MATLAB样例之雅克比迭代法
matlab中jacobi迭代法
一、简介Matlab中jacobi迭代法是一种用于求解线性方程组的迭代方法,适用于系数矩阵为对称、正定矩阵的情况。
该迭代方法通过将系数矩阵分解为对角矩阵、上三角矩阵和下三角矩阵的形式,然后通过迭代计算得到方程组的解。
在Matlab中,可以利用矩阵运算和迭代循环来实现jacobi迭代法。
二、 jacobi迭代法原理1. 基本思想jacobi迭代法的基本思想是将系数矩阵分解为对角矩阵D、上三角矩阵U和下三角矩阵L的形式,即A=D+L+U,其中D为系数矩阵A 的对角线元素组成的对角矩阵,L为系数矩阵A的下三角部分,U为系数矩阵A的上三角部分。
令x为方程组的解向量,b为方程组的右端向量,则方程组可表示为Ax=b。
根据方程组的性质,可将方程组表示为(D+L+U)x=b,然后利用迭代的方式逐步逼近方程组的解。
2. 迭代公式假设迭代到第k次,方程组可表示为(D+L+U)x=b,将其转化为迭代形式x(k+1)=(D+L)^(-1)(b-Ux(k)),利用迭代公式可以逐步计算出方程组的解。
3. 收敛条件对于jacobi迭代法,收敛条件为系数矩阵A为对角占优矩阵或正定矩阵。
如果满足这一条件,迭代计算会逐步收敛于方程组的解。
三、 Matlab中jacobi迭代法实现在Matlab中,可以利用矩阵运算和迭代循环来实现jacobi迭代法。
具体步骤如下:1. 对系数矩阵进行分解将系数矩阵A分解为对角矩阵D、上三角矩阵U和下三角矩阵L的形式。
2. 初始化迭代变量初始化迭代的初始值x0、迭代次数k、逐次逼近解向量x(k+1)。
3. 迭代计算利用迭代公式x(k+1)=(D+L)^(-1)(b-Ux(k))来逐步计算出方程组的解。
4. 判断收敛条件在迭代计算过程中,需要实时判断迭代计算是否满足收敛条件,如果满足则停止迭代计算,得到方程组的解。
四、实例分析假设有如下方程组:2x1 + x2 + 4x3 = 103x1 + 4x2 - x3 = 10x1 + 2x2 + 3x3 = 0可以利用jacobi迭代法来求解该方程组,在Matlab中可以通过编程实现迭代计算过程。
matlab中的迭代算法
matlab中的迭代算法Matlab中的迭代算法迭代算法是一种通过重复应用某个过程或规则来解决问题的方法。
在Matlab中,迭代算法广泛应用于数值计算、优化问题、图像处理等领域。
本文将介绍几种常见的迭代算法,并通过实例来演示其应用。
一、二分法二分法是一种简单而有效的迭代算法,用于求解函数的根。
其基本思想是通过将区间逐渐缩小,不断逼近根的位置。
具体步骤如下:1. 选择一个初始区间[a, b],使得f(a)和f(b)异号;2. 计算区间的中点c=(a+b)/2;3. 判断f(c)的符号,并更新区间的边界;4. 重复步骤2和3,直到满足精度要求。
二分法的优点是简单易懂,但收敛速度相对较慢。
以下是一个使用二分法求解方程x^2-2=0的示例代码:```matlaba = 1;b = 2;tol = 1e-6;while abs(b-a) > tolc = (a + b) / 2;if (c^2 - 2) * (a^2 - 2) < 0b = c;elsea = c;endendroot = (a + b) / 2;disp(root);```二、牛顿法牛顿法是一种迭代算法,用于求解非线性方程和最优化问题。
其基本思想是通过利用函数的局部线性近似,逐步逼近根或最优解。
具体步骤如下:1. 选择一个初始点x0;2. 计算函数f在点x0处的导数f'(x0);3. 计算切线方程的解,即x1 = x0 - f(x0)/f'(x0);4. 重复步骤2和3,直到满足精度要求。
牛顿法的优点是收敛速度快,但对初始点的选择较为敏感。
以下是一个使用牛顿法求解方程x^2-2=0的示例代码:```matlabx0 = 1;tol = 1e-6;while abs(x1 - x0) > tolx1 = x0 - (x0^2 - 2) / (2 * x0);x0 = x1;endroot = x1;disp(root);```三、迭代法求解线性方程组迭代法也可以用于求解线性方程组Ax=b。
Jacobi迭代法和Gauss-Seidel迭代法Matlab程序
解(1):采用Jacobi迭代法时,Matlab计算程序为: clear clci=1;a=[5 2 1;-1 4 2;2 -3 10];d=diag(diag(a));l=d-tril(a);u=d-triu(a);d0=inv(d);b=[-12;20;3];x0=[1;1;1];B=d0*(l+u);f=d0*b;x=B*x0+f;while norm(x-x0,inf)>=1e-4x0=x;x=B*x0+f;i=i+1;endxi采用Gauss-Seidel迭代法计算时,Matlab计算程序为: clearclci=1;a=[5 2 1;-1 4 2;2 -3 10];d=diag(diag(a));l=d-tril(a);u=d-triu(a);b=[-12;20;3];x0=zeros(3,1);B=inv(d-l)*u;f=inv(d-l)*b;x=B*x0+f;while norm(x-x0,inf)>=1e-4x0=x;x=B*x0+f;i=i+1;endxi习题6.7function [n,x]=sor22(A,b,X,x1,nm,w,ww)%用超松弛迭代法求解方程组Ax=b%输入:A为方程组的系数矩阵,b为方程组右端的列向量,X为迭代初值构成的列向量,x1为方程的精确解,nm为最大迭代次数,w为误差精度,ww为松弛因子%输出:x为求得的方程组的解构成的列向量,n为迭代次数n=1;m=length(A);D=diag(diag(A)); %令A=D-L-U,计算矩阵DL=tril(-A)+D; %令A=D-L-U,计算矩阵LU=triu(-A)+D; %令A=D-L-U,计算矩阵UM=inv(D-ww*L)*((1-ww)*D+ww*U); %计算迭代矩阵g=ww*inv(D-ww*L)*b; %计算迭代格式中的常数项%下面是迭代过程while