MATLAB 迭代法
matlab迭代法解线性方程组

function x=ak(a,b)%a为系数矩阵,b为初始向量(默认为零向量)
%e为精度(默认为1e-6),N为最大迭代次数(默认为100),x为返回解向量
n=length(b);
N=100;
e=1e-6;
x0=zeros(n,1)
%生成一n*1阶零矩阵
x=x0;
x0=x+2*e;
k=0;
d=diag(diag(a));
%生成一个除对角线上元素不为零外其他元素皆为零的矩阵d,且d对角线上的元素为矩阵a 对角线上的元素
l=-tril(a,-1);
%生成一个下三角矩阵
u=-triu(a,1);
%生成一个上三角矩阵
while norm(x0-x,inf)>e & k<N %norm(x0-x,inf)为矩阵(x0-x)的无穷范数
k=k+1;
x0=x;
x=inv(d)*(l+u)*x+inv(d)*b;%雅可比迭代公式k
disp(x')
end
if k==N warning('已达最大迭代次数'); end
function X=BDD(f,x0,TOL)
%X用来存储迭代过程所有的根;
%f是符合不动点迭代要求的迭代方程;%x0设定的迭代初值;
%TOL允许的误差值;
x=feval(f,x0);
n=1;
X(:,n)=x;
while abs(x-x0)>TOL
x0=x;
x=feval(f,x0);
n=n+1;
X(:,n)=x;
end。
迭代法matlab

迭代法matlab一、引言编程是计算机科学中非常重要的一部分,它能够帮助我们解决各种各样的问题。
在计算机科学中,迭代法(Iteration Method)是一种常用的解决数值问题的方法。
本文将详细介绍迭代法在MATLAB中的应用及其原理。
二、迭代法的原理迭代法是一种通过递归或循环计算来逼近方程解的方法。
它通常用于无法通过解析方法求解的问题,例如非线性方程、积分、微分方程等。
迭代法基于以下原理: 1. 初始值的选择:我们需要选择一个合适的初始值作为迭代的起点。
2. 迭代公式的确定:我们需要找到一个迭代公式(或更新规则),通过不断迭代来逼近方程的解。
3. 精度要求的设定:我们需要设定一个精度要求,当迭代结果达到该精度要求时,迭代可以停止。
三、迭代法在MATLAB中的应用MATLAB是一款功能强大的科学计算软件,它提供了丰富的数学函数和工具箱,方便我们进行数值计算。
下面是迭代法在MATLAB中的常见应用场景和示例代码。
3.1 解非线性方程迭代法可用于解非线性方程。
例如,我们要解方程f(x) = 0,我们可以通过不断迭代来逼近方程的解。
以下是一个示例代码:function [x] = iterationMethod(f, x0, epsilon, maxIter)% f: 方程的函数句柄% x0: 初始值% epsilon: 精度要求% maxIter: 最大迭代次数x = x0;iter = 0;while iter < maxIterx_new = f(x); % 迭代公式if abs(x_new - x) < epsilonbreak;endx = x_new;iter = iter + 1;endif iter == maxIterdisp('迭代次数已达到最大值,未能满足精度要求!');elsedisp(['迭代成功,解为:', num2str(x)]);endend3.2 求解积分迭代法还可用于求解积分。
Matlab中的迭代法和数值求解技巧

Matlab中的迭代法和数值求解技巧引言:在科学与工程领域中,数值求解是十分重要的一项技术。
在很多实际问题中,往往难以找到解析解或者解析解的求解过程比较复杂。
这时候,我们就需要使用数值方法来近似求解。
Matlab作为一款功能强大的数值计算软件,在迭代法和数值求解领域有着广泛的应用。
本文将围绕Matlab中的迭代法和数值求解技巧展开讨论。
第一部分:基本迭代法介绍1.1 迭代法的概念迭代法是一种通过不断逼近的方式,求解方程或者函数零点的方法。
其基本思想是从一个初始的近似解开始,根据一定的迭代公式来逐步逼近真实解。
在Matlab中,使用迭代法可以通过编写适当的算法来实现。
1.2 迭代法的种类常见的迭代法包括牛顿法、割线法、迭代法等。
其中,牛顿法是一种通过构造切线来逼近函数零点的方法,而割线法则是通过构造两点之间的割线来逼近函数零点的方法。
迭代法是一种比较通用的方法,可以根据具体问题选择合适的迭代公式。
1.3 在Matlab中实现迭代法在Matlab中,可以使用循环结构来实现迭代法。
首先,需要指定一个初始的近似解,然后通过不断迭代来逼近真实解。
具体的迭代公式可以根据问题的特点来确定。
在迭代过程中,可以设置一个终止条件,当满足终止条件时,结束迭代,并输出近似解。
第二部分:数值求解技巧2.1 数值求解的意义数值求解是一种通过近似方法求解数学问题的技术,广泛应用于科学和工程领域。
与解析解相比,数值求解更加灵活,并且可以处理复杂的问题。
Matlab提供了丰富的数值求解函数,方便用户进行数值计算和分析。
2.2 数值求解函数的分类Matlab中的数值求解函数可以分为线性方程求解、非线性方程求解、最小二乘拟合等等。
线性方程求解函数常用于解决线性代数方程组,非线性方程求解函数则用于求解非线性方程或方程组。
最小二乘拟合函数可以用于拟合曲线或曲面。
2.3 Matlab中数值求解函数的使用使用Matlab中的数值求解函数,首先需要了解函数的输入和输出格式,然后根据具体的问题选择合适的函数。
MATLAB计算方法迭代法牛顿法二分法实验报告

