新高考版高考数学专题复习(新课标)§6.3 等比数列

合集下载

2025版高考数学一轮总复习第6章数列第1讲数列的概念与简单表示法pptx课件

2025版高考数学一轮总复习第6章数列第1讲数列的概念与简单表示法pptx课件

知识点三 an与Sn的关系 若数列{an}的前n项和为Sn,
则 an=______S__S1__n-____S__n, _-_1n_= __1_, _,n≥2.
知识点四 数列的分类
归纳拓展 1.数列与函数 数 列 可 以 看 作 是 一 个 定 义 域 为 正 整 数 集 N*( 或 它 的 有 限 子 集 {1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值. 数列的通项公式是相应函数的解析式,它的图象是一群孤立的点.
知识点二 数列的表示方法
列表法 图象法
列表格表示n与an的对应关系 把点___(n_,__a_n_)______画在平面直角坐标系中
通项公式 把数列的通项使用__公__式____表示的方法
公式法 递推公式 使用初始值a1和an+1=f(an)或a1,a2和an+1=f(an, an-1)等表示数列的方法
运算求解
数学运算
并项求和
综合性
逻辑思维
逻辑推理
2022新高考 求通项公 累乘法求数列
运算求解 综合性 数学运算
Ⅰ,17 式
的通项公式
等差数列 2022新高考
及其前n项 Ⅱ,3

求值
运算求解 创新性 数学运算
考题
考点
考向
关键能力 考查要求 核心素养
等比数列
2022新高考
等比数列的通项 运算求解
及其前n
Ⅱ,17
公式及其应用 逻辑思维
项和
创新性
数学运算
2021新高考
数列的求
错位相减法求和, 运算求解
综合性
数学运算
Ⅰ,16,17 和
分组求和
等差数列 求解等差数列的

2023高考数学复习专项训练《等比数列》(含答案)

2023高考数学复习专项训练《等比数列》(含答案)

2023高考数学复习专项训练《等比数列》一、单选题(本大题共12小题,共60分)1.(5分)等比数列{a n}满足a1+a2+a3=13,a2+a3+a4=133,则a5=()A. 1B. 13C. 427D. 192.(5分)给出以下命题:①存在两个不等实数α,β,使得等式sin(α+β)=sinα+sinβ成立;②若数列{a n}是等差数列,且a m+a n=a s+a t(m、n、s、t∈N∗),则m+n=s+t;③若S n是等比数列{a n}的前n项和,则S6,S12−S6,S18−S12成等比数列;④若S n是等比数列{a n}的前n项和,且S n=Aq n+B;(其中A、B是非零常数,n∈N∗),则A+B为零;⑤已知ΔABC的三个内角A,B,C所对的边分别为a,b,c,若a2+b2>c2,则ΔABC一定是锐角三角形.其中正确的命题的个数是()A. 1个B. 2个C. 3个D. 4个3.(5分)设T n为等比数列{a n}的前n项之积,且a1=−6,a4=−34,则当T n最大时,n的值为()A. 4B. 6C. 8D. 104.(5分)等比数列{a n},满足a1+a2+a3+a4+a5=3,a12+a22+a32+a42+a52= 15,则a1−a2+a3−a4+a5的值是()A. 3B. √5C. −√5D. 55.(5分)已知在等比数列{a n}中,公比q是整数,a1+a4=18,a2+a3=12,则此数列的前8项和为()A. 514B. 513C. 512D. 5106.(5分)已知正项数列{a n},{b n}分别为等差、等比数列,公差、公比分别为d,q(d,q∈N∗),且d=q,a1+b1=1,a3+b3=3.若a n+b n=2013(n>3),则n= ()A. 2013B. 2012C. 100D. 997.(5分)若a,b,c成等比数列,则关于x的方程a x2+bx+c=0( )A. 必有两个不等实根B. 必有两个相等实根C. 必无实根D. 以上三种情况均有可能8.(5分)公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则log2a10=()9.(5分)记Sn为等比数列{a n}的前n项和,已知S2=2,S3=−6.则{a n}的通项公式为()A. a n=(−2)nB. a n=−2nC. a n=(−3)nD. a n=−3n10.(5分)正项等比数列{a n}中,a3=2,a4.a6=64,则a5+a6a1+a2的值是()A. 4B. 8C. 16D. 6411.(5分)在等比数列{a n}中,a7,a11是方程x2+5x+2=0的二根,则a3.a9.a15a5.a13的值为()A. −2+√22B. −√2C. √2D. −√2或√212.(5分)已知等比数列{a n}的前n项和为S n,9S3=S6=63,则S10=A. 255B. 511C.1023 D. 2047二、填空题(本大题共5小题,共25分)13.(5分)已知等差数列{a n}的公差d≠0,且a3+a9=a10−a8.若a n=0,则n=__________14.(5分)若等比数列{an}的前n项和Sn满足:an+1=a1Sn+1(n∈N*),则a1=____.15.(5分)在等比数列{an}中,已知前n项和Sn=5n+1+a,则a的值为____________.16.(5分)若等比数列{a n}的首项为23,且a4=∫41(1+2x)dx,则公比q等于______.17.(5分)如图所示,将正整数排成三角形数阵,每排的数称为一个群,从上到下顺次为第1群,第2群,……,第n群,……,第n群恰好有n个数,则第n群中n个数的和是____________.123465812107162420149324840281811…三、解答题(本大题共6小题,共72分)18.(12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3−x2=2.(1)求数列{x n}的通项公式;(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2),…,P n+1(x n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.19.(12分)如果等比数列{a n}中公比q>1,那么{a n}一定是递增数列吗?为什么?20.(12分)数列{a n}满足a1=1,a n=2a n−1-3n+6(n≥2,n∈N+).(1)设b n=a n-3n,求证:数列{b n}是等比数列;(2)求数列{a n}的通项公式.21.(12分)设各项均为正数的数列{a n}的前n项和为S n,满足4S n=a n+12−4n−1,n∈N∗,且a2,a5,a14构成等比数列.(1)证明:a2=√4a1+5;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有1a1a2+1a2a3+…+1a n a n+1<12.22.