中考数学一轮复习 各知识点练习题分层设计十八(特殊平行四边形部分) 鲁教版
中考数学复习专题特殊平行四边形(教学借鉴)

2017---2018学年中考数学复习专题--《特殊平行四边形》评卷人得分一.选择题(共12小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等 B.对角线互相平分C.对角线互相垂直 D.对角互补2.能判定一个四边形是菱形的条件是()A.对角线互相平分且相等B.对角线互相垂直且相等C.对角线互相垂直且对角相等D.对角线互相垂直,且一条对角线平分一组对角3.矩形具有而菱形不一定具有的性质是()A.对边分别相等B.对角分别相等C.对角线互相平分 D.对角线相等4.以下条件不能判别四边形ABCD是矩形的是()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BD D.AB=CD,AB∥CD,OA=OC,OB=OD5.顺次连接四边形ABCD各边中点所成的四边形为菱形,那么四边形ABCD的对角线AC和BD只需满足的条件是()A.相等B.互相垂直C.相等且互相垂直 D.相等且互相平分6.已知菱形的两条对角线长分别是6cm和8cm,则菱形的边长是()A.12cm B.10cm C.7cm D.5cm7.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以A为圆心,AB长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为()A.16 B.15 C.14 D.138.如图,E,G,F,H分别是矩形ABCD四条边上的点,EF⊥GH,若AB=2,BC=3,则EF:GH=()A.2:3 B.3:2 C.4:9 D.无法确定9.如图:点P是Rt△ABC斜边AB上的一点,PE⊥AC于E,PF⊥BC于F,BC=15,AC=20,则线段EF的最小值为()A.12 B.6 C.12.5 D.2510.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°11.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC的度数为()A.55°B.50°C.45°D.35°12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是()A.1 B.2 C.3 D.4评卷人得分二.填空题(共6小题)13.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于度.14.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为.15.如图:在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O 作OE垂直AC交AD于点E,则DE的长是.16.平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD,AB的中点.下列结论:①EG=EF;②△EFG≌△GBE;③FB平分∠EFG;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是.17.如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且AB=BE,∠1=15°,则∠2=.18.如图所示,在矩形ABCD中,AB=6,AD=8,P是AD上的动点,PE⊥AC,PF ⊥BD于F,则PE+PF的值为.评卷人得分三.解答题(共6小题)19.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,AE∥CD,CE∥AB,连接DE交AC于点O.(1)证明:四边形ADCE为菱形.(2)BC=6,AB=10,求菱形ADCE的面积.20.已知,如图,BD为平行四边形ABCD的对角线,O为BD的中点,EF⊥BD 于点O,与AD、BC分别交于点E、F.试判断四边形BFDE的形状,并证明你的结论.21.如图,在△ABC中,AB=AC,点D是BC的中点,DE⊥AC于点E,DG⊥AB 于点G,EK⊥AB于点K,GH⊥AC于点H、EK和GH相交于点F.求证:GE与FD互相垂直平分.22.如图:在△ABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE 于E,AF⊥CF于F,直线EF分别交AB、AC于M、N.(1)求证:四边形AECF为矩形;(2)试猜想MN与BC的关系,并证明你的猜想;(3)如果四边形AECF是菱形,试判断△ABC的形状,直接写出结果,不用说明理由.23.如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.(1)判断△BEC的形状,并说明理由?(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;(3)求四边形EFPH的面积.24.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.2017---2018学年中考数学复习专题--《特殊平行四边形》参考答案与试题解析一.选择题(共12小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等 B.对角线互相平分C.对角线互相垂直 D.对角互补【解答】解:A、平行四边形的对边平行且相等,所以A选项错误;B、平行四边形的对角线互相平分,所以B选项错误;C、菱形的对角线互相垂直,平行四边形的对角线互相平分,所以C选项正确;D、平行四边形的对角相等,所以D选项错误.故选C.2.能判定一个四边形是菱形的条件是()A.对角线互相平分且相等B.对角线互相垂直且相等C.对角线互相垂直且对角相等D.对角线互相垂直,且一条对角线平分一组对角【解答】解:∵对角线互相垂直平分的四边形是菱形.∴A、B、D都不正确.∵对角相等的四边形是平行四边形,而对角线互相垂直的平行四边形是菱形.故C正确.故选C.3.矩形具有而菱形不一定具有的性质是()A.对边分别相等B.对角分别相等C.对角线互相平分 D.对角线相等【解答】解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;菱形的性质有:①菱形的四条边都相等,且对边平行,②菱形的对角相等,③菱形的对角线互相平分、垂直,且每一条对角线平分一组对角;∴矩形具有而菱形不一定具有的性质是对角线相等,故选D.4.以下条件不能判别四边形ABCD是矩形的是()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BD D.AB=CD,AB∥CD,OA=OC,OB=OD【解答】解:如图:A、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵∠BAD=90°,∴四边形ABCD是矩形,故本选项错误;B、∵OA=OB=OC=OD,∴AC=BD,∴四边形ABCD是平行四边形,∴四边形ABCD是矩形,故本选项错误;C、∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项错误;D、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,根据OA=OC,OB=OD不能推出平行四边形ABCD是矩形,故本选项正确;故选D.5.顺次连接四边形ABCD各边中点所成的四边形为菱形,那么四边形ABCD的对角线AC和BD只需满足的条件是()A.相等B.互相垂直C.相等且互相垂直 D.相等且互相平分【解答】解:因为原四边形的对角线与连接各边中点得到的四边形的关系:①原四边形对角线相等,所得的四边形是菱形;②原四边形对角线互相垂直,所得的四边形是矩形;③原四边形对角线既相等又垂直,所得的四边形是正方形;④原四边形对角线既不相等又不垂直,所得的四边形是平行四边形.因为顺次连接四边形ABCD各边中点所成的四边形为菱形,所以四边形ABCD的对角线AC和BD相等.故选A.6.已知菱形的两条对角线长分别是6cm和8cm,则菱形的边长是()A.12cm B.10cm C.7cm D.5cm【解答】解:如图:∵菱形ABCD中BD=8cm,AC=6cm,∴OD=BD=4cm,OA=AC=3cm,在直角三角形AOD中AD===5cm.故选D.7.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以A为圆心,AB长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为()A.16 B.15 C.14 D.13【解答】解:连结EF,AE与BF交于点O,如图,∵AO平分∠BAD,∴∠1=∠2,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,同理:AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∴四边形ABEF是菱形,∴AE⊥BF,OB=OF=6,OA=OE,在Rt△AOB中,由勾股定理得:OA===8,∴AE=2OA=16.故选:A.8.如图,E,G,F,H分别是矩形ABCD四条边上的点,EF⊥GH,若AB=2,BC=3,则EF:GH=()A.2:3 B.3:2 C.4:9 D.无法确定【解答】解:过F作FM⊥AB于M,过H作HN⊥BC于N,则∠4=∠5=90°=∠AMF∵四边形ABCD是矩形,∴AD∥BC,AB∥CD,∠A=∠D=90°=∠AMF,∴四边形AMFD是矩形,∴FM∥AD,FM=AD=BC=3,同理HN=AB=2,HN∥AB,∴∠1=∠2,∵HG⊥EF,∴∠HOE=90°,∴∠1+∠GHN=90°,∵∠3+∠GHN=90°,∴∠1=∠3=∠2,即∠2=∠3,∠4=∠5,∴△FME∽△HNG,∴==∴EF:GH=AD:CD=3:2.故选B.9.如图:点P是Rt△ABC斜边AB上的一点,PE⊥AC于E,PF⊥BC于F,BC=15,AC=20,则线段EF的最小值为()A.12 B.6 C.12.5 D.25【解答】解:如图,连接CP.∵∠C=90°,AC=3,BC=4,∴AB===25,∵PE⊥AC,PF⊥BC,∠C=90°,∴四边形CFPE是矩形,∴EF=CP,由垂线段最短可得CP⊥AB时,线段EF的值最小,=BC•AC=AB•CP,此时,S△ABC即×20×15=×25•CP,解得CP=12.故选A.10.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×80°=40°∴∠ABF=∠BAF=40°∵∠ABC=180°﹣80°=100°,∠CBF=100°﹣40°=60°∴∠CDF=60°.故选D.11.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC的度数为()A.55°B.50°C.45°D.35°【解答】解:延长PF交AB的延长线于点G.如图所示:在△BGF与△CPF中,,∴△BGF≌△CPF(ASA),∴GF=PF,∴F为PG中点.又∵由题可知,∠BEP=90°,∴EF=PG,∵PF=PG,∴EF=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,∵四边形ABCD为菱形,∴AB=BC,∠ABC=180°﹣∠A=70°,∵E,F分别为AB,BC的中点,∴BE=BF,∠BEF=∠BFE=(180°﹣70°)=55°,∴∠FPC=55°;故选:A.12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三角形,∴OB=BC=OC,∠OBC=60°,在△OBF与△CBF中∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵∠OBC=60°,∴∠ABO=30°,∵△OBF≌△CBF,∴∠OBM=∠CBM=30°,∴∠ABO=∠OBF,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,易证△AOE≌△COF,∴OE=OF,∴OB⊥EF,∴四边形EBFD是菱形,∴③正确,∵△EOB≌△FOB≌△FCB,∴△EOB≌△CMB错误.∴②错误,∵∠OMB=∠BOF=90°,∠OBF=30°,∴MB=,OF=,∵OE=OF,∴MB:OE=3:2,∴④正确;故选:C.二.填空题(共6小题)13.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于75度.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故答案为:75.14.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为4.【解答】解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱形ABCD=底×高=2×2=4,故答案为4.15.如图:在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O 作OE垂直AC交AD于点E,则DE的长是3.【解答】解:如图,连接CE,,设DE=x,则AE=8﹣x,∵OE⊥AC,且点O是AC的中点,∴OE是AC的垂直平分线,∴CE=AE=8﹣x,在Rt△CDE中,x2+42=(8﹣x)2解得x=3,∴DE的长是3.故答案为:3.16.平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD,AB的中点.下列结论:①EG=EF;②△EFG≌△GBE;③FB平分∠EFG;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是①②④.【解答】解:令GF和AC的交点为点P,如图所示:∵E、F分别是OC、OD的中点,∴EF∥CD,且EF=CD,∵四边形ABCD为平行四边形,∴AB∥CD,且AB=CD,∴∠FEG=∠BGE(两直线平行,内错角相等),∵点G为AB的中点,∴BG=AB=CD=FE,在△EFG和△GBE中,,∴△EFG≌△GBE(SAS),即②成立,∴∠EGF=∠GEB,∴GF∥BE(内错角相等,两直线平行),∵BD=2BC,点O为平行四边形对角线交点,∴BO=BD=BC,∵E为OC中点,∴BE⊥OC,∴GP⊥AC,∴∠APG=∠EPG=90°∵GP∥BE,G为AB中点,∴P为AE中点,即AP=PE,且GP=BE,在△APG和△EGP中,,∴△APG≌△EPG(SAS),∴AG=EG=AB,∴EG=EF,即①成立,∵EF∥BG,GF∥BE,∴四边形BGFE为平行四边形,∴GF=BE,∵GP=BE=GF,∴GP=FP,∵GF⊥AC,∴∠GPE=∠FPE=90°在△GPE和△FPE中,,∴△GPE≌△FPE(SAS),∴∠GEP=∠FEP,∴EA平分∠GEF,即④成立.故答案为:①②④.17.如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且AB=BE,∠1=15°,则∠2=30°.【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠BAD=90°,OB=OD,OA=OC,AC=BD,∴OB=OC,OB=OA,∴∠OCB=∠OBC,∵AB=BE,∠ABE=90°,∴∠BAE=∠AEB=45°,∵∠1=15°,∴∠OCB=∠AEB﹣∠EAC=45°﹣15°=30°,∴∠OBC=∠OCB=30°,∴∠AOB=30°+30°=60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OB,∵∠BAE=∠AEB=45°,∴AB=BE,∴OB=BE,∴∠OEB=∠EOB,∵∠OBE=30°,∠OBE+∠OEB+∠BEO=180°,∴∠OEB=75°,∵∠AEB=45°,∴∠2=∠OEB﹣∠AEB=30°,故答案为:30°.18.如图所示,在矩形ABCD 中,AB=6,AD=8,P 是AD 上的动点,PE ⊥AC ,PF ⊥BD 于F ,则PE +PF 的值为.【解答】解:连接OP ,∵四边形ABCD 是矩形,∴∠DAB=90°,AC=2AO=2OC ,BD=2BO=2DO ,AC=BD , ∴OA=OD=OC=OB ,∴S △AOD =S △DOC =S △AOB =S △BOC =S 矩形ABCD =×6×8=12, 在Rt △BAD 中,由勾股定理得:BD===10,∴AO=OD=5, ∵S △APO +S △DPO =S △AOD ,∴×AO ×PE +×DO ×PF=12, ∴5PE +5PF=24, PE +PF=,故答案为:.三.解答题(共6小题)19.如图,在Rt △ABC 中,∠ACB=90°,D 为AB 的中点,AE ∥CD ,CE ∥AB ,连接DE交AC于点O.(1)证明:四边形ADCE为菱形.(2)BC=6,AB=10,求菱形ADCE的面积.【解答】证明:(1)∵在Rt△ABC中,∠ACB=90°,D为AB中点,∴CD=AB=AD,又∵AE∥CD,CE∥AB∴四边形ADCE是平行四边形,∴平行四边形ADCE是菱形;(2)在Rt△ABC中,AC===8.∵平行四边形ADCE是菱形,∴CO=OA,又∵BD=DA,∴DO是△ABC的中位线,∴BC=2DO.又∵DE=2DO,∴BC=DE=6,===24.∴S菱形ADCE20.已知,如图,BD为平行四边形ABCD的对角线,O为BD的中点,EF⊥BD 于点O,与AD、BC分别交于点E、F.试判断四边形BFDE的形状,并证明你的结论.【解答】答:四边形BFDE的形状是菱形,理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∵∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB,∴DE=BF,又∵ED∥BF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴▱BEDF是菱形.21.如图,在△ABC中,AB=AC,点D是BC的中点,DE⊥AC于点E,DG⊥AB 于点G,EK⊥AB于点K,GH⊥AC于点H、EK和GH相交于点F.求证:GE与FD互相垂直平分.【解答】证明:∵DE⊥AC,DG⊥AB,EK⊥AB,GH⊥AC,∴∠DGB=∠DEC=90°,EK∥DG,DE∥GH,∴四边形DEFG是平行四边形,∵AB=AC,∴∠B=∠C,在△DGB和△DEC中,,∴△DGB≌△DEC(AAS),∴DG=DE,∵四边形DEFG是平行四边形,∴四边形DEFG是菱形,∴GE与FD互相垂直平分.22.如图:在△ABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE 于E,AF⊥CF于F,直线EF分别交AB、AC于M、N.(1)求证:四边形AECF为矩形;(2)试猜想MN与BC的关系,并证明你的猜想;(3)如果四边形AECF是菱形,试判断△ABC的形状,直接写出结果,不用说明理由.【解答】(1)证明:∵AE⊥CE于E,AF⊥CF于F,∴∠AEC=∠AFC=90°,又∵CE、CF分别平分∠ACB与它的邻补角∠ACD,∴∠BCE=∠ACE,∠ACF=∠DCF,∴∠ACE+∠ACF=(∠BCE+∠ACE+∠ACF+∠DCF)=×180°=90°,∴三个角为直角的四边形AECF为矩形.(2)结论:MN∥BC且MN=BC.证明:∵四边形AECF为矩形,∴对角线相等且互相平分,∴NE=NC,∴∠NEC=∠ACE=∠BCE,∴MN∥BC,又∵AN=CN(矩形的对角线相等且互相平分),∴N是AC的中点,若M不是AB的中点,则可在AB取中点M1,连接M1N,则M1N是△ABC的中位线,MN∥BC,而MN∥BC,M1即为点M,所以MN是△ABC的中位线(也可以用平行线等分线段定理,证明AM=BM)∴MN=BC;法二:延长MN至K,使NK=MN,因为对角线互相平分,所以AMCK是平行四边形,KC∥MA,KC=AM因为MN∥BC,所以MBCK是平行四边形,MK=BC,所以MN=BC(3)解:△ABC是直角三角形(∠ACB=90°).理由:∵四边形AECF是菱形,∴AC⊥EF,∵EF∥AC,∴AC⊥CB,∴∠ACB=90°.即△ABC是直角三角形.23.如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.(1)判断△BEC的形状,并说明理由?(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;(3)求四边形EFPH的面积.【解答】(1)△BEC是直角三角形:理由是:∵矩形ABCD,∴∠ADC=∠ABP=90°,AD=BC=5,AB=CD=2,由勾股定理得:CE===,同理BE=2,∴CE2+BE2=5+20=25,∵BC2=52=25,∴BE2+CE2=BC2,∴∠BEC=90°,∴△BEC是直角三角形.(2)解:四边形EFPH为矩形,证明:∵矩形ABCD,∴AD=BC,AD∥BC,∵DE=BP,∴四边形DEBP是平行四边形,∴BE∥DP,∵AD=BC,AD∥BC,DE=BP,∴AE=CP,∴四边形AECP是平行四边形,∴AP∥CE,∴四边形EFPH是平行四边形,∵∠BEC=90°,∴平行四边形EFPH是矩形.(3)解:在Rt△PCD中FC⊥PD,由三角形的面积公式得:PD•CF=PC•CD,∴CF==,∴EF=CE﹣CF=﹣=,∵PF==,=EF•PF=,∴S矩形EFPH答:四边形EFPH的面积是.24.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.【解答】(1)证明:∵∠ABC=90°,BD为AC的中线,∴BD=AC,∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴DF=AC,∴BD=DF;(2)证明:∵BD=DF,∴四边形BGFD是菱形,(3)解:设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,∴四边形BDFG的周长=4GF=20.。
初三数学中考总复习 特殊的平行四边形 专题复习练习 含答案

2019 初三数学中考总复习 特殊的平行四边形 专题复习练习1.下列命题中,真命题是( C )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形2.如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于点H ,则DH 等于( A )A.245B.125C .5D .4 3.如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE =AD ,连接EB ,EC ,DB ,添加一个条件,不能使四边形DBCE 成为矩形的是( B )A .AB =BE B .BE ⊥DC C .∠ADB =90°D .CE ⊥DE4.如图,四边形ABCD 和四边形BEFD 都是矩形,且点C 恰好在EF 上.若AB =1,AD =2,则S △BCE 为( D )A .1 B.255 C.23 D.455.如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F ,在下列结论中,不一定正确的是( B )A .△AFD ≌△DCEB .AF =12AD C .AB =AF D .BE =AD -DF 6.如图,E 是边长为1的正方形ABCD 的对角线BD 上一点,且BE =BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ +PR 的值是( D )A.23B.12C.32D.227.如图,菱形ABCD 的边长为2,∠ABC =45°,则点D 的坐标为.8.如图,在正方形ABCD 外作等腰直角△CDE,DE =CE ,连接BE ,则tan ∠EBC=__13__. 9.将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF.若AB =3,则BC的长为.10.如图,在矩形ABCD 中,点E 、F 分别在边CD ,BC 上,且DC =3DE =3a.将矩形沿直线EF 折叠,使点C 恰好落在AD 边上的点P 处,则FP =.11.如图,A ,B ,C 三点在同一条直线上,AB =2BC ,分别以AB ,BC 为边做正方形ABEF 和正方形BCMN ,连接FN ,EC.求证:FN =EC.证明:在正方形ABEF 和正方形BCMN 中,AB =BE =EF ,BC =BN ,∠FEN =∠EBC=90°,∵AB =2BC ,即BC =BN =12AB ,∴BN =12BE ,即N 为BE 的中点,∴EN =NB =BC ,∴△FEN ≌△EBC(SAS),∴FN =EC12.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,MN 过点O 且与边AD ,BC 分别交于点M 和点N.(1)请你判断OM 和ON 的数量关系,并说明理由;(2)过点D 作DE∥AC 交BC 的延长线于点E ,当AB =6,AC =8时,求△BDE 的周长.解:(1)∵四边形ABCD 是菱形,∴AD ∥BC ,AO =OC ,∴OM ON =AO OC=1,∴OM =ON (2)∵四边形ABCD 是菱形,∴AC ⊥BD ,AD =BC =AB =6,∴BO =AB 2-AO 2=62-(8÷2)2=25,∴BD =2BO =2×25=45,∵DE ∥AC ,AD ∥CE ,∴四边形ACED 是平行四边形,∴DE =AC =8,∴△BDE 的周长是:BD +DE +BE =BD +AC +(BC +CE)=45+8+(6+6)=20+45,即△BDE 的周长是20+4 513.如图1,四边形ABCD 是正方形,M 是BC 边上的一点,E 是CD 边的中点,AE 平分∠DAM.(1)证明:AM =AD +MC ;(2)AM =DE +BM 是否成立?若成立,请给出证明;若不成立,请说明理由;(3)若四边形ABCD 是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.解:(1)过点E 作EF⊥AM 交AM 于F 点,连接EM ,由角平分线性质易得AD =AF ,EF =DE =EC ,由HL 易证△EFM≌△ECM,所以FM =MC ,AM =AF +FM =AD +MC(2)AM =DE +BM 成立,证明:将△ADE 绕点A 顺时针旋转90°,得到新△ABF,∴BF =DE ,∠F =∠AED.∵AB∥DC,∴∠AED =∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED =∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM =FM.∴AM=FB +BM =DE +BM(3)①结论AM =AD +MC 仍然成立.②结论AM =DE +BM 不成立14. 如图,正方形ABCD 的对角线AC ,BD 相交于点O ,延长CB 至点F ,使CF =CA ,连接AF ,∠ACF 的平分线分别交AF ,AB ,BD 于点E ,N ,M ,连接EO.(1)已知EO =2,求正方形ABCD 的边长;(2)猜想线段EM 与CN 的数量关系并加以证明.解:(1) ∵四边形ABCD 是正方形,∴CA =2BC 2=2BC ,∵CF =CA ,CE 是∠ACF 的角平分线,∴E 是AF 的中点,∵E ,O 分别是AF ,AC 的中点,∴EO ∥BC ,且EO =12CF ,∴△EOM ∽△CBM ,∴EO CB =EM CM,∵CF =CA =2CB , ∴EO CB =12×2CB CB =22,∵EO =2,∴BC =2,∴正方形ABCD 的边长为2(2) EM =12CN.证明:∵CF =CA ,CE 是∠ACF 的平分线,∴CE ⊥AF , ∴∠AEN =∠CBN =90°,∵∠ANE =∠CNB ,∴∠BAF =∠BCN ,在△ABF 和△CBN 中,⎩⎪⎨⎪⎧∠BAF =∠BCN ,∠ABF =∠CBN =90°,AB =BC ,∴△ABF ≌△CBN(AAS ),∴AF =CN ,∵∠BAF =∠BCN ,∠ACN =∠BCN ,∴∠BAF =∠OCM , ∵四边形ABCD 是正方形,∴AC ⊥BD ,∴∠ABF =∠COM =90°,∴△ABF ∽△COM ,∴CM AF =OC AB ,∴CM CN =OC AB =22,即CM =22CN , 由(1)知EO CB =EM CM =22,∴EM =22CM =22×22CN =12CN。
鲁教版数学初三下册第6章《特殊的平行四边形》学案

鲁教版八年级下册学案姓名_________________6.1菱形的性质与判定(1)一、学习目标1.掌握菱形概念,知道菱形与平行四边形的关系.2.理解并掌握菱形的定义及性质1和性质23.菱形问题的基本思想是化为直角三角形问题,会用这些性质进行有关的论证和计算1. 叫做平行四边形2.平行四边形的对边,对角,邻角,对角线3.一组对边的四边形是平行四边形;两组对边分别的四边形是平行四边形;两组对边分别相等的四边形是;两条对角线的四边形是平行四边形。
探学新知【模块一】菱形的定义叫做菱形。
菱形是的平行四边形。
菱形的记法:____________________巩固练习:【模块二】菱形的性质例1:已知四边形ABCD是菱形,且AD=AB,求证:AB=BC=CD=AD。
性质1:[来源:学+科+网Z+X+X+K]例2:已知四边形ABCD是菱形,求证:AC⊥BD。
(说一说)性质2:例3:已知四边形ABCD 是菱形,求证:AC 、BD 各平分一组对角。
性质3:例4:在菱形ABCD 中,已知AC=8,BD=6,求:菱形ABCD 的面积。
性质4:菱形既是_______对称图形,也是_________对称图形总结:(1)菱形具有 的所有性质。
(2)菱形具有而平行四边形不一定具有的性质有哪些?菱形是 图形,对称轴有 条,即两条 所在的直线。
菱形的四条边_______,对角线______________,每条对角线___________________________。
用符号语言写一写菱形的性质:巩固练习:例1 如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,∠BAD=60°,BD=2求AB 和AC 的长。
三、随堂练习:课本P4“随堂练习”1.2.O D C B A O D C B A O D C BA四、课堂小结:这节课你有哪些收获和体会?五、达标检测1.菱形具有而一般平行四边形不具有的性质是( )A.对角相等B.对边相等C.对角线互相垂直D.对角线相等2.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,下列结论正确的有( )个(1)A C ⊥BD (2)OA=OC (3)OB=OD (4)OA=AD (5)∠ABO=∠ADO (6)∠BCA=∠DCAA.3B.4C.5D.63.如图,在菱形ABCD 中,∠ABC=2∠C 则 ∠A= °,△ABD 是 三角形,若BD=2,则菱形ABCD 的周长是 ,面积是 。
鲁教版初三数学下册特殊的平行四边形期末复习题.

