初一-第11讲-变量之间的关系(提高)-学案
变量之间的关系,附练习题含答案
变量之间的关系学案知识梳理:1.在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量;变量分为自变量和因变量.2.表示变量之间的关系通常有三种方法,它们是列表法、图像法、表达式法.1.看图的方法:一看轴;二看点;三看线练习题1. 在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体.下面是测得的弹簧长度y 与所挂物体质量x 的一组对应值. 所挂物体质量x /kg 0 1 2 3 4 5 弹簧长度y /cm 182022242628(1)表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体质量为3 kg 时,弹簧多长?不挂重物时,弹 簧多长?(3)若所挂物体质量为7 kg (在允许范围内),你能说出此时 的弹簧长度吗?2. 如图,若输入x 的值为-5,则输出的结果是_______;若输入x 的值为5,则输出的结果是_______.3. 如图是某地一天的气温随时间变化的图象,根据图象回答:(1)在这一天中,什么时间气温最高?什么时间气温最低? 最高气温和最低气温各是多少? (2)20 h 的气温是多少? (3)什么时间气温为6 ℃? (4)哪段时间内气温保持不变?4. 一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶,过了一段时间后,汽车减速到达下一个车站,乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,下面哪一个图可以近似地刻画出汽车在这段时间内的速度变化情况?( )A .B .C .D .时间O速度时间速度O时间速度O时间速度O是 否 y =x +1输入xx 大于0吗? y =x 1输出yt /hT /°C-4-22468100242220161814121086425.某蓄水池的横断面示意图如图所示,分深水区和浅水区.如果这个注满水的蓄水池以固定的流量把水全部放出,下列图象中能大致表示水的深度和放水时间之间的关系的是()A.B.C.D.6.如图所示,向放在水槽底部的烧杯注水,注满烧杯后,继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的关系大致是图中的()A.B.C.D.7.星期天晚饭后,小红从家里出发去散步,图中反映了她散步过程中离家的距离s(米)与散步所用的时间t(分)之间的关系,依据图象,下面描述符合小红散步情景的是()A.从家里出发到了一个公共阅报栏,看了一会儿报,就回家了B.从家里出发到了一个公共阅报栏,看了一会儿报,继续向前走了一段,然后回家了C.从家里出发一直散步(没有停留),然后回家了D.从家里出发散一会儿步,就找同学去了,18分钟后才开始返回8.小李讲了一个龟兔赛跑的故事,并用图象描绘了比赛过程中路程随时间的变化情况,请先回答下列问题,再讲述这个故事.(1)兔子和乌龟是否在同一地点同时出发?(2)兔子和乌龟在比赛途中相遇过几次?(3)哪一个先到达终点?9.男、女运动员在100米跑道的两端同时起跑,往返练习跑步,测得男运动员每跑一百米用12秒,女运动员每跑一百米用15秒,图中实线和虚线分别为这两名运动员距女运动员起跑点的距离s(米)与时间t(秒)之间的关系图象,请根据图象回答问题:(1)图中实线是_____运动员跑步的图象,虚线是_____运动员跑步的图象(填“男”或“女”);(2)在百米跑道上两运动员第一次在同一端点相遇时,两人均跑了________秒,其中男运动员跑了________米,女运动htt员跑了________米;(3)两运动员从开始起跑到第一次在同一端点相遇止,共相 遇了__________次.10. 甲、乙两人在一次赛跑中,路程s (米)与时间t (秒)的关系如图所示,则下列结论错误的是( ) A .这是一次100米赛跑B .甲比乙先到达终点C .乙跑完全程需12.5秒D .甲的速度为8米/秒第10题图第11题图11. 明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s (千米)与时间t (分)之间的关系如图所示.放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,走这段路所用的时间为( ) A .12分B .13分C .14分D .15分12. 一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关闭进水管.在打开进水管到关闭进水管这段时间内,容器内的水量y (升)与时间x (分钟)之间的关系如图所示,则关闭进水管后,经过______分钟,容器中的水恰好放完.13. 如图,小明从家骑自行车去上学,当他以往常的速度骑了一段路时,忽然想起要买一本练习册,于是又折回到刚经过的一家书店,买到书后继续赶去学校,他离家的距离s (米)与时间t (分)之间的关系如图所示,根据图中提供的信息回答下列问题: (1)小明家到学校的距离是多少米?书店到学校的距离是多少米? (2)小明在书店停留了多少分钟?本次上学途中,小明一共行驶了多少米? (3)在整个上学的途中,哪个时间段小明骑车速度最快?最快速度是多少?(4)如果小明不买书,以往常的速度去学校,需要多少分钟?本次上学比往常多用多少分钟?x /分钟14.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离.......为y(km),图中的折线表示y与x之间的关系.根据图象进行以下探究:(1)甲、乙两地之间的距离为________km;(2)请解释图中点B的实际意义;(3)求慢车和快车的速度.15.如图是某空蓄水池的横断面示意图,分为深水区和浅水区.若以固定的流量往这个空蓄水池中注水,则下列图象中,能大致表示水的深度h与时间t之间的关系的是()A.B.C.D.16.小明某天上午9时骑车离家,15时回家,如图描绘了他离家的距离与时间的具体变化情况,请结合图象回答以下问题:(1)小明经过多长时间到达离家最远的地方?此时他离家多远?(2)11时到12时,他行驶了多少千米?(3)他由离家最远的地方返回的平均速度是多少?【思路分析】读图,从图象中提取信息.①看轴:明确横轴、纵轴表示的意义.横轴表示____________,纵轴表示___________________.②看点:看起点、终点、状态转折点,与实际情景对应.起点表示上午9时从家出发,终点表示15时回家,与实际情景相符.状态转折点:10时离家__________,10.5时离家___________,11时离家________,12时离家________,13时离家_________.③看线,观察线段的变化趋势.线的变化较为复杂,9时—10时,距离增加了_________,此段的速度为________;10时—10.5时,速度为________;10.5时—11时,距离未发生变化;11时—12时,距离增加了________,此段的速度为________;12时—13时,距离未发生变化;13时—15时,距离减少了________,此段的速度为________.【过程书写】解:时浅水区深水区17.在利用太阳能热水器加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器18.如图,当输入数值x为-2时,输出的结果是()A.-2B.3C.-3D.2t y t y t O yt【参考答案】1.(1)表中反应了弹簧长度与所挂物体质量之间的关系;所挂物体质量是自变量;弹簧长度是因变量(2)当所挂物体质量为3kg时,弹簧长24cm;不挂重物时,弹簧长18cm(3)32cm2.-6;63.(1)16h气温最高;4h气温最低;最高气温是10℃;最低气温是-4℃;(2)20h的气温是8℃;(3)10h和22h的气温是6℃;(4)12h到14h的气温持续不变4. B5. A6. B7. B8.(1)否;(2)两次;(3)乌龟9.(1)男;女;(2)60;500;400;(3)510. D11. C12.813.(1)1500米;900米;(2)4分钟;2700米;(3)12-14分钟小明骑车速度最快;450米/分钟;(4)如果不买书需要7.5分钟;本次比往常多用了6.5分钟14.(1)900;(2)点B的实际意义是甲、乙两车在出发4h时相遇;(3)慢车的速度是75km/h;快车的速度是150km/h15. C16.(1)3小时,30千米(2)13千米(3)15千米/小时思路分析:①时间,离家的距离②10千米,17千米,17千米,30千米,30千米③10千米,10千米/小时14千米/小时13千米,13千米/小时30千米,15千米/小时17.B18.B19.(1)时间,气温(2)16,2,10,-2(3)5(4)9和2220.B21.D22.C23.D24.(1)甲教师的平均速度是0.25千米/分钟,乙教师的平均速度是1千米/分钟(2)乙出发后追上甲所用的时间是6分钟25.(1)a=20,b=1 100,c=50(2)60分钟。
七年级下变量之间的关系复习教案
变量之间的关系-----复习导学案1.在某一变化过程中不断变化的数量叫,应该一个变量y随着另一个变量x的变化而变化,那么把x 叫,y叫2.在表达变量之间的关系时,、 _、是表达变量之间关系的重要方式.三、重点、难点、考点分析重点:通过经历探索和表示变量之间关系的过程,获得对表格、图象、关系式等多种表示方式的体验,能读懂表格、图象、关系式所表示的信息,并能运用表格和关系式刻画一些具体情境中变量之间的关系,并用语言表达各变量之间的关系.难点:然后根据具体问题,选取用表格或关系式来表示某些变量之间的关系,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测.考点:变量之间的关系是学习函数的基础,变量关系与其他学科联系密切,应用广泛,因而成为中考热点之一,主要考查的知识点有:①表格中数据对应关系的应用;②根据表格预测(利润、产值、用点量);③利用关系式计算;④从图象获取变量、自变量的对应值;⑤识别图象是否正确;⑥利用图象说明因变量的变化趋势.四、易混、易错问题辨析2.忽视书写要求致错例2.王刚同学用30元钱买笔记本,写出购买总数a (个)与单价n (元)的关系式3.忽视横、纵轴的意义致错例3.如图1所示的图象中表示足球守门员用脚踢出去的球是( ).4.注意两种图象的区别“s----t ”型图象:这种类型的图象是s随t 的变化而变化,如图2,①表示物体匀速运动;②表示物体停止运动;③表示物体反向运动直至回到原地,显然,线段时间 (A ) 时间(B ) 时间(D ) 时间 (C ) 图1夹角越小,则速度越慢.“v----t”型图象:这种类型的图象是v随t的变化而变化,如图3,①表示物体从静止开始加速运动;②表示物体匀速运动;③表示物体减速运动到停止.注意:在应用这两种类型图象时,一定要区分横轴和纵轴所表示的具体意义,不要混用.1.用表格表示现实生活中的数量关系,简明易懂,便于寻找变化规律,估计预测未知量,因此在解题时,要仔细观察表格中有关数据是解决本题的关键.2.归纳变量关系式,解决问题例5.某移动通信公司开设了两种通信业务,“全球通”:使用时首先缴50元月租费,然后每通话1分钟,自付话费0.4元;“动感地带”:不缴月租费,每通话1分钟,付话费0.6元(本题的通话均指市内通话),若一个月通话x分钟,两种方式的费用分别为y元和2y元1(1)写出y、2y与x之间的关系式;1(2)一个月内通话多少分钟,两种移动通讯费用相同?(3)某人估计一个月内通话300分钟,应选择哪种移动通信合算些?3.根据题意,读懂图象,解决问题例6.汽车在行驶的过程中,速度往往是变化的,如图4表示一辆汽车的速度随时间变化而变化的情况.(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?(2)汽车在哪些时间段内保持匀速行驶?时速分别是多少?(3)出发后8分到10分之间可能发生了什么情况?(4)用自己的语言大致描述这辆汽车的行驶情况.例7.(常德市)小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车.车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶.下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是 ( ).A解:根据题意,结合图象信息,很容易选(C). 例8(2005年常州市)某水电站的蓄水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.已知某天0点到6点,进行机组试运行,试机时至少打开一个水口,且该水池的蓄水量与时间的图4关系如图丙所示:丙乙甲间)给出以下3个判断:①0点到3点只进水不出水;②3点到4点,不进水只出水;③4点到6点不进水不出水. 则上述判断中一定正确的是()A、①B、②C、②③D、①②③解:根据题意,结合图象信息,很容易选(D).例9.(大连市)小明、爸爸、爷爷同时从家里出发到达同一目的地后立即返回,小明去时骑自行车,返回时步行;爷爷去时是步行,返回时骑自行车;爸爸往返都是步行。