n<=nmx=M*X+g; %用迭代格式进行迭代if norm(x1-X,'inf')<wdisp('迭代次数为');ndisp('方程组的解为');xreturn;%上面:达到精度要求就结束程序,输出迭代次数和方程组的解endX=x;n=n+1;end%下面:如果达到最大迭代次数仍不收敛,输出警告语句及迭代的最终结果(并不是方程组的解)disp('在最大迭代次数内不收敛!');disp('最大迭代次数后的结果为');xa=[4 -1 0;-1 4 -1;0 -1 4];b=[1;4;-3];c=200;d=5e-3;f=1.03;k=[0 ;0; 0];x1=[1/2;1;-1/2];g=sor22(a,b,k,x1,c,d,f)习题6.8function [n,x]=sor(A,b,X,nm,w,ww)%用超松弛迭代法求解方程组Ax=b%输入:A为方程组的系数矩阵,b为方程组右端的列向量,X为迭代初值构成的列向量,nm为最大迭代次数,w为误差精度,ww为松弛因子%输出:x为求得的方程组的解构成的列向量,n为迭代次数n=1;m=length(A);D=diag(diag(A)); %令A=D-L-U,计算矩阵DL=tril(-A)+D; %令A=D-L-U,计算矩阵LU=triu(-A)+D; %令A=D-L-U,计算矩阵UM=inv(D-ww*L)*((1-ww)*D+ww*U); %计算迭代矩阵g=ww*inv(D-ww*L)*b; %计算迭代格式中的常数项%下面是迭代过程while n<=nmx=M*X+g; %用迭代格式进行迭代if norm(x-X,'inf')<wdisp('迭代次数为');ndisp('方程组的解为');xreturn;%上面:达到精度要求就结束程序,输出迭代次数和方程组的解endX=x;n=n+1;end%下面:如果达到最大迭代次数仍不收敛,输出警告语句及迭代的最终结果(并不是方程组的解)disp('在最大迭代次数内不收敛!');disp('最大迭代次数后的结果为');xa=[5 2 1;-1 4 2;2 -3 10];b=[-12;20;3];c=200;d=5e-6;f=0.9;k=[0;0;0];g=sor(a,b,k,c,d,f)。
MATLAB代码解线性方程组的迭代法
MATLAB代码解线性方程组的迭代法解线性方程组的迭代法1.rs里查森迭代法求线性方程组Ax=b的解function[x,n]=rs(A,b,x0,eps,M)if(nargin==3)eps=1.0e-6;%eps表示迭代精度M=10000;%M表示迭代步数的限制值elseif(nargin==4) M=10000;endI=eye(size(A));n=0;x=x0;tol=1;%迭代过程while(tol>eps)x=(I-A)*x0+b;n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!'); return;endend2.crs里查森参数迭代法求线性方程组Ax=b的解function[x,n]=crs(A,b,x0,w,eps,M)if(nargin==4)eps=1.0e-6;%eps表示迭代精度M=10000;%M表示迭代步数的限制值elseif(nargin==5)M=10000;endI=eye(size(A));n=0;x=x0;tol=1;%迭代过程while(tol>eps)x=(I-w*A)*x0+w*b;n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!'); return;endend3.grs里查森迭代法求线性方程组Ax=b的解function[x,n]=grs(A,b,x0,W,eps,M)if(nargin==4)eps=1.0e-6;%eps表示迭代精度M=10000;%M表示迭代步数的限制值elseif(nargin==5)M=10000;endI=eye(size(A));n=0;x=x0;tol=1;%前后两次迭代结果误差%迭代过程while(tol>eps)x=(I-W*A)*x0+W*b;%迭代公式n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!'); return;endend4.jacobi雅可比迭代法求线性方程组Ax=b的解function[x,n]=jacobi(A,b,x0,eps,varargin)if nargin==3eps=1.0e-6;M=200;elseif nargin<3errorreturnelseif nargin==5M=varargin{1};endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵B=D\(L+U);f=D\b;x=B*x0+f;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x=B*x0+f;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend5.gauseidel高斯-赛德尔迭代法求线性方程组Ax=b的解function[x,n]=gauseidel(A,b,x0,eps,M)if nargin==3eps=1.0e-6;M=200;elseif nargin==4M=200;elseif nargin<3errorreturn;endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵G=(D-L)\U;f=(D-L)\b;x=G*x0+f;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x=G*x0+f;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend6.SOR超松弛迭代法求线性方程组Ax=b的解function[x,n]=SOR(A,b,x0,w,eps,M)if