GA DE P CBFA BCDE鲁教版初三数学下册特殊的平行四边形期末复习题1、矩形的对角线 ,菱形的对角线 , 正方形的对角线 .2、菱形的两条对角线长分别为16、12,则菱形的边长为 ,面积是 .3、矩形的两边长分别为6cm 、8cm ,那么对角线的长是 .4、正方形的对角线长是23cm ,则正方形的周长是 ,面积是 .5、菱形ABCD 中,AC 、BD 相交于O ,若BD=6,∠BAD=60°,则菱形的周长是 ,AC= .6、如图,矩形ABCD 的周长是36cm ,E 是BC 的中点,∠AED=90°,则AB= ,BC= .7、如图,BD 是正方形ABCD 的一条对角线AD=DE ,点E 在BD 上, 且AD=DE ,则∠BAE= .7、正方形ABCD 中,E 为AB 上一点,且AE=1,DE=2,那么正方形的面积是( (A 1(B 4 (C 3 (D 38、矩形的两对角线相交所成的角是60°,则短边与长边之比为( (A 1:2 (B 1:2 (C 1:3 (D 1:39、菱形ABCD 中,如图,AE ⊥BC 于E ,AF ⊥CD 于F ,若BE=EC ,则∠EAF=( (A 75° (B 60° (C 50° (D 45°2.如图,梯形ABCD 中,AD ∥BC ,DC ⊥BC ,将梯形沿对角线BD 折叠,点A 恰好落在DC 边上的点A '处,若20A BC '∠=°,则A BD '∠的度数为.A .15°B .20°C . 25°D .30°3.给出以下三个命题:①对角线相等的四边形是矩形;②对角线互相垂直的四边形是菱形;③对角线互相垂直的矩形是正方形;④菱形对角线的平方和等于边长平方的4倍,其中真命题的是 A .③ B .①② C .②③ D .③④5.连接直角梯形的两个直角顶点和对腰中点的线段A .相等B .不相等C .互相垂直D .不垂直6.如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为 A .1 B .34 C .23D .2 7.如图,四边形ABCD 是矩形,AB :AD = 4:3,把矩形沿直线AC 折叠, 点B 落在点E 处,连接DE ,则DE :AC =A .1:3B .3:8C .8:27D .7:258.在平行四边形ABCD 中,E 是AB 的中点,CE 和BD 交于点O ,设△OCD 的面积为m,△OEB A .5m =B .m =C .m =D .10m =9.如图,在菱形ABCD 中,∠A =110°,E ,F 分别是边AB 和BC 的中点, EP ⊥CD 于点P ,则∠FPC = A .35° B .45° C .50° D .55°BCDA E 7题图A BCD6题图ABCDEF10.如图,矩形ABCD 长为a ,宽为b ,若S 1=S 2=21(s 3+s 4,则S 4等于 A .ab 83 B .ab 43 C .ab 32 D .ab 2112.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是______度。
2021年中考数学一轮单元复习18平行四边形(含参考答案)

中考数学一轮单元复习:平行四边形一、选择题1.如图,在▱ABCD中,全等三角形的对数共有()A.2对 B.3对 C.4对 D.5对2.如图,□ABCD的周长是22㎝,△ABC的周长是17㎝,则AC的长为( )A.5cm;B.6cm;C.7cm;D.8cm;3.下列给出的条件中,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BCB.∠A=∠C,∠B=∠DC.AB∥CD,AD∥BCD.AB=CD,AD=BC4.菱形不具备的性质是()A.是轴对称图形 B.是中心对称图形C.对角线互相垂直 D.对角线一定相等5.如图,在菱形ABCD中,AB的垂直平分线EF交对角线AC于点F,垂足为点E,连接DF,且∠CDF=24°,则∠DAB等于( )A.100°B.104°C.105°D.110°6.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCEB.AF=ADC.AB=AFD.BE=AD﹣DF7.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30° B.45° C.60° D.75°8.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=( )A.4cmB.6cmC.8cmD.10cm9.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长为2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为 ( )A.3a+2bB.3a+4bC.6a+2bD.6a+4b10.已知一个无盖长方体的底面是边长为1的正方形,侧面是长为2的长方形,现展开铺平.如图,依次连结点A,B,C,D得到一个正方形,将周围的四个长方形沿虚线剪去一个直角三角形,则所剪得的直角三角形较短直角边与较长直角边的比是()A. B. C. D.二、填空题11.如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件使其12.如图,在平行四边形ABCD中,点E在BC边上,且CE:BC=2:3,AC与DE相交于点F,若S△AFD=9,则S△EFC= .13.如图所示,在菱形ABCD中,AE垂直平分BC,垂足为E,AB=4 cm.那么,菱形ABCD的面积是________,对角线BD的长是________.14.如图是叠放在一起的两张长方形卡片,图中有∠1、∠2、∠3,则其中一定相等的是_____15.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.16.如图放置的两个正方形的边长分别为4和8,点G为CF中点,则AG的长为___________.17.已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠1=65°,求∠B的大小.18.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形.19.如图,已知在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.20.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.21.如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF﹣DG=FG.22.如图,已知:正方形ABCD,由顶点A引两条射线分别交BC、CD于E、F,且∠EAF=45°,求证:BE+DF=EF.参考答案1.答案为:C.2.B;3.A4.答案为:D;5.B6.B7.C8.A9.答案为:A10.C.11.答案为:AC⊥BC或∠AOB=90°或AB=BC12.答案为:4;13.答案为:83cm2;43cm;14.答案为:∠2=∠315.答案为:45°.2;16.答案为:1017.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠DCE,∵AF∥CE,∴∠AFB=∠ECB,∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠AFB=∠1,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)解:由(1)得:∠1=∠ECB,∠DCE=∠ECB,∴∠1=∠DCE=65°,X∴1 .∠B=∠D=180°﹣2×65°=50°.18.略19.提示:证明△BFE≌△CED,从而BE=DC=AB,∴∠BAE=45°,可得AE平分∠BAD20. (1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中,,∴△DMO≌△BNO(AAS),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8﹣x)2+42,解得:x=5,所以MD长为5.21.证明:∵四边形ABCD是正方形,∴AB=AD,∠DAB=90°,∵BF⊥AE,DG⊥AE,∴∠AFB=∠AGD=∠ADG+∠DAG=90°,∵∠DAG+∠BAF=90°,在△BAF和△ADG中,∵,∴△BAF≌△ADG(AAS),∴BF=AG,AF=DG,∵AG=AF+FG,∴BF=AG=DG+FG,∴BF﹣DG=FG.22.证明:如图,延长CD到G,使DG=BE,在正方形ABCD中,AB=AD,∠B=∠ADC=90°,∴∠ADG=∠B,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AG=AE,∠DAG=∠BAE,∵∠EAF=45°,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=90°﹣45°=45°,∴∠EAF=∠GAF,在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴EF=GF,∵GF=DG+DF=BE+DF,∴BE+DF=EF.。
中考数学一轮复习平行四边形(讲义及答案)含答案

中考数学一轮复习平行四边形(讲义及答案)含答案一、解答题1.如图, 平行四边形ABCD 中,3AB cm =,5BC cm =,60B ∠=, G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF . (1) 求证:四边形CEDF 是平行四边形;(2) ①当AE 的长为多少时, 四边形CEDF 是矩形;②当AE = cm 时, 四边形CEDF 是菱形, (直接写出答案, 不需要说明理由).2.已知:如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线交于BE 的延长线于点F ,且AF=DC ,连接CF .(1)求证:D 是BC 的中点;(2)如果AB=AC ,试判断四边形ADCF 的形状,并证明你的结论.3.如图所示,四边形ABCD 是正方形, M 是AB 延长线上一点.直角三角尺的一条直角边经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点A B 、重合),另一直角边与CBM ∠的平分线BF 相交于点F .(1)求证: ADE FEM ∠=∠;(2)如图(1),当点E 在AB 边的中点位置时,猜想DE 与EF 的数量关系,并证明你的猜想;(3)如图(2),当点E 在AB 边(除两端点)上的任意位置时,猜想此时DE 与EF 有怎样的数量关系,并证明你的猜想.4.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明..)ABCD 中,AB BC ≠,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D . 结论1:'AB C ∆与ABCD 重叠部分的图形是等腰三角形;结论2:'B D AC .试证明以上结论.(应用与探究)在ABCD 中,已知2BC =,45B ∠=,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D .若以A 、C 、D 、'B 为顶点的四边形是正方形,求AC 的长.(要求画出图形)5.直线1234,,,,l l l l 是同一平面内的一组平行线.(1)如图1.正方形ABCD 的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点A ,点C 分别在直线1l 和4l 上,求正方形的面积;(2)如图2,正方形ABCD 的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为123h h h ,,.①求证:13h h =;②设正方形ABCD 的面积为S ,求证222211 2 2 S h h h h =++.6.(解决问题)如图1,在ABC ∆中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .(1)若3PE =,5PF =,则ABP ∆的面积是______,CG =______.(2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.(3)(变式探究)如图2,在ABC ∆中,若10AB AC BC ===,点P 是ABC ∆内任意一点,且PE BC ⊥,PF AC ⊥,PG AB ⊥,垂足分别为点E ,点F ,点G ,求PE PF PG ++的值.(4)(拓展延伸)如图3,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任意一点,过点P 作PG BE ⊥,PH BC ⊥,垂足分别为点G ,点H .若8AD =,3CF =,直接写出PG PH +的值.7.如图,ABC ADC ∆≅∆,90,ABC ADC AB BC ︒∠=∠==,点F 在边AB 上,点E 在边AD 的延长线上,且,DE BF BG CF =⊥,垂足为H ,BH 的延长线交AC 于点G .(1)若10AB =,求四边形AECF 的面积;(2)若CG CB =,求证:2BG FH CE +=.8.在正方形AMFN 中,以AM 为BC 边上的高作等边三角形ABC ,将AB 绕点A 逆时针旋转90°至点D ,D 点恰好落在NF 上,连接BD ,AC 与BD 交于点E ,连接CD ,(1)如图1,求证:△AMC ≌△AND ;(2)如图1,若3,求AE 的长;(3)如图2,将△CDF 绕点D 顺时针旋转α(090α<<),点C,F 的对应点分别为1C 、1F ,连接1AF 、1BC ,点G 是1BC 的中点,连接AG ,试探索1AG AF 是否为定值,若是定值,则求出该值;若不是,请说明理由.9.如图,已知正方形ABCD与正方形CEFG如图放置,连接AG,AE.(1)求证:AG AE=(2)过点F作FP AE⊥于P,交AB、AD于M、N,交AE、AG于P、Q,交BC于H,.求证:NH=FM10.在四边形ABCD中,对角线AC、BD相交于点O,过点O的直线EF,GH分别交边AB、CD,AD、BC于点E、F、G、H.(1)观察发现:如图①,若四边形ABCD是正方形,且EF⊥GH,易知S△BOE=S△AOG,又因为S△AOB=14S四边形ABCD,所以S四边形AEOG=S正方形ABCD;(2)类比探究:如图②,若四边形ABCD是矩形,且S四边形AEOG=14S矩形ABCD,若AB=a,AD=b,BE=m,求AG的长(用含a、b、m的代数式表示);(3)拓展迁移:如图③,若四边形ABCD是平行四边形,且S四边形AEOG=14S▱ABCD,若AB=3,AD=5,BE=1,则AG=.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)证明见解析;(2)①当AE=3.5时,平行四边形CEDF 是矩形;②2【分析】(1)证明△FCG ≌△EDG (ASA ),得到FG=EG 即可得到结论;(2)①当AE=3.5时,平行四边形CEDF 是矩形.过A 作AM ⊥BC 于M ,求出BM=1.5,根据平行四边形的性质得到∠CDA=∠B=60°,DC=AB=3,BC=AD=5,求出DE=1.5=BM ,证明△MBA ≌△EDC(SAS),得到∠CED=∠AMB=90°,推出四边形CEDF 是矩形;②根据四边形CEDFCEDF 是菱形,得到CD ⊥EF ,DG=CG=1212CD=1.5,求出∠DEG=30°,得到DE=2DG=3,即可求出AE=AD-DE=5-3=2.【详解】(1)证明:∵ 四边形ABCD 是平行四边形,∴ CF ∥ED ,∴ ∠FCG =∠EDG ,∵ G 是CD 的中点,∴ CG =DG ,在△FCG 和△EDG 中,FCG EDG CG DG CGF DGE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ △FCG ≌△EDG (ASA ),∴ FG =EG ,∵ CG =DG ,∴ 四边形CEDF 是平行四边形;(2)解:①当AE=3.5时,平行四边形CEDF 是矩形,理由是:过A 作AM ⊥BC 于M ,∵∠B=60°,∴∠BAM=30°,∵AB=3,∴BM=1.5,∵四边形ABCD 是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM ,在△MBA 和△EDC 中,BM DE B CDE AB CD =⎧⎪∠=∠⎨⎪=⎩,∴△MBA ≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF 是平行四边形,∴四边形CEDF 是矩形;②∵四边形CEDFCEDF 是菱形,∴CD ⊥EF ,DG=CG=1212CD=1.5,∵∠CDE=∠B=60∘∠B=60∘,∴∠DEG=30°,∴DE=2DG=3,∴AE=AD-DE=5-3=2,故答案为:2.【点睛】此题考查了平行四边形的性质,矩形的判定定理,菱形的性质定理,直角三角形30度角所对的直角边等于斜边的一半,三角形全等的判定及性质定理,熟练掌握各定理并运用解答问题是解题的关键.2.(1)见详解;(2)四边形ADCF 是矩形;证明见详解.【分析】(1)可证△AFE ≌△DBE ,得出AF=BD ,进而根据AF=DC ,得出D 是BC 中点的结论; (2)若AB=AC ,则△ABC 是等腰三角形,根据等腰三角形三线合一的性质知AD ⊥BC ;而AF 与DC 平行且相等,故四边形ADCF 是平行四边形,又AD ⊥BC ,则四边形ADCF 是矩形.【详解】(1)证明:∵E 是AD 的中点,∴AE=DE .∵AF ∥BC ,∴∠FAE=∠BDE ,∠AFE=∠DBE .在△AFE 和△DBE 中,FAE BDE AFE DBE AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS ).∴AF=BD .∵AF=DC ,∴BD=DC .即:D 是BC 的中点.(2)解:四边形ADCF 是矩形;证明:∵AF=DC ,AF ∥DC ,∴四边形ADCF 是平行四边形.∵AB=AC ,BD=DC ,∴AD ⊥BC 即∠ADC=90°.∴平行四边形ADCF 是矩形.【点睛】此题主要考查了全等三角形的判定和性质,等腰三角形的性质,平行四边形、矩形的判定等知识综合运用.解题的关键是熟练掌握矩形的判定方法,以及全等三角形的判定和性质进行证明.3.(1)详见解析;(2)DE EF =,理由详见解析;(3)DE EF =,理由详见解析【分析】(1)根据90,90AED FEB ADE AED ∠+∠=︒∠+∠=︒,等量代换即可证明;(2)DE=EF ,连接NE ,在DA 边上截取DN=EB ,证出△DNE ≌△EBF 即可得出答案;(3)在DA 边上截取DN EB =,连接NE ,证出()DNE EBF ASA ≌即可得出答案.【详解】(1)证明:∵90DAB DEF ∠=∠=︒,∴90,90AED FEB ADE AED ∠+∠=︒∠+∠=︒,∴ADE FEM ∠=∠;(2) ;DE EF =理由如下:如图,取AD 的中点N ,连接NE ,∵四边形ABCD 为正方形,∴AD AB = ,∵,N E 分别为,AD AB 中点 ∴11,22AN DN AD AE EB AB ====, ∴,DN BE AN AE == 又∵90A ∠=︒∴45ANE ∠=︒∴180135DNE ANE ∠=︒-∠=︒,又∵90CBM ∠=︒,BF 平分CBM ∠∴45,135CBF EBF ∠=︒∠=︒.∴DNE EBF ∠=∠在DNE △和EBF △中ADE FEB DN EBDNE EBF ∠=∠⎧⎪=⎨⎪∠=∠⎩()DNE EBF ASA ≌,∴DE EF =(3) DE EF =.理由如下:如图,在DA 边上截取DN EB =,连接NE ,∵四边形ABCD 是正方形, DN EB =,∴AN AE =,∴AEN △为等腰直角三角形,∵45ANE ∠=︒∴18045135DNE ∠=︒-︒=︒,∵BF 平分CBM ∠, AN AE =,∴9045135EBF ∠=︒+︒=︒,∴DNE EBF ∠=∠,在DNE △和EBF △中ADE FEB DN EBDNE EBF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()DNE EBF ASA ≌,∴DE EF =.【点睛】此题主要考查了正方形的性质以及全等三角形的判定与性质等知识,解决本题的关键就是求证△DNE ≌△EBF .4.【发现与证明..】结论1:见解析,结论2:见解析;【应用与探究】AC 2或2. 【分析】【发现与证明..】由平行四边形的性质得出∠EAC=∠ACB ,由翻折的性质得出∠ACB=∠ACB ′,证出∠EAC=∠ACB ′,得出AE=CE ;得出DE=B ′E ,证出∠CB′D=∠B′DA=12(180°-∠B′ED),由∠AEC=∠B′ED,得出∠ACB′=∠CB′D,即可得出B′D∥AC;【应用与探究】:分两种情况:①由正方形的性质得出∠CAB′=90°,得出∠BAC=90°,再由三角函数即可求出AC;②由正方形的性质和已知条件得出AC=BC=2.【详解】【发现与证明..】:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠EAC=∠ACB,∵△ABC≌△AB′C,∴∠ACB=∠ACB′,BC=B′C,∴∠EAC=∠ACB′,∴AE=CE,即△ACE是等腰三角形;∴DE=B′E,∴∠CB′D=∠B′DA=12(180°−∠B′ED),∵∠AEC=∠B′ED,∴∠ACB′=∠CB′D,∴B′D∥AC;【应用与探究】:分两种情况:①如图1所示:∵四边形ACDB′是正方形,∴∠CAB′=90°,∴∠BAC=90°,∵∠B=45°,∴AC=222BC ;②如图2所示:AC=BC=2;综上所述:AC2或2.【点睛】本题考查平行四边形的性质, 正方形的性质, 翻折变换(折叠问题).【发现与证明..】对于结论1,要证明三角形是等腰三角形,只需要证明它的两条边相等,而在同一个三角形内要证明两条线段相等只需要证明它们所对应的角相等(即用等角对等边证明).结论2:要证明两条线段平行,本题用到了内错角相等,两直线平行.所以解决【发现与证明..】的关键是根据已知条件找到对应角之间的关系. 【应用与探究】折叠时,因为正方形的四个角都是直角,所以对应线段之间存在共线情况,所以分BA 和AB’共线和BC 和B’C 两种情况讨论,能根据题意画出两种情况对应的图形,是解题关键.5.(1)9或5;(2)①见解析,②见解析【分析】(1)分两种情况:①如图1-1,得出正方形ABCD 的边长为3,求出正方形ABCD 的面积为9;②如图1-2,过点B 作EF ⊥l 1于E ,交l 4于F ,则EF ⊥l 4,证明△ABE ≌△BCF (AAS ),得出AE=BF=2由勾股定理求出AB=225AE BE +=,即可得出答案;(2)①过点B 作EF ⊥l 1于E ,交l 4于F ,作DM ⊥l 4于M ,证明△ABE ≌△BCF (AAS ),得出AE=BF ,同理△CDM ≌△BCF (AAS ),得出△ABE ≌△CDM (AAS ),得出BE=DM 即可; ②由①得出AE=BF=h 2+h 3=h 2+h 1,得出正方形ABCD 的面积S=AB 2=AE 2+BE 2,即可得到答案.【详解】解:(1)①如图,当点B D ,分别在14,l l 上时,面积为:339⨯=;②如图,当点B D ,分别在23,l l 上时,过点B 作EF ⊥l 1于E ,交l 4于F ,则EF ⊥l 4,∵四边形ABCD 是正方形,∴AB=BC ,∠ABC=90°,∴∠ABE+∠CBF=180°-90°=90°,∵∠CBF+∠BCF=90°,∴∠ABE=∠BCF ,在△ABE 和△BCF 中90ABE BCF AEB BFC AB BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△BCF (AAS ),∴AE=BF=2,∴AB=2222215AE BE +=+=,∴正方形ABCD 的面积=AB 2=5;综上所述,正方形ABCD 的面积为9或5;(2)①证明:过点B 作EF ⊥l 1于E ,交l 4于F ,作DM ⊥l 4于M ,如图所示:则EF ⊥l 4,∵四边形ABCD 是正方形,∴AB=BC ,∠ABC=90°,∴∠ABE+∠CBF=180°-90°=90°,∵∠CBF+∠BCF=90°,∴∠ABE=∠BCF ,在△ABE 和△BCF 中,90ABE BCF AEB BFC AB BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△BCF (AAS ),∴AE=BF ,同理△CDM ≌△BCF (AAS ),∴△ABE ≌△CDM (AAS ),∴BE=DM ,即h 1=h 3.②解:由①得:AE=BF=h 2+h 3=h 2+h 1,∵正方形ABCD 的面积:S=AB 2=AE 2+BE 2,∴S=(h 2+h 1)2+h 12=2h 12+2h 1h 2+h 22.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.6.(1)15,8;(2)PE PF CG +=,见解析;(3)534)4【分析】解决问题(1)只需运用面积法:ABC ABP ACP S S S ∆∆∆=+,即可解决问题;(2)解法同(1);(3)连接PA 、PB 、PC ,作AM BC ⊥于M ,由等边三角形的性质得出152BM BC ==,由勾股定理得出2253AM AB BM =-=,得出ABC ∆的面积12532BC AM =⨯=,由ABC ∆的面积BCP =∆的面积ACP +∆的面积APB +∆的面积1111()2532222BC PE AC PF AB PG AB PE PF PG =⨯+⨯+⨯=++=,即可得出答案; (4)过点E 作EQ BC ⊥,垂足为Q ,易证BE BF =,过点E 作EQ BF ⊥,垂足为Q ,由解决问题(1)可得PG PH EQ +=,易证EQ DC =,BF DF =,只需求出BF 即可.【详解】解:(1)∵PE AB ⊥,10AB =,3PE =,∴ABP ∆的面积111031522AB PE =⨯=⨯⨯=, ∵PE AB ⊥,PF AC ⊥,CG AB ⊥,且ABC ABP ACP S S S ∆∆∆=+,∴AB CG AB PE AC PF ⋅=⋅+⋅,∵AB AC =,∴358CG PE PF =+=+=.故答案为:15,8.(2)∵PE AB ⊥,PF AC ⊥,CG AB ⊥,且ABC ABP ACP S S S ∆∆∆=+,∴AB CG AB PE AC PF ⋅=⋅+⋅,∵AB AC =,∴CG PE PF =+.(3)连接PA 、PB 、PC ,作AM BC ⊥于M ,如图2所示:∵10AB AC BC ===,∴ABC ∆是等边三角形,∵AM BC ⊥,∴152BM BC ==, ∴222210553AM AB BM =-=-=,∴ABC ∆的面积11105325322BC AM =⨯=⨯⨯=, ∵PE BC ⊥,PF AC ⊥,PG AB ⊥,∴ABC ∆的面积BCP =∆的面积ACP +∆的面积APB +∆的面积111222BC PE AC PF AB PG =⨯+⨯+⨯1()2AB PE PF PG =++ 253=,∴22535310PE PF PG ⨯++==. (4)过点E 作EQ BC ⊥,垂足为Q ,如图3所示:∵四边形ABCD 是矩形,∴AD BC =,90C ADC ∠=∠=︒,∵8AD =,3CF =,∴5BF BC CF AD CF =-=-=,由折叠可得:5DF BF ==,BEF DEF ∠=∠,∵90C ∠=︒,∴2222534DC DF FC =-=-=,∵EQ BC ⊥,90C ADC ∠=∠=︒,∴90EQC C ADC ∠=︒=∠=∠,∴四边形EQCD 是矩形,∴4EQ DC ==,∵//AD BC ,∴DEF EFB ∠=∠,∵BEF DEF ∠=∠,∴BEF EFB ∠=∠,∴BE BF =,由解决问题(1)可得:PG PH EQ +=,∴4PG PH +=,即PG PH +的值为4.【点睛】本题是四边形综合题目,考查了矩形的性质与判定、等腰三角形的性质与判定、平行线的性质与判定、等边三角形的性质、勾股定理等知识,考查了用面积法证明几何问题,考查了运用已有的经验解决问题的能力,体现了自主探究与合作交流的新理念,是充分体现新课程理念难得的好题.7.(1)100;(2)见解析.【分析】(1)先证明四边形ABCD 是正方形,再根据已知条件证明△BCF ≌△DCE ,即可得到四边形AECF 的面积=正方形ABCD 的面积;(2) 延长BG 交AD 于点M ,作AN ⊥MN ,连接FG ,先证明四边形BCEM 是平行四边形,得到BM=CE ,证明△BCF ≌△GCF ,得到BF=GF ,∠FGC=∠FBC=90︒,由AN ⊥MN ,得GM=2MN ,根据∠BAC=45︒,BC ∥AD 得到AM=BF ,再证△BFH ≌△AMN,得到GM=2FH , 由此得到结论.【详解】(1)∵9,0ABC AB BC ︒∠==,∴△ABC 是等腰直角三角形,∵ABC ADC ∆≅∆,∴AB=AD=BC=DC ,∴四边形ABCD 是菱形,∵90ABC ADC ︒∠=∠=,∴四边形ABCD 是正方形,∴∠BCD=90ABC ADC ︒∠=∠=,∴∠CDE=90ABC ADC ︒∠=∠=,∵BF=DE,BC=DC ,∴△BCF ≌△DCE ,∴四边形AECF 的面积=S 正方形ABCD =AB 2=102=100.(2)延长BG 交AD 于点M ,作AN ⊥MN ,连接FG,∵△BCF ≌△DCE ,∴∠BCF=∠DCE ,∴∠FCE=∠BCD=90︒,∵BG ⊥CF ,∴∠FHM=∠FCE=90︒,∴BM ∥CE,∵BC ∥AD,∴四边形BCEM 是平行四边形,∴BM=CE.∵CG CB =,BG ⊥CF ,∴∠BCH=∠GCH,∠CBM=∠CGB,∴△BCF ≌△GCF,∴BF=GF,∠FGC=∠FBC=90︒,∵∠BAC=45︒,∴∠AFG=∠BAC=45︒,∴FG=AG,∵BC ∥AD,∴∠CBM=∠AMB,∴∠AGM=∠CGB=∠CBM=∠AMB,∴AM=AG,∵AN ⊥MN ,∴GM=2MN,∵∠BAD=∠ANM=90︒,∴∠ABM+∠AMN=∠MAN+∠AMN=90︒,∴∠ABM=∠MAN,∵AM=AG=FG=BF,∠BHF=∠ANM=90︒,∴△BFH ≌△AMN,∴FH=MN,∴GM=2FH,∵BG+GM=CE,∴2BG FH CE +=.【点睛】此题是四边形的综合题,考查正方形的判定及性质,全等三角形的判定及性质,等腰三角形的性质,平行四边形的性质,解题中注意综合思想的方法积累.8.(1)见解析;(2)AE =33)(3)122AG AF =,理由见解析. 【分析】(1)运用四边形AMFN 是正方形得到判断△AMC,△AND 是Rt △,进一步说明△ABC 是等边三角形,在结合旋转的性质,即可证明.(2)过E 作EG ⊥AB 于G,在BC 找一点H ,连接DH,使BH=HD ,设AG =x ,则AE=2x 3x ,得到△GBE 是等腰直角三角形和∠DHF=30°,再结合直角三角形的性质,判定Rt △AMC ≌Rt △AND ,最后通过计算求得AE 的长;(3)延长F 1G 到M,延长BA 交11F C 的延长线于N,使得1GM FG =,可得GMB ∆≌11GFC ∆,从而得到111BM FC DF == 1BMG GFN ∠=,可知BM ∥1F N , 再根据题意证明ABM ∆≌1ADF ∆,进一步说明1AMF ∆是等腰直角三角形,然后再使用勾股定理求解即可.【详解】(1)证明:∵四边形AMFN 是正方形,∴AM=AN ∠AMC=∠N=90°∴△AMC,△AND 是Rt △∵△ABC 是等边三角形∴AB=AC∵旋转后AB=AD∴AC=AD∴Rt △AMC ≌Rt △AND(HL)(2)过E 作EG ⊥AB 于G,在BC 找一点H ,连接DH,使BH=HD ,设AG =x则AE=2x 3x易得△GBE 是等腰直角三角形∴BG=EG 3x∴AB=BC=31)x易得∠DHF=30°∴HD=2DF=3,HF=3∴BF=BH+HF=233∵Rt △AMC ≌Rt △AND(HL)∴易得3∴BC=BF-CF=233333=+∴(31)33x =∴3x =∴AE =223x=(3)12AG AF =; 理由:如图2中,延长F 1G 到M,延长BA 交11F C 的延长线于N,使得1GM FG =,则GMB ∆≌11GFC ∆,∴111BM FC DF == 1BMG GFN ∠=, ∴BM ∥1F N ,∴MBA N ∠=∠∵0190NAO OF D ∠=∠= 1AON DOF ∠=∠∴1N ADF ∠=∠∴1ABM ADF ∠=∠,∵AB AD = ∴ABM ∆≌1ADF ∆(SAS )∴1AM AF = 1MAB DAF ∠=∠∴0190MAF BAD ∠=∠=∴1AMF ∆是等腰直角三角形∴1AG MF ⊥ 1AG GF =∴12AF∴122AG AF = 【点睛】本题考查正方形的性质、三角形全等、以及勾股定理等知识点,综合性强,难度较大,但解答的关键是正确做出辅助线.9.(1)证明见解析;(2)证明见解析.【分析】(1)根据正方形的性质证得BG=DE ,利用SAS 可证明ABG ≌ADE ,再利用全等的性质即可得到结论;(2)过M 作MK ⊥BC 于K ,延长EF 交AB 于T ,根据ASA 可证明MHK △≌AED ,得到AE=MH ,再利用AAS 证明TNF △≌DAE △,得到NF=AE ,从而证得MH=NF ,即可得到结论.【详解】证明:(1)∵四边形ABCD 与四边形CEFG 均为正方形,∴AB=AD=BC=CD ,CG=CE ,∠ABG=∠ADE=90°,∴BC -GC=CD -EC ,即BG=DE ,∴ABG ≌ADE ,∴AG=AE ;(2)过M 作MK ⊥BC 于K ,则四边形MKCD 为矩形,∴∠MKH=∠ADE=90°,MK=CD ,∠AMK=90°,∴MK=AD ,∠AMP+∠HMK=90°,又∵FP AE ,∴∠EAD+∠AMP=90°,∴∠HMK=∠EAD ,∴MHK △≌AED ,∴MH=AE ,延长EF 交AB 于T ,则四边形TBGF 为矩形,∴FT=BG ,∠FTN=∠ADE=90°,∵ABG ≌ADE ,∴DE=BG ,∴FT=DE ,∵FP ⊥AE ,∠DAB=90°,∴∠N+∠NAP=∠DAE+∠NAP=90°,∴∠N=∠DAE ,∴TNF △≌DAE △,∴FN=AE ,∴FN=MH ,∴FN-FH=MH-FH,∴NH=FM.【点睛】本题考查了正方形的性质,矩形的判定与性质,及全等三角形的判定与性质,熟练掌握各性质、判定定理是解题的关键.10.(1)14;(2)mbAGa;(3)53【分析】(1)如图①,根据正方形的性质和全等三角形的性质即可得到结论;(2)如图②,过O作ON⊥AD于N,OM⊥AB于M,根据图形的面积得到14mb=14AG•a,于是得到结论;(3)如图③,同理:过O作QM⊥AB,PN⊥AD,先根据平行四边形面积可得OM和ON 的比,同理可得S△BOE=S△AOG,根据面积公式可计算AG的长.【详解】解:(1)如图①,∵四边形ABCD是正方形,∴OA=OC,∠OAG=∠EBO=45°,∠AOB=90°,∵EF⊥GH,∴∠EOG=90°,∴∠BOE=∠AOG(SAS),∴△BOE≌△AOG,∴S△BOE=S△AOG,又∵S△AOB=14S四边形ABCD,∴S四边形AEOG=14S正方形ABCD,故答案为:14.(2)解:如图②,过O作OM⊥AB于M,ON⊥AD于N,∴S△AOB=S△AOD=14S矩形ABCD,∵S四边形AEOG=14S矩形ABCD,∴S△AOB=S四边形AEOG,∴S△BOE=S△AOG,∵S△BOE=12BE•OM=14mb,S△AOG=12AG•ON=14AG•a,∴mb=AG•a,∴AG=mba;(3)如图③,过O作OM⊥AB于M,ON⊥AD于N,∵S△AOB=S△AOD=14S▱ABCD,S四边形AEOG=14S▱ABCD,∴S△AOB=S四边形AEOG,∴S△BOE=S△AOG,∵S△BOE=12BE•OM=12OM,S△AOG=12AG•ON,∴OM=AG•ON,∵S▱ABCD=3×2OM=5×2 ON,∴53 OMON,∴AG=53;【点睛】本题是四边形综合题,考查了正方形、矩形、平行四边形的性质及三角形、四边形的面积问题,认真阅读材料,理解并证明S△BOE=S△AOG是解决问题的关键.。
鲁教版中考数学一轮复习各知识点练习题分层设计五分式部分

