中考数学复习资料】专题8 圆
中考数学《圆的有关概念及性质》专题复习
中考数学《圆的有关概念及性质》专题复习【基础知识回顾】一、圆的定义:1、⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫线段OA叫做⑵描述性定义:圆是到定点的距离等于的点的集合【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的2、直径是圆中的弦,弦不一定是直径】3、弦与弧:弦:连接圆上任意两点的叫做弦弧:圆上任意两点间的叫做弧,弧可分为、、三类4、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴的直线都是它的对称轴.⑵中心对称性:圆是中心对称图形,对称中心是【名师提醒:圆不仅是中心对称图形,而且具有旋转性,即绕圆心旋转任意角度都被与原来的图形重合】5、垂径定理及推论:(1)垂径定理:垂直于弦的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .(2)推论:平分弦()的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线3、垂径定理常用作计算,在半径r弦a弦心d和弦h中已知两个可求另外两个】三、圆心角、弧、弦之间的关系:1、圆心角定义:顶点在的角叫做圆心角2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量也分别几何语言:∵在圆O中,_______∴ , .∵在圆O中,________∴ , .∵在圆O中,________∴ , .【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】四、圆周角定理及其推论:1、圆周角定义:顶点在并且两边都和圆的角叫圆周角2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的圆心角的推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧推论2、半圆(或直弦)所对的圆周角是 900的圆周角所对的弦是【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角有个,它们的关系是2、作直弦所对的圆周角是圆中常作的辅助线】3、圆内接四边形定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做这个圆叫做性质:圆内接四边形的对角【名师提醒:圆内接平行四边形是圆内接梯形是】考点一:垂径定理例1、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C. 6D. 8例2、绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB 为_________考点二:圆心角定理例3、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BF C.OF=CF D.∠DBC=90°例4、如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为____________对应训练2.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB等于().A.55° B.60°C.65° D.70°考点三:圆周角定理例5、如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P 是优弧AB上任意一点(与A、B不重合),则∠APB= .例6、如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于_____________对应训练6、△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7、如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上,∠1=∠C(1)求证:CB∥MD;(2)若BC=4,sinM= ,求⊙O的直径.考点四:圆内接四边形的性质例3 如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3对应训练【聚焦中考】1.如图,AB是的直径,C是上一点,AB=10,AC=6,,垂足为D,则BD的长为(A)2 (B)3 (C)4 (D)62.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为(). A. B. C. D.3.如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是(A)75°. (B)60°. (C)45°. (D)30°.4.如图,已知圆心角∠BOC=78°,则圆周角∠BAC的度数是()A.156°B.78°C.39°D.12°5.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60° B.70° C.120° D.140°6.如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB=______7.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A. 135°B. 122.5°C. 115.5°D.112.5°8.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是A.BD⊥ACB.AC2=2AB·AEC.△ADE是等腰三角形D. BC=2AD.9.如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为__________.10.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.11.AB是圆O的直径,BC是圆O的切线,连接AC交圆O于点D,E为弧AD上一点,连接AE、BE,BE交AC于点F,且AF²=EF.EB(1)求证:CB=CF (2)若点E到弦AD的距离为1,cos角C=3/5,求圆O的半径12.某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是 cm.【备考真题过关】一、选择题1.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为__________2.如图,以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于C、D,以CD为直径的⊙N与x轴交于E、F,则EF的长()A.等于4 B.等于4 C.等于6 D.随P点位置的变化而变化3.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3 B.4 C.3 D.44.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8 B.10 C.16 D.205.如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是()A.AE>BE B.C.∠D=∠AEC D.△ADE∽△CBE6.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50° B.60° C.70° D.80°二、填空题8.如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为.9.如图,AB是⊙O的弦,OC⊥AB于C.若AB=2,0C=1,则半径OB的长为.10.如图,在⊙O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为.111314.如图,已知点A(0,2)、B(2,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:(1)当AB为梯形的底时,点P的横坐标是;15.如图,△ABC内接于⊙O,AB、CD为⊙O直径,DE⊥AB于点E,sinA=,则∠D的度数是.三、解答题16.如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)17.如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.18.在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.19.如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.20.如图△ABC中,BC=3,以BC为直径的⊙O交AC于点D,若D是AC中点,∠ABC=120°.(1)求∠ACB的大小;(2)求点A到直线BC的距离.21.如图,已知AB是⊙O的弦,OB=4,∠OBC=30°,点C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD、DB.(1)当∠ADC=18°时,求∠DOB的度数;(2)若AC=2,求证:△ACD∽△OCB.。
初三中考数学专题八 圆
(3)如图 Z8-4,若点 M 是 BC 边上任意一点(不含 B,C), 以点 M 为直角顶点,在 BC 的上方作∠AMN=90°,交直线 CP于点 N,求证:AM=MN.
图 Z8-4
[思路分析](1)利用切线的性质以及正方形的判定与性质得 出⊙O 的半径即可.
(2)利用垂径定理得出OE⊥BC,∠OCE=45°,进而利用勾 股定理得出即可.
∴MAMN=CBPB.
[名师点评]本题考查了切线的性质,等腰三角形的性质, 圆周角定理,相似三角形的判定和性质,圆内接四边形的性质, 综合的知识点较多,解此题的关键是熟练掌握定理.
圆的综合题 例 3:(2015 年广西桂林)四边形 ABCD 是⊙O 的内接正方 形,AB=4,PC,PD 是⊙O 的两条切线,C,D 为切点. (1)如图 Z8-3,求⊙O 的半径; (2)如图 Z8-3,若点 E 是 BC 的中点,连接 PE,求 PE 的长 度;
解决问题的关键是在具体情境中,综合运用所学知识(三角 形、四边形、圆等),借助圆的性质、与圆有关的位置关系等, 添加适当的辅助线构建相等的角、相等的边,或转化为直角三 角形,或将立体图形(圆锥)转化为平面图形(扇形)进行分析与解 决.
与圆有关的计算题 例1:(2015 年江苏无锡)已知:如图 Z8-1,AB 为⊙O 的直 径,点 C,D 在⊙O 上,且 BC=6 cm,AC=8 cm,∠ABD=45°. (1)求 BD 的长; (2)求图中阴影部分的面积.
(2)如图Z8-5,连接EO,OP. ∵点 E 是 BC 的中点, ∴OE⊥BC,∠OCE=45°,则∠EOP=90°, ∴EO=EC=2,OP= 2CO=4. ∴PE= OE2+OP2=2 5.
图Z8-5
九年级数学专题复习圆综合复习
总复习圆综合复习【考纲要求】1.圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明定会有下降趋势,不会有太复杂的大题出现;2.今后的中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念1. 圆的定义如图所示,有两种定义方式:①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,以O为圆心的圆记作⊙O,线段OA叫做半径;②圆是到定点的距离等于定长的点的集合.要点进阶:圆心确定圆的位置,半径确定圆的大小. 2.与圆有关的概念①弦:连接圆上任意两点的线段叫做弦;如上图所示线段AB ,BC ,AC 都是弦. ②直径:经过圆心的弦叫做直径,如AC 是⊙O 的直径,直径是圆中最长的弦.③弧:圆上任意两点间的部分叫做圆弧,简称弧,如曲线BC 、BAC 都是⊙O 中的弧,分别记作BC ,BAC .④半圆:圆中任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆,如AC 是半圆. ⑤劣弧:像BC 这样小于半圆周的圆弧叫做劣弧. ⑥优弧:像BAC 这样大于半圆周的圆弧叫做优弧. ⑦同心圆:圆心相同,半径不相等的圆叫做同心圆. ⑧弓形:由弦及其所对的弧组成的图形叫做弓形. ⑨等圆:能够重合的两个圆叫做等圆.⑩等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.⑪圆心角:顶点在圆心的角叫做圆心角,如上图中∠AOB ,∠BOC 是圆心角.⑫圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角,如上图中∠BAC 、∠ACB 都是圆周角. 要点进阶:圆周角等于它所对的弧所对的圆心角的一半.圆外角度数等于它所夹弧的度数的差的一半. 圆内角度数等于它所夹弧的度数的和的一半.考点二、圆的有关性质 1.圆的对称性圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条.圆是中心对称图形,圆心是对称中心,又是旋转对称图形,即旋转任意角度和自身重合. 2.垂径定理①垂直于弦的直径平分这条弦,且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图所示.要点进阶:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三. 注意:(1)(3)作条件时,应限制AB 不能为直径.3.弧、弦、圆心角之间的关系①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;②在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.4.圆周角定理及推论①圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.②圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点进阶:圆周角性质的前提是在同圆或等圆中.考点三、与圆有关的位置关系1.点与圆的位置关系如图所示.d表示点到圆心的距离,r为圆的半径.点和圆的位置关系如下表:点与圆的位置关系d与r的大小关系点在圆内d<r点在圆上d=r点在圆外d>r要点进阶:(1)圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.(2)三角形的外接圆经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线交点.它到三角形各顶点的距离相等,都等于三角形外接圆的半径.如图所示.2.直线与圆的位置关系①设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表.②圆的切线.切线的定义:和圆有唯一公共点的直线叫做圆的切线.这个公共点叫切点.切线的判定定理:经过半径的外端.且垂直于这条半径的直线是圆的切线.友情提示:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.切线的性质定理:圆的切线垂直于经过切点的半径.切线长定义:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.③三角形的内切圆:与三角形各边都相切的圆叫三角形的内切圆,三角形内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三个内角平分线的交点.要点进阶:找三角形内心时,只需要画出两内角平分线的交点.三角形外心、内心有关知识比较3.圆与圆的位置关系在同一平面内两圆作相对运动,可以得到下面5种位置关系,其中R、r为两圆半径(R≥r).d为圆心距.要点进阶:①相切包括内切和外切,相离包括外离和内舍.