(12分)已知数列{a n}是等差数列,其首项为2,且公差为2,若b n=2a n(n∈N∗).(Ⅰ)求证:数列{b n}是等比数列;(Ⅱ)设c n=a n+b n,求数列{c n right}的前n项和A n.23.(12分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+⋯+b2n−1.四、多选题(本大题共5小题,共25分)24.(5分)已知等差数列{a n}的公差和首项都不等于0,且a2,a4,a8成等比数列,则下列说法正确的是()A. a1+a5+a9a2+a3的值为3 B. a1+a5+a9a2+a3的值为2C. 数列{a n}的公差和首项相等D. 数列{a n}的公差和首项不相等25.(5分)设数列{a n},{b n}的前n项和分别为S n,T n,则下列命题正确的是()A. 若a n+1-a n=2(n∈N∗),则数列{a n}为等差数列B. 若b n+1=2b n(n∈N∗),则数列{b n}为等比数列C. 若数列{a n}是等差数列,则S n,S2n-S n,S3n-S2n⋯⋯(n∈N∗)成等差数列D. 若数列{b n}是等比数列,则T n,T2n-T n,T3n-T2n⋯⋯(n∈N∗)成等比数列26.(5分)在公比q为整数的等比数列{a n}中,S n是数列{a n}的前n项,若a1+a4= 18,a2+a3=12,则下列说法正确的是()A. q=2B. 数列{S n+2}是等比数列C. S8=510D. 数列\left{ lg a n}是公差为2的等差数列27.(5分)已知等差数列{a n}的首项为1,公差d=4,前n项和为S n,则下列结论成立的有()A. 数列{S nn}的前10项和为100B. 若a1,a3,a m成等比数列,则m=21C. 若∑n i=11a i a i+1>625,则n的最小值为6D. 若a m+a n=a2+a10,则1m +16n的最小值为251228.(5分)已知数列{a n}为等差数列,{b n}为等比数列,{a n}的前n项和为S n,若a1+ a6+a11=3π,b1b5b9=8,则()A. S11=11πB. sin a2+a10b4b6=12C. a3+a7+a8=3πD. b3+b7⩾4答案和解析1.【答案】D;【解析】解:设等比数列{a n }的公比为q ,由a 2+a 3+a 4=(a 1+a 2+a 3)q ,得133=13q ,解得q =13, 又a 1+a 2+a 3=a 1+13a 1+19a 1=139a 1=13,解得a 1=9,所以a 5=a 1q 4=9×(13)4=19, 故选:D.设等比数列{a n }的公比为q ,通过a 2+a 3+a 4=(a 1+a 2+a 3)q 可求出q 值,进一步根据a 1+a 2+a 3=a 1+a 1q +a 1q 2=13可求出a 1,最后利用a 5=a 1q 4进行求解即可. 此题主要考查等比数列的通项公式,考查学生逻辑推理和运算求解的能力,属于基础题.2.【答案】B; 【解析】该题考查命题真假的判断,考查学生灵活运用等差、等比数列的性质,三角函数以及三角形的判断,是一道综合题,属于中档题.利用特殊值判断①的正误;利用特殊数列即可推出命题②的正误;根据等比数列的性质,判断③的正误;根据等比数列的前n 项的和推出A ,B 判断④的正误.利用特殊三角形判断⑤的正误;解:对于①,实数α=0,β≠0,则sin (α+β)=sinβ,sinα+sinβ=sinβ,所以等式成立;故①正确;对于②,当公差d =0时,命题显然不正确,例如a 1+a 2=a 3+a 4,1+2≠3+4,故②不正确;对于③,设a n =(−1)n ,则S 6=0,S 12−S 6=0,S 18−S 12=0,∴此数列不是等比数列,故③不正确;对于④,S n 是等比数列{a n }的前n 项和,且S n =Aq n +B ;(其中A 、B 是非零常数,n ∈N ∗),所以此数列为首项是a 1,公比为q ≠1的等比数列, 则S n =a 1(1−q n )1−q ,所以A =−a11−q ,B =a11−q ,∴A +B =0,故④正确;对于⑤,如果三角形是直角三角形,a =5,b =3,c =4,满足a 2+b 2>c 2,故⑤不正确;故选:B .3.【答案】A;【解析】解:因为等比数列{a n }中,a 1=−6,a 4=−34,则由a 4=a 1q 3可得q =12. ∵T n 为等比数列{a n }的前n 项之积,∴T n =(−6)n .(12)n(n−1)2,因为求最大值,故只需考虑n 为偶数的情况, ∵T 2n +2T 2n =36×(12)4n +1,由T 2n +2T 2n⩾1可得n =1,∴T 2<T 4>T 6>T 8>⋯.则公比q =12,当T n 最大时,n 的值为4.故选:A .由已知可得q =12.只需考虑n 为偶数的情况,由T 2n +2T 2n⩾1可得n =1,即可求解.该题考查了等比数列的通项公式及其前n 项和公式,考查了推理能力与计算能力,属于中档题.4.【答案】D;【解析】解:设数列{a n }的公比为q ,且q ≠1,则 a 1+a 2+a 3+a 4+a 5=a 1(1−q 5)1−q =3①, a 12+a 22+a 32+a 42+a 52=a 12(1−q 10)1−q 2=15②∴②÷①得a 12(1−q 10)1−q 2÷a 1(1−q 5)1−q=a 1(1+q 5)1+q=5,∴a 1−a 2+a 3−a 4+a 5=a 1(1+q 5)1+q=5.故选:D.先设等比数列{a n }公比为q ,分别用a 1和q 表示出a 12+a 22+a 32+a 42+a 52,a 1+a 2+a 3+a 4+a 5和a 1−a 2+a 3−a 4+a 5,发现a 12+a 22+a 32+a 42+a 52除以a 1+a 2+a 3+a 4+a 5正好与a 1−a 2+a 3−a 4+a 5相等,进而得到答案.此题主要考查了等比数列的性质.属基础题.解题时要认真审题,注意等比数列的性质的灵活运用.5.【答案】D;【解析】由已知得{a 1+a 1q 3=18a 1q +a 1q 2=12,解得:q =2或q =12.∵q 为整数,∴q =2.∴a 1=2.∴S 8=2(1−28)1−2=29−2=510.6.【答案】A;【解析】此题主要考查等差数列和等比数列的通项公式和性质的应用.计算时要认真仔细.解:∵{_1+b1=1a3+b3=3,∴{_1+b1=1a1+2d+b1q2=3,∵d=q,所以{_1+b1=1a1+2q+b1q2=3,解得d=q=1,∴a n+b n=a1+(n−1)d+b1q n−1=a1+n−1+b1=2013,∴n=2013.故选A.7.【答案】C;【解析】若a,b,c成等比数列,则b²=ac由题意得△=b²-4ac=b²-4b²=-3b²等比数列中没有为0的项,∴-3b²<0∴△小于0,即方程a x2+bx+c=0必无实根故选C。