选做题 1
16.已知 x2-3x-1=0,求 x2+x2的值.
鲁教版中考数学一轮复习各知识点练习题分层设计(分式部分)
A 级 基础题 1
1.要使分式x有意义,x 的取值范围满足( ) A.x=0 B.x≠0 C.x>0 D.x<0
x
2.使代 数式2x-1有意义的 x 的取值范围是( )
1
1
A.x≥0 B.x≠2 C.x≥0 且 x≠2
D.一切实数
3. 在括号内填入适当的代数式,是下列等式成立:
1 x 1
x2
2x 1
x2 1
÷x+1,其中
x=2.
a-2
14
.先化简,再求值:a2-1÷
a
1
2a 1 a 1
,其中
a
是方程
x2-x=6
的根.
C 级 拔尖题
ab+a b-1 1 5.先化简再求值:b2-1+b2-2b+1,其中 b-2+36a2+b2-12ab=0.
B 级 中等 题 x-1
11.若分式x-1x-2有意 义,则 x 应满 足的条件是( ) A.x≠1 B.x≠2 C.x≠1 且 x≠2 D.以上结果都不对
x+2
12.先化简,再求值:
3x x2
4 1
x
2 1
÷-2x+1.
13.先化简,再求值.
x-1
x2-2x-3 6.当 x=______时,分式 x-3 的值为零.
x2 1 8.先化简x-1+1-x,再选取一个你喜欢的数代入求值.
x-2 x 9.先化简,再求值:x2-4-x+2,其中 x=2.
m
10.化简:
【鲁教版】中考数学一轮复习:各知识点练习题分层设计(打包24套)(已纠错)

(实数部分)A 级 基础题1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( ) A .-1 B .0 C .1 D .22.-2的绝对值等于( ) A .2 B .-2 C.12 D .±23.-4的倒数的相反数是( ) A .-4 B .4 C .-14 D.144.-3的倒数是( ) A .3 B .-3 C.13 D .-135.无理数-3的相反数是( ) A .- 3 B. 3 C.13 D .-136.下列各式,运算结果为负数的是( )A .-(-2)-(-3)B .(-2)×(-3)C .(-2)2D .(-3)-37.某天最低气温是-5 ℃,最高气温比最低气温高8 ℃,则这天的最高气温是________℃.8.如果x -y <0,那么x 与y 的大小关系是x ____y (填“<”或“>”).9.已知一粒米的质量是0.000 021千克,这个数字用科学记数法表示为( ) A .21×10-4千克 B .2.1×10-6千克 C .2.1×10-5千克 D .2.1×10-4千克10.计算:|-5|-(2-3)0+6×1132⎛⎫- ⎪⎝⎭+(-1)2.B 级 中等题11.实数a ,b 在数轴上的位置如图所示,下列式子错误的是( ) A .a <b B .|a |>|b | C .-a <-b D .b -a >012.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.000 001 6秒.这里的0.000 001 6秒请你用科学记数法表示________________________秒.13.将1,2,3,6按下列方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(14,5)表示的两数之积是________.14.计算:|-3 3|-2cos30°-2-2+(3-π)0. 15.计算:-22+-113⎛⎫⎪⎝⎭-2cos60°+|-3|.C 级 拔尖题16.如图X1-1-2,矩形ABCD 的顶点A ,B 在数轴上,CD =6,点A 对应的数为-1,则点B 所对应的数为__________.图X1-1-217.观察下列等式:第1个等式:a 1=11×3=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=13×5=12×1135⎛⎫- ⎪⎝⎭;第3个等式:a 3=15×7=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=17×9=12×1179⎛⎫- ⎪⎝⎭;请解答下列问题:(1)按以上规律列出第5个等式:a 5=___________=______________;(2)用含有n 的代数式表示第n 个等式:a n =______________=____________(n 为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100的值. 选做题18.请你规定一种适合任意非零实数a ,b 的新运算“a ⊕b ”,使得下列算式成立: 1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=-76,(-3)⊕5=5⊕(-3)=-415,…你规定的新运算a ⊕b =_______(用a ,b 的一个代数式表示).(代数式部分)A 级 基础题1.某省初中毕业学业考试的同学约有15万人,其中男生约有a 万人,则女生约有( )A .(15+a )万人B .(15-a )万人C .15a 万人 D.15a万人2.若x =m -n ,y =m +n ,则xy 的值是( ) A .2 m B 。
中考数学复习---特殊平行四边形综合压轴题练习(含作案解析)

中考数学复习---特殊平行四边形综合压轴题练习(含作案解析)一.平行四边形的性质1.(2022•日照)如图,在平面直角坐标系中,平行四边形OABC的顶点O在坐标原点,点E是对角线AC上一动点(不包含端点),过点E作EF∥BC,交AB于F,点P在线段EF上.若OA=4,OC=2,∠AOC=45°,EP=3PF,P点的横坐标为m,则m的取值范围是()A.4<m<3+B.3﹣<m<4C.2﹣<m<3D.4<m<4+【答案】A【解答】解:可得C(,),A(4,0),B(4+,),∴直线AB的解析式为:y=x﹣4,∴x=y+4,直线AC的解析式为:y=﹣,∴x=4+y﹣2y,∴点F的横坐标为:y+4,点E的横坐标为:4+y﹣2y,∴EF=(y+4)﹣(4+y﹣2y)=2,∵EP=3PF,∴PF=EF=y,∴点P的横坐标为:y+4﹣y,∵0<y<,∴4<y+4﹣y<3+,故答案为:A.2.(2022•无锡)如图,在▱ABCD中,AD=BD,∠ADC=105°,点E在AD 上,∠EBA=60°,则的值是()A.B.C.D.【答案】D【解答】解:如图,过点B作BH⊥AD于H,设∠ADB=x,∵四边形ABCD是平行四边形,∴BC∥AD,∠ADC=∠ABC=105°,∴∠CBD=∠ADB=x,∵AD=BD,∴∠DBA=∠DAB=,∴x+=105°,∴x=30°,∴∠ADB=30°,∠DAB=75°,∵BH⊥AD,∴BD=2BH,DH=BH,∵∠EBA=60°,∠DAB=75°,∴∠AEB=45°,∴∠AEB=∠EBH=45°,∴EH=BH,∴DE=BH﹣BH=(﹣1)BH,∵AB===(﹣)BH=CD,∴=,故选:D.二.矩形的性质3.(2022•泰安)如图,四边形ABCD为矩形,AB=3,BC=4,点P是线段BC上一动点,点M为线段AP上一点,∠ADM=∠BAP,则BM的最小值为()A.B.C.﹣D.﹣2【答案】D【解答】解:如图,取AD的中点O,连接OB,OM.∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC=4,∴∠BAP+∠DAM=90°,∵∠ADM=∠BAP,∴∠ADM+∠DAM=90°,∴∠AMD=90°,∵AO=OD=2,∴OM=AD=2,∴点M在以O为圆心,2为半径的⊙O上,∵OB===,∴BM≥OB﹣OM=﹣2,∴BM的最小值为﹣2.故选:D.4.(2022•丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN.已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.AE=a,DE=b,且a>b.(1)若a,b是整数,则PQ的长是;(2)若代数式a2﹣2ab﹣b2的值为零,则的值是.【答案】a﹣b;3+2.【解答】解:(1)由图可知:PQ=a﹣b,故答案为:a﹣b;(2)∵a2﹣2ab﹣b2=0,∴a2﹣b2=2ab,(a﹣b)2=2b2,∴a=b+b(负值舍),∵四个矩形的面积都是5.AE=a,DE=b,∴EP=,EN=,则======3+2.故答案为:3+2.5.(2022•宿迁)如图,在矩形ABCD中,AB=6,BC=8,点M、N分别是边AD、BC的中点,某一时刻,动点E从点M出发,沿MA方向以每秒2个单位长度的速度向点A匀速运动;同时,动点F从点N出发,沿NC方向以每秒1个单位长度的速度向点C匀速运动,其中一点运动到矩形顶点时,两点同时停止运动,连接EF,过点B作EF的垂线,垂足为H.在这一运动过程中,点H所经过的路径长是.【答案】π【解答】解:如图1中,连接MN交EF于点P,连接BP.∵四边形ABCD是矩形,AM=MD,BN=CN,∴四边形ABNM是矩形,∴MN=AB=6,∵EM∥NF,∴△EPM∽△FPN,∴===2,∴PN=2,PM=4,∵BN=4,∴BP===2,∵BH⊥EF,∴∠BHP=90°,∴点H在BP为直径的⊙O上运动,当点E与A重合时,如图2中,连接OH,ON.点H的运动轨迹是.此时AM=4,NF=2,∴BF=AB=6,∵∠ABF=90°,BH⊥AF,∴BH平分∠ABF,∴∠HBN=45°,∴∠HON=2∠HBN=90°,∴点H的运动轨迹的长==π.故答案为:π.6.(2022•西宁)矩形ABCD中,AB=8,AD=7,点E在AB边上,AE=5.若点P是矩形ABCD边上一点,且与点A,E构成以AE为腰的等腰三角形,则等腰三角形AEP的底边长是.【答案】5或4【解答】解:如图所示,①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当P1E=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴P1B=,∴底边AP1=;综上所述:等腰三角形AEP1的底边长为5或4;故答案为:5或4.三.正方形的性质和判定7.(2022•泸州)如图,在边长为3的正方形ABCD中,点E是边AB上的点,且BE=2AE,过点E作DE的垂线交正方形外角∠CBG的平分线于点F,交边BC于点M,连接DF交边BC于点N,则MN的长为()A.B.C.D.1【答案】B【解答】解:作FH⊥BG交于点H,作FK⊥BC于点K,∵BF平分∠CBG,∠KBH=90°,∴四边形BHFK是正方形,∵DE⊥EF,∠EHF=90°,∴∠DEA+∠FEH=90°,∠EFH+∠FEH=90°,∴∠DEA=∠EFH,∵∠A=∠EHF=90°,∴△DAE∽△EHF,∴,∵正方形ABCD的边长为3,BE=2AE,∴AE=1,BE=2,设FH=a,则BH=a,∴,解得a=1;∵FK⊥CB,DC⊥CB,∴△DCN∽△FKN,∴,∵BC=3,BK=1,∴CK=2,设CN=b,则NK=2﹣b,∴,解得b=,即CN=,∵∠A=∠EBM,∠AED=∠BME,∴△ADE∽△BEM,∴,∴,解得BM=,∴MN=BC﹣CN﹣BM=3﹣﹣=,故选:B.8.(2022•泰州)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE为一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2、d3,则d1+d2+d3的最小值为()A.B.2C.2D.4【答案】C【解答】解:如图,连接AE,∵四边形DEFG是正方形,∴∠EDG=90°,EF=DE=DG,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴AE=CG,∴d1+d2+d3=EF+CF+AE,∴点A,E,F,C在同一条线上时,EF+CF+AE最小,即d1+d2+d3最小,连接AC,∴d1+d2+d3最小值为AC,在Rt△ABC中,AC=AB=2,∴d1+d2+d3最小=AC=2,故选:C.9.(2022•广西)如图,在正方形ABCD中,AB=4,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是.【答案】5+【解答】解:如图,过点E作EM⊥BC于M,作EN⊥CD于N,过点F作FP⊥AC于P,连接GH,∵将△EFH沿EF翻折得到△EFH′,∴△EGH'≌△EGH,∵四边形ABCD是正方形,∴AB=CD=BC=4,∠BCD=90°,∠ACD=∠ACB=45°,∴BD=BC=8,△CPF是等腰直角三角形,∵F是CD的中点,∴CF=CD=2,∴CP=PF=2,OB=BD=4,∵∠ACD=∠ACB,EM⊥BC,EN⊥CD,∴EM=EN,∠EMC=∠ENC=∠BCD=90°,∴∠MEN=90°,∵EF⊥BE,∴∠BEF=90°,∴∠BEM=∠FEN,∵∠BME=∠FNE,∴△BME≌△FNE(ASA),∴EB=EF,∵∠BEO+∠PEF=∠PEF+∠EFP=90°,∴∠BEO=∠EFP,∵∠BOE=∠EPF=90°,∴△BEO≌△EFP(AAS),∴OE=PF=2,OB=EP=4,∵tan∠OEG==,即=,∴OG=1,∴EG==,∵OB∥FP,∴∠OBH=∠PFH,∴tan∠OBH=tan∠PFH,∴=,∴==2,∴OH=2PH,∵OP=OC﹣PC=4﹣2=2,∴OH=×2=,在Rt△OGH中,由勾股定理得:GH==,∴△EGH′的周长=△EGH的周长=EH+EG+GH=2+++=5+.故答案为:5+.10.(2022•安徽)如图,四边形ABCD是正方形,点E在边AD上,△BEF是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F 作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:(1)∠FDG=°;(2)若DE=1,DF=2,则MN=.【答案】45°【解答】解:由题知,△BEF是以E为直角顶点的等腰直角三角形,∴∠AEB+∠GEF=90°,∵∠AEB+∠ABE=90°,∴∠GEF=∠ABE,在△ABE和△GEF中,,∴△ABE≌△GEF(AAS),∴EG=AB=AD,GF=AE,即DG+DE=AE+DE,∴DG=AE,∴DG=GF,即△DGF是等腰直角三角形,∴∠FDG=45°,故答案为:45°;(2)∵DE=1,DF=2,由(1)知,△DGF是等腰直角三角形,∴DG=GF=2,AB=AD=CD=ED+DG=2+1=3,延长GF交BC延长线于点H,∴CD∥GH,∴△EDM∽△EGF,∴,即,∴MD=,同理△BNC∽△BFH,∴,即,∴,∴NC=,∴MN=CD﹣MD﹣NC=3﹣﹣=,故答案为:.11.(2022•达州)如图,在边长为2的正方形ABCD中,点E,F分别为AD,CD边上的动点(不与端点重合),连接BE,BF,分别交对角线AC于点P,Q.点E,F在运动过程中,始终保持∠EBF=45°,连接EF,PF,PD.下列结论:①PB=PD;②∠EFD=2∠FBC;③PQ=PA+CQ;④△BPF为等腰直角三角形;⑤若过点B作BH⊥EF,垂足为H,连接DH,则DH的最小值为2﹣2,其中所有正确结论的序号是.【答案】①②④⑤【解答】解:如图,∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCP=45°,在△BCP和△DCP中,,∴△BCP≌△DCP(SAS),∴PB=PD,故①正确,∵∠PBQ=∠QCF=45°,∠PQB=∠FQC,∴△PQB∽△FQC,∴=,∠BPQ=∠CFQ,∴=,∵∠PQF=∠BQC,∴△PQF∽△BQC,∴∠QPF=∠QBC,∵∠QBC+∠CFQ=90°,∴∠BPF=∠BPQ+∠QPF=90°,∴∠PBF=∠PFB=45°,∴PB=PF,∴△BPF是等腰直角三角形,故④正确,∵∠EPF=∠EDF=90°,∴E,D,F,P四点共圆,∴∠PEF=∠PDF,∵PB=PD=PF,∴∠PDF=∠PFD,∵∠AEB+∠DEP=180°,∠DEP+∠DFP=180°,∴∠AEB=∠DFP,∴∠AEB=∠BEH,∵BH⊥EF,∴∠BAE=∠BHE=90°,∵BE=BE,∴△BEA≌△BEH(AAS),∴AB=BH=BC,∵∠BHF=∠BCF=90°,BF=BF,∴Rt△BFH≌Rt△BFC(HL),∴∠BFC=∠BFH,∵∠CBF+∠BFC=90°,∴2∠CBF+2∠CFB=180°,∵∠EFD+∠CFH=∠EFD+2∠CFB=180°,∴∠EFD=2∠CBF,故②正确,将△ABP绕点B顺时针旋转90°得到△BCT,连接QT,∴∠ABP=∠CBT,∴∠PBT=∠ABC=90°,∴∠PBQ=∠TBQ=45°,∵BQ=BQ,BP=BT,∴△BQP≌△BQT(SAS),∴PQ=QT,∵QT<CQ+CT=CQ+AP,∴PQ<AP+CQ,故③错误,连接BD,DH,∵BD=2,BH=AB=2,∴DH≥BD﹣BH=2﹣2,∴DH的最小值为2﹣2,故⑤正确,故答案为:①②④⑤.12.(2022•南通)如图,点O是正方形ABCD的中心,AB=3.Rt△BEF中,∠BEF=90°,EF过点D,BE,BF分别交AD,CD于点G,M,连接OE,OM,EM.若BG=DF,tan∠ABG=,则△OEM的周长为.【答案】3+3【解答】解:如图,连接BD,过点F作FH⊥CD于点H.∵四边形ABCD是正方形,∴AB=AD=3,∠A=∠ADC=90°,∵tan∠ABG==,∴AG=,DG=2,∴BG===2,∵∠BAG=∠DEG=90°,∠AGB=∠DGE,∴△BAG∽△DEG,∴==,∠ABG=∠EDG,∴==,∴DE=,EG=,∴BE=BG+EG=2+=,∵∠ADH=∠FHD=90°,∴AD∥FH,∴∠EDG=∠DFH,∴∠ABG=∠DFH,∵BG=DF=2,∠A=∠FHD=90°,∴△BAG≌△FHD(AAS),∴AB=FH,∵AB=BC,∴FH=BC,∵∠C=∠FHM=90°,∴FH∥CB,∴==1,∴FM=BM,∵EF=DE+DF=+2=,∴BF==4,∵∠BEF=90°,BM=MF,∴EM=BF=2,∵BO=OD,BM=MF,∴OM=DF=,∵OE=BD=×6=3,∴△OEM的周长=3++2=3+3,解法二:辅助线相同.证明△BAG≌△FHD,推出AB=HF=3,再证明△FHM≌△BCM,推出CM=HM=,求出BD,DF,BF,利用直角三角形斜边中线的性质,三角形中位线定理,可得结论.故答案为:3+3.13.(2022•攀枝花)如图,以△ABC的三边为边在BC上方分别作等边△ACD、△ABE、△BCF.且点A在△BCF内部.给出以下结论:①四边形ADFE是平行四边形;②当∠BAC=150°时,四边形ADFE是矩形;③当AB=AC时,四边形ADFE是菱形;④当AB=AC,且∠BAC=150°时,四边形ADFE是正方形.其中正确结论有(填上所有正确结论的序号).【答案】①②③④【解答】解:①∵△ABE、△CBF是等边三角形,∴BE=AB,BF=CB,∠EBA=∠FBC=60°;∴∠EBF=∠ABC=60°﹣∠ABF;∴△EFB≌△ACB(SAS);∴EF=AC=AD;同理由△CDF≌△CAB,得DF=AB=AE;由AE=DF,AD=EF即可得出四边形ADFE是平行四边形,故结论①正确;②当∠BAC=150°时,∠EAD=360°﹣∠BAE﹣∠BAC﹣∠CAD=360°﹣60°﹣150°﹣60°=90°,由①知四边形AEFD是平行四边形,∴平行四边形ADFE是矩形,故结论②正确;③由①知AB=AE,AC=AD,四边形AEFD是平行四边形,∴当AB=AC时,AE=AD,∴平行四边形AEFD是菱形,故结论③正确;④综合②③的结论知:当AB=AC,且∠BAC=150°时,四边形AEFD既是菱形,又是矩形,∴四边形AEFD是正方形,故结论④正确.故答案为:①②③④.四.菱形的性质14.(2022•丽水)如图,已知菱形ABCD的边长为4,E是BC的中点,AF平分∠EAD交CD于点F,FG∥AD交AE于点G.若cos B=,则FG的长是()A.3B.C.D.【答案】B【解答】解:方法一,如图,过点A作AH⊥BE于点H,过点F作FQ⊥AD 于点Q,∵菱形ABCD的边长为4,∴AB=AD=BC=4,∵cos B==,∴BH=1,∴AH===,∵E是BC的中点,∴BE=CE=2,∴EH=BE﹣BH=1,∴AH是BE的垂直平分线,∴AE=AB=4,∵AF平分∠EAD,∴∠DAF=∠FAG,∵FG∥AD,∴∠DAF=∠AFG,∴∠FAG=∠AFG,∴GA=GF,设GA=GF=x,∵AE=CD=4,FG∥AD,∴DF=AG=x,cos D=cos B==,∴DQ=x,∴FQ===x,∵S梯形CEAD=S梯形CEGF+S梯形GFDA,∴×(2+4)×=(2+x)×(﹣x)+(x+4)×x,解得x=,则FG的长是.或者:∵AE=CD=4,FG∥AD,∴四边形AGFD的等腰梯形,∴GA=FD=GF,则x+x+x=4,解得x=,则FG的长是.方法二:如图,作AH垂直BC于H,延长AE和DC交于点M,∵菱形ABCD的边长为4,∴AB=AD=BC=4,∵cos B==,∴BH=1,∵E是BC的中点,∴BE=CE=2,∴EH=BE﹣BH=1,∴AH是BE的垂直平分线,∴AE=AB=4,所以AE=AB=EM=CM=4,设GF=x,则AG=x,GE=4﹣x,由GF∥BC,∴△MGF∽△MEC,∴=,解得x=.故选:B.15.(2022•甘肃)如图1,在菱形ABCD中,∠A=60°,动点P从点A出发,沿折线AD→DC→CB方向匀速运动,运动到点B停止.设点P的运动路程为x,△APB的面积为y,y与x的函数图象如图2所示,则AB的长为()A.B.2C.3D.4【答案】B【解答】解:在菱形ABCD中,∠A=60°,∴△ABD为等边三角形,设AB=a,由图2可知,△ABD的面积为3,∴△ABD的面积=a2=3,解得:a1=2,a2=﹣2(舍去),故选:B.27。
中考数学专题训练:特殊平行四边形(附参考答案)

中考数学专题训练:特殊平行四边形(附参考答案)1.如图,在矩形ABCD和△BDE中,点A在BE上.若矩形ABCD的面积为20,△BDE的面积为24,则△ADE的面积为( )A.10 B.12C.14 D.162.如图,矩形ABCD的对角线AC,BD交于点O,AB=3,BC=4,过点O作OM⊥AC,交BC于点M,过点M作MN⊥BD,垂足为点N,则OM+MN的值为( )A.245B.165C.125D.653.如图,在四边形ABCD中,AB∥CD,AB⊥BD,AB=5,BD=4,CD=3,E是AC 的中点,则BE的长为( )A.2 B.52C.√5D.34.关于菱形的性质,以下说法不正确的是( )A.四条边相等B.对角线相等C.对角线互相垂直D.是轴对称图形5.下列选项中能使□ABCD成为菱形的是( )A.AB=CD B.AB=BCC.∠BAD=90°D.AC=BD6.如图,在菱形ABCD中,∠B=60°,点P从点B出发,沿折线BC-CD方向移动,移动到点D停止.在△ABP形状的变化过程中,依次出现的特殊三角形是( )A.直角三角形→等边三角形→等腰三角形→直角三角形B.直角三角形→等腰三角形→直角三角形→等边三角形C.直角三角形→等边三角形→直角三角形→等腰三角形D.等腰三角形→等边三角形→直角三角形→等腰三角形7.如图,菱形ABCD的对角线AC与BD相交于点O,E为边BC的中点,连接OE.若AC=6,BD=8,则OE=( )A.2 B.52C.3 D.48.如图,在菱形ABCD中,E,F分别是边BC,CD的中点,连接AE,AF,EF.若菱形ABCD的面积为8,则△AEF的面积为( )A.2 B.3C.4 D.59.如图,将矩形ABCD对折,使边AB与DC,BC与AD分别重合,展开后得到四边形EFGH.若AB=2,BC=4,则四边形EFGH的面积为( )A.2 B.4C.5 D.610.一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等;b.一组对边平行且相等;c.一组邻边相等;d.一个角是直角.顺次添加的条件:①a→c→d ②b→d→c ③a→b→c,则正确的是( )A.仅①B.仅③C.①②D.②③11.如图,在正方形ABCD中,点E,F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则CG的长是( )A.2 B.√5C.3√22D.12512.如图,已知F,E分别是正方形ABCD的边AB与BC的中点,AE与DF交于点P,则下列结论成立的是( )A.BE=12AE B.PC=PDC.∠EAF+∠AFD=90°D.PE=EC13.如图,在边长为3的正方形ABCD中,∠CDE=30°,DE⊥CF,则BF的长是( )A.1 B.√2C.√3D.214.如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE的长度为( )A.√6B.√62C.2√2D.2√315.如图,在△ABC中,D,E,F分别是边AB,BC和AC的中点,请添加一个条件________________________,使四边形BEFD为矩形.(填一个即可)16.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.若AC=12,BD=16,则OE的长为______.17.如图,在矩形ABCD中,对角线AC,BD相交于点O,E是边AD的中点,点FAC,连接EF.若AC=10,则EF=______.在对角线AC上,且AF=1418.如图,E是矩形ABCD边AD上一点,F,G,H分别是BE,BC,CE的中点,AF=3,则GH的长为_____.19.如图,菱形ABCD的对角线AC,BD相交于点O,OE⊥AD,垂足为点E,AC=8,BD=6,则OE的长为______.20.如图,菱形ABCD的边长为6 cm,∠BAD=60°,将该菱形沿AC方向平移2√3 cm得到四边形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为_____cm.21.如图,已知菱形ABCD的边长为2,∠DAB=60°,E为AB的中点,F为CE 的中点,AF与DE相交于点G,则GF的长等于______.22.如图,将边长为1的正方形ABCD绕点A顺时针旋转30°得到正方形AB1C1D1,则阴影部分的面积是_________.23.如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°.若∠BAE=α,则∠FEC一定等于______.24.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是_______.参考答案1.C 2.C 3.C 4.B 5.B 6.C 7.B 8.B 9.B 10.C 11.D 12.C 13.C 14.B15.AB⊥BC(答案不唯一) 16.10 17.52 18.3 19.12520.221.√19422.2-2√3323.2α 24.8√5。
2021-2022学年鲁教版八年级数学下册《第6章特殊平行四边形》章末综合知识点分类训练(附答案)