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“r1-r2”时,要特别注意,r1>r2.考点四、正多边形和圆1.正多边形的有关概念正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距,正多边形各边所对的外接圆的圆心角都相等,这个角叫正多边形的中心角,正多边形的每一个中心角都等于360n°.要点进阶:通过中心角的度数将圆等分,进而画出内接正多边形,正六边形边长等于半径.2.正多边形的性质任何一个正多边形都有一个外接圆和一个内切圆,这两圆是同心圆.正多边形都是轴对称图形,偶数条边的正多边形也是中心对称图形,同边数的两个正多边形相似,其周长之比等于它们的边长(半径或边心距)之比.3.正多边形的有关计算定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形.正n 边形的边长a 、边心距r 、周长P 和面积S 的计算归结为直角三角形的计算.360n a n =°,1802sin n a R n =°,180cos n r R n=°, 2222n n a R r ⎛⎫=+ ⎪⎝⎭,n n P n a =,1122n nnn n S a r n P r ==.考点五、圆中的计算问题 1.弧长公式:180n Rl π=,其中l 为n °的圆心角所对弧的长,R 为圆的半径. 2.扇形面积公式:2360n R S π=扇,其中12S lR =扇.圆心角所对的扇形的面积,另外12S lR =扇.3.圆锥的侧面积和全面积:圆锥的侧面展开图是扇形,这个扇形的半径等于圆锥的母线长,弧长等于圆锥底面圆的周长. 圆锥的全面积是它的侧面积与它的底面积的和. 要点进阶:(1)在计算圆锥的侧面积时要注意各元素之间的对应关系,千万不要错把圆锥底面圆半径当成扇形半径.(2)求阴影面积的几种常用方法(1)公式法;(2)割补法;(3)拼凑法;(4)等积变形法;(5)构造方程法.考点六、四点共圆 1.四点共圆的定义四点共圆的定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.2.证明四点共圆一些基本方法:1.从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.或利用圆的定义,证各点均与某一定点等距.2.如果各点都在某两点所在直线同侧,且各点对这两点的张角相等,则这些点共圆. (若能证明其两张角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径.)3.把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.4.把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆. 即利用相交弦、切割线、割线定理的逆定理证四点共圆.考点七、与圆有关的比例线段(补充知识)1.相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.2.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.3.割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.圆幂定理(相交弦定理、切割线定理及其推论(割线定理)统一归纳为圆幂定理)定理图形已知结论证法相交弦定理⊙O中,AB、CD为弦,交于P.PA·PB=PC·PD. 连结AC、BD,证:△APC∽△DPB.相交弦定理的推论⊙O中,AB为直径,CD⊥AB于P.PC2=PA·PB. 用相交弦定理.切割线定理⊙O中,PT切⊙O于T,割线PB交⊙O于APT2=PA·PB连结TA、TB,证:△PTB∽△PAT切割线定理推论PB、PD为⊙O的两条割线,交⊙O于A、CPA·PB=PC·PD过P作PT切⊙O于T,用两次切割线定理【典型例题】类型一、圆的有关概念及性质例1. BC为O的弦,∠BOC=130°,△ABC为O的内接三角形,求∠A的度数.【变式】如图,∠AOB=100°,点C 在⊙O 上,且点C 不与A 、B 重合,则∠ACB 的度数为( )A .50B .80或50C .130D .50 或130类型二、与圆有关的位置关系例2.如图,已知正方形的边长是4cm ,求它的内切圆与外接圆组成的圆环的面积.(答案保留π)例3.如图,已知⊙O 的半径为6cm ,射线PM 经过点O ,10cm OP ,射线PN 与⊙O 相切于点Q .A,B 两点同时从点P 出发,点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动.设运动时间为t s . (1)求PQ 的长;(2)当t 为何值时,直线AB 与⊙O 相切?A BO【变式】已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)连接AD并延长交BE于点F,若OB=9,2sin3ABC∠=,求BF的长.类型三、与圆有关的计算例4.如图,有一个圆O和两个正六边形T1,T2. T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).(1)设T1,T2的边长分别为a,b,圆O的半径为r,求r:a及r:b的值;(2)求正六边形T1,T2的面积比S1:S2的值.【变式】有一个亭子,它的地基是半径为8m的正六边形,求地基的周长和面积.(结果保留根号)类型四、与圆有关的综合应用例5.如图,AB是⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O于点D,过点D作EF∥BC,交AB、AC的延长线于点E、F.(1)求证:EF为⊙O的切线;(2)若sin∠ABC=,CF=1,求⊙O的半径及EF的长.【变式】已知:如图,△ABC中,∠BAC=90°,点D在BC边上,且BD=BA,过点B画AD的垂线交AC于点O,以O为圆心,AO为半径画圆.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为8,tan∠C=,求线段AB的长,sin∠ADB的值.例6.(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为弧BC上一动点,求证:PA=PB+PC;(2)如图2,四边形ABCD是⊙O的内接正方形,点P为弧BC上一动点,求证:;(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为弧BC上一动点,请探究PA、PB、PC 三者之间有何数量关系,并给予证明.【变式】(1)如图①,M、N分别是⊙O的内接正△ABC的边AB、BC上的点且BM=CN,连接OM、ON,求∠MON的度数;(2)图②、③、…④中,M、N分别是⊙O的内接正方形ABCD、正五边ABCDE、…正n边形ABCDEFG…的边AB、BC上的点,且BM=CN,连接OM、ON,则图②中∠MON的度数是,图③中∠MON的度数是;…由此可猜测在n边形图中∠MON的度数是;(3)若3≤n≤8,各自有一个正多边形,则从中任取2个图形,恰好都是中心对称图形的概率是 .一、选择题1.已知半径分别是3和5的两个圆没有公共点,那么这两个圆的圆心距d的取值范围是()A.d>8 B.d>2 C.0≤d<2 D.d>8或d<22.如图,等腰梯形ABCD内接于半圆D,且AB=1,BC=2,则OA=( )A.132+B.2 C.323+D.152+3.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4 cm,以点C为圆心,以2 cm的长为半径作圆,则⊙C与AB的位置关系是( )A.相离 B.相切 C.相交 D.相切或相交第2题第3题第5题4.已知圆O1、圆O2的半径不相等,圆O1的半径长为3,若圆O2上的点A满足AO1=3,则圆O1与圆O2的位置关系是( )A.相交或相切 B.相切或相离 C.相交或内含 D.相切或内含5.如图所示,在圆O内有折线OABC,其中OA=8,AB=2,∠A=∠B=60°,则BC的长为( )A.19 B.16 C.18 D.206.如图,MN是半径为0.5的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN 上一动点,则PA+PB的最小值为( )A.22B.2 C.1 D.27.如图,分别以A,B为圆心,线段AB的长为半径的两个圆相交于C,D两点,则∠CAD的度数为_______.8.如图,现有圆心角为90°的一个扇形纸片,该扇形的半径是50cm.小红同学为了在圣诞节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),那么被剪去的扇形纸片的圆心角应该是________度.第7题第8题第9题9.如图,AB⊥BC,AB=BC=2 cm,OA与OC关于点O中心对称,则AB、BC、CO、OA所围成的面积是________cm2.10.如图,以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,C为切点,若两圆的半径分别为3 cm和5 cm,则AB的长为________cm.11.将半径为4 cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图所示),当圆柱的侧面的面积最大时,圆柱的底面半径是________cm.第10题第11题12.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:①∠BOC=90°+∠A;②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;③设OD=m,AE+AF=n,则S△AEF=mn;④EF是△ABC的中位线.其中正确的结论是.13.如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.(1)证明:BC是⊙O的切线;(2)若DC=4,AC=6,求圆心O到AD的距离;(3)若,求的值.14.如图,在Rt△ABC中,∠ABC=90°,斜边AC的垂直平分线交BC于点D,交AC于点E,连接BE.(1)若BE是△DEC外接圆的切线,求∠C的大小;(2)当AB=1,BC=2时,求△DEC外接圆的半径.15.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.16. 如图,已知:AC是⊙O的直径,PA⊥AC,连接OP,弦CB∥OP,直线PB交直线AC于D,BD=2PA.(1)证明:直线PB是⊙O的切线;(2)探究线段PO与线段BC之间的数量关系,并加以证明;(3)求sin∠OPA的值.。
2021年数学人教版九年级中考复习专题之圆:圆周角定理练习(八)
2021年数学人教版九年级中考复习专题之圆:圆周角定理练习(八)一.选择题1.如图,⊙O中,AB是直径,弦CD⊥AB于点E,∠BOD=50°,则∠BAC的度数是()A.100°B.50°C.40°D.25°2.如图,AB是⊙O的直径,AB=2DE,若∠COD=90°,则∠E的度数为()A.15°B.22.5°C.30°D.45°3.如图,AB是⊙O的直径,C、D是圆上两点,∠AOC=110°,则∠D的度数为()A.25°B.35°C.55°D.70°4.如图,圆心为C、直径为MN的半圆上有不同的两点A、B,在CN上有一点P,∠CBP =∠CAP=10°,若的度数是40°,则的度数是()A.10°B.15°C.20°D.25°5.如图,已知AB是半圆O的直径,弦AD、BC相交于点P,若∠DPB=α,那么CD:AB等于()A.sinαB.cosαC.tanαD.6.如图,正方形ABCD内接于⊙O,点E在劣弧AD上,则∠BEC等于()A.45°B.60°C.30°D.55°7.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上一点,且∠EPF=40°,则图中阴影部分的面积是()A.4﹣B.4﹣C.8﹣D.8﹣8.如图,B是线段AC的中点,过点C的直线l与AC成60°的角,在直线L上取一点P,使∠APB=30°,则满足条件的点P的个数是()A.3个B.2个C.1个D.不存在9.已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是()A.45°B.60°C.75°D.90°10.如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=56°,则α的度数是()A.52°B.60°C.72°D.76°二.填空题11.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD =.12.如图,在⊙O中,弦AB,CD相交于点P.若∠A=40°,∠APD=75°,则∠B=.13.如图,△ABC内接于⊙O,半径为5,BC=6,CD⊥AB于D点,则tan∠ACD的值为.14.如图,⊙O的半径为6,点A、B、C在⊙O上,且∠ACB=45°,则弦AB的长是.15.如图,AB是⊙O的直径,C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为.16.如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C旋转,与量角器外沿交于点D,若射线CD将△ABC 分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是.三.解答题17.已知:如图,在△ABC中,BC=AC=6,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)求点O到直线DE的距离.18.如图,AB是⊙O的直径,C是的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=2,⊙O的半径为4,求BC的长.19.如图,在半径为5的⊙O中,直径AB的不同侧有定点C和动点P,已知BC:CA=4:3,点P在弧AB上运动.(1)当点P与点C关于AB对称时,求CP的长;(2)当点P运动到弧AB的中点时,求CP的长;(3)点P在弧AB上运动时,求CP的长的取值范围.20.已知⊙O中,弦AB⊥AC,且AB=AC=6,点D在⊙O上,连接AD,BD,CD.(1)如图1,若AD经过圆心O,求BD,CD的长;(2)如图2,若∠BAD=2∠DAC,求BD,CD的长.参考答案一.选择题1.解:∵AB为⊙O的直径,弦CD⊥AB,∴=,∴∠BAC=∠BOD=×50°=25°.故选:D.2.解:∵AB是⊙O的直径,∵AB=2DO,而AB=2DE,∴DO=DE,∴∠DOE=∠E,∵OC=OD,∠COD=90°∴△COD为等腰直角三角形,∴∠CDO=45°,∵∠CDO=∠DOE+∠E,∴∠E=∠CDO=22.5°.故选:B.3.解:∵∠AOC=110°,∴∠BOC=180°﹣110°=70°,∴∠D=∠BOC=35°,故选:B.4.解:∵的度数是40°,∴∠ACM=40°∵∠CBP=∠CAP=10°,∴A、C、P、B四点共圆,∴∠ACM=∠ABP=40°,∵∠CPB=10°,∴∠ABC=40°﹣10°=30°,∵AC=BC,∴∠CAB=∠ABC=30°,∴∠ACB=120°,∴∠BCN=180°﹣∠ACM﹣∠ACB=20°,∴的度数是20°.故选:C.5.解:连接BD,由AB是直径得,∠ADB=90°.∵∠C=∠A,∠CPD=∠APB,∴△CPD∽△APB,∴CD:AB=PD:PB=cosα.故选:B.6.解:∵正方形ABCD内接于⊙O,∴∠BEC等于90°÷2=45°.故选:A.7.解:连接AD,∵BC是切线,点D是切点,∴AD⊥BC,∴∠A=2∠P=80°,∴S扇形AEF==π,S△ABC=AD•BC=4,∴阴影部分的面积=S△ABC﹣S扇形AEF=4﹣π.故选:A.8.解:如图,分别以AC,BC为边,作等边△APC,取PA的中点O,以O为圆心OA 为半径作⊙O交直线l于P,P′,由圆周角定理可知:∠APB=∠AP′B=30°,所以满足条件的点P的个数为2个.