MATLAB计算方法迭代法牛顿法二分法实验报告实验报告一、引言计算方法是数学的一门重要应用学科,它研究如何用计算机来解决数学问题。
其中,迭代法、牛顿法和二分法是计算方法中常用的数值计算方法。
本实验通过使用MATLAB软件,对这三种方法进行实验研究,比较它们的收敛速度、计算精度等指标,以及它们在不同类型的问题中的适用性。
二、实验方法1.迭代法迭代法是通过不断逼近解的过程来求得方程的根。
在本实验中,我们选择一个一元方程f(x)=0来测试迭代法的效果。
首先,我们对给定的初始近似解x0进行计算,得到新的近似解x1,然后再以x1为初始近似解进行计算,得到新的近似解x2,以此类推。
直到两次计算得到的近似解之间的差值小于规定的误差阈值为止。
本实验将通过对复杂方程的迭代计算来评估迭代法的性能。
2.牛顿法牛顿法通过使用函数的一阶导数来逼近方程的根。
具体而言,对于给定的初始近似解x0,通过将f(x)在x0处展开成泰勒级数,并保留其中一阶导数的项,得到一个近似线性方程。
然后,通过求解这个近似线性方程的解x1,再以x1为初始近似解进行计算,得到新的近似解x2,以此类推,直到两次计算得到的近似解之间的差值小于规定的误差阈值为止。
本实验将通过对不同类型的方程进行牛顿法的求解,评估它的性能。
3.二分法二分法是通过将给定区间不断二分并判断根是否在区间内来求方程的根。
具体而言,对于给定的初始区间[a,b],首先计算区间[a,b]的中点c,并判断f(c)与0的大小关系。
如果f(c)大于0,说明解在区间[a,c]内,将新的区间定义为[a,c],再进行下一轮的计算。
如果f(c)小于0,说明解在区间[c,b]内,将新的区间定义为[c,b],再进行下一轮的计算。
直到新的区间的长度小于规定的误差阈值为止。
本实验将通过对复杂方程的二分计算来评估二分法的性能。
三、实验结果通过对一系列测试函数的计算,我们得到了迭代法、牛顿法和二分法的计算结果,并进行了比较。
matlab迭代法求解方程

matlab迭代法求解方程在MATLAB中,可以使用迭代法来求解方程。
迭代法是一种通过反复迭代逼近方程解的方法。
下面我将从多个角度全面回答你关于MATLAB迭代法求解方程的问题。
首先,迭代法的基本思想是通过不断迭代一个初始猜测值,使得迭代序列逐渐趋近方程的解。
在MATLAB中,可以使用循环结构来实现迭代过程。
一般来说,迭代法需要满足收敛条件,即迭代序列能够收敛到方程的解。
常见的迭代法包括简单迭代法、牛顿迭代法和割线法等。
其次,我将介绍一种常见的迭代法——简单迭代法(也称为不动点迭代法)。
简单迭代法的基本思想是将方程转化为等价的不动点形式,即将方程f(x) = 0转化为x = g(x)的形式。
然后,通过迭代序列x_{n+1} = g(x_n)来逼近方程的解。
在MATLAB中,可以通过编写一个循环结构来实现简单迭代法。
下面是一个使用简单迭代法求解方程的MATLAB代码示例:matlab.function x = simple_iteration(g, x0, tol, max_iter)。
% 简单迭代法求解方程。
% 输入,g为迭代函数,x0为初始猜测值,tol为容差,max_iter为最大迭代次数。
% 输出,x为方程的解。
x = x0; % 初始猜测值。
iter = 0; % 迭代次数。
while abs(g(x) x) > tol && iter < max_iter.x = g(x); % 迭代计算下一个近似解。
iter = iter + 1; % 迭代次数加1。
end.if iter == max_iter.disp('迭代次数超过最大迭代次数,未找到解');else.disp(['迭代次数为,', num2str(iter)]);disp(['方程的解为,', num2str(x)]);end.end.在上述代码中,g为迭代函数,x0为初始猜测值,tol为容差,max_iter为最大迭代次数。
MATLAB牛顿迭代法

1。
定义函数function y=f(x)y=f(x);%函数f(x)的表达式endfunction z=h(x)z=h(x);%函数h(x)的表达式end2.主程序x=X;%迭代初值i=0;%迭代次数计算while i〈= 100%迭代次数x0=X-f(X)/h(X);%牛顿迭代格式if abs(x0—X)>0。
01;%收敛判断X=x0;else breakendi=i+1;endfprintf(’\n%s%.4f\t%s%d’,'X=’,X,’i=’,i) %输出结果牛顿迭代法(matlab)来源:徐力的日志背景:牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton—Raphson m ethod),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法.设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0)+f’(x0)(x—x0),求出L与x轴交点的横坐标x1 = x 0—f(x0)/f'(x0),称x1为r的一次近似值。
过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴交点的横坐标x2 = x1—f(x1)/f'(x1),称x2为r的二次近似值。
重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f’(x(n)),称为r的n+1次近似值,上式称为牛顿迭代公式.现用牛顿迭代法(matlab)求方程x^3-2x-1=0的根(—1)。
主函数:function[x,k]=Newtondd(f,x0,e)%%牛顿迭代法,求f(x)=0在某个范围内的根。
%%f为f(x),x0为迭代初值,e为迭代精度。
k为迭代次数x_a=x0;x_b=x_a—subs(f,x_a)/subs(diff(f),x_a);k=1;while abs(x_a-x_b)〉e,k=k+1;x_a=x_b;x_b=x_a-subs(f,x_a)/subs(diff(f),x_a); endx=x_b;运行:>〉syms x;>> f=(x^3-2*x—1)。
matlab中jacobi迭代法

一、简介Matlab中jacobi迭代法是一种用于求解线性方程组的迭代方法,适用于系数矩阵为对称、正定矩阵的情况。
该迭代方法通过将系数矩阵分解为对角矩阵、上三角矩阵和下三角矩阵的形式,然后通过迭代计算得到方程组的解。
在Matlab中,可以利用矩阵运算和迭代循环来实现jacobi迭代法。
二、 jacobi迭代法原理1. 基本思想jacobi迭代法的基本思想是将系数矩阵分解为对角矩阵D、上三角矩阵U和下三角矩阵L的形式,即A=D+L+U,其中D为系数矩阵A 的对角线元素组成的对角矩阵,L为系数矩阵A的下三角部分,U为系数矩阵A的上三角部分。
令x为方程组的解向量,b为方程组的右端向量,则方程组可表示为Ax=b。
根据方程组的性质,可将方程组表示为(D+L+U)x=b,然后利用迭代的方式逐步逼近方程组的解。
2. 迭代公式假设迭代到第k次,方程组可表示为(D+L+U)x=b,将其转化为迭代形式x(k+1)=(D+L)^(-1)(b-Ux(k)),利用迭代公式可以逐步计算出方程组的解。
3. 收敛条件对于jacobi迭代法,收敛条件为系数矩阵A为对角占优矩阵或正定矩阵。
如果满足这一条件,迭代计算会逐步收敛于方程组的解。
三、 Matlab中jacobi迭代法实现在Matlab中,可以利用矩阵运算和迭代循环来实现jacobi迭代法。
具体步骤如下:1. 对系数矩阵进行分解将系数矩阵A分解为对角矩阵D、上三角矩阵U和下三角矩阵L的形式。
2. 初始化迭代变量初始化迭代的初始值x0、迭代次数k、逐次逼近解向量x(k+1)。
3. 迭代计算利用迭代公式x(k+1)=(D+L)^(-1)(b-Ux(k))来逐步计算出方程组的解。
4. 判断收敛条件在迭代计算过程中,需要实时判断迭代计算是否满足收敛条件,如果满足则停止迭代计算,得到方程组的解。
四、实例分析假设有如下方程组:2x1 + x2 + 4x3 = 103x1 + 4x2 - x3 = 10x1 + 2x2 + 3x3 = 0可以利用jacobi迭代法来求解该方程组,在Matlab中可以通过编程实现迭代计算过程。
简单迭代法matlab例题程序

