部县扎尕那,终点为卓尼县扎古录,全程共105千米.甲、乙两人分别驾车从迭部县扎尕那和卓尼县扎古录出发,沿洛克之路自驾旅游,3小时后两人相遇,相遇后甲、乙继续往目的地行驶并走完全程,乙走完全程所用时间是甲走完全程所用时间的1.5倍.(1)甲、乙两人单独走完全程各需多少小时?(2)风干牦牛肉是甘南特色小吃.甲购买了A 种牦牛肉,乙购买了B 种牦牛肉,甲购买的袋数比乙的2倍少5袋,已知A 种牦牛肉价格为每袋35元,B 种牦牛肉价格为每袋50元,计算发现乙购买牦牛肉花费更多.问乙最多购买了多少袋牦牛肉?26.(10分)如图1,在平面直角坐标系中,直线2:6l y x =−+与1l 交于点()e,4E ,2l 与x 轴,y 轴分别交于C ,D 两点,1l 与x 轴,y 轴分别交于A ,B 两点,且12OB OC =.(1)求直线1l 的解析式;(2)如图2,在射线EC 上有一动点F ,连接AF 、BF ,M 为x 轴上一动点,连接FM 、BM ,当98ABF AEC S S =△△时,求BM FM −的最大值; (3)如图3,在(2)的条件下,将CFM △沿直线2l 平移得到C F M ′′′△,若在平移过程中BC F ′′△是以BF ′为一腰的等腰三角形,请直接写出点C ′的坐标.27.(10分)已知ABC △是等腰直角三角形,AB AC =,D 为平面内一点.(1)如图1,当D 点在AB 的中点时,连接CD ,将CD 绕点D 逆时针旋转90°,得到ED ,若4AB =,求ADE △的周长;(2)如图2,当D 点在ABC △外部时,E 、F 分别是AB 、BC 的中点,连接EF 、DE 、DF ,将DE 绕E 点逆时针旋转90°得到EG ,连接CG 、DG 、FG ,若FDG FGE ∠=∠,请探究FD 、FG 、CG 之间的数量关系并给出证明;(3)如图3,当D 在ABC △内部时,连接AD ,将AD 绕点D 逆时针旋转90°,得到ED ,若ED 经过BC 中点F ,连接AE 、CE ,G 为CE 的中点,连接GF 并延长交AB 于点H ,当AG 最大时,请直接写出的值.重庆市第八中学2023-2024学年八年级下学期数学期中模拟试卷A 卷1-5 BDCDC6-10 BBBDD11.30°12.4 13.1x <− 1415.(1)11−+;(2)33a a +−. 16.(1)2x =;(2)无解.17.(1)见解答;(2)ADB CBD ∠=∠,AMD CNB ∠=∠,AM CN ∥,AM CN =;一组对边平行且相等的四边形为平行四边形. 18.(1)()()()1203637202710t t S t t t <≤ =<≤ −<< ,2()0.75010S t t =<≤;(2)图见解析;当03t <<时,1S 随t 的增大而增大;当37t <<时1S 不变;当710t <<时,1S 随t 增大而减小(答案不唯一,合理即可).(3)801011t ≤<. 19.(1)证明见解析;(2)99°.B 卷20.B21.C 22.2729 2324.9355,78. 25.(1)甲走完全程所需时间为5小时,乙走完全程所需时间为7.5小时;(2)乙最多购买了8袋牦牛肉.26.(1)直线1l 的解析式为:132yx =+; (2(3)点C ′的坐标为或或111,22. 27.(1)ADE △的周长为2+;(2)FD CG =+;(3)ACG AHG S S △△.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