故选:B.9.解:如图,连接OB、OC,则∠BOC=90°,根据圆周角定理,得:∠BPC=∠BOC=45°.故选:A.10.解:连接OC,OD,∵∠BAO=∠CBO=∠DCO=∠EDO=α,∵OA=OB=OC,∴∠ABO=∠BCO=α,∴∠AOB=∠BOC=∠COD=∠DOE=180°﹣2α,∴4∠AOB+∠AOE=360°,∴∠AOB=76°,∴在等腰三角形AOB中,∠α=∠BAO==52°.故选:A.二.填空题(共6小题)11.解:连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠ABC=50°,∴∠CAD=90°﹣∠D=40°.故答案为:40°.12.解:∵∠A=40°,∠APD=75°,∴∠C=75°﹣40°=35°,∴∠B=35°,故答案为:35°.13.解:作直径BE,连接CE,作CF⊥BE于点F.∵CF⊥BE,CD⊥AB又∵∠A=∠E,∴∠ECF=∠ACD.∵BE是直径,CF⊥BE,∴∠BCE=90°,∠EBC=∠ECF=∠ACD,∴EC==8,∴tan∠EBC===.∴tan∠ACD=tan∠EBC=.故答案是:.14.解:连接OA,OB,∠AOB=2∠ACB=2×45°=90°,则AB===6.15.解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AED=20°,∴∠ACD=20°,∴∠BCD=∠ACB+∠ACD=110°,故答案为:110°.16.解:①设CD′交AB于E,设AB的中点为O,连接OD′当EB=EC,此时∠EBC=∠ECB=40°,易知∠BOD′=2∠BCD′=80°,∴点D′在量角器上对应的度数是80°;②设CD″交AB于F,连接OD″,当BF=BC时,∠BCD″=70°,易知∠BOD″=2∠BCD″=140°,∴点D″在量角器上对应的度数是140°;故答案为80°或140°三.解答题(共4小题)17.(1)证明:连接CD,∵BC是圆的直径,∴∠BDC=90°,∴CD⊥AB,又∵AC=BC,∴AD=BD,即点D是AB的中点;(2)证明:连接OD,∵AD=BD,OB=OC,∴DO是△ABC的中位线,∴DO∥AC,OD=AC=×6=3,又∵DE⊥AC,∴DE⊥DO,∴点O到直线DE的距离为3.18.(1)证明:延长CE交⊙O于点M,∵AB是⊙O的直径,CE⊥AB,∴=,∵C是的中点,∴=,∴=,∴∠BCM=∠CBD,∴CF=BF;(2)解:连接AC,∵AB是⊙O的直径,CE⊥AB,∴∠BEF=∠ADB=90°,∵∠ABD=∠FBE,∴Rt△ADB∽Rt△FEB,∴,∵AD=2,⊙O的半径为4,∴AB=8,∴,∴BF=4EF,又∵BF=CF,∴CF=4EF,利用勾股定理得:BE==EF,又∵∠ACB=∠CEB=90°,∠ABC=∠CBE,∴△EBC∽△ECA,∴,∴CE2=AE•BE,∴(CF+EF)2=(8﹣BE)•BE,∴25EF2=(8﹣EF)•EF,∴EF=,∴BC==2.(本题可以连接OC交BD于H,解直角三角形△CBH即可)19.解:(1)∵点P与点C关于AB对称,∴CP⊥AB,设垂足为D.∵AB为⊙O的直径,∴∠ACB=90°.∴AB=10,BC:CA=4:3,∴BC=8,AC=6.又∵AC•BC=AB•CD,∴CD=4.8,∴CP=2CD=9.6;(2)当点P运动到弧AB的中点时,连接PB,过点B作BE⊥PC于点E.∵P是弧AB的中点,∴AP=BP=5,∠ACP=∠BCP=45°,∵BC=8,∴CE=BE=4,∴PB=5,∴PE==3,∴CP=CE+PE=7;(3)点P在弧AB上运动时,恒有CP>CA,当CP过圆心O,即PC取最大值10,∴CP的取值范围是6<CP≤10.20.解:(1)∵AD经过圆心O,∴∠ACD=∠ABD=90°,∵AB⊥AC,且AB=AC=6,∴四边形ABCD为正方形,∴BD=CD=AB=AC=6;(2)连接OC,OB,OD,过O点作OE⊥BD,∵AB⊥AC,AB=AC=6,∴BC为直径,∴BC=6,∴BO=CO=DO=BC=3,∵∠BAD=2∠DAC,∴∠CAD=30°,∠BAD=60°,∴∠COD=60°,∠BOD=120,∴△COD为等边三角形,∠BOE=60°,∴CD=CO=DO=3,在直角三角形CDB中,BD=CD=3,则BE=,∴BD=2BE=3.。
2021年江苏省各市中考数学试题真题汇编——专题8圆
2021年江苏省中考数学试题分类——专题8圆一.选择题(共5小题)1.(2021•镇江)如图,∠BAC =36°,点O 在边AB 上,⊙O 与边AC 相切于点D ,交边AB 于点E ,F ,连接FD ,则∠AFD 等于( )A .27°B .29°C .35°D .37°2.(2021•镇江)设圆锥的底面圆半径为r ,圆锥的母线长为l ,满足2r +l =6,这样的圆锥的侧面积( )A .有最大值94πB .有最小值94πC .有最大值92πD .有最小值92π 3.(2021•徐州)如图,一枚圆形古钱币的中间是一个正方形孔,已知圆的直径与正方形的对角线之比为3:1,则圆的面积约为正方形面积的( )A .27倍B .14倍C .9倍D .3倍4.(2021•常州)如图,BC 是⊙O 的直径,AB 是⊙O 的弦,若∠AOC =60°,则∠OAB 的度数是( )A .20°B .25°C .30°D .35°5.(2021•连云港)如图,正方形ABCD 内接于⊙O ,线段MN 在对角线BD 上运动,若⊙O 的面积为2π,MN =1,则△AMN 周长的最小值是( )A .3B .4C .5D .6二.填空题(共15小题)6.(2021•淮安)如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠CAB =55°,则∠D 的度数是 .7.(2021•淮安)若圆锥的侧面积为18π,底面半径为3,则该圆锥的母线长是 .8.(2021•南通)圆锥的母线长为2cm ,底面圆的半径长为1cm ,则该圆锥的侧面积为 cm 2.9.(2021•南通)如图,在△ABC 中,AC =BC ,∠ACB =90°,以点A 为圆心,AB 长为半径画弧,交AC延长线于点D ,过点C 作CE ∥AB ,交BD ̂于点E ,连接BE ,则CE BE 的值为 .10.(2021•泰州)如图,平面直角坐标系xOy 中,点A 的坐标为(8,5),⊙A 与x 轴相切,点P 在y 轴正半轴上,PB 与⊙A 相切于点B .若∠APB =30°,则点P 的坐标为 .11.(2021•徐州)如图,AB是⊙O的直径,点C、D在⊙O上,若∠ADC=58°,则∠BAC=°.12.(2021•徐州)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若母线长l为8cm,扇形的圆心角θ=90°,则圆锥的底面圆半径r为cm.13.(2021•无锡)用半径为50,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面半径为.14.(2021•盐城)如图,在⊙O内接四边形ABCD中,若∠ABC=100°,则∠ADC=°.15.(2021•盐城)设圆锥的底面半径为2,母线长为3,该圆锥的侧面积为.16.(2021•宿迁)如图,在Rt△ABC中,∠ABC=90°,∠A=32°,点B、C在⊙O上,边AB、AC分别̂的中点,则∠ABE=.交⊙O于D、E两点,点B是CD17.(2021•宿迁)已知圆锥的底面圆半径为4,侧面展开图扇形的圆心角为120°,则它的侧面展开图面积为.̂的中点,OC交AB于点D.若AB=8cm,CD=2cm,则18.(2021•南京)如图,AB是⊙O的弦,C是AB⊙O的半径为cm.19.(2021•南京)如图,F A,GB,HC,ID,JE是五边形ABCDE的外接圆的切线,则∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=°.20.(2021•泰州)扇形的半径为8cm,圆心角为45°,则该扇形的弧长为cm.三.解答题(共12小题)21.(2021•镇江)如图1,正方形ABCD的边长为4,点P在边BC上,⨀O经过A,B,P三点.(1)若BP=3,判断边CD所在直线与⊙O的位置关系,并说明理由;(2)如图2,E是CD的中点,⊙O交射线AE于点Q,当AP平分∠EAB时,求tan∠EAP的值.22.(2021•淮安)如图,在Rt△ABC中,∠ACB=90°,点E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若CD=3,DE=52,求⊙O的直径.23.(2021•南通)如图,AB为⊙O的直径,C为⊙O上一点,弦AE的延长线与过点C的切线互相垂直,垂足为D,∠CAD=35°,连接BC.(1)求∠B的度数;(2)若AB=2,求EĈ的长.24.(2021•泰州)如图,在⊙O中,AB为直径,P为AB上一点,P A=1,PB=m(m为常数,且m>0).过点P的弦CD⊥AB,Q为BĈ上一动点(与点B不重合),AH⊥QD,垂足为H.连接AD、BQ.(1)若m=3.①求证:∠OAD=60°;②求BQDH的值;(2)用含m的代数式表示BQDH,请直接写出结果;(3)存在一个大小确定的⊙O,对于点Q的任意位置,都有BQ2﹣2DH2+PB2的值是一个定值,求此时∠Q的度数.25.(2021•徐州)如图,AB为⊙O的直径,点C、D在⊙O上,AC与OD交于点E,AE=EC,OE=ED.连接BC、CD.求证:(1)△AOE≌△CDE;(2)四边形OBCD是菱形.26.(2021•宿迁)如图,在Rt△AOB中,∠AOB=90°,以点O为圆心,OA为半径的圆交AB于点C,点D在边OB上,且CD=BD.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)已知tan∠ODC=247,AB=40,求⊙O的半径.27.(2021•南京)在几何体表面上,蚂蚁怎样爬行路径最短?̂的长为4πcm.在图(1)如图①,圆锥的母线长为12cm,B为母线OC的中点,点A在底面圆周上,AC②所示的圆锥的侧面展开图中画出蚂蚁从点A爬行到点B的最短路径,并标出它的长(结果保留根号).(2)图③中的几何体由底面半径相同的圆锥和圆柱组成.O是圆锥的顶点,点A在圆柱的底面圆周上,设圆锥的母线长为l,圆柱的高为h.①蚂蚁从点A爬行到点O的最短路径的长为(用含l,h的代数式表示).̂的长为a,点B在母线OC上,OB=b.圆柱的侧面展开图如图④所示,在图中画出蚂蚁从点A②设AD爬行到点B的最短路径的示意图,并写出求最短路径的长的思路.28.(2021•苏州)如图,四边形ABCD内接于⊙O,∠1=∠2,延长BC到点E,使得CE=AB,连接ED.(1)求证:BD=ED;(2)若AB=4,BC=6,∠ABC=60°,求tan∠DCB的值.29.(2021•苏州)如图①,甲、乙都是高为6米的长方体容器,容器甲的底面ABCD是正方形,容器乙的底面EFGH是矩形.如图②,已知正方形ABCD与矩形EFGH满足如下条件:正方形ABCD外切于一个半径为5米的圆O,矩形EFGH内接于这个圆O,EF=2EH.(1)求容器甲、乙的容积分别为多少立方米?(2)现在我们分别向容器甲、乙同时持续注水(注水前两个容器是空的),一开始注水流量均为25立方米/小时,4小时后,把容器甲的注水流量增加a立方米/小时,同时保持容器乙的注水流量不变,继续注水2小时后,把容器甲的注水流量再一次增加50立方米/小时,同时容器乙的注水流量仍旧保持不变,直到两个容器的水位高度相同,停止注水.在整个注水过程中,当注水时间为t时,我们把容器甲的水位高度记为h甲,容器乙的水位高度记为h乙,设h乙﹣h甲=h,已知h(米)关于注水时间t(小时)的函数图象如图③所示,其中MN平行于横轴,根据图中所给信息,解决下列问题:①求a的值;②求图③中线段PN所在直线的解析式.30.(2021•扬州)如图,四边形ABCD中,AD∥BC,∠BAD=90°,CB=CD,连接BD,以点B为圆心,BA长为半径作⊙B,交BD于点E.(1)试判断CD与⊙B的位置关系,并说明理由;(2)若AB=2√3,∠BCD=60°,求图中阴影部分的面积.31.(2021•扬州)在一次数学探究活动中,李老师设计了一份活动单:已知线段BC=2,使用作图工具作∠BAC=30°,尝试操作后思考:(1)这样的点A唯一吗?(2)点A的位置有什么特征?你有什么感悟?“追梦”学习小组通过操作、观察、讨论后汇报:点A的位置不唯一,它在以BC为弦的圆弧上(点B、C除外),….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.①该弧所在圆的半径长为;②△ABC面积的最大值为;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A′,请你利用图1证明∠BA′C>30°.(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD的边长AB=2,BC=3,点P在直线CD的左侧,且tan∠DPC=4 3.①线段PB长的最小值为;②若S△PCD=23S△P AD,则线段PD长为.32.(2021•连云港)如图,Rt△ABC中,∠ABC=90°,以点C为圆心,CB为半径作⊙C,D为⊙C上一点,连接AD、CD,AB=AD,AC平分∠BAD.(1)求证:AD是⊙C的切线;(2)延长AD、BC相交于点E,若S△EDC=2S△ABC,求tan∠BAC的值.2021年江苏省中考数学试题分类——专题8圆参考答案与试题解析一.选择题(共5小题)1.【解答】解:连接OD ,∵⊙O 与边AC 相切于点D ,∴∠ADO =90°,∵∠BAC =36°,∴∠AOD =90°﹣36°=54°,∴∠AFD =12∠AOD =12×54°=27°, 故选:A .2.【解答】解:∵2r +l =6,∴l =6﹣2r ,∴圆锥的侧面积S 侧=πrl =πr (6﹣2r )=﹣2π(r 2﹣3r )=﹣2π[(r −32)2−94]=﹣2π(r −32)2+92π, ∴当r =32时,S 侧有最大值92π. 故选:C .3.【解答】解:设AB =6a ,因为CD :AB =1:3,所以CD =2a ,OA =3a ,因此正方形的面积为12CD •CD =2a 2, 圆的面积为π×(3a )2=9πa 2,所以圆的面积是正方形面积的9πa 2÷(2a 2)≈14(倍),故选:B .4.【解答】解:∵∠AOC=60°,∴∠B=12∠AOC=30°,∵OA=OB,∴∠OAB=∠B=30°,故选:C.5.【解答】解:⊙O的面积为2π,则圆的半径为√2,则BD=2√2=AC,由正方形的性质,知点C是点A关于BD的对称点,过点C作CA′∥BD,且使CA′=1,连接AA′交BD于点N,取NM=1,连接AM、CM,则点M、N为所求点,理由:∵A′C∥MN,且A′C=MN,则四边形MCA′N为平行四边形,则A′N=CM=AM,故△AMN的周长=AM+AN+MN=AA′+1为最小,则A′A=√(2√2)2+12=3,则△AMN的周长的最小值为3+1=4,故选:B.二.填空题(共15小题)6.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=55°,∴∠D=∠B=35°.故答案为:35°.7.【解答】解:底面半径为3,则底面周长=6π,设圆锥的母线长为x,圆锥的侧面积=12×6πx=18π.解得:x=6,故答案为:6.8.【解答】解:圆锥的侧面积为:πrl=2×1π=2πcm2,故答案为:2π.9.【解答】解:如图,过点A作CE的垂线交EC延长线于F,过E作EG⊥AB交AB于G,连AE,∵AC=BC,∠ACB=90°,∴∠CAB=45°,∵CE∥AB,∴∠F AB=90°,∴∠F AC=45°,∴△AFC为等腰直角三角形,设AF=x,则CF=x,∴AC=√AF2+CF2=√2x,∴AB=√AC2+BC2=√2AC=2x,∵AE、AB均为⊙的半径,∴AE=2x,∴EF=√AE2−AF2=√3x,∴CE=(√3−1)x,∴四边形F AGE 为矩形,∴AF =EG =x ,EF =AG =√3x ,∴BG =AB ﹣AG =(2−√3)x ,∴BE =√EG 2+BG 2=(√6−√2)x ,∴CE BE =√3−1√6−√2=√22. 故答案为:√22. 