一、引言在数学建模和计算机编程中,简单迭代法是一种常用的求解方程近似解的方法。
其原理是通过不断迭代计算,逼近实际的解。
在Matlab 编程中,简单迭代法也是一种常见的应用。
本文将介绍简单迭代法的原理,并给出在Matlab中实现简单迭代法的例题程序。
二、简单迭代法原理1. 简单迭代法的基本思想是将需要求解的方程转化为迭代形式,即 x = g(x),然后通过不断迭代计算得到方程的近似解。
2. 简单迭代法的收敛条件是 |g'(x)| < 1,即迭代函数的导数的绝对值小于1时,迭代过程才能收敛。
3. 简单迭代法的收敛速度取决于迭代函数的选择,通常可以通过调整迭代函数来提高收敛速度。
三、Matlab中的简单迭代法实现在Matlab中,可以通过编写脚本文件来实现简单迭代法。
下面给出一个简单的例题:求解方程 x^2 - 3x + 2 = 0 的近似解。
4. 以下是Matlab中实现简单迭代法的脚本文件示例:```matlab定义迭代函数g = (x) 3*x - x^2;设置迭代初值和迭代次数x0 = 0.5;N = 100;迭代计算for k = 1:Nx = g(x0);fprintf('第d次迭代,近似解为:.10f\n', k, x);if abs(x - x0) < 1e-8 判断迭代是否收敛break;endx0 = x;end```5. 通过运行上述脚本文件,即可得到方程 x^2 - 3x + 2 = 0 的近似解。
四、实例分析通过上述例题程序的运行结果可以看出,简单迭代法在Matlab中的实现比较简单直观。
但是需要注意的是,迭代函数的选择和迭代初值的设定对最终的近似解都会产生影响,需要经过一定的调试和优化。
五、总结简单迭代法是一种常用的求解方程近似解的方法,在Matlab编程中也有着广泛的应用。
通过本文的介绍和示例程序,相信读者已经对简单迭代法在Matlab中的实现有了更深入的了解。
基于Matlab的解线性方程组的几种迭代法的实现及比较

基于Matlab的解线性方程组的几种迭代法的实现及比较线性方程组的解法有很多种,其中一类常用的方法是迭代法。
迭代法根据一个初值逐步逼近方程组的解,在每一次迭代中利用现有的信息产生新的近似值,并不断地修正。
下面介绍基于Matlab的三种迭代法:雅可比迭代法、高斯-赛德尔迭代法和超松弛迭代法,并进行比较。
1. 雅可比迭代法雅可比迭代法是迭代法中最简单的一种方法。
对于线性方程组Ax=b,雅可比迭代法的迭代公式为:x_{i+1}(j)=1/a_{jj}(b_j-\\sum_{k=1,k\eq j}^n a_{jk}x_i(k))其中,i表示迭代次数,j表示未知数的下标,x_i表示第i次迭代的近似解,a_{jk}表示系数矩阵A的第j行第k列元素,b_j 表示方程组的常数项第j项。
在Matlab中,可以使用以下代码实现雅可比迭代:function [x,flag]=jacobi(A,b,X0,tol,kmax)n=length(b);x=X0;for k=1:kmaxfor i=1:nx(i)=(b(i)-A(i,:)*x+A(i,i)*x(i))/A(i,i);endif norm(A*x-b)<tolflag=1;returnendendflag=0;return其中,参数A为系数矩阵,b为常数项列向量,X0为初值列向量,tol为迭代误差容许值(默认为1e-6),kmax为最大迭代次数(默认为1000)。
函数返回值x为近似解列向量,flag表示是否满足容许误差要求。
2. 高斯-赛德尔迭代法高斯-赛德尔迭代法是雅可比迭代法的改进。
其基本思想是,每次迭代时,利用已经求出的新解中的信息来更新其他未知数的值。
迭代公式为:x_{i+1}(j)=(1/a_{jj})(b_j-\\sum_{k=1}^{j-1}a_{jk}x_{i+1}(k)-\\sum_{k=j+1}^n a_{jk}x_i(k))与雅可比迭代法相比,高斯-赛德尔迭代法的每一次迭代都利用了前面已求得的近似解,因此可以更快地收敛。
迭代法求解方程matlab

迭代法求解方程的MATLAB实现1.引言迭代法是一种求解方程的常用方法,尤其适用于大规模矩阵和高维问题。
在迭代法中,我们通过不断迭代来逐步逼近方程的解。
本篇文章将介绍如何使用MATLAB实现迭代法求解方程。
2.收敛性判断在使用迭代法求解方程时,我们需要判断迭代是否收敛。
通常,我们使用以下两种方法进行收敛性判断:2.1 判断迭代公式是否收敛对于许多迭代公式,我们可以根据其结构来判断其是否收敛。
例如,Jacobi迭代法和Gauss-Seidel方法通常适用于对角占优的矩阵,而SOR方法适用于对角占优或松弛型的矩阵。
2.2 判断迭代误差是否收敛我们还可以通过判断迭代误差是否收敛来判断迭代是否收敛。
迭代误差通常定义为实际解与迭代解之间的范数。
如果迭代误差逐渐减小并趋于零,则说明迭代收敛。
3.迭代公式下面我们以Jacobi迭代法为例,介绍迭代公式的实现。
Jacobi迭代法的迭代公式如下:x{n+1}=(\frac{1}{a{ii}})(b i-A{ii,1:i-1}x1-A{ii,i+1:n}x_n)其中,A是系数矩阵,b是右侧向量,x是解向量,a_{ii}是矩阵A的主对角线元素。
4.误差计算为了判断迭代是否收敛,我们需要计算迭代误差。
通常,我们使用实际解与迭代解之间的相对误差或范数误差来衡量误差大小。
例如,相对误差可以按下式计算:||x^-x_n||_2/(||x^||_2)其中,x^*是实际解向量,x_n是第n次迭代的解向量。
5.MATLAB实现下面是一个使用MATLAB实现Jacobi迭代法的示例代码:function x = jacobi(A, b, x0, tol, max_iter)% 输入参数:系数矩阵A、右侧向量b、初始解向量x0、容许误差tol和最大迭代次数max_iter% 输出参数:方程的解向量xn = length(b); % 方程的未知数个数x = zeros(n, 1); % 初始化解向量xx(:) = x0; % 将初始解向量赋值给xerr = tol + 1; % 初始化误差大于容许误差,表示未收敛k = 0; % 初始化迭代次数k=0while err > tol && k < max_iterk = k + 1; % 更新迭代次数k=k+1for i = 1:n % 对每个未知数进行更新x(i) = (b(i) - A(i, 1:i-1)*x(1:i-1) - A(i, i+1:n)*x(i+1:n)) / A(i, i); % 更新解向量x的第i个元素x(i)的公式为x(i)=[b(i)-A(i,1:i-1)*x(1:i-1)-A(i,i+1:n)*x(i+1:n)]/A(i,i)endforendwhileif k < max_itererr = norm(x - x_prev, 'fro') / norm(x_prev, 'fro'); % 计算相对误差endendendfunction```。
基于matlab的线性方程组迭代法(实验报告)