变量间的相关关系教案
变量间的相关关系优秀教案一、教学目标:1. 让学生理解相关关系的概念,能够识别和描述两种变量之间的相关关系。
2. 学生能够运用相关系数来衡量两个变量之间的相关程度。
3. 学生能够运用图表和数学模型来分析变量之间的相关关系。
4. 培养学生的数据分析能力和问题解决能力。
二、教学内容:1. 相关关系的概念和类型。
2. 相关系数的计算和解读。
3. 散点图在分析相关关系中的应用。
4. 线性回归方程的构建和应用。
5. 实际案例分析,运用相关关系解决实际问题。
三、教学重点与难点:重点:相关关系的概念和类型,相关系数的计算和解读,散点图在分析相关关系中的应用。
难点:线性回归方程的构建和应用,实际案例分析。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过实际案例来理解和应用相关关系。
2. 使用多媒体教学资源,如图表和数学软件,辅助学生直观地理解相关关系。
3. 组织小组讨论和合作活动,培养学生的团队合作能力和问题解决能力。
4. 提供充足的练习机会,让学生通过实践来巩固所学知识。
五、教学过程:1. 引入:通过一个简单的实际案例,引导学生思考两种变量之间的关系。
2. 讲解相关关系的概念和类型,解释相关系数的意义。
3. 演示如何通过散点图来分析两种变量之间的相关关系。
4. 讲解线性回归方程的构建过程,并演示如何应用线性回归方程来预测未知数据。
5. 提供实际案例分析,让学生运用相关关系来解决实际问题。
7. 布置作业,让学生通过练习来巩固所学知识。
六、教学评估与反馈:1. 通过课堂练习和作业,评估学生对相关关系概念的理解程度。
2. 通过小组讨论和案例分析,评估学生在实际问题中运用相关关系的能力。
3. 收集学生的疑问和困难,及时给予反馈和解答。
4. 鼓励学生提出自己的观点和思考,促进学生的主动学习。
七、拓展与深化:1. 介绍相关关系在社会科学、自然科学和工程科学中的应用。
2. 探讨非线性相关关系和多变量相关关系的研究方法。
北师大版七年级数学下册第三章《变量之间的关系》全章教学案
北师大版七年级数学下册第三章《变量之间的关系》全章教学案教材简析本章的主要内容有:(1)两个变量之间关系的表示方法及变量、自变量、因变量的意义;(2)根据表格、图象、关系式获取信息并解决一些实际问题.本章从常量的世界进入变量的世界,开始接触新的思维方式.经历探究具体情境中的两个变量之间关系的过程,感受变量的思想,培养学生的符号意识;从表格、图象中分析出某些变量之间的关系,感受几何直观的作用,并用自己的语言大致描述表格、关系式、图象所表示的变量间关系,发展学生有条理的思考和表达能力;从运动变化的角度认识数学对象的过程,培养学生发现问题、提出问题、分析问题和解决问题的能力;同时在本单元的学习中注意数形结合思想的运用,善于由图象获取信息,由图索数、由数导形,将抽象的数与直观的形有机结合起来.本章内容是中考的必考内容,主要考查变量间关系的三种表示方式(表格法、关系式法和图象法)以及从图象中获取信息,多以选择题、填空题形式出现,有时也会出现在解答题中,难度适中.教学指导【本章重点】自变量、因变量的理解,图象的认识.【本章难点】根据具体问题,选取用表格、关系式或图象来表示某些变量间的关系,并结合对某些变量之间关系的分析,尝试对某些变化趋势进行预测.【本章思想方法】1.体会和掌握由特殊到一般的思想方法,如通过一些具体、特殊的实例,找出一般的规律,再用这个规律指导实践,得出所需要的具体的数据.2.体会数形结合的思想方法,如利用图象确定变量之间关系以及预测变化趋势等,其关键是明确横轴、纵轴所表示的实际意义.3.体会分类讨论的思想方法,如根据题目给出的不同条件进行判断,然后分类讨论,找出合适的等量关系,列出方程并求解.课时计划1用表格表示的变量间关系1课时2用关系式表示的变量间关系1课时3用图象表示的变量间关系2课时1、用表格表示的变量间关系教学目标一、基本目标1.理解变量、自变量和因变量的意义,明确可以列表格表示两个变量之间的关系.2.能从表格中读取信息,并解决相关问题.二、重难点目标【教学重点】能从表格的数据中分清什么是变量、自变量、因变量,以及因变量随自变量的变化情况.【教学难点】对表格所表达的两个变量关系的理解.环节1自学提纲,生成问题【5min阅读】阅读教材P62~P63的内容,完成下面练习.【3min反馈】1.完成教材P62引入问题:解:(1)1.59s.(2)随着h逐渐变大,t逐渐变小.(3)不相同.(4)根据(3)中的发现进行估计,可以是1.35s到1.29s中的任意一值.(5)小车下滑时间t及下滑速度v等量发生变化,小车质量始终不发生变化.归纳总结:(1)在教材P62的表1中,支撑物高度h和小车下滑时间t都在变化,它们都是变量.其中t随h的变化而变化,h是自变量,t是因变量;(2)在某一变化过程中,可以取不同数值的量,叫做变量;取值始终保持不变的量,叫做常量.2.完成教材P62“议一议”:解:(1)随着x的增大,y逐渐增大.(2)答案不唯一,如:从1949年起,时间每向后推移10年,我国人口分别增加1.3亿、1.35亿、1.68亿、1.32亿、1.52亿、0.76亿.3.世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x(单位:千瓦时)时,收取电费为y(单位:元).在这个问题中,下列说法正确的是(D)A.x是自变量,0.6元/千瓦时是因变量B.y是自变量,x是因变量C.0.6元/千瓦时是自变量,y是因变量D.x是自变量,y是因变量环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】写出下列各题关系式中的常量与变量.(1)分针旋转一周内,旋转的角度n(度)与旋转所需要的时间t(分)之间的关系式为n=6t;(2)一辆汽车以40千米/时的速度向前匀速直线行驶时,汽车行驶的路程s(千米)与行驶时间t(时)之间的关系式为s=40t.【互动探索】(引发学生思考)什么是常量?什么是变量?各有什么特点?【解答】(1)常量:6;变量:n、t.(2)常量:40;变量:s、t.【互动总结】(学生总结,老师点评)解此类题时,先确定在某过程中哪些量是变化的,而哪些量又是不变的,再根据“数值发生变化的量为变量,数值始终不变的量为常量”解决问题.【例2】某电动车厂2018年各月生产电动车的数量情况如下表:时间x/月123456月产量y/万辆88.59101112时间x/月789101112月产量y/万辆109.59101010.5(1)为什么称电动车的月产量y为因变量?它是谁的因变量?(2)哪个月电动车的产量最高?哪个月电动车的产量最低?(3)哪两个月之间产量相差最大?根据这两个月的产量,电动车厂的厂长应该怎么做?【互动探索】(引发学生思考)(1)从表中可以看出电动车的月产量y随时间x的变化而变化,所以自变量是时间x,因变量是电动车的月产量y;(2)(3)根据表中信息答题即可.【解答】(1)电动车的月产量y为随着时间x的变化而变化,一个时间x就有唯一一个y与之对应,因而月产量y是时间x的因变量.(2)6月电动车的产量最高,1月电动车的产量最低.(3)6月和1月产量相差最大.厂长应在1月份安排工人加紧生产,实现产量的增值.【互动总结】(学生总结,老师点评)观察因变量随自变量变化而变化的趋势,实质是观察自变量增大时,因变量是随之增大还是减小.活动2巩固练习(学生独学)1.要画一个面积为20cm2的长方形,其长为x cm,宽为y cm.在这一变化过程中,常量与变量分别为(A)A.常量为20,变量为x、y B.常量为20、y,变量为xC.常量为20、x,变量为y D.常量为x、y,变量为202.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体的质量x(kg)间有下面的关系:x(kg)012345y(cm)1010.51111.51212.5下列说法不正确的是(C)A.x与y都是变量,且x是自变量,y是因变量B.所挂物体质量为4kg时,弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg,弹簧长度y增加0.5cm3.A、B两地相距50千米,明明以每小时5千米的速度由A地到B地,若他距B地的距离为y千米,到达时用时x小时.请你写出在这个变化过程中的自变量和因变量.解:在这个变化过程中,自变量是时间x,因变量是他距B地的距离y.环节3课堂小结,当堂达标(学生总结,老师点评)变量自变量:主动变化的量因变量:被动变化的量表格可以表示因变量随自变量变化而变化的情况,还能帮助我们对变化趋势进行初步的预测.练习设计请完成本课时对应练习!2用关系式表示的变量间关系教学目标一、基本目标1.能根据具体情境用关系式表示某些变量之间的关系.2.能根据关系式求值,初步体会自变量和因变量的数值对应关系.二、重难点目标【教学重点】找出题中的自变量和因变量.【教学难点】根据关系式找自变量和因变量之间的对应关系.教学过程环节1自学提纲,生成问题【5min阅读】阅读教材P66~P67的内容,完成下面练习.【3min反馈】1.(教材P66引入问题)如图,三角形ABC底边BC上的高是6cm.当三角形的顶点C沿底边所在直线向点B运动时,三角形的面积发生了变化.(1)在这个变化过程中,自变量是底边BC长,因变量是△ABC的面积;(2)如果三角形的底边长为x(cm),那么三角形的面积y(cm2)可以表示为y=3x;(3)当底边长从12cm变化到3cm时,三角形的面积从36cm2变化到9cm2.2.(教材P67“议一议”)“低碳生活”是指人们生活中尽量减少所耗能量,从而降低碳(特别是二氧化碳)的排放量的一种生活方式.如下表:排碳计算公式家居用电的二氧化碳排放量(kg)=耗电量(kW·h)×0.785开私家车的二氧化碳排放量(kg)=耗油量(L)×2.7家用天然气二氧化碳排放量(kg)=天然气使用量(m3)×0.19家用自来水二氧化碳排放量(kg)=自来水使用量(t)×0.91(1)用字母表示家居用电的二氧化碳排放量的公式为y=0.785x,其中的字母表示y表示家居用电的二氧化碳排放量,x表示耗电量;(2)在上述关系式中,耗电量每增加1kW·h,二氧化碳排放量增加0.875kg.当耗电量从1kW·h 增加到100kW·h时,二氧化碳排放量从0.875kg增加到87.5kg;(3)小明家本月用电大约110kW·h、天然气20m3、自来水5t、耗油75L,请你计算一下小明家这几项的二氧化碳排放量.解:110×0.785+75×2.7+20×0.19+5×0.91=297.2(kg).即小明家这几项的二氧化碳排放量是297.2kg.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】一个小球由静止开始沿一个斜坡向下滚动,通过仪器观察得到小球滚动的距离s(m)与时间t(s)的数据如下表:时间t(s)1234…距离s(m)281832…写出用t表示s的关系式为________.【互动探索】(引发学生思考)观察表中给出的t与s的对应值→分析数据→归纳得出关系式.【分析】t=1时,s=2×12;t=2时,s=2×22;t=3时,s=2×32;t=4时,s=2×42,…所以s与t的关系式为s=2t2,其中t≥0.【答案】s=2t2(t≥0)【互动总结】(学生总结,老师点评)(1)关系式一般是用含有自变量的代数式表示因变量的等式;(2)关系式通常把因变量写在等号的左边,含有自变量的代数式写在等号的右边;(3)利用关系式可以根据任何一个符合条件的自变量的值求出因变量的值,但已知一个变量的值求另一个变量的值时,一定要分清已知的是自变量还是因变量,不要代错了.【例2】一辆加满汽油的汽车在匀速行驶中,油箱中的剩余油量Q(L)与行驶的时间t(h)的关系如下表所示:行驶时间t(h)01234…油箱中剩余油量Q(L)5446.53931.524…根据表格中的信息,解答下列问题:(1)请直接写出Q与t的关系式,并求出这辆汽车在连续行驶6h后,油箱中的剩余油量;(2)这辆车在中途不加油的情况下,最多能连续行驶的时间是多少?