高考数学一轮专项复习讲义-等比数列(北师大版)

高考数学一轮专项复习讲义-等比数列(北师大版)

§6.3等比数列课标要求1.通过生活中的实例,理解等比数列的概念和通项公式的意义.2.掌握等比数列前n 项和公式,理解等比数列的通项公式与前n 项和公式的关系.3.能在具体问题情境中,发现数列的等比关系,并解决相应的问题.4.体会等比数列与指数函数的关系.知识梳理1.等比数列有关的概念(1)如果一个数列从第2项起,每一项与它的前一项的比值都是同一个常数,那么称这样的数列为等比数列,称这个常数为等比数列的公比,通常用字母q 表示(q ≠0).(2)等比中项:如果在a 与b 之间插入一个数G ,使a ,G ,b 成等比数列,那么称G 为a 与b 的等比中项,此时,G 2=ab .2.等比数列的有关公式(1)通项公式:a n =a 1q n -1(a 1≠0,q ≠0).(2)前n 项和公式:S n ,=a 1-a n q 1-q,q ≠1且q ≠0.3.等比数列的常用性质(1)若m +n =p +q ,则a m a n =a p a q ,其中m ,n ,p ,q ∈N +.特别地,若2w =m +n ,则a m a n =a 2w ,其中m ,n ,w ∈N +.(2)a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m (k ,m ∈N +).(3)若数列{a n },{b n }是两个项数相同的等比数列,则数列{ba n },{pa n ·qb n }数列(b ,p ,q ≠0).(4)1>0,>11<0,q <1,则等比数列{a n }递增.1>0,q <11<0,>1,则等比数列{a n }递减.4.等比数列前n 项和的常用性质若等比数列{a n }的公比q ≠-1,前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .常用结论1.等比数列{a n }的通项公式可以写成a n =cq n ,这里c ≠0,q ≠0.2.等比数列{a n }的前n 项和S n 可以写成S n =Aq n -A (A ≠0,q ≠1,0).3.设数列{a n }是等比数列,S n 是其前n 项和.(1)S m +n =S n +q n S m =S m +q m S n .(2)若a 1·a 2·…·a n =T n ,则T n ,T 2n T n ,T3n T 2n ,…成等比数列.(3)若数列{a n }的项数为2n ,则S 偶S 奇=q ;若项数为2n +1,则S 奇-a 1S 偶=q .自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)等比数列的公比q 是一个常数,它可以是任意实数.(×)(2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .(×)(3)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.(×)(4)对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的积.(√)2.设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案B解析若a ,b ,c ,d 成等比数列,则ad =bc ,数列-1,-1,1,1满足-1×1=-1×1,但数列-1,-1,1,1不是等比数列,即“ad =bc ”是“a ,b ,c ,d 成等比数列”的必要不充分条件.3.在等比数列{a n }中,若a 3=32,S 3=92,则a 2的值为()A .32B .-3C .-32D .-3或32答案D解析由S 3=a 1+a 2+a 3=a 3(q -2+q -1+1),得q -2+q -1+1=3,即2q 2-q -1=0,解得q =1或q =-12,∴a 2=a 3q =32或-3.4.数列{a n }的通项公式是a n =a n (a ≠0),则其前n 项和为S n =________.答案a ≠0,a ≠1解析因为a ≠0,a n =a n ,所以{a n }是以a 为首项,a 为公比的等比数列.当a =1时,S n =n ;当a ≠1时,Sn =a (1-a n )1-a.题型一等比数列基本量的运算例1(1)(2023·全国甲卷)设等比数列{a n }的各项均为正数,前n 项和为S n ,若a 1=1,S 5=5S 3-4,则S 4等于()A.158B.658C .15D .40答案C 解析方法一若该数列的公比q =1,代入S 5=5S 3-4中,有5=5×3-4,不成立,所以q ≠1.由1-q 51-q =5×1-q 31-q -4,化简得q 4-5q 2+4=0,所以q 2=1或q 2=4,因为此数列各项均为正数,所以q =2,所以S 4=1-q 41-q =15.方法二由题知1+q +q 2+q 3+q 4=5(1+q +q 2)-4,即q 3+q 4=4q +4q 2,即q 3+q 2-4q -4=0,即(q -2)(q +1)(q +2)=0.由题知q >0,所以q =2.所以S 4=1+2+4+8=15.(2)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则Sn a n 等于()A .2n -1B .2-21-nC .2-2n -1D .21-n -1答案B 解析方法一设等比数列{a n }的公比为q ,易知q ≠1,1q 4-a 1q 2=12,1q 5-a 1q 3=24,1=1,=2,所以S n =a 1(1-q n )1-q =2n -1,a n =a 1q n -1=2n -1,所以S n a n =2n -12n -1=2-21-n .方法二设等比数列{a n }的公比为q ,易知q ≠1,因为a 6-a 4a 5-a 3=a 4(q 2-1)a 3(q 2-1)=a 4a 3=2412=2,所以q =2,所以S na n =a 1(1-q n )1-q a 1q n -1=2n -12n -1=2-21-n .思维升华等比数列基本量的运算的解题策略(1)等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求解.(2)解方程组时常常利用“作商”消元法.(3)运用等比数列的前n 项和公式时,一定要讨论公比q =1的情形,否则会漏解或增解.跟踪训练1(1)(2023·天津)已知{a n }为等比数列,S n 为数列{a n }的前n 项和,a n +1=2S n +2,则a 4的值为()A .3B .18C .54D .152答案C解析由题意可得,当n =1时,a 2=2a 1+2,即a 1q =2a 1+2,①当n =2时,a 3=2(a 1+a 2)+2,即a 1q 2=2(a 1+a 1q )+2,②联立①②1=2,=3,则a 4=a 1q 3=54.(2)(2023·青岛模拟)云冈石窟,古称为武州山大石窟寺,是世界文化遗产.若某一石窟的某处“浮雕像”共7层,每一层的“浮雕像”个数是其下一层的2倍,共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上每一层的“浮雕像”的个数构成数列{a n },则log 2(a 3a 5)的值为()A .8B .10C .12D .16答案C解析从最下层往上每一层的“浮雕像”的个数构成数列{a n },则{a n }是以2为公比的等比数列,∴S 7=a 1(1-27)1-2=1016,即127a 1=1016,解得a 1=8,∴a n =8×2n -1,∴log 2(a 3a 5)=log 2(8×22×8×24)=12.题型二等比数列的判定与证明例2(2023·长沙模拟)记S n 为数列{a n }的前n 项和,已知a 1=2,a 2=-1,且a n +2+a n +1-6a n =0(n ∈N +).(1)证明:{a n +1+3a n }为等比数列;(2)求数列{a n }的通项公式a n 及前n 项和S n .(1)证明由a n +2+a n +1-6a n =0,可得a n +2+3a n +1=2(a n +1+3a n ),即a n +2+3a n +1a n +1+3a n=2(n ∈N +),∴{a n +1+3a n }是以a 2+3a 1=5为首项,2为公比的等比数列.(2)解由(1)可知a n +1+3a n =5·2n -1(n ∈N +),∴a n +1-2n =-3(a n -2n -1),∴a n +1-2n a n -2n -1=-3,∴{a n -2n -1}是以a 1-20=1为首项,-3为公比的等比数列,∴a n -2n -1=1×(-3)n -1,∴a n =2n -1+(-3)n -1,S n =1-2n 1-2+1-(-3)n 1-(-3)=2n -34-(-3)n 4.思维升华等比数列的四种常用判定方法(1)定义法:若a na n -1=q (q 为非零常数,且n ≥2,n ∈N +),则{a n }是等比数列.(2)等比中项法:若在数列{a n }中,a n ≠0且a 2n +1=a n a n +2(n ∈N +),则{a n }是等比数列.