10.【解答】解:过点A 分别作AC ⊥x 轴于点C 、AD ⊥y 轴于点D ,连接AB ,如图,∵AD ⊥y 轴,AC ⊥x 轴,∴四边形ADOC 为矩形,∴AC =OD ,OC =AD ,∵⊙A 与x 轴相切,∴AC 为⊙A 的半径,∵点A 坐标为(8,5),∴AC =OD =5,OC =AD =8,∵PB 是切线,∴AB ⊥PB ,∵∠APB =30°,∴P A =2AB =10,在Rt △P AD 中,根据勾股定理得,PD =√PA 2−AD 2=√102−82=6,∴OP =PD +DO =11,∵点P 在y 轴上,∴点P 坐标为(0,11).故答案为:(0,11).11.【解答】解:∵AB 是⊙O 的直径,∴∠ACB =90°,∵∠B =∠ADC =58°,∴∠BAC =90°﹣∠B =32°.故答案为32.12.【解答】解:∵扇形的圆心角为90°,母线长为8cm ,∴扇形的弧长为90π×8180=4π,设圆锥的底面半径为rcm ,则2πr =4π,解得:r =2,故答案为2.13.【解答】解:设圆锥的底面圆半径为r ,依题意,得2πr =120π×50180, 解得r =503.故答案为:503.14.【解答】解:∵四边形ABCD 是⊙O 的内接四边形,∴∠ABC +∠ADC =180°,∴∠ADC =180°﹣100°=80°.故答案为:80.15.【解答】解:该圆锥的侧面积=π×2×3=6π.故答案为6π.16.【解答】解:如图,连接DC ,∵∠DBC =90°,∴DC 是⊙O 的直径,∵点B是CD̂的中点,∴∠BCD=∠BDC=45°,在Rt△ABC中,∠ABC=90°,∠A=32°,∴∠ACB=90°﹣32°=58°,∴∠ACD=∠ACB﹣∠BCD=58°﹣45°=13°=∠ABE,故答案为:13°.17.【解答】解:设圆锥的母线长为R,∵圆锥的底面圆半径为4,∴圆锥的底面周长为8π,即侧面展开图扇形的弧长为8π,∴120π×R180=8π,解得:R=12,∴圆锥的侧面展开图面积=120π×122360=48π,故答案为:48π.18.【解答】解:如图,连接OA,∵C是AB̂的中点,∴D是弦AB的中点,∴OC⊥AB,AD=BD=4,∵OA=OC,CD=2,∴OD=OC﹣CD=OA﹣CD,在Rt△OAD中,OA 2=AD 2+OD 2,即OA 2=16+(OA ﹣2)2,解得OA =5,故答案为:5.19.【解答】解:如图,设圆心为O ,连接OA ,OB ,OC ,OD 和OE ,∵F A ,GB ,HC ,ID ,JE 是五边形ABCDE 的外接圆的切线,∴∠OAF =∠OBG =∠OCH =∠ODI =∠OEJ =90°,即(∠BAF +∠OAB )+(∠CBG +∠OBC )+(∠DCH +∠OCD )+(∠EDI +∠ODE )+(∠AEJ +∠OEA )=90°×5=450°,∵OA =OB =OC =OD =OE ,∴∠OAB =∠OBA ,∠OBC =∠OCB ,∠OCD =∠ODC ,∠ODE =∠OED ,OEA =∠OAE ,∴∠OAB +∠OBC +∠OCD +∠ODE +∠OEA =12×五边形ABCDE 内角和=12×(5−2)×180°=270°, ∴∠BAF +∠CBG +∠DCH +∠EDI +∠AEJ =(∠BAF +∠OAB )+(∠CBG +∠OBC )+(∠DCH +∠OCD )+(∠EDI +∠ODE )+(∠AEJ +∠OEA )﹣(∠OAB +∠OBC +∠OCD +∠ODE +∠OEA )=450°﹣270°=180°,故答案为:180.20.【解答】解:由题意得,扇形的半径为8cm ,圆心角为45°,故此扇形的弧长为:45π×8180=2π(cm ),故答案为:2π三.解答题(共12小题)21.【解答】解:(1)如图1﹣1中,连接AP ,过点O 作OH ⊥AB 于H ,交CD 于E .∵四边形ABCD是正方形,∴AB=AD=4,∠ABP=90°,∴AP是直径,∴AP=√AB2+BP2=√42+32=5,∵OH⊥AB,∴AH=BH,∵OA=OP,AH=HB,∴OH=12PB=32,∵∠D=∠DAH=∠AHE=90°,∴四边形AHED是矩形,∴OE⊥CE,EH=AD=4,∴OE=EH﹣OH=4−32=52,∴OE=OP,∴直线CD与⊙O相切.(2)如图2中,延长AE交BC的延长线于T,连接PQ.∵∠D=∠ECT=90°,DE=EC,∠AED=∠TEC,∴△ADE≌△TCE(ASA),∴AD=CT=4,∴BT=BC+CT=4+4=8,∵∠ABT=90°,∴AT=√AB2+BT2=√42+82=4√5,∵AP是直径,∴∠AQP=90°,∵P A平分∠EAB,PQ⊥AQ,PB⊥AB,∴PB=PQ,设PB=PQ=x,∵S△ABT=S△ABP+S△APT,∴12×4×8=12×4√5×x+12×4×x,∴x=2√5−2,∴tan∠EAP=tan∠P AB=PBAB=√5−12.22.【解答】(1)证明:连接DO,如图,∵直径所对圆周角,∴∠ADC =90°,∴∠BDC =90°,E 为BC 的中点, ∴DE =CE =BE ,∴∠EDC =∠ECD ,又∵OD =OC ,∴∠ODC =∠OCD ,而∠OCD +∠DCE =∠ACB =90°,∴∠EDC +∠ODC =90°,即∠EDO =90°, ∴DE ⊥OD 且OD 为半径,∴DE 与⊙O 相切;(2)由(1)得,∠CDB =90°, ∵CE =EB ,∴DE =12BC ,∴BC =5,∴BD =√BC 2−CD 2=√52−32=4, ∵∠BCA =∠BDC =90°,∠B =∠B , ∴△BCA ∽△BDC ,∴AC CD =BC BD , ∴AC 3=54,∴AC =154,∴⊙O 直径的长为154.23.【解答】解:(1)连接OC ,如图,∵CD 是⊙O 的切线,∴OC ⊥CD ,∵AE ⊥CD ,∴OC ∥AE ,∴∠CAD =∠OCA ,∵OA =OC ,∴∠OCA =∠OAC ,∴∠CAD =∠OAC =35°,∵AB 为⊙O 的直径,∴∠ACB =90°,∴∠OAC +∠B =90°,∴∠B =90°﹣∠OAC =90°﹣35°=55°;(2)连接OE ,∵⊙O 的直径AB =2,∴OA =1,∵CÊ=CE ̂, ∴∠COE =2∠CAE =2×35°=70°,∴EC ̂的长为:70π⋅1180=7π18.24.【解答】解:(1)①连接OD ,如图:∵m=3即PB=3,AP=1,∴AB=AP+PB=4,∴OA=OD=12AB=2,∴OP=OA﹣AP=1=AP,∴P是OA中点,又CD⊥AB,∴CD是OA的垂直平分线,∴AD=OD=OA=2,即△AOD是等边三角形,∴∠OAD=60°;②连接AQ,如图:∵AB是⊙O直径,∴∠AQB=90°,∵AH⊥DQ,∴∠AHD=90°,∴∠AQB=∠AHD,∵AQ̂=AQ̂,∴∠ADH=∠ABQ,∴△ADH∽△ABQ,∴BQDH=ABAD,由①知:AB=4,AD=2,∴BQDH=2;(2)连接AQ、BD,如图:∵AB是⊙O直径,∴∠ADB=90°,∴∠ADB=∠APD,又∠P AD=∠DAB,∴△APD∽△ADB,∴ADAB=APAD,∵AP=1,PB=m,∴AB=1+m,AD1+m =1AD,∴AD=√1+m,与(1)中②同理,可得:BQDH =ABAD,∴BQDH=√1+m=√1+m;(3)由(2)得BQDH=√1+m,∴BQ=√1+m•DH,即BQ2=(1+m)•DH2,∴BQ2﹣2DH2+PB2=(1+m)•DH2﹣2DH2+m2=(m﹣1)•DH2+m2,若BQ2﹣2DH2+PB2是定值,则(m﹣1)•DH2+m2的值与DH无关,∴当m=1时,BQ2﹣2DH2+PB2的定值为1,此时P与O重合,如图:∵AB ⊥CD ,OA =OD =1,∴△AOD 是等腰直角三角形,∴∠OAD =45°,∵BD̂=BD ̂, ∴∠BQD =45°,故存在半径为1的⊙O ,对Q 的任意位置,都有BQ 2﹣2DH 2+PB 2是定值1,此时∠BQD 为45°.25.【解答】证明:(1)在△AOE 和△CDE 中,{AE =CE ∠AEO =∠CED OE =DE,∴△AOE ≌△CDE (SAS );(2)∵△AOE ≌△CDE ,∴OA =CD ,∠AOE =∠D ,∴OB ∥CD ,∴四边形OBCD 为平行四边形,∵OB =OD ,∴四边形OBCD 是菱形.26.【解答】解:(1)直线CD 与⊙O 相切,理由如下:如图,连接OC ,∵OA=OC,CD=BD,∴∠A=∠ACO,∠B=∠DCB,∵∠AOB=90°,∴∠A+∠B=90°,∴∠ACO+∠DCB=90°,∴∠OCD=90°,∴OC⊥CD,又∵OC为半径,∴CD是⊙O的切线,∴直线CD与⊙O相切;(2)∵tan∠ODC=247=OCCD,∴设CD=7x=DB,OC=24x=OA,∵∠OCD=90°,∴OD=√OC2+CD2=√49x2+576x2=25x,∴OB=32x,∵∠AOB=90°,∴AB2=AO2+OB2,∴1600=576x2+1024x2,∴x=1,∴OA=OC=24,∴⊙O的半径为24.27.【解答】解:(1)如图②中连接AO,AC,AB.设∠AOC=n.∵AĈ的长=4π,∴nπ⋅12 180°=4π,∴∠COA =60°,∵OA =OC ,∴△AOC 是等边三角形,∵OB =BC =6,∴AB ⊥OC ,∴AB =√OA 2−OB 2=√122−62=6√3.最短的路径是线段AB ,最短路径的长为6√3.(2)①蚂蚁从点A 爬行到点O 的最短路径的长为母线的长加圆柱的高,即为h +l . 故答案为:h +l .②蚂蚁从点A 爬行到点B 的最短路径的示意图如图④,最短路径为AB ,思路:Ⅰ、过点O 作OF ⊥AD 于F ,交AB 于G ,此时,点G 在扇形的弧上,Ⅱ、设CG =x ,则C ′G ̂的长为x ,进而求出∠BOG 的度数,Ⅲ、再过点B 作BE ⊥OF 于E ,用三角函数求出OE ,BE ,得出FH ,即可求出AH , Ⅳ、求出EF ,进而求出BH ,Ⅶ、在Rt △ABH 中,利用勾股定理建立AB 关于x 的方程,求解最小值.28.【解答】(1)证明:∵四边形ABCD 内接于⊙O ,∴∠A =∠DCE ,∴AD̂=DC ̂, ∴AD =DC ,在△ABD 和△DCE 中,{AB =CE ∠A =∠DCE AD =DC,∴△ABD ≌△CED (SAS ),∴BD =ED ;(2)解:过点D 作DM ⊥BE 于M ,∵AB =4,BC =6,CE =AB ,∴BE =BC +EC =10,∵BD =ED ,DM ⊥BE ,∴BM =ME =12BE =5,∴CM =BC ﹣BM =1,∵∠ABC =60°,∠1=∠2,∴∠2=30°,∴DM =BM •tan ∠2=5×√33=5√33, ∴tan ∠DCB =DM CM =5√33.29.【解答】解:(1)如图②中,连接FH ,∵正方形ABCD 外切于一个半径为5米的圆O ,∴AB =10米,∴容器甲的容积=102×6=600(立方米),∵∠FEH =90°,∴FH 为直径,在Rt △EFH 中,EF =2EH ,FH =10米,∴EH 2+4EH 2=100,∴EH =2√5(米),EF =4√5(米),∴容器乙的容积=2√5×4√5×6=240(立方米).(2)①当t =4时,h =4×2540−4×25100=1.5,∵MN ∥t 轴,∴M (4,1.5),N (6,1.5),∵6小时后的高度差为1.5米,∴25×640−25×6+2a 100=1.5,解得a =37.5.②当注水t 小时后,由h 乙﹣h 甲=0,可得25t 40−25t+(t−4)×37.5+(t−6)×50100=0,解得t =9,即P (9,0),设线段PN 所在的直线的解析式为h =kt +m ,∵N (6,1.5),P (9,0)在直线PN 上,∴{6k +m =1.59k +m =0,解得{k =−12m =92, ∴线段PN 所在的直线的解析式为h =−12t +92.30.【解答】解:(1)过点B 作BF ⊥CD ,垂足为F , ∵AD ∥BC ,∴∠ADB =∠CBD ,∵CB =CD ,∴∠CBD =∠CDB ,∴∠ADB =∠CDB .在△ABD 和△FBD 中,{∠ADB =∠FDB∠BAD =∠BFD BD =BD,∴△ABD ≌△FBD (AAS ),∴BF =BA ,则点F 在圆B 上,∴CD 与⊙B 相切;(2)∵∠BCD =60°,CB =CD ,∴△BCD 是等边三角形,∴∠CBD =60°∵BF ⊥CD ,∴∠ABD =∠DBF =∠CBF =30°,∴∠ABF =60°,∵AB =BF =2√3,∴AD =DF =AB ·tan30°=2,∴阴影部分的面积=S △ABD ﹣S 扇形ABE=12×2√3×2−30×π×(2√3)2360=2√3−π.31.【解答】解:(1)①设O 为圆心,连接BO ,CO , ∵∠BCA =30°,∴∠BOC =60°,又OB =OC ,∴△OBC 是等边三角形,∴OB =OC =BC =2,即半径为2;②∵△ABC 以BC 为底边,BC =2,∴当点A 到BC 的距离最大时,△ABC 的面积最大,如图,过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D , ∴BE =CE =1,DO =BO =2,∴OE =√BO 2−BE 2=√3,∴DE =√3+2,∴△ABC 的最大面积为12×2×(√3+2)=√3+2;(2)如图,延长BA ′,交圆于点D ,连接CD ,∵点D 在圆上,∴∠BDC =∠BAC ,∵∠BA ′C =∠BDC +∠A ′CD ,∴∠BA ′C >∠BDC ,∴∠BA ′C >∠BAC ,即∠BA ′C >30°;(3)①如图,当点P 在BC 上,且PC =32时,∵∠PCD =90°,AB =CD =2,AD =BC =3,∴tan ∠DPC =CD PC =43,为定值,连接PD ,设点Q 为PD 中点,以点Q 为圆心,12PD 为半径画圆, ∴当点P 在优弧CPD 上时,tan ∠DPC =43,连接BQ ,与圆Q 交于P ′, 此时BP ′即为BP 的最小值,过点Q 作QE ⊥BE ,垂足为E , ∵点Q 是PD 中点,∴点E 为PC 中点,即QE =12CD =1,PE =CE =12PC =34, ∴BE =BC ﹣CE =3−34=94,∴BQ =√BE 2+QE 2=√974,∵PD =√CD 2+PC 2=52,∴圆Q 的半径为12×52=54, ∴BP ′=BQ ﹣P ′Q =√97−54,即BP 的最小值为√97−54;②∵AD =3,CD =2,S △PCD =23S △P AD ,则CD AD =23, ∴△P AD 中AD 边上的高=△PCD 中CD 边上的高,即点P 到AD 的距离和点P 到CD 的距离相等,则点P 到AD 和CD 的距离相等,即点P 在∠ADC 的平分线上,如图,过点C作CF⊥PD,垂足为F,∵PD平分∠ADC,∴∠ADP=∠CDP=45°,∴△CDF为等腰直角三角形,又CD=2,∴CF=DF=2√2=√2,∵tan∠DPC=CFPF=43,∴PF=3√2 4,∴PD=DF+PF=√2+3√24=7√24.32.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC.又∵AB=AD,AC=AC,∴△BAC≌△DAC(SAS),∴∠ADC=∠ABC=90°,∴CD⊥AD,即AD是⊙C的切线;(2)解:由(1)可知,∠EDC=∠ABC=90°,又∠E=∠E,∴△EDC∽△EBA.∵S△EDC=2S△ABC,且△BAC≌△DAC,∴S△EDC:S△EBA=1:2,∴DC:BA=1:√2.∵DC=CB,∴CB:BA=1:√2.∴tan∠BAC=CBBA=√22.。
数学 第八单元 圆 知识点汇总
相关概念
(1)连结圆上任意两点的线段叫做弦,经过圆心的弦叫做直径;直径是最大的弦,它的长是半径的2倍 [1] 。
(2)弦到圆心的距离叫做弦心距。
(3)圆上任意两点间的部分叫做圆弧;任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆。
(4)圆心相同,半径不相等的两个圆叫做同心圆;圆心不相同,半径相等的两个圆叫做等圆。在同圆或等圆中,能够互相
当角的度数与弧的度数相等时,不能说角与弧相等,只能说他们的度数相等,因此不能出现
这样的式子。