【互动探索】(引发学生思考)(1)分析表中数据可知,每行驶1h耗油量为7.5L,由此可写出油箱中剩余油量Q(L)与行驶时间t(h)的关系式;(2)由(1)知,汽车每小时耗油7.5L,油箱原有汽油54 L,用后者除以前者即可求出油箱中原有汽油可以供汽车行驶多少小时.【解答】(1)Q=54-7.5t.把t=6代入,得Q=54-7.5×6=9.即这辆汽车在连续行驶6h后,油箱中剩余油量为9L.(2)54÷7.5=7.2(h).即这辆车在中途不加油的情况下,最多能连续行驶7.2h.【互动总结】(学生总结,老师点评)观察表中的数据,发现其中的变化规律,然后根据其增减趋势写出自变量与因变量之间的关系式.活动2巩固练习(学生独学)1.变量x与y之间的关系式是y=x2-3,当自变量x=2时,因变量y的值是(C)A.-2B.-1C.1D.22.图中的圆点是有规律地从里到外逐层排列的,设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是(B)A.y=4n-4B.y=4nC.y=4n+4D.y=n23.如图是一个简单的数值运算程序,当输入x的值为1时,则输出的数值为2.输入x―→×(-1)―→+3―→输出4.已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的关系式;(2)6小时后池中还有多少水?(3)几小时后,池中还有200立方米的水?解:(1)Q=800-50t(0≤t≤16).(2)当t=6时,Q=800-50×6=500.即6小时后池中还剩500立方米水.(3)当Q=200时,800-50t=200,解得t=12.即12小时后,池中还有200立方米的水.环节3课堂小结,当堂达标(学生总结,老师点评)求变量之间关系式的“三途径”:(1)根据表格中所列的数据,归纳、总结两个变量的关系式;(2)利用公式写出两个变量之间的关系式;(3)结合实际问题写出两个变量之间的关系式.练习设计请完成本课时对应练习!3用图象表示的变量间关系第1课时曲线型图象教学目标一、基本目标1.结合具体情境,理解图象上的点所表示的意义;能从图象中获取变量之间关系的信息,并能用语言进行描述.2.经历从图象中分析变量之间关系的过程,进一步体会变量之间的关系.二、重难点目标【教学重点】理解图象上的点所表示的意义.【教学难点】能从图象中获取变量之间关系的信息,并能用语言进行描述.教学过程环节1自学提纲,生成问题【5min阅读】阅读教材P69~P71的内容,完成下面练习.【3min反馈】1.完成教材P69引入问题:解:(1)上午9时的温度是27℃,12时的温度是31℃.(2)这一天的最高温度是37℃,是在15时达到的;最低温度是23℃,是在3时达到的.(3)这一天的温差是37-23=14(℃).从最低温度到最高温度经过了15-3=12(小时).(4)3时到15时温度在上升,0时到到3时、15时到24时温度在下降.(5)A点表示21时的温度为31℃,B点表示0时的温度为26℃.(6)次日凌晨1时温度约是24℃.理由略.规律总结:(1)图象是我们表示变量之间关系的又一种方法,它的特点是非常直观;(2)在用图象表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量.2.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长.如图,在下列选项中指出白昼时长低于11小时的节气(D)A.惊蛰B.小满C.立秋D.大寒环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】水滴进玻璃容器如图所示(设单位时间内进水量相同),那么水的高度是如何随时间变化的,请选择分别与A、B、C、D匹配的图象()A.(3)(2)(4)(1)B.(2)(3)(1)(4)C.(2)(3)(4)(1)D.(3)(2)(1)(4)【互动探索】(引发学生思考)A容器的直径小,水上升的速度最快,故A应是图(3);B容器直径大,上升速度慢,故B应是图(2);C容器下面大,上升速度慢,上面较小,上升速度变快,故C应是图(4);D先最快,再速度放慢,然后速度又变快,最后速度不变,故D应是图(1).故选A.【答案】A【互动总结】(学生总结,老师点评)对于题目中有不规则容器,图象多为不规则变化,要确定这种变化关系,可以从容器横截面的变化情况进行判断.【例2】如图所示是某市夏天的温度随时间变化的图象,通过观察可知,下列说法中错误的是()A.这天15时温度最高B.这天3时温度最低C.这天最高温度与最低温度的差是13℃D.这天0~3时,15~24时温度在下降【互动探索】(引发学生思考)横轴表示时间,纵轴表示温度.温度最高应找到图象的最高点所对应的x值,即15时,A正确;温度最低应找到图象的最低点所正确应的x值,即3时,B正确;这天最高温度与最低温度的差应让前面的两个y值相减,即38-22=16(℃),C错误;从图象看出,这天0~3时,15~24时温度在下降,D正确.故选C.【答案】C【互动总结】(学生总结,老师点评)认真观察图象,明确时间是自变量,温度是因变量,然后由图象上的点确定自变量及因变量的对应值.活动2巩固练习(学生独学)1.某市一周平均气温(℃)如图所示,下列说法不正确的是(C)A.星期二的平均气温最高B.星期四到星期日天气逐渐转暖C.这一周最高气温与最低气温相差4℃D.星期四的平均气温最低2.如图所示是某市2018年6月份某一天的气温随时间变化的情况.观察此图回答下列问题:(1)这天的最高气温是38_℃;(2)这天在3时至15时范围内温度在上升;(3)请你预测一下,次日凌晨1点的气温大约是25℃.环节3课堂小结,当堂达标(学生总结,老师点评)1.图象是我们表示变量之间关系的又一种方法,它的特点是非常直观.2.曲线型图象能够反映出数据的变化趋势,通过结合横、纵坐标轴表示的意义,我们能够很直观的感受到数据的意义.练习设计请完成本课时对应练习!第2课时折线型图形教学目标一、基本目标1.学会从折线型图形中提取信息,作出判断.2.经历从图象中分析变量之间关系的过程,进一步体会变量之间的关系;能从图象中获取变量之间关系的信息,并能用语言进行描述.二、重难点目标【教学重点】通过速度随时间变化的实际情境,分析出变量之间关系.【教学难点】根据现实中变量的变化关系,判断变化的可能图象.教学过程环节1自学提纲,生成问题【5min阅读】阅读教材P73~P74的内容,完成下面练习.【3min反馈】1.变量之间的关系的表示方法有:表格法、关系式法、图象法.2.(教材P73引入问题)每一辆汽车上都有一个时速表用来指示汽车当时的速度.你知道现在汽车的速度是多少吗?解:现在汽车的速度是50km/h.3.完成教材P74引入问题:解:(1)汽车从出发到最后停止共经过了24分钟,它的最高时速是90km/h.(2)汽车在2至6分和18至22分的时段里保持匀速行驶,时速分别为30km/h和90km/h.(3)答案不唯一,如:发生故障、停止不动.(4)略环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】小明放学后从学校乘轻轨回家,他从学校出发,先匀速步行至轻轨车站,等了一会儿,小明搭轻轨回到家.下面能反映在此过程中小明与家的距离y与时间x的关系的大致图象是()【互动探索】(引发学生思考)根据从学校回家,可得与家的距离是越来越近;根据步行的速度慢,可得离家的距离变化小;根据搭轻轨的速度快,可得离家的距离变化大.【分析】A.随着时间的变化,离家的距离越来越远,故A、B错误;C.随着时间的变化,步行离家的距离变化快,搭轻轨的距离变化慢,不符合题意,故C错误;D.随着时间的变化,步行离家的距离变化慢,搭轻轨的距离变化快,符合题意,故选D.【答案】D【互动总结】(学生总结,老师点评)路程问题中,在不同的时间内,速度可以发生变化,解决此类问题时,要对图象中各个线段的意义正确理解.【例2】端午节至,甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的图象如图所示.根据图象,回答下列问题:(1)这次龙舟赛的全程是多少米?哪队先到达终点?(2)求乙与甲相遇时乙的速度.【互动探索】(引发学生思考)明确横轴、纵轴分别表示什么,再分段提取相关信息解题.【解答】(1)由纵坐标看出,这次龙舟赛的全程是1000米;由横坐标看出,乙队先到达终点.(2)由图象看出,相遇是在乙加速后,加速后行的路程是1000-400=600(米),加速后用的时间是3.8-2.2=1.6(分钟),所以乙与甲相遇时乙的速度是600÷1.6=375(米/分钟).【互动总结】(学生总结,老师点评)解决双图象问题时,正确识别图象,弄清楚两图象所代表的意义,从中挖掘有用信息,明确实际意义.活动2巩固练习(学生独学)1.用均匀的速度向一个容器注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OAB为折线),这个容器的形状是(C)2.如果OA、BA分别表示甲、乙两名学生运动的路程s和时间t的关系,根据图象判断快者的速度比慢者的速度每秒快(C)A.2.5m B.2mC.1.5m D.1m3.星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示.请根据图象回答下列问题:(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速是多少?(4)玲玲全程骑车的平均速度是多少?解:(1)玲玲到达离家最远的地方是12时,此时离家30千米.(2)她10:30开始第一次休息,休息了半小时.(3)玲玲郊游过程中,各时间段的速度分别为:9时~10时,速度为10÷(10-9)=10(千米/时);10时~10时30分,速度约为(17.5-10)÷(10.5-10)=15(千米/时);10时30分~11时,速度约为0;11时~12时,速度为(30-17.5)÷(12-11)=12.5(千米/时);12时~13时,速度为0;13时~15时,在返回的途中,速度为30÷(15-13)=15(千米/时).由此可知,骑行最快有两段时间:10时~10时30分;13时~15时,两段时间的速度都是15千米/时.(4)玲玲全程骑车的平均速度为(30+30)÷(15-9)=10(千米/时).环节3课堂小结,当堂达标(学生总结,老师点评)1.在表示两变量间关系时,图象法是关系式法和表格法的几何表现形式.2.图象法能直观反映变量间的整体变化情况及变化规律,是表格法、关系式法所无法代替的.练习设计请完成本课时对应练习!。
变量之间的关系__变量之间的关系知识讲解
变量之间的关系撰稿:康红梅 责编:李爱国【学习目标】1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围);2.感受生活中存在的变量之间的依赖关系.3.能读懂以不同方式呈现的变量之间的关系.4. 能用适当的方式表示实际情境中变量之间的关系,并进行简单的预测.【要点梳理】要点一、变量、常量的概念在一个变化过程中,我们称数值发生变化的量为变量.数值始终不变的量叫做常量. 要点诠释:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t =,速度60千米/时是常量,时间t 和里程s 为变量. t 是自变量,s 是因变量.要点二、用表格表示变量间关系借助表格,我们可以表示因变量随自变量的变化而变化的情况.要点诠释:表格可以清楚地列出一些自变量和因变量的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等.要点三、用关系式表示变量间关系关系式是我们表示变量之间关系的另一种方法.利用关系式(如3y x =),我们可以根据任何一个自变量的值求出相应的因变量的值.要点诠释:关系式能揭示出变量之间的内在联系,但较抽象,不是所有的变量之间都能列出关系式.要点四、用图象表示变量间关系图象是我们表示变量之间关系的又一种方法,它的特点是非常直观.用图象表达两个变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量.要点诠释:图象法可以直观形象地反映变量的变化趋势,而且对于一些无法用关系式表达的变量,图象可以充当重要角色.【典型例题】类型一、常量、自变量与因变量1、对于圆的周长公式C=2πR,下列说法正确的是( )A .π、R 是变量,2是常量B .R 是变量,π是常量C .C 是变量,π、R 是常量D .C 、R 是变量,2、π是常量【思路点拨】常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.