nargin==4eps=1.0e-6;M=200;elseif nargin<4errorreturnelseif nargin==5M=200;endif(w<=0||w>=2)error;return;endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵B=inv(D-L*w)*((1-w)*D+w*U);f=w*inv((D-L*w))*b;x=B*x0+f;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x=B*x0+f;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend7.SSOR对称逐次超松弛迭代法求线性方程组Ax=b的解function[x,n]=SSOR(A,b,x0,w,eps,M)if nargin==4eps=1.0e-6;M=200;elseif nargin<4errorreturnelseif nargin==5M=200;endif(w<=0||w>=2)error;return;endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵B1=inv(D-L*w)*((1-w)*D+w*U);B2=inv(D-U*w)*((1-w)*D+w*L);f1=w*inv((D-L*w))*b;f2=w*inv((D-U*w))*b;x12=B1*x0+f1;x=B2*x12+f2;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x12=B1*x0+f1;x=B2*x12+f2;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend8.JOR雅可比超松弛迭代法求线性方程组Ax=b的解function[x,n]=JOR(A,b,x0,w,eps,M)if nargin==4eps=1.0e-6;M=10000;elseif nargin==5M=10000;endif(w<=0||w>=2)%收敛条件要求error;return;endD=diag(diag(A));%求A的对角矩阵B=w*inv(D);%迭代过程x=x0;n=0;%迭代次数tol=1;%迭代过程while tol>=epsx=x0-B*(A*x0-b);n=n+1;tol=norm(x-x0);x0=x;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!'); return;endend9.twostep两步迭代法求线性方程组Ax=b的解function[x,n]=twostep(A,b,x0,eps,varargin) if nargin==3eps=1.0e-6;M=200;elseif nargin<3errorreturnelseif nargin==5M=varargin{1};endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵B1=(D-L)\U;B2=(D-U)\L;f1=(D-L)\b;f2=(D-U)\b;x12=B1*x0+f1;x=B2*x12+f2;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x12=B1*x0+f1;x=B2*x12+f2;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend10.fastdown最速下降法求线性方程组Ax=b的解function[x,n]=fastdown(A,b,x0,eps)if(nargin==3)eps=1.0e-6;endx=x0;n=0;tol=1;while(tol>eps)%以下过程可参考算法流程r=b-A*x0;d=dot(r,r)/dot(A*r,r);x=x0+d*r;tol=norm(x-x0);x0=x;n=n+1;end11.conjgrad共轭梯度法求线性方程组Ax=b的解function[x,n]=conjgrad(A,b,x0)r1=b-A*x0;p=r1;n=0;for i=1:rank(A)%以下过程可参考算法流程if(dot(p,A*p)< 1.0e-50)%循环结束条件break;endalpha=dot(r1,r1)/dot(p,A*p);x=x0+alpha*p;r2=r1-alpha*A*p;if(r2< 1.0e-50)%循环结束条件break;endbelta=dot(r2,r2)/dot(r1,r1);p=r2+belta*p;n=n+1;end12.preconjgrad预处理共轭梯度法求线性方程组Ax=b的解function[x,n]=preconjgrad(A,b,x0,M,eps)if nargin==4eps=1.0e-6;endr1=b-A*x0;iM=inv(M);z1=iM*r1;p=z1;n=0;tol=1;while tol>=epsalpha=dot(r1,z1)/dot(p,A*p);x=x0+alpha*p;r2=r1-alpha*A*p;z2=iM*r2;belta=dot(r2,z2)/dot(r1,z1);p=z2+belta*p;n=n+1;tol=norm(x-x0);x0=x;%更新迭代值r1=r2;z1=z2;end13.BJ块雅克比迭代法求线性方程组Ax=b的解function[x,N]=BJ(A,b,x0,d,eps,M)if