2021-2022学年鲁教版八年级数学下册《第6章特殊平行四边形》章末综合知识点分类训练(附答案)一.菱形的性质1.如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF=60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等2.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5D.43.如图,在菱形ABCD中,∠BCD=110°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数为.4.如图,已知菱形ABCD的对角线AC、BD的长分别是6cm、8cm,AE⊥BC,垂足为点E,则AE的长是cm.5.在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的高为.6.如图,在菱形ABCD中,AC、BD相交于点O,DE⊥BC,垂足为E.若AC=8,BD=6,则DE的长为.7.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是.8.求证:菱形的一条对角线平分这一组对角.已知:如图,AC是菱形ABCD的一条对角线.求证:.证明:二.菱形的判定9.如图,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥BD,AC平分∠BAD.(1)给出下列四个条件:①AB=AD,②OB=OD,③∠ACB=∠ACD,④AD∥BC,上述四个条件中,选择一个合适的条件,使四边形ABCD是菱形,这个条件是(填写序号);(2)根据所选择的条件,证明四边形ABCD是菱形.10.如图,点E、F分别在▱ABCD的边AB、CD的延长线上,且BE=DF,连接AC、EF、AF、CE,AC与EF交于点O.(1)求证:AC、EF互相平分;(2)若EF平分∠AEC,求证:四边形AECF是菱形.三.菱形的判定与性质11.在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC的延长线于点F,以EC、CF为邻边作平行四边形ECFG.(1)如图1,证明平行四边形ECFG为菱形;(2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数;(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数.12.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)证明:四边形ADCF是菱形;(2)若AC=3,AB=4,求菱形ADCF的面积.四.矩形的性质13.如图,在矩形ABCD中,E是AB的中点,动点F从点B出发,沿BC运动到点C时停止,以EF为边作▱EFGH,且点G、H分别在CD、AD上.在动点F运动的过程中,▱EFGH 的面积()A.逐渐增大B.逐渐减小C.不变D.先增大,再减小14.如图,在矩形ABCD中,AB=1,对角线AC与BD相交于点O,AE⊥BD,垂足为E,若BE=EO,则AD的长是()A.3B.C.3D.15.如图,在矩形ABCD中,AB=4cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在这段时间内,线段PQ 平行于AB的次数是()A.2B.3C.4D.516.如图,在矩形ABCD中,P为矩形ABCD的边BC上任一点,PE⊥AC于点E,PF⊥BD 于点F.若AB=5,BC=12,PE+PF=.17.在矩形ABCD中,AC与BD相交于点O,若OA=2,则BD的长是.18.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE =,AF=,则AC的长为.19.在矩形ABCD中,AC、BD相交于点O,若∠OAB=65°,则∠BOC=°.20.如图所示,在矩形ABCD中,DE平分∠ADC,且∠EDO等于15°,∠DOE=°.21.如图,矩形ABCD中,点E在AD上,且EC平分∠BED,若AB=5,DE=2,则△BEC 的面积为.22.如图,在▱ABCD中,将对角线BD分别向两个方向延长至点E、F,且BE=DF.连接AF、CF、CE、AE.(1)求证:四边形AECF是平行四边形;(2)若AD=4,BE=3,∠ADB=∠CBD=90°,当四边形AECF是矩形时,则BD的长为.23.在矩形ABCD中,对角线BD的垂直平分线EF分别交AD、BC于E、F,AE=3,BF =5,求BD的长.五.矩形的判定24.如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,连接AF、BE交于点G,连接CE、DF交于点H.(1)求证:四边形EGFH为平行四边形;(2)当AB与BC满足什么条件时,四边形EGFH为矩形?并说明理由.25.如图,在平行四边形ABCD中,对角线AC、BD交于点O.(1)若DE⊥AC于点E,BF⊥AC于点F,求证:AE=CF;(2)若DO=AC,求证:四边形ABCD为矩形.26.如图,在▱ABCD中,DE⊥AB,垂足为E,点F在CD上,且CF=AE.求证:四边形DEBF是矩形.27.如图,在▱ABCD中,点E、F在AD边上,且BF=CE,AE=DF.(1)求证:△ABF≌△DCE;(2)求证:四边形ABCD是矩形.六.矩形的判定与性质28.如图,在菱形ABCD中,AC=24,BD=10,AC、BD相交于点O,若CE∥BD,BE∥AC,连接OE,则OE的长是.29.如图,在菱形ABCD中,点O是对角线AC的中点,过点O的直线EF与边AD、BC 交于点E、F,∠CAE=∠FEA,连接AF、CE.(1)求证:四边形AFCE是矩形;(2)若AB=5,AC=2,直接写出四边形AFCE的面积.七.正方形的性质30.如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD2的最大值是()A.25B.C.36D.31.如图,在正方形ABCD中,E、F分别是BC、CD上的点,若△AEF是边长为的等边三角形,则正方形的边长是.32.如图,两个正方形Ⅰ、Ⅱ和两个矩形Ⅲ、Ⅳ拼成一个大正方形,已知正方形Ⅰ、Ⅱ的面积分别为10和3,那么大正方形的面积是.33.如图,四边形ABCD是正方形,按如下步骤操作:①分别以点A,D为圆心,以AD长为半径画弧,两弧交于点P,连接AP,DP;②连接BP,CP,则∠BPC=.34.如图,在正方形ABCD中,点M、N为边BC和CD上的动点(不含端点),∠MAN=45°,下列四个结论:①当MN=MC时,则∠BAM=22.5°;②2∠AMN﹣∠MNC=90°;③△MNC的周长不变;④∠AMN﹣∠AMB=60°.其中正确结论的序号是.35.如图,点E在正方形ABCD内,且EC=BC,则∠BED=°.36.如图,四边形ABCD为正方形,点E、F分别是CD、AB的中点,DG⊥CF于点G.(1)求证:AE∥CF;(2)求证:∠AGE=90°;(3)若正方形的边长为2,求线段CG的长度.37.已知:如图,在平行四边形ABCD中,点E、F在对角线AC上,且AE=CF.(1)求证:DE∥BF;(2)若四边形ABCD是正方形,且AD=4,AE=,求四边形DEBF的面积.38.如图,在正方形ABCD中,点E、F、G分别在CD、AD、BC上,且FG⊥BE,垂足为O.(1)求证:BE=FG;(2)若O是BE的中点,且BC=8,EC=3,求AF的长.八.正方形的判定39.下列说法正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线相等的四边形是矩形C.每一条对角线都平分一组对角的四边形是菱形D.对角线互相垂直且相等的四边形是正方形40.下列说法:①对角线互相垂直且相等的四边形是菱形;②矩形的对角线互相垂直;③一组对边平行且相等的四边形是平行四边形;④对角线垂直的矩形是正方形.其中正确的是.(把所有正确结论的序号都填上)九.正方形的判定与性质41.如图,在四边形ABCD中,∠A=∠B=90°,AB=BC=4,AD=3,E是边AB上一点,且∠DCE=45°,则DE的长度是()A.3.2B.3.4C.3.6D.4参考答案一.菱形的性质1.解:连接BD,∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°,∴△ABD是等边三角形,∴AB=BD,∠ABD=60°,∵DC∥AB,∴∠CDB=∠ABD=60°,∴∠A=∠CDB,∵∠EBF=60°,∴∠ABE+∠EBD=∠EBD+∠DBF,∴∠ABE=∠DBF,在△ABE和△DBF中,,∴△ABE≌△DBF(ASA),∴AE=DF,∴AE+CF=DF+CF=CD=AB,故选:D.2.解:设AC交BD于O,∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S菱形ABCD=,∴,∴DH=,故选:A.3.解:如图,连接BF,∵四边形ABCD是菱形,∴∠BCD=∠BAD=110°,∠BCA=∠ACD=55°=∠BAC=∠CAD,AB=AD,∠ADC =70°,∵EF垂直平分AB,∴AF=BF,在△ABF和△ADF中,,∴△ABF≌△ADF(SAS),∴BF=DF,∴AF=DF,∴∠F AD=∠ADF=55°,∴∠CDF=∠ADC﹣∠ADF=15°,故答案为:15°.4.解:如图,设AC与BD的交点为O,∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AC⊥BD,∴BC===5cm,∴S菱形ABCD=AC•BD=×6×8=24(cm2),∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=(cm),故答案为:.5.解:如图所示:∵菱形ABCD,∴AC⊥BD,∵AC=6,BD=8,∴OB=BD=×8=4,OC=AC=×6=3,由勾股定理得,BC===5,S菱形ABCD=AC•BD=BC•AH,即×6×8=5•AH,解得:AH=,即菱形ABCD的高为:.故答案为:.6.解:∵四边形ABCD是菱形,∴AD=BC,AC⊥BD,AO=OC,DO=BO,∵AC=8,BD=6,∴AO=4,OD=3,由勾股定理得:AD=5,∴BC=5,∴S菱形ABCD=×AC×BD=BC×DE,∴×6×8=5×DE,解得:DE=,故答案为:.7.解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,∴AB=5,∴AD=5,∴由勾股定理知:OD===4,∴点C的坐标是:(﹣5,4).故答案为:(﹣5,4).8.解:求证:∠DAC=∠BAC,∠DCA=∠BCA;证明:∵四边形ABCD是菱形,∴DA=DC,DA∥BC.∴∠DAC=∠DCA,∵DA∥BC,∴∠DAC=∠BCA,∴∠DCA=∠BCA,同理∠DAC=∠BAC.故答案为:∠DAC=∠BAC,∠DCA=∠BCA.二.菱形的判定9.解:(1)这个条件是④;故答案为:④;(2)∵AC⊥BD,AC平分∠BAD,∴∠BAO=∠DAO,∠AOB=∠AOD=90°,∵AO=AO,∴△ABO≌△ADO,∴AB=AD,∵AD∥BC,∴∠ACB=∠DAC,∴∠BAC=∠ACB,∴AB=BC,∴AD=BC,∴四边形ABCD是菱形;10.证明:(1)∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,又∵BE=DF,∴AB+BE=DC+DF,即AE=CF,∵AE=CF,AE∥CF,∴四边形AECF是平行四边形.∴AC、EF互相平分;(2)∵AB∥DC,∴∠AEO=∠CFO,∵EF平分∠AEC,∴∠AEO=∠CEO,∴∠CEO=∠CFO∴CE=CF,由(1)可知,四边形AECF是平行四边形,∴平行四边形AECF是菱形.三.菱形的判定与性质11.解:(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形.(2)如图,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形,∴∠BDM=45°;(3)∠BDG=60°,延长AB、FG交于H,连接HD.∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形,∵∠ABC=120°,AF平分∠BAD,∴∠DAF=30°,∠ADC=120°,∠DF A=30°,∴△DAF为等腰三角形,∴AD=DF,∴平行四边形AHFD为菱形,∴△ADH,△DHF为全等的等边三角形,∴DH=DF,∠BHD=∠GFD=60°,∵FG=CE,CE=CF,CF=BH,∴BH=GF,在△BHD与△GFD中,∵,∴△BHD≌△GFD(SAS),∴∠BDH=∠GDF∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.12.(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AEF和△DEB中,,∴△AEF≌△DEB(AAS);∴AF=DB,又∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=BC=CD,∴平行四边形ADCF是菱形;(2)解:∵D是BC的中点,∴△ACD的面积=△ABD的面积=△ABC的面积,∵四边形ADCF是菱形,∴菱形ADCF的面积=2△ACD的面积=△ABC的面积=AC×AB=×3×4=6.四.矩形的性质13.解:设AB=a,BC=b,BE=c,BF=x,连接EG,∵四边形EFGH为平行四边形,∴EF=HG,EF∥HG,∴∠FEG=∠HGE,∵四边形ABCD为矩形,∴AB∥CD,∴∠BEG=∠DGE,∴∠BEG﹣∠FEG=∠DGE﹣∠EGH,∴∠BEF=∠HGD∵EF=HG,∠B=∠D,∴Rt△BEF≌Rt△DGH(AAS),同理Rt△AEH≌Rt△CGF,∴S平行四边形EFGH=S矩形ABCD﹣2(S△BEF+S△AEH)=ab﹣2[cx+(a﹣c)(b﹣x)]=ab﹣(cx+ab﹣ax﹣bc+cx)=ab﹣cx﹣ab+ax+bc﹣cx=(a﹣2c)x+bc,∵E是AB的中点,∴a=2c,∴a﹣2c=0,∴S平行四边形EFGH=bc=ab,方法二:连接EG,∵四边形EFGH为平行四边形,∴EF=HG,EF∥HG,∴∠FEG=∠HGE,∵四边形ABCD为矩形,∴AB∥CD,∴∠BEG=∠DGE,∴∠BEG﹣∠FEG=∠DGE﹣∠EGH,∴∠BEF=∠HGD∵EF=HG,∠B=∠D,∴Rt△BEF≌Rt△DGH(AAS),∴DG=BE=CD=AE,∴四边形AEGD为平行四边形,∵∠A=90°,∴▱AEGD为矩形,同理四边形EBCG为矩形,∴S平行四边形EFGH=S△EHG+S△EFG=EG•DG+EG•GC=EG•DG=EG•CD=S矩形ABCD.故选:C.14.解:∵四边形ABCD是矩形,∴∠BAD=90°,OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE=EO,AE⊥BD,∴AB=AO,∴OA=AB=OB=1,∴BD=2,∴AD===,故选:B.15.解:当AP=BQ时,AP∥BQ.∵AP∥BQ,AP=BQ,∴四边形ABQP为平行四边形,∴QP∥AB.∵点P运动的时间=12÷1=12秒,∴点Q运动的路程=4×12=48cm.∴点Q可在BC间往返4次.∴在这段时间内PQ与AB有4次平行.故选:C.16.解:设对角线AC、BD相交于点O,连接PO,∵矩形ABCD的边AB=5,BC=12,∴S矩形ABCD=AB•BC=5×12=60,OA=OC,OB=OD,AC=BD,AC===13,∴S△BOC=S矩形ABCD=15,OB=OC=AC=,∴S△BOC=S△BOP+S△POC=OB•PF+OC•PE=OB(PE+PF)=××(PE+PF)=15,∴PE+PF=,故答案案为:.17.解:因为矩形的对角线相等而且互相平分,所以BD=AC=2OA=4.故答案为:4.18.解:∵EF是AC的垂直平分线,∴AO=CO,∵四边形ABCD是矩形,∴AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE=,∵EF是AC的垂直平分线,∴AE=CE=,又∵BE=,∴BC=BE+EC=+=8,在Rt△ABE中,AB====6,在Rt△ABC中,AC===10.故答案为:10.19.解:∵四边形ABCD是矩形,∴OA=OC=AC,OB=OD=BD,AC=BD,∴OA=OB,∴∠OBA=∠OAB=65°,∴∠BOC=∠OAB+∠OBA=65°+65°=130°,故答案为:130.20.解:∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,AO=CO,BO=DO,AC=BD,∴OA=OD,∵DE平分∠ADC∴∠CDE=∠ADE=45°,∴△ADE是等腰直角三角形,∴AD=AE,又∵∠EDO=15°,∴∠ADO=60°;∴△OAD是等边三角形,∴∠AOD=∠OAD=60°,∴AD=AO=DO,∴AO=AE,∴∠AOE=∠AEO,∵∠OAE=90°﹣∠OAD=30°,∴∠AOE=∠AEO=(180°﹣30°)=75°,∴∠DOE=60°+75°=135°,故答案为:135.21.解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,AB=CD=5,∴∠DEC=∠ECB,∵EC平分∠BED,∴∠BEC=∠DEC,∴∠BEC=∠ECB,∴BC=BE,设BC=BE=x,∴AE=x﹣2,∵AB2+AE2=BE2,∴52+(x﹣2)2=x2,∴x=,∴BC=,∴△BEC的面积=×BC×DC=×5=.故答案为:.22.(1)证明:连接AC,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形.(2)解:BE=DF=3,∵∠ADB=∠CBD=90°,∴AF==5,方法1:∵AD=4,∴BC=4,设OB=x,则OE=x+3,∵四边形AECF是矩形,∴OE=OC=x+3,∵∠OBC=90°,在Rt△OBC中,OB2+BC2=OC2,∴x2+42=(x+3)2,解得x=,∴OB=,∴BD=.方法2:∵四边形AECF是矩形,∴∠F AE=90°,∴∠F AE=∠ADF,∵∠AFD=∠EF A,∴FE=,∴BD=﹣3﹣3=.故答案为:.23.解:连接BE,设EF与BD交于点O,如图所示:∵EF垂直平分BD,∴BE=DE,OD=OB,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∴∠ODE=∠OBF,在△ODE和△OBF中,,∴△ODE≌△OBF(ASA),∴DE=BF=5,∴BE=DE=5,∴AB===4,∵AD=AE+DE=3+5=8,∴BD===4.五.矩形的判定(24.(1)证明:连接EF,如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵点E、F分别是AD、BC的中点∴AE=ED=AD,BF=FC=BC,∴AE∥FC,AE=FC.∴四边形AECF是平行四边形.∴GF∥EH.同理可证:ED∥BF且ED=BF.∴四边形BFDE是平行四边形.∴GE∥FH.∴四边形EGFH是平行四边形.(2)解:当BC=2AB时,平行四边形EGFH是矩形.理由如下:由(1)同理易证四边形ABFE是平行四边形,当BC=2AB时,AB=BF,∴四边形ABFE是菱形,∴AF⊥BE,即∠EGF=90°,∴平行四边形EGFH是矩形.25.证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠DAE=∠BCF,∵DE⊥AC,BF⊥AC,∴∠DEA=∠BFC=90°,在△DEA与△BFC中,,∴△DEA≌△BFC(AAS),∴AE=CF;(2)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴OA=BD,∴OA=OC=OB=OD,∴AC=BD,∴平行四边形ABCD是矩形.26.证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∵AE=CF,∴AB﹣AE=DC﹣CF,即DF=EB,又∵AB∥DC,∴四边形DEBF是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴▱DEBF是矩形.27.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=FD,∴AE+EF=FD+EF,即AF=DE,在△ABF和△DCE中,,∴△ABF≌△DCE(SSS);(2)由(1)可知:△ABF≌△DCE,∴∠A=∠D,∵AB∥CD,∴∠A+∠D=180°,∴2∠A=180°,∴∠A=90°,∴▱ABCD为矩形.六.矩形的判定与性质28.解:∵CE∥BD,BE∥AC,∴四边形OBEC是平行四边形,∵四边形ABCD是菱形,∴OC=OA=AC=12,OB=OD=BD=5,AC⊥BD,∴∠BOC=90°,∴BC===13,∵四边形OBEC是平行四边形,∴平行四边形OBEC是矩形,∴OE=BC=13,故答案为:13.29.(1)证明:∵∠OAE=∠OEA,∴OA=OE,∵四边形ABCD是菱形,∴AD∥BC,∴∠OCF=∠OAE,∠OFC=∠OEA,∴∠OFC=∠OCF,∵OF=OC,∵O为AC的中点,∴OA=OC,∴OA=OC=OE=OF,∴四边形AFCE是平行四边形,AC=EF,∴四边形AFCE是矩形;(2)解:设CF=x,∵四边形ABCD是菱形,AB=5,∴BC=AB=5,∴BF=5﹣x,∵四边形AFCE是矩形,∴∠AFC=90°=∠AFB,在Rt△AFB和Rt△AFC中,由勾股定理得:AF2=AB2﹣BF2=AC2﹣CF2,即52﹣(5﹣x)2=(2)2﹣x2,解得:x=2,即CF=2,则AF===4,∴四边形AFCE的面积是AF×CF=2×4=8.七.正方形的性质30.解:如图将△BDA绕点D顺时针旋转90°得到△CDM.由旋转不变性可知:AB=CM=4,DA=DM.∠ADM=90°,∴△ADM是等腰直角三角形,∴AD=AM,∴当AM的值最大时,AD的值最大,∵AM≤AC+CM,∴AM≤7,∴AM的最大值为7,∴AD2的最大值为,故选:B.31.解:∵△AEF是边长为的等边三角形,∴∠EAF=60°,AE=AF,∴∠BAE+∠DAF=30°,∵AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL),∴∠BAE=∠DAF=15°,如图,作∠AEH=∠BAE=15°,交AB于H,∴∠BHE=30°,AH=HE,∴HE=2BE=AH,BH=BE,∴AB=(2+)BE,∵AE2=BE2+AB2,∴6=BE2+(2+)2×BE2,∴BE=,∴AB=(2+)BE=,故答案为:.32.解:∵正方形Ⅰ的面积为10,∴正方形Ⅰ的边长为,∵正方形Ⅱ的面积为3,∴正方形Ⅱ的边长为,∴大正方形的边长为+,∴大正方形的面积为()2=13+2,故答案为:13+2.33.解:根据作图过程可知:AD=AP=PD,∴△ADP是等边三角形,∴∠DAP=∠ADP=∠APD=60°,∵四边形ABCD是正方形,∴AB=AD=DC,∠BAD=∠ADC=∠ABC=∠BCD=90°,∴AB=AP,DP=DC,∴∠ABP=∠APB=∠DPC=∠DCP=75°,∴∠BPC=360°﹣60°﹣75°﹣75°=150°.故答案为:150°.34.解:①:∵正方形ABCD中,AB=AD,∠B=∠ADC=∠C=90°∴MN2=MC2+NC2当MN=MC时,MN2=2MC2,∴MC2=NC2,∴MC=NC,∴BM=DN,∴△ABM≌△ADN(SAS)∴∠BAM=∠DAN,∵∠MAN=45°,∴∠BAM=22.5°,故①正确;②:如图,将△ABM绕点A顺时针旋转90°得△ADE,则∠EAN=∠EAM﹣∠MAN=90°﹣45°=45°,则在△EAN和△MAN中,,∴△EAN≌△MAN(SAS)∴∠AMN=∠AED,∴∠AED+∠EAM+∠ENM+∠AMN=360°,∴2∠AMN+90°+(180°﹣∠MNC)=360°,∴2∠AMN﹣∠MNC=90°,故②正确;③:∵△EAN≌△MAN,∴MN=EN=DE+DN=BM+DN,∴△MNC的周长为:MC+NC+MN=(MC+BM)+(NC+DN)=DC+BC,∵DC和BC均为正方形ABCD的边长,故△MNC的周长不变.故③正确;④如图,将△ADN绕点A逆时针旋转90°得△ABF,∴∠MAF=90°﹣∠MAN=45°,∴∠MAN=∠MAF,在△MAN和△MAF中,,∴△MAN≌△MAF(SAS),∴∠AMN=∠AMB,故④错误.综上①②③正确.故答案为:①②③.35.解:∵四边形ABCD为正方形,∴CB=CD,∠BCD=90°,∵CE=CB,∴CD=CE,∴∠CBE=∠CEB,∠CED=∠CDE,∴∠CEB=(180°﹣∠BCE),∠CED=(180°﹣∠DCE),∴∠CEB+∠CED=180°﹣(∠BCE+∠ECE),即∠BED=180°﹣∠BCD,∴∠BED=180°﹣×90°=135°.故答案为135°.36.(1)∵四边形ABCD为正方形,∴AB∥CD,AB=CD,∵点E、F分别是AB、CD的中点,∴AF=AB,CE=CD,∴AF=CE,∴四边形AFCE是平行四边形,∴AE∥CF;(2)证明:如图,取AE和DG交于H,∵CF∥AE,DG⊥CF,∴DG⊥AE于H,∵E是CD的中点,∴EG=ED,∴△DGE是等腰三角形,∴H是DG的中点,∴AG=AD,在△ADE和△AGE中,,∴△ADE≌△AGE(SSS),∴∠AGE=∠ADE=90°;(3)解:∵AG=AD=2,DE=1,∴AE=,又∵GH⊥AE,∴,解得HG=,∴DG=,∴,故答案为.37.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAE=∠BCF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴∠AED=∠CFB,∵∠AED+∠DEF=180°,∠CFD+∠BFE=180°,∴∠DEF=∠BFE,∴DE∥BF;(2)解:连接BD,交AC于点O,∵四边形ABCD是正方形,∴OA=OD,OA⊥OD,AE=,∴OD=OE+AE=OE+,在正方形ABCD中,OB=OD,OA=OC,∵AE=CF,∴OA﹣AE=OC﹣CF,∴OE=OF,∴四边形DEBF是平行四边形,∵OA⊥OD,∴四边形DEBF是菱形,∵AD=4,∴AC=BD==4,∴EF=AC﹣AE﹣CF=4﹣﹣=2,∴四边形DEBF的面积=•BD•EF=×4×2=8,故答案为:8.38.(1)证明:作AM∥FG交BE于N,BC于M.在正方形ABCD中,∴AD∥BC,AB=BC,∠ABC=∠C=90°.∵FG⊥BE,∴∠FOB=90°.∵AM∥FG,∴∠ANB=∠FOB=90°.∴∠ABN+∠EBC=90°∵∠C=90°.∴∠BEC+∠EBC=90°.∴∠ABN=∠BEC.在△ABE和△CDF中,,∴△ABM≌△BCE(AAS),∴AM=BE.∵AD∥BC,∴AF∥MG.∵AM∥FG,∴四边形AMGF为平行四边形.∴AM=FG.∵AM=BE,∴BE=FG.(2)如图,连接BF、EF,∵FG⊥BE,O是BE的中点,∴BF=FE.在正方形ABCD中,∴AD=AB=DC=BC=8.∵EC=3,∴DE=5.设AF=x,则DF=8﹣x,在Rt△ABF中,由勾股定理得:BF2=AB2+AF2=82+x2.在Rt△DEF中,由勾股定理得:EF2=DF2+DE2=52+(8﹣x)2.∵BF=FE,∴BF2=EF2.即82+x2=52+(8﹣x)2,解得:x=.∴AF=.八.正方形的判定39.解:A、一组对边平行,另一组对边相等四边形可能是等腰梯形,故本选项不符合题意;B、对角线相等的平行四边形是矩形,故本选项不符合题意;C、∵在△ADB和△CDB中,∴△ADB≌△CDB(ASA),∴AD=CD,AB=CB,同理△ACD≌△ACB,∴AB=AD,BC=DC,即AB=BC=CD=AD,∴四边形ABCD是菱形,故本选项符合题意;D、对角线相等且垂直的平行四边形是正方形,故本选项不符合题意;故选:C.40.解:①对角线互相垂直且相等的四边形不一定是菱形,说法错误;②矩形的对角线互相垂直,说法错误;③一组对边平行且相等的四边形是平行四边形,说法正确;④对角线垂直的矩形是正方形,说法正确.故答案为:③④.九.正方形的判定与性质41.解:如图,过C作CG⊥AD于G,并延长DG至F,使GF=BE,∵∠A=∠B=∠CGA=90°,AB=BC,∴四边形ABCG为正方形,∴AG=BC=4,∠BCG=90°,BC=CG,∵AD=3,∴DG=4﹣3=1,∵BC=CG,∠B=∠CGF,BE=FG,∴△EBC≌△FGC(SAS),∴CE=CF,∠ECB=∠FCG,∵∠DCE=45°,∴∠BCE+∠DCG=∠DCG+∠FCG=45°,∴∠DCE=∠DCF,∵CE=CF,∠DCF=∠DCE,DC=DC,∴△ECD≌△FCD(SAS),∴ED=DF,设ED=x,则EB=FG=x﹣1,∴AE=4﹣(x﹣1)=5﹣x,Rt△AED中,AE2+AD2=DE2,∴(5﹣x)2+32=x2,解得:x=3.4,∴DE=3.4.故选:B.。
2024中考备考数学重难点03 平行四边形与特殊平行四边形8大题型+满分技巧+限时分层检测

重难点03 平行四边形与特殊平行四边形中考数学中《平行四边形、矩形、菱形》部分主要考向分为五类:一、多边形内角和(每年1道,3~4分)二、平行四边形的性质与判定(每年1道,3~8分)三、矩形的性质与判定(每年1~2题,3~12分)四、菱形的性质与判定(每年1~2题,3~12分)五、正方形的性质(每年1道,3~12分)平行四边形和特殊平行四边形在中考数学中是占比比较大的一块考点,考察内容主要有各个特殊四边形的性质、判定、以及其应用;考察题型上从选择到填空再都解答题都有,题型变化也比较多样;并且考察难度也都是中等和中等偏上,难度较大,综合性比较强。
所以需要考生在复习这块内容的时候一定要准确掌握其性质与判定,并且会在不同的结合问题上注意和其他考点的融合。
考向一:多边形内角和【题型1 多边形的内角和的计算】满分技巧多边形内角和公式:()()31802≥︒⨯-nn任意多边形的外角和为360°正多边形的一个内角:()nnn︒-︒︒⨯-360180/18021.(2023•北京)正十二边形的外角和为()A.30°B.150°C.360°D.1800°2.(2023•襄阳)五边形的外角和等于()A.180°B.360°C.540°D.720°3.(2023•重庆)如图,正五边形ABCDE中,连接AC,那么∠BAC的度数为.4.(2023•济宁)一个多边形的内角和是540°,则这个多边形是边形.考向二:平行四边形的性质与判定【题型2 平行四边形的性质】满分技巧1.平行四边形的性质可以从三个方面记,①边:对边平行且相等;②角:对角相等,邻角互补;③对角线:对角线互相平分;2.平行四边形的问题经常转化为全等三角形的判定与性质类问题来解决。
1.(2023•益阳)如图,▱ABCD的对角线AC,BD交于点O,下列结论一定成立的是()A.OA=OB B.OA⊥OB C.OA=OC D.∠OBA=∠OBC2.(2023•海南)如图,在▱ABCD中,AB=8,∠ABC=60°,BE平分∠ABC,交边AD于点E,连接CE,若AE=2ED,则CE的长为()A.6B.4C.D.3.(2023•泸州)如图,▱ABCD的对角线AC,BD相交于点O,∠ADC的平分线与边AB相交于点P,E是PD中点,若AD=4,CD=6,则EO的长为()A.1B.2C.3D.44.(2023•福建)如图,在▱ABCD中,O为BD的中点,EF过点O且分别交AB,CD于点E,F.若AE=10,则CF的长为.5.(2023•聊城)如图,在▱ABCD中,BC的垂直平分线EO交AD于点E,交BC于点O,连接BE,CE,过点C作CF∥BE,交EO的延长线于点F,连接BF.若AD=8,CE=5,则四边形BFCE的面积为.6.(2023•哈尔滨)已知四边形ABCD是平行四边形,点E在对角线BD上,点F在边BC上,连接AE,EF,DE=BF,BE=BC.(1)如图①,求证△AED≌△EFB;(2)如图②,若AB=AD,AE≠ED,过点C作CH∥AE交BE于点H,在不添加任何辅助线的情况下,请直接写出图②中四个角(∠BAE除外),使写出的每个角都与∠BAE相等.【题型3 平行四边形的判定和性质的综合】满分技巧1、平行四边形的判定也可以从三个方面记,①边:两组对边分别平行;两组对边分别相等;一组对边平行且相等;②角:两组对角分别相等;③对角线:对角线互相平分;2、平行四边形的判定和性质经常综合在一起考,即先考判定一个四边形是平行四边,然后再利用平行四边形的性质去解剩余的问题。
2019中考数学一轮复习各知识点练习题分层设计十八特殊平行四边形部分无答案鲁教版

(特殊平行四边形部分)A 级 基础题1.如图,在菱形ABCD 中,AB =5,∠BCD =120°,则△ABC 的周长等于( )图X4-3-14A .20 B .15 C .10 D .52.下列关于矩形的说法中正确的是( )A .对角线相等的四边形是矩形B .对角线互相平分的四边形是矩形C .矩形的对角线互相垂直且平分D .矩形的对角线相等且互相平分3.菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补4.(湖南张家界)顺次连接矩形四边的中点所得的四边形一定是( )A .正方形B .矩形C .菱形D .等腰梯形5.如图,在边长为2的正方形ABCD 中,M 为边AD 的中点,延长MD 至点E ,使ME =MC ,以DE 为边作正方形DEFG ,点G 在边CD 上,则DG 的长为( )A.3-1 B .3- 5 C.5+1 D.5-16.(湖南益阳)如图X4-3-16,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B为圆心,大于12AB 的长为半径画弧,两弧相交于C ,D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是( )A .矩形B .菱形C .正方形D .等腰梯形7.如图,□ABCD 的顶点B 在矩形AEFC 的边EF 上,点B 与点E ,F 不重合,若△ACD 的面积为3,则图中阴影部分两个三角形的面积和为________.8.如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,∠AED=2∠CED,点G是DF的中点,若BE=1,AG=4,则AB的长为________.9.如图,在正方形ABCD中,点G是BC上任意一点,连接AG,过B,D两点分别作BE⊥AG,DF ⊥AG,垂足分别为E,F两点,求证:△ADF≌△BAE.10.如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm.将△ABC沿射线BC方向平移10 cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.。
难点详解鲁教版(五四制)八年级数学下册第六章特殊平行四边形综合练习试题(含答案解析)