【答案】D ;【解析】解:C 、R 是变量,2、π是常量.【总结升华】本题主要考查了常量,变量的定义,是需要识记的内容.举一反三:【变式】从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前速度随时间的增大而逐渐增大,这个问题中自变量是()A.物体 B.速度 C.时间 D.空气【答案】C.类型二、用表格表示变量间关系2、已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:底面半径x(cm) 1.6 2.0 2.4 2.8 3.2 3.6 4.0用铝量y(cm3) 6.9 6.0 5.6 5.5 5.7 6.0 6.5(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由.(4)粗略说一说易拉罐底面半径对所需铝质量的影响.【思路点拨】(1)用铝量是随底面半径的变化而变化的,因而底面半径为自变量,用铝量为因变量;(2)根据表格可以直接得到;(3)选择用铝量最小的一个即可;(4)根据表格,说明随底面半径的增大,用铝量的变化即可.【答案与解析】解:(1)易拉罐底面半径和用铝量的关系,易拉罐底面半径为自变量,用铝量为因变量.(2)当底面半径为2.4cm时,易拉罐的用铝量为5.6cm3.(3)易拉罐底面半径为2.8cm时比较合适,因为此时用铝较少,成本低.(4)当易拉罐底面半径在1.6~2.8cm变化时,用铝量随半径的增大而减小,当易拉罐底面半径在2.8~4.0cm间变化时,用铝量随半径的增大而增大.【总结升华】根据表格理解:随底面半径的增大,用铝量的变化情况是关键.类型三、用关系式表示变量间关系3、如图所示,在△ABC中,∠C=90°,AC=6,BC=10,设P为BC上任一点,点P不与点B、C重合,且CP=x.若y表示△APB的面积.(1)求y与x之间的关系式;(2)求自变量x的取值范围.【答案与解析】解: (1)因为AC=6,∠C=90°,BC=10,所以116103022ABC S AC BC ∆==⨯⨯=. 又116322APC S AC PC x x ∆==⨯⨯=, 所以303APB ABC APC y S S S x ∆∆∆==-=-,即303y x =-.(2)因为点P 不与点B 、C 重合,BC =10,所以0<x <10.【总结升华】利用三角形面积公式找到变量之间的关系式,要把握点P 是一动点这个规律,结合图形观察到点P 移动到特殊点,便可求出自变量的取值范围.举一反三:【变式】 小明在劳动技术课中要制作一个周长为80cm 的等腰三角形.请你写出底边长y (cm )与腰长x (cm )的关系式,并求自变量x 的取值范围.【答案】解:由题意得,2x y +=80,所以802y x =-,由于三角形两边之和大于第三边,且边长大于0,所以080202802x y x x x >⎧⎪=->⎨⎪>-⎩,解得2040x << 所以802,2040y x x =-<<.类型四、用图象表示变量间关系4、星期日晚饭后,小红从家里出去散步,如图所示,描述了她散步过程中离家的距离s (m )与散步所用的时间t (min )之间的关系,该图象反映的过程是:小红从家出发,到了一个公共阅报栏,看了一会报后,继续向前走了一段,在邮亭买了一本杂志,然后回家了.依据图象回答下列问题(1)公共阅报栏离小红家有______米,小红从家走到公共阅报栏用了______分钟;(2)小红在公共阅报栏看新闻一共用了______分钟;(3)邮亭离公共阅报栏有______米,小红从公共阅报栏到邮亭用了______分钟;(4)小红从邮亭走回家用了______分钟,平均速度是______米/分钟.【答案】(1)300,4;(2)6;(3)200,3;(4)5,100.【解析】由图象可知,0到4分钟,小红从家走到离家300米的报栏,4到10分钟,在公共报栏看新闻,10到13分钟从报栏走到200米外的邮亭,13到18分钟,从离家500米的邮亭返回家里.【总结升华】这个图象是由几条线段组成的折线,其中每条线段代表一个阶段的活动.这条线段左右端点的横坐标的差,对应相应活动所用的时间.举一反三:【变式】一列货运火车从南京站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,可以近似地刻画出火车在这段时间内的速度变化情况的是( ).【答案】B;。
七年级数学下册第三章变量之间的关系3.3.1变量之间的关系教学设计新版北师大版
七年级数学下册第三章变量之间的关系3.3.1变量之间的关系教学设计新版北师大版一. 教材分析变量之间的关系是七年级数学下册第三章的内容,主要让学生了解变量之间的相关性,学会用图表和数学公式来表示变量之间的关系。
本节课通过具体的实例,让学生理解正比例函数和反比例函数的概念,并掌握它们的性质。
教材内容由浅入深,逐步引导学生探索变量之间的关系,培养学生观察、思考、解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了整数、分数、小数的基本运算,对数学概念有一定的理解能力。
但七年级的学生逻辑思维能力还在发展阶段,对抽象的数学概念和函数关系理解起来可能存在一定的困难。
因此,在教学过程中,要注重引导学生从实际问题中发现变量之间的关系,激发学生的学习兴趣,培养学生探究问题的能力。
三. 教学目标1.理解正比例函数和反比例函数的概念,掌握它们的性质。
2.能够通过实例观察和分析,发现变量之间的关系,并用函数表示。
3.培养学生的逻辑思维能力、观察力和解决问题的能力。
四. 教学重难点1.重点:正比例函数和反比例函数的概念及性质。
2.难点:如何引导学生从实际问题中发现变量之间的关系,并用函数表示。
五. 教学方法1.情境教学法:通过生活实例,引导学生发现变量之间的关系。
2.启发式教学法:引导学生主动思考、探索问题,培养学生的创新能力。
3.小组合作学习:鼓励学生相互讨论、交流,提高学生的合作能力。
六. 教学准备1.教学PPT:制作包含实例、问题、动画等的多媒体教学课件。
2.学习材料:为学生准备相关的学习资料,如教材、练习题等。
3.教学工具:准备黑板、粉笔、投影仪等教学设备。
七. 教学过程1.导入(5分钟)利用一个生活实例,如“购物预算”,引导学生思考价格和购买数量之间的关系。
通过展示实例,激发学生的学习兴趣,引入本节课的主题。
2.呈现(10分钟)展示PPT,呈现正比例函数和反比例函数的定义和性质。
用具体的实例和动画,帮助学生直观地理解正比例函数和反比例函数的概念。
变量之间的关系(带答案)
变量之间的关系(带答案)立身以立学为先,立学以读书为本变量之间的关系、表达方法复知识要点表示变量的三种方法:列表法、解析法(关系式法)、图象法要点1变量、自变量、因变量1)在一变化的过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
常量和变量往往是相对的,相对于某个变化过程。
2)在一变化的过程中,主动发生变化的量,称为自变量,而因变量是随着自变量的变化而发生变化的量。
例如XXX出去旅行,路程S、速度V、时间T三个量中,速度V一定,路程S则随着时间T的变化而变化。
则T为自变量,路程为因变量。
要点2列表法与变量之间的关系1)列表法是表示变量之间关系的方法之一,可表示因变量随自变量的变化而变化的情况。
2)从表格中获取信息,找出其中谁是自变量,谁是因变量。
找自变量和因变量时。
主动产生变化的是自变量,因变量随自变量的增大而增大或减小要点3用关系式表示变量之间的关系1)用来表示自变量与因变量之间关系的数学式子,叫做关系式,是表示变量之间关系的办法之一。
2)写变化式子,实际上按照题意,找到等量关系,列方程,但关系式的写法又不同于方程,必须将因变量单独写在等号的左边。
即实质是用含自变量的代数式表示因变量。
3)利用关系式求因变量的值,①已知自变量与因变量的关系式,欲求因变量的值。
实质就是求代数式的值;②对于每个确定的自变量的值,因变量都有一个确定的与之对应的值。
要点4用图像法透露表现变量的关系1)图像是刻画变量之间关系的又一重要体式格局,特性是十分直观。
2)通常用横轴(水平方向的数轴)上的点表示自变量,用纵轴(竖直方向的数轴)上的点表示因变量。
3)从图像中能够获取良多信息,关键是找准图像上的点对应的横轴和纵轴上的位置,才能准确获取信息。
如利用图像求两个变量的对应值,由图象得关系式,进行简单计算,从图象上变量的变化规律进行预测,判别所給图像是不是满意实际情景,所给变量之间的关系等。
4)对比看:速度—时间、路程—时间两图象若图象表示的是速度与时间之间的关系,随时间的BL—01增长即从左向右,“上升的线段”①透露表现速度在增长;“水平线段”②透露表现速度稳定。
七年级数学变量之间的关系教案北师大版
第三章变量之间的关系1.能发现实际情境中的变量及其相互关系,并确定其中的自变量与因变量.2.从表格、图象中分析出某些变量之间的关系,并能用自己的语言表达,培养有条理的思考和表达的能力.3.根据具体问题,选取用表格或关系式来表示某些变量之间的关系,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测.4.能从图象中获取变量之间关系的信息,并能用语言进行描述.1.经历探索具体情境中两个变量之间关系的过程,进一步培养符号感和抽象思维.2.经历从图象中分析变量之间关系的过程,体会变量之间的关系,结合具体情境,理解图象上的点表示的意义.1.能从运动变化的角度解释生活中的数学现象,体验成就感,获得学习的乐趣,发展对数学更高层次的认识.2.感受数学来源于生活又服务于生活,激发学习数学的乐趣.3.体验从运动变化的角度认识数学对象的过程,培养对数学的认识.本章对于学生来说是一章全新的知识,主要是从数学的角度研究变量和变量之间的关系,将有助于人们更好地认识现实世界、预测未来.同时,研究现实世界中的变化规律,也使学生从常量的世界进入了变量的世界,开始接触一种新的思维方式.我们知道,函数是研究现实世界变化规律的一个重要模型,对它的学习一直是初中阶段数学学习的一个重要内容.本套教材对函数的学习不是一蹴而就的,而是遵照循序渐进、螺旋上升的原则进行设计.在七年级上册中,教材已经在代数式求值、探索规律等地方渗透了变化的思想,而本章则是第三学段第一次集中讨论变量之间的关系.本章通过大量学生感兴趣的日常生活或其他学科中的问题(如骆驼的体温、潮汐的涨落),使他们体会变量和变量之间相互依赖的关系,感受数学的应用价值.本章还通过分析用表格、关系式和图象所表示的变量间关系的活动,使学生初步理解并尝试用数学的方法描述变量之间的关系.学生通过本章中对变量间关系的学习,将为以后顺利过渡到函数学习打下基础.为了发展学生对函数思想的理解,必须使他们对变量间关系的多种表示——表格表示、关系式表示、图象表示有相当丰富的经历.因此教材在第1节中通过探讨小车下滑时间的活动,使学生初步体会变量之间的相依关系,并用表格来表示变量之间的关系.使学生学习如何从表格中获取信息,发展他们通过数据分析进行预测和解决问题的能力.在学生已经学会计算一些图形的面积和体积的基础上,教材在第2节讨论由底边长(或半径、高)的变化引起的面积(或体积)的变化,并由此引出运用关系式表示变量之间的关系.然后运用形象的“机器输入输出图”,渗透自变量和因变量值的对应思想,为以后理解函数的概念做铺垫.“排碳计算公式”内容的设计是为了将生活中变量之间关系的表达转化为数学上的关系式表达.在第3节第1课时中,通过学生所熟悉的气温变化图,引入变量之间关系的第三种表示方法——图象.图象表示因其直观性有着其他表示方式所不能替代的作用,它是将关系式和数据转化为图形形式,是“看见”相应的变化规律的途径之一.因此,本章在第3节第2课时中特别又对图象所表示的变量之间的关系进行了讨论,让学生用语言描述图象所表示的变化过程,加强他们对图象表示的理解,发展从图象中获得信息的能力及有条理地进行语言表达的能力.概括起来说,第1节是本章的起始课,除给出变量、常量的概念,还给出变量之间关系的第一种表示方式——表格表示法.第2节给出变量之间关系的第二种表示方式——关系式表示法.第3节给出变量之间关系的第三种表示方式——图象表示法,并力图与表格表示法、关系式表示法进行联系,但不要求学生画图象.【重点】能根据表格中的数据、关系式中的变量、图象上的点来获取信息,明确自变量、因变量所表示的实际意义.【难点】三种表示变量之间关系的方法之间的联系,能从具体问题中获取变量之间的关系.1.本章主要讨论的是现实世界中大量存在的变量,讨论如何用数学的方法去理解、表示变量之间的关系,并解决一些问题和进行预测.