云南德宏州梁河高中数学第一章集合与函数概念12函数及其表示122函数的表示第一课时学案新人教A版1
高中数学 第一章 集合与函数概念 1.2 函数及其表示 1.2.1 函数的概念讲义教案 新人教A版
学习资料1。
2 函数及其表示1.2。
1函数的概念学习目标核心素养1.进一步体会函数是描述变量之间的依赖关系的重要数学模型.能用集合与对应的语言刻画出函数,体会对应关系在刻画数学概念中的作用.(重点、难点) 2。
了解构成函数的要素,会求一些简单函数的定义域和值域.(重点)3.能够正确使用区间表示数集.(易混点)1.通过学习函数的概念,提升数学抽象素养.2.借助函数定义域的求解,提升数学运算素养.3.借助f(x)与f(a)的关系,培养逻辑推理素养。
1.函数的概念定义设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数三要素对应关系y=f(x),x∈A定义域自变量x的取值范围值域与x的值相对应的y的值的集合{f(x)|x∈A}(2)f(x)与f(a)有何区别与联系?提示:(1)这种看法不对.符号y=f(x)是“y是x的函数”的数学表示,应理解为x是自变量,它是关系所施加的对象;f是对应关系,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y是自变量的函数,当x允许取某一具体值时,相应的y值为与该自变量值对应的函数值.y =f(x)仅仅是函数符号,不表示“y等于f与x的乘积”.在研究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等来表示函数.(2)f(x)与f(a)的区别与联系:f(a)表示当x=a时,函数f(x)的值,是一个常量,而f(x)是自变量x的函数,一般情况下,它是一个变量,f(a)是f(x)的一个特殊值,如一次函数f (x)=3x+4,当x=8时,f(8)=3×8+4=28是一个常数.2.区间及有关概念(1)一般区间的表示设a,b∈R,且a<b,规定如下:定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a〈x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a〈x≤b}半开半闭区间(a,b](2)特殊区间的表示定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a}符号(-∞,+∞) [a,+∞)(a,+∞)(-∞,a](-∞,a)思考2:(1)区间是数集的另一种表示方法,那么任何数集都能用区间表示吗?(2)“∞”是数吗?如何正确使用“∞”?提示:(1)不是任何数集都能用区间表示,如集合{0}就不能用区间表示.(2)“∞"读作“无穷大”,是一个符号,不是数.以“-∞”或“+∞”作为区间一端时,这一端必须是小括号.1.函数y=错误!的定义域是()A.[-1,+∞)B.[-1,0)C.(-1,+∞) D.(-1,0)C[由x+1>0得x〉-1.所以函数的定义域为(-1,+∞).]2.若f(x)=11-x2,则f(3)=________。
高中数学第一章集合与函数概念121函数的概念课件新人教A版必修1
A.11
B.12
C.13
D.10
【答案】C
【解析】f[f(1)]=f(3)=9+3+1=13.
4.下列各组函数中,表示同一个函数的是( )
A.y=x-1 和 y=xx2+-11
B.y=x0 和 y=1
C.f(x)=x2 和 g(x)=(x+1)2
D.f(x)=
xx2和 g(x)=
x x2
【答案】D
【答案】B 【解析】根据函数的存在性和唯一性(定义)可知,B不 正确.
2.函数 f(x)= xx--21的定义域为(
)
A.[1,2)∪(2,+∞) B.(1,+∞)
C.[1,2)
D.[1,+∞)
【答案】A 【解析】由题意可知,要使函数有意义,需满足xx--21≠≥00,,
即 x≥1 且 x≠2.
3.已知f(x)=x2+x+1,则f[f(1)]的值是( )
休息时间到啦
同学们,下课休息十分钟。现在是休息时间,你们休 睛,
看看远处,要保护好眼睛哦~站起来动一动,久坐对 哦~
2.(1)y=x+x+120; (2)y= 2x+3- 21-x+1x. 【解析】(1)由于 00 无意义,故 x+1≠0,即 x≠-1. 又 x+2>0,x>-2,所以 x>-2 且 x≠-1. 所以函数 y=x+x+120的定义域为{x|x>-2 且 x≠-1}.