鲁教版(五四制)八年级数学下册第六章特殊平行四边形综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)''''.此时点A的对应点A'恰1、如图,将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形A B C D好落在对角线AC的中点处.若AB=3,则点B与点D之间的距离为()A.3 B.6 C.D.2、绿丝带是颜色丝带的一种,被用来象征许多事物,例如环境保护、大麻和解放农业等,同时绿丝带也代表健康,使人对健康的人生与生命的活力充满无限希望.某班同学在“做环保护航者”的主题班会课上制作象征“健康快乐”的绿丝带(丝带的对边平行且宽度相同),如图所示,丝带重叠部分形成的图形是()A.矩形B.菱形C.正方形D.等腰梯形3、已知:在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,延长DE至点F,使得EF=DE,那么四边形AFCD一定是()A.菱形B.矩形C.直角梯形D.等腰梯形4、将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,则∠EBD的度数()A.80°B.90°C.100°D.110°5、如图,2002年8月在北京召开的国际数学家大会会标其原型是我国古代数学家赵爽的《勾股弦图》,它是由四个全等的直角三角形拼接而成,如果大正方形的面积是18,直角三角形的直角边长分别为a、b,且a2+b2=ab+10,那么小正方形的面积为()A.2 B.3 C.4 D.56、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是()A B.C.1cm D.2cm7、如图,菱形ABCD 的对角线AC 和BD 相交于点O ,8AC =,12BD =,E 是OB 的中点,P 是CD 的中点,连接PE ,则线段PE 的长为( )A .BC .D 8、如图,将矩形纸片ABCD 沿EF 折叠,使点A 恰好与点C 重合,点B 的对应点为点B ′,若DC =4,AF =5,则BC 的长为( )A .B .C .10D .89、如图,点A ,B ,C 在同一直线上,且23AB AC =,点D ,E 分别是AB ,BC 的中点.分别以AB ,DE ,BC 为边,在AC 同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作1S ,2S ,3S ,若1S 23S S +等于( )A B C D 10、下列命题中是真命题的选项是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .对角线互相垂直且相等的四边形是正方形C .对角线相等的平行四边形是矩形D .三条边都相等的四边形是菱形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,直线l :1y x =-与x 轴交于点1A ,如图所示依次作正方形111A B C O 、正方形2221A B C C 、…、正方形n 1n n n A B C C -,使得点1A 、2A 、3A 、…在直线1上,点1C 、2C 、3C 、…在y 轴正半轴上,则点n B 的坐标是________.2、如图,正方形ABCD 中,点E 为BC 边的中点,点P 为边AB 上一个动点,连接PE ,以PE 为对称轴折叠PBE △得到PFE △,点B 的对应点为点F ,若2AB =,当射线EF 经过正方形ABCD 边的中点(不包括点E )时,BP 的长为_____________.3、矩形的两边长分别为3 cm 和4 cm ,则矩形的对角线长为_____.4、如图,菱形ABCD 的边长为4,∠BAD =120°,E 是边CD 的中点,F 是边AD 上的一个动点,将线段EF 绕着点E 顺时针旋转60°得到线段EF ',连接AF '、BF ',则△ABF '的周长的最小值是________________.5、如图,已知正方形ABCD 的边长为2,E 为CD 边上一点(不与点C ,D 重合),以点A 为中心,把ADE ∆绕点A 顺时针旋转90︒,得到ABF ∆,连接EF ,则四边形AECF 的面积为 __.三、解答题(5小题,每小题10分,共计50分)1、如图,已知矩形ABCD (AB <AD ).E 是BC 上的点,AE =AD .(1)在线段CD 上作一点F ,连接EF ,使得∠EFC =∠BEA (请用直尺和圆规作图,保留作图痕迹);(2)在(1)作出的图形中,若AB =4,AD =5,求DF 的值.2、在ABCD 中,AE 平分∠BAD ,O 为AE 的中点,连接BO 并延长,交AD 于点F ,连接EF ,OC .(1)求证:四边形ABEF 是菱形;(2)若点E 为BC 的中点,且BC =8,∠ABC =60°,求OC 的长.3、如图,长方形纸片ABCD 沿对角线AC 折叠,设点D 落在D ′处,BC 交AD '于点E .AB =6cm ,BC =8cm .(1)求证AE =EC ;(2)求阴影部分的面积.4、将线段AB 绕点A 逆时针旋转60︒得到线段AC ,继续旋转(0120)αα︒<<︒得到线段AD ,连接CD .(1)连接BD .①如图①,若80α=︒,则BDC ∠的度数为 ;②在第二次旋转过程中,请探究BDC ∠的大小是否改变.若不变,求出BDC ∠的度数;若改变,请说明理由.(2)如图②.以AB 为斜边作Rt ABE ∆,使得B ACD ∠=∠,连接CE ,DE .且CE DE ⊥.试猜想线段AB ,CD 之间的数量关系,写出结论并给予证明.5、已知:在平行四边形ABCD 中,分别延长BA ,DC 到点E ,H ,使得BE =2AB ,DH =2CD .连接EH ,分别交AD ,BC 于点F ,G .(1)求证:AF =CG ;(2)连接BD 交EH 于点O ,若EH ⊥BD ,则当线段AB 与线段AD 满足什么数量关系时,四边形BEDH 是正方形?-参考答案-一、单选题1、B【解析】【分析】连接BD ',由矩形的性质得出∠ABC =90°,AC =BD ,由旋转的性质得出,AB A B BD AC BD ,证明AA B '是等边三角形,由等边三角形的性质得出60BAA '∠=︒,由直角三角形的性质求出AC 的长,由矩形的性质可得出答案.【详解】解:连接BD ',∵四边形ABCD 是矩形,∴∠ABC =90°,AC =BD ,∵点A '是AC 的中点, ∴AA A B ''=,∵将矩形ABCD 绕点B 按顺时针方向旋转一定角度得到矩形A BC D ''',∴,,AB A B BD AC BD∴AB A B A A ,∴AA B '是等边三角形,∴∠BAA '=60°,∴∠ACB =30°,∵AB =3, ∴AC =2AB =6,∴6BD '=.即点B 与点D 之间的距离为6.故选:B.【点睛】本题考查了旋转的性质,矩形的性质,直角三角形的性质,等边三角形的判定和性质,求出AC的长是解本题的关键.2、B【解析】【分析】首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.【详解】解:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,所以AB∥CD,AD∥BC,AE=AF.∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.又AE=AF.∴BC=CD,∴四边形ABCD是菱形.故选:B【点睛】此题考查了菱形的判定,平行四边形的面积公式以及平行四边形的判定与性质,利用了数形结合的数学思想,其中菱形的判定方法有:一组邻边相等的平行四边形为菱形;对角线互相垂直的平行四边形为菱形;四条边相等的四边形为菱形,根据题意作出两条高AE和AF,熟练掌握菱形的判定方法是解本题的关键3、B【解析】【分析】先证明四边形ADCF是平行四边形,再证明AC=DF即可.【详解】解:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=12 BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形;故选:B.【点睛】本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理;熟记对角线相等的平行四边形是矩形是解决问题的关键.4、B【解析】【分析】根据翻折的性质可知,∠ABE =∠A ′BE ,∠DBC =∠DBC ′,又∠ABE +∠A ′BE +∠DBC +∠DBC ′=180°,且∠EBD =∠A ′BE +∠DBC ′,继而即可求出答案.【详解】解:根据翻折的性质可知,∠ABE =∠A ′BE ,∠DBC =∠DBC ′,又∵∠ABE +∠A ′BE +∠DBC +∠DBC ′=180°,∴∠EBD =∠A ′BE +∠DBC ′=180°×12=90°.故选B .【点睛】此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE =∠A ′BE ,∠DBC =∠DBC ′是解题的关键.5、A【解析】【分析】由正方形1性质和勾股定理得2218a b +=,再由2210a b ab +=+,得1018ab +=,则8ab =,即可解决问题.【详解】解:设大正方形的边长为c ,大正方形的面积是18,218∴=,c22218a b c∴+==,2210+=+,a b ab1018∴+=,ab∴=,8ab∴小正方形的面积222=-=+-=-⨯=,b a a b ab()218282故选:A.【点睛】ab=.本题考查了勾股定理、正方形的性质以及完全平方公式等知识,解题的关键是求出86、B【解析】【分析】由菱形的性质得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再证△ABC是等边三角形,得AC=AB=2(cm),则OA=1(cm),然后由勾股定理求出OB cm),即可求解.【详解】解:∵菱形ABCD的周长为8cm,∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=2cm,∴OA=1(cm),在Rt△AOB中,由勾股定理得:OB cm),∴BD=2OB=cm),故选:B.【点睛】此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.7、A【解析】【分析】取OD的中点H,连接HP,由菱形的性质可得AC⊥BD,AO=CO=4,OB=OD=6,由三角形中位线定理可得122HP OC==,HP AC∥,可得EH=6,90EHP∠=︒,由勾股定理可求PE的长.【详解】解:如图,取OD的中点H,连接HP∵四边形ABCD是菱形∴AC⊥BD,AO=CO=4,OB=OD=6∵点H 是OD 中点,点E 是OB 的中点,点P 是CD 的中点∴OH =3,OE =3,122HP OC ==,HP AC ∥ ∴EH =6,90EHP ∠=︒在Rt HPE △中,由勾股定理可得:∴PE =故选:A【点睛】本题考查了菱形的性质,三角形中位线定理,勾股定理,添加恰当辅助线构造直角三角形是解题的关键.8、D【解析】【分析】由折叠得:FA =FC =5,∠CFE =∠AFE ,再由矩形的性质,得出△DCF 是直角三角形,利用勾股定理可计算出DF 点长,后可得出结论.【详解】解:由折叠得:FA =FC =5,∵四边形ABCD 是矩形,CD =4,∴△CDF 是直角三角形,∴DF,∴BC=AD=AF+DF=8;故选:D.【点睛】本题考查了矩形的性质,旋转的性质,勾股定理,熟练掌握性质,准确使用勾股定理是解题的关键.9、B【解析】【分析】设BE=x,根据正方形的性质、平行四边形的面积公式分别表示出S1,S2,S3,根据题意计算即可.【详解】∵23AB AC=,AC AB BC=+∴AB=2BC,又∵点D,E分别是AB,BC的中点,∴设BE=x,则EC=x,AD=BD=2x,∵四边形ABGF是正方形,∴∠ABF=45°,∴△BDH是等腰直角三角形,∴BD=DH=2x,∴S1=DH•AD2x•2x∴x2∵BD=2x,BE=x,∴S2=MH•BD=(3x−2x)•2x=2x2,S3=EN•BE=x•x=x2,∴S2+S3=2x2+x2=3x2故选:B.【点睛】本题考查的是正方形的性质、平行四边形的性质,掌握正方形的四条边相等、四个角都是90°是解题的关键.CD=10、∴OM=12故选:C.【点睛】此题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质.注意利用直角三角形斜边上的中线等于斜边的一半,求得AC的长是关键.3.C【解析】【分析】利用平行四边形、矩形、菱形及正方形的判定方法分别判断后,即可确定正确的选项.【详解】解:A .一组对边平行且相等的四边形是平行四边形,原命题是假命题,不符合题意;B .对角线互相平分、垂直且相等的四边形是正方形,原命题是假命题,不符合题意;C .对角线相等的平行四边形是矩形,是真命题,符合题意;D .四条边都相等的四边形是菱形,原命题是假命题,不符合题意;故答案选:C .【点睛】考查了命题与定理的知识,解题的关键是了解平行四边形、矩形、菱形及正方形的判定方法,难度不大.二、填空题1、()12,21n n --【解析】【分析】根据一次函数图象上点的坐标特征结合正方形的性质可得出点A 1、B 1的坐标,同理可得出A 2、A 3、A 4、A 5、…及B 2、B 3、B 4、B 5、…的坐标,根据点的坐标的变化可找出变化规律“Bn (2n -1,2n -1)(n 为正整数)”,依此规律即可得出结论.【详解】解:当y =0时,有x -1=0,解得:x =1,∴点A 1的坐标为(1,0).∵四边形A 1B 1C 1O 为正方形,∴点B 1的坐标为(1,1).同理,可得出:A 2(2,1),A 3(4,3),A 4(8,7),A 5(16,15),…,∴B 2(2,3),B 3(4,7),B 4(8,15),B 5(16,31),…,∴Bn (2n -1,2n -1)(n 为正整数),故答案为:()12,21n n --【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“Bn (2n -1,2n -1)(n 为正整数)”是解题的关键.2、11【解析】【分析】分EF 经过正方形ABCD 另三边三种情况求解即可【详解】解:①EF 经过CD 边中点O 时,∵四边形ABCD 是正方形,∴AB=BC=CD=DA ,90C B ∠=∠=︒,∵点O 是CD 边中点,点E 是BC 边中点, ∴11,22OC CD EC BC ==. ∵CE=CO =1,∴45CEO ∠=︒, 由折叠得11(180)((18045)67.522FEP BEP CEO ∠=∠=︒-∠=︒-︒=︒,∴22.5FPE BPE ∠=∠=︒.∴45FPB FPE BPE ∠=∠+∠=︒,作FG ⊥AB 于G ,作EH ⊥FG 于H ,如图,设FH=x ,则BG=EH=FH=x ,∵45BPF ∠=︒,∴PG =FG=x +1,∴BP =2x +1,由勾股定理得1)PF x =+,由折叠得PB=PF ,∴211)x x +=+,解得x =.∴12BP =>,∴点P 在AB 外,不符合题意;②EF 经过AD 边中点O ',如图,此时,190452FEP BEP ∠=∠=⨯︒=︒, ∴BP=BE =1;③EF 经过AB 中点O '',如图,∵O ''B=BE ,∴45EO B ''∠=︒.由折叠得90PFE B ∠=∠=︒,设PF=x ,则,O P PB x ''==,1x +=,∴1,即1,综上,BP 的长为11,故答案为:11.【点睛】此题考查了正方形的性质,折叠的性质,勾股定理,灵活运用分类讨论思想是解答本题的关键. 3、5cm【解析】略4、【解析】【分析】取AD中点G,连接EG,F'G,BE,作BH⊥DC的延长线于点H,利用全等三角形的性质证明∠F'GA=60°,点F'的轨迹为射线GF',易得A、E关于GF'对称,推出AF'=EF',得到BF'+AF'=BF'+EF'≥BE,求出BE即可解决周长最小问题.【详解】解:取AD中点G,连接EG,F'G,BE,作BH⊥DC的延长线于点H,∵四边形ABCD为菱形,∴AB=AD,∵∠BAD=120°,∴∠CAD=60°,∴△ACD为等边三角形,又∵DE=DG,∴△DEG也为等边三角形.∴DE=GE,∵∠DEG=60°=∠FEF',∴∠DEG﹣∠FEG=∠FEF'﹣∠FEG,即∠DEF=∠GEF',由线段EF绕着点E顺时针旋转60°得到线段EF',所以EF=EF'.在△DEF和△GEF'中,DE GE DEF GEF EF EF '=⎧⎪∠=∠⎨='⎪⎩, ∴△DEF ≌△GEF '(SAS ).∴∠EGF '=∠EDF =60°,∴∠F 'GA =180°﹣60°﹣60°=60°,则点F '的运动轨迹为射线GF '.观察图形,可得A ,E 关于GF '对称,∴AF '=EF ',∴BF '+AF '=BF '+EF '≥BE ,在Rt△BCH 中,∵∠H =90°,BC =4,∠BCH =60°,∴12,2CH BC BH ===,在Rt△BEH 中,BE∴BF '+EF∴△ABF '的周长的最小值为AB +BF '+EF '=故答案为:.【点睛】本题考查了旋转变换,菱形的性质,解直角三角形,全等三角形的判定与性质,勾股定理,等边三角形等知识,解题关键在于学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.5、4【解析】【分析】由旋转的性质得△ADE≌△ABF,从而四边形AECF的面积为正方形ABCD的面积.【详解】解:以点A为中心,把ADE∆绕点A顺时针旋转90︒,得到ABF∆,ΔΔADE ABF∴≅,∴四边形AECF的面积为正方形ABCD的面积,正方形ABCD的边长为2,∴正方形ABCD的面积为4,∴四边形AECF的面积为4,故答案为:4.【点睛】本题主要考查了旋转的性质,正方形的性质等知识,熟练掌握旋转前后图形是全等的是解题的关键.三、解答题1、 (1)见解析(2)5 2【解析】【分析】(1)作∠DAE的角平分线,与DC的交点即为所求,理由:可先证明△AEF≌△ADF,可得∠AEF=∠D=90°,从而得到∠DAE+∠DFE=180°,进而得到∠EFC=∠DAE,再由AD∥BC,即可求解;(2)根据矩形的性质可得∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,从而得到BE=3,进而得到EC=2,然后在Rt CEF中,由勾股定理,即可求解.(1)解:如图,作∠DAE的角平分线,与DC的交点即为所求.∵AE=AD,∠EAF=∠DAF,AF=AF,∴△AEF≌△ADF,∴∠AEF=∠D=90°,∴∠DAE+∠DFE=180°,∵∠EFC+∠DFE=180°,∴∠EFC=∠DAE,∵在矩形ABCD中,AD∥BC,∴∠BEA=∠DAE,∴∠EFC=∠BEA;(2)解:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,∵AE=AD=5,∴BE3,∴EC=BC﹣BE=5﹣3=2,由(1)得:△AEF≌△ADF,∴DF EF = ,在Rt CEF 中,222CE CF EF += ,∴()22224DF DF +-= , ∴52DF = . 【点睛】本题主要考查了矩形的性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握矩形的性质,全等三角形的判定和性质,勾股定理是解题的关键.2、 (1)见解析;(2)【解析】【分析】(1)根据平行四边形的性质得到AD BC ∥,证明△AOF ≌△BOE ,推出AF=BE ,证得四边形ABEF 是平行四边形,由AE 平分∠BAD ,推出AB=BE ,由此得到结论;(2)过点O 作OG ⊥BC 于G ,由C 的中点,求出BE ,根据菱形的性质得到OE =2,∠OEB =60°,求出GE =1,勾股定理求出OG 得到GC ,再利用勾股定理求出答案.(1)证明:在ABCD 中,AD BC ∥,∴∠FAO =∠BEO ,∵O 为AE 的中点,∴AO=EO ,∵∠AOF =∠BOE ,∴△AOF ≌△BOE ,∴AF=BE,∴四边形ABEF是平行四边形,∵AE平分∠BAD,∴∠BAE=∠FAE,∴∠BAE=∠AEB,∴AB=BE,∴四边形ABEF是菱形;(2)解:过点O作OG⊥BC于G,∵点E为BC的中点,且BC=8,∴BE=CE=4,∵四边形ABEF是菱形,∠ABC=60°,∴∠OBE=30°,∠BOE=90°,∴OE=2,∠OEB=60°,∴GE=1,OG=∴GC=5,∴OC.此题考查了平行四边形的性质,全等三角形的判定及性质,勾股定理,菱形的判定及性质,直角三角形30度角的性质,解题的关键是熟练掌握各知识点并熟练应用.3、 (1)证明见解析 (2)275cm 4【解析】【分析】(1)先根据折叠的性质可得EAC DAC ∠=∠,再根据矩形的性质、平行线的性质可得DAC ACB ∠=∠,从而可得EAC ACB ∠=∠,然后根据等腰三角形的判定即可得证;(2)设cm AE EC x ==,从而可得(8)cm BE x =-,先在Rt ABE △中,利用勾股定理可得x 的值,再利用三角形的面积公式即可得.(1)证明:由折叠的性质得:EAC DAC ∠=∠,四边形ABCD 是长方形,AD BC ∴,DAC ACB ∴∠=∠,EAC ACB ∴∠=∠,AE EC ∴=.(2) 解:四边形ABCD 是长方形,90B ∴∠=︒,设cm AE EC x ==,则(8)cm BE BC EC x =-=-,在Rt ABE △中,222AB BE AE +=,即2226(8)x x +-=,解得254x =, 即25cm 4EC =, 则阴影部分的面积为21125756(cm )2244EC AB ⋅=⨯⨯=. 【点睛】本题考查了矩形与折叠问题、等腰三角形的判定、勾股定理等知识,熟练掌握矩形与折叠的性质是解题关键.4、 (1)①30°,②不变,30°(2)CD =,见解析【解析】【分析】(1)①先推出∠ADC =50°,在推出∠ADB =20°,从而得出结果;②同理①由AC =AD 推出∠ADC =90°−2α,由AB =AD 推出∠ADB =60°−2α,进而推出结果; (2)作AF ⊥CD 于F ,推出△ABE ≌△ACF ,进而得出△AEF 是等边三角形,再推出△ABE 是等腰直角三角形,进而得出关系.(1)解:①AC AD =,1801808022CAD ADC C ︒-∠︒-︒∴∠=∠==50=︒, AB AD =,180********BAD ADB B ︒-∠︒-︒∴∠=∠==20=︒, 5020BDC ADC ABD ∴∠=∠-∠=︒-︒30=︒,故答案是30;②不变,理由如下:AC AD =,180********CAD ADC C αα︒-∠︒-∴∠=∠===︒-, AB AD =,()180606022ADB B αα︒-︒+∴∠=∠==︒-,906022BDC ADC ABD αα⎛⎫∴∠=∠-∠=︒--︒- ⎪⎝⎭30=︒, (2)CD =,理由如下:如图,作AF CD ⊥于F ,AC AD =,CF DF ∴=,CE DE ⊥,90CED ∴∠=︒,12EF CF CD ∴==, AB AC =,B ACD ∠=∠,90BEA AFC ∠=∠=︒,()ΔΔABE ACF AAS ∴≅,BE CF ∴=,AE AF =,BAE CAF ∠=∠,CAF CAE BAE CAE ∴∠+∠=∠+∠即60EAF BAC ∠=∠=︒,ΔAEF ∴是等边三角形,AE EF ∴=,BE AE ∴=,ABE ∴∆是等腰直角三角形,45ADF ACF B ∴∠=∠=∠=︒,ACD ∴∆是等腰直角三角形,CD ∴==.【点睛】本题考查了旋转性质,等边三角形性质,等腰直角三角形性质,直角三角形性质,全等三角形判定和性质等知识,解决问题的关键是找出题目中线段间的关系.5、 (1)见解析(2)当AD 时,四边形BEDH 是正方形【解析】【分析】(1)要证明AF =CG ,只要证明△EAF ≌△HCG 即可;(2)利用已知可得四边形BEDH 是菱形,所以当AE 2+DE 2=AD 2时,∠BED =90°,四边形BEDH 是正方形.(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∠BAD =∠BCD ,∴∠AEF=∠CHG,∵BE=2AB,DH=2CD,∴BE=DH,∴BE-AB=DH-DC,∴AE=CH,∴∠BAD+∠EAF=180°,∠BCD+∠GCH=180°,∴∠EAF=∠GCH,∴△EAF≌△HCG(ASA),∴AF=CG;(2)解:当AD时,四边形BEDH是正方形;理由:∵BE∥DH,BE=DH,∴四边形EBHD是平行四边形,∵EH⊥BD,∴四边形EBHD是菱形,∴ED=EB=2AB,当AE2+DE2=AD2时,则∠BED=90°,∴四边形BEDH是正方形,即AB2+(2AB)2=AD2,∴AD,∴当AD时,四边形BEDH是正方形..【点睛】本题考查了正方形的判定,菱形的判定,平行四边形的性质,全等三角形的判定与性质,结合图形分析并熟练掌握正方形的判定,平行四边形的性质,是解题的关键.。
精品试题鲁教版(五四制)八年级数学下册第六章特殊平行四边形专项练习练习题(精选含解析)