“圆心角相等,则所对的弧相等”的前提是在同圆或等圆中,如图2, 与 所对的圆心角相等,它们的度数也相
等,但弧的长度不等。
九年级下册-第八章 圆
圆心的定义
(6)顶点在圆上,并且两边都与圆相交的角叫做圆周角,圆周角的度数等于它所对弧的度数的一半,一条弧所对的圆周角 等于它所对的圆心角的一半。同弧或等弧所对的圆周角相等;同圆或等圆中相等的圆周角所对的弧也相等;半圆所对的 圆周角是直角;90°的圆周角所对的弦是直径。 (7)顶点在圆上,一边与圆相交,另一边与圆相切的角叫做弦切角。圆周角与弦切角的顶点都在圆上,圆周角的两边都是 过顶点的弦,而弦切角的一条边是过顶点的弦,另一条边是过顶点的切线.弦切角等于它所夹的弧对的圆周角,弦切角 的度数等于它所夹的弧的度数的一半,两个弦切角所夹的弧相等,这两个弦切角相等。
九年级下册-第八章 圆
圆的性质-垂径定理
1.垂径定理: 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。 一条直线,在下列5条中只要具备其中任意两条作为条件,就可以推出其他三条结论。称为知二得三(知二推三)。 1.平分弦所对的优弧 2.平分弦所对的劣弧(前两条合起来就是:平分弦所对的两条弧) 3.平分弦 4.垂直于弦 5.过圆心(或是直径) 推导定理 推论一:平分弦(非直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧。 几何语言:∵DC是直径,AE=EB ∴直径DC垂直于弦AB,劣弧AD=劣弧BD,弧AC=弧BC 推论二:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧。 几何语言:∵弧AD=弧BD ∴CD垂直平分AB,弧AC=弧BC 推论三:在同圆或者等圆中,两条平行弦所夹的弧相等。
数学中考复习 圆的相关知识点及习题
圆专题一、圆的相关概念1.圆的定义(1)描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径.(2)集合性定义:平面内到定点的距离等于定长的点的集合叫做圆,顶点叫做圆心,定长叫做半径.(3)圆的表示方法:通常用符号⊙表示圆,定义中以O为圆心,OA为半径的圆记作”O⊙“,读作”圆O“.(4)同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆.注意:注意:同圆或等圆的半径相等.2.弦和弧(1)弦:连结圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍.(3)弦心距:从圆心到弦的距离叫做弦心距.、为端点的圆弧记作AB,读作弧AB.(4)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B(5)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.(6)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.(7)优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(8)弓形:由弦及其所对的弧组成的图形叫做弓形.3.圆心角和圆周角(1)圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.(2)圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.二、圆的对称性1.旋转对称性(1)圆是中心对称图形,对称中心是圆心;圆是旋转对称图形,无论绕圆心旋转多少度角,总能与自身重合.(2)圆的旋转对称性⇒圆心角、弧、弦、弦心距之间的关系.2.轴对称性(1)圆是轴对称图形,经过圆心的任一条直线是它的对称轴.(2)圆的轴对称性⇒垂径定理.三、圆的性质定理1.圆周角定理(1) 定理:一条弧所对的圆周角等于它所对的圆心角的一半. (2) 推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. 推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.2. 圆心角、弧、弦、弦心距之间的关系(1) 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.(2) 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.注意:①前提条件是在同圆或等圆中;②在由等弦推出等弧时应注意:优弧与优弧相等;劣弧与劣弧相等.3. 垂径定理(1) 定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. (2) 推论1:①平分弦(非直径)的直径,垂直于弦,并且平分弦所对的两条弧.②弦的垂直平分线经过圆心,并且平分弦所对的两条弧.③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. (3) 推论2:圆的两条平行线所夹的弧相等.注意:若“过圆心的直线”、“垂直于弦”、“平分弦(非直径)”、“平分弦所对的优弧”、“平分弦所对的劣弧”中的任意两个成立,则另外三个都成立.注意:应用垂径定理与推论进行计算时,往往要构造如右图所示的直角三角形,根据垂径定理与勾股定理有:222()2ar d =+,根据此公式,在a ,r ,d 三个量中知道任何两个量就可以求出第三个量.F EBA CDOr a 2d O CBA所对的两圆心角相等所对的两条弦相等 所对的两条弧相等所对的两条弦的弦心距相等EO D B A【例1】 如图,点A D G M 、、、在半圆O 上,四边形ABOC DEOF HMNO 、、均为矩形,设BC a =,EF b =,NH c =则下列格式中正确的是( )A .a b c >>B .a b c ==C .c a b >>D .b c a >>【例2】 如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为216cm ,则该半圆的半径为______.二、圆的性质定理1. 圆周角定理【例3】 如图,量角器外沿上有A B 、两点,它们的度数分别是7040︒︒、,则1∠的度数为_________.【例4】 如图,量角器外缘边上有A P Q ,,三点,它们所表示的读数分别是180︒,70︒,30︒,则PAQ ∠的大小为( )A .10︒B .20︒C .30︒D .40︒【例5】 如图,O ⊙是ABC ∆的外接圆,已知60B ∠=︒,则CAO ∠的度数是( )A .15︒B .30︒C .45︒D .60︒【例6】 如图,已知O 的弦AB CD ,相交于点E ,AC 的度数为60︒,BD 的度数为100︒,则AEC ∠等于ON MHG FE DC BA( ) A .60°B .100°C .80°D .130°【例7】 如图所示的半圆中,AD 是直径,且32AD AC ==,,则sin B 的值是________.【例8】 如图,已知AB 为⊙O 的直径,20E ∠=︒,50DBC ∠=︒,则CBE ∠=______.【例9】 如图,在O ⊙中,AOB ∠的度数为m ,C 是ACB 上一点,D E 、是AB 上不同的两点(不与A B 、两点重合),则D E ∠+∠的度数为____________.【例10】 如图,AB 是O 的直径,点C ,D ,E 都在O 上,若C D E ==∠∠∠,求A B +∠∠.DCA BBA【例11】 如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是65︒.为了监控整个展厅,最少需在圆形边缘上共安装...这样的监视器 台.【例12】 如图所示,在ABC ∆中,45C ∠=︒,4AB =,则O ⊙的半径为( )B.4D.5【例13】 如图AB 是半圆O 的直径,点C D 、在弧AB 上,且AD 平分CAB ∠,已知106AB AC ==,,求AD的长.【例14】 如图,半圆的直径10AB =,点C 在半圆上,6BC =.(1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 的长.2. 圆内接四边形【例15】 如图,O ⊙外接于正方形ABCD ,P 为弧AD 上一点,且1AP =,PB =PC 的长.【例16】 如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点P ,BAPEC BAP DCBAAB BD =,且0.6PC =,求四边形ABCD 的周长.【例17】 如图,AB CD ,是O ⊙的两条弦,它们相交于点P ,连结AD BD 、,已知4AD BD ==,6PC =,求CD 的长.一、点与圆的位置关系4. 确定圆的条件(5) 圆心(定点),确定圆的位置; (6)半径(定长),确定圆的大小.注意:只有当圆心和半径都确定时,圆才能确定. 5. 点与圆的位置关系(7) 点与圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距离与半径的大小关系决定. (8) 设O ⊙的半径为r ,点P 到圆心O 的距离为d ,则有:点在圆外⇔d r >;点在圆上⇔d r =;点在圆内⇔d r <.如下表所示:C二、过已知点的圆1. 过已知点的圆(1) 经过点A 的圆:以点A 以外的任意一点O 为圆心,以OA 的长为半径,即可作出过点A 的圆,这样的圆有无数个. (2) 经过两点A B 、的圆:以线段AB 中垂线上任意一点O 作为圆心,以OA 的长为半径,即可作出过点A B 、的圆,这样的圆也有无数个. (3) 过三点的圆:若这三点A B C 、、共线时,过三点的圆不存在;若A B C 、、三点不共线时,圆心是线段AB 与BC 的中垂线的交点,而这个交点O 是唯一存在的,这样的圆有唯一一个. (4) 过n ()4n ≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆心.2. 定理:不在同一直线上的三点确定一个圆(1) “不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆; (2) “确定”一词的含义是”有且只有”,即”唯一存在”.三、三角形的外接圆及外心1. 三角形的外接圆(1) 经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形. (2) 锐角三角形外接圆的圆心在它的内部;直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半);钝角三角形外接圆的圆心在它的外部. 2. 三角形外心的性质(1) 三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等; (2) 三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.一、点与圆的位置关系【例18】 已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是( )A .2B .6C .12D .7二、过三点的圆【例19】 如图,四边形ABCD 中,AB AC AD ==,若7613CAD BDC ∠=︒∠=︒,,则CBD ∠=_________,BAC ∠=__________.DCBA【例20】 如图,直角坐标系中一条圆弧经过网格点A B C ,,,其中B 点的坐标为()44,,则该圆弧所在圆的圆心的坐标为 .三、三角形的外接圆及外心【例21】 如图,ABC ∆内接于O ⊙,120BAC ∠=︒,AB AC =,BD 为O ⊙的直径,6AD =,则BC = .【例22】 等边三角形的外接圆的半径等于边长的( )倍. ABCD .12【例23】 ABC ∆中,10AB AC ==,12BC =,求其外接圆的半径.【例24】 已知如图,ACD ∆的外角平分线CB 交其外接圆于B ,连接BA 、BD ,求证:BA BD =.N【例25】 已知∆ABC 中,=AB AC ,D 是∆ABC 外接圆劣弧AC 上的点(不与点A C ,重合),延长BD 至E . ⑴ 求证:AD 的延长线平分∠CDE ;⑴ 若30∠=︒BAC ,∆ABC 中BC边上的高为2+∆ABC 外接圆的面积.直线与圆的位置关系设O ⊙的半径为r ,圆心O 到直线l 的距离为d ,则直线和圆的位置关系如下表:6. 切线的性质(9) 定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心.(10) 注意:这个定理共有三个条件,即一条直线满足:①垂直于切线②过切点③过圆心①过圆心,过切点⇒垂直于切线.AB 过圆心,AB 过切点M ,则AB l ⊥. ②过圆心,垂直于切线⇒过切点.AB 过圆心,AB l ⊥,则AB 过切点M . ③过切点,垂直于切线⇒过圆心.AB l ⊥,AB 过切点M ,则AB 过圆心.7. 切线的判定(1) 定义法:和圆只有一个公共点的直线是圆的切线; (2) 距离法:和圆心距离等于半径的直线是圆的切线; (3) 定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.注意:定理的题设是①“经过半径外端”,②“垂直于半径”,两个条件缺一不可;定理的结论是“直线是圆的切线”.因此,证明一条直线是圆的切线有两个思路:①连接半径,证直线与此半径垂直;②作垂直,证垂直在圆上.AB CD El8. 切线长和切线长定理(1) 切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长. (2) 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.三、三角形的内切圆1. 三角形的内切圆:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2. 多边形的内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.3. 直角三角形内切圆的半径与三边的关系设a 、b 、c 分别为ABC △中A ∠、B ∠、C ∠的对边,面积为S ,则内切圆半径为sr p=,其中()12p a b c =++.若90C ∠=︒,则()12r a b c =+-.二、切线的性质及判定【例1】 如图,ABC ∆为等腰三角形,AB AC =,O 是底边BC 的中点,O ⊙与腰AB 相切于点D ,求证AC 与O ⊙相切.lcb acbaO F ED CACBAB A【例2】 已知:如图,ABC ∆内接于O ,AD 是过A 的一条射线,且B CAD ∠=∠.求证:AD 是O 的切线.【例3】 已知:如图,AB 是O ⊙的直径,C 为O ⊙上一点,MN 过C 点,AD MN ⊥于D ,AC 平分DAB ∠.求证:MN 为O ⊙的切线.【例4】 如图,已知OA 是O ⊙的半径,B 是OA 中点,BC OA ⊥,P 是OA 延长线上一点,且PA AC =.求证:PC 是O ⊙的切线.【例5】 已知:如图,C 为O ⊙上一点,DA 交O ⊙于B ,连结AC BC 、,且DCB CAB ∠=∠DC 为O ⊙的切线;(2)2CD AD BD =⋅.【例6】 如图,以等腰ABC ∆中的腰AB 为直径作O ,交BC 于点D .过点D 作DE AC ⊥,垂足为E .(1)求证:DE 为O 的切线;(2)若O 的半径为5,60BAC ∠=︒,求DE 的长.C【例7】 如图,已知AB 为⑴O 的弦,C 为⑴O 上一点,⑴C =⑴BAD ,且BD ⑴AB 于B .(1)求证:AD 是⑴O 的切线.(2)若⑴O 的半径为3,AB =4,求AD 的长.【例8】 如图,Rt ABC ∆中,90ABC ∠=︒,以AB 为直径作O ⊙交AC 边于点D ,E 是边BC 的中点,连接DE .(1)求证:直线DE 是O ⊙的切线;(2)连接OC 交DE 于点F ,若OF CF =,求tan ACO ∠的值.【例9】 如图,AB 是O ⊙的的直径,BC AB ⊥于点B ,连接OC 交O ⊙于点E ,弦AD OC ∥,弦DF AB⊥于点G .