nargin==4eps=1.0e-6;M=10000;elseif nargin<4errorreturnelseif nargin==5M=10000;%参数的默认值endNS=size(A);n=NS(1,1);if(sum(d)~=n)disp('分块错误!');return;endbnum=length(d);bs=ones(bnum,1);for i=1:(bnum-1)bs(i+1,1)=sum(d(1:i))+1;%获得对角线上每个分块矩阵元素索引的起始值endDB=zeros(n,n);for i=1:bnumendb=bs(i,1)+d(i,1)-1;DB(bs(i,1):endb,bs(i,1):endb)=A(bs(i,1):endb,bs(i,1):endb);%求A的对角分块矩阵endfor i=1:bnumendb=bs(i,1)+d(i,1)-1;invDB(bs(i,1):endb,bs(i,1):endb)=inv(DB(bs(i,1):endb,bs(i,1):e ndb));%求A的对角分块矩阵的逆矩阵endN=0;tol=1;while tol>=epsx=invDB*(DB-A)*x0+invDB*b;%由于LB+DB=DB-AN=N+1;%迭代步数tol=norm(x-x0);%前后两步迭代结果的误差x0=x;if(N>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend14.BGS块高斯-赛德尔迭代法求线性方程组Ax=b的解function[x,N]=BGS(A,b,x0,d,eps,M)if nargin==4eps=1.0e-6;M=10000;elseif nargin<4errorreturnelseif nargin==5M=10000;endNS=size(A);n=NS(1,1);bnum=length(d);bs=ones(bnum,1);for i=1:(bnum-1)bs(i+1,1)=sum(d(1:i))+1;%获得对角线上每个分块矩阵元素索引的起始值endDB=zeros(n,n);for i=1:bnumendb=bs(i,1)+d(i,1)-1;DB(bs(i,1):endb,bs(i,1):endb)=A(bs(i,1):endb,bs(i,1):endb); %求A的对角分块矩阵endLB=-tril(A-DB);%求A的下三角分块阵UB=-triu(A-DB);%求A的上三角分块阵N=0;tol=1;while tol>=epsinvDL=inv(DB-LB);x=invDL*UB*x0+invDL*b;%块迭代公式N=N+1;tol=norm(x-x0);x0=x;if(N>=M)disp('Warning:迭代次数太多,可能不收敛!');return;end15.BSOR块逐次超松弛迭代法求线性方程组Ax=b的解function[x,N]=BSOR(A,b,x0,d,w,eps,M)if nargin==5eps=1.0e-6;M=10000;elseif nargin<5errorreturnelseif nargin==6M=10000;%参数默认值endNS=size(A);n=NS(1,1);bnum=length(d);bs=ones(bnum,1);for i=1:(bnum-1)bs(i+1,1)=sum(d(1:i))+1;%获得对角线上每个分块矩阵元素索引的起始值endDB=zeros(n,n);for i=1:bnumendb=bs(i,1)+d(i,1)-1;DB(bs(i,1):endb,bs(i,1):endb)=A(bs(i,1):endb,bs(i,1):endb); %求A的对角矩阵endLB=-tril(A-DB);%求A的下三角阵UB=-triu(A-DB);%求A的上三角阵N=0;iw=1-w;while tol>=epsinvDL=inv(DB-w*LB);x=invDL*(iw*DB+w*UB)*x0+w*invDL*b;%块迭代公式N=N+1;tol=norm(x-x0);x0=x;if(N>=M)disp('Warning:迭代次数太多,可能不收敛!'); return;endend。
基于matlab的线性方程组迭代法(实验报告)
基于matlab 的线性方程组迭代法实验题目:实验要求:(1)分别试用 Jacobi 和Gauss-Seidel 迭代法计算,要求达到的精度为:(1)()510k k x x +-∞->(2)观测得到的迭代序列是否收敛?若收敛,记录迭代次数并分析计算结果。
实验流程一、迭代法简介 1、 Jacobi 迭代法对于方程组Ax b =有A 非奇异情况下且0ij a ≠时,A 分裂为A D L U =--,可得到:0x B x f =+,其中1110(),B I D A D L U f D b ---=-=+=,得到雅克比迭代法:(0)(1)()0()k k x xB x f +⎧⎪⎨=+⎪⎩初始向量 2、 Gauss-Seidel 迭代法(0)(1)()()k k x x Gx f +⎧⎪⎨=+⎪⎩初始向量 其中11(),()G D L U f D L b --=-=-。
其迭代法优点为只需一组存储单元。
3、 超松弛迭代法(SOR)Gauss-Seidel 迭代法的一种加速方法,ω松弛因子。
(0)(1)()(1)(1))()(1)k k k k k x x Gx f x x x ωω+++⎧⎪⎪=+⎨⎪=+-⎪⎩(初始向量 其中11(),()G D L U f D L b --=-=-。