因此在教学中,教师要创设丰富的现实情境使学生体会变量以及变量之间相互依赖的关系,而不是形式地讨论变量的有关概念.教师可以充分利用教科书中提供的问题,也可以创设新的情境,或鼓励学生自己从生活中寻找有关素材供课堂讨论.2.运用数学的语言、方法、知识去理解、刻画现实世界中的变化规律,是本章学习的主要目标之一.而实现这一目标的重要途径是使学生亲身经历探索现实世界变化规律的过程,在探索活动中理解变量之间的相依关系,并尝试用语言和符号去刻画.例如,在探索小车下滑过程中下滑时间与支撑物高度的关系时,教师应鼓励学生充分地从表格中获取信息,运用自己的语言进行描述,并与同伴进行交流.有条件的地方,教师可以让学生亲自实践这个实验或实践其他可操作性的实验,使他们获得变量之间关系的直观体验,并体会收集数据、整理数据、由数据进行推断的思考方式.3.注重使学生从表格、关系式、图象中尽可能多地获取信息,并运用语言进行表达.前面已经提到,为了发展学生对变量之间关系的理解,必须使他们对变量之间关系的多种表示——表格表示、关系式表示、图象表示有相当丰富的经历.因此,教科书安排了大量由表格、关系式、图象所表达的变量之间关系的实例.在学生讨论这些例子时,教师要留给他们充分思考的时间,鼓励他们从表格、关系式、图象中尽可能多地获取信息,并运用自己的语言进行表述.当学生运用语言进行表述时,教师不要苛求语言的统一性以及对关系的精确描述,只要学生能大致描述出变量之间的关系即可.4.在现实情境中评价学生对变量之间关系的理解.在考查学生对变量之间关系的理解时,应关注学生是否能够感受周围世界中的变量,是否能够发现变量之间互相依赖的关系;关注学生是否能从表格和图象中获取信息,并由此进行预测;关注学生能否运用语言、表格、关系式描述一些变量之间的关系等.评价时应提供具体的问题情境,从大量实际问题或学生感兴趣的问题出发.避免形式化地对两个变量之间关系的三种表达形式进行讨论.5.在本章的学习中,好多信息都是由学生花费了较多的时间从具体问题中抽象出变化规律、理解符号所代表的变化规律等活动中获得的,这些活动对于学生发展符号感具有重要的价值.因此,对上述活动过程教师应给予学生大量支持与鼓励,而不是直接将结论告诉学生.教学时教师应从以下几方面对学生加以关注:从事活动的投入程度;从表格、关系式、图象中获取信息的准确性和广泛性;对具体情境中变量之间关系的敏感性;运用语言描述变量之间关系的合理性等.1用表格表示的变量间关系1.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感.2.在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子.3.能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的资料尝试对变化趋势进行初步的预测.经历实验、操作、观察、猜想、交流等获取信息的过程,体会我们生活在一个变化的世界中,进一步理解变量之间的关系,从表格中获取两个变量之间关系的有关信息.激发学生学习数学的兴趣,认识到现实生活中蕴含着大量两个变量之间关系的有关问题,这些问题可以抽象成数学问题,用数学方法予以解决.【重点】通过具体情境理解变量、自变量和因变量的概念,能从表格中发现变量之间的变化关系,并能用自己的语言描述出来.【难点】对表格中的数据作出分析和预测,用变量之间变化的思想描述我们所生活的世界中的变化.【教师准备】多媒体课件.【学生准备】预习教材P62~63.导入一:前一段时间大萌子和萌爸的三十年照片被晒在网上,这30张照片是一个北京姑娘1岁到30岁和爸爸的合影,从小到大,她的每一步都有爸爸陪伴,每张照片都有那一年的故事,触动心灵!孩子茁壮成长,父母日渐老去.[处理方式]通过上面的例子,我们感到:我们生活在一个变化的世界中.从数学的角度研究变化的量,讨论它们之间的关系,将有助于我们更好地了解自己、认识世界和预测未来,这也是我们第三章将要学习的变量之间的关系.[设计意图]通过具体生活的实例激发学生的学习兴趣,在学生熟悉的情境中自然地引入本章的内容,学生感到亲切、贴近生活,乐意去学习探究,又通过具体的情境,让学生对本章学习研究的内容有个大致的了解,目的性较强,直接指向本节课所要学习的内容.导入二:猜猜看:他是谁?[处理方式]让学生观察交流,感受身边的日常变化.[设计意图]通过具体情境激发学生的学习兴趣,让学生观察图片作为课堂教学的引入,通过举例,希望学生体会身边的事物无时无刻不在发生变化,培养学生善于观察的能力,让学生感受事物的变化,进而引向本节课所要学习的内容.探究活动1小车下滑实验思路一【活动内容1】直观感知支撑物的高度与小车下滑时间的变化关系.下面我们来观察一个小车下滑实验:(课件出示)王波学习小组利用同一块木板,测量小车从不同高度下滑的时间.【问题】支撑物的高度不同,小车下滑的时间有怎样的变化?(如上图)[处理方式]课件演示小车从不同高度下滑的实验.讨论得出:图(1)小车下滑的时间较长,图(4)小车下滑的时间较短.从图(1)到图(4),随着支撑物的增高,小车下滑的时间逐渐变短.由于木板的长度不变,因此支撑物的高度越高,木板就越陡,小车下滑的时间就越短.【活动内容2】数据感知支撑物的高度与小车下滑时间的变化关系.(1)支撑物高度为70 cm时,小车下滑时间是多少?(2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?(3)h每增加10 cm,t的变化情况相同吗?(4)估计当h=110 cm时,t的值是多少?你是怎样估计的?(5)随着支撑物高度h的变化,还有哪些量发生变化?哪些量始终不发生变化?[处理方式]先小组讨论后,汇报交流,师引导学生根据表格中数据进行适当的运算,通过观察分析这些计算结果,得出相应的结论,让学生了解这是利用表格分析变化关系、预测变化趋势的一种常用的方法.得出答案:(1)支撑物高度为70 cm时,小车下滑时间是1.59 s.从表格中直接可以查出.(2)t随着h的增大而减少.支撑物的高度越高,下滑的时间就越短.(3)h每增加10 cm,t的变化情况不相同.通过计算,可得到h每增加10 cm,t的变化量依次减少1.23 s,0.55 s,0.32 s,0.24 s,0.18 s,0.12 s,0.09 s,0.09 s,0.06 s.因此h每增加10 cm,t的变化情况不相同,但是随着h的变化,t的变化量逐渐变小.(将t的变10 cm,根据t的变化量的变化趋势可以发现t的减少量要小于0.06 s或等于0.06 s,故可估计t 的减少量为0.05 s,因此t的值大约为1.35- 0.05=1.30(s).(5)随着支撑物高度h的变化,下滑的时间t会发生变化,小车下滑的路程没有发生变化.探究小车下滑的时间随高度变化的情况.[处理方式]请两名同学到前面来进行实验.其他每组同学记录实验数据.(拿出实验器材:小车、木板、秒表、调节高度的装置,找两名学生到前面来进行实验,说明实验的目的及步骤)根据实验数据师生共同讨论,得出问题答案.猜想:随着小车的下滑高度的增加,小车下滑的时间逐渐减小.师:那么事实是不是这样呢?我们就来验证一下,让小车从不同的高度滑下,用秒表记录下每次小车下滑的时间生:支撑物高度为70 cm时,小车下滑时间为1.59 s.师:如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?生:随着h逐渐变大,t逐渐变小.师:h每增加10 cm,t的变化情况相同吗?为什么?生:不相同.因为我是通过计算得到的,h每增加10 cm,t的变化量依次减少1.23s,0.55 s,0.32 s,0.24 s,0.18 s,0.12 s,0.09 s,0.09 s,0.06 s.(如下表:教师此时展示差值表,便于学生分析回答问题)因此h每增加10 cm,t的变化情况是不相同的,但是随着h生:当h=110 cm时,t的值可能是1.30 s,从表格中可以看出当小车的高度从90 cm上升到100 cm时,时间减少了0.06 s,而且随着高度的增加,时间减少的越来越少,所以当小车的高度从100 cm上升到110 cm时,时间最多减少0.06 s,所以我认为减少0.05 s比较合适,所以我认为h=110 cm时,t的值可能是1.30 s.师:这位同学回答得很好.我们推测估计时,要根据表中的数据进行分析整理,然后作出合理的回答.(教师可说明答案是1.29 s至1.35 s中的任意一个值)师:随着支撑物高度h的变化,还有哪些量发生变化?哪些量始终不发生变化?生:随着支撑物高度h的变化,小车下滑的时间t会发生变化,小车下滑的路程没有发生变化.[设计意图]通过小车下滑的实验,让学生参与到收集数据的实验过程中,借助于数据感受具体的变化及其中蕴含的规律;亲身感受随着支撑物高度的增加,小车下滑所用的时间越来越少.体会这一过程中变化的量,为变量、自变量、因变量、常量这些概念的引入打下基础.同时鼓励学生充分进行交流,培养他们从表格中获取信息的能力.理解:①在变化过程中,若有两个变量x和y,其中y随着x的变化而发生变化,我们就把x 叫自变量,y叫因变量.始终不变的量叫做常量.②利用在变化过程中,两个变量的因果关系,确定自变量和因变量.③借助表格,可以表示因变量随自变量的变化而变化的情况.④在利用表格表示变量之间的关系时,通常自变量在表格的第一行,而因变量则在第二行.[设计意图]为更好地感受变量之间的关系;通过小车下滑实验进一步积累感性认识,进一步体会在具体的情境中,变量之间的依存关系和变化关系,既能激起学生学习的兴趣,又为知识的直接概括积累了材料,在此基础上通过学生看书自学,明确各自意义,再通过回顾前置实验巩固概念,符合学生的认知规律,最后点题,明确表格是表示变量之间关系的一种常用方法.先独立完成下列问题,然后小组内交流.1.我国从1949):(1)上表反映了和两个变量之间的关系,是自变量,是因变量.(2)如果用x表示时间,y表示我国人口数量,那么随着x的变化,y的变化趋势是什么?(3)从1949年起,时间每向后推移10年,我国人口是怎样变化的?[处理方式]引导学生观察表格中的数据变化,发现变量的整体变化趋势;利用变量之间的因果关系,区分出自变量和因变量.通过计算人口数量随年份的增加量,根据增加量的变化,得出人口数量随时间的变化关系.解:(1)时间人口数量时间人口数量(2)随着x的增加,y也增加.(3)从1949年起,时间每向后推移10年,我国人口增加1.5亿左右.但最后10年的增加量大约只有0.76亿.(答案合理即可)2.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分钟)之间(1)(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用的时间是多少时,学生的接受能力最强?[处理方式]引导学生观察表格中的数据变化,发现变量间的变化关系和变化趋势.解:(1)提出概念所用的时间和学生的接受能力之间的关系.提出概念所用的时间是自变量,学生的接受能力是因变量.(2)59.(3)13分钟.[设计意图]利用不同的问题情境,使学生感受到变量之间的依赖关系和变化关系,理解变量、自变量、因变量的概念,能根据表格中的数据,对变量进行分析和预测,达到掌握知识的目的;新颖的问题情境,能够吸引学生积极地参与学习;简单口述,既能训练学生的思维能力和语言表达能力,又可以节省时间,起到提高学习效率的作用.[知识拓展]1.在一个变化过程中,数值发生变化的量叫做变量.2.一般地,在一个变化过程中,主动变化的量是自变量,受其他量影响而发生变化的量是因变量.3.自变量和因变量是相对的,一个量在某一变化过程中是自变量,而在另一变化过程中可能是因变量.4.常量和变量是相对的,在不同的研究过程中,二者可以相互转化.5.因变量的数值与自变量的数值必须一一对应.1.变量、常量、自变量、因变量的定义.2.借助表格,我们可以表示因变量随自变量的变化而变化的情况.1.(1)上表反映了与之间的变化关系其中是自变量,是因变量;(2)如果用x表示时间,y表示电话费,那么随着x的增加,y的变化趋势是;(3)丽丽打了5分钟电话,应该付元的电话费;(4)你能帮助丽丽预测一下,如果打10分钟电话,那么需付元电话费;(5)你能知道每打1分钟电话,需要付多少元电话费吗?电话费与打电话的时间有怎样的关系?解:(1)时间电话费时间电话费(2)不断增加(3)3.0(4)6.0(5)每分钟0.6元,电话费=0.6×时间.2.(1)(2)第5排、第6排各有多少个座位?(3)第n排有多少个座位?请说明你的理由.解:(1)排数和座位数在变化,排数是自变量,座位数是因变量.(2)第5排有76个座位,第6排有80个座位.