青岛版八年级数学下册2013---2014学年期末模拟检测
数 学 试 题
注意事项:1.本试题共6页,满分120分.考试时间120分钟.
一. 选择题(每小题3分,共36分)
1.函数
x 取值范围是( )
4.若一次函数y=(3-k)x-k 的图象经过第二、三、四象限,则k 的取值范围是( )
A .k>3
B .0<k ≤3
C .0≤k<3
D .0<k<3
5.一元一次方程0=-b ax 的解3=x ,函数b ax y -=的图象与x 轴的交点坐标为( )
A.(3 ,0)
B.(-3 ,0)
C.(a ,0)
D.(-b ,0)
6.如图,矩形ABCD 中,AB =3,AD =1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 的坐标为( )
A .(2,0)
B .(,0)
C .(,0)
D .(,
0)
7.如图,平行四边形ABCD 中,∠BAD 的平分线AE 交BC 于点E ,且AE =BE ,则∠BCD 的度数是( )
A .30°
B .60°或
120° C .60° D .120° 8.在一个标准大气压下,能反映水在均匀加热过程中,水的温度(T )随加热时间(t )变化的函数图象大致是( )
9.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点, AB=6cm,BC=8cm,则ΔAEF 的周长是( )
A.14cm
B. 8cm
C. 9cm
D. 10cm (18题)(19题)
10.如图所示,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设10题
6题 7题 9题 A. B.
C. D.
11.(2013·沈阳中考)如果m ,那么m 的取值范围是( )
A.0<m <1
B.1<m <2
C.2<m <3
D.3<m <4
12.从菱形的钝角顶点向对角的两条边作垂线,垂足恰好是该边的中点,则菱形的内角中钝角的度数是( )
A. B. C. D.
二、填空题(每小题3分,共24分)
13.直线y =x +3与y 轴的交点坐标是 ( )
14. 已知直线y=(n-2)x-3与直线y=-3x+5平行,则n=( )
15. 最简二次根式12+b 与17--a b 是同类二次根式,则b-a= ( )
16. 已知y-2与x 成正比例,且x=2时,y=4,则y 与x 的函数关系式是( )
17. 若,0836122=-++-b a a 则22b a + 的平方根是 ( )
18. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE=3,BE=4,阴影部分的面积是 ( )
19. 如图,菱形ABCD 的对角线AC 、BD 相交于点O ,且AC =8,BD =6,过点O 作OH
22 (5分)先化简再求值,已知02--32)(=x ,求212312+-÷⎪⎭⎫ ⎝⎛+-x x x 的值.
23 (5分)如图,平行四边形ABCD中,AC丄BC,E为AB的中点.若CE=2,求CD 的长?
24.(6分)如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′的位置上.若∠1=60°,AE=1.(1)求∠2、∠3的度数; (2)求长方形纸片ABCD的面积S.
25.(6分)如图,在□ABCD中,F是AD的中点,延长BC到点E,使CE=1
2
BC,连
接DE,CF.求证:四边形CEDF是平行四边形.
26.(7分)如图所示的是函数y 1=kx+b 与y 2=mx+n 的图象,
(1)方程 ⎩⎨⎧+=+=n
m x y b kx y 的解是:__________。

(2)y 1中变量y 1随x 的增大而_________。

(3)在平面直角坐标系中,将点P (3,4)向下平移1个单位,恰好在正比例函数的图象上,求这个正比例函数的关系式.
27.(10分)甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y (m )与挖掘时间x (h )之间的关系如图所示,请根据图象所提供的信息解答下列问题:
(1)乙队开挖到30m 时,用了_____ h .开挖到6h 时甲队比乙队多挖了_______m ;
(2)请你求出:
① 甲队在0≤x ≤6的时段内,y 与x 之间的函数关系式;
②乙队在2≤x≤6的时段内,y与x之间的函数关系式.
(3)当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?
28.(7分)如图,L1直线y=2x与L2直线y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:__________
(2)设直线L2与x轴交于点A,求△OAP的面积.
29. (8分)同学们喜爱手机上网,某网络公司看中了这种商机,推出了两种手机上网的计费方式:方式A以每分钟0.1元的价格按上网时间计费;方式B除收月租费20元外,再以每分钟0.06元的价格按上网时间计费.假设某客户月上网时间为X分钟,上网费用为y元.
(1)分别写出该客户按A,B两种方式的上网费y(元)与每月上网时间X(分钟)函数关系式。

(2)在图的坐标系中画出这两个函数的图象;
(3)如何选择计费方式能使该客户上网费用更合算?
30.附加题(10分)我校九年级学生共400人,学校决定组织该年级学生到三中训练,并安排10位教师同行.经学校与汽车出租公司协商,有两种型号的客车可供选择,其座位

设计出可行的租车方案.
(2)设大巴、中巴的租金共y元,写出y与x之间的函数关系式.在上述租车方案中,哪种租车方案的租金最少?最少租金为多少元?。

相关文档
最新文档