二、迭代法的matlab 程序1、 Jacobi 迭代法Jacobi.mfunction [y,n]= Jacobi( A,b,x0,e )%JACOBI ÇëÔÚ´Ë´¦ÊäÈ뺯Êý¸ÅÒªif(nargin<4)e=1e-5;endD=diag(diag(A));I=eye(size(A));B=I-D\A;f=D\b;y=x0+2*e;n=0;while norm(y-x0,inf)>ey=x0;x0=B*y+f;n=n+1;endnend2、Gauss-Seidel迭代法GaussSeidel.mfunction [y,n]= GaussSeidel( A,b,x0,e ) %GS ÇëÔÚ´Ë´¦ÊäÈ뺯Êý¸ÅÒªif(nargin<4)e=1e-5;endD=diag(diag(A));I=eye(size(A));L=D-tril(A);U=D-triu(A);f=(D-L)\b;G=(D-L)\U;y=x0+2*e;n=0;while norm(y-x0,inf)>ey=x0;x0=G*y+f;n=n+1;endnend3、超松弛迭代法(SOR) SOR.mfunction [y,n]= SOR( A,b,w,x0,e )%SORÇëÔÚ´Ë´¦ÊäÈ뺯Êý¸ÅÒªif(nargin<5)e=1e-5;endD=diag(diag(A));I=eye(size(A));L=D-tril(A);U=D-triu(A);f=(D-L)\b;G=(D-L)\U;y=x0+2*e;n=0;while norm(y-x0,inf)>ex0=y;x1=G*x0+f;y=(1-w)*x0+w*x1;n=n+1;endnend4、变量初始化creatMatrix.mclear;clc;a=diag(3*ones(1,20));b=diag(-0.5*ones(1,19),1);c=diag(-0.25*ones(1,18),2);A=a+b+b'+c+c';%ϵÊý¾ØÕób=ones(20,1)*7/4;b(1)=9/4;b(20)=9/4;x0=zeros(20,1);A,b,x0,w=1.5建立A数组以及初始化b,松弛因子w,迭代初值x05、程序运行和结果记录solve.mclc;tic,s1=Jacobi(A,b,x0),toctic,s2=GaussSeidel(A,b,x0),toctic,s3=SOR(A,b,w,x0),toc三、计算结果运行程序得到几种方法的计算结果。
MATLAB数值分析实验四(雅各比、高斯赛德尔迭代,以及二分法和牛顿迭代解非线性方程)
佛山科学技术学院实 验 报 告课程名称 数值分析实验项目 迭代法专业班级 机械工程 姓 名 余红杰 学 号 2111505010指导教师 陈剑 成 绩 日 期 月 日一. 实验目的1、 在计算机上用Jacobi 迭代法和Gauss-Seidel 迭代法求线性方程组 。
2、 在计算机上用二分法和Newton 迭代法求非线性方程 的根。
二. 实验要求1、按照题目要求完成实验内容;2、写出相应的Matlab 程序;3、给出实验结果(可以用表格展示实验结果);4、分析和讨论实验结果并提出可能的优化实验。
5、写出实验报告。
三. 实验步骤1、用Matlab 编写Jacobi 迭代法和Gauss-Seidel 迭代法求线性方程组Ax b =的程序。
2、用Matlab 编写二分法和Newton 法求非线性方程()0f x =的根程序。
3、设⎪⎪⎪⎭⎫ ⎝⎛--=212120203A ,T b )1,3,1(=,对于线性方程组b Ax =,考虑如下问题: (1)分别写出Jacobi 迭代矩阵和Gauss-Seidel 迭代矩阵(2)用Jacobi 迭代法和Gauss-Seidel 迭代法解该方程时,是否收敛?谁收敛的更快?(3)用实验步骤1编好的两种迭代法程序进行实验,通过数值结果验证(2)的结论。
4、用调试好的二分法和Newton 迭代法程序解决如下问题求020sin 35=-+-x x e x 的根,其中控制精度810-=eps ,最大迭代次数50=M 。
四. 实验结果1.%Jacob.mfunction [x,B] = Jacob(A,b,n)%Jacobi迭代求解方程组Ax=b,系数矩阵A,迭代次数n%求解的准备工作,构建各迭代系数阵等:m = length(A);D = diag(diag(A));L = -tril(A,-1);U = -triu(A, 1);J = D^(-1)*(L+U);B = J;f = D^(-1)*b;%初始化x即启动值:x = zeros(m,1);%根据x(k+1)=Jx(k)+f进行矩阵运算:for i=1:nx = J*x + f;end%GauSeid.mfunction [x,G] = GauSeid(A,b,n)%Gauss-Seidel迭代求解方程组Ax=b,系数矩阵A,迭代次数n %求解的准备工作,构建各迭代系数阵等:m = length(A);D = diag(diag(A));L = -tril(A,-1);U = -triu(A, 1);G = inv(D-L)*U;f = inv(D-L)*b;%初始化矩阵:%根据x(k+1)=Gx(k)+f进行矩阵运算:x = zeros(m,1);for i = 1:nx = G*x + f;end2.%Dichotomy.mfunction x=Dichotomy(x1,x2,p,n)%利用二分法求根,区间[x1,x2]%p为精度a = x1;b = x2;%进行n次二分:%第一个条件判断根在a,b区间内%第二个条件判断是否中间点就是根,是则迭代终止;%第三个条件判断二分后根在中点左侧还是右侧;%第四个条件判断精度是否达标,用区间长度代替for i=1:nif f(a)*f(b)<0x0 = (a+b)/2;p0 = (b-a)/(2^i);if f(x0)==0x = x0;elseif f(a)*f(x0)<0b = x0;else a= x0;endendendif p0>pcontinue;elsex = x0;break;endend%NewIterat.mfunction x=NewIterat(x0,p,n)%利用牛顿迭代法求根;%x0为启动点,估计的靠近根的值,p为精度,n为迭代次数;syms