(3)通项公式法:若数列{a n }的通项公式可写成a n =cq n -1(c ,q 均为非零常数,n ∈N +),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =kq n -k (k 为常数,且k ≠0,q ≠0,1),则{a n }是等比数列.跟踪训练2(2024·潍坊模拟)已知数列{a n }和{b n }满足a 1=3,b 1=2,a n +1=a n +2b n ,b n +1=2a n +b n .(1)证明:{a n +b n }和{a n -b n }都是等比数列;(2)求{a n b n }的前n 项和S n .(1)证明因为a n +1=a n +2b n ,b n +1=2a n +b n ,所以a n +1+b n +1=3(a n +b n ),a n +1-b n +1=-(a n -b n ),又由a 1=3,b 1=2得a 1-b 1=1,a 1+b 1=5,所以数列{a n +b n }是首项为5,公比为3的等比数列,数列{a n -b n }是首项为1,公比为-1的等比数列.(2)解由(1)得a n +b n =5×3n -1,a n -b n =(-1)n -1,所以a n =5×3n -1+(-1)n -12,b n =5×3n -1-(-1)n -12,所以a n b n =5×3n -1+(-1)n -12×5×3n -1-(-1)n -12=25×32n -2-14=254×9n -1-14,所以S n =254×1-9n 1-9-n 4=25×(9n -1)-8n32.题型三等比数列的性质命题点1项的性质例3(1)(2023·全国乙卷)已知{a n }为等比数列,a 2a 4a 5=a 3a 6,a 9a 10=-8,则a 7=________.答案-2解析方法一{a n }为等比数列,∴a 4a 5=a 3a 6,∴a 2=1,又a 2a 9a 10=a 7a 7a 7,∴1×(-8)=(a 7)3,∴a 7=-2.方法二设{a n }的公比为q (q ≠0),则a 2a 4a 5=a 3a 6=a 2q ·a 5q ,显然a n ≠0,则a 4=q 2,即a 1q 3=q 2,则a 1q =1,∵a 9a 10=-8,则a 1q 8·a 1q 9=-8,则q 15=(q 5)3=-8=(-2)3,则q 5=-2,则a 7=a 1q ·q 5=q 5=-2.下标和相等的等差(比)性质的推广(1)若数列{a n }为等比数列,且m 1+m 2+…+m n =k 1+k 2+…+k n ,则12m m a a ·…·n m a =12k k a a ·…·n k a .(2)若数列{a n }为等差数列,且m 1+m 2+…+m n =k 1+k 2+…+k n ,则1m a +2m a +…+n m a =1k a +2k a +…+n k a .典例已知等差数列{a n },S n 为前n 项和,且a 9=5,S 8=16,则S 11=________.答案33解析S 8=8(a 1+a 8)2=16,∴a 1+a 8=4,又∵a 9+a 1+a 8=3a 6,∴a 6=3,故S 11=11a 6=33.(2)已知数列{a n }满足log 2a n +1=1+log 2a n (n ∈N +),且a 1+a 2+a 3+…+a 10=1,则log 2(a 101+a 102+…+a 110)=________.答案100解析因为log 2a n +1=1+log 2a n ,可得log 2a n +1=log 2(2a n ),所以a n +1=2a n ,所以数列{a n }是以a 1为首项,2为公比的等比数列,又a 1+a 2+…+a 10=1,所以a 101+a 102+…+a 110=(a 1+a 2+…+a 10)×2100=2100,所以log 2(a 101+a 102+…+a 110)=log 22100=100.命题点2和的性质例4(1)已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.答案2解析奇+S 偶=-240,奇-S 偶=80,奇=-80,偶=-160,所以q =S 偶S 奇=-160-80=2.(2)已知S n 是正项等比数列{a n }的前n 项和,S 10=20,则S 30-2S 20+S 10的最小值为________.答案-5解析依题意,S 10,S 20-S 10,S 30-S 20成等比数列,且S 10=20,不妨令其公比为q (q >0),则S 20-S 10=20q ,S 30-S 20=20q 2,∴S 30-2S 20+S 10=(S 30-S 20)-(S 20-S 10)=20q 2-20q =-5,故当q =12时,S 30-2S 20+S 10的最小值为-5.思维升华(1)在解决与等比数列有关的问题时,要注意挖掘隐含条件,利用性质,特别是“若m +n =p +q ,则a m a n =a p a q ”,可以减少运算量,提高解题速度.(2)在应用等比数列的性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.跟踪训练3(1)(2024·南昌模拟)已知等比数列{a n }满足a 2+a 4+a 6+a 8=20,a 2a 8=2,则1a 2+1a 4+1a 6+1a 8=________.答案10解析1a 2+1a 4+1a 6+1a 8==a 2+a 8a 2a 8+a 4+a 6a 4a 6=a 2+a 8+a 4+a 6a 2a 8=202=10.(2)(2023·长春统考)在等比数列{a n }中,q =12,S 100=150,则a 2+a 4+a 6+…+a 100的值是________.答案50解析设T 1=a 1+a 3+a 5+…+a 99,T 2=a 2+a 4+a 6+…+a 100,所以T 2T 1=a 2+a 4+a 6+…+a 100a 1+a 3+a 5+…+a 99=12,所以S 100=T 1+T 2=2T 2+T 2=3T 2=150,所以T 2=a 2+a 4+a 6+…+a 100=50.课时精练一、单项选择题1.(2023·本溪模拟)已知等比数列{a n }的各项均为正数,公比q =12,且a 3a 4=132,则a 6等于()A.18 B.116C.132D.164答案C解析由a 3a 4=132,得a 1q 2·a 1q 3=132,即a 21=132,所以a 21=1.又a n >0,所以a 1=1,a 6=a 1q 5=1=132.2.若1,a 2,a 3,4成等差数列;1,b 2,b 3,b 4,4成等比数列,则a 2-a 3b 3等于()A.12B .-12C .±12D.14答案B解析由题意得a 3-a 2=4-13=1,设1,b 2,b 3,b 4,4的公比为q ,则b 3=q 2>0,b 23=1×4=4,解得b 3=2,a 2-a 3b 3=-12=-12.3.(2023·济宁模拟)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n 等于()A .5B .6C .7D .8答案B解析∵a 1=2,a n +1=2a n ,∴数列{a n }是首项为2,公比为2的等比数列.又S n =126,∴2(1-2n )1-2=126,解得n =6.4.已知等比数列{a n }为递减数列,若a 2a 6=6,a 3+a 5=5,则a5a 7等于()A.32B.23C.16D .6答案A解析由{a n }为等比数列,得a 2a 6=a 3a 5=6,又a 3+a 5=5,∴a 3,a 5为方程x 2-5x +6=0的两个根,解得a 3=2,a 5=3或a 3=3,a 5=2,由{a n }为递减数列得a n >a n +1,∴a 3=3,a 5=2,∴q 2=a 5a 3=23,则a 5a 7=1q 2=32.5.(2024·揭阳模拟)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.其大意是有人要去某关口,路程为378里,第一天健步行走,从第二天起由于脚痛,每天走的路程都为前一天的一半,一共走了六天,才到目的地.则此人后三天所走的里程数为()A .6B .12C .18D .42答案D解析设第n (n ∈N +)天走a n 里,其中1≤n ≤6,由题意可知,数列{a n }是公比为12的等比数列,1-12=6332a 1=378,解得a 1=192,所以此人后三天所走的里程数为a 4+a5+a 6=192×18×1-12=42.6.(2023·新高考全国Ⅱ)记S n 为等比数列{a n }的前n 项和,若S 4=-5,S 6=21S 2,则S 8等于()A .120B .85C .-85D .-120答案C解析方法一设等比数列{a n }的公比为q ,首项为a 1,若q =1,则S 6=6a 1=3×2a 1=3S 2,不符合题意,所以q ≠1.由S 4=-5,S 6=21S 2,可得a 1(1-q 4)1-q =-5,a 1(1-q 6)1-q =21×a 1(1-q 2)1-q ,①由①可得,1+q 2+q 4=21,解得q 2=4,所以S 8=a 1(1-q 8)1-q =a 1(1-q 4)1-q ·(1+q 4)=-5×(1+16)=-85.