求函数的定义域
【例 2】求下列函数的定义域: (1)y=2x+3;(2)f(x)=x+1 1; (3)y= x-1+ 1-x;(4)y=xx2+-11. 【解题探究】求函数的定义域,即是求使函数有意义的那 些自变量 x 的取值集合.
【解析】(1)函数 y=2x+3 的定义域为{x|x∈R}. (2)要使函数有意义,即分式有意义,则 x+1≠0,x≠-1. 故函数的定义域为{x|x≠-1}. (3)要使函数有意义,则1x--1x≥≥00,, 即xx≥≤11,, 所以 x=1, 从而函数的定义域为{x|x=1}. (4)因为当 x2-1≠0,即 x≠±1 时,xx2+-11有意义,所以原函 数的定义域是{x|x≠±1}.
高中数学 第一章 集合与函数的概念 1.2 函数及其表示 1.2.1 第一课时 函数的概念 新人教A
所以这个函数的定义域为{x|1≤x≤3}.………………9 分
(4)y= x 12 - 1 x .
x 1
规范解答:(4)要 使函数有意义,
自变量
x
的取值必须 满足
x 1 1 x
0, 0,
………………10
分
解得 x≤1 且 x≠-1,……………………………… 11 分
即函数定义域为{x|x≤1 且 x≠-1}.………………12 分
③M={三角形},N={x|x>0},对应关系f:“对M中的三角形求面积与N中元素对
应.”
是集合M到集合N上的函数的有( A )
(A)1个
(B)2个
(C)3个
(D)0个
2.(函数判断)下列表示的是y关于x的函数的是( A) (A)y=x2 (B)y2=x
(C)|y|=x (D)|y|=|x|
3.(定义域)函数y=
方法技巧 判断某一对应关系是否为函数的步骤: (1)A,B为非空数集. (2)A中任一元素在B中有元素与之对应. (3)B中与A中元素对应的元素唯一. (4)满足上述三条,则对应关系是函数关系.
即时训练1-1:已知集合M={-1,1,2,4},N={1,2,4},给出下列四个对应关系:
①y=x2,②y=x+1,③y=x-1,④y=|x|,其中能构成从M到N的函数是( )
1.2 函数及其表示 1.2.1 函数的概念 第一课时 函数的概念
课标要求:1.通过实例理解函数的概念,能用集合语言描述具体的函数.2.体 会对应关系在刻画函数概念中的作用.3.会求一些简单函数的定义域.
自主学习——新知建构·自我整合
【情境导学】 导入一 初中是用运动变化的观点对函数进行定义的,虽然这种定义较为直 观,但并未完全揭示出函数概念的本质.对于y=1(x∈R)是不是函数,如果用运 动变化的观点去看它,就不好解释,显得牵强.但如果用集合与对应的观点来 解释,就十分自然.因此,用集合与对应的思想来理解函数,对函数概念的再认 识,就很有必要.
(完整版)高中数学各章节内容
第一章集合与函数概念1.1集合1.2函数及其表示1.3函数的基本性质第二章基本初等函数(Ⅰ)2.1指数函数2.2对数函数2.3幂函数第三章函数的应用3.1函数与方程3.2函数模型及其应用【必修二】第一章空间几何体1.1空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.2直线、平面平行的判定及其性质2.3直线、平面垂直的判定及其性质第三章直线与方程3.1直线的倾斜角与斜率3.2直线的方程3.3直线的交点坐标与距离公式第四章圆与方程4.1圆的方程4.2直线、圆的位置关系4.3空间直角坐标系第一章算法初步1.1算法与程序框图1.2基本算法语句1.3算法案例第二章统计2.1随机抽样2.2用样本估计总体2.3变量间的相关关系第三章概率3.1随机事件的概率3.2古典概型3.3几何概型【必修四】第一章三角函数1.1任意角和弧度制1.2任意角的三角函数1.3三角函数的诱导公式1.4三角函数的图象和性质1.5函数的图象1.6三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2简单的三角恒等变换【必修五】第一章解三角形1.1正弦定理和余弦定理1.2应用举例第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.4基本不等式选修2-1第一章常用逻辑用语1-1命题及其关系1-2充分条件与必要条件1-3简单的逻辑联结词1-4全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2-1曲线与方程2-2椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