基于matlab 的线性方程组迭代法实验题目:实验要求:(1)分别试用 Jacobi 和Gauss-Seidel 迭代法计算,要求达到的精度为:(1)()510k k x x +-∞->(2)观测得到的迭代序列是否收敛?若收敛,记录迭代次数并分析计算结果。
实验流程一、迭代法简介 1、 Jacobi 迭代法对于方程组Ax b =有A 非奇异情况下且0ij a ≠时,A 分裂为A D L U =--,可得到:0x B x f =+,其中1110(),B I D A D L U f D b ---=-=+=,得到雅克比迭代法:(0)(1)()0()k k x xB x f +⎧⎪⎨=+⎪⎩初始向量 2、 Gauss-Seidel 迭代法(0)(1)()()k k x x Gx f +⎧⎪⎨=+⎪⎩初始向量 其中11(),()G D L U f D L b --=-=-。
其迭代法优点为只需一组存储单元。
3、 超松弛迭代法(SOR)Gauss-Seidel 迭代法的一种加速方法,ω松弛因子。
(0)(1)()(1)(1))()(1)k k k k k x x Gx f x x x ωω+++⎧⎪⎪=+⎨⎪=+-⎪⎩(初始向量 其中11(),()G D L U f D L b --=-=-。
二、迭代法的matlab 程序1、 Jacobi 迭代法Jacobi.mfunction [y,n]= Jacobi( A,b,x0,e )%JACOBI ÇëÔÚ´Ë´¦ÊäÈ뺯Êý¸ÅÒªif(nargin<4)e=1e-5;endD=diag(diag(A));I=eye(size(A));B=I-D\A;f=D\b;y=x0+2*e;n=0;while norm(y-x0,inf)>ey=x0;x0=B*y+f;n=n+1;endnend2、Gauss-Seidel迭代法GaussSeidel.mfunction [y,n]= GaussSeidel( A,b,x0,e ) %GS ÇëÔÚ´Ë´¦ÊäÈ뺯Êý¸ÅÒªif(nargin<4)e=1e-5;endD=diag(diag(A));I=eye(size(A));L=D-tril(A);U=D-triu(A);f=(D-L)\b;G=(D-L)\U;y=x0+2*e;n=0;while norm(y-x0,inf)>ey=x0;x0=G*y+f;n=n+1;endnend3、超松弛迭代法(SOR) SOR.mfunction [y,n]= SOR( A,b,w,x0,e )%SORÇëÔÚ´Ë´¦ÊäÈ뺯Êý¸ÅÒªif(nargin<5)e=1e-5;endD=diag(diag(A));I=eye(size(A));L=D-tril(A);U=D-triu(A);f=(D-L)\b;G=(D-L)\U;y=x0+2*e;n=0;while norm(y-x0,inf)>ex0=y;x1=G*x0+f;y=(1-w)*x0+w*x1;n=n+1;endnend4、变量初始化creatMatrix.mclear;clc;a=diag(3*ones(1,20));b=diag(-0.5*ones(1,19),1);c=diag(-0.25*ones(1,18),2);A=a+b+b'+c+c';%ϵÊý¾ØÕób=ones(20,1)*7/4;b(1)=9/4;b(20)=9/4;x0=zeros(20,1);A,b,x0,w=1.5建立A数组以及初始化b,松弛因子w,迭代初值x05、程序运行和结果记录solve.mclc;tic,s1=Jacobi(A,b,x0),toctic,s2=GaussSeidel(A,b,x0),toctic,s3=SOR(A,b,w,x0),toc三、计算结果运行程序得到几种方法的计算结果。
matlab 迭代法求特征值和特征向量

在MATLAB中,使用迭代法求解特征值和特征向量,一般需要用到eig函数,以及Jacobi方法或QR方法等迭代方法。
下面是一个使用Jacobi方法在MATLAB中求解特征值和特征向量的示例:```matlabfunction [V, D] = jacobi(A, tol, maxiter)% A: nxn matrix% tol: error tolerance% maxiter: maximum number of iterationsn = size(A, 1);V = eye(n);D = A;for k = 1:maxiterw = D * V(:, k);alpha = (w' * w) / (w' * A * w);V(:, k+1) = w - alpha * V(:, k);D = D - alpha * V(:, k) * V(:, k+1)';endif norm(D - eig(A), 'fro') < tolbreak;endend```这个函数使用Jacobi方法来迭代求解矩阵的特征值和特征向量。
输入参数A是待求解的特征值和特征向量的矩阵,tol是误差容忍度,maxiter是最大迭代次数。
输出参数V是特征向量矩阵,D是对角线元素为特征值的矩阵。
使用这个函数时,只需要将待求解的矩阵A,误差容忍度和最大迭代次数作为输入参数传入即可。
例如:```matlabA = [3 -1; -1 3];[V, D] = jacobi(A, 1e-6, 1000);disp(['Eigenvalues: ', num2str(diag(D))]);disp('Eigenvectors:');disp(V);```这个例子中,我们要求解矩阵A的特征值和特征向量,并将结果输出到控制台。
matlab的迭代法编程