方法二设等比数列{a n }的公比为q ,因为S 4=-5,S 6=21S 2,所以q ≠-1,否则S 4=0,从而S 2,S 4-S 2,S 6-S 4,S 8-S 6成等比数列,所以(-5-S 2)2=S 2(21S 2+5),解得S 2=-1或S 2=54,当S 2=-1时,S 2,S 4-S 2,S 6-S 4,S 8-S 6,即为-1,-4,-16,S 8+21,易知S 8+21=-64,即S 8=-85;当S 2=54时,S 4=a 1+a 2+a 3+a 4=(a 1+a 2)(1+q 2)=(1+q 2)S 2>0,与S 4=-5矛盾,舍去.综上,S 8=-85.二、多项选择题7.(2023·太原模拟)已知数列{a n }是等比数列,以下结论正确的是()A .{a 2n }是等比数列B .若a 3=2,a 7=32,则a 5=±8C .若a 1<a 2<a 3,则数列{a n }是递增数列D .若数列{a n }的前n 项和S n =3n +r ,则r =-1答案ACD 解析令等比数列{a n }的公比为q ,则a n =a 1q n -1,对于A ,a 2n +1a 2n ==q 2,且a 21≠0,则{a 2n }是等比数列,故A 正确;对于B ,由a 3=2,a 7=32,得q 4=16,即q 2=4,所以a 5=a 3q 2=2×4=8,故B 错误;对于C ,由a 1<a 2<a 31(q -1)>0,1q (q -1)>0,>0,1(q -1)>0,a n +1-a n =q n -1·a 1(q -1)>0,即∀n ∈N +,a n +1>a n ,所以数列{a n }是递增数列,故C 正确;对于D ,显然q ≠1,则S n =a 1(1-q n )1-q =a 1q -1·q n -a 1q -1,而S n =3n +r ,因此q =3,a 1q -1=1,r =-a 1q -1=-1,故D 正确.8.记等比数列{a n }的前n 项和为S n ,前n 项积为T n ,且满足a 1>1,a 2022>1,a 2023<1,则()A .a 2022a 2024-1<0B .S 2022+1<S 2023C .T 2022是数列{T n }中的最大项D .T 4045>1答案AC 解析设数列{a n }的公比为q .∵a 1>1,a 2023<1,∴0<a 2023<1,又a 2022>1,∴0<q <1.∵a 2022a 2024=a 22023<1,∴a 2022a 2024-1<0,故A 正确;∵a 2023<1,∴a 2023=S 2023-S 2022<1,即S 2022+1>S 2023,故B 错误;∵0<q <1,a 1>1,∴数列{a n }是递减数列,∵a 2022>1,a 2023<1,∴T 2022是数列{T n }中的最大项,故C 正确;T4045=a1a2a3·…·a4045=a1(a1q)(a1q2)·…·(a1q4044)=a40451q1+2+3+…+4044=a40451q2022×4045=(a1q2022)4045=a40452023,∵0<a2023<1,∴a40452023<1,即T4045<1,故D错误.三、填空题9.(2023·全国甲卷)记S n为等比数列{a n}的前n项和.若8S6=7S3,则{a n}的公比为________.答案-1 2解析若q=1,则由8S6=7S3得8·6a1=7·3a1,则a1=0,不符合题意.所以q≠1.当q≠1时,因为8S6=7S3,所以8·a1(1-q6)1-q=7·a1(1-q3)1-q,即8(1-q6)=7(1-q3),即8(1+q3)(1-q3)=7(1-q3),即8(1+q3)=7,解得q=-1 2 .10.设等比数列{a n}共有3n项,它的前2n项的和为100,后2n项的和为200,则该等比数列中间n项的和等于________.答案200 3解析设数列{a n}的前n项和、中间n项和、后n项和依次为a,b,c.由题意知a+b=100,b+c=200,b2=ac,∴b2=(100-b)(200-b),∴b=200 3.11.在等比数列{a n}中,若a9+a10=4,a19+a20=24,则a59+a60=______.答案31104解析设等比数列{a n}的公比为q,则a n=a1q n-1.因为a 9+a 10=4,a 19+a 20=24,所以a 19+a 20=(a 9+a 10)q 10=24,解得q 10=6,所以a 59+a 60=(a 9+a 10)q 50=4×65=31104.12.记S n 为数列{a n }的前n 项和,S n =1-a n ,记T n =a 1a 3+a 3a 5+…+a 2n -1a 2n +1,则a n =________,T n =________.答案12n解析由题意得a 1=1-a 1,故a 1=12.当n ≥2n =1-a n ,n -1=1-a n -1,得a n =S n -S n -1=-a n +a n -1,则a n a n -1=12,故数列{a n }是以12为首项,12为公比的等比数列,故数列{a n }的通项公式为a n =12n .由等比数列的性质可得a 1a 3=a 22,a 3a 5=a 24,…,a 2n -1a 2n +1=a 22n ,所以数列{a 2n -1a 2n +1}是以a 22=116为首项,116为公比的等比数列,则T n =a 22+a 24+…+a 22n =161-116=四、解答题13.已知数列{a n }满足a 1=1,a n +1=2a n +2.(1)证明数列{a n +2}是等比数列,并求数列{a n }的通项公式;(2)求数列{a n }落入区间(10,2023)的所有项的和.解(1)由a n +1=2a n +2,得a n +1+2=2(a n +2),又a 1+2=3,所以a n +1+2a n +2=2,所以{a n +2}是首项为3,公比为2的等比数列,所以a n +2=3×2n -1,a n =3×2n -1-2.(2)由10<a n <2023,得10<3×2n -1-2<2023,即4<2n -1<675,即4≤n ≤10,故{a n }落入区间(10,2023)的项为a 4,a 5,a 6,a 7,a 8,a 9,a 10,所以其和S =a 4+a 5+a 6+a 7+a 8+a 9+a 10=3×(23+24+…+29)-2×7=3×8-10241-2-14=3034.14.(2024·邯郸模拟)已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=3S n +1,n ∈N +.(1)求{a n }通项公式;(2)设b n =a n n +1,在数列{b n }中是否存在三项b m ,b k ,b p (其中2k =m +p )成等比数列?若存在,求出这三项;若不存在,说明理由.解(1)由题意知,在数列{a n }中,a n +1=3S n +1,a n =3S n -1+1,n ≥2,两式相减可得,a n +1-a n =3a n ,a n +1=4a n ,n ≥2,由条件知,a 2=3a 1+1=4a 1,符合上式,故a n +1=4a n ,n ∈N +.∴{a n }是以1为首项,4为公比的等比数列.∴a n =4n -1,n ∈N +.(2)由题意及(1)得,在数列{a n }中,a n =4n -1,n ∈N +,在数列{b n }中,b n =4n -1n +1,如果满足条件的b m ,b k ,b p 存在,则b 2k =b m b p ,其中2k =m +p ,∴(4k -1)2(k +1)2=4m -1m +1·4p -1p +1,∵2k =m +p ,∴(k +1)2=(m +1)(p +1),解得k 2=mp ,∴k =m =p ,与已知矛盾,∴不存在满足条件的三项.15.(2023·杭州模拟)已知数列{a n }的前n 项和为S n .若p :数列{a n }是等比数列;q :(S n +1-a 1)2=S n (S n +2-S 2),则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A 解析若{a n }是等比数列,设公比为k ,则a 2+a 3+…+a n +1=k (a 1+a 2+…+a n ),a 3+a 4+…+a n +2=k (a 2+a 3+…+a n +1),于是(a 2+a 3+…+a n +1)2=k 2(a 1+a 2+…+a n )2=(a 3+a 4+…+a n +2)(a 1+a 2+…+a n ),即q :(S n +1-a 1)2=S n (S n +2-S 2)成立;若(S n +1-a 1)2=S n (S n +2-S 2),取a n =0,n ∈N +,显然{a n }不是等比数列,故p 是q 的充分不必要条件.16.(2023·泰安模拟)若m ,n 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同零点,且m ,n ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则pq =________.答案20解析+n =p >0,=q >0>0,>0,则m ,-2,n 或n ,-2,m 成等比数列,得mn =(-2)2=4.不妨设m <n ,则-2,m ,n 成等差数列,得2m =n -2.结合mn =4,可得(2m +2)m =4⇒m (m +1)=2,解得m =1或m =-2(舍去),=1,=4=5,=4⇒pq =20.。