(3)第n排有60+4(n- 1)=(4n+56)个座位,每一排比前一排多4个座位.1用表格表示的变量间关系探究活动1小车下滑实验探究活动2变量、自变量、因变量、常量等概念一、教材作业【必做题】教材第63页习题3.1知识技能第1,2题.【选做题】教材第64页习题3.1问题解决第4,5题.二、课后作业【基础巩固】1.在利用太阳能热水器来加热水的过程中,热水器里水的温度随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器的容积2.据世界人口组织公布,地球上的人口从1600年到1999年一直呈递增趋势,即随时间的变化,地球上的人口数量在逐渐增加,如果用t表示时间,y表示人口数量,那么是自变量,是因变量.3.某条河受暴雨袭击,(1)上表反映了与之间的关系其中是自变量,是因变量;(2)12时的水位是;(3)这个时段水位上升最快.【能力提升】4.某城市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费45元,则所用5.x与售价y 的关系如下:(1)上表反映了和两个变量之间的关系,是自变量,是因变量;(2)根据表格中的数据,售价y是随销售数量x的变化而的;(3)估计当x=15时,y的值是.【拓展探究】6.下表是某冰箱厂2015(1)根据表格中的数据,(2)根据表格你知道哪几个月的月产量相同?哪个月的月产量最高?(3)求2015年前半年的平均月产量是多少.【答案与解析】1.B(解析:由题意可知,水的温度随着所晒时间的变化而变化,所晒时间是自变量,水的温度是因变量.故选B.)2.时间(或t)人口数量(或y)3.(1)时间水位时间水位(2)4米(3)20至24时4.20(解析:由题意得5月份用水量超过18方,设超过的部分为x方,由题意列方程为12×2+6×2.5+3x=45,解得x=2,所以5月份用水量为20方.)5.(1)销售数量售价销售数量售价(2)变化(3)31.56.解:(1)随着月份x的增大,月产量y正在逐渐增加. (2)1月、2月两个月的月产量相同,6月份月产量最高. (3)(10000+10000+12000+13000+14000+18000)÷6≈12833(台).故2015年前半年的平均月产量约为12833台.用学生比较熟悉而又感兴趣的具体问题情境和实例展开知识的学习和探究,学生能积极、主动地参与知识的学习过程;学生充分地交流讨论,较好地训练了学生的语言表达能力和对知识的理解能力;学生主动参与实验,亲身感受变量之间的变化关系,印象深刻,理解到位;通过口答叙述,小组讨论达成共识,再进行交流展示,既节省了时间,又达到了目标.整体来看,学生积极参与,踊跃发言,对变量、自变量、因变量的理解较好,对表格表示的变量间的关系,有一个比较清楚的了解,对数据的分析和预测比较客观、合理.由于本节知识点较少,也较为简单,在设计教学过程的时候,比较松散,学生训练的题目较少,特别对表格中的数据变化有一定规律的题目训练不够,对数据变化的情况学生叙述不够准确、客观,教师的引导不够到位,学生使用数学语言的能力还要进一步加强.加强对数学语言训练的力度,结合具体的问题情境训练学生语言表达的准确性和简洁性;设计灵活多样而新颖的题目,加强对学生理解知识能力的训练,同时结合具体题目做好渗透,为下一节的学习做好铺垫;增大课堂容量,采取更加灵活的方式,加大训练的强度,增加训练的效果.随堂练习(教材第63页)1.解:如气温随时间的变化,脉搏随运动强度的变化,作物的高度随种植时间的变化等.(答案不唯一)2.解:(1)氮肥的施用量和土豆产量之间的关系;氮肥的施用量是自变量,土豆产量是因变量.(2)32.29 t,15.18 t. (3)如可以回答氮肥的施用量为336 kg/hm2时比较适宜,因为此时土豆的产量最高;还可以回答氮肥的施用量为259 kg/hm2时比较适宜,因为此时土豆的产量与施用量为336 kg/hm2时差不多,而又可以节约肥料.合理即可. (4)这里主要关注的是对变化过程的大致刻画,答案只要合理即可.习题3.1(教材第63页)知识技能1.解:2.解:(1).(3),但增长的速度明显放慢.问题解决4.解:(1)老花镜的度数越大,镜片与光斑的距离越小. (2)140度~150度(估计的度数接近即可).5.解:(1)反映了海拔高度与空气含氧量之间的关系.海拔高度是自变量,空气含氧量是因变量. (2)299.3 g/m3,182.08 g/m3. (3)大约为150.66 g/m3(合理即可) .()A.28B.29〔解析〕年份是自变量,届数是因变量,根据数据可得二者的变化规律:第1届相应的举办年份=1896+4×(1- 1)=1892+4×1=1896;第2届相应的举办年份=1896+4×(2-1)=1892+4×2=1900;第3届相应的举办年份=1896+4×(3- 1)=1892+4×3=1904;…;第n届相应的举办年份=1896+4×(n- 1)=1892+4n.根据规律代入相应的年份即可算出届数.令1892+4n=2012,解得n=30.故选C.。
初中数学《变量之间的关系》大单元教学设计
学习活动设计
【第五环节】精讲点拨 例题:某河受暴雨袭击,某天此河水的水位记录为下表:
时间/小时
0
4
8
12
16
20
24
水位/米
2
2.5
3
4
5
6
8
(
(1)上表中反映了哪两个变量之间的关系?自变量和因变量各 是什么?
(2)12小时,水位是多少? (3)哪一时段水位上升最快?
学习活动设计
过程与方法:
1.通过对简单的小车下滑实验数据的观察,使学生体会两个随时变 化的量,为变量的引出做铺垫; 2.通过分析现实生活中的各种有趣的变量实例,理解和巩固变量之 间关系的内容,并可以自己用表格表示变量之间的关系; 3.经历探索某些图形中变量之间关系的过程,进一步体验一个变量 的变化对另一个变量的影响; 4.通过来源于生活的“一天中气温的变化”来分析图像,并且通过 时间与气温的关系,进一步体会变量之间的关系。
A. 8~12时 B. 12~16时 C. 16~20时 D. 20~24时
基础达标题
二、填空题:
你准行
1.林老师骑摩托车到加油站加油,发现每个加油器上都有三个量, 其中一个表示“元/升”其数值固定不变的,另外两个量分别表示 “数量”、“金额”,数值一直在变化,在这三个量当中 __________是常量,__________是变量.
何变化的?
2 用关系式表示变量之间的关系
试一试:
1.如果正方形的边长为 a ,则正方形的周长C=( 4a )
r 2.圆的半径为r,则圆的面积S=(
2
)
3.三角形的一边为a,这边上的高为h,则三角形
的面积S=(
1 ah 2
人教版变量之间关系教案
人教版变量之间关系教案标题:人教版《变量之间关系》教案一、教学目标:1. 理解变量在数学中的概念,并能够准确运用。
2. 了解和掌握变量之间的关系,包括一元一次方程的解以及二元一次方程的解。
3. 运用所学的知识解决实际问题,培养数学建模能力。
二、教学重点:1. 理解变量的概念,能够正确运用变量解决问题。
2. 掌握一元一次方程和二元一次方程的解法。
3. 运用所学的知识解决实际问题。
三、教学难点:1. 运用变量解决复杂的实际问题。
2. 知识的灵活运用。
四、教学准备:1. 人教版《数学》教材。
2. 教学投影仪和电脑。
3. 活动设计和练习题。
五、教学过程:第一步:导入新知1. 利用投影仪展示一个简单的实际问题,让学生思考问题中是否存在变量,并进行讨论。
2. 引导学生正确理解变量的概念,解释什么是变量以及在数学中的作用。
第二步:讲解一元一次方程的解法1. 通过具体的例题,讲解一元一次方程的概念和解法,并与变量的概念进行联系。
2. 针对不同类型的一元一次方程,进行分类讲解,并引导学生掌握基本的解题方法。
第三步:讲解二元一次方程的解法1. 引导学生思考实际生活中存在的二元一次方程问题,并进行讨论。
2. 通过具体的例题,讲解二元一次方程的概念和解法,并引导学生理解二元一次方程与一元一次方程的区别。
第四步:练习与实践1. 设计一些练习题,让学生巩固所学的一元一次方程和二元一次方程的解法,并能够灵活运用到实际问题中。
2. 鼓励学生将所学知识运用到解决实际问题中,培养数学建模能力。
第五步:总结和归纳1. 对本节课所学内容进行总结,让学生从容掌握变量在数学中的作用。
2. 引导学生理解变量之间的关系,总结一元一次方程和二元一次方程的解法。
六、课后作业:1. 完成课堂练习题和作业题。
2. 提醒学生在日常生活中积极运用所学的知识解决问题。
七、教学反思:本节课通过导入实际问题引发学生学习兴趣,以解题的方式引导学生理解变量的概念,并掌握一元一次方程和二元一次方程的解法。
变量之间的关系复习课 教学设计
第三章 变量之间的关系《复习课》教学设计一、学生起点分析:七年级上学期中,教科书已经在代数式求值、探索规律等方面渗透了变化的思想,而本章是第一次集中讨论变量之间的关系,研究现实世界中的变化规律,使学生从常量的世界进入了变量的世界,开始接触一种新的思维方式。
函数是研究现实世界变化规律的一个重要模型,对它的学习一直是初中阶段数学学习的一个重要内容。
在前面相关知识的学习过程中,学生已经学习了变量之间关系,解决了一些简单的现实问题,感受到了变量之间关系研究的必要性和作用,获得了研究变量内容所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析教科书基于学生对本章知识的认识,提出了本课的具体学习任务:回顾总结表示变量之间的方法,学会用表示变量之间关系的各种形式分析变量之间的关系,能用适当的方式表示实际情境中变量之间的关系,并进行简单的预测。
从常量的世界走入变量的世界,开始接触一种新的思维方式——用运动变化的观点去认识数学对象,发展符号感和抽象思维。
发展有条理的思考和进行表达的能力。
能从运动变化的角度解释生活中的数学现象,体验成就感,获得学习的快乐,发展对数学更高层次的认识。
能读懂表格、关系式、图象所表示的信息,还能用表格、关系式、图象刻画一些具体情境中变量之间的关系.三、教学设计分析本节课按知识点分类设计了五个教学环节:知识梳理、典型例题、自主反馈、课堂小结、布置作业第一环节:知识梳理1、展示课前自己制作的思维导图2、举例说明常量、变量;3、 举例说明自变量和因变量;4、表示变量之间关系的方法有哪些,各有什么特点。
第二环节:典型例题类型一:表格、图象、关系式表示变量之间关系在一次实验中,小明把一根弹簧上端固定,在其下端悬挂物体,没得的弹簧长度y (cm)随所持物体的质量x (kg)变化关系的图象如下:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)、根据图象补全表格:(3)、由图可知,弹簧所挂物体质量的允许值范围是多少千克?(4)、说一说弹簧长度是怎样随悬挂物体质量的变化而变化的?(5)、请根据表格和图象列出弹簧长度y(cm)随所持物体的质量x (kg)变化关系式?强化类型一:某种油箱容量为60升的汽车,加满汽油后,汽车行驶时油箱的油量Q(升)随汽车行驶时间t(时)变化的关系式如下:Q=60-6t(1) 请完成下表(2)汽车行驶5小时后,油箱中油量是多少升?(3)若汽车行驶过程中,油箱的油量为12升,则汽车行驶了多少小时?(4)贮满60升汽油的汽车,最多行驶多少小时?(5)哪个图像能反映变量Q与t的关系:()说明:用表格来表示变量之间关系,其优点是:对于表中的自变量的每一个值,可以不通过计算,直接把因变量的值找到(如本题0千克与12cm这组对应值),其不足之处是:表格只能列出部分自变量与因变量对应的值(如本例10千克与17cm这组对应值,表格中没有反映出来),难以反映变量之间变化的全貌。
变量之间的相关关系导学案
2.3.1变量之间的相关关系(一、二)学习目标1、通过收集现实问题中两个有关联变量的数据认识变量间的相关关系;2、明确事物间的相互关系,现实生活中的变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,了解相关关系与函数关系的异同点;教学重、难点:通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系、相关关系与函数关系的异同点。
自主学习1、变量与变量之间的关系常见的有两类:一类是,如;一类是,即当自变量的取值一定,因变量取值带有一定的随机性,这样的两个变量之间的关系称为____________。
合作探究补充:对于两个变量,如果当一个变量的取值一定时,另一个变量的取值被惟一确定,则这两个变量之间的关系就是一个函数关系。