鲁教版(五四制)八年级数学下册第六章特殊平行四边形专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,把一长方形纸片ABCD的一角沿AE折叠,点D的对应点D落在∠BAC内部.若∠=∠,且15CAE BAD'2∠=︒,则∠DAE的度数为()CAD'A.12°B.24°C.39°D.45°2、已知,如图长方形ABCD中,AB=3,AD=9,将此长方形折叠,使点B与点D重合,折痕为EF,则BEF的面积为()A.6 B.7.5 C.12 D.153、如图,平行四边形ABCD的边BC上有一动点E,连接DE,以DE为边作矩形DEGF且边FG过点A.在点E从点B移动到点C的过程中,矩形DEGF的面积()A.先变大后变小B.先变小后变大C.一直变大D.保持不变4、如图,将矩形纸片ABCD沿EF折叠,使点A恰好与点C重合,点B的对应点为点B′,若DC=4,AF=5,则BC的长为()A.B.C.10 D.85、如图,将边长为6个单位的正方形ABCD沿其对角线BD剪开,再把△ABD沿着DC方向平移,得到△A′B′D′,当两个三角形重叠部分的面积为4个平方单位时,它移动的距离DD′等于()A.2 B.3C.3D.6、能够判断一个四边形是矩形的条件是()A.对角线相等B.对角线垂直C.对角线互相平分且相等D.对角线垂直且相等7、如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),则下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中说法正确的是( )A .②③B .①②③C .②④D .①②④8、如图,2002年8月在北京召开的国际数学家大会会标其原型是我国古代数学家赵爽的《勾股弦图》,它是由四个全等的直角三角形拼接而成,如果大正方形的面积是18,直角三角形的直角边长分别为a 、b ,且a 2+b 2=ab +10,那么小正方形的面积为( )A .2B .3C .4D .59、在矩形ABCD 中,对角线AC ,BD 交于点O ,且∠AOD =120°.若AB =3,则BC 的长为( )A B .3 C .D .610、在Rt ABC 中,90ACB ∠=︒,分别以A 点,B 点为圆心以大于12AB 为半径画弧,两弧交于E ,F ,连接EF 交AB 于点D ,连接CD ,以C 为圆心,CD 长为半径作弧,交AC 于G 点,则:CG AB =( )A .B .1:2C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在菱形ABCD 中,60A ∠=︒,其所对的对角线长为2,则菱形ABCD 的面积是__.2、矩形的性质定理1:矩形的四个角都是______.矩形的性质定理2:矩形的对角线______.3、如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,若∠AOB =60°,AB =4cm ,则AC 的长为______cm .4、有一组邻边相等的平行四边形是________ .菱形的性质:(1)两组对边分别________,菱形的四条边都________;(2)菱形的两组对角________,邻角________;(3)菱形的对角线互相________,并且每一条对角线________一组对角.5、添加一个条件,使矩形ABCD 是正方形,这个条件可能是 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,直线12l l ∥,线段AD 分别与直线1l 、2l 交于点C 、点B ,满足AB CD =.(1)使用尺规完成基本作图:作线段BC 的垂直平分线交1l 于点E ,交2l 于点F ,交线段BC 于点O ,连接ED 、DF 、FA 、AE .(保留作图痕迹,不写做法,不下结论)(2)求证:四边形AEDF 为菱形.(请补全下面的证明过程)证明:12l l ∥1∴∠=____①____ EF 垂直平分BCOB OC ∴=,90EOC FOB ︒∠=∠=∴____②____FOB ∆≌OE ∴=____③____AB CD =OB AB OC DC +=+∴OA OD ∴=∴四边形AEDF 是___④_____EF AD ⊥∴四边形AEDF 是菱形(______⑤__________)(填推理的依据).2、如图,在▱ABCD 中,AE 平分∠BAD 交CD 于点E ,DF 平分∠ADC 交AB 于点F ,AE 与DF 交于点O ,连接EF ,OC .(1)请依题意补全图形.求证:四边形ADEF 是菱形;(2)若AD =4,AB =6,∠ADC =60°,求OC 的长.3、如图,在平行四边形ABCD 中,点M 是AD 边的中点,连接BM ,CM ,且BM =CM .(1)求证:四边形ABCD 是矩形;(2)若△BCM 是直角三角形,直接写出AD 与AB 之间的数量关系.4、如图,在平行四边形ABCD 中,E 、F 分别是边AB 、DC 上的点,且AE CF =,90DEB ∠=︒,求证:四边形DEBF 是矩形5、如图,△ABC 中,∠C =90°.(1)尺规作图:作边BC 的垂直平分线,与边BC ,AB 分别交于点D 和点E ;(保留作图痕迹,不要求写作法)(2)若点E 是边AB 的中点,AC =BE ,求证:△ACE 是等边三角形.-参考答案-一、单选题1、C【解析】【分析】由折叠的性质得到DAE EAD '∠=∠,由长方形的性质得到90DAE EAD BAD ''∠+∠+∠=︒,根据角的和差倍分得到290EAD BAD ''∠+∠=︒,整理得2()90CAE CAD BAD ''∠+∠+∠=︒ ,最后根据+2DAE EAD CAE CAD BAD CAD ''''∴∠=∠=∠∠=∠+∠解题.【详解】 解:折叠,DAE EAD '∴∠=∠ ABCD 是矩形DA AB ∴⊥90DAE EAD BAD ''∴∠+∠+∠=︒290EAD BAD ''∴∠+∠=︒2()90CAE CAD BAD ''∴∠+∠+∠=︒2,15CAE BAD CAD ''∠=∠∠=︒2(215)90BAD BAD ''∴∠+︒+∠=︒30590BAD '∴︒+∠=︒12BAD '∴∠=︒+22121539DAE EAD CAE CAD BAD CAD ''''∴∠=∠=∠∠=∠+∠=⨯︒+︒=︒39DAE ∠=︒故选:C .【点睛】本题考查角的计算、折叠性质、数形结合思想等知识,是重要考点,掌握相关知识是解题关键.2、B【解析】【分析】根据翻折的性质可得,BE=DE,设AE=x,则ED=BE=9−x,在直角△ABE中,根据勾股定理可得32+x2=(9−x)2,即可得到BE的长度,由翻折性质可得,∠BEF=∠FED,由矩形的性质可得∠FED=∠BFE,即可得出△BEF是等腰三角形,BE=BF,即可得出答案.【详解】解:设AE=x,则ED=BE=9−x,根据勾股定理可得,32+x2=(9−x)2,解得:x=4,由翻折性质可得,∠BEF=∠FED,∵AD∥BC,∴∠FED=∠BFE,∴∠BEF=∠BFE,∴BE=BF=5,∴S△BFE=12×5×3=7.5.故选:B.【点睛】本题主要考查了翻折的性质及矩形的性质,熟练应用相关知识进行求解是解决本题的关键.3、D【解析】【分析】连接AE,根据11,22ADE ADE ABCDDEGFS S S S==矩形,推出ABCDDEGFS S=矩形,由此得到答案.【详解】解:连接AE,∵11,22ADE ADE ABCD DEGF S S S S ==矩形,∴ABCD DEGF S S=矩形,故选:D . .【点睛】此题考查了平行四边形的性质,矩形的性质,正确连接辅助线AE 是解题的关键.4、D【解析】【分析】由折叠得:FA =FC =5,∠CFE =∠AFE ,再由矩形的性质,得出△DCF 是直角三角形,利用勾股定理可计算出DF 点长,后可得出结论.【详解】解:由折叠得:FA =FC =5,∵四边形ABCD 是矩形,CD =4,∴△CDF 是直角三角形,∴DF,∴BC=AD=AF+DF=8;故选:D.【点睛】本题考查了矩形的性质,旋转的性质,勾股定理,熟练掌握性质,准确使用勾股定理是解题的关键.5、B【解析】【分析】先判断重叠部分的形状,然后设DD'=x,进而表示D'C等相关的线段,最后通过重叠部分的面积列出方程求出x的值即可得到答案.【详解】解:∵四边形ABCD是正方形,∴△ABD和△BCD是等腰直角三角形,如图,记A'D'与BD的交点为点E,B'D'与BC的交点为F,由平移的性质得,△DD'E和△D'CF为等腰直角三角形,∴重叠部分的四边形D'EBF为平行四边形,设DD'=x,则D'C=6-x,D'E=x,∴S▱D'EBF=D'E•D'C=(6-x)x=4,解得:x x故选:B.【点睛】本题考查了正方形的性质、等腰直角三角形的性质、平移的性质,通过平移的性质得到重叠部分四边形的形状是解题的关键.6、C【解析】略7、B【解析】【分析】根据正方形的性质,直角三角形的性质,直角三角形面积的计算公式及勾股定理解答即可.【详解】如图所示,∵△ABC 是直角三角形,∴根据勾股定理:22249x y AB +==,故①正确;由图可知2x y CE -==,故②正确;由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积, 列出等式为144492xy ⨯⨯+=,即2449xy +=,故③正确;由2449xy +=可得245xy =,又∵2249x y +=,两式相加得:2224945x xy y ++=+,整理得:()294x y +=,9x y +=≠,故④错误;故正确的是①②③.故答案选B .【点睛】本题主要考查了勾股定理的应用,正方形性质,完全平方公式的应用,算术平方根,准确分析判断是解题的关键.8、A【解析】【分析】由正方形1性质和勾股定理得2218a b +=,再由2210a b ab +=+,得1018ab +=,则8ab =,即可解决问题.【详解】解:设大正方形的边长为c ,大正方形的面积是18,218c ∴=,22218a b c ∴+==,2210+=+,a b ab∴+=,1018ab∴=,ab8∴小正方形的面积222=-=+-=-⨯=,b a a b ab()218282故选:A.【点睛】ab=.本题考查了勾股定理、正方形的性质以及完全平方公式等知识,解题的关键是求出89、C【解析】【分析】根据矩形的性质和等边三角形的判定和性质,可以得到AC的长,再根据勾股定理,即可得到BC的长,本题得以解决.【详解】解:∵∠AOD=120°,∠AOD+∠AOB=180°,∴∠AOB=60°,∵四边形ABCD是矩形,∴OA=OB=OC,∠ABC=90°,∴△AOB是等边三角形,∴AB=OA=OC,∵AB=3,∴AC=6,∴BC=故选:C.【点睛】本题考查矩形的性质、等边三角形的判定与性质,以及勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.10、B【解析】【分析】根据尺规作图可知EF是AB的垂直平分线,从而CD=CG=12AB,然后可求CG:AB的值.【详解】解:根据尺规作图可知EF是AB的垂直平分线,∴D是AB中点,∴CD=CG=12 AB,∴CG:AB=12AB:AB=1:2,故选B.【点睛】本题考查了尺规作图-作线段的垂直平分线,直角三角形斜边中线的性质,熟练掌握直角三角形斜边的中线的中线等于斜边的一半是解本题的关键.二、填空题1、【解析】【分析】根据菱形的性质证得△ABD 是等边三角形,得到OB ,利用勾股定理求出OA ,由菱形的性质求出菱形的面积.【详解】解:如图所示:在菱形ABCD 中,60BAD ∠=︒,其所对的对角线长为2,AD AB ∴=,AC BD ⊥,BO DO =,AO CO =,ABD ∴∆是等边三角形,则2AB AD ==,故1BO DO ==,则AO =AC =则菱形ABCD 的面积122=⨯⨯故答案为:【点睛】此题主要考查了菱形的性质以及勾股定理,正确得出菱形的另一条对角线的长是解题关键.2、 直角 相等【解析】略3、8【解析】【分析】根据矩形的性质可得三角形AOB为等边三角形,在直角三角形ABC中,根据直角三角形的两个锐角互余可得∠ACB为30°,根据30°角所对的直角边等于斜边的半径,由AB的长可得出AC的长.【详解】解:∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,∠ABC=90°,∴OA=OB=OC=OD,又∵∠AOB=60°,∴△AOB为等边三角形,∴∠BAO=60°,在直角三角形ABC中,∠ABC=90°,∠BAO=60°,∴∠ACB=30°,∵AB=4cm,则AC=2AB=8cm.故答案为:8.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,以及含30°角直角三角形的性质,矩形的性质有:矩形的四个角都为直角;矩形的对边平行且相等;矩形的对角线互相平分且相等,熟练掌握矩形的性质是解本题的关键.4、 菱形 平行 相等 相等 互补 垂直 平分【解析】略5、AB BC =或AB AD =或CD BC =或CD AD =或AC BD ⊥【解析】【分析】根据有一组邻边相等的矩形是正方形;对角线互相垂直的矩形是正方形即可得出答案.【详解】解:根据有一组邻边相等的矩形是正方形得:这个条件可能是AB BC =或AB AD =或CD BC =或CD AD =,根据对角线互相垂直的矩形是正方形得:这个条件可能是AC BD ⊥,故答案为:AB BC =或AB AD =或CD BC =或CD AD =或AC BD ⊥.【点睛】本题考查了正方形的判定,熟练掌握正方形与矩形之间的关系是解题关键.三、解答题1、 (1)见解析(2)①2∠;②EOC ∆;③OF ;④平行四边形;⑤对角线互相垂直的平行四边形是菱形【解析】【分析】(1)分别以A 、D 为圆心,大于AD 的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l 1于E ,交l 2于F ,直线EF 为线段AD 的垂直平分线,连接ED 、DF 、FA 、AE 即可;(2):根据12l l ∥,内错角相等得出1∠=∠2①,根据EF 垂直平分BC ,得出OB OC =,90EOC FOB ︒∠=∠=,可证②△EOC FOB ∆≌,根据全等三角形性质得出OE =OF ③,再证OA OD =,根据对角线互相平分的四边形是平行四边形判定四边形AEDF 是平行四边形④,根据对角线互相垂直EF AD ⊥即可得出四边形AEDF 是菱形(对角线互相垂直的平行四边形是菱形⑤). (1)解:分别以A 、D 为圆心,大于AD 的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l 1于E ,交l 2于F ,直线EF 为线段AD 的垂直平分线,连接ED 、DF 、FA 、AE 即可;如图所示(2)证明:12l l ∥,1∴∠=∠2①, EF 垂直平分BC ,OB OC ∴=,90EOC FOB ︒∠=∠=,∴②△EOC FOB ∆≌,OE ∴=OF ③,AB CD =,OB AB OC DC +=+∴,OA OD ∴=,∴四边形AEDF 是平行四边形④,EF AD ⊥,∴四边形AEDF 是菱形(对角线互相垂直的平行四边形是菱形⑤),故答案为:①2∠;②EOC ∆;③OF ;④平行四边形;⑤对角线互相垂直的平行四边形是菱形.【点睛】本题考查尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定,掌握尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定是解题关键.2、 (1)作图见解析,证明见解析;(2)【解析】【分析】(1)以D 为圆心画弧交AD CD 、分别于点M N 、,以M N 、为圆心,大于12MN 为半径,画弧交点为Q ,连接DQ 并延长与AB 交点即为F ,连接EF OC 、即可补全图形;由DF 平分∠ADE ,AE 平分∠BAD 可知12EDF ADF ADE ∠=∠=∠,12FAE EAD FAD ∠=∠=∠,由四边形ABCD 是平行四边形,知AF DE ∥ ,EDF AFD ∠=∠,DEA FAE ∠=∠,可知ADF AFD ∠=∠,EAD DEA ∠=∠,可得AF AD AD DE ==,,AF DE ∥,进而可证四边形AFED 是菱形.(2)如图2,过点O 作OG ⊥CD 于G ,四边形ADEF 是菱形,∠ADF =∠EDF =30°,90AOD ∠=︒,在Rt AOD △中,12OA AD =,由勾股定理得OD = 在Rt DOG 中,12OG OD =,由勾股定理得DG CG CD DG =-,在Rt OCG △中,勾股定理求解OC 即可.(1)解:补全图形如图1所示,以D 为圆心画弧交AD CD 、分别于点M N 、,以M N 、为圆心,大于12MN 为半径,画弧交点为Q ,连接DQ 并延长与AB 交点即为F ,连接EF OC 、即可;证明:∵DF平分∠ADE,AE平分∠BAD∴12EDF ADF ADE∠=∠=∠,12FAE EAD FAD∠=∠=∠∵四边形ABCD是平行四边形∴AF DE∥∴EDF AFD∠=∠,DEA FAE∠=∠,∴EDF ADF AFD∠=∠=∠,FAE EAD DEA∠=∠=∠∴AF AD AD DE==,∵AF DE AF DE=∥,∴四边形AFED是平行四边形∵AF AD DE==∴四边形AFED是菱形.(2)解:如图2,过点O作OG⊥CD于G∴90OGD ∠=︒∵四边形ADEF 是菱形∴∠ADO =∠ODG =30°,90AOD ∠=︒∴在Rt AOD △中,122OA AD ==,由勾股定理知OD ,在Rt DOG 中,12OG OD ==3DG == ∴3CG CD DG =-=在Rt OCG △中,由勾股定理知OC ==∴OC =【点睛】本题考查了角平分线,菱形的判定与性质,含有30°的直角三角形,勾股定理等知识.解题的关键在于对知识的灵活综合运用.3、 (1)见解析(2)AD =2AB ,理由见解析【解析】【分析】(1)由SSS 证明△ABM ≌△DCM ,得出∠A =∠D ,由平行线的性质得出∠A +∠D =180°,证出∠A =90°,即可得出结论;(2)先证明△BCM 是等腰直角三角形,得出∠MBC =45°,再证明△ABM 是等腰直角三角形,得出AB =AM ,即可得出结果.(1)证明:∵点M 是AD 边的中点,∴AM =DM ,∵四边形ABCD 是平行四边形,∴AB =DC ,AB ∥CD ,在△ABM 和△DCM 中,AM DM AB DC BM CM =⎧⎪=⎨⎪=⎩, ∴△ABM ≌△DCM (SSS ),∴∠A =∠D ,∵AB ∥CD ,∴∠A +∠D =180°,∴∠A =90°,∵四边形ABCD 是平行四边形,∴四边形ABCD 是矩形;(2)解:AD 与AB 之间的数量关系:AD =2AB ,理由如下:∵△BCM 是直角三角形,BM =CM ,∴△BCM 是等腰直角三角形,∴∠MBC =45°,由(1)得:四边形ABCD 是矩形,∴AD ∥BC ,∠A =90°,∴∠AMB =∠MBC =45°,∴△ABM 是等腰直角三角形,∴AB =AM ,∵点M 是AD 边的中点,∴AD =2AM ,∴AD =2AB .【点睛】本题考查了矩形的判定与性质、平行四边形的性质、平行线的性质、全等三角形的判定与性质、等腰直角三角形的的判定与性质等知识;熟练掌握平行四边形的性质,证明△ABM ≌△DCM 是解题的关键.4、证明见解析【解析】【分析】平行四边形ABCD ,可知AB CD AB CD =,;由于AE CF = ,可得BE DF =,BE DF ,知四边形DEBF 为平行四边形,由90DEB ∠=︒可知四边形DEBF 是矩形.【详解】证明:∵四边形 ABCD 是平行四边形∴AB CD AB CD =,∵AE CF BE AB AE DF DC CF ==-=-,,∴BE DF =∵BE DF BE DF =,∴四边形DEBF 为平行四边形又∵90DEB ∠=︒∴四边形DEBF 是矩形.【点睛】本题考查了平行四边形的性质与判定,矩形的判定等知识.解题的关键在于灵活掌握矩形的判定.5、 (1)见解析(2)见解析【解析】【分析】(1)根据题意作出线段BC 的垂直平分线即可;(2)根据直角三角形的性质和等边三角形的判定定理即可得到结论.(1)解:如图所示,直线DE 即为所求;,(2)证明:∵∠ACB=90°,点E是边AB的中点,∴AE=BE=CE=12 AB,∵AC=BE,∴AC=AE=CE,∴△ACE是等边三角形.【点睛】本题考查了作图-基本作图,等边三角形的判定,熟练掌握等边三角形的判定定理是解题的关键.。
综合解析鲁教版(五四制)八年级数学下册第六章特殊平行四边形专题训练练习题(精选含解析)

鲁教版(五四制)八年级数学下册第六章特殊平行四边形专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,菱形ABCD的对角线AC、BD相交于点O,点P是对角线BD上一点,过点P分别作PE⊥AB,PF⊥AD,垂足分别是点E、F,若OA=4,S菱形ABCD=24,则PE+PF的长为()A B.3 C.125D.2452、如图,四边形ABCD中,AD∥BC,∠C=90°,AB=AD,连接BD,∠BAD的角平分线交BD、BC分别于点O、E,若EC=3,CD=4,则BO的长为()A .4B .C .D .3、如图,已知正方形ABCD 的边长为6,点E ,F 分别在边AB ,BC 上,BE =CF =2,CE 与DF 交于点H ,点G 为DE 的中点,连接GH ,则GH 的长为( )A B C .4.5 D .4.34、已知菱形ABCD ,对角线AC =6,BD =8,则菱形ABCD 的面积为( )A .48B .36C .25D .245、如图,正方形纸片ABCD 的四个顶点分别在四条平行线1l 、2l 、3l 、4l 上,这四条直线中相邻两条之间的距离依次为1h 、2h 、()31230,0,0h h h h >>>,若15h =,22h =,则正方形ABCD 的面积S 等于( )A .34B .89C .74D .1096、如图,菱形ABCD 的对角线AC 、BD 相交于点O ,6AC =,8BD =,EF 为过点O 的一条直线,则图中阴影部分的面积为( )A.4 B.6 C.8 D.127、如图,在Rt△ABC中,∠ACB=90°,如果D为边AB上的中点,那么下面结论错误的是()A.12CD AB=B.12CB AB=C.∠A=∠ACD D.∠ADC=2∠B8、数学课上,老师要同学们判断一个四边形门框是否为矩形.下面是某合作小组4位同学拟定的方案,其中正确的是( )A.测量对角线是否互相平分B.测量一组对角是否都为直角C.测量对角线长是否相等D.测量3个角是否为直角9、下列说法中正确的是()A.矩形的对角线平分每组对角;B.菱形的对角线相等且互相垂直;C.有一组邻边相等的矩形是正方形;D.对角线互相垂直的四边形是菱形.10、下列说法错误的是()A.平行四边形对边平行且相等B.菱形的对角线平分一组对角C .矩形的对角线互相垂直D .正方形有四条对称轴第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在Rt △ABC 中,∠BAC =90°,AB =3,AC =4,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 的中点,则AM 的最小值是______________.2、如图,矩形纸片ABCD ,AD =4,AB =2,点F 在线段AD 上,将△ABF 沿BF 向下翻折,点A 的对应点E 落在线段BC 上,点M ,N 分别是线段AD 与线段BC 上的点,将四边形CDMN 沿MN 向上翻折,点C 恰好落在线段BF 的中点C '处,则线段MN 的长为 __________________.3、如图,在ABC 中,90ACB ∠=︒,20A ∠=︒,CD 与CE 分别是斜边AB 上的高和中线,那么DCE ∠=_______度.4、如图,在矩形ABCD 中,3,5AB BC ==,点P 在CD 边上,联结AP .如果将ADP 沿直线AP 翻折,点D 恰好落在线段BC 上,那么ADP ABCPS S 四边形 的值为_________.5、如图,正方形ABCD 的边长为4,E 是BC 的中点,在对角线BD 上有一点P ,则PC +PE 的最小值是_______.三、解答题(5小题,每小题10分,共计50分)1、已知:在平行四边形ABCD 中,分别延长BA ,DC 到点E ,H ,使得BE =2AB ,DH =2CD .连接EH ,分别交AD ,BC 于点F ,G .(1)求证:AF =CG ;(2)连接BD 交EH 于点O ,若EH ⊥BD ,则当线段AB 与线段AD 满足什么数量关系时,四边形BEDH 是正方形?2、(1)【发现证明】如图1,在正方形ABCD 中,点E ,F 分别是BC ,CD 边上的动点,且45EAF ∠=︒,求证:EF DF BE =+.小明发现,当把ABE △绕点A 顺时针旋转90°至ADG ,使AB与AD重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD中,如果点E,F分别是CB,DC延长线上的动点,且45∠=︒,则EAF(1)中的结论还成立吗?若不成立,请写出EF,BE,DF之间的数量关系______(不要求证明)②如图3,如果点E,F分别是BC,CD延长线上的动点,且45∠=︒,则EF,BE,DF之间的EAF数量关系是______(不要求证明)(3)【联想拓展】如图1,若正方形ABCD的边长为6,AE=AF的长.3、如图,四边形ABCD是一个正方形,E、F分别在AD、DC边上,且DE=CF,AF、BE交于O点,请说出线段AF和BE的关系,并证明你的结论.4、如图,在平行四边形ABCD中,点M是AD边的中点,连接BM,CM,且BM=CM.(1)求证:四边形ABCD是矩形;(2)若△BCM是直角三角形,直接写出AD与AB之间的数量关系.5、在正方形ABCD中,点E是CD边上任意一点.连接AE,过点B作BF⊥AE于F.交AD于H.(1)如图1,过点D作DG⊥AE于G,求证:△AFB≌△DGA;(2)如图2,点E为CD的中点,连接DF,求证:FH+FE;(3)如图3,AB=1,连接EH,点P为EH的中点,在点E从点D运动到点C的过程中,点P随之运动,请直接写出点P运动的路径长.-参考答案-一、单选题1、D【解析】【分析】根据菱形的面积以及OA的长,求得OB的长,勾股定理求得边长AB,进而根据菱形的面积等于()AB PE PF⨯+,即可求得答案.【详解】解:∵四边形ABCD是菱形∴11,,22AO AC OB BD AO OD==⊥,AB AD=OA=4,S 菱形ABCD=24,1242AC BD ∴⨯= 即122242OA OB ⨯⨯⨯⨯= 3OB ∴=Rt AOB 中,5AB连接PAPE ⊥AB ,PF ⊥AD ,∴22()ABD ABP APD ABCD S S S S ==+△△△菱形11222AB PE AD PF ⎛⎫=⨯⨯⨯+⨯ ⎪⎝⎭()AB PE PF =⨯+S 菱形ABCD =24,5AB =245PE PF ∴+= 故选D【点睛】本题考查了菱形的性质,勾股定理,掌握菱形的性质是解题的关键.2、C【解析】【分析】连接DE,因为AB=AD,AE⊥BD,AD∥BC,可证四边形ABED为菱形,从而得到BE、BC的长,进而解答即可.【详解】解:连接DE.在直角三角形CDE中,EC=3,CD=4,根据勾股定理,得DE=5.∵AB=AD,AE平分BAD∠∴AE⊥BD,BO=OD,∴AE垂直平分BD,∠BAE=∠DAE.∴DE=BE=5.∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=5,∴BC=BE+EC=8,∴四边形ABED是菱形,由勾股定理得出BD=∴1.2BO BD == 故选:C .【点睛】本题考查勾股定理的运用以及菱形的判定和性质,题目难度适中,根据条件能够发现图中的菱形ABDE 是关键.3、A【解析】【分析】根据正方形的四条边都相等可得BC =DC ,每一个角都是直角可得∠B =∠DCF =90°,然后利用“边角边”证明△CBE ≌△DCF ,得∠BCE =∠CDF ,进一步得∠DHC =∠DHE =90°,从而知GH =12DE ,利用勾股定理求出DE 的长即可得出答案.【详解】解:∵四边形ABCD 为正方形,∴∠B =∠DCF =90°,BC =DC ,在△CBE 和△DCF 中,BC CC B DCF BE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△CBE ≌△DCF (SAS ),∴∠BCE =∠CDF ,∵∠BCE +∠DCH =90°,∴∠CDF +∠DCH =90°,∴∠DHC =∠DHE =90°,∵点G为DE的中点,∴GH=12DE,∵AD=AB=6,AE=AB﹣BE=6﹣2=4,∴DE===∴GH故选A.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.4、D【解析】【分析】根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】解:∵菱形ABCD的对角线AC=8,BD=6,∴菱形的面积S=12AC•BD=12×8×6=24.故选:D.【点睛】本题考查了菱形的性质,熟练掌握菱形的面积等于对角线乘积的一半是解题的关键.5、C【解析】【分析】如图,记2l 与AD 的交点为,Q 记BC 与3l 的交点为,H 过B 作4BE l ⊥于,E 过D 作4DM l 于,M 再证明,ABO CDH ≌BCE CDM ≌△△,可得7,5,BE CMCE DM 再利用勾股定理可得答案. 【详解】解:如图,记2l 与AD 的交点为,Q 记BC 与3l 的交点为,H 过B 作4BE l ⊥于,E 过D 作4DM l 于,M正方形,ABCD,90,AB BC CD AD BADABC BCD ADC 90,90,ABO AOB CDH ADH 23,l l ∥ 则,AOB ADH ,ABO CDH,ABO CDH ≌135,h h (全等三角形的对应高相等) 237,BE h h 90,BCDBEC DMC 90,EBCBCE BCE DCM,EBC DCM ,BCE CDM ≌7,5,BE CM CE DM2225774.BC ∴=+=故选C【点睛】本题考查的是正方形的性质,全等三角形的判定与性质,证明,ABO CDH ≌BCE CDM ≌△△是解本题的关键.6、B【解析】【分析】根据菱形的性质可证出ΔΔCFO AEO ≅,可将阴影部分面积转化为BOC ∆的面积,根据菱形的面积公式计算即可.【详解】 解:四边形ADCB 为菱形,OC OA ∴=,//AB CD ,FCO OAE ∠=∠,FOC AOE ∠=∠,()CFO AEO ASA ≅,∴CFO AOE S S =,∴CFO BOF BOC S S S +=, ∴1111··6864242BOC S AC BD =⨯=⨯⨯⨯= 故选:B .【点睛】此题考查了菱形的性质,菱形的面积公式,全等三角形的判定,将阴影部分的面积转化为BOC ∆的面积为解题关键.7、B【解析】【分析】根据直角三角形斜边上的中线的性质结合等腰三角形的性质及含30 角的直角三角形的性质,三角形外角的性质判定即可求解.【详解】解:在Rt ABC 中,90ACB ∠=︒,D 为边AB 上的中点,12AD BD CD AB ∴===,故A 选项正确,不符合题意; A ACD ∴∠=∠,故C 选项正确,不符合题意;DCB B ∠=∠,2ADC DCB B B ∴∠=∠+∠=∠,故D 选项正确,不符合题意;只有当30A ∠=︒时,12CB AB =,故B 选项错误,符合题意.故选:B .【点睛】本题主要考查直角三角形斜边上的中线,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.8、D【解析】【分析】矩形的判定方法有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形;由矩形的判定方法即可求解.解:A、对角线是否互相平分,能判定是否是平行四边形,故不符合题意;B、测量一组对角是否都为直角,不能判定形状,故不符合题意;C、测量对角线长是否相等,不能判定形状,故不符合题意;D、测量3个角是否为直角,若四边形中三个角都为直角,能判定矩形,故符合题意;故选:D.【点睛】本题考查的是矩形的判定、平行四边形的判定等知识;熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.9、C【解析】【分析】根据矩形及菱形的性质,菱形及正方形的判定定理依次判断即可得.【详解】解:A、矩形的对角线不平分每组对角,故选项错误;B、菱形的对角线互相垂直但不相等,故选项错误;C、有一组邻边相等的矩形是正方形,故选项正确;D、对角线互相垂直的平行四边形是菱形,故选项错误;故选:C.【点睛】题目主要考查特殊四边形的判定和性质,熟练掌握特殊四边形的判定和性质是解题关键.10、C【解析】根据矩形的性质、平行四边形的性质、菱形的性质和正方形的性质分别进行判断即可.【详解】解:A、平行四边形对边平行且相等,正确,不符合题意;B、菱形的对角线平分一组对角,正确,不符合题意;C、矩形的对角线相等,不正确,符合题意;D、正方形有四条对称轴,正确,不符合题意;故选:C.【点睛】本题考查了矩形的性质、平行四边形的性质、菱形的性质和正方形的性质,掌握以上性质定理是解题的关键.二、填空题1、6 5【解析】【分析】根据题意,AM=12EF,利用三个直角的四边形是矩形,得到EF=AP,得AM=12AP,当AP最小时,AM有最小值,根据垂线段最短,计算AP的长即可.【详解】∵∠BAC=90°,AB=3,AC=4,∴BC,∴BC边上的高h=125,∵∠BAC=90°,PE⊥AB,PF⊥AC,∴四边形AEPF是矩形,∴AP=EF,∵∠BAC=90°,M为EF的中点,∴AM=12EF,∴AM=12AP,∴当AP最小时,AM有最小值,根据垂线段最短,当AP为BC上的高时即AP=h时最短,∴AP的最小值为125,∴AM的最小值为65,故答案为:65.【点睛】本题考查了矩形的判定和性质,直角三角形的性质,勾股定理,垂线段最短原理,熟练掌握矩形的判定和性质,直角三角形的性质是解题的关键.2【解析】【分析】先判断出四边形ABEF是正方形,进而求出BF=BC',过点C'作C'H⊥BC于H,CC'与MN的交点记作点K,进而求出BH=1,再用勾股定理求出CC'CK股定理求出CN=53,最后用面积建立方程求出MN即可.【详解】解:如图,∵四边形ABCD是矩形,∴∠A=∠ABC=∠D=90°,CD=AB,BC=AD=4,∵2AB=4,∴AB=2,∴CD=2,∵将△ABF沿BF向下翻折,点A的对应点E落在线段BC上,∴∠BEF=∠A=90°,AB=BE,∴四边形ABEF是正方形,∴BF是正方形ABEF的对角线,∴∠EBF=45°,BF=∵C'是BF的中点,BF,∴BC'=12过点C'作C'H⊥BC于H,CC'与MN的交点记作点K,在Rt△BHC'中,BH=C'H'=1,∴CH=BC﹣BH=3,在Rt△CHC'中,CC',由折叠知,CK=12CC'设CN=x,则HN=3﹣x,∵将四边形CDMN沿MN向上翻折,∴CC'⊥MN,C'N=CN=x,在Rt△C'HN中,根据勾股定理得,C'H2+HN2=C'N2,∴12+(3﹣x)2=x2,∴x=53,∴CN=53,连接CM,∵S△CMN=12CN•CD=12MN•CK,∴MN=CN CDCK⋅52⨯,.【点睛】此题主要考查了折叠的性质,矩形的性质,勾股定理和面积法解题,作出辅助线构造直角三角形求出CC'是解题的关键所在.3、50【解析】【分析】根据直角三角形中线的性质及互为余角的性质计算.【详解】解:20A ∠=︒,CD 为AB 边上的高,70ACD ∴∠=︒,90ACB ∠=︒,CE 是斜边AB 上的中线,CE AE ∴=,20ACE A ∴∠=∠=︒,DCE ∴∠的度数为702050︒-︒=︒.故答案为:50.【点睛】本题主要考查了直角三角形中线的性质及互为余角的性质,解题的关键是掌握三角形中线的性质. 4、513【解析】【分析】先根据翻折的性质得出AD ′=AD =5,DP =PD ′,,然后在Rt △ABF 中由勾股定理求出BD ′=4,D ′C =1,设DP =x ,则D ′P =x ,PC=3-x ,在RtCD ′P 中,由勾股定理求出列方程求出x 即可,然后利用三角形的面积公式求出S △ADP 和ABCP S 四边形的面积即可.【详解】解:∵AB =3,BC =5,∴DC =3,AD =5,又∵将△ADP 折叠使点D 恰好落在BC 边上的点D ′,∴AD ′=AD =5,DP =PD ′,在Rt △ABD ′中,AB =3,AD ′=5,∴BD,∴D ′C =5-4=1,设DP =x ,则D ′P =x ,PC =3-x ,在Rt △CD ′P 中,D ′P 2=D ′C 2+PC 2,即x 2=12+(3-x )2,解得x =53,即DP 的长为53,∵AD =5,∴S △ADP =12×DP ×AD =12×53×5=256,ADP ABCD ABCP S S S =-矩形四边形=3×5-256=656, ∴ADP ABCPS S 四边形=255665136=, 故答案为:513.【点睛】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等,也考查了矩形的性质以及勾股定理.5、【解析】【分析】要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解.【详解】解:如图,连接AE,PA,∵四边形ABCD是正方形,BD为对角线,∴点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为4,E是BC边的中点,∴BE=2,∴AE=√AA2+AA2=√42+22=2√5,故答案为:【点睛】本题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用.根据已知得出两点之间线段最短可得AE就是AP+PE的最小值是解题关键.三、解答题1、 (1)见解析(2)当AD时,四边形BEDH是正方形【解析】【分析】(1)要证明AF=CG,只要证明△EAF≌△HCG即可;(2)利用已知可得四边形BEDH是菱形,所以当AE2+DE2=AD2时,∠BED=90°,四边形BEDH是正方形.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠BAD=∠BCD,∴∠AEF=∠CHG,∵BE=2AB,DH=2CD,∴BE=DH,∴BE-AB=DH-DC,∴AE=CH,∴∠BAD+∠EAF=180°,∠BCD+∠GCH=180°,∴∠EAF=∠GCH,∴△EAF≌△HCG(ASA),∴AF=CG;(2)解:当AD时,四边形BEDH是正方形;理由:∵BE∥DH,BE=DH,∴四边形EBHD是平行四边形,∵EH⊥BD,∴四边形EBHD 是菱形,∴ED =EB =2AB ,当AE 2+DE 2=AD 2时,则∠BED =90°,∴四边形BEDH 是正方形,即AB 2+(2AB )2=AD 2,∴AD ,∴当AD 时,四边形BEDH 是正方形..【点睛】本题考查了正方形的判定,菱形的判定,平行四边形的性质,全等三角形的判定与性质,结合图形分析并熟练掌握正方形的判定,平行四边形的性质,是解题的关键.2、(1)见解析;(2)①不成立,结论:EF DF BE =-;②BE EF DF =+,见解析;(3)【解析】【分析】(1)证明EAF GAF ∆≅∆,可得出EF FG =,则结论得证;(2)①将ABE ∆绕点A 顺时针旋转90︒至ADM ∆根据SAS 可证明EAF MAF ∆≅∆,可得EF FM =,则结论得证;②将ADF ∆绕点A 逆时针旋转90︒至ABN ∆,证明AFE ANE ∆≅∆,可得出EF EN =,则结论得证;(3)求出2DG =,设DF x =,则3EF FG x ==+,6CF x =-,在Rt EFC ∆中,得出关于x 的方程,解出x 则可得解.【详解】(1)证明:把ABE ∆绕点A 顺时针旋转90︒至ADG ∆,如图1,BAE DAG ∴∠=∠,AE AG =,90B ADG ∠=∠=︒,180ADF ADG ∴∠+∠=︒,F ∴,D ,G 三点共线,45EAF ∠=︒,45BAE FAD ∴∠+∠=︒,45DAG FAD ∴∠+∠=︒,EAF FAG ∴∠=∠,AF AF =,()EAF GAF SAS ∴∆≅∆,EF FG DF DG ∴==+,EF DF BE ∴=+;(2)①不成立,结论:EF DF BE =-;证明:如图2,将ABE ∆绕点A 顺时针旋转90︒至ADM ∆,EAB MAD ∴∠=∠,AE AM =,90EAM =︒∠,BE DM =,45FAM EAF ∴∠=︒=∠,AF AF =,()EAF MAF SAS ∴∆≅∆,EF FM DF DM DF BE ∴==-=-;②如图3,将ADF ∆绕点A 逆时针旋转90︒至ABN ∆,AN AF ∴=,90NAF ∠=︒,45EAF ∠=︒,45NAE ∴∠=︒,NAE FAE ∴∠=∠,AE AE =,()AFE ANE SAS ∴∆≅∆,EF EN ∴=,BE BN NE DF EF ∴=+=+.即BE EF DF =+.故答案为:BE EF DF =+.(3)解:由(1)可知AE AG ==正方形ABCD 的边长为6,6DC BC AD ∴===,∴3==DG .3BE DG ∴==,633CE BC BE ∴=-=-=,设DF x =,则3EF FG x ==+,6CF x =-,在Rt EFC 中,222CF CE EF +=,222(6)3(3)x x ∴-+=+,解得:2x =.2DF ∴=,AF ∴=【点睛】本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.3、AF =BE ,AF ⊥BE ,证明见解析.【解析】【分析】先根据正方形的性质证得AE =DF ,然后再证明△AEB ≌△AFD 可得∠ABE =∠FAD ,然后再根据直角三角形的性质证得∠AOE =90°即可.【详解】解:AF ⊥BE ,AF =BE ,证明如下:证明:∵正方形ABCD∴AB =AD =DC ,∠D =∠BAD =90°∵CF =DE∴AE =AD -DE ,DF =DC -CF∴AE =DF在△AEB 和△AFD 中AB =AD , ∠D =∠BAD , AE =DF∴△ABE ≌△DAF (SAS )∴∠ABE =∠FAD ,AF =BE∵∠BAD =90°∴∠ABE +∠AEB =90°∴∠FAD +∠AEB =90°∴∠AOE =90°,AF ⊥BE .∴AF =BE ,AF ⊥BE .【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质等知识点,根据题意证得△ABE ≌△DAF 成为解答本题的关键.4、 (1)见解析(2)AD =2AB ,理由见解析【解析】【分析】(1)由SSS 证明△ABM ≌△DCM ,得出∠A =∠D ,由平行线的性质得出∠A +∠D =180°,证出∠A =90°,即可得出结论;(2)先证明△BCM 是等腰直角三角形,得出∠MBC =45°,再证明△ABM 是等腰直角三角形,得出AB =AM ,即可得出结果.(1)证明:∵点M 是AD 边的中点,∴AM =DM ,∵四边形ABCD 是平行四边形,∴AB =DC ,AB ∥CD ,在△ABM 和△DCM 中,AM DM AB DC BM CM =⎧⎪=⎨⎪=⎩, ∴△ABM ≌△DCM (SSS ),∴∠A=∠D,∵AB∥CD,∴∠A+∠D=180°,∴∠A=90°,∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;(2)解:AD与AB之间的数量关系:AD=2AB,理由如下:∵△BCM是直角三角形,BM=CM,∴△BCM是等腰直角三角形,∴∠MBC=45°,由(1)得:四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠AMB=∠MBC=45°,∴△ABM是等腰直角三角形,∴AB=AM,∵点M是AD边的中点,∴AD=2AM,∴AD=2AB.【点睛】本题考查了矩形的判定与性质、平行四边形的性质、平行线的性质、全等三角形的判定与性质、等腰直角三角形的的判定与性质等知识;熟练掌握平行四边形的性质,证明△ABM≌△DCM是解题的关键.5、 (1)证明见解析(2)证明见解析【解析】【分析】(1)由正方形的性质得AB=AD,∠BAD=90°,证明∠BAF=∠ADG,然后由AAS证△AFB≌△DGA即可;(2)如图2,过点D作DK⊥AE于K,DJ⊥BF交BF的延长线于J,先证△ABH≌△DAE(ASA),得AH =DE,再证△DJH≌△DKE(AAS),得DJ=DK,JH=EK,则四边形DKFJ是正方形,得FK=FJ=DK=DJ,则DF FJ,进而得出结论;(3)如图3,取AD的中点Q,连接PQ,延长QP交CD于R,过点P作PT⊥CD于T,PK⊥AD于K,设PT=b,由(2)得△ABH≌△DAE(ASA),则AH=DE,再由直角三角形斜边上的中线性质得PD=PH=PE,然后由等腰三角形的性质得DH=2DK=2b,DE=2DT,则AH=DE=1﹣2b,证出PK=QK,最后证点P在线段QR上运动,进而由等腰直角三角形的性质得QR DQ(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°∵DG⊥AE,BF⊥AE∴∠AFB=∠DGA=90°∵∠FAB+∠DAG=90°,∠DAG+∠ADG=90°∴∠BAF=∠ADG在△AFB和△DGA中∵AFB DGABAF ADG AB AD∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFB≌△DGA(AAS).(2)证明:如图2,过点D作DK⊥AE于K,DJ⊥BF交BF的延长线于J由题意知∠BAH=∠ADE=90°,AB=AD=CD∵BF⊥AE∴∠AFB=90°∵∠DAE+∠EAB=90°,∠EAB+∠ABH=90°∴∠DAE=∠ABH在△ABH和△DAE中∵BAH ADE AB ADABH DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABH≌△DAE(ASA)∴AH=DE∵点E为CD的中点∴DE=EC=12CD∴AH=DH∴DE=DH∵DJ⊥BJ,DK⊥AE∴∠J=∠DKE=∠KFJ=90°∴四边形DKFJ是矩形∴∠JDK=∠ADC=90°∴∠JDH=∠KDE在△DJH和△DKE中∵J DKEJDH KDE DH DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DJH≌△DKE(AAS)∴DJ=DK,JH=EK∴四边形DKFJ是正方形∴FK=FJ=DK=DJ∴DFFJ2FJ =∴FH+FE=FJ﹣HJ+FK+KE=2FJ.(3)解:如图3,取AD的中点Q,连接PQ,延长QP交CD于R,过点P作PT⊥CD于T,PK⊥AD于K,设PT=b由(2)得△ABH≌△DAE(ASA)∴AH=DE∵∠EDH=90°,点P为EH的中点∴PD=12EH=PH=PE∵PK⊥DH,PT⊥DE∴∠PKD=∠KDT=∠PTD=90°∴四边形PTDK是矩形∴PT=DK=b,PK=DT∵PH=PD=PE,PK⊥DH,PT⊥DE ∴PT是△DEH的中位线∴DH=2DK=2b,DE=2DT∴AH=DE=1﹣2b∴PK=12 DE=12﹣b,QK=DQ﹣DK=12﹣b∴PK=QK∵∠PKQ=90°∴△PKQ是等腰直角三角形∴∠KQP=45°∴点P在线段QR上运动,△DQR是等腰直角三角形∴QR DQ∴点P【点睛】本题考查了三角形全等,正方形的判定与性质,直角三角形斜边的中线,等腰三角形的性质等知识.解题的关键在于对知识的综合灵活运用.。
中考数学一轮复习 各知识点练习题分层设计十九(多边形与平行四边形部分)(无答案) 鲁教版