新高考2023版高考数学一轮总复习练案36第六章第三讲等比数列及其前n项和

新高考2023版高考数学一轮总复习练案36第六章第三讲等比数列及其前n项和

第三讲 等比数列及其前n 项和A 组基础巩固一、单选题1.在等比数列{a n }中,a 1=12,q =12,a n =132,则项数n 为( C )A .3B .4C .5D .6[解析] a n =132=a 1q n -1=12×⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n ,∴n =5,故选C.2.(2021·陕西西安中学六模)已知数列{a n }是各项均为正数的等比数列,S n 是它的前n 项和.若a 2a 6=4,且a 4+2a 7=52,则S 5=( C )A .29B .30C .31D .32[解析] 本题考查等比数列性质及基本量的运算.∵a 2a 6=a 24=4,且a n >0,∴a 4=2.又a 4+2a 7=52,∴a 7=14.设{a n }的公比为q ,则a 7a 4=q 3=18,q =12,∴a n =a 4⎝ ⎛⎭⎪⎫12n -4=25-n ,∴S 5=16+8+4+2+1=31.3.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( B ) A .152B .314C .334D .172[解析] 设数列{a n }的公比为q ,则显然q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 11-q 31-q =7,解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9,q =-13(舍去),∴S 5=a 11-q 51-q=4×⎝ ⎛⎭⎪⎫1-1251-12=314.4.(2021·全国甲理)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则( B )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件[解析] 当q =1,a 1<0时,等比数列{a n }的前n 项和S n =na 1<0,可知{S n }是单调递减数列,因此甲不是乙的充分条件;若{S n }是递增数列,则当n ≥2时,a n =S n -S n -1>0,即a 1qn -1>0恒成立,而只有当a 1>0,q >0时,a 1q n -1>0恒成立,所以可得q >0,因此甲是乙的必要条件.综上,甲是乙的必要条件但不是充分条件.故选B.5.(2021·深圳一模)已知等比数列{a n }的前n 项和S n =a ·3n -1+b ,则a b=( A )A .-3B .-1C .1D .3[解析] 解法一:a 1=a +b ,当n ≥2时,a n =S n -S n -1=2a ·3n -2,又∵{a n }是等比数列,∴a +b =2a ·31-2,∴a b=-3.故选A.解法二:a 1=a +b ,a 2=2a ,a 3=6a . 又∵{a n }是等比数列, ∴a 2a 1=a 3a 2,∴2a a +b =6a 2a, ∴a =-3b ,∴a b=-3,故选A.6.(2022·广东惠州一中月考)已知数列{a n }是等比数列,且a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( C )A .16(1-4-n) B .16(1-2-n) C .323(1-4-n)D .323(1-2-n )[解析] 因为等比数列{a n }中,a 2=2,a 5=14,所以a 5a 2=q 3=18,所以q =12.由等比数列的性质,易知数列{a n a n +1}为等比数列,其首项为a 1a 2=8,公比为q 2=14,所以要求的a 1a 2+a 2a 3+…+a n a n +1为数列{a n a n +1}的前n 项和.由等比数列的前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎝ ⎛⎭⎪⎫1-14n 1-14=323(1-4-n).故选C.二、多选题7.(2021·辽宁大连八中模拟改编)记等比数列{a n }的前n 项和为S n ,若a 1=2,S 3=6,则S 4=( AC )A .-10B .-8C .8D .10[解析] 设等比数列的公比为q ,因为a 1=2,S 3=6,所以S 3=2+2q +2q 2=6,则q 2+q -2=0,所以q =1或q =-2.当q =1时,S 4=S 3+2=8;当q =-2时,S 4=S 3+a 1q 3=6+2×(-2)3=-10,故选A 、C.8.(2021·山西大同期中改编)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗.苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟,羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半,”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人应分别偿还a 升,b 升,c 升,1斗为10升,则下列判断正确的是( BD )A .a =507B .c =507C .a ,b ,c 依次成公比为2的等比数列D .a ,b ,c 依次成公比为12的等比数列[解析] 由题意得a ,b ,c 依次成公比为12的等比数列,且c +2c +4c =50,即c =507,故选B 、D.三、填空题9.(2021·四川南充一诊)数列{a n }满足:log 2a n +1=1+log 2a n ,若a 3=10,则a 8= 320 . [解析] 由题意知log 2a n +1=log 2(2a n ),∴a n +1=2a n ,∴{a n }是公比为2的等比数列,又a 3=10,∴a 8=a 3·25=320.10.(2021·北京东城区期末)已知{a n }是各项均为正数的等比数列,S n 为其前n 项和.若a 1=6,a 2+2a 3=6,则公比q = 12 ,S 4=454. [解析] 本题考查等比数列的通项公式、前n 项和公式.由题意,数列{a n }是各项均为正数的等比数列,由a 1=6,a 2+2a 3=6,可得a 1q +2a 1q 2=6q +12q 2=6,即2q 2+q -1=0,解得q =12或q =-1(舍去).由等比数列的前n 项和公式,可得S 4=6×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1241-12=454.11.等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8= 32 .[解析] 由题意知S 3=a 1+a 2+a 3=74,a 4+a 5+a 6=S 6-S 3=634-74=14=74·q 3,∴q =2.又a 1+2a 1+4a 1=74,∴a 1=14,∴a 8=14×27=32.12.(2021·长春市高三一检)等比数列{a n }的首项为a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q = -12.[解析] 由S 10S 5=3132,a 1=-1,知公比q ≠1,S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,所以q =-12.四、解答题13.(2021·陕西榆林一模)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式. [解析] (1)由条件可得a n +1=2n +1na n , 将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.理由如下: 由条件可得a n +1n +1=2a nn,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.14.(2021·安徽联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4.(1)证明:{S n -n +2}为等比数列; (2)求数列{S n }的前n 项和T n .[解析] (1)证明:由题意知S n -2(S n -S n -1)=n -4(n ≥2), 即S n =2S n -1-n +4,所以S n -n +2=2[S n -1-(n -1)+2], 又易知a 1=3,所以S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2的等比数列. (2)由(1)知S n -n +2=2n +1,所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n =41-2n1-2+n n +12-2n =2n +3+n 2-3n -82.B 组能力提升1.(2021·安徽六安一中调研)已知1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1+a 2b 2的值是( C ) A .52或-52 B .-52C .52D .12[解析] 由题意得a 1+a 2=5,b 22=4,又b 2与第一项的符号相同,所以b 2=2.所以a 1+a 2b 2=52.故选C. 2.(多选题)(2021·海南海口模拟)已知正项等比数列{a n }满足a 1=2,a 4=2a 2+a 3.若设其公比为q ,前n 项和为S n ,则下面结论不正确的是( C 、D )A .q =2B .a n =2nC .S 10=2 047D .a n +a n +1>a n +2[解析] 本题考查等比数列基本量的计算.因为a 1=2,a 4=2a 2+a 3,公比为q ,所以2q 3=4q +2q 2,得q 2-q -2=0,解得q =2(负值舍去),故A 正确;a n =2×2n -1=2n,故B 正确;S n =2×2n -12-1=2n +1-2,所以S 10=2 046,故C 错误;a n +a n +1=2n +2×2n=3a n ,而a n +2=4a n >3a n ,故D 错误.故选C 、D.3.《张丘建算经》中“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里路,问每天走的里数为多少?”则该匹马第一天走的里数为( B )A .128127B .44 800127C .700127D .17532[解析] 由题意知每日所走的路程成等比数列{a n },且公比q =12,S 7=700,由等比数列的求和公式得a 1⎝⎛⎭⎪⎫1-1271-12=700,解得a 1=44 800127.故选B. 4.(2022·南昌模拟)在等比数列{a n }中,a 1+a n =66,a 2a n -1+a 3a n -2=256,且前n 项和S n =126,则n =( C )A .2B .4C .6D .8[解析] 因为数列{a n }是等比数列,所以a 2a n -1=a 3a n -2=a 1a n ,又因为a 2a n -1+a 3a n -2=256,所以a 1a n =128,又因为a 1+a n =66.所以a 1=2,a n =64或a 1=64,a n =2.因为S n =a 1-a n q1-q,且S n =126,所以若a 1=2,a n =64,则2-64q 1-q =126,得q =2.此时a n =2×2n -1=2n=64,n=6;若a 1=64,a n =2,则64-2q 1-q =126,得q =12,此时a n =64×⎝ ⎛⎭⎪⎫12n -1=2,得n =6.综上知,n =6.5.设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m . [解析] (1)设{a n }的公比为q ,则a n =a 1qn -1.由已知得⎩⎪⎨⎪⎧a 1+a 1q =4,a 1q 2-a 1=8,解得a 1=1,q =3.所以{a n }的通项公式为a n =3n -1.(2)由(1)知log 3a n =n -1. 故S n =n n -12.由S m +S m +1=S m +3得m (m -1)+(m +1)m =(m +3)(m +2),即m 2-5m -6=0.解得m =-1(舍去)或m =6.。

2020届高考数学总复习第六章数列6_3等比数列及其前n项和课件文新人教A版

2020届高考数学总复习第六章数列6_3等比数列及其前n项和课件文新人教A版

A.1盏
B.3盏
C.5盏
D.9盏
(2)(2019·广州测试)在各项都为正数的等比数列{an}中,已知
a1=2,a2n+2+4a2n=4a2n+1,则数列{an}的通项公式 an=__________.
(3)(2019·洛阳统考)设等比数列{an}的前 n 项和为 Sn,若 a1
+8a4=0,则SS43=(
0 的根,则a1aa917的值为(
)
A.2 2
B.4
C.-2 2或 2 2
D.-4 或 4
(2)(2019·武汉华师附中调研)数列{an}的通项公式为 an=2n-1,
则使不等式 a21+a22+…+a2n<5×2n+1 成立的 n 的最大值为( )
A.2
B.3
C.4
D.5
【解析】 (1)因为 a3,a15 是方程 x2-6x+8=0 的根, 所以 a3a15=8,a3+a15=6, 易知 a3,a15 均为正,由等比数列的性质知,a1a17=a29=a3a15 =8, 所以 a9=2 2,a1aa917=2 2,故选 A. (2)因为 an=2n-1,a2n=4n-1,
【例4】 等比数列{an}中,已知a1+a3=8,a5+a7=4,
则a9+a11+a13+a15的值为( )
A.1
B.2
C.3
D.5
【解析】 法一:因为{an}为等比数列, 所以 a5+a7 是 a1+a3 与 a9+a11 的等比中项, 所以(a5+a7)2=(a1+a3)·(a9+a11), 故 a9+a11=(aa51++aa73)2=482=2. 同理,a9+a11 是 a5+a7 与 a13+a15 的等比中项, 所以(a9+a11)2=(a5+a7)(a13+a15), 故 a13+a15=(aa95++aa117)2=242=1.