探究一:在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?探究二:“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?你能举出类似的描述生活中两个变量之间的这种关系的成语吗?探究三:上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如何?以及对于一个变量,可以控制其数量大小的变量称为可控变量,否则称为随机变量,那么相关关系中的两个变量有哪种类型?探究四:相关关系与函数关系的异同点?课堂小结对于两个变量之间的关系,有函数关系和相关关系两种,其中函数关系是一种确定性关系,相关关系是一种非确定性关系。
课后反思1,下列关系中,是带有随机性相关关系的是①正方形的边长面积之间的关系;②水稻产量与施肥量之间的关系;③人的身高与年龄之间的关系;④降雪量与交通事故的发生率之间的关系。
2,下列关系不属于相关关系的是(B)A人的年龄和身高B求的表面积与体积C家庭的收入与支出D人的年龄与体积。
【最新北师大版七年级下册数学】第11讲:变量之间的关系-学案
第十一讲:变量之间的关系适用学科初中数学适用年级初中一年级适用区域北师大版区域课时时长(分钟)120知识点 学习目标1、常量与变量 2、自变量与因变量 3、用表格表示变量之间的关系 4、用关系式表示两变量之间的关系 5、利用关系式求值 6、用图像表示两变量之间的关系 1、在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子. 2、能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的 资料尝试对变化趋势进行初步的预测.3、能根据具体情景,用表格、关系式、图象表示某些变量之间的关系.学习重点1、经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步 发展符号感. 2、在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子.学习难点1、找问题中的自变量和因变量. 2、根据表格、关系式、图象找自变量和因变量之间的对应关系.知识讲解:什么是变量、自变量、因变量? 在一个变化过程中数值保持不变的量叫做常量,可以取不同数值的量叫做变量,如果一个量随着另外一个 量的变化而变化,那么把这个量叫做因变量,另一个量叫做自变量. 借助表格,我们可以表示因变量随自变量的变化而变化的情况. 关系式是我们表示变量之间关系的另一种方法. 在用图象表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的 数轴(称为纵轴)上的点表示因变量.考点一:常量与变量 【例题】1.在△ABC 中,它的底边是 a,底边上的高是 h,则三角形面积 S= ah,当 a 为定长时,在此式中( )A.S,h 是变量, ,a 是常量 B.S,h,a 是变量, 是常量C.S,h 是变量, ,S 是常量 D.S 是变量, ,a,h 是常量2.设半径为 r 的圆的面积为 S,则 S=π r2,下列说法错误的是( )A.变量是 S 和 r, B.常量是π 和 2 C.用 S 表示 r 为 r=D.常量是π1【练习】1.对于圆的周长公式 C=2π R,下列说法正确的是( ) A.π 、R 是变量,2 是常量 B.R 是变量,π 是常量 C.C 是变量,π 、R 是常量 D.C、R 是变量,2、π 是常量 2.在以 x 为自变量、y 为函数的关系式 y=2π x 中,常量为( ) A.2 B.π C.2π D.π x 3.笔记本每本 a 元,买 3 本笔记本共支出 y 元,在这个问题中: ①a 是常量时,y 是变量; ②a 是变量时,y 是常量; ③a 是变量时,y 也是变量; ④a,y 可以都是常量或都是变量. 上述判断正确的有( ) A.1 个 B.2 个 C.3 个 D.4 个4.在三角形面积公式 S= ,a=2cm 中,下列说法正确的是( )A.S,a 是变量, 是常量 B.S,h 是变量, 是常量C.S,h 是变量, 是常量 D.S,h,a 是变量, 是常量5.笔记本每本 a 元,买 3 本笔记本共支出 y 元,在这个问题中: ①a 是常量时,y 是变量; ②a 是变量时,y 是常量; ③a 是变量时,y 也是变量; ④a,y 可以都是常量或都是变量; 上述判断正确的有( ) A.1 个 B.2 个 C.3 个 D.4 个 6. △ABC 的底边长是 a,这条底边上的高是 h,则△ABC 的面积 S 可以表示为__________,当 n 的值一定 时,a 为__________(填“常量”或“变量”);当 h 的值一定时,a 为______(填“常量”或“变量”)考点二:自变量与因变量 【例题】1.重百大楼的销售量随商品价格的高低而变化,在这个变化过程中,自变量是( ) A.销售量 B.顾客 C.商品 D.商品的价格 2.弹簧挂上物体后会伸长,现测得一弹簧的长度 y(厘米)与所挂物体的质量 x(千克)之间有如下关系: 物体质量 x/千克 0 1 2 3 4 5 … 弹簧长度 y/厘米 10 10.5 11 11.5 12 12.5 … 下列说法不正确的是( ) A.x 与 y 都是变量,其中 x 是自变量,y 是因变量 B.弹簧不挂重物时的长度为 0 厘米 C.在弹性范围内,所挂物体质量为 7 千克时,弹簧长度为 13.5 厘米 D.在弹性范围内,所挂物体质量每增加 1 千克弹簧长度增加 0.5 厘米 3.2012 年 1-12 月某地大米的平均价格如下表所示,其中自变量是_____,因变量是_____;当自变量等于 _____时,因变量的值_____最小.2【练习】1.明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是( )A.明明 B.电话费 C.时间 D.爷爷2.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A.太阳光强弱 B.水的温度 C.所晒时间 D.热水器的容积3.当前,雾霾严重,治理雾霾方法之一是将已生产的 PM2.5 吸纳降解,研究表明:雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是( )A.雾霾程度 B.PM2.5C.雾霾D.城市中心区立体绿化面积4.圆的周长公式 C=2π R 中,下列说法正确的是( )A.π 、R 是自变量,2 是常量 B.C 是因变量,R 是自变量,2π 为常量C.R 为自变量,2π 、C 为常量 D.C 是自变量,R 为因变量,2π 为常量5.人的身高 h 随时间 t 的变化而变化,那么下列说法正确的是( )A.h,t 都是不变量 B.t 是自变量,h 是因变量C.h,t 都是自变量 D.h 是自变量,t 是因变量6.小明给在北京的姑姑打电话,电话费随时间的变化而变化,在这个问题中,因变量是( )A.时间 B.电话费 C.电话 D.距离7.设路程 s,速度 v,时间 t,在关系式 s=vt 中,说法正确的是( )A.当 s 一定时,v 是常量,t 是变量B.当 v 一定时,t 是常量,s 是变量C.当 t 一定时,t 是常量,s,v 是变量 D.当 t 一定时,s 是常量,v 是变量考点三:用表格表示变量之间的关系 【例题】1.(2007•眉山)在某次实验中,测得两个变量 m 和 v 之间的 4 组对应数据如下表:则 m 与 v 之间的关系最接近于下列各关系式中的( )m1234v0.012.98.0315.1A.v=2m﹣2 B.v=m2﹣1 C.v=3m﹣3 D.v=m+12.下表所列为某商店薄利多销的情况。
变量之间的相关关系教学设计
变量之间的相关关系教学设计第一篇:变量之间的相关关系教学设计变量间的相关关系教学设计教学目标:(一)知识技能:(1)散点图的概念及画法(2)利用最小二乘法求回归方程(3)会用散点图及回归方程判断相关关系(二)过程与方法1.通过自主探究,体会数形结合、类比的数学思想方法。
2.通过动手操作培养学生观察、分析、比较和归纳能力,引出利用计算机等现代化教学工具的必要性。
(三)情感、态度、价值观类比函数的表示方法,使学生理解变量间的相关关系,增强对实际问题进行分析和预测的意识。
利用合作交流激发学生的学习兴趣。
教学重点:利用散点图直观认识两个变量之间的相关关系及求回归直线方程。
教学难点:建立回归思想,理解回归直线。
教学方法: 教师启发、问题探究、合作学习教学过程:(一)创设情境,导入新课西方流传的一首民谣:丢失一个钉子,坏了一只蹄铁;坏了一只蹄铁,折了一匹战马;折了一匹战马,伤了一位骑士;伤了一位骑士,输了一场战斗;输了一场战斗,亡了一个帝国.(二)初步探索,直观感知探究一: 两个变量间的相关关系问题1、有些老师常说:“如果你的数学成绩好,那么你的物理学习就不会有什么问题。
”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,你如何认识他们之间存在的关系?探究二:散点图问题2、在一次对人体脂肪含量和年龄的关系的研究中,研究人员获得了一组样本数据:年龄脂肪年龄脂肪 23 9.5 53 29.6 17.8 54 30.221.2 56 31.425.9 57 30.827.5 58 33.526.3 60 35.228.2 61 34.6 脂肪含量4035302520******年龄问题3、观察上面的散点图,你能发现这些点具有什么样的特征?如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系, 这条直线叫做回归直线。
探究三:用最小二乘法求回归方程;探究四:线性相关、正相关、负相关(1)散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关。
七年级变量之间的关系_专题复习讲课教案
七年级变量之间的关系_专题复习专题三:变量之间的关系基础知识回顾:1. 表示两个变量之间关系的方法有(2 •图象法表示两个变量之间关系的特点是(3 •用图象法表示两个变量之间关系时,通常用水平方向的数轴(横轴)、速度随时间的变化1、汽车速度与行驶时间之间的关系可以用图象来表示,下图中 可以分别用一句话来描述:2、描述一名跳水运动员从起跳到落水这一运动过程中,速度 ).上的点表示),用竖直方向的数轴(纵轴)上的点表示()•C 、D 四个图象,(1) 在某段时间里,速度先越来越快,接着越来越慢。
(2) 在某段时间里,汽车速度始终保持不变 (3) 在某段时间里,汽车速度越来越快。
在某段时间里,汽车速度越来越慢。
v 与时间t 之间关系的图象大(4) )致是()3、李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速•如用s表示李明离家的距离,t为时间•在下面给出的表示s与t的关系图6—41中,符合上述情况的是()A S | I S图6/14、一辆轿车在公路上行驶,不时遇到各种情况,速度随之改变,先加速,再匀速又遇到情况而减速,过后再加速然后匀速,下公路、上小路,到达目的地•图6—43哪幅图象可近似描述上面情况()图6・435、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉。
当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……•用S i 、S 2分别表示乌龟和兔子所行的路程,t 为时间,贝U 下列图象中与故事情节相吻合的是7、A 、B 两地相距500千米,一辆汽车以 50千米/时的速度由A 地驶向B 地.汽车距B 地的距离y (千米) 与行驶时间t (之间)的关系式为.在这个变化过程中,自变量是 _______ ,因变量是 .&下表是春汛期间某条河流在一天中涨水情况记录表格: 时间/时0 4 8 12 16 20 24 超警戒水位/米+0.2+0.25+0.35+0.5+0.7+0.9+1.0⑴时间从0时变化到24时,超警戒水位从______ 升到 ______ ⑵借助表格可知,时间从 _______ 到 ____ 水位上升最快9、某机动车辆出发前油箱中有油 42升,行驶若干小时后,在途中加油站加油若干•油箱中 余油量Q (升)与行驶时间t (时)之间的关系如图,请根据图像填空:s (米)与散步所用6、星期天晚饭后,小红从家里出发去散步,下图描述了她散步过程中离家的距离A. 从家出发,到了一个公共阅读报栏,看了一会儿报,就回家了B. 从家出发,到了一个公共阅报栏,看了一会儿报,继续向前走了一段后,然后回家了C. 从家里出发,一直散步(没有停留),然后回家了D. 从家里出发,散了一会儿步,就找同学去了, 18分钟后才开始返回•⑴机动车辆行驶了 —小时后加油。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科教师辅导讲义学员编号:年级:七年级课时数:3学员姓名:辅导科目:数学学科教师:授课主题第11讲---变量之间的关系授课类型T同步课堂P实战演练S归纳总结教学目标①理解变量、自变量、因变量、常量的含义,在具体情境中能确定自变量、因变量;②能从表格、关系式、图像中分析因变量与自变量的关系,能够推断具体情境。