(1)求证:点E 是BD 的中点; (2)求证:CD 是O ⊙的切线;(3)若4sin 5BAD ∠=,O ⊙的半径为5,求DF 的长.【例10】 如图,等腰三角形ABC 中,10AC BC ==,12AB =.以BC 为直径作O ⊙交AB 于点D ,交AC于点G ,DF AC ⊥,垂足为F ,交CB 的延长线于点E . (1)求证:直线EF 是O ⊙的切线; (2)求sin E ∠的值.一、切线长定理1.如图,PA PB ,分别是O 的切线,A B ,为切点,AC 是O 的直径,已知35BAC ∠=︒,P ∠的度数为( ) A .35︒ B .45︒ C .60︒ D .70︒2.如图,PA PB 、分别切O ⊙于A B ,两点,PC 满足AB PB AC PC AB PC AC PB ⋅-⋅=⋅-⋅,且AP PC ⊥,2PAB BPC ∠=∠,求ACB ∠的度数.3.如图,从圆O 外一点P 引圆O 的两条切线PA PB ,,切点分别为A B ,.如果60APB ∠=,8PA =,那么弦AB 的长是( )A .4B .8C.D.P则OP =( )A .50cm B.cm Ccm D.cm5.如图,已知以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形上底AD 、下底BC 以及腰AB 均相切,切点分别是D C E ,,.若半圆O 的半径为2,梯形的腰AB 为5,则该梯形的周长是( )A .9B .10C .12D .146.等腰梯形ABCD 外切于圆,且中位线MN 的长为10,那么这个等腰梯形的周长是________.7.如图,PA PB DE 、、分别切O ⊙于A B C 、、,若10PO =,PDE ∆周长为16,求O ⊙的半径.8.如图,PA PB ,切O 于AB ,,MN 切O 于C ,交PA PB ,于M N ,两点,已知8PA =,求PMN ∆的周长.PB P于G,交AB AC、于MN,则BMN∆的周长为______________.10.如图,已知AB是O⊙的直径,BC是和O⊙相切于点B的切线,O⊙的弦AD平行于OC,若2OA=,且6AD OC+=,求CD的长.补充讲义两圆的公切线(选讲自己了解)9.两圆的外公切线(11)求两圆外公切线长:构造外公切线、圆心距、大圆与小圆半径的差为边的特征直角三角形.如图,设大圆的半径为R,小圆的半径为r,两圆的圆心距为d,两外公切线的夹角为α,则两圆的外公切线长为:l=,sin2R rdα-=(12)求两圆内公切线长:构造外公切线、圆心距、大圆与小圆半径的和为边的特征直角三角形.10.两圆的内公切线如图,设大圆的半径为R,小圆的半径为r,两圆的圆心距为d,两外公切线的夹角为α,则两圆的内公切线长l=,sin2R r dα+ =CB AP圆与相似三角形经典证明题1.如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3 点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系为.2.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线.(2)当BC=8,AC=12时,求⊙O的半径.(3)在(2)的条件下,求线段BG的长.3.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.4..Rt.ABC...ACB=90°.D.AB.......BD.....O.AC..E...DE.....BC.......F..BD=BF..1....AC..O....2..BC=6.AB=12...O....5....AB..O......A..O..........C...OC..O..D.BD.....AC.E...AD..1.....CDE..CAD..2..AB=2.AC=2..AE...6. 已知在△ABC中,∠B=90°,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB 于点E..1....AC•AD=AB•AE..2...BD.⊙O....D....E.OB.....BC=2...AC...7.如图所示,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.8. 如图,已知在△ABC中,AD是BC边上的中线,以AB为直径的⊙O交BC于点D,过D作MN⊥AC于点M,交AB的延长线于点N,过点B作BG⊥MN于G.(1)求证:△BGD∽△DMA;(2)求证:直线MN是⊙O的切线.9. 如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.(1)求证:∠1=∠2.(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.10......O..AB....OC.AB..CD.OB...F..AB.......E..EF=ED..1....DE..O.....2..OF.OB=1.3..O...R=3.....11....AB .⊙O .....D ......∠BDE =∠CBE .BD .AE ...F .(1)求证:BC 是⊙O 的切线;(2)若BD 平分∠ABE ,求证:DE 2=DF •DB ;(3)在(2)的条件下,延长ED ,BA 交于点P ,若PA =AO ,DE =2,求PD 的长和⊙O 的半径.12.如图,AB 是⊙O 的直径,点C 为⊙O 上一点,AE 和过点C 的切线互相垂直,垂足为E ,AE 交⊙O 于点D ,直线EC 交AB 的延长线于点P ,连接AC ,BC ,PB :PC =1:2. (1)求证:AC 平分∠BAD ;(2)探究线段PB ,AB 之间的数量关系,并说明理由; (3)若AD =3,求△ABC 的面积.13.已知,如图,AB 是⊙O 的直径,点C 为⊙O 上一点,OF ⊥BC 于点F ,交⊙O 于点E ,AE 与BC 交于点H ,点D 为OE 的延长线上一点,且∠ODB =∠AEC . (1)求证:BD 是⊙O 的切线; (2)求证:2CE EH EA =⋅; (3)若⊙O 的半径为5,3sin 5A =,求BH 的长.第13题图FH EOC B A。
初三数学常考圆的知识点归纳
初三数学常考圆的知识点归纳(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!初三数学常考圆的知识点归纳在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。
(完整版)中考数学专题复习圆压轴八大模型题(学生用)(最新整理)
2.(2018·云南昆明)如图,AB 是⊙O 的直径,ED 切⊙O 于点 C,AD 交⊙O 于点 F,∠AC 平分∠BAD,连接 BF. (1)求证:AD⊥ED; (2)若 CD=4,AF=2,求⊙O 的半径.
圆压轴题八大模型题(二)
引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第二题 的位置上,是试卷中综合性与难度都比较大的习题。一般都会在固定习题模型的基础上变化 与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用 技巧。把握了这些方法与技巧,就能台阶性地帮助考生解决问题。
直线 CM 是⊙O 的切线.
【变式运用】
1.(2018·四川宜宾)如图,AB 是半圆的直径,AC 是一条弦,D 是 AC 的中点,DE⊥AB 于点 E 且 DE 交 AC 于点 F,DB 交 AC 于点 G,若 = ,则
= .
(图 1-2)
2.(2018·泸州)如图,在平行四边形 ABCD 中,E 为 BC 边上的一点,且 AE 与 DE 分别 平分∠BAD 和∠ADC。(1)求证:AE⊥DE;(2)设以 AD 为直径的半圆交 AB 于 F,连接 DF
求 PA 和 AD.
求 AD、PD、PA 的长.
【典例】 (2018·四川乐山)如图,P 是⊙O 外的一点,PA、PB 是⊙O 的两条切线,A、B 是切点,PO 交 AB 于点 F,延长 BO 交⊙O 于点 C,交 PA 的延长交于点 Q,连结 AC. (1)求证:AC∥PO;
(2)设 D 为 PB 的中点,QD 交 AB 于点 E,若⊙O 的半径为 3,CQ=2,求 的值.
2025年中考数学考点分类专题归纳之 圆
2025年中考数学考点分类专题归纳圆知识点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.备注:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.⑤平行弦夹的弧相等.备注:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.4.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.备注:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.知识点二、与圆有关的位置关系1.判定一个点P是否在⊙O上设⊙O的半径为,OP=,则有点P在⊙O 外;点P在⊙O 上;点P在⊙O 内.备注:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点A1,A2……A n在同一个圆上的方法当A1O=A2O=……=A n O=R时,A1,A2……A n在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R,点O到直线的距离为.(1)直线和⊙O没有公共点直线和圆相离.(2)直线和⊙O有唯一公共点直线和⊙O相切.(3)直线和⊙O有两个公共点直线和⊙O相交.4.切线的判定、性质(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.知识点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.备注:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.知识点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.备注:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.1.(2024•贺州)如图,AB是⊙O的直径,且经过弦CD的中点H,已知sin∠CDB,BD=5,则AH的长为()A.B.C.D.2.(2024•张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm3.(2024•襄阳)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.2C.D.24.(2024•衢州)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm5.(2024•枣庄)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.86.(2024•安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm7.(2024•临安区)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.8.(2024•乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸9.(2024•日照)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED 的正切值等于()A.B.C.2 D.10.(2024•巴中)如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB 等于()A.B.2 C.2D.311.(2024•赤峰)如图,AB是⊙O的直径,C是⊙O上一点(A、B除外),∠AOD=130°,则∠C的度数是()A.50°B.60°C.25°D.30°12.(2024•盘锦)如图,⊙O中,OA⊥BC,∠AOC=50°,则∠ADB的度数为()A.15°B.25°C.30°D.50°13.(2024•陕西)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°14.(2024•柳州)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°15.(2024•铜仁市)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120°D.125°16.(2024•通辽)已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°17.(2024•咸宁)如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A.6 B.8 C.5D.518.(2024•陇南)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°19.(2024•盐城)如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°20.(2024•邵阳)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°21.(2024•泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.822.(2024•牡丹江)如图,△ABC内接于⊙O,若sin∠BAC,BC=2,则⊙O的半径为()A.3B.6C.4D.223.(2024•自贡)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A.B.C.D.24.(2024•湘西州)已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定25.(2024•湘西州)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A.10 B.8 C.4D.426.(2024•福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°27.(2024•宜昌)如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为()A.30°B.35°C.40°D.45°28.(2024•重庆)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2C.3 D.2.529.(2024•海南)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D 在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_______.30.(2024•烟台)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为_________.31.(2024•孝感)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是______cm.32.(2024•广元)如图是一块圆环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C 与的中点D的距离CD=2cm.则此圆环形玉片的外圆半径为___cm.33.(2024•舟山)如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为________cm.34.(2024•毕节市)如图,AB是⊙O的直径,C、D为半圆的三等分点,CE⊥AB于点E,∠ACE的度数为_____.35.(2024•随州)如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B=____度.36.(2024•黑龙江)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=_____.37.(2024•吉林)如图,A,B,C,D是⊙O上的四个点,,若∠AOB=58°,则∠BDC=____度.38.(2024•北京)如图,点A,B,C,D在⊙O上,,∠CAD=30°,∠ACD=50°,则∠ADB=_____.39.(2024•绥化)如图,△ABC是半径为2的圆内接正三角形,则图中阴影部分的面积是________(结果用含π的式子表示).40.(2024•常州)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是___.41.(2024•新疆)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部分的面积是__.42.(2024•临沂)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是______cm.43.(2024•内江)已知△ABC的三边a,b,c,满足a+b2+|c﹣6|+28=410b,则△ABC的外接圆半径=_.44.(2024•益阳)如图,在圆O中,AB为直径,AD为弦,过点B的切线与AD的延长线交于点C,AD=DC,则∠C=____度.45.(2024•枣庄)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.46.(2024•徐州)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎样的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求的长.。