x1;%设置一个自变量x1,方便后面的求导:f1 = diff(f(x1));%进行n次迭代,精度达标会提前终止;%第一个判断是根据控制条件来确定真实误差是选绝对还是相对误差;%第二个判断是确定精度是否满足要求for i=1:nx1 = x0;x = x0-f(x0)/eval(f1);if x<1RealDiv = abs(x-x0);else RealDiv = abs(x-x0)/abs(x); endif RealDiv>px0 = x;else break;endend3.run43.mclc,clear;A = [3 0 -2;0 2 1;-2 1 2];b = [1;3;1];n1 = 50;n2 =100;%输入A,b矩阵,设置迭代次数为50次;%调用迭代函数,返回迭代矩阵;[x,B] = Jacob(A,b,n1);xj50 = x;f1 = max(abs(eig(B)))%显示谱半径,确定收敛性;[x,B] = GauSeid(A,b,n1);xg50 = x;f2 = max(abs(eig(B)))%谱半径;xj100 = Jacob(A,b,n2);xg100 = GauSeid(A,b,n2); Jacobi= [xj50,xj100]%对比迭代50次和100次的结果GauSei= [xg50,xg100]%很容易看出准确解为[1;1;1]4.f.mfunction y = f(x)%所有f(x)=0中f(x)函数;y = exp(5*x)-sin(x)+x^3-20; 下页是具体解时的程序:%run44.mclc,clear;%很容易看出在[0,1]间有解;x = Dichotomy(0,1,10^(-8),50)x = NewIterat(0,10^(-8),50)五. 讨论分析4.3实验中的迭代矩阵在上个部分,分别为J 和G ;对于收敛性,看下图中的f1,f2,也就是迭代矩阵的谱半径,都是小于1的,但是可以看出后者的谱半径更小,就是说它的收敛速度更快;最终求x 的值,每种迭代方法分别迭代50次(第一列)和100次(第二列); 实际值为[1;1;1]可以看出用高斯赛德尔迭代更精确,速度更快。
matlab用jacobi迭代求解隐式差分的richards方程
在MATLAB中,使用Jacobi迭代法求解隐式差分的Richards方程需要以下步骤:1. 定义Richards方程:Richards方程是一个描述土壤水分运动的偏微分方程,形式如下:d(θ)/dt = (1/α) [k_r(θ - θ_r) + k_s(θ_s - θ)]其中,θ 是土壤含水率,k_r 和k_s 是降雨入渗和蒸散发系数,θ_r 和θ_s 是残余含水率和饱和含水率,α 是时间系数。
2. 定义Jacobi迭代法:Jacobi迭代法是一种求解线性方程组的迭代方法,形式如下:x^(n+1) = (b - Ax^n) / D其中,A 是系数矩阵,b 是常数项向量,x^n 是第n 次迭代的解向量,D 是A 的对角线元素构成的向量。
3. 编写MATLAB代码:根据Richards方程和Jacobi迭代法,编写MATLAB代码。
下面是一个示例代码:matlab参数定义N = 100; 网格点数T = 100; 时间步数alpha = 0.1; 时间系数kr = 0.5; 降雨入渗系数ks = 0.2; 蒸散发系数theta_r = 0.01; 残余含水率theta_s = 0.35; 饱和含水率初始化变量time = linspace(0, T, T+1); 时间向量moisture = zeros(N+1, T+1); 含水率矩阵moisture(:, 1) = theta_r; 初始含水率Jacobi迭代for n = 1:T计算扩散项和源项D = (1/alpha)*(kr*(moisture(2:end, n) - moisture(1:end-1, n)) + ks*(moisture(1:end-1, n) - moisture(2:end, n)));b = (1/alpha)*(kr*(moisture(1, n) - theta_r) + ks*(theta_s - moisture(N+1, n)));Jacobi迭代计算含水率moisture(:, n+1) = (b - D*moisture(:, n)) ./ D;end。
matlab求解二元一次方程组的数值解
matlab求解二元一次方程组的数值解摘要:一、引言二、Matlab中求解二元一次方程组的常用方法1.直接法2.迭代法3.数值方法三、数值方法的原理及应用1.雅可比迭代法2.托马斯迭代法3.平方根法四、实例演示1.编写Matlab程序2.输出结果及分析五、结论与展望正文:一、引言二元一次方程组是数学中的一种基本问题,而在工程、科学等领域中也广泛存在。
求解二元一次方程组的数值解是Matlab编程中的常见任务,本文将介绍在Matlab中求解二元一次方程组的常用方法及实例演示。
二、Matlab中求解二元一次方程组的常用方法直接法是通过高斯消元法求解二元一次方程组。
在Matlab中,可以使用`gesdd`函数直接求解。
例如:```matlabA = [1, 2; 3, 4];b = [5; 6];x = gesdd(A, b);```2.迭代法迭代法是通过不断更新变量来求解方程组。
在Matlab中,可以使用`fsolve`函数进行迭代求解。
例如:```matlabA = [1, 1; 1, 1];b = [2; 3];x0 = [1; 1];x = fsolve(@(x) A*x == b, x0);```3.数值方法数值方法包括雅可比迭代法、托马斯迭代法、平方根法等。
在Matlab 中,可以使用`fsolve`函数结合数值方法求解。
例如:```matlabA = [1, 1; 1, 1];x0 = [1; 1];options = optimoptions("fsolve", "Display", "on", "Tolerance", 1e-6);x = fsolve(@(x) A*x == b, x0, options);```三、数值方法的原理及应用1.雅可比迭代法雅可比迭代法是基于雅可比矩阵的迭代公式进行求解。