2-3双曲线探究与发现2-4抛物线探究与发现阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章空间向量与立体几何3-1空间向量及其运算阅读与思考向量概念的推广与应用3-2立体几何中的向量方法小结复习参考题选修2-2第一章导数及其应用1-1变化率与导数1-2导数的计算1-3导数在研究函数中的应用1-4生活中的优化问题举例1-5定积分的概念1-6微积分基本定理1-7定积分的简单应用小结复习参考题第二章推理与证明2-1合情推理与演绎推理2-2直接证明与间接证明2-3数学归纳法第三章数系的扩充与复数的引入3-1数系的扩充和复数的概念3-2复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1-1分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1-2排列与组合探究与发现组合数的两个性质1-3二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2-1离散型随机变量及其分布列2-2二项分布及其应用阅读与思考这样的买彩票方式可行吗探究与发现服从二项分布的随机变量取何值时概率最大2-3离散型随机变量的均值与方差2-4正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3-1回归分析的基本思想及其初步应用3-2独立性检验的基本思想及其初步应用实习作业小结复习参考题。
高中数学课本全套pdf
高中数学课本全套pdf篇一:人教版必修1高一数学全套打包,150页)人教版高中数学必修1精品教案(整套)课题:集合的含义与表示(1)课型:新授课教学目标:(1) 了解集合、元素的概念,体会集合中元素的三个特征;(2) 理解元素与集合的“属于”和“不属于”关系;(3) 掌握常用数集及其记法;教学重点:掌握集合的基本概念;教学难点:元素与集合的关系;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生,在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而1不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容二、新课教学(一)集合的有关概念1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3. 思考1:判断以下元素的全体是否组成集合,并说明理由:(1) 大于3小于11的偶数;(2) 我国的小河流;(3) 非负奇数;(4) 方程x2?1?0的解;(5) 某校2007级新生;(6) 血压很高的人;(7) 著名的数学家;(8) 平面直角坐标系内所有第三象限的点(9) 全班成绩好的学生。
2对学生的解答予以讨论、点评,进而讲解下面的问题。
4. 关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
高中数学 第一章 集合与函数概念 12 函数及其表示 121 函数的概念学案(含解析)新人教版必修1
§1.2函数及其表示1.2.1 函数的概念学习目标 1.理解函数的概念(重点、难点).2.了解构成函数的三要素(重点).3.正确使用函数、区间符号(易错点).知识点1 函数的概念(1)函数的概念概念设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数三要素对应关系y=f(x),x∈A定义域x的取值X围值域与x对应的y的值的集合{f(x)|x∈A}如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等.【预习评价】(正确的打“√”,错误的打“×”)(1)函数的定义域和值域一定是无限集合.( )(2)根据函数的定义,定义域中的任何一个x可以对应着值域中不同的y.( )(3)在函数的定义中,集合B是函数的值域.( )提示(1)×函数的定义域和值域也可能是有限集,如f(x)=1;(2)×根据函数的定义,对于定义域中的任何一个x,在值域中都有唯一确定的y与之对应;(3)×在函数的定义中,函数的值域是集合B的子集.知识点2 区间及有关概念(1)一般区间的表示.