2024年中考数学复习-圆知识点复习讲义
圆知识点复习讲义第1 节圆的认识一、知识梳理1.圆的基本概念弦:连接圆上任意两点的线段叫作弦.直径:经过圆心的弦叫作直径.圆弧:圆上任意两点间的部分叫作圆弧 .弧包括优弧和劣弧,大于半圆的弧叫作优弧,小于半圆的弧叫作劣弧.半圆:圆的任意一条直径的两个端点将圆分成两条弧,每一条弧都叫作半圆.等圆:能够重合的两个圆叫作等圆.等弧:在同圆或等圆中,能够互相重合的弧叫作等弧.2.圆的对称性圆是轴对称图形,其对称轴是任意一条过圆心的直线.圆是中心对称图形,对称中心为圆心.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.3.点与圆的位置关系设⊙O的半径为r,点P到圆心O的距离为d,则有:①点在圆外⇔d>r;②点在圆上⇔d=r;③点在圆内⇔d<r.【例】如图1-1所示,AB是⊙O 的直径,四边形ABCD 内接于⊙O. 若BC=CD=DA=4cm,则⊙O的周长为( ).A. 5πcmB. 6πcmC. 9πcmD. 8πcm解:如图1-2所示,连接OD,OC.∵AB是⊙O的直径,四边形ABCD 内接于⊙O, BC=CD=DA=4cm,̂=CD̂=BĈ.∴AD∴∠AOD=∠DOC=∠COB=60°.又∵OA=OD,∴△AOD是等边三角形.∴OA=AD=4cm.∴⊙O 的周长=2π×4=8π(cm).故选 D.二、分层练习☆万丈高楼平地起1.下列命题正确的个数是( )个.①直径是圆中最大的弦;②长度相等的两条弧一定是等弧;③半径相等的两个圆是等圆;④面积相等的两个圆是等圆;⑤同一条弦所对的两条弧一定是等弧;A. 2B. 3C. 4D. 52.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图1-3 所示 .为了在商店配到与原来大小一样的圆形玻璃,小明要选择携带的应该是( ).A. 第①块B. 第②块C. 第③块D. 第④块3. 如图1-4所示,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为点D.已知CD=4,OD=3,则AB的长为 .4. 如图1-5所示,AB是⊙O的直径,点C,D在AB的异侧,连接AD,OD,OC. 若∠AOC=70°,且AD∥OC,则∠AOD的度数为 .欲穷千里目,更上一层楼5. 如图1-6所示,AB,CD是⊙O的直径, AÊ=BD̂.若∠AOE=32°,则∠COE的度数是( ).A. 32°B. 60°C. 68°D. 64°6. 如图1-7所示,AB是⊙O的直径, BĈ=CD̂=DÊ,∠COD=35∘,则∠AOE 的度数是( ).A. 65°B. 70°C. 75°D. 85°̂=DĈ=CB̂,则四边7. 如图1-8所示,已知⊙O的半径为2cm,AB是⊙O的直径,点C,D是⊙O 上的两点,且AD形ABCD的周长为( ).A. 8cmB. 10cmC. 12cmD. 16cm̂=2AĈ,那么( ).8. 如图1-9所示,在⊙O 中,如果ABA.AB=ACB.AB=2ACC.AB<2ACD.AB>2AC9. 如图1-10 所示,在矩形ABCD中, AB=8,BC=3√5,点 P 在边 AB 上,且BP=3AP.如果圆P 是以点 P 为圆心,PD 为半径的圆,那么下列判断正确的是( ).A. 点B,C均在圆P外B. 点 B在圆 P 外,点 C在圆 P 内C. 点B在圆P内,点C在圆P外D. 点 B,C均在圆P内10. 如图1-11所示,城市A的正北方向50km的B处,有一无线电信号发射塔,该发射塔发射的无线电信号的有效半径为100km,AC 是一条直达C 城的公路,从A城开往C城的班车速度为60km/h.(1)当班车从A城出发开往C城时,有人立即打开无线电收音机,班车行驶了0.5h时接收信号最强,则此时班车到发射塔的距离是多少?(离发射塔越近,信号越强)(2)班车从 A城到C城共行驶2h,请你判断,班车到C城后还能接收到信号吗?请说明理由.会当凌绝顶,一览众山小̂的中点,点P 是直径MN上一动点,⊙O 的半径11.如图1-12所示,已知点A是半圆上的三等分点,点B是AN为1.请问:点 P 在MN上什么位置时,AP+BP的值最小?并给出AP+BP的最小值.第2 节垂径定理一、知识梳理(一)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的弧.如图2-1所示,垂径定理的条件与结论理解如下:∵AB是直径,AB⊥CD于点 E,∴CE=DE,CB̂=DB̂,AĈ=AD̂.(二)垂径定理推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.【例】如图2-2所示,AB是⊙O 的弦,点 C,D是直线AB上的两点,且AC=BD,求证:OC=OD.证明:如图2-3所示,过点O作OE⊥AB于点E.∵OE⊥AB,∴AE=BE.又∵AC=BD,∴CE=DE.∴OE是CD的中垂线.∴OC=OD.二、分层练习☆万丈高楼平地起1.下列判断中正确的是( ).A.长度相等的弧是等弧B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦2.某蔬菜基地的圆弧形蔬菜大棚的剖面如图2-4所示,已知AB=16m,,半径OA为10m,则中间柱CD的高度为( )m.A. 6B. 4C. 8D. 53. 如图2-5所示,点A,B是⊙O上的两点,AB=10,点P是⊙O上的动点(点 P与点A,B不重合). 连接AP,PB,过点O 分别作OE⊥AP于点E,( OF⊥PB于点F,连接EF,则EF长为( ).A. 4B. 5C. 5.5D. 64. 点P为⊙O内一点,且OP=4. 若⊙O的半径为6,则过点P的弦长不可能为( ).A. 12B.2√30C. 8D. 10.5欲穷千里目,更上一层楼5.刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积.如图2-6所示,设⊙O的半径为2,若用⊙O的内接正六边形的面积来估计⊙O的面积,则⊙O的面积约为 (结果保留根号).6. 如图2-7所示,已知⊙O的半径为2,四边形ABCD为⊙O的内接四边形,且AD=2√2,AB=2√3,则∠DAB的度数为( ).A.105°B.60°C.75°D.70°7. 如图2-8所示, ∠PAC=30°,,在射线AC 上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O 交射线AP于点 E,F.(1)求圆心 O到AP的距离;(2)求弦 EF的长.8. 如图2-9所示,AB是⊙O的直径,弦CD交AB于点 P, AP=2,BP=6,∠APC=30°,,则 CD的长为( ).A.√15B.2√5C.2√15D. 89. 如图2-10所示,在半径为√5的⊙O中,AB,CD是互相垂直的两条弦,垂足为点 P,且AB=CD=4,则OP的长为( ).A. 1B.√2C. 2D.2√210. 如图2-11所示,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为y=x2√3,,则a的值是( ).A.2√2B.2+√2C.2√3D.2+√311. 如图2-12所示,△ABC外接圆的半径为5,其圆心O恰好在中线CD上.若AB=CD,则△ABC的面积为( ).A. 36B. 32C. 24D.1812.圆柱形油槽内装有一些油,截面如图2-13所示,油面宽AB 为6dm,再注入一些油后,油面 AB 上升1dm,油面宽变为 8dm,则圆柱形油槽直径 MN 为( ).A. 6dmB. 8dmC. 10dmD. 12dm会当凌绝顶,一览众山小13.如图2-14所示,在平面直角坐标系中,以原点O 为圆心的圆过点A(13,0),直线y=kx-3k+44与⊙O 相交于点B,C,则弦BC的长的最小值为 .第3 节圆周角定理(1)一、知识梳理圆心角:顶点在圆心的角叫作圆心角.圆周角:顶点在圆上,并且两边都和圆相交的角叫作圆周角.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.推论3:圆内接四边形对角互补,并且任何一个外角都等于它的内对角.【例】如图3-1所示,直径为10的⊙A经过点C(0,5)和点O(0,0),点B 是y轴右侧⊙A优弧上的一点,则∠OBC的余弦值为( ).A.12B.34C.√32D.54解:如图3-2 所示,连接CA 并延长交⊙A 于点D.∵CD为直径,∴∠COD=∠yOx=90°.∵直径为10的⊙A经过点C(0,5)和点O(0,0),∴CD=10,CO=5.∴DO=√CD2−CO2=5√3.∵∠OBC=∠CDO,∴cos∠OBC=cos∠CDO=ODCD =5√310=√32.故选 C.二、分层练习☆万丈高楼平地起1. 如图3-3所示,AB是⊙O的直径,点C,D是⊙O 上的两点. 若∠CAB=25°,则∠ADC 的度数为 .2.如图3-4所示,在边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则tan∠CBD 的值等于( ).A.2√55B.3√55C. 2D.123. 如图3-5 所示,△ABC 是⊙O 的内接三角形,AC是⊙O的直径, ∠C=50°,∠ABC的角平分线BD交⊙O 于点D,则∠BAD的度数为( ).A. 45°B. 85°C. 90°D. 95°4. 如图3-6所示,△ABC内接于⊙O, AB=AC,,连接BO 并延长交AC 于点 D. 若∠A=50°,,则∠BDC 的度数为( ).A. 75°B.76°C.65°D.70°5. 如图3-7所示,点A,B,C,D在⊙O上,直径AB交CD于点E. 已知∠C=57°,∠D=45°,则∠CEB=.6. 如图3-8所示,AB是半圆的直径,点D是AĈ的中点,∠ABC=50°,则∠DAB等于( ).A.55°B.60°C.65°D.70°欲穷千里目,更上一层楼7. 如图3-9所示,若△ABC内接于半径为R的⊙O,且∠A=60°,,连接OB,OC,则边 BC的长为( ).A.√2RRB.√32RC.√22D.√3R8. 如图3-10所示,在⊙O中, AC‖OB,∠BOC=50°,则∠OAB的度数为( ).A.25°B. 50°C. 60°D. 30°9. 如图3-11 所示,AD 是半圆的直径,点 C 是弧 BD 的中点, ∠ADC=55°,则∠BAD 等于( ).A. 50°B. 55°C. 65°D. 70°̂=2BĈ,∠C=20∘, 10. 如图3-12所示,AB为⊙O的直径,点C,D在⊙O上,连接AC,CD,CD交AB于点 E.若BD则∠AED的度数为( ).A. 50°B. 53°C. 55°D. 58°11. 如图3-13所示,AB是⊙O的弦,( OH⊥AB于点H,点P是优弧上的一点.若AB=2√3,OH=1,则∠APB的度数为 .12. 如图3-14所示,⊙O的半径为2,. △ABC是⊙O的内接三角形,连接OB,OC.若∠BAC 与∠BOC 互补,则弦BC的长为( ).A.4√3B.3√3C.2√3D.√3☆会当凌绝顶,一览众山小13. 如图3-15所示,在Rt△ABC中,. ∠ACB=90°,∠A=56°.. 以 BC 为直径的⊙O交AB 于点 D. 点 E 是⊙O 上的一点,且CÊ=CD̂,连接 OE. 过点 E 作. EF⊥OE,交AC的延长线于点F,则∠F的度数为( ).A. 92°B. 108°C. 112°D. 124°14. 如图3-16所示,点B,C在⊙A上,AB的垂直平分线交⊙A于点E,F,交线段AC 于点 D. 若∠BFC=20°,则∠DBC=(A. 30°B.29°C.28°D. 20°。
中考数学复习资料专题8圆
初三数学辅导班学习资料圆学校姓名1.圆有关的概念: (中心对称、轴对称图形)(1)圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中,定点为圆心,定长为半径.(2)圆心角:顶点在圆心的角叫做圆心角.(3)圆周角:顶点在圆上,两边分别与圆还有另一个交点的角叫做圆周角.(4)弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.(5)弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.2.圆的有关的性质:(旋转不变性)(1)圆心角、弦和弧三者之间的关系:在同圆或等圆中,如果两个圆心角、两条同一类弧、两条弦中有一组量相等,那么它们所对应的其余各组量分别相等;(知一得二)(2)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧;(此处直径可减弱为过圆心的半径)(3)圆心角定理:圆心角的度数等于它所对弧的度数;(4)圆心角与圆周角的关系: 同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半.(5)圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.圆内接四边形对角互补. (6)圆周角定理:直径所对的圆周角是直角,反过来,90.的圆周角所对的弦是直径;(7)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线;(8)切线的性质定理:圆的切线垂直于过切点的半径;(9)切线长定理:从圆外一点引圆的两条切线,这一点到两切点的线段相等,它与圆心的连线平分两切线的夹角,并平分两切点的连线段.(10)公共弦定理:两圆相交,连心线垂直平分公共弦.3.三角形的内心和外心(1)确定圆的条件:不在同一直线上的三个点确定一个圆.(2)三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.(3)三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心4.点与圆的位置关系(3种):点在圆外,圆上,圆内,设圆的半径为r,点到圆心的距离为d,则点在圆外⇔d>r.点在圆上⇔d=r.点在圆内⇔d<r.5.直线和圆的位置关系(3种):相交、相切、相离.设圆的半径为r,圆心到直线的距离为d,则直线与圆相交⇔d<r,直线与圆相切⇔d=r,直线与圆相离⇔d>r6.