新高考数学通用版总复习一轮课件专题三数列

新高考数学通用版总复习一轮课件专题三数列
(2)依题意得 cn=bann=n2+n-11 =(n+1)12n-1,n∈N*.
因为
cn

1

cn

(n

2)
1 2
n

(n

1)
ห้องสมุดไป่ตู้
1 2
n

1

1 2
n


n+2 2-n-1=-n212n-1<0,
所以当 n=1 时,cn 取得最大值 c1=2. 因为 cn≤x2-2x-1 对于一切的正整数 n 恒成立, 所以 2≤x2-2x-1.
专题三 数列
高考在本章一般命制 2 道小题或者 1 道解答题,分值占 10~ 12 分.高考对小题的考查一般以等差、等比数列的基本量运算, 等差、等比数列的性质,数列的递推式等为主.解答题一般考查 求数列的通项公式,等差、等比数列的证明,错位相减法、裂
项相消法、公式法求和等.其中裂项相消法常与不等式相结合. 数列是历年高考的热点,对近几年高考试题统计看,全国
[例 3]若数列{an}是公差为 2 的等差数列,数列{bn}满足 b1=1,b2=2,且 anbn+bn=nbn+1.
(1)求数列{an},{bn}的通项公式; (2)设数列{cn}满足 cn=abn+n+11,数列{cn}的前 n 项和为 Tn, 若不等式(-1)nλ<Tn+2nn-1对一切 n∈N*恒成立,求实数 λ 的取 值范围.
【规律方法】探索性问题的类型及解法 (1)条件探索性问题:一般采用分析法,从结论或部分条件 入手,执果索因,导出所需条件,注意这类问题往往要求的是 问题的充分条件,不一定是充要条件. (2)存在性探索问题:一般假定存在,在这个前提下推理, 若由此推出矛盾,则否定假设,否则给出肯定结论. (3)结论探索性问题,由给定的已知条件进行猜想透彻分 析,发现规律,获取结论.

高三高考数学复习等差数列、等比数列(共29张PPT)

高三高考数学复习等差数列、等比数列(共29张PPT)

即会“脱去”数学文化的背景,提取关键信息;二是构造模型,
即由题意构建等差数列或等比数列或递推关系式的模型;三是
“解模”,即把文字语言转化为求数列的相关信息,如求指定项、
公比(或公差)、项数、通项公式或前 n 项和等. 精编优质课PPT江苏省2020届高三高考数学复习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
从而 a3×a5=25×27=212,所以 log2(a3a5)=log2212=12.
精编优质课PPT江苏省2020届高三高考 数学复 习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
精编优质课PPT江苏省2020届高三高考 数学复 习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
精编优质课PPT江苏省2020届高三高考 数学复 习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
变式1-3(2018·全国Ⅰ卷改编)记Sn为等差数列{an}的前n项和.若3S3=S2+S4,a1= 2,则a5=__-1__0____. 解:法一 设等差数列{an}的公差为 d,
解:设数列{an}首项为a1,公比为q(q≠1),
精编优质课PPT江苏省2020届高三高考数学复习 等差数列、等比数列(共29张PPT)(获奖课件推荐下载)
精编优质课PPT江苏省2020届高三高考 数学复 习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
精编优质课PPT江苏省2020届高三高考 数学复 习
法二 同法一得a5=3.
等差数列的等差中项
∴又da=2a5a+5-3a8a=2=d0⇒2,3anana21+=mamaa82=-0d⇒=2-a25+. 2a5=0a⇒n aa2=m -(n3. m)d

高考复习:等比数列及其前n项和含解析答案(教师版+学生版)

高考复习:等比数列及其前n项和含解析答案(教师版+学生版)