matlab的迭代法编程迭代法是一种常用的解决数值计算问题的方法, 在MATLAB中也有相应的编程实现。
本文将介绍如何使用MATLAB实现迭代法来解决数值计算问题。
一、迭代法简介迭代法是通过反复迭代计算来逼近问题的解的一种方法。
它适用于无法直接求得解析解的问题,但可以通过一系列近似的计算逐步逼近真实解。
二、基本思想迭代法的基本思想是通过不断迭代,逐步逼近问题的解。
假设我们要求解一个方程 f(x)=0 的根,可以从一个初始值开始,通过迭代计算逐步逼近真实解。
三、MATLAB的迭代法编程实现在MATLAB中,可以使用循环语句结合适当的迭代公式来实现迭代法。
首先,我们需要确定迭代的终止条件。
通常可以使用误差判定条件来进行终止判断,比如当迭代结果的相对误差小于某一阈值时,可以认为迭代已经达到了足够的精度。
然后,我们可以使用循环语句(如for循环或while循环)来进行迭代计算。
在每次迭代中,根据迭代公式更新迭代结果,并进行误差判定。
最后,当满足终止条件时,迭代停止,并返回最终的迭代结果作为近似解。
下面是一个简单的例子,演示了如何使用MATLAB实现牛顿迭代法求解方程的根。
```matlabfunction x = Newton_method(f, df, x0, epsilon, max_iter)for i = 1:max_iterx = x0 - f(x0)/df(x0);if abs(f(x)) < epsilonreturn;endx0 = x;enderror('迭代次数超过上限');end```在上述代码中,函数`Newton_method`用于实现牛顿迭代法。
其中,`f`代表方程函数,`df`代表方程函数的导数,`x0`是初始点的值,`epsilon`是误差判定的阈值,`max_iter`是最大迭代次数。
四、迭代法的应用迭代法在数值计算中有广泛的应用。
它可以用于求解非线性方程的根、线性方程组的解、优化问题的最优解等等。
matlab用迭代法求方程

matlab用迭代法求方程Matlab是一种常用的科学计算软件,可用于解决各种数学问题。
其中,迭代法可以用来求解方程,是一种简单但非常有效的算法。
本文将介绍如何在Matlab中使用迭代法求解方程的步骤。
步骤一:构造迭代式迭代法的核心在于构造一个迭代式,通过不断迭代的方式逼近方程的解。
在求解方程f(x)=0时,一般可以构造形如x(n+1)=g(x(n))的递推公式来进行迭代。
其中,g(x)是一个函数,可以通过试错与调整来确定。
步骤二:设定初值x(0)在开始迭代之前,需要确定初值x(0),即从哪个点开始进行迭代。
初值不同可能会得到不同的解,在实际应用中需要特别注意。
步骤三:设定迭代停止条件为了避免无限迭代,需要设定迭代停止的条件。
常用的条件有两种:一种是设定迭代次数,即达到一定迭代次数后停止迭代;另一种是设置收敛条件,即在一定误差范围内停止迭代。
步骤四:编写Matlab代码完成以上准备工作后,可以开始编写Matlab代码。
具体实现可以采用for循环或while循环的方式进行迭代,根据设定的迭代停止条件来决定何时停止迭代。
以求解方程f(x)=x^3-x-1为例,其迭代式可以构造为:x(n+1)=x(n)-(x(n)^3-x(n)-1)/(3*x(n)^2-1)初值设为x(0)=1,迭代停止条件设为当两次迭代之差小于0.0001时停止。
则对应的Matlab代码可写为:x(1)=1;tol=0.0001;for n=1:100x(n+1)=x(n)-(x(n)^3-x(n)-1)/(3*x(n)^2-1);if abs(x(n+1)-x(n))<tolbreak;endend步骤五:运行程序并解读结果编写完Matlab代码后,可以运行程序并查看结果。
对于上述例子,最终的解为x=1.3247,满足收敛条件。
在使用迭代法求解方程时,需要注意函数的收敛性、初值选择、迭代次数等问题。
此外,迭代法也存在无法收敛或收敛速度慢的情况,需要特别注意。
matlab迭代法解方程

matlab迭代法解方程在MATLAB中,可以使用迭代法求解方程。
迭代法的一般步骤如下:1. 选择一个初始猜测值。
2. 根据某种迭代公式,计算下一个近似解。
3. 根据设定的停止准则,判断迭代是否结束。
常见的停止准则可以是近似解的相对误差小于某个给定的值,或者迭代次数达到了预设的最大次数。
4. 如果迭代未结束,将计算得到的近似解作为新的猜测值,回到步骤2;否则,停止迭代,并输出最终的近似解。
下面是一个使用迭代法求解方程的示例代码:```matlabfunction x = iterativeMethod(equation, x0, epsilon, maxIter)syms x;f = equation;df = diff(f, x);x_prev = x0;for i = 1:maxIterx_new = x_prev - subs(f, x, x_prev) / subs(df, x, x_prev);if abs(x_new - x_prev) < epsilonx = x_new;return;endx_prev = x_new;enderror('Maximum iteration reached. No solution found.');end```使用该函数时,需要传入四个参数:`equation`是方程的符号表达式,`x0`是初始猜测值,`epsilon`是停止迭代的相对误差阈值,`maxIter`是最大迭代次数。
例如,要求方程sin(x) - x^2 = 0的解,可以使用以下代码:```matlabequation = sin(x) - x^2;x0 = 1;epsilon = 1e-6;maxIter = 100;x = iterativeMethod(equation, x0, epsilon, maxIter);disp(x);```该代码会输出方程sin(x) - x^2 = 0的近似解。
matlab迭代法解方程的程序

文章标题:使用MATLAB迭代法解方程的程序目录1. 什么是迭代法解方程2. MATLAB中迭代法的实现3. 迭代法解方程的优缺点4. 实例分析:使用MATLAB实现迭代法解方程5. 结语1. 什么是迭代法解方程迭代法是一种数值计算方法,用于逼近方程的根或解。
在实际应用中,经常会遇到无法通过代数方法得到准确解的方程,这时候就需要借助数值计算的方法来求得近似解。
迭代法通过不断逼近解的过程,逐步缩小误差,最终得到一个接近精确解的近似值。
2. MATLAB中迭代法的实现MATLAB作为一种强大的数值计算工具,提供了丰富的数值计算函数和工具箱,其中包括了多种迭代法的实现。
在MATLAB中,常用的迭代法有牛顿法、雅各比迭代法、高斯-赛德尔迭代法等。
这些迭代法都可以通过调用MATLAB内置函数或自行编写程序实现。
在编写迭代法程序时,需要注意选择合适的迭代停止条件、初始化的迭代值、迭代步数等参数。
3. 迭代法解方程的优缺点迭代法解方程具有以下优点:1) 适用范围广:迭代法可以解决各种类型的方程,包括线性方程组、非线性方程、微分方程等;2) 可以得到近似解:即使方程无法通过代数方法求解,迭代法也可以得到一个接近精确解的近似值;3) 数值稳定性:在一定条件下,迭代法能够保证解的稳定性和收敛性。
但迭代法也存在一些缺点:1) 收敛速度慢:一些迭代法可能需要较多的迭代次数才能得到满意的解;2) 初始值敏感:迭代法对初始值的选取比较敏感,选取不当可能导致迭代发散或者收敛到错误的解;3) 复杂度高:一些迭代法的实现比较复杂,需要具备较高的数值计算和编程能力。
4. 实例分析:使用MATLAB实现迭代法解方程接下来,我们将以求解非线性方程x^2-3x+2=0为例,使用MATLAB实现迭代法来求得方程的根。
我们选择使用简单而经典的二分法来进行迭代计算。
```MATLABfunction result = iteration_method()f = @(x) x^2 - 3*x + 2;a = 0;b = 2;tol = 1e-6;if f(a)*f(b) > 0error('The function has the same sign at the endpoints.'); endwhile (b - a) > tolc = (a + b) / 2;if f(c) == 0break;elseif f(a)*f(c) < 0b = c;elsea = c;endresult = c;endend```上述代码中,我们通过定义函数f(x)为方程的表达式,并选择区间[a, b]为[0, 2]作为初始迭代区间。
MATLAB计算方法迭代法牛顿法二分法实验报告