设a,b∈R,且a<b,规定如下:定义 名称 符号 数轴表示{x |a ≤x ≤b } 闭区间 [a ,b ] {x |a <x <b }开区间 (a ,b ){x |a ≤x <b }半开半闭区间 [a ,b ){x |a <x ≤b }半开半闭区间(a ,b ](2)特殊区间的表示. 定义 R {x |x ≥a } {x |x >a } {x |x ≤a } {x |x <a } 符号(-∞,+∞)[a ,+∞)(a ,+∞)(-∞,a ](-∞,a )【预习评价】已知全集U =R ,A ={x |1<x ≤3},则∁U A 用区间表示为________. 解析 ∁U A ={x |x ≤1或x >3},用区间可表示为(-∞,1]∪(3,+∞). 答案 (-∞,1]∪(3,+∞)题型一 函数关系的判定【例1】 (1)下列图形中,不能确定y 是x 的函数的是( )(2)下列各题的对应关系是否给出了实数集R 上的一个函数?为什么? ①f :把x 对应到3x +1;②g :把x 对应到|x |+1; ③h :把x 对应到1x;④r :把x 对应到x .(1)解析 任作一条垂直于x 轴的直线x =a ,移动直线,根据函数的定义可知,此直线与函数图象至多有一个交点.结合选项可知D 不满足要求,因此不表示函数关系. 答案 D(2)解 ①是实数集R 上的一个函数.它的对应关系f 是:把x 乘3再加1,对于任意x ∈R ,3x +1都有唯一确定的值与之对应,如当x =-1时,有3x +1=-2与之对应. 同理,②也是实数集R 上的一个函数. ③不是实数集R x =0时,1x的值不存在.④不是实数集R x <0时,x 的值不存在.(1)任取一条垂直于x 轴的直线l ; (2)在定义域内平行移动直线l ;(3)若l 与图形有且只有一个交点,则是函数;若在定义域内没有交点或有两个或两个以上的交点,则不是函数.【训练1】 设M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的有( )解析 ①错,x =2时,在N 中无元素与之对应,不满足任意性.②对,同时满足任意性与唯一性.③错,x =2时,对应元素y =3∉N ,不满足任意性.④错,x =1时,在N 中有两个元素与之对应,不满足唯一性. 答案 B题型二 相等函数【例2】(1)下列各组函数:①f (x )=x 2-xx,g (x )=x -1;②f (x )=x x ,g (x )=x x;③f (x )=(x +3)2,g (x )=x +3; ④f (x )=x +1,g (x )=x +x 0;⑤汽车匀速运动时,路程与时间的函数关系f (t )=80t (0≤t ≤5)与一次函数g (x )=80x (0≤x ≤5).其中表示相等函数的是________(填上所有正确的序号).(2)试判断函数y =x -1·x +1与函数y =(x +1)(x -1)是否相等,并说明理由. (1)解析 ①f (x )与g (x )的定义域不同,不是相等函数;②f (x )与g (x )的解析式不同,不是相等函数;③f (x )=|x +3|,与g (x )的解析式不同,不是相等函数;④f (x )与g (x )的定义域不同,不是相等函数;⑤f (t )与g (x )的定义域、值域、对应关系皆相同,故是相等函数. 答案 ⑤y =x -1·x +1,由⎩⎪⎨⎪⎧x -1≥0,x +1≥0,解得x ≥1,故定义域为{x |x ≥1},对于函数y =(x +1)(x -1),由(x +1)(x -1)≥0解得x ≥1或x ≤-1,故定义域为{x |x ≥1或x ≤-1},显然两个函数定义域不同,故不是相等函数. 规律方法 判断两个函数为相等函数应注意的三点(1)定义域、对应关系两者中只要有一个不相同就不是相等函数,即使定义域与值域都相同,也不一定是相等函数.(2)函数是两个数集之间的对应关系,所以用什么字母表示自变量、因变量是没有限制的. (3)在化简解析式时,必须是等价变形.【训练2】 判断以下各组函数是否表示相等函数: (1)f (x )=(x )2;g (x )=x 2.(2)f (x )=x 2-2x -1;g (t )=t 2-2t -1.解 (1)由于函数f (x )=(x )2的定义域为{x |x ≥0},而g (x )=x 2的定义域为{x |x ∈R },它们的定义域不同,所以它们不表示相等函数.(2)两个函数的定义域和对应关系都相同,所以它们表示相等函数. 