6.2等比数列及其前n 项和知识梳理1.等比数列的有关概念(1)定义:如果一个数列 ,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示.定义的表达式为(2)等比中项:如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒2.等比数列的有关公式(1)通项公式:a n = (2)前n 项和公式:S n = 当q ≠1时,S n = . 3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 是等比数列. [试一试]1.在1和9之间插入三个正数,使这五个数成等比数列,则插入的三个数的和为________.2.已知各项均为正数的等比数列{a n }的前n 项和为S n ,若a 3=18,S 3=26,则{a n }的公比q =________.3.函数y =x 2(x >0)的图像在点(a k ,a 2k )处的切线与x 轴交点的横坐标为a k +1,其中k ∈N *.若a 1=16,则a 1+a 3+a 5的值是________.考点一:等比数列的基本运算例1(1)在等比数列{a n }中,若a 2=-2,a 6=-32,则a 4=________.(2).(2014·扬州模拟)已知等比数列{a n }中,公比q >1,且a 1+a 4=9,a 2a 3=8,则a 2 013+a 2 014a 2 011+a 2 012=________.(3).设等比数列{a n }的公比q <1,前n 项和为S n ,已知a 3=2,S 4=5S 2,求{a n }的通项公式.考点二:等比数列的判定与证明例2.已知数列{a n }的前n 项和为S n ,且a n +S n =n .(1)设c n =a n -1,求证:{c n }是等比数列;(2)求数列{a n }的通项公式.变式1:在本例条件下,若数列{b n }满足b 1=a 1,b n =a n -a n -1(n ≥2), 证明{b n }是等比数列.变式2已知数列{a n }满足:a 1=1,a 2=a (a ≠0),a n +2=p ·a 2n +1a n(其中p 为非零常数,n ∈N *).(1)判断数列⎩⎨⎧⎭⎬⎫a n +1a n 是不是等比数列; (2)求a n .考点三:等比数列的性质[典例] (1)(2014·苏州期末)在等比数列{a n }中,若a 3a 5a 7=-8,则a 2a 8=________.(2)(2014·盐城二模)若等比数列{a n }满足a m -3=4且a m a m -4=a 24(m ∈N *且 m >4),则a 1a 5的值为________.(3)设数列{a n }、{b n }都是正项等比数列,S n 、T n 分别为数列{lg a n }与{lg b n }的前n 项和, 且S n T n =n 2n +1,求log b 5a 5例4.已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式; (2)证明:S n +1S n ≤136(n ∈N *).课堂练习;1. 已知在等比数列{a n }中,a 1+a 2=12,a 3+a 4=1,则a 7+a 8+a 9+a 10=________.2. 已知等比数列{a n }的公比q >0,a 2=1,a m +2+a m +1=6a m ,则{a n }的前4项和是________.3.(2014·南京学情调研)已知等比数列{a n }的公比q =-12,S n 为其前n 项和,则S 4a 4=________.4.(2014·连云港期末)在正项等比数列{a n }中,a 3a 11=16,则log 2a 2+log 2a 12=________.5.已知等比数列{a n }的各项均为正数,且a 1+2a 2=3,a 24=4a 3a 7,则数列{a n }的通项公式为________.6.3等比数列及其前n 项和作业1. )在等比数列{a n }中,S n 为其前n 项和,已知a 5=2S 4+3,a 6=2S 5+3,则此数列的公比q 为________.2.已知等比数列{a n }的各项均为正数,若a 1=3,前三项的和为21,则a 4+a 5+a 6=________.3.在数列{a n }中,a n +1=ca n (c 为非零常数),前n 项和为S n =3n +k ,则实数k 的值为________.4. 设各项都是正数的等比数列{a n },S n 为前n 项和,且S 10=10,S 30=70,那么S 40=________.5. 已知在等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=40,则a 5a 6a 7=________.6. )已知三个数x +log 27 2,x +log 92,x +log 32成等比数列,则公比为________.7.在等比数列{a n }中,若a 1=12,a 4=-4,则|a 1|+|a 2|+…+|a 6|=________.8. 已知数列{a n }的前n 项的和为S n ,若S n =3n -1(n ∈N *),则a 2 012+a 2 014a 2 013的值为________.9. 设数列{a n }的前n 项和为S n ,已知S n +1=pS n +q (p ,q 为常数,n ∈N *),且a 1=2,a 2=1,a 3=q -3p .(1)求p ,q 的值;(2)求数列{a n }的通项公式;(3)是否存在正整数m ,n 使S n -m S n +1-m <2m 2m +1成立?若存在,求出所有符合条件的有序数对(m ,n );若不存在,请说明理由.10.设数列{a n }的各项都为正数,其前n 项和为S n ,对于任意正整数m ,n ,S m +n =2a 2m (1+S 2n )-1恒成立.(1)若a 1=1,求a 2,a 3,a 4及数列{a n }的通项公式; (2)若a 4=a 2(a 1+a 2+1),求证:数列{a n }是等比数列.1.(2013·南京、盐城一模)记等比数列{a n }的前n 项积为T n (n ∈N *),若a m -1·a m +1-2a m =0,且T 2m -1=128,则m =________.2.(2014·苏中三市、连云港、淮安调研)各项均为正数的等比数列{a n }中,a 2-a 1=1.当a 3取最小值时,数列{a n }的通项公式a n =________.3.(2014·南京、盐城一模)若数列{a n }是首项为6-12t ,公差为6的等差数列,数列{b n }的前n 项和为S n =3n -t ,其中t 为实常数.(1)求数列{a n }和{b n }的通项公式;(2)若数列{b n }是等比数列,求证:对于任意的n (n ∈N *),均存在正整数c n ,使得b n +1=ac n ,并求数列{c n }的前n 项和T n ;(3)设数列{d n }满足d n =a n ·b n .若{d n }中不存在这样的项d k ,使得“d k <d k -1”与“d k <d k +1”同时成立(k ≥2,k ∈N *),求实数t 的取值范围.4.(2014·苏北三市统考)已知a >0,b <0,且a +b ≠0,令a 1=a ,b 1=b ,且对任意的正整数k ,当a k +b k ≥0时,a k +1=12a k -14b k ,b k +1=34b k ;当a k +b k <0时,b k +1=-14a k +12b k ,a k +1=34a k .(1)求数列{a n +b n }的通项公式;(2)若对任意的正整数n ,a n +b n <0恒成立,问:是否存在a ,b ,使得{b n }为等比数列?若存在,求出a ,b 满足的条件;若不存在,请说明理由;(3)若对任意的正整数n ,a n +b n <0,且b 2n =34b 2n +1,求数列{b n }的通项公式.1.等比数列的三种判定方法(1)定义:a n +1a n=q (q 是不为零的常数,n ∈N *)⇔{a n }是等比数列.(3)等比中项法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列. 2.等比数列的常见性质(1)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k ;(2)若数列{a n }、{b n }(项数相同)是等比数列,则{λa n }、⎩⎨⎧⎭⎬⎫1a n 、{a 2n }、{a n ·b n }、⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列;(3)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k ;(4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n ,当公比为-1时,S n ,S 2n -S n ,S 3n -S 2n 不一定构成等比数列.第三节等比数列及其前n 项和对应学生用书P711.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q .(2)等比中项:如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.1.在等比数列中易忽视每项与公比都不为0.2.在运用等比数列的前n 项和公式时,必须对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形导致解题失误.[试一试]1.在1和9之间插入三个正数,使这五个数成等比数列,则插入的三个数的和为________. 解析:设5个正数的公比为q (q >0),所以q 4=91=9,即q =3,则中间3个数的和为q +q 2+q 3=3+3+33=3+4 3.答案:3+4 32.(2014·徐州摸底)已知各项均为正数的等比数列{a n }的前n 项和为S n ,若a 3=18,S 3=26,则{a n }的公比q =________.解析:由⎩⎪⎨⎪⎧a 3=18,a 1+a 2+a 3=26,q >0得18q 2+18q=8,即4q 2-9q -9=0.所以(4q +3)(q -3)=0.因为q >0,所以q =3.答案:31.等比数列的三种判定方法(1)定义:a n +1a n=q (q 是不为零的常数,n ∈N *)⇔{a n }是等比数列.(3)等比中项法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列. 2.等比数列的常见性质(1)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k ;(2)若数列{a n }、{b n }(项数相同)是等比数列,则{λa n }、⎩⎨⎧⎭⎬⎫1a n 、{a 2n }、{a n ·b n }、⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列;(3)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k ;(4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n ,当公比为-1时,S n ,S 2n -S n ,S 3n -S 2n 不一定构成等比数列.3.求解等比数列的基本量常用的思想方法(1)方程的思想:等比数列的通项公式、前n 项和的公式中联系着五个量:a 1,q ,n ,a n ,S n ,已知其中三个量,可以通过解方程(组)求出另外两个量;其中基本量是a 1与q ,在解题中根据已知条件建立关于a 1与q 的方程或者方程组,是解题的关键.(2)分类讨论思想:在应用等比数列前n 项和公式时,必须分类求和,当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q;在判断等比数列单调性时,也必须对a 1与q 分类讨论.[练一练]1.(2010·江苏高考)函数y =x 2(x >0)的图像在点(a k ,a 2k )处的切线与x 轴交点的横坐标为a k +1,其中k ∈N *.若a 1=16,则a 1+a 3+a 5的值是________.解析:切线斜率k =2a k ,切线方程为 y -a 2k =2a k (x -a k ), 即y =2a k x -a 2k ,令y =0,得x =a k2=a k +1,所以{a n }是首项a 1=16,公比q =12的等比数列,所以a n =(12)n -5,故a 1+a 3+a 5=21.答案:212.已知数列{a n }是公比q ≠±1的等比数列,则在{a n +a n +1},{a n +1-a n },⎩⎨⎧⎭⎬⎫a n a n +1,{na n }这四个数列中,是等比数列的有________个.对应学生用书P72等比数列的基本运算1.(2013·n 264解析:由a 6a 2=q 4=16,则q 2=4,所以有a 4=a 2q 2=-8.答案:-82.(2014·扬州模拟)已知等比数列{a n }中,公比q >1,且a 1+a 4=9,a 2a 3=8,则a 2 013+a 2 014a 2 011+a 2 012=________.解析:因为{a n }为等比数列,故a 1a 4=a 2a 3=8,与a 1+a 4=9联立解得⎩⎪⎨⎪⎧ a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1.又q >1,故a 1=1,a 4=8,从而q =2,故a 2 013+a 2 014a 2 011+a 2 012=q 2=4.答案:43.设等比数列{a n }的公比q <1,前n 项和为S n ,已知a 3=2,S 4=5S 2,求{a n }的通项公式. 解:由题设知a 1≠0,S n =a 1(1-q n )1-q,所以⎩⎪⎨⎪⎧a 1q 2=2, ①a 1(1-q 4)1-q =5×a 1(1-q 2)1-q . ② 由②式得1-q 4=5(1-q 2), 即(q -2)(q +2)(q -1)(q +1)=0. 因为q <1,所以q =-1,或q =-2. 当q =-1时,代入①式得a 1=2, 通项公式a n =2×(-1)n -1;当q =-2时,代入①式得a 1=12,通项公式a n =12×(-2)n -1.综上,a n =⎩⎪⎨⎪⎧2×(-1)n -1,q =-1,12×(-2)n -1,q =-2.[备课札记][类题通法]1.对于等比数列的有关计算问题,可类比等差数列问题进行,在解方程组的过程中要注意“相除”消元的方法,同时要注意整体代入(换元)思想方法的应用.2.在涉及等比数列前n项和公式时要注意对公比q是否等于1进行判断和讨论.等比数列的判定与证明[典例]n n n n(1)设c n=a n-1,求证:{c n}是等比数列;(2)求数列{a n}的通项公式.[解](1)证明:∵an+S n=n,①∴a n+1+S n+1=n+1. ②②-①得a n+1-a n+a n+1=1,∴2a n+1=a n+1,∴2(a n+1-1)=a n-1,∴a n+1-1a n-1=12.∵首项c1=a1-1,又a1+a1=1,∴a1=12,c1=-12.又c n=a n-1,故{c n}是以-12为首项,12为公比的等比数列.(2)由(1)知c n=-12×⎝⎛⎭⎫12n-1=-⎝⎛⎭⎫12n∴a n=1-⎝⎛⎭⎫12n.[备课札记]在本例条件下,若数列证明证明:∵由(2)知a n =1-⎝⎛⎭⎫12n, ∴当n ≥2时,b n =a n -a n -1 =1-⎝⎛⎭⎫12n -⎣⎡⎦⎤1-⎝⎛⎭⎫12n -1 =⎝⎛⎭⎫12n -1