完美WORD格式姓名实验报告成绩评语:指导教师(签名)年月日说明:指导教师评分后,实验报告交院(系)办公室保存。
实验一 方程求根一、 实验目的用各种方法求任意实函数方程0)(=x f 在自变量区间[a ,b]上,或某一点附近的实根。
并比较方法的优劣。
二、 实验原理 (1)、二分法对方程0)(=x f 在[a ,b]内求根。
将所给区间二分,在分点2a b x -=判断是否0)(=x f ;若是,则有根2a b x -=。
否则,继续判断是否0)()(<∙x f a f ,若是,则令x b =,否则令x a =。
否则令x a =。
重复此过程直至求出方程0)(=x f 在[a,b]中的近似根为止。
(2)、迭代法将方程0)(=x f 等价变换为x =ψ(x )形式,并建立相应的迭代公式=+1k x ψ(x )。
(3)、牛顿法若已知方程 的一个近似根0x ,则函数在点0x 附近可用一阶泰勒多项式))((')()(0001x x x f x f x p -+=来近似,因此方程0)(=x f 可近似表示为+)(0x f 0))(('0=-x x x f 设0)('0≠x f ,则=x -0x )(')(00x f x f 。
取x 作为原方程新的近似根1x ,然后将1x 作为0x 代入上式。
迭代公式为:=+1k x -0x )(')(k k x f x f 。
三、 实验设备:MATLAB 7.0软件四、 结果预测(1)11x =0.09033 (2)5x =0.09052 (3)2x =0,09052 五、 实验内容(1)、在区间[0,1]上用二分法求方程0210=-+x e x 的近似根,要求误差不超过3105.0-⨯。
(2)、取初值00=x ,用迭代公式=+1k x -0x )(')(k k x f x f ,求方程0210=-+x e x的近似根。
要求误差不超过3105.0-⨯。
matlab迭代法

matlab迭代法Matlab中,迭代法是一种求解数值方法的算法。
它是通过迭代近似计算来解决数值问题的方法。
下面我将详细介绍Matlab迭代法的原理、应用、优缺点及代码实现。
一、Matlab迭代法的原理Matlab迭代法是通过不断迭代来逼近目标解的方法。
它的基本思想是,把问题转化为不断迭代的公式,从一个初始点开始,一步一步不断逼近目标解。
因为迭代是逐步开始的,所以我们可以通过控制迭代次数来控制精度。
具体的迭代公式因问题而异,但其实现过程是类似的。
二、Matlab迭代法的应用1.求解非线性方程。
非线性方程的求解是很多问题的基础,而解非线性方程的迭代法在很多时候非常有用。
例如,求解多项式方程的实根、解微分方程等问题都可以通过迭代法来实现。
2.最优化问题。
最优化问题是指在一定约束条件下,寻找能够取得最小或者最大值的函数的解。
这个问题在现代科学和工程中有很广泛的应用,例如最小二乘、最小化成本等。
而要解决这类问题,就需要通过迭代来逐步逼近目标值。
3.求解线性方程组。
对于一些简单的线性方程组,例如二维或三维的线性方程组,可以用迭代法来求解。
这类问题的求解需要涉及到矩阵乘法、求逆等知识。
Matlab中内置了很多求解线性方程组的函数,例如linsolve等。
三、Matlab迭代法的优缺点优点:1.可以处理很多无法通过解析的方法求解的问题;2.算法灵活且易于实现。
缺点:1.需要设计正确的迭代公式,否则易产生发散现象;2.收敛速度较慢,需要耗费大量计算资源。
四、Matlab迭代法的代码实现在Matlab中,我们可以使用while循环和if语句来实现迭代法。
例如,对于求解非线性方程f(x)=0的问题,可以使用如下的代码实现:function x = iteration(f,x0)tol = 1e-6; % 设定收敛精度为1e-6iter = 1; % 设定迭代次数的初始值为1dx = 1; % 定义dx值为1while (abs(dx)>tol && iter<1000) % 当dx值与收敛精度的差值大于tol或者迭代次数超过1000次时,退出循环x = f(x0); % 计算迭代公式,求解x值dx = x - x0; % 计算dx值x0 = x; % 将x的值赋给x0,作为下一次迭代的初始值iter = iter + 1; % 迭代次数加1end以上是我对于Matlab迭代法的介绍,希望能够对你有所帮助。
使用Matlab进行迭代计算的方法

使用Matlab进行迭代计算的方法引言:在科学计算和工程领域,迭代计算是一种常用的数值计算方法。
它通过多次迭代逼近解决方案,对于复杂问题具有很高的效率和准确性。
Matlab是一种强大的数值计算软件,具备丰富的工具箱和库,为迭代计算提供了便利。
本文将介绍使用Matlab进行迭代计算的方法,并探讨一些常见的迭代算法。
一、迭代计算的基本原理迭代计算是一种通过逐次逼近解决方案的数值计算方法。
它通常开始于一个近似解,通过多次迭代来逐步改进解的准确性,直到满足收敛条件或达到预设的迭代次数。
迭代计算的基本原理如下:1. 选择合适的初值:迭代计算的结果依赖于初始值的选择。
初值应该接近准确解,以便缩小误差范围。
2. 建立迭代模型:根据问题的特性和数学模型,建立迭代计算的基本形式。
通常,问题可以化为一个方程或者一组方程的求解。
3. 迭代逼近:从初始值开始,通过逐次迭代来逼近准确解。
每一次迭代都会产生一个更加精确的解,直到满足收敛条件。
4. 收敛判断:在每一次迭代之后,需要判断是否满足收敛条件。
常见的收敛条件有解的相对误差小于某个阈值,或者迭代次数达到预设的最大次数。
二、常见的迭代算法Matlab提供了多种迭代算法的函数和工具箱,下面将介绍几种常见的迭代算法以及在Matlab中的应用。
1. 简单迭代法:也称为迭代逼近法,是一种基本的迭代算法。
它适用于函数的连续可导且导数在某个区间内的绝对值小于1的情况。
简单迭代法的公式如下: x(i+1) = g(x(i))其中,g(x)为转化后的原方程,x(i)为第i次迭代的解,x(i+1)为第i+1次迭代的解。
在Matlab中,可以使用fzero函数结合匿名函数实现简单迭代法。
2. 牛顿迭代法:也称为牛顿-拉夫逊方法,是一种高效的迭代算法。
它通过利用函数的局部线性逼近来寻找解的迭代近似。
牛顿迭代法的公式如下: x(i+1) = x(i) - f(x(i))/f'(x(i))其中,f(x)为原方程,f'(x)为f(x)的导数,x(i)为第i次迭代的解,x(i+1)为第i+1次迭代的解。
基于matlab平台的三种迭代法求解矩阵方程