题型三 求函数值【例3】 已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值; (2)求f (g (3))的值.解 (1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6. (2)∵g (3)=32+2=11, ∴f (g (3))=f (11)=11+11=112. 规律方法 求函数值的方法及关注点(1)方法:①已知f (x )的解析式时,只需用a 替换解析式中的x 即得f (a )的值;②求f (g (a ))的值应遵循由里往外的原则.(2)关注点:用来替换解析式中x 的数a 必须是函数定义域内的值,否则函数无意义. 【训练3】 已知函数f (x )=x +1x +2. (1)求f (2);(2)求f (f (1)). 解 (1)∵f (x )=x +1x +2,∴f (2)=2+12+2=34. (2)f (1)=1+11+2=23,f (f (1))=f ⎝ ⎛⎭⎪⎫23=23+123+2=58.【例4-1】 求下列函数的定义域: (1)y =(x +1)2x +1-1-x ;(2)y =5-x |x |-3.解 (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0.解得x ≤1,且x ≠-1,即函数定义域为{x |x ≤1,且x ≠-1}.(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0,|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}. 规律方法 求函数定义域的实质及结果要求(1)求函数的定义域实质是解不等式(组),即将满足的条件转化为解不等式(组)的问题,要求把满足条件的不等式列全.(2)结果要求:定义域的表达形式可以是集合形式,也可以是区间形式. 方向2 求抽象函数的定义域【例4-2】 (1)设函数f (x )=x ,则f (x +1)等于什么?f (x +1)的定义域是什么? (2)若函数y =f (x )的定义域是[0,+∞),那么函数y =f (x +1)的定义域是什么? 解 (1)f (x +1)=x +1.令x +1≥0,解得x ≥-1,所以f (x +1)=x +1的定义域为[-1,+∞).(2)函数y =f (x )的定义域是[0,+∞),所以令x +1≥0,解得x ≥-1,所以函数y =f (x +1)的定义域是[-1,+∞).【例4-3】 若函数y =f (x +1)的定义域是[1,2],根据函数定义域的定义,这里的“[1,2]”是指谁的取值X 围?使对应关系f 有意义的自变量t =x +1的X 围是什么?函数y =f (x )的定义域是什么?解 这里的“[1,2]”是自变量xx ∈[1,2],所以x +1∈[2,3],所以使对应关系f 有意义的自变量t =x +1的X 围是[2,3],所以函数y =f (x )的定义域是[2,3].【例4-4】 (1)已知函数y =f (x )的定义域为[-2,3],求函数y =f (2x -3)的定义域; (2)已知函数y =f (2x -3)的定义域是[-2,3],求函数y =f (x +2)的定义域.解 (1)因为函数y =f (x )的定义域为[-2,3],即x ∈[-2,3],函数y =f (2x -3)中2x -3的X 围与函数y =f (x )中x 的X 围相同,所以-2≤2x -3≤3,解得12≤x ≤3,所以函数y =f (2x -3)的定义域为⎣⎢⎡⎦⎥⎤12,3. (2)因为x ∈[-2,3],所以2x -3∈[-7,3],即函数y =f (x )的定义域为[-7,3]. 令-7≤x +2≤3,解得-9≤x ≤1,所以函数y =f (x +2)的定义域为[-9,1]. 规律方法 两类抽象函数的定义域的求法(1)已知f (x )的定义域,求f (g (x ))的定义域:若f (x )的定义域为[a ,b ],则f (g (x ))中a ≤g (x )≤b ,从中解得x 的取值集合即为f (g (x ))的定义域.(2)已知f (g (x ))的定义域,求f (x )的定义域:若f (g (x ))的定义域为[a ,b ],即a ≤x ≤b ,求得g (x )的取值X 围,g (x )的值域即为f (x )的定义域.课堂达标1.