在Matlab中,可以使用自定义函数实现。
MATLAB样例之雅克比迭代法
要求:下面分别使用雅克比迭代法和高斯-赛德尔迭代法求一个方程组的近似解用的线性方程组是按实验要求给的:7*x1+x2+2*x3=10x1+8*x2+2*x3=82*x1+2*x2+9*x3=6雅克比迭代法的matlab代码:(老师写的)A=[7,1,2;1,8,2;2,2,9];b=[10;8;6];if(any(diag(A))==0)error('error,pause')endeps=input('误差限eps=');N=input('迭代次数N=');D=diag(diag(A));B=inv(D)*(D-A);f=inv(D)*b;K=0;x0=zeros(size(b));while1x1=B*x0+fK=K+1;fprintf('第-次迭代的近似解为',K)disp(x1');if norm(x1-x0,inf)<epsfprintf('满足精度要求的解为\n')disp(x1');breakendif K>Nfprintf('迭代超限')endx0=x1;end高斯-赛德尔迭代法matlab代码:(自己改的)A=[7,1,2;1,8,2;2,2,9];b=[10;8;6];if(all(diag(A))==0)error('error,pause')endeps=input('误差限eps=');N=input('迭代次数N=');D=diag(diag(A));B=inv(D)*(D-A);f=inv(D)*b;K=0;x0=zeros(size(b));x00=x0;while1x11=B*x0+f;x00(1,1)=x11(1,1);x12=B*x00+f;x00(2,1)=x12(2,1);x13=B*x00+f;x00(3,1)=x13(3,1);x1=x00K=K+1;fprintf('第-次迭代的近似解为',K)disp(x1');if norm(x1-x0,inf)<epsfprintf('满足精度要求的解为\n')disp(x1');breakendif K>Nfprintf('迭代超限') endx0=x1;end。
三种迭代法matlab程序 数值分析
• for k=1:max1
• for j=1:N
•
if j==1
•
X(1)=(b(1)-A(1,2:N)*P(2:N))/A(1,1);
•
elseif j==N
•
X(N)=(b(N)-A(N,1:N-1)*(X(1:N-1))')/A(N,N);
•
else
•
X(j)=(b(j)-A(j,1:j-1)*X(1:j-1)-A(j,j+1:N)*P(j+1:N))/A(j,j);
•
end
• end
• err=abs(norm(X'-P));
• P=X';
• if(err<delta)
•
break
• end
• end
• X=X';
• err,k
雅可比迭代法的Matlab程序
给 定 初 始 值 X P0 , 用 雅 克 比 迭 代 法 求 解 线 性 方 程 组
AX b,并生成序列Pk ,求不超过误差界的近似解。
• for k=1:max1
• for j=1:N
•
if j==1
•
X(1)=(b(1)-A(1,2:N)*P(2:N))/A(1,1);
•
elseif j==N
•
X(N)=(b(N)-A(N,1:N-1)*(X(1:N-1))')/A(N,N);
•
else
•
X(j)=(b(j)-A(j,1:j-1)*X(1:j-1)-A(j,j+1:N)*P(j+1:N))/A(j,j);
function X=jacobi(A,b,P,delta,max1) %A是n维非奇异阵。%b是n维向量。%P是初值。%delta是误差界。 %max1是给定的迭代最高次数。%X为所求的方程组AX=b的近似解。 N=length(b); for k=1:max1 for j=1:N
MATLAB块雅克比迭代法求线性方程组Ax=b的解块高斯-赛德尔迭代法求线性方程组Ax=b的解
MATLAB块雅克比迭代法求线性方程组Ax=b的解块高斯-赛德尔迭代法求线性方程组Ax=b的解function [x,N]= BJ(A,b,x0,d,eps,M) %块雅克比迭代法求线性方程组Ax=b的解if nargin==4eps= 1.0e-6;M = 10000;elseif nargin<4errorreturnelseif nargin ==5M = 10000; %参数的默认值endNS = size(A);n = NS(1,1);if(sum(d) ~= n)disp('分块错误!');return;endbnum = length(d);bs = ones(bnum,1);for i=1:(bnum-1)bs(i+1,1)=sum(d(1:i))+1;%获得对角线上每个分块矩阵元素索引的起始值endDB = zeros(n,n);for i=1:bnumendb = bs(i,1)+d(i,1)-1;DB(bs(i,1):endb,bs(i,1):endb)=A(bs(i,1):endb,bs(i,1):endb );%求A的对角分块矩阵endfor i=1:bnumendb = bs(i,1)+d(i,1)-1;invDB(bs(i,1):endb,bs(i,1):endb)=inv(DB(bs(i,1):endb,bs(i ,1): endb));%求A的对角分块矩阵的逆矩阵endN = 0;tol = 1;while tol>=epsx = invDB*(DB-A)*x0+invDB*b; %由于LB+DB=DB-AN = N+1; %迭代步数tol = norm(x-x0); %前后两步迭代结果的误差x0 = x;if(N>=M)disp('Warning: 迭代次数太多,可能不收敛!');return;endendfunction [x,N]= BGS(A,b,x0,d,eps,M) %块高斯-赛德尔迭代法求线性方程组Ax=b的解if nargin==4eps= 1.0e-6;M = 10000;elseif nargin<4errorreturnelseif nargin ==5M = 10000;endNS = size(A);n = NS(1,1);bnum = length(d);bs = ones(bnum,1);for i=1:(bnum-1)bs(i+1,1)=sum(d(1:i))+1;%获得对角线上每个分块矩阵元素索引的起始值endDB = zeros(n,n);for i=1:bnumendb = bs(i,1)+d(i,1)-1;DB(bs(i,1):endb,bs(i,1):endb)=A(bs(i,1):endb,bs(i,1):endb ); %求A的对角分块矩阵endLB = -tril(A-DB); %求A的下三角分块阵UB = -triu(A-DB); %求A的上三角分块阵N = 0;tol = 1;while tol>=epsinvDL = inv(DB-LB);x = invDL*UB*x0+invDL*b; %块迭代公式N = N+1;tol = norm(x-x0);x0 = x;if(N>=M)disp('Warning: 迭代次数太多,可能不收敛!');return;endend类别:matlab 编程 | | 添加到搜藏 | 分享到i贴吧 | 浏览(168) | 评论 (0)上一篇:MATLAB 共轭梯度法求线性方程组A...。
matlab 迭代法求特征值和特征向量
在MATLAB中,使用迭代法求解特征值和特征向量,一般需要用到eig函数,以及Jacobi方法或QR方法等迭代方法。
下面是一个使用Jacobi方法在MATLAB中求解特征值和特征向量的示例:```matlabfunction [V, D] = jacobi(A, tol, maxiter)% A: nxn matrix% tol: error tolerance% maxiter: maximum number of iterationsn = size(A, 1);V = eye(n);D = A;for k = 1:maxiterw = D * V(:, k);alpha = (w' * w) / (w' * A * w);V(:, k+1) = w - alpha * V(:, k);D = D - alpha * V(:, k) * V(:, k+1)';endif norm(D - eig(A), 'fro') < tolbreak;endend```这个函数使用Jacobi方法来迭代求解矩阵的特征值和特征向量。
输入参数A是待求解的特征值和特征向量的矩阵,tol是误差容忍度,maxiter是最大迭代次数。
输出参数V是特征向量矩阵,D是对角线元素为特征值的矩阵。
使用这个函数时,只需要将待求解的矩阵A,误差容忍度和最大迭代次数作为输入参数传入即可。
例如:```matlabA = [3 -1; -1 3];[V, D] = jacobi(A, 1e-6, 1000);disp(['Eigenvalues: ', num2str(diag(D))]);disp('Eigenvectors:');disp(V);```这个例子中,我们要求解矩阵A的特征值和特征向量,并将结果输出到控制台。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
要求:
下面分别使用雅克比迭代法和高斯-赛德尔迭代法求一个方程组的近似解用的线性方程组是按实验要求给的:
7*x1+x2+2*x3=10
x1+8*x2+2*x3=8
2*x1+2*x2+9*x3=6
雅克比迭代法的matlab代码:(老师写的)
A=[7,1,2;1,8,2;2,2,9];
b=[10;8;6];
if(any(diag(A))==0)
error('error,pause')
end
eps=input('误差限eps=');
N=input('迭代次数N=');
D=diag(diag(A));
B=inv(D)*(D-A);
f=inv(D)*b;
K=0;
x0=zeros(size(b));
while 1
x1=B*x0+f
K=K+1;
fprintf('第-次迭代的近似解为',K)
disp(x1');
if norm(x1-x0,inf)<eps
fprintf('满足精度要求的解为\n')
disp(x1');
break
end
if K>N
fprintf('迭代超限')
end
x0=x1;
end
高斯-赛德尔迭代法matlab代码:(自己改的)
A=[7,1,2;1,8,2;2,2,9];
b=[10;8;6];
if(all(diag(A))==0)
error('error,pause')
end
eps=input('误差限eps=');
N=input('迭代次数N=');
D=diag(diag(A));
B=inv(D)*(D-A);
f=inv(D)*b;
K=0;
x0=zeros(size(b));
x00=x0;
while 1
x11=B*x0+f;
x00(1,1)=x11(1,1);
x12=B*x00+f;
x00(2,1)=x12(2,1);
x13=B*x00+f;
x00(3,1)=x13(3,1);
x1=x00
K=K+1;
fprintf('第-次迭代的近似解为',K)
disp(x1');
if norm(x1-x0,inf)<eps
fprintf('满足精度要求的解为\n') disp(x1');
break
end
if K>N
fprintf('迭代超限')
end
x0=x1;
end。