数值分析第二次作业学院:电子工程学院基于matlab平台的三种迭代法求解矩阵方程组求解系数矩阵由16阶Hilbert方程组构成的线性方程组的解,其中右端项为[2877/851,3491/1431,816/409,2035/1187,2155/1423,538/395,1587/1279,573/502,947 /895,1669/1691,1589/1717,414/475,337/409,905/1158,1272/1711,173/244].要求:1)Gauss_Sedel迭代法;2)最速下降法;3)共轭梯度法;4)将结果进行分析对比。
解:根据题目要求,编写了对应算法的matlab程序,求解结果如下:(求解精度为10e-4,最大迭代次数1000)1、方程的解:如下图1所示图1 三种方法求解的结果对比图2 Gause_Sedel算法收敛特性图3 最速下降法收敛特性图3 共轭梯度法收敛特性从图中可以看到,在相同的最大迭代次数和预设求解精度条件下,共轭梯度算法仅需要4次迭代便可求出方程组的解,耗时0.000454秒,而且求出解的精度最高;Gauss_Sedel方法需要465次迭代,耗时0.006779秒,求解精度最差;最速下降法需要398次迭代,耗时0.007595秒,求解精度与共轭梯度算法差不多,因此两者求出的解也几乎相同。
从中可以得出结论,共轭梯度算法无论从求解精度还是求解速度上都优于其他两种,最速下降法在求解精度上几乎与共轭梯度算法持平,但求解速度更慢。
Gauss_Sedel方法在求解精度和速度两方面都最差。
具体的解为:Gauss_Sedel迭代法:(共需465次迭代,求解精度达到9.97e-5) X=[0.995328360833192 1.01431732497804 1.052861239300110.934006974137998 0.931493373808838 0.9665081384030661.00661848511341 1.03799789809258 1.051806903036541.06215849948572 1.04857676431223 1.028561990411131.01999170162638 0.971831831519515 0.9525261666348130.916996019179182].最速下降法:(共需398次迭代,求解精度达到9.94e-5)X=[0.998835379744322 1.01507463472900 0.9825890937201850.980191460759243 0.991245169713628 1.003780222253291.01350884374478 1.01928337905816 1.020859096651941.01930314197028 1.01444777381651 1.007040589892970.998384452250809 0.987399404644377 0.9757678149709120.963209150871750].共轭梯度法:(共需4次迭代,求解精度达到3.98e-5)X=[0.996472751179456 1.02707840189049 0.9776233734098530.973206695321590 0.986133032967607 1.001289025642341.01322158496914 1.02047386502293 1.023009050605651.02163015083975 1.01678089454399 1.009203108638740.999772406055155 0.988443827498859 0.9760941924969490.962844741655005].Matlab程序主程序:clc;clear;%% 本程序用于计算第二次数值分析作业,关于希尔伯特矩阵方程的解,用三种方法,分析并比较,也可推广至任意n维的矩阵方程%%A=hilb(16); %生成希尔伯特系数矩阵b=[2877/851;3491/1431;816/409;2035/1187;2155/1423;538/395;1587/1279;573/502;947/895;166 9/1691;1589/1717;414/475;337/409;905/1158;1272/1711;173/244]; %右端向量M=1000; %最大迭代次数err=1.0e-4; %求解精度[x,n,xx,cc,jingdu]=yakebi_diedai(A,b,err,M); % 雅克比算法求解tic;[x1,n1,xx1,cc1,jingdu1]=gauss_seidel(A,b,err,M); % gauss_seidel算法求解toc;tic;[x2,n2,xx2,jingdu2]=zuisuxiajiangfa(A,b,err,M); % 最速下降法求解toc;tic;[x3,flag,jingdu3,n3]=bicg(A,b,err); % matlab内置双共轭梯度算法求解toc;tic;[x4,xx4,n4,jingdu4]=con_grad(A,b,err,M); % 教材共轭梯度算法求解toc;%% 计算相应结果,用于作图%%num=[1:16]';jie=[num,x1,x2,x4]; % 三者的解对比% 三者的收敛情况对比num1=[1:n1]';fit1=[num1,jingdu1'];num2=[1:n2]';fit2=[num2,jingdu2'];num4=[1:n4]';fit4=[num4,jingdu4'];子函数1(Gause_Sedel算法):function [x,n,xx,cc,jingdu] = gauss_seidel(A,b,err,M)% 利用迭代方法求解矩阵方程这里是高斯赛尔得迭代方法% A 为系数矩阵b 为右端向量err为精度大小返回求解所得向量x及迭代次数% M 为最大迭代次数cc 迭代矩阵普半径jingdu 求解过程的精度n 所需迭代次数xx 存储求解过程中每次迭代产生的解for ii=1:length(b)if A(ii,ii)==0x='error';break;endendD=diag(diag(A));L=-tril(A,-1);U=-triu(A,1);B=(D-L)\U;cc=vrho(B); %迭代矩阵普半径FG=(D-L)\b;x0=zeros(length(b),1);x=B*x0+FG;k=0;xx(:,1)=x;while norm(A*x-b)>errx0=x;x=B*x0+FG;k=k+1;xx(:,k+1)=x;if k>=Mdisp('迭代次数太多可能不收敛!');break;endjingdu(k)=norm(A*x-b);endend子函数2(最速下降算法):function [x,n,xx,jingdu]=zuisuxiajiangfa(A,b,eps,M)% 