下列图象中表示函数图象的是( )解析 根据函数的定义,对定义域中任意的一个x 都存在唯一的y 与之对应,而A ,B ,D 都存在一对多,只有C 满足函数的定义.故选C. 答案 C2.下列各组函数中表示相等函数的是( ) A.f (x )=x 与g (x )=(x )2B.f (x )=|x |与g (x )=x (x >0)C.f (x )=2x -1与g (x )=2x +1(x ∈N *)D.f (x )=x 2-1x -1与g (x )=x +1(x ≠1)解析 选项A ,B ,C 中两个函数的定义域均不相同,故选D. 答案 Df (x )=x -4+1x -5的定义域是________.解析 ∵函数f (x )=x -4+1x -5,∴⎩⎪⎨⎪⎧x -4≥0,x -5≠0,解得x ≥4,且x ≠5.∴函数f (x )的定义域是[4,5)∪(5,+∞). 答案 [4,5)∪(5,+∞)f (x )的定义域为(0,2),则f (x -1)的定义域为________.解析 由题意知0<x -1<2,解得1<x <3,故f (x -1)的定义域为(1,3). 答案 (1,3)f (x )=x 2+x -1.(1)求f (2),f ⎝ ⎛⎭⎪⎫1x ;(2)若f (x )=5,求x 的值. 解 (1)f (2)=22+2-1=5, f ⎝ ⎛⎭⎪⎫1x =1x 2+1x-1=1+x -x 2x 2.(2)∵f (x )=x 2+x -1=5,∴x 2+x -6=0, ∴x =2或x =-3.课堂小结1.函数的本质:两个非空数集间的一种确定的对应关系.由于函数的定义域和对应关系一经确定,值域随之确定,所以判断两个函数是否相等只须两个函数的定义域和对应法则一样即可.2.f (x )是函数符号,f 表示对应关系,f (x )表示x 对应的函数值,绝对不能理解为f 与xff (x )表示外,还可用g (x ),F (x )等表示.基础过关1.下列函数中,与函数y =x 相等的是( ) A.y =(x )2B.y =x 2C.y =⎩⎪⎨⎪⎧x ,x >0-x ,x <0D.y =3x 3解析 函数y =x 的定义域为R ;y =(x )2的定义域为[0,+∞);y =x 2=|x |,对应关系不同;y =⎩⎪⎨⎪⎧x ,x >0,-x ,x <0,对应关系不同;y =3x 3=x ,且定义域为R .故选D.答案 D2.下列四个图象中,是函数图象的是( )A.①B.①③④C.①②③D.③④解析 由每一个自变量x 对应唯一一个f (x )可知②不是函数图象,①③④是函数图象. 答案 By =1-x +x 的定义域为( )A.{x |x ≤1}B.{x |x ≥0}C.{x |x ≥1或x ≤0}D.{x |0≤x ≤1}解析 由题意可知⎩⎪⎨⎪⎧1-x ≥0,x ≥0,解得0≤x ≤1.答案 Df (x )=2x -1,g (x )=x 2,则g (f (2)-1)=________.解析 f (2)-1=2×2-1-1=2,所以g (f (2)-1)=g (2)=22=4. 答案 45.用区间表示下列集合: (1){x |-12≤x <5}=________;(2){x |x <1或2<x ≤3}=________.解析 (1)注意到包括不包括区间的端点与不等式含不含等号对应,则{x |-12≤x <5}=⎣⎢⎡⎭⎪⎫-12,5. (2)注意到集合中的“或”对应区间中的“∪”,则{x |x <1或2<x ≤3}=(-∞,1)∪(2,3].答案 (1)⎣⎢⎡⎭⎪⎫-12,5 (2)(-∞,1)∪(2,3]f (x )=x +5+1x -2.(1)求函数的定义域;(2)求f (-4),f ⎝ ⎛⎭⎪⎫23的值. 解 (1)使根式x +5有意义的实数x 的取值集合是{x |x ≥-5},使分式1x -2有意义的实数x 的取值集合是{x |x ≠2},所以这个函数的定义域是{x |x ≥-5}∩{x |x ≠2}={x |x ≥-5且x ≠2}. (2)f (-4)=-4+5+1-4-2=1-16=56. f ⎝ ⎛⎭⎪⎫23=23+5+123-2=173-34=513-34.f (x )=x 21+x2.(1)求f (2)+f ⎝ ⎛⎭⎪⎫12,f (3)+f ⎝ ⎛⎭⎪⎫13的值; (2)求证f (x )+f ⎝ ⎛⎭⎪⎫1x 是定值.(1)解 ∵f (x )=x 21+x2, ∴f (2)+f ⎝ ⎛⎭⎪⎫12=221+22+⎝ ⎛⎭⎪⎫1221+⎝ ⎛⎭⎪⎫122=1. f (3)+f ⎝ ⎛⎭⎪⎫13=321+32+⎝ ⎛⎭⎪⎫1321+⎝ ⎛⎭⎪⎫132=1. (2)证明 f (x )+f ⎝ ⎛⎭⎪⎫1x =x 21+x 2+⎝ ⎛⎭⎪⎫1x 21+⎝ ⎛⎭⎪⎫1x 2 =x 21+x 2+1x 2+1=x 2+1x 2+1=1. 