圆与圆的位置关系(5种).设两圆的圆心距为d,两圆的半径分别为R和r,则⑴两圆外离⇔d>R+r;⑵两圆外切⇔d=R+r;⑶ 两圆相交⇔R -r <d <R+r (R >r ) ⑷ 两圆内切⇔d=R -r (R >r ) ⑸ 两圆内含⇔d <R —r (R >r ) 7.圆有关的计算:(1)弧长计算公式:180R n l π=(R 为圆的半径,n 是弧所对的圆心角的度数,l 为弧长) (2)扇形面积:2360R n S π=扇形或lRS 21=扇形(R 为半径,n 是扇形所对的圆心角的度数,l 为扇形的弧长)(3)圆锥: 圆锥的侧面积为S 侧=12·2πr·l =πr l ;全面积为S 全=πr 2+πr l .8.圆中的多解及常作辅助线(1)由于点与圆的位置,点在圆上的位置不确定关系而多解 (圆内、圆外、圆上) (2)由于弦所对弧的优劣而多解(一条弦对两条弧) (3)弦所对的圆周角的位置产生多解(一条弦对两类圆周角) (4)由于两平行弦与圆心的位置而多解 (在圆心同侧或异侧) (5)直线与圆的关系而多解(6)圆与圆的关系而多解(相切包括内切、外切)(7)两圆相交时,两圆心与公共弦的位置而多解(两圆心在公共弦同侧或异侧) 9.圆中常作辅助线 (1)证明线段相等作半径(2)求圆中弦的长度,过圆心做垂线段,利用垂径定理构造直角三角形求解 (3)求角的度数,利用同一类圆周角转化一、知识点1、与圆有关的角——圆心角、圆周角,(两者之间的关系 ) (1)图中的圆心角 ;圆周角 ;(2)如图,已知∠AOB=50度,则∠ACB= 度;(3)在上图中,若AB 是圆O 的直径,则∠ACB=度; 2、圆的对称性:(1)圆是轴对称图形,其对称轴是任意一条的直线;圆是中心对称图形,对称中心为 .(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.如图,∵CD 是圆O 的直径,CD ⊥AB 于E∴ = , =3、点和圆的位置关系有三种:点在圆 ,点在圆 ,点在圆 ; 例1:已知圆的半径r 等于5厘米,点到圆心的距离为d , (1)当d =2厘米时,有d r ,点在圆 (2)当d =7厘米时,有d r ,点在圆 (3)当d =5厘米时,有d r ,点在圆4、直线和圆的位置关系有三种:相 、相 、相 .例2:已知圆的半径r 等于12厘米,圆心到直线l 的距离为d , (1)当d =10厘米时,有d r ,直线l 与圆 (2)当d =12厘米时,有d r ,直线l 与圆 (3)当d =15厘米时,有d r ,直线l 与圆 5、圆与圆的位置关系:例3:已知⊙O 1的半径为6厘米,⊙O 2的半径为8厘米,圆心距为 d , 则:R+r= , R -r= ;(1)当d =14厘米时,因为d R+r ,则⊙O 1和⊙O 2位置关系是: (2)当d =2厘米时, 因为d R -r ,则⊙O 1和⊙O 2位置关系是: (3)当d =15厘米时,因为 ,则⊙O 1和⊙O 2位置关系是: (4)当d =7厘米时, 因为 ,则⊙O 1和⊙O 2位置关系是: (5)当d =1厘米时, 因为 ,则⊙O 1和⊙O 2位置关系是: 6、切线性质:例4:(1)如图,PA 是⊙O 的切线,点A 是切点,则∠PAO= 度(2)如图,PA 、PB 是⊙O 的切线,点A 、B 是切点,则 = ,∠ =∠ ; 7、圆中的有关计算 (1)弧长的计算公式:例5:若扇形的圆心角为60°,半径为3,则这个扇形的弧长是多少? 解:因为扇形的弧长=()180所以l =()180= (答案保留π)(2)扇形的面积:例6:①若扇形的圆心角为60°,半径为3,则这个扇形的面积为多少? 解:因为扇形的面积S=()360所以S=()360= (答案保留π)②若扇形的弧长为12πcm ,半径为6㎝,则这个扇形的面积是多少? 解:因为扇形的面积S=所以S= =(3)圆锥:例7:圆锥的母线长为5cm ,半径为4cm ,则圆锥的侧面积是多少?解:∵圆锥的侧面展开图是 形,展开图的弧长等于 ∴圆锥的侧面积=8、三角形的外接圆的圆心——三角形的外心——三角形的 交点; 三角形的内切圆的圆心——三角形的内心——三角形的 交点; 例8:画出下列三角形的外心或内心(1)画三角形ABC 的内切圆, (2)画出三角形DEF 的外接圆, 并标出它的内心; 并标出它的外心二、练习:OBAC (一)填空题1、如图,弦AB 分圆为1:3两段,则⌒AB 的度数= 度,⌒ACB 的度数等于 度;∠AOB = 度,∠ACB = 度, 2、如图,已知A 、B 、C 为⊙O 上三点,若⌒AB 、⌒CA 、⌒CB 的 度数之比为1∶2∶3,则∠AOB = ,∠AOC = , ∠ACB = ,3、如图1-3-2,在⊙O 中,弦AB=1.8cm ,圆周角∠ACB=30○ , 则 ⊙O 的半径等于=_________cm .4、⊙O 的半径为5,圆心O 到弦AB 的距离OD=3, 则AD= ,AB 的长为 ;5、如图,已知⊙O 的半径OA=13㎝,弦AB =24㎝, 则OD= ㎝。
中考数学圆知识点
中考数学圆知识点中考数学圆知识点8篇在日常的学习中,是不是经常追着老师要知识点?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。
为了帮助大家掌握重要知识点,下面是店铺整理的中考数学圆知识点,欢迎大家借鉴与参考,希望对大家有所帮助。
中考数学圆知识点1圆的初步认识一、圆及圆的相关量的定义1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
2.圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
3.顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。
两圆圆心之间的距离叫做圆心距。
7.在圆上,由2条半径和一段弧围成的图形叫做扇形。
圆锥侧面展开图是一个扇形。
这个扇形的半径成为圆锥的母线。
二、有关圆的字母表示方法圆--⊙ 半径—r 弧--⌒ 直径—d扇形弧长/圆锥母线—l 周长—C 面积—S三、有关圆的基本性质与定理(27个)1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学辅导班学习资料8 圆学校 姓名一、知识点1、与圆有关的角——圆心角、圆周角(1)图中的圆心角 ;圆周角 ;(2)如图,已知∠AOB=50度,则∠ACB= 度;(3)在上图中,若AB 是圆O 的直径,则∠AOB= 度; 2、圆的对称性:(1)圆是轴对称图形,其对称轴是任意一条 的直线;圆是中心对称图形,对称中心为 .(2如图,∵CD 是圆O 的直径,CD ⊥AB 于E∴ = , =3、点和圆的位置关系有三种:点在圆 ,点在圆 ,点在圆 ; 例1:已知圆的半径r 等于5厘米,点到圆心的距离为d , (1)当d =2厘米时,有d r ,点在圆 (2)当d =7厘米时,有d r ,点在圆 (3)当d =5厘米时,有d r ,点在圆4、直线和圆的位置关系有三种:相 、相 、相 .例2:已知圆的半径r 等于12厘米,圆心到直线l 的距离为d , (1)当d =10厘米时,有d r ,直线l 与圆 (2)当d =12厘米时,有d r ,直线l 与圆 (3)当d =15厘米时,有d r ,直线l 与圆 5、圆与圆的位置关系:例3:已知⊙O 1的半径为6厘米,⊙O 2的半径为8厘米,圆心距为 d , 则:R+r= , R -r= ;(1)当d =14厘米时,因为d R+r ,则⊙O 1和⊙O 2位置关系是: (2)当d =2厘米时, 因为d R -r ,则⊙O 1和⊙O 2位置关系是: (3)当d =15厘米时,因为 ,则⊙O 1和⊙O 2位置关系是: (4)当d =7厘米时, 因为 ,则⊙O 1和⊙O 2位置关系是: (5)当d =1厘米时, 因为 ,则⊙O 1和⊙O 2位置关系是: 6、切线性质:例4:(1)如图,PA 是⊙O 的切线,点A 是切点,则∠PAO=度(2)如图,PA 、PB 是⊙O 的切线,点A 、B 是切点, 则 = ,∠ =∠ ;7、圆中的有关计算 (1)弧长的计算公式:例5:若扇形的圆心角为60°,半径为3,则这个扇形的弧长是多少? 解:因为扇形的弧长=()180所以l =()180= (答案保留π)(2)扇形的面积:例6:①若扇形的圆心角为60°,半径为3,则这个扇形的面积为多少? 解:因为扇形的面积S=()360所以S=()360= (答案保留π)②若扇形的弧长为12πcm ,半径为6㎝,则这个扇形的面积是多少? 解:因为扇形的面积S=所以S= =(3)圆锥:例7:圆锥的母线长为5cm,半径为4cm,则圆锥的侧面积是多少?解:∵圆锥的侧面展开图是形,展开图的弧长等于∴圆锥的侧面积=8、三角形的外接圆的圆心——三角形的外心——三角形的交点;三角形的内切圆的圆心——三角形的内心——三角形的交点;例8:画出下列三角形的外心或内心(1)画三角形ABC的内切圆,(2)画出三角形DEF的外接圆,并标出它的内心;并标出它的外心二、练习:(一)填空题1、如图,弦AB分圆为1:3两段,则 AB的度数= 度,ACB的度数等于度;∠AOB=度,∠AC B=度,2、如图,已知A、B、C为⊙O上三点,若 AB、 CA、 BC的度数之比为1∶2∶3,则∠AOB=,∠AOC=,∠AC B=,3、如图1-3-2,在⊙O中,弦AB=1.8cm,圆周角∠ACB=30○,则⊙O的半径等于=_________cm.4、⊙O的半径为5,圆心O到弦AB的距离OD=3,则AD= ,AB的长为;5、如图,已知⊙O的半径OA=13㎝,弦AB=24㎝,则OD= ㎝。
6、如图,已知⊙O的直径AB=10cm,弦AC=8cm,则弦心距OD等于cm.7、已知:⊙O1的半径为3,⊙O2的半径为4,若⊙O1与⊙O2外切,则O1O2=。
·OA BD第1小题第2小题第4、5小题第6小题8、已知:⊙O 1的半径为3,⊙O 2的半径为4,若⊙O 1与⊙O 2内切,则O 1O 2= 。
9、已知:⊙O 1的半径为3,⊙O 2的半径为4,若⊙O 1与⊙O 2相切,则O 1O 2= 。
10、已知:⊙O 1的半径为3,⊙O 2的半径为4,若⊙O 1与⊙O 2相交,则两圆的圆心距 d 的取值范围是11、已知⊙O 1和⊙O 2外切,且圆心距为10cm ,若⊙O 1的半径为3cm ,则⊙O 2的半径 为_____ ___cm .12、已知⊙O 1和⊙O 2内切,且圆心距为10cm ,若⊙O 1的半径为3cm ,则⊙O 2的半径 为______ __cm .13、已知⊙O 1和⊙O 2相切,且圆心距为10cm ,若⊙O 1的半径为3cm ,则⊙O 2的半径 为______ _cm .14、如图1-3-35是小芳学习时使用的圆锥形台灯灯罩的示意图, 则围成这个灯罩的铁皮的面积为________cm 2 (不考虑接缝等因 素,计算结果用π表示).15、如图,两个同心圆的半径分别为2和1,∠AOB=120 , 则阴影部分的面积是_________16、一个圆锥的母线与高的夹角为30°,那么这个圆锥的侧面展开图中扇形的弧长 与半径的比是 (二)选择题1、如图1-3-7,A 、B 、C 是⊙O 上的三点,∠BAC=30° 则∠BOC 的大小是( )A .60○B .45○C .30○D .15○2、如图,AB 为⊙O 的直径,C 、D 是⊙O 上的两点,∠BAC=20°, AD = CD, 则∠DAC 的度数是( )(A)30° (B) 35° (C) 45° (D) 70°3、如图1-3-16,PA 为⊙O 的切线,A 为切点,PO 交 ⊙O 于 点B ,PA=4,OA=3,则cos ∠APO 的值为( )3344. . . .4553A B C D4、PA 切⊙O 于A ,PA = 3,∠APO = 300,则PO 的为( ) A 32 B 2 C 1 D 345、圆柱的母线长5cm ,为底面半径为1cm ,则这个圆拄的侧面积是( )A .10cm 2B .10πcm 2C .5cm 2D .5πcm 26、如图,一个圆柱形笔筒,量得笔筒的高是20cm ,底面圆的半径为5cm , 那么笔筒的侧面积为( )A.200cm 2B.100πcm 2C.200πcm 2D.500πcm 27、制作一个底面直径为30cm ,高40cm 的圆柱形无盖铁桶,所需铁皮至少为( ), A .1425πcm 2 B .1650πcm 2 C .2100πcm 2 D .2625πcm 2 8、已知圆锥的底面半径为3,高为4,则圆锥的侧面积为( )(A )10π (B )12π (C )15π (D )20π9、如图,圆锥的母线长为5cm ,高线长为4cm ,则圆锥的底面积是( ) A .3πcm Z B .9πcm Z C .16πcm Z D .25πc 10、如图,若四边形ABCD 是半径为1cm 的⊙O 的内接正方形, 则图中四个弓形(即四个阴影部分)的面积和为( ).(A )()2cm 22-π (B )()2cm 12-π(C )()2cm 2-π (D )()2cm 1-π (三)解答题1、如图,直角三角形ABC 是⊙O 的内接三角形,∠ACB=90°,∠A=30°,过点C 作⊙O 的切线交AB 的延长线于点D ,连结CO 。
请写出六个你认为正确的结论; (不准添加辅助线);解:(1) ; (2) ;(3) ; (4); (5) ; (6) ; 2、⊙O 1和⊙O 2半径之比为3:4:=r R ,当O 1O 2= 21 cm 时,两圆外切,当两圆内切时, O 1O 2的长度应多少?3、如图,⊙O 的内接四边形ABCD 的对角线交于P,已知AB =BC , 求证:△ABD ∽△DPC4、如图,PA 、PB 是⊙O 的切线,点A 、B 为切点,AC 是⊙O 的直径,∠BAC=20°, 求∠P 的度数。
5、以点O (3,0)为圆心,5个单位长为半径作圆,并写出圆O 与坐标轴的交点坐标; 解:圆O 与x 轴的交点坐标是:圆O 与y 轴的交点坐标是:7、如图,AB 是⊙O 的直径,PB 与⊙O 相切与点B ,弦AC ∥OP ,PC 交BA 的延长线于点D ,求证:PD 是⊙O 的切线,B PB8、已知:如图,AB 是⊙O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点C ,BD ⊥PD ,垂足为D ,连接BC 。
求证:(1)BC 平分∠PBD ;(2)2BC AB BD =。
9、如图,CB 、CD 是⊙O 的切线,切点分别为B 、D ,CD 的延长线与⊙O 的 直径BE 的延长线交于A 点,连OC ,ED . (1)探索OC 与ED 的位置关系,并加以证明; (2)若OD =4,CD=6,求tan ∠ADE 的值.圆 答案一、知识点: 1、(1)∠AOB ∠ACB (2)25; (3)90; 2、(1)直径所在的直线;圆心 (2)AE=BE ,弧AC=弧BC ; 3、内,上,外,例1:(1)<,内;(2),> ,外,(3)=,上; 4、交,切,离 例2:(1)<,相交;(2), =,相切,(3)>,相离; 5、例3:14,2;(1)=,外切;(2)=,内切;(3)d>R+r,外离;(4)R-r<d<R+r,相交; (5)d<R-r ,内含;6、例4(1)90;(2)PA=PB ,∠APO=∠BPO ;7、(1)例5:π;(2)例6:①3π2;②36πcm 2;(3)例7:20πcm 2;8、三角形的三边垂直平分线,角平分线; 二、练习(一)填空题:1,90,270,90,45; 2,60度,120度,30度; 3,1.8; 4,4,8;5,5; 6,3; 7,7; 8,1; 9,7或1; 10,1<d<7; 11,7; 12,13; 13,7或13; 14,300π; 15,π; 16,π; (二)1A ,2B ,3C ,4B ,5B ,6C ,7A ,8B ,9B ,10C (三)解答题1、略;2、3cm ;3、∵AB=BC ,∴ AB BC =,∴∠ADB=∠CDB ,∵∠ABD=∠ACD ,∴△ABD ∽△DPC ;4、40度;5、(-2,0),(8,0); (0,4)、(0,-4) ;6、223cm π ;7、连结OC ,证明△POC ≌△POB ,得∠PCO=∠PBO =90度,所以PD 是圆O 的切线;8、证明:(1)连结OC 。
∵PD 切⊙O 于点C , 又∵BD ⊥PD , ∴OC ∥BD 。
∴∠1=∠3。
又∵OC =OB , ∴∠2=∠3。