利用迭代方法求解矩阵方程这里是最速下降迭代方法% A 为系数矩阵b 为右端向量err为精度大小返回求解所得向量x及迭代次数% % M 为最大迭代次数jingdu 求解过程的精度n 所需迭代次数xx 存储求解过程中每次迭代产生的解x0=zeros(length(b),1);r0=b-A*x0;t0=r0'*r0/(r0'*A*r0);x=x0+t0*r0;r=b-A*x;xx(:,1)=x;k=0;while norm(r)>epsr=r;x=x;t=r'*r/(r'*A*r);x=x+t*r;r=b-A*x;k=k+1;xx(:,k+1)=x;if k>=Mdisp('迭代次数太多可能不收敛!');break;endn=k;jingdu(k)=norm(r);endend子函31(共轭梯度法):function [x,xx,n,jingdu]=con_grad(A,b,eps,M)% 利用迭代方法求解矩阵方程这里是共轭梯度迭代方法% A 为系数矩阵b 为右端向量err为精度大小返回求解所得向量x及迭代次数% M 为最大迭代次数jingdu 求解过程的精度n 所需迭代次数xx 存储求解过程中每次迭代产生的解x0=zeros(length(b),1);r0=b-A*x0;p0=r0;% t0=r0'*r0/(r0'*A*r0);% x=x0+t0*r0;% xx(:,1)=x;k=0;x=x0;r=r0;p=p0;while norm(r)>epsx=x;r=r;p=p;afa=r'*r/(p'*A*p);x1=x+afa*p;r1=r-afa*A*p;beta=r1'*r1/(r'*r);p1=r1+beta*p;x=x1;r=r1;p=p1;k=k+1;xx(:,k)=x;if k>=Mdisp('迭代次数太多可能不收敛!');break;endn=k;jingdu(k)=norm(r);endend。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、(1)检验线性方程组的Jacobi迭代式的收敛性:
function jacobi(A)
D=zeros(3);
for i=1:3
D(i,i)=A(i,i);
end
B=D^(-1)*(D-A);
k=max(abs(eig(B)))
if k<1
'该线性方程组的Jacobi迭代式是收敛的'
A=[2 -1 1;2 2 2;-1 -1 2];
>> Gauss(A)
k =0.5000
ans =
该线性方程组的Gauss-Seidel迭代式是收敛的
根据以上数据可知以 为系数矩阵线性方程组的Gauss-Seidel是收敛的,而Jacobi方法是发散的.
2、(1)参数 取什么值时,矩阵是正定的.
ans =
(结果)
(1)以 为系数矩阵线性方程组的两种迭代式收敛性结果:
A=[1 2 -2;1 1 1;2 2 1];
>> jacobi(A)
k =
5.8106e-006
ans =
该线性方程组的Jacobi迭代式收敛
A=[1 2 -2;1 1 1;2 2 1];
>> Gauss(A)
k = 2
ans =
该线性方程组的Gauss-Seidel迭代式是发散的
L(3,2)=A(3,2);
U(1,2:3)=A(1,2:3);
U(2,3)=A(2,3);
B=-(D+L)^(-1)*U;
k=max(abs(eig(B)))
if k<1
'该线性方程组的Gauss-Seidel迭代式是收敛的'
else k>=1
'该线性方程组的Gauss-Seidel迭代式是发散的'
指导教师评分(包括对实验的预习、操作和结果的综合评分):
指导教师总评:
签名:日期:
实验目的
1、根据迭代收敛性的充分必要条件来判断Jacobi迭代式与Gauss-Seide迭代式的收敛性,迭代收敛性仅与方程组系数矩阵有关,与右端无关;而且不依赖于初值的选取。
2、根据矩阵的判断定理求得矩阵元素a的取值,同时根据矩阵线性方程组的Jacobi迭代式收敛的充分条件(严格对角占优)来求a得取值。
a1 =-1/2
a2 =1
(2) 取什么值时,求以A为系数矩阵线性方程组的Jacobi迭代式收敛的.
syms a
A=[1 a a;a 1 a;a a 1];
%系数矩阵严格对角占优时,以A为系数矩阵线性方程组的Jacobi迭代式收敛,则1>2|a|.
a=solve('1-2*abs(a)','a')
结论
小结(对本次实验的思考和建议)
在使用迭代法进行计算时要注意,迭代法的适用范围,因为不是所有的系数矩阵线性方程组都是收敛的。而且不同的迭代法的收敛性也是不同的,在选取迭代法进行求解时适用范围也要注意。
备注或说明(成功或失败的原因、实验后的心得体会)
要把普我们常用解方程的方法写成计算机能识别的语言开始些不适应,不过多练习练习后感觉就有些感觉了,其实多练习,学习后才能写出好的程序。
2*a+1
1-a
1-a
>> a1=solve('2*a+1=0','a');
>> a2=solve('1-a','a');
>> a1,a2
a1 =-1/2
a2 =1
所以参数a的取值范围为(-1/2,1)
(2)、 取什么值时,求以A为系数矩阵线性方程组的Jacobi迭代式收敛的.
a =
1/2
-1/2
所以a的取值范围为(-1/2,1/2)时,求以A为系数矩阵线性方程组的Jacobi迭代式收敛的.
end
2、(1)参数 取什么值时,矩阵是正定的.(矩阵的特征值全为正)
>> syms a
>> A=[1 a a;a 1 a;a a 1];
>> eig(A)
ans
>> a1=solve('2*a+1=0','a');
>> a2=solve('1-a','a');
>> a1,a2
else k>=1
'该线性方程组的Jacobi迭代式是发散的'
end
(2)检验线性方程组的Gauss-Seide迭代式的收敛性:
function Gauss(A)
D=zeros(3);
L=zeros(3);
U=zeros(3);
for i=1:3
D(i,i)=A(i,i);
end
L(2:3,1)=A(2:3,1);
实验名称
1.矩阵
,
证明:求解以 为系数矩阵线性方程组的Jacobi迭代式收敛的,而Gauss-Seidel方法是发散的;求解以 为系数矩阵线性方程组的Gauss-Seidel是收敛的,而Jacobi方法是发散的.
2.矩阵
(a)参数 取什么值时,矩阵是正定的.
(b) 取什么值时,求以 为系数矩阵线性方程组的Jacobi迭代式收敛的.
根据以上数据可知以 为系数矩阵线性方程组的Jacobi迭代式收敛的,而Gauss-Seidel方法是发散的。
(2)以 为系数矩阵线性方程组的两种迭代式收敛性结果:
A=[2 -1 1;2 2 2;-1 -1 2];
>> jacobi(A)
k =
1.1180
ans =
1
ans =
该线性方程组的Jacobi迭代式不收敛