能力提升f (x )=ax 2-1,a 为一个正常数,且f (f (-1))=-1,那么a 的值是( )A.1B.0解析 f (-1)=a ·(-1)2-1=a -1,f (f (-1))=a ·(a -1)2-1=a 3-2a 2+a -1=-1. ∴a 3-2a 2+a =0,∴a =1或a =0(舍去). 答案 Af (x )=x -4mx 2+4x +3的定义域为R ,则实数m 的取值X 围是( )A.(-∞,+∞)B.⎝ ⎛⎭⎪⎫0,43C.⎝ ⎛⎭⎪⎫43,+∞ D.⎣⎢⎡⎭⎪⎫0,43 解析 (1)当m =0时,分母为4x +3,此时定义域不为R ,故m =0不符合题意.(2)当m ≠0时,由题意,得⎩⎪⎨⎪⎧m ≠0,Δ=16-4×3m <0,解得m >43. 由(1)(2)知,实数m 的取值X 围是⎝ ⎛⎭⎪⎫43,+∞. 答案 Cf (x )的定义域为(-1,1),则函数g (x )=f ⎝ ⎛⎭⎪⎫x 2+f (x -1)的定义域是________. 解析 由题意知⎩⎪⎨⎪⎧-1<x 2<1,-1<x -1<1,即⎩⎪⎨⎪⎧-2<x <2,0<x <2.从而0<x <2, 于是函数g (x )的定义域为(0,2).答案 (0,2)f (x )满足f (x )+f (y )=f (xy ),且f (5)=m ,f (7)=n ,则f (175)=________.解析 ∵f (x )满足f (x )+f (y )=f (xy ),且f (5)=m ,f (7)=n ,∴把x =5,y =7代入得f (5)+f (7)=f (35),∴m +n =f (35),把x =5,y =35代入得f (5)+f (35)=f (175),∴m +m +n =f (175),即2m +n =f (175),∴f (175)=2m +n .答案 2m +n数的定义域:(1)y =(x +1)0x +2; (2)y =2x +3-12-x +1x . 解 (1)由于00无意义,故x +1≠0,即x ≠-1.又x +2>0,x >-2,所以x >-2且x ≠-1.所以函数y =(x +1)0x +2的定义域为{x |x >-2,且x ≠-1}. (2)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0,解得-32≤x <2,且x ≠0,所以函数y =2x +3-12-x +1x 的定义域为⎩⎨⎧⎭⎬⎫x |-32≤x <2,且x ≠0. 13.(选做题)已知甲地到乙地的高速公路长1 500 km ,现有一辆汽车以100 km/h 的速度从甲地驶往乙地,写出汽车离开甲地的距离s (单位:km)与时间t (单位:h)的函数解析式,并求出函数的定义域.解 ∵汽车在甲、乙两地之间匀速行驶,∴s =100 t .∵汽车行驶速度为100 km/h ,两地之间的距离为1 500 km ,∴从甲地到乙地所用时间为15小时.∴所求函数解析式为s =100t ,0≤t ≤15.。
[K12学习]云南省德宏州梁河县高中数学 第一章 集合与函数概念 1.2 函数及其表示 1.2.1
1.2.1函数的概念
班级:__________ 姓名:__________
一【学习目标】
1.通过丰富实例,理解函数的概念,学会用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.
2.了解构成函数的三要素.
3.能够正确使用“区间”的符号表示某些集合.
二【课前学习】
1.预习教材15~17页,完成创新设计中知识点1,2
2.补充
知识点3:求函数定义域的注意事项
知识点4:复合函数定义域的求法
知识点5:求函数值域常用方法
三【例题与变式】
例1教材17页例1
变式1创新设计24页例1,25例3
例2教材18页例2
变式2创新设计24页例2
例3创新设计例4-2
变式3创新设计例4-1,例4-4
例4求下列函数的值域
(1)1y -=x (2)32y 2+-=x x (3)12y --=x x (4)312y -+=x x
变式4(1)32y 2+-=x x [)3,0∈x
(2)x y 323-+=
四【目标检测】
创新设计26页课堂达标
五【课堂小结】
本节课你学到了什么?