授课日期及时段T(Textbook-Based)——同步课堂一、知识框架二、知识概念(一)变量相关的定义1、变量:在某一变化过程中,可以取不同数值的量。
2、自变量和因变量。
(1)在某一变化过程中,有两个变量,当其中一个变量在一定范围内取一个数值时,另一个变量也有唯一一个数值与其对应,通常把前一个变量叫做自变量,后一个变量叫做因变量。
(2)自变量和因变量的区别和联系。
联系:两者都是某一变化过程中的变量,两者因研究的侧重点或先后顺序不同可以互相转化,比如当路程一定时,时间随速度的变化而变化,这时速度为自变量,时间体系搭建为因变量。
而当速度一定时,路程随时间的变化而变化,这时时间为自变量,路程为因变量。
区别:因变量随自变量的变化为变化。
3、常量:在变化过程中数值始终不变的量。
(二)表示方法1、表格法。
用表格来表示两个变量之间的关系,一般第一栏表示自变量,第二栏表示因变量。
从表格中可以发现因变量随自变量变化而发生的变化存在一定的规律---或者增加或者减少或者呈现规律性地起伏变化,从而利用变化趋势对结果进行预测。
2、关系式法。
含有两个未知数(变量)的等式表示这两个变量的关系式,用自变量表示因变量的代数式。
3、图象法。
用图象来表示两个变量之间的关系,较为形象、直观,通常用水平方向的数轴(称为横轴)上的点,表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量,用坐标来表示每对自变量和因变量的对应值所在的位置。
(三)应用问题。
结合表格法、关系式法、图象法三种关系表示变量之间的关系的方法,解决实际问题,一般包括路程问题、周长问题等等。
典例分析考点一:表格法例1、假设汽车匀速行驶在高速公路上,那么在下列各量中,变量的个数是()①行驶速度;②行驶时间;③行驶路程;④汽车油箱中的剩余油量A.1个B.2个C.3个D.4个例2、下表是我国从1949年到1999年的人口统计数据(精确到0.01亿)时间(年)1949 1959 1969 1979 1989 1999人口(亿) 5.42 6.72 8.07 9.75 11.07 12.59从表中获取的信息:(1)人口随时间的变化而变化,时间是自变量,人口是因变量;(2)1979﹣1989年10年间人口增长最慢;(3)1949﹣1979这30年的增长逐渐加大,1979﹣1999这20年的增长先减小后增大;(4)人口增长速度最大的十年达到约20%,其中正确的有()A.4个B.3个C.2个D.1个例3、某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20 ﹣10 0 10 20 30声速/m/s 318 324 330 336 342 348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740m D.当温度每升高10℃,声速增加6m/s例4、弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系:x 0 1 2 3 4 5y 10 10.5 11 11.5 12 12.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.所挂物体质量为4kg时,弹簧长度为12cm C.弹簧不挂重物时的长度为0cm D.物体质量每增加1kg,弹簧长度y增加0.5cm例5、心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系:(其中0≤x≤30)提出概念所用时间(x) 2 5 7 10 12 13 14 17 20对概念的接受能力(y)47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强;(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?考点二:关系式法例1、用规格为50cm×50cm的地板砖密铺客厅恰好需要60块.若改用规格为xcm×xcm的地板砖y块,恰好也能将客厅铺完(不考虑铺设地砖之间的缝隙),那么y与x之间的关系为()A.y=B.y=C.y=150000x D.y=150000x2例2、将长为40cm,宽为15cm的长方形白纸,按如图所示的方法粘合起来,粘合部分宽为5cm.(1)根据如图,将表格补充完整.白纸张数 1 2 3 4 5纸条长度40 110 145(2)设x张白纸粘合后的总长度为ycm,则y与x之间的关系式是什么?(3)你认为多少张白纸粘合起来总长度可能为2016cm吗?为什么?例3、如图所示,圆柱的高是4厘米,当圆柱底面半径r(cm)变化时,圆柱的体积V(cm3)也随之变化.(1)在这个变化过程中,自变量是,因变量是.(2)圆柱的体积V与底面半径r的关系式是.(3)当圆柱的底面半径由2变化到8时,圆柱的体积由cm3变化到cm3例4、某公交车每月的支出费用为4000元,票价为2元/人,设每月有x人乘坐该公交车,每月收入与支出的差额为y元.(1)请写出y与x的关系式,并完成表格.x人500 1000 1500 2000 2500 3000y元(2)当每月乘客量达到多少人以上时,该公交车才不会亏损?例5、如图所示,在一个半径为18cm的圆面上,从中心挖去一个小圆面,当挖去一个小圆的半径x(cm)由小变大时,剩下的一个圆环面积y(cm2)也随之发生变化.(1)在这个变化过程中,自变量与因变量各是什么?(2)写出用挖去的圆的半径x(cm)表示剩下的圆环面积y(cm2)的关系式.(3)当挖去圆的半径为9cm时,剩下的圆环面积S为多少cm2?(结果保留π)考点三:图象法例1、如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度例2、星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C.D.例3、园林队在某公园进行绿化,中间休息了一段时间,已知绿化面积S(m)2与工作时间t(h)的关系的图象如图所示,则休息后园林队每小时绿化面积为()A.100m2B.50m2C.80m2D.40m2例4、小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.下图是他上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分?(3)小明在书店停留了多少分钟?(4)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?例5、某农民带了若干千克土豆进城出售,为了方便,他带了一些零用钱备用,他先按市场价卖出一些后,又降价卖,卖出土豆千克数x与他手中持有的钱数y(含备用零钱)的关系如图所示.结合图象回答问题:(1)该农民自带的零钱是多少?(2)降价前土豆的单价是多少?(3)降价后他按每千克0.4元将剩余下的土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?P(Practice-Oriented)——实战演练➢课堂狙击1、在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器2、圆的面积公式为s=πr2,其中变量是()A.s B.πC.r D.s和r实战演练3、在△ABC中,它的底边是a,底边上的高是h,则三角形面积S=ah,当a为定长时,在此式中()A.S,h是变量,,a是常量B.S,h,a是变量,是常量C.S,h是变量,,S是常量D.S是变量,,a,h是常量4、某款贴图的成本价为1.5元,销售商对其销量与定价的关系进行了调查,结果如下:定价/元 1.8 2 2.3 2.5 2.8 3销量/个20 25 30 26 22 18你认为其因变量为()A.成本价B.定价C.销量 D.以上说法都不正确5、地球某地,温度T(℃)与高度d(m)的关系可以近似地用T=10﹣来表示,如图,根据这个关系式,当d的值是900时,相应的T值是()A.4℃B.5℃C.6℃D.16℃6、根据如图所示的程序计算y值,若输入的x值为,则输出的结果y应为()A.B.C.D.7、小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是()A.B.C.D.8、某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示:根据图象解答下列问题:(1)如图反映哪两个变量之间的关系?(2)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?(3)时间10分钟时,洗衣机处于哪个过程?9、甲、乙两人从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离s(单位:km)和行驶时间t(单位:h)之间的关系的图象如图所示,且甲停止一段时间后再次行走的速度是原来的一半,回答下列问题:(1)求乙的速度?(2)甲中途停止了多长时间?(3)两人相遇时,离B地的路程是多少千米?➢课后反击1、父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格.距离地面高度(千米)0 1 2 3 4 5温度(℃)20 14 8 2 ﹣4 ﹣10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你能猜出距离地面6千米的高空温度是多少吗?2、某剧院的观众席的座位为扇形,且按下列分式设置:排数(x) 1 2 3 4 …座位数(y)50 53 56 59 …(1)按照上表所示的规律,当x每增加1时,y如何变化?(2)写出座位数y与排数x之间的关系式;(3)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.3、为了解某种车的耗油量,我们对这种车在高速公路上做了耗油试验,把试验的数据记录下来,制成如表:汽车行驶时间t(h)0 1 2 3 …油箱剩余油量Q(L)100 94 88 82 …(1)上表反映两个变量中,哪个是自变量?哪个是因变量?(2)根据上表的数据,你能用t表示Q吗?试一试;(3)汽车行驶5h后,油箱中的剩余油量是多少?(4)贮满100L汽油的汽车,理论上最多能行驶几小时?4、端午节假期间,小亮一家到某度假村度假.小亮和他妈妈坐公交车先出发,他爸爸自驾车沿着相同的道路后出发.他爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村.如图是他们离家的距离s(km)与小明离家的时问t(h)的关系图.请根据图回答下列问题:(1)图中的自变量是.因变量是;(2)小亮家到该度假村的距离是km;(3)小亮出发小时后爸爸驾车出发:当爸爸第一次到达度假村后,小亮离度假村的距离是km;(4)图中点A表示;(5)小亮从家到度假村期间,他离家的距离s(km)与离家的时间t(h)的关系式为;(6)小亮从家到度假村的路途中,当他与他爸爸相遇时.离家的距离约是km.5、父子两人赛跑,如图,l甲、l乙分别表示父亲、儿子所跑的路程s/米与所用的时间t/秒的关系.(1)儿子的起跑点距父亲的起跑点多远?(2)儿子的速度是多少?(3)父亲追上儿子时,距父亲起跑点多远?6、如图,一张长和宽分别为50cm和30cm的长方形纸板,在它的四个角剪去四个边长为x(cm)的小正方形纸板,然后折成无盖长方体容器,设无盖长方体容器的容积为y(cm3).(1)求y(cm3)与x(cm)之间的表达式;(2)若剪去的四个小正方形的边长为2cm,则求该容器的容积.【解析】(1)y=(50﹣2x)(30﹣2x)•x=4x3﹣160x2+1500x(2)x=2时,y=4×23﹣160×22+1500×2=2392cm3直击中考1、【2016 安徽】一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.2、【2015 济宁】匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.S(Summary-Embedded)——归纳总结重点回顾1、变量:在某一变化过程中,可以取不同数值的量。