——————————新学期新成绩新目标新方向——————————(多边形与平行四边形部分)A级基础题1.正八边形的每个内角为( )A.120° B.135° C.140° D.144°2.如图,点A是直线l外一点,在l上取两点B,C,分别以A,C为圆心,BC,AB长为半径画弧,两弧交于点D,分别连接AB,AD,CD,则四边形ABCD一定是( )A.平行四边形 B.矩形C.菱形 D.梯形3.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在( ) A第一象限 B.第二象限 C.第三象限 D.第四象限4.如图,下列四组条件中,不能判定四边形ABCD是平行四边形的是( )A.AB=DC,AD=BC B.AB∥DC,AD∥BCC.AB∥DC,AD=BC D.AB∥DC,AB=DC5.如图,∠1,∠2,∠3,∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4=________.6.如图,D,E,F分别为△ABC三边的中点,则图中平行四边形的个数为________.7.如图,在□ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF=_________________________________.8.如图,□ABCD 中,E 是BA 延长线上一点,AB =AE ,连接CE 交AD 于点F ,若CF 平分∠BCD ,AB =3,则BC 的长为________.9.已知一个多边形的内角和是外角和的32,则这个多边形的边数是________. 10.如图,已知:点P 是□ABCD 的对角线AC 的中点,经过点P 的直线EF 交AB 于点E ,交DC 于点F .求证:AE =CF .11.如图,已知四边形ABCD 是平行四边形,若点E ,F 分别在边BC ,AD 上,连接AE ,CF .请再从下列三个备选条件中,选择添加一个恰当的条件,使四边形AECF 是平行四边形,并予以证明.备选条件:AE =CF ,BE =DF ,∠AEB =∠CFD ,我选择添加的条件是:__________.(注意:请根据所选择的条件在图中画出符合要求的示意图,并加以证明).12.如图,四边形ABCD 中,AD ∥BC ,AE ⊥AD 交BD 于点E ,CF ⊥BC 交BD 于点F ,且AE =CF .求证:四边形ABCD 是平行四边形.B级中等题13.如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD,BC于点M,N,交BA,DC的延长线于点E,F,下列结论:①AO=BO;②OE=OF; ③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是( )A.①② B.②③ C.②④ D.③④14.如图,在□ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.C级拔尖题15.(1)如图(1),□ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.(1)求证:AE=CF.(2)如图(2),将▱ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.(1)(2)选做题16.如图,已知四边形ABCD是平行四边形.(1)求证:△MEF∽△MBA;(2)若AF,BE分别为∠DAB,∠CBA的平分线,求证:DF=EC.。
山东省中考数学一轮复习第五章多边形与四边形第18讲特殊平行四边形过预测练习

特殊平行四边形考向利用矩形的性质计算1.[2018·济南]如图,矩形EFGH 的四个顶点分别落在矩形ABCD 的各条边上,AB =EF ,FG=2,GC =3,有以下四个结论:①∠BGF =∠CHG ;②△BFG ≌△DHE ;③tan ∠BGF =12;④矩形EFGH 的面积是4 3.其中一定成立的是①②④.(把所有正确结论的序号都填在横线上)第1题图 第2题图 考向利用菱形的性质计算2.[2018·上海]对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅垂方向的边长称为该矩形的高.如图2,菱形ABCD 的边长为1,边AB 水平放置.如果该菱形的高是宽的23,那么它的宽的值是 1813.3.[2018·自贡]如图,在△ABC 中,AC =BC =2,AB =1,将它沿AB 翻折得到△ABD ,则四边形ADBC 的形状是菱形,点P ,E ,F 分别为线段AB ,AD ,DB 的任意点,则PE +PF 的最小值是154.第3题图 第4题图 考向正方形的综合运用4.[2018·青岛]已知正方形ABCD 的边长为5,点E ,F 分别在AD ,DC 上,AE =DF =2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为 342. 5.[2018·济宁]如图,在正方形ABCD 中,点E ,F 分别是边AD ,BC 的中点,连接DF ,过点E 作EH ⊥DF ,垂足为H ,EH 的延长线交DC 于点G .(1) 猜想DG 与CF 的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N.若正方形ABCD的边长为10,点P是MN上一点,求△PDC周长的最小值.。
最新鲁教版(五四制)八年级数学下册第六章特殊平行四边形专题训练练习题(精选含解析)

鲁教版(五四制)八年级数学下册第六章特殊平行四边形专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知菱形ABCD ,对角线AC =6,BD =8,则菱形ABCD 的面积为( )A .48B .36C .25D .242、如图,已知正方形ABCD 的边长为4,P 是对角线BD 上一点,PE BC ⊥于点E ,PF CD ⊥于点F ,连接AP ,EF .给出下列结论:①PD =;②四边形PECF 的周长为8;③AP EF =;④EF 的最小值为2222PB PD PA +=;⑥AP EF ⊥.其中正确结论有几个( )A .3B .4C .5D .63、已知,在平面直角坐标系xOy 中,点A 的坐标为(3,0),点B 的坐标为(0,4),点C 是线段AB 的中点,则线段OC 的长为( )A .52B .3C .4D .54、如图,在Rt ABC 中,ACB ∠是直角,点D 是AB 边上的中点,下列成立的有( )①90A B ∠+∠=︒ ②222AC BC AB += ③2CD AB = ④30B ∠=︒A .①②④B .①③C .②④D .①②③5、如图,在△ABC 中,∠ACB =90°,分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点M 和N ,作直线MN 交AB 于点D ,交BC 于点E ,连接CD ,若∠CDE =12∠B ,则∠A 等于( )A .36°B .40°C .48°D .54°6、如图,直线l 上有三个正方形A 、B 、C ,若正方形A 、C 的边长分别为4和6,则正方形B 的面积为( )A.26 B.49 C.52 D.647、如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=6,F为DE的中点.若OF的长为1,则△CEF的周长为()A.14 B.16 C.18 D.128、如图,点E、F分别在正方形ABCD的边DC、BC上,AG⊥EF,垂足为G,且AG=AB,则∠EAF=()度A.30°B.45°C.50°D.60°9、正方形具有而矩形不一定具有的性质是()A.四个角相等B.对角线互相垂直C.对角互补D.对角线相等10、将图1所示的长方形纸片对折后得到图2,图2再对折后得到图3,沿图3中的虚线剪下并展开,所得的四边形是()A.矩形B.菱形C.正方形D.梯形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在菱形ABCD中,∠A=60°,E为AD边上的一个动点,连接BE,将AB沿着BE折叠得到A'B,A的对应点为A',连接A'D,当A′B⊥AD时,∠A'DE的度数为 ______.2、若矩形ABCD的周长为26cm,则它的面积是_________.3、如图,直角三角形ABC中,∠ACB=90°,∠A=36°,CD、CE分别是斜边AB上的高与中线,那么∠ECD=___.4、菱形的判定:(1)有一组邻边____________的平行四边形叫做菱形.几何语言描述:∵四边形ABCD是平行四边形,AB=____________,∴四边形ABCD是菱形.(2)对角线互相____________的平行四边形是菱形几何语言描述:∵在平行四边形ABCD中,AC⊥____________,∴ 平行四边形ABCD是菱形.(3)四条边都____________的四边形是菱形.几何语言描述:∵在四边形ABCD中,AB=BC=CD=____________,∴ 平行四边形ABCD是菱形.5、如图,Rt△ABC中,∠BAC=90°,D,E,F分别为AB,BC,AC的中点,已知DF=5,则AE=_____.三、解答题(5小题,每小题10分,共计50分)1、如图,在四边形ABCD中,∠B=∠C.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC与∠EFB满足怎样的关系时,四边形AEFG是矩形.请说明理由.2、如图,点E、F在菱形ABCD的对角线AC上,且AF=CE,求证:DE=BF.3、如图,长方形ABCD中,E是AD的中点,将ABE△沿BE折叠后得到GBE,且G点在长方形ABCD 内部,延长BG交DC于点F.(1)求证:GE DE =;(2)若9DC =,DF 2CF =,求AD 的长;(3)若DC n DF =⋅,求22AD AB的值. 4、如图,在四边形ABCD 中,//AB DC ,AB AD =,对角线AC 、BD 交于点O ,AC 平分∠BAD ,过点C 作CE AB ⊥交AB 的延长线于点E .(1)求证:四边形ABCD 是菱形;(2)若AB =6,BD =8,求CE 的长.5、在矩形ABCD 的CD 边上取一点E ,将BCE 沿BE 翻折,得到BFE △.(1)如图1,点F 恰好在AD 上,若75FEB ∠=︒,求出AB :BC 的值.(2)如图2,E 从C 到D 的运动过程中.①若5AB =,8BC =,ABF ∠的角平分线交EF 的延长线于点M ,求M 到AD 的距离: ②在①的条件下,E 从C 到D 的过程中,直接写出M 运动的路径长.-参考答案-一、单选题1、D【解析】【分析】根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】解:∵菱形ABCD 的对角线AC =8,BD =6,∴菱形的面积S =12AC •BD =12×8×6=24. 故选:D .【点睛】本题考查了菱形的性质,熟练掌握菱形的面积等于对角线乘积的一半是解题的关键.2、D【解析】【分析】如图,过点P 作PM AB ⊥于点M ,连接PC ,可说明四边形AMFD 为矩形,AM DF =,BM CF =,MPB △是等腰直角三角形,=BM PM ;①中PF MF MP AB BM AM DF =-=-==,=90PFD ∠︒可得PDF ∆为等腰直角三角形,进而求PD ,由于四边形PECF 是平行四边形,=PF CE ,故可知PD ==;②90BCD ∠=︒,四边形PECF 为矩形,进而可求矩形的周长;③证明ADP CDP △≌△,由全等可知AP PC =,进而可说明AP EF =;④==EF PC AP ,当AP 最小时,EF 最小,即AP BD ⊥时,AP 最小,计算即可;⑤在Rt PBM △和Rt PDF 中,勾股定理求得222PB PM MB =+,222PD PF FD =+将线段等量替换求解即可;⑥如图1,延长AP 与EF 交于点H ,证明APM △FEP ≌,得MAP PFE ∠=∠,90MAP MPA MPA HPF ∠+∠=︒∠=∠,,90PFE HPF ∠+∠=︒,=90PHF ∠︒进而可说明AP EF ⊥.【详解】解:如图,过点P 作PM AB ⊥于点M ,连接PC ,由题意知FM AD DF AB ∥,∥∴四边形AMFD 为平行四边形∵90MAD ∠=︒∴四边形AMFD 为矩形∴AM DF AD MF ==,∵BM AB AM CF CD DF =-=-,∴BM CF =∵4590ABD BMP ∠=︒∠=︒,∴45MPB ∠=︒∴MPB △是等腰直角三角形∴=BM PM①∵PF MF MP AB BM AM DF =-=-==,=90PFD ∠︒ ∴PDF ∆为等腰直角三角形∴PD =PE BC ⊥,PF CD ⊥∴PE CD PF BC ∥,∥∴四边形PECF 是平行四边形∴=PF CE∴PD =故①正确;②∵90BCD ∠=︒∴四边形PECF 为矩形∴四边形PECF 的周长222228CE PE CE BE BC =+=+== 故②正确; ③四边形PECF 为矩形PC EF ∴=∵在ADP △和CDP 中∵45AD CD ADP CDP PD PD =⎧⎪∠=∠=︒⎨⎪=⎩∴()ADP CDP SAS ≌△△∴AP PC =∴AP EF =故③正确;④∵EF PC AP ==∴当AP 最小时,EF 最小∴当AP BD ⊥时,即1122AP BD ==⨯=EF的最小值等于故④正确;⑤在Rt PBM △和Rt PDF 中,22222PB PM MB PM =+=,2222222PD PF FD FD AM ===+ ∴22222222PB PD PM AM AP +=+=故⑤正确;⑥如图1,延长AP 与EF 交于点H∵在APM △和FEP 中∵AP EF AM PF MP PE =⎧⎪=⎨⎪=⎩∴APM △()FEP SSS ≌∴MAP PFE ∠=∠∵90MAP MPA MPA HPF ∠+∠=︒∠=∠,∴90PFE HPF ∠+∠=︒∴=90PHF ∠︒AP EF ∴⊥故⑥正确;综上,①②③④⑤⑥正确,故选:D .【点睛】本题考查了正方形,矩形的判定与性质,勾股定理,等腰直角三角形,三角形全等.解题的关键在于对知识的灵活综合运用.3、A【解析】【分析】根据勾股定理和直角三角形的性质即可得到结论.【详解】 解:点A 的坐标为(3,0),点B 的坐标为(0,4),3OA ∴=,4OB =,5AB OA =, 点C 是线段AB 的中点,1155222OC AB ∴==⨯=, 故选:A .【点睛】本题考查了坐标与图形性质,勾股定理,直角三角形斜边边上的中线,解题的关键是正确的理解题意.4、D【解析】【分析】利用直角三角形的性质直接进行判断即可.【详解】解:∵在Rt △ABC 中,∠ACB 是直角,∴∠A +∠B =90°,①正确;根据勾股定理得AC2+BC2=AB2②正确;∵点D是AB边上的中点,∴2CD=AB,故③正确;不能得到∠B=30°,④错误,故选:D.【点睛】本题考查了直角三角形的性质及勾股定理的知识,解题的关键是了解直角三角形的两瑞角互余、斜边上的中线等于斜边的一半等性质,难度不大.5、D【解析】【分析】根据线段垂直平分线的性质得到∠BDE=∠ADE=90°,AD=BD,根据直角三角形斜边上的中线等于斜边的一半可得,CD=BD=AD=12AB,由等边对等角可得∠B=∠DCE,∠A=∠ACD,设∠CDE=x,则∠B=∠DCE=2x,∠ADC=90°-x,∠A=45°+12x,由直角三角形两锐角互余得45°+12x+2x=90°,解得x值,即可求解.【详解】解:由题意可知:MN为AB的垂直平分线,∴∠BDE=∠ADE=90°,AD=BD,∵∠ACB=90°,∴CD=BD=AD=12AB,∴∠B=∠DCE,∠A=∠ACD,设∠CDE=x,则∠B=∠DCE=2x,∠ADC=90°-x,∴∠A =12(180°-∠ADC )=45°+12x ,∴∠A +∠B =45°+12x +2x =90°,解得:x =18°,∴∠A =45°+12x =54°,故选:D .【点睛】此题考查了直角三角形斜边上的中线、线段垂直平分线的性质、三角形外角的性质及等腰三角形的性质,注意垂直平分线上任意一点,到线段两端点的距离相等.6、C【解析】【分析】证EFG GMH ∆≅∆,推出6FG MH ==,4GM EF ==,则216EF =,236HM =,再证22222EG EF FG EF HM =+=+,代入求出即可. 【详解】解:如图,正方形A ,C 的边长分别为4和6,4EF ∴=,6MH =,由正方形的性质得:90EFG EGH GMH ∠=∠=∠=︒,EG GH =,90FEG EGF ∠︒∠+=,90EGF MGH ∠+∠=︒,FEG MGH ∴∠=∠,在EFG ∆和GMH ∆中,EFG GMH FEG MGHEG GH ∠=∠⎧⎪∠=∠⎨⎪=⎩,()EFG GMH AAS ∴∆≅∆,6FG MH ∴==,4GM EF ==,22416EF ∴==,22636HM ==,∴正方形B 的面积为22222163652EG EF FG EF HM =+=+=+=,故选:C .【点睛】本题考查了全等三角形的判定与性质、正方形的性质等知识,解题的关键是熟练掌握正方形的性质,证明EFG GMH ∆≅∆.7、B【解析】【分析】根据中位线的性质及直角三角形斜边上中线的性质可得:22ED CF EF ==,结合图形得出CEF 的周长为EF EC FC ED EC ++=+,再由中位线的性质得出22BE OF ==,在Rt CED 中,利用勾股定理确定10ED =,即可得出结论.【详解】解:在正方形ABCD 中,BO DO =,BC CD =,90BCD ∠=︒,∵F 为DE 的中点,O 为BD 的中点,∴OF 为DBE 的中位线且CF 为Rt CDE 斜边上的中线,∴22ED CF EF ==,∴CEF 的周长为EF EC FC ED EC ++=+,∵1OF =,∴22BE OF ==,∵6CE =,∴268BC BE CE =+=+=,∴8CD BC ==,在Rt CED 中,90ECD ∠=︒,8CD =,6CE =,∴10ED ==,∴CEF 的周长为10616EF EC FC ED EC ++=+=+=,故选:B .【点睛】题目主要考查正方形的性质,三角形中位线的性质,勾股定理,直角三角形斜边中线的性质等,理解题意,熟练掌握运用各个知识点是解题关键.8、B【解析】【分析】根据正方形的性质以及HL 判定,可得出△ABF ≌△AGF ,故有∠BAF =∠GAF ,再证明△AGE ≌△ADE ,有∠GAE =∠DAE ,即可求∠EAF =45°【详解】解:在正方形ABCD 中,∠B =∠D =∠BAD =90°,AB =AD ,∵AG ⊥EF ,∴∠AGF =∠AGE =90°,∵AG =AB ,∴AG =AB=AD ,在Rt △ABF 与Rt △AGF 中,AB AG AF AF=⎧⎨=⎩ ∴△ABF ≌△AGF ,∴∠BAF =∠GAF ,同理可得:△AGE ≌△ADE ,∴∠GAE =∠DAE ;∴∠EAF =∠EAG +∠FAG 1452BAD ︒=∠=, ∴∠EAF =45°故选:B【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质、解题的关键是得出△ABF ≌△AGF .9、B【解析】略10、B【解析】【分析】根据操作过程可还原展开后的纸片形状,并判断其属于什么图形.【详解】展得到的图形如上图,由操作过程可知:AB =CD ,BC =AD ,∴四边形ABCD 是平行四边形,∵AC ⊥BD ,∴四边形ABCD 为菱形,故选:B .【点睛】本题考查平行四边形的判定,和菱形的判定,拥有良好的空间想象能力是解决本题的关键.二、填空题1、15°##15度【解析】【分析】由菱形的性质可得AB AD =,可证ABD ∆是等边三角形,由等边三角形的性质可得A B '垂直平分AD ,30ABA '∠=︒,由折叠的性质可得AB A B '=,可得75BAA '∠=︒,即可求解.【详解】解:如图,连接AA ',BD ,四边形ABCD 是菱形,AB AD ∴=,60A ∠=︒,ABD ∴∆是等边三角形,A B AD '⊥,A B '∴垂直平分AD ,30ABA '∠=︒,AA A D ''∴=,A AD A DA ''∴∠=∠,将AB 沿着BE 折叠得到A B ',AB A B '∴=,75BAA '∴∠=︒,15A AD A DA ''∴∠=∠=︒.故答案为:15︒.【点睛】本题考查了菱形的性质,折叠的性质,等边三角形的判定和性质,证明ABD ∆是等边三角形是解题的关键.2、20cm ²##20平方厘米【解析】【分析】设AB=x cm,BC=y cm,则根据矩形的周长和对角线长即可列出关于x、y的关系式,解得xy的值,即可解决问题.【详解】解:设AB=x cm,BC=y cm,∵矩形周长为26cm,∴2x+2y=26,∴x+y=13,,∴x2+y2=129,∴(x+y)2-2xy=129,∴132-2xy=129,∴xy=20(cm2),∴矩形面积为20cm2.故答案为:20cm2.【点睛】本题考查了矩形的性质,勾股定理在直角三角形中的运用,完全平方公式,矩形面积的计算,本题中列出关于x、y的关系式并求得xy的值是解题的关键.3、18°##18度【解析】【分析】=,根据等边对等角以及三角形外角的性质根据直角三角形斜边上的中线等于斜边的一半可得CE AE∠.可得CED∠,进而根据直角三角形的两锐角互余即可求得ECD【详解】 解:直角三角形ABC 中,∠ACB =90°,CE 是斜边AB 上的中线∴CE AE =EAC ECA ∴∠=∠∵∠A =36°,∴72CED A ECA ∠=∠+∠=︒CD 是斜边AB 上的高90CDE9018ECD CED ∴∠=︒-∠=︒故答案为:18°【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,直角三角形的两锐角互余,三角形的高,等边对等角,三角形的外角性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.4、 相等 AD 垂直 BD 相等 AD【解析】略5、5【解析】【分析】依题意,可得DF 是△ABC 的中位线,得到BC 的边长;又结合直角三角形斜边中线是斜边的一半,即可求解;【详解】∵ D ,F 分别为AB ,AC 的中点,∴DF 是△ABC 的中位线,∴BC =2DF =10,在Rt △ABC 中,E 为BC 的中点,152AE BC == 故答案为:5.【点睛】本题主要考查直角三角形性质及中线的性质,关键在熟练综合使用和分析;三、解答题1、 (1)见解析(2)当∠FGC =2∠EFB 时,四边形AEFG 是矩形,理由见解析【解析】【分析】(1)要证明该四边形是平行四边形,只需证明AE ∥FG .根据对边对等角∠GFC =∠C ,则∠B =∠GFC ,得到AE ∥FG .(2)在平行四边形的基础上要证明是矩形,只需证明有一个角是直角.根据三角形FGC 的内角和是180°,添加∠FGC =2∠EFB ,可得到∠BFE +GFC =90°.则∠EFG =90°.(1)证明:在四边形ABCD 中,∠B =∠C ,∵GF =GC ,∴∠C =∠GFC ,∠B =∠GFC ,∴AB ∥GF ,即AE ∥GF ,∵AE =GF ,∴四边形AEFG 是平行四边形.(2)解:当∠FGC =2∠EFB 时,四边形AEFG 是矩形;∵∠FGC +∠GFC +∠C =180°,∠GFC =∠C ,∠FGC =2∠EFB ,∴2∠GFC +2∠EFB =180°,∴∠BFE +∠GFC =90°.∴∠EFG =90°.∵四边形AEFG 是平行四边形,∴四边形AEFG 是矩形.【点睛】本题考查了平行四边形的判定,矩形的判定,熟练掌握矩形的判定是解题的关键.2、见解析【解析】【分析】由菱形的性质可得CD AB =,//CD AB ,可证DCA BAC ∠=∠,由“SAS ”可证DCE BAF ∆≅∆,可得DE BF =.【详解】 证明:四边形ABCD 是菱形,CD AB ∴=,//CD AB ,DCA BAC ∴∠=∠,在DCE ∆和BAF ∆中,DC AB DCE BAF CE AF =⎧⎪∠=∠⎨⎪=⎩, ()DCE BAF SAS ∴∆≅∆,DE BF ∴=.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,解题的关键是证明DCE BAF ∆≅∆.3、 (1)见解析(2) (3)224AD AB n= 【解析】【分析】(1)由折叠得AE GE =,由中点得AE DE =,由此得到结论;(2)连接EF ,依据DF 2CF =,求出DF 、CF ,根据长方形的性质得到9AB DC ==,由△ABE ≌△GBE ,得到9BG AB ==, 证明Rt △EGF ≌Rt △EDF (HL ),得到6GF DF ==.由勾股定理求出BC 即可得到AD ;(3)设DF a =,则AB DC n DF na ==⋅=,得到()1BF BG GF na a n a =+=+=+,由勾股定理求出2BC ,再求出2224AD BC na ==,即可得到答案.(1)证明∵GBE 是由ABE △折叠而成,∴△ABE ≌△GBE ,∴AE GE =,∵E 是AD 的中点,∴AE DE =,∴GE DE =;(2)解:连接EF ,∵DF 2CF =, ∴229633DF DC ==⨯=, ∴963CF DC DF =-=-=.∵四边形ABCD 是长方形,∴AD BC =,9AB DC ==,90A C D ∠=∠=∠=︒.∵△ABE ≌△GBE ,∴9BG AB ==,90A BGE FGE ∠=∠=∠=︒.在Rt EGF 和Rt EDF 中,∵GE DE =,EF EF =∴Rt △EGF ≌Rt △EDF (HL ),∴6GF DF ==.∴9615BF BG GF =+=+=,在Rt BCF 中,∵15BF =,3CF =,∴BC∴AD BC ===.(3)解:设DF a =,则AB DC n DF na ==⋅=,∴()1CF DC DF na a n a =-=-=-,又∵BG AB na ==,GF DF a ==,∴()1BF BG GF na a n a =+=+=+,在Rt BCF 中,∵()1BF n a =+,()1CF n a =-,∴ ()()22222222114BC BF CF n a n a na =-=+--=,∴ 2224AD BC na ==, ∴2222244AD na AB n a n ==. 【点睛】此题考查了矩形与折叠,全等三角形的判定及性质,勾股定理求线段长,解题的关键是掌握各知识点,考查分析问题能力及推理论证能力.4、 (1)证明见解析【解析】【分析】(1)先判断出OAB DCA ∠=∠,进而判断出DAC DCA ∠=∠,得出CD AD AB ==,此题得证.(2)根据菱形的性质得到OA OC =,BD AC ⊥,142OB OD BD ===,由勾股定理可以求出OA 的长,可得出AC 的长,然后通过菱形的面积公式可以求出CE 的长.(1)证明:∵//AB DC ,∴OAB DCA ∠=∠∵AC 平分∠BAD∴OAB DAC ∠=∠∴DAC DCA ∠=∠∴CD AD =∵AB=AD ,∴AB CD =∵//AB DC∴四边形ABCD 是平行四边形又∵AB AD =∴四边形ABCD 是菱形.(2)∵四边形ABCD 是菱形,BD =8∴OA OC =,BD AC ⊥,142OB OD BD === ∴90AOB ∠=︒,在OAB Rt △中,OA∴2AC OA ==∴菱形的面积11822S AC BD ==⨯= ∵CE AB ⊥∴6S AB CE CE ===∴CE【点睛】本题考查了菱形的判定与性质,平行四边形的判定与性质,等腰三角形的判定,勾股定理等知识.熟练掌握菱形的判定与性质是解题的关键.5、 (1)12(2)①3,②80 13【解析】【分析】(1)①设DF=m,解直角三角形求出AB,AD(用m表示即可);(2)①如图,过点M作MK⊥AD于K,MH⊥BA交BA的延长线于H,交CD的延长线于G.证明△BMH≌△BMF(AAS),推出BH=BF=8,可得结论.②如图3-2中,当点E与D重合时,求出MG的长,可得结论.(1)如图,设DF=m.∵四边形ABCD是矩形,∴∠A=∠D=∠C=90°,AB=CD,AD=BC,由翻折的性质可知,∠BEF=∠BEC=75°,∠C=∠BFE=90°,EF=EC,∴∠FED=180°-75°-75°=30°,∴EF=EC=2DF=2m,DE,∴∠AEFD=60°,∠AFB=30°,AB=CD=2m,∵AF+3m,∴BC=AD+4m,∴12 ABBC==.(2)①如图,过点M作MK⊥AD于K,MH⊥BA交BA的延长线于H,交CD的延长线于G.∵四边形ABCD是矩形,∴∠C=∠BAD=∠ABD=∠ADC=90°,AB=CD=5,AD=BC=8,∵MH⊥AB,MK⊥AD,∴∠H=∠HAK=∠AKM=90°,∴四边形AKMH是矩形,∴AH=MK,∵BM平分∠ABF,∴∠MBH=∠MBF,∵∠H=∠AFM=90°,BM=BM,∴△BMH≌△BMF(AAS),∴BH=BF,∵BF=BC=8,∴BH=BC=8,∴MK=AH=BH-AB=8-5=3,∴M到AD的距离为3.②如图,当点E与D重合时,∵△BMH≌△BMF,∴MH=MF,设MH=MF=m,∵四边形AHGD是矩形,∴AH=DG=3,GH=AD=8,∠G=90°,∵CD=DF=5,GM=GH-HM=8-m,在Rt△DGM中,则有(8-m)2+32=(5+m)2,解得m=24 13,∴GM=8-2413=8013,观察图象可知,当E从C到D的过程中,点M运动的路径是线段MG,∴点M的运动的路径的长为80 13.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,直角三角形的性质,折叠的性质,角平分线的性质,勾股定理等知识,判断出BH=BF=BC是解题的关键.。
必考点解析鲁教版(五四制)八年级数学下册第六章特殊平行四边形章节训练试题(含答案及详细解析)