六【课后巩固】
A 组
创新设计课后作业1,2,3,4,5,7
B 组
创新设计课后作业8,9。
云南省德宏州梁河县高中数学 第一章 集合与函数概念 1.2 函数及其表示 1.2.2 函数的表示第二
1.2.2 函数的表示(第二课时)映射和函数解析式求法一、学习目标:1、知道映射的概念以及它与函数的联系与区别(难点)2、知道求函数解析式的常见方法、会求函数的解析式(重点、难点).二、课前学习:预习教材P22,完成下面问题:1、映射什么是映射呢?映射与函数有什么区别和联系?2、求函数解析式的常见方法(1)待定系数法(知道函数类型)一次函数设为,二次函数设为。
(2)换元法(或配凑法)已知f(g(x))=g(x),求f(x)。
(引入一个变量t,令g(x)=t)①换元法,即令t=g(x),解出x,代入h(x)中,得到一个含t的解析式,即为函数解析式,注意:换元后新元的范围.②配凑法,即从f(g(x))的解析式中配凑出“g(x)”,即用g(x)来表示h(x),然后将解析式中的g(x)用x代替即可.(3)方程组法当同一个对应关系中的含有自变量的两个表达式之间有互为相反数或互为倒数关系时,可构造方程组求解.三、例题与变式:例1.课本22例题7(判断一个对应关系是否为映射)变式1:创新设计19页例1例2 创新设计17页例3-1(1)、(2)(待定系数求解析式)变式2:(1)已知f(x)是一次函数,若f(f(x))=16x-25,则f(x)的解析式为________.(2)已知f(x)是二次函数且满足f(0)=1,f(x - 1)-f(x)=x,则函数f(x)的解析式为________.例3:创新设计17页例3-2(1)(用换元或者配方求函数解析式)变式3(1)设函数g(x+2)=2x+3,则g(x)的解析式是________.例4:创新设计17页3-2(2)(方程组法求解析式)变式4:(1)若f (x )+2f (-x )=3x +2,则f (x )=________.(2)若2f (x )+f ⎝ ⎛⎭⎪⎫1x =2x +12(x ≠0),则f (x)=___ 四、目标检测1、创新设计20页课堂达标32、创新设计18页课堂达标43、创新设计18页课堂达标34、2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x (x ≠0),则f (x)=___ 五、小结六、课后配餐A 组1、创新设计19页训练12、创新设计单元检测与课时精练78页基础过关1,4、5、6 B 组3、创新设计单元检测与课时精练78页基础过关10、11 C 组4、创新设计单元检测与课时精练78页基础过关12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.2 函数的表示法(第一课时)
函数的表示法和分段函数
一、学习目标:
1.知道函数的三种表示法及各自的优缺点.
2.会画一些简单的函数图像。
(重点、难点).
3.知道分段函数的定义,会画简单的分段函数,并能解决简单的分段函数问题。
(重点)
二、课前学习:
预习教材P19-P22,完成下面问题:
1、函数的三种表示方法
2、函数三种表示法的优缺点
3、描点法画函数图象的步骤:(1) (2) (3)
(4) (5) .
4、分段函数定义
对于自变量x的不同的取值范围,有着不同的对应法则的函数
注意:(1)它是一个函数,不是几个函数
(2)分段函数定义域为各段的,值域也为各段的。
三、例题与变式:
例1.(见课本19页例3、20页例题4、21页例5)
变式1 :课本23页练习1、2
例2 创新设计17页例题2
变式2:创新设计17页训练2
例3 (见课本21页例5、6)(分段函数图像画法)
变式3:课本23页练习3
例4 创新设计19页例2 (分段函数求值)
变式4:创新设计18页左边预习评价
四、目标检测
创新设计18页课堂达标1、3、5.创新20页课堂达标1、2、4、5
五、小结
六、课后配餐
A组
1、课本24页A组3、7
2、创新设计单元检测与课时精练78页基础过关2、3
3、创新设计单元检测与课时精练79页基础过关1、3、4
B组
1创新设计单元检测与课时精练78页基础过关7
2创新设计单元检测与课时精练79页基础过关6、7
C组
1创新设计单元检测与课时精练78页能力提升8
2创新设计单元检测与课时精练79页能力提升10、11、12。