鲁教版(五四制)八年级数学下册第六章特殊平行四边形章节训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,正方形ABCD的边长为8,对角线AC、BD相交于点G.K为AC上的一点,且⊥于点E,交BD于点F,则AF的长为CK=BK并延长交CD于点H.过点A作AE BH()A.B.4C.D.AB=,如果将该矩形沿对角线BD折叠,那么图中阴影部分BED的面积2、如图,矩形ABCD中,6是22.5,则BC=()A.8 B.10 C.12 D.143、如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),则下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中说法正确的是()A.②③B.①②③C.②④D.①②④4、如图,在Rt△ABC中,∠ACB=90°,如果D为边AB上的中点,那么下面结论错误的是()A.12CD AB=B.12CB AB=C.∠A=∠ACD D.∠ADC=2∠B5、如图,在矩形纸片ABCD中,AB=6,BC=8,点M为AB上一点,将△BCM沿CM翻折至△ECM,ME与AD相交于点G,CE与AD相交于点F,且AG=GE,则BM的长度是()A .185B .4C .245D .56、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是( )A .菱形B .矩形C .正方形D .三角形7、已知菱形ABCD 的对角线交于原点O ,点A 的坐标为()-,点B 的坐标为(1,-,则点D 的坐标是( )A .(B .()1-C .()-D .(2, 8、陈师傅应客户要求加工4个长为4cm 、宽为3cm 的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,下图中有可能不合格的零件是( )A .B .C .D .9、如图,在正方形ABCD 中,4AB =,点E 在对角线AC 上,若5ABE S =△,则CDE 的面积为( )A.3 B.4 C.5 D.610、在菱形ABCD中,对角线AC,BD相交于点O,如果AC=6,BD=8,那么菱形ABCD的面积是()A.6 B.12 C.24 D.48第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在正方形ABCD中,AB E,F分别为边AB,BC的中点,连接AF,DE,点N,M分别为AF,DE的中点,连接MN.则MN的长为_________.2、如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2km,则M,C两点间的距离为___km.3、如图,点E是矩形ABCD边AD上一点,点F,G,H分别是BE,BC,CE的中点,AF=6,则GH的长为_________.4、菱形的判定:(1)有一组邻边____________的平行四边形叫做菱形.几何语言描述:∵四边形ABCD是平行四边形,AB=____________,∴四边形ABCD是菱形.(2)对角线互相____________的平行四边形是菱形几何语言描述:∵在平行四边形ABCD中,AC⊥____________,∴ 平行四边形ABCD是菱形.(3)四条边都____________的四边形是菱形.几何语言描述:∵在四边形ABCD 中,AB =BC =CD =____________,∴ 平行四边形ABCD 是菱形.5、将两个直角三角板如图放置,其中AB =AC ,∠BAC =∠ECD =90°,∠D =60°.如果点A 是DE 的中点,CE 与AB 交于点F ,则∠BFC 的度数为 _____°.三、解答题(5小题,每小题10分,共计50分)1、如图,直线12l l ∥,线段AD 分别与直线1l 、2l 交于点C 、点B ,满足AB CD .(1)使用尺规完成基本作图:作线段BC 的垂直平分线交1l 于点E ,交2l 于点F ,交线段BC 于点O ,连接ED 、DF 、FA 、AE .(保留作图痕迹,不写做法,不下结论)(2)求证:四边形AEDF 为菱形.(请补全下面的证明过程)证明:12l l ∥1∴∠=____①____ EF 垂直平分BCOB OC ∴=,90EOC FOB ︒∠=∠=∴____②____FOB ∆≌OE ∴=____③____AB CD =OB AB OC DC +=+∴OA OD ∴=∴四边形AEDF 是___④_____EF AD ⊥∴四边形AEDF 是菱形(______⑤__________)(填推理的依据).2、如图,已知菱形ABCD 中,分别以C 、D 为圆心,大于12CD 的长为半径作弧,两弧分别相交于M 、N 两点,直线MN 交CD 于点F ,交对角线AC 于点E ,连接BE 、DE .(1)求证:BE =CE ;(2)若∠ABC =72°,求∠ABE 的度数.3、已知:如图,在▱ABCD 中,AE ⊥BC ,CF AD ⊥,点E ,F 分别为垂足.(1)求证:△ABE ≌△CDF ;(2)求证:四边形AECF 是矩形.4、如图,在平行四边形ABCD 中,E 、F 分别是边AB 、DC 上的点,且AE CF =,90DEB ∠=︒,求证:四边形DEBF 是矩形5、如图,长方形ABCD 中,E 是AD 的中点,将ABE △沿BE 折叠后得到GBE ,且G 点在长方形ABCD 内部,延长BG 交DC 于点F .(1)求证:GE DE =;(2)若9DC =,DF 2CF =,求AD 的长;(3)若DC n DF =⋅,求22AD AB 的值.-参考答案-一、单选题1、C【解析】【分析】根据正方形的性质以及已知条件求得OK 的长,进而证明AOF ≌BOK ,即可求得OF OK =,勾股定理即可求得AF 的长【详解】解:如图,设,AC BD 的交点为O ,四边形ABCD 是正方形AC BD ∴⊥,AC BD =,11,22AO AC BO BD ==∴AC ==,12OC AC == 90AOE BOK ∴∠=∠=︒,2390∠+∠=︒,AO BO =CK =OK OC CK ∴=-=AE BH ⊥∴1290∠+∠=︒13∠∠∴=在AOF 与BOK 中13AO BOAOF BOK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AOF ≌BOKOF OK ∴==在Rt AOF中,AF ===故选C【点睛】本题考查了正方形的性质,勾股定理,全等三角形的性质与判定,掌握正方形的性质是解题的关键.2、C【解析】【分析】根据折叠和矩形的性质,可得∠DBE =∠CBD ,AD ∥BC ,AD =BC ,AB ⊥AD ,从而得到∠BDE =∠DBE ,进而得到BE =DE ,再由BED 的面积是22.5,可得152BE =,然后根据勾股定理,即可求解. 【详解】解:根据题意得: ∠DBE =∠CBD ,AD ∥BC ,AD =BC ,AB ⊥AD ,∴∠BDE =∠CBD ,∴∠BDE =∠DBE ,∴BE =DE ,∵BED 的面积是22.5,6AB =,∴122.52AB DE ⨯= ,解得:152DE = , ∴152BE =,在Rt ABE△中,由勾股定理得:92AE===,∴9151222BC AD AE BE==+=+=.故选:C【点睛】本题主要考查了折叠和矩形的性质,勾股定理,熟练掌握折叠和矩形的性质,勾股定理是解题的关键.3、B【解析】【分析】根据正方形的性质,直角三角形的性质,直角三角形面积的计算公式及勾股定理解答即可.【详解】如图所示,∵△ABC是直角三角形,∴根据勾股定理:22249x y AB+==,故①正确;由图可知2x y CE-==,故②正确;由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积, 列出等式为144492xy ⨯⨯+=, 即2449xy +=,故③正确;由2449xy +=可得245xy =,又∵2249x y +=,两式相加得:2224945x xy y ++=+,整理得:()294x y +=,9x y +=≠,故④错误;故正确的是①②③.故答案选B .【点睛】本题主要考查了勾股定理的应用,正方形性质,完全平方公式的应用,算术平方根,准确分析判断是解题的关键.4、B【解析】【分析】根据直角三角形斜边上的中线的性质结合等腰三角形的性质及含30 角的直角三角形的性质,三角形外角的性质判定即可求解.【详解】解:在Rt ABC 中,90ACB ∠=︒,D 为边AB 上的中点,12AD BD CD AB ∴===,故A 选项正确,不符合题意;A ACD∴∠=∠,故C选项正确,不符合题意;DCB B∠=∠,2ADC DCB B B∴∠=∠+∠=∠,故D选项正确,不符合题意;只有当30A∠=︒时,12CB AB=,故B选项错误,符合题意.故选:B.【点睛】本题主要考查直角三角形斜边上的中线,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.5、C【解析】【分析】由ASA证明△GAM≌△GEF(ASA),得出GM=GF,AF=ME=BM=x,EF=AM=6-x,因此DF=8-x,CF=x+2,在Rt△DFC中,由勾股定理得出方程,解方程即可.【详解】解:设BM=x,由折叠的性质得:∠E=∠B=90°=∠A,在△GAM和△GEF中,A EAG GEAGM EGF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△GAM≌△GEF(ASA),∴GM=GF,∴AF=ME=BM=x,EF=AM=6-x,∴DF=8-x,CF=8-(6-x)=x+2,在Rt△DFC中,由勾股定理得:(x+2)2=(8-x)2+62,解得:x=245,∴BM=245.故选:C.【点睛】本题考查了矩形的性质,折叠有性质,全等三角形的判定与性质、勾股定理等知识;熟练掌握矩形的性质和全等三角形的判定与性质,由勾股定理得出方程是解决问题的关键.6、B【解析】【分析】先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形.【详解】解:如图,∵E、F、G、H分别是AB、BC、CD、AD的中点,∴EH BD FG,EF AC HG,11,22FG BD EF AC==,∴四边形EFGH是平行四边形,∵AC BD⊥,∴EF FG⊥,∴平行四边形EFGH是矩形,又AC与BD不一定相等,EF∴与FG不一定相等,∴矩形EFGH不一定是正方形,【点睛】本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键.7、A【解析】【分析】根据菱形是中心对称图形,菱形ABCD的对角线交于原点O,则点D与点B关于原点中心对称,根据中心对称的点的坐标特征进行求解即可【详解】解:∵菱形是中心对称图形,菱形ABCD的对角线交于原点O,∴D与点B关于原点中心对称,点B的坐标为(1,-,∴点D的坐标是(故选A【点睛】本题考查了菱形的性质,求关于原点中心对称的点的坐标,掌握菱形的性质是解题的关键.8、C【分析】根据矩形的判定定理判断即可.【详解】∵A满足的条件是有一个角是直角的平行四边形是矩形,∴A合格,不符合题意;∵B满足的条件是三个角是直角的四边形是矩形,∴B合格,不符合题意;∵C满足的条件是有一个角是直角的四边形,∴无法判定,C不合格,符合题意;∵D满足的条件是有一个角是直角的平行四边形是矩形,∴D合格,不符合题意;故选C.【点睛】本题考查了矩形的判定定理,正确理解题意,熟练掌握矩形的判定定理是解题的关键.9、A【解析】【分析】根据正方形的性质,全等三角形的性质和三角形的面积公式解答即可.【详解】∵正方形ABCD,∴AB=AD,∠BAC=DAC,∵AE =AE ,∴△ABE ≌△ADE ,∴ABE ADE S S =△△=5,同理△CBE ≌△CDE ,∴CBE CDE S S =,∵5ABE S =△, ∴CDE 的面积为:44252⨯-⨯ =3, 故选A .【点睛】本题考查了正方形的性质,关键是根据全等三角形的性质和三角形的面积公式解答.10、C【解析】【分析】利用菱形的面积公式即可求解.【详解】解:菱形ABCD 的面积=2AC BD ⨯=682⨯=24, 故选:C .【点睛】本题考查菱形的面积公式,菱形的面积等于对角线乘积的一半.二、填空题1、1【解析】【分析】连接AM ,延长AM 交CD 于G ,连接FG ,由正方形ABCD 推出AB =CD =BCAB ∥CD ,∠C =90°,证得△AEM ≌GDM ,得到AM =MG ,AE =DG =12AB ,根据三角形中位线定理得到MN =12FG ,由勾股定理求出FG 即可得到MN .【详解】解:连接AM ,延长AM 交CD 于G ,连接FG ,∵四边形ABCD 是正方形,∴AB =CD =BCAB ∥CD ,∠C =90°,∴∠AEM =∠GDM ,∠EAM =∠DGM ,∵M 为DE 的中点,∴ME =MD ,在△AEM 和GDM 中,EAM DGM AEM GDM ME MD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AEM ≌△GDM (AAS ),∴AM =MG ,AE =DG =12AB =12CD , ∴CG =12CD∵点N 为AF 的中点,∴MN =12FG , ∵F 为BC 的中点,∴CF =12BC∴FG ,∴MN =1,故答案为:1.【点睛】本题主要考查了正方形的性质,全等三角形的性质和判定,勾股定理,三角形的中位线定理,正确作出辅助线且证出AM =MG 是解决问题的关键.2、1.2【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得CM =AM =BM 解答即可.【详解】解:∵M 是公路AB 的中点,∴AM =BM ,∵AC ⊥BC ,∴CM =AM =BM ,∵AM 的长为1.2km ,∴M ,C 两点间的距离为1.2km .故答案为:1.2.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.3、6【解析】【分析】由矩形的性质及直角三角形斜边上的中线的性质可求解BE=2AF=12,再利用三角形中位线定理可求解.【详解】解:在矩形ABCD中,∠BAD=90°,∵F为BE的中点,AF=6,∴BE=2AF=12.∵G,H分别为BC,EC的中点,BE=6,∴GH=12故答案为6.【点睛】根据直角三角形斜边上的中线等于斜边的一半,求解BE的长是解题的关键.再根据中位线定理求出GH.4、相等AD垂直BD相等AD【解析】略5、120【解析】【分析】DE,由∠D=60°,得到△ACD是等先根据直角三角形斜边上的中线等于斜边的一半得出AC=AD=AE=12边三角形,那么∠ACD=60°,∠ACF=30°,再由三角形的外角性质可求出∠BFC的度数.【详解】解:∵∠DCE=90°,点A是DE的中点,DE,∴AC=AD=AE=12∵∠D=60°,∴△ACD是等边三角形,∴∠ACD=60°,∴∠ACF=∠DCE-∠ACD=30°,∵∠FAC=90°,∴∠BFC=∠FAC+∠ACF=90°+30°=120°故答案为:120【点睛】本题主要考查了直角三角形的性质,等边三角形的判定与性质,三角形外角和定理等知识,求出∠ACF=30°是解题的关键.三、解答题1、 (1)见解析∆;③OF;④平行四边形;⑤对角线互相垂直的平行四边形是菱形(2)①2∠;②EOC【解析】【分析】(1)分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接ED、DF、FA、AE即可;(2):根据12l l ∥,内错角相等得出1∠=∠2①,根据EF 垂直平分BC ,得出OB OC =,90EOC FOB ︒∠=∠=,可证②△EOC FOB ∆≌,根据全等三角形性质得出OE =OF ③,再证OA OD =,根据对角线互相平分的四边形是平行四边形判定四边形AEDF 是平行四边形④,根据对角线互相垂直EF AD ⊥即可得出四边形AEDF 是菱形(对角线互相垂直的平行四边形是菱形⑤). (1)解:分别以A 、D 为圆心,大于AD 的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l 1于E ,交l 2于F ,直线EF 为线段AD 的垂直平分线,连接ED 、DF 、FA 、AE 即可;如图所示(2)证明:12l l ∥,1∴∠=∠2①, EF 垂直平分BC ,OB OC ∴=,90EOC FOB ︒∠=∠=,∴②△EOC FOB ∆≌,OE ∴=OF ③,AB CD =,OB AB OC DC +=+∴,OA OD ∴=,∴四边形AEDF 是平行四边形④,∴四边形AEDF 是菱形(对角线互相垂直的平行四边形是菱形⑤),故答案为:①2∠;②EOC ∆;③OF ;④平行四边形;⑤对角线互相垂直的平行四边形是菱形.【点睛】本题考查尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定,掌握尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定是解题关键.2、 (1)见解析(2)∠ABE =18°【解析】【分析】(1)根据四边形ABCD 是菱形,得出CB =CD ,∠ACB =∠ACD ,再证△ECB ≌△ECD (SAS ),得出BE =DE ,根据MN 垂直平分线段CD ,得出EC =ED 即可;(2)根据等腰三角形内角和可求∠BAC =∠BCA =12(180°﹣72°)=54°,根据EB =EC ,求出∠EBC =∠ECB =54°即可.(1)证明:∵四边形ABCD 是菱形,∴CB =CD ,∠ACB =∠ACD ,在△ECB 和△ECD 中,CE CE ECB ECD CB CD =⎧⎪∠=∠⎨⎪=⎩, ∴△ECB ≌△ECD (SAS ),∴BE =DE ,由作图可知,MN 垂直平分线段CD ,∴BE =CE .(2)解:∵BA =BC ,∠ABC =72°,∴∠BAC =∠BCA =12(180°﹣72°)=54°,∵EB =EC ,∴∠EBC =∠ECB =54°,∴∠ABE =∠ABC ﹣∠EBC =18°.【点睛】本题考查菱形的性质,全等三角形的判定与性质,线段垂直平分线的判定与性质,等腰三角形的性质,三角形内角和定理,正确理解题意是解题关键.3、 (1)证明见解析(2)证明见解析【解析】【分析】(1)先根据平行四边形的性质可得,AB CD B D =∠=∠,再根据垂直的定义可得90AEB CFD ∠=∠=︒,然后根据三角形全等的判定定理(AAS 定理)即可得证;(2)先根据平行四边形的性质可得AD BC ∥,再根据平行线的性质可得90EAF ∠=︒,然后根据矩形的判定即可得证.(1) 证明:四边形ABCD 是平行四边形,,AB CD B D ∴=∠=∠,,AE BC CF AD ⊥⊥,90AEB CFD ∴∠=∠=︒,在ABE △和CDF 中,90B D AEB CFD AB CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ()ABE CDF AAS ∴≅.(2)证明:,AE BC CF AD ⊥⊥,90AEC AFC ∴∠=∠=︒,四边形ABCD 是平行四边形,AD BC ∴,18090EAF AEC ∴∠=︒-∠=︒,∴在四边形AECF 中,90AEC AFC EAF ∠=∠=∠=︒,∴四边形AECF 是矩形.【点睛】本题考查了平行四边形的性质、三角形全等的判定定理、矩形的判定等知识点,熟练掌握各判定定理与性质是解题关键.4、证明见解析【解析】【分析】平行四边形ABCD ,可知AB CD AB CD =,;由于AE CF = ,可得BE DF =,BE DF ,知四边形DEBF 为平行四边形,由90DEB ∠=︒可知四边形DEBF 是矩形.【详解】证明:∵四边形 ABCD 是平行四边形∴AB CD AB CD =,∵AE CF BE AB AE DF DC CF ==-=-,,∴BE DF =∵BE DF BE DF =,∴四边形DEBF 为平行四边形又∵90DEB ∠=︒∴四边形DEBF 是矩形.【点睛】本题考查了平行四边形的性质与判定,矩形的判定等知识.解题的关键在于灵活掌握矩形的判定.5、 (1)见解析(2) (3)224AD AB n= 【解析】【分析】(1)由折叠得AE GE =,由中点得AE DE =,由此得到结论;(2)连接EF ,依据DF 2CF =,求出DF 、CF ,根据长方形的性质得到9AB DC ==,由△ABE ≌△GBE ,得到9BG AB ==, 证明Rt △EGF ≌Rt △EDF (HL ),得到6GF DF ==.由勾股定理求出BC 即可得到AD ;(3)设DF a =,则AB DC n DF na ==⋅=,得到()1BF BG GF na a n a =+=+=+,由勾股定理求出2BC ,再求出2224AD BC na ==,即可得到答案.(1)证明∵GBE 是由ABE △折叠而成,∴△ABE ≌△GBE ,∴AE GE =,∵E 是AD 的中点,∴AE DE =,∴GE DE =;(2)解:连接EF ,∵DF 2CF =, ∴229633DF DC ==⨯=, ∴963CF DC DF =-=-=.∵四边形ABCD 是长方形,∴AD BC =,9AB DC ==,90A C D ∠=∠=∠=︒.∵△ABE ≌△GBE ,∴9BG AB ==,90A BGE FGE ∠=∠=∠=︒.在Rt EGF 和Rt EDF 中,∵GE DE =,EF EF =∴Rt △EGF ≌Rt △EDF (HL ),∴6GF DF ==.∴9615BF BG GF =+=+=,在Rt BCF 中,∵15BF =,3CF =,∴BC∴AD BC ===.(3)解:设DF a =,则AB DC n DF na ==⋅=,∴()1CF DC DF na a n a =-=-=-,又∵BG AB na ==,GF DF a ==,∴()1BF BG GF na a n a =+=+=+,在Rt BCF 中,∵()1BF n a =+,()1CF n a =-,∴ ()()22222222114BC BF CF n a n a na =-=+--=,∴ 2224AD BC na ==, ∴2222244AD na AB n a n ==. 【点睛】此题考查了矩形与折叠,全等三角形的判定及性质,勾股定理求线段长,解题的关键是掌握各知识点,考查分析问题能力及推理论证能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(特殊平行四边形部分)
A 级 基础题
1.如图,在菱形ABCD 中,AB =5,∠BCD =120°,则△ABC 的周长等于( )
图X4-3-14A .20 B .15 C .10 D .5
2.下列关于矩形的说法中正确的是( )
A .对角线相等的四边形是矩形
B .对角线互相平分的四边形是矩形
C .矩形的对角线互相垂直且平分
D .矩形的对角线相等且互相平分
3.菱形具有而矩形不一定具有的性质是( )
A .对角线互相垂直
B .对角线相等
C .对角线互相平分
D .对角互补
4.(湖南张家界)顺次连接矩形四边的中点所得的四边形一定是( )
A .正方形
B .矩形
C .菱形
D .等腰梯形
5.如图,在边长为2的正方形ABCD 中,M 为边AD 的中点,延长MD 至点E ,使ME =MC ,
以DE 为边作正方形DEFG ,点G 在边CD 上,则DG 的长为( )
A.3-1 B .3- 5 C.5+1 D.5-1
6.(湖南益阳)如图X 4-3-16,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B
为圆心,大于12
AB 的长为半径画弧,两弧相交于C ,D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是( )
A .矩形
B .菱形
C .正方形
D .等腰梯形
7.如图,□ABCD 的顶点B 在矩形AEFC 的边EF 上,点B 与点E ,F 不重合,若△ACD 的面积为3,则图中阴影部分两个三角形的面积和为________.
8.如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,∠AED=2∠CED,点G是DF的中点,若BE=1,AG=4,则AB的长为________.
9.如图,在正方形ABCD中,点G是BC上任意一点,连接AG,过B,D两点分别作BE⊥AG,DF ⊥AG,垂足分别为E,F两点,求证:△ADF≌△BAE.
10.如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm.将△ABC沿射线BC方向平移10 cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.
11.如图,在△ABC中,AD⊥BC于D,点D,E,F分别是BC,AB,AC的中点.求证:四边形AEDF 是菱形.
12.如图,在△ABC中,AB=AC,D为BC的中点,四边形ABDE是平行四边形.求证:四边形ADCE是矩形.
B级中等题
13.如图,菱形ABCD的周长为20 cm,且tan∠ABD=4
3
,则菱形ABCD的面积为________cm2.
14.如图,已知正方形ABCD的边长为1,连接AC,BD,CE平分∠ACD交BD于点E,则DE=____________.
15.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为________时,四边形AMDN是矩形;
②当AM的值为______时,四边形AMDN是菱形.
C级拔尖题
16.在菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.
(1)如图(1),若E是BC的中点,∠AEF=60°,求证:BE=DF;
(2)如图(2),若∠EAF=60°,求证:△AEF是等边三角形.
选做题
17.在△ABC中,∠BAC=90°,AB=AC,若点D在线段BC上,以AD为边长作正方形ADEF,如图(1),易证:∠AFC=∠ACB+∠DAC;
(1)若点D在BC的延长线上,其他条件不变,写出∠AFC,∠ACB,∠DAC的关系,并结合图(2)给出证明;
(2)如图(3),若点D在CB的延长线上,其他条件不变,直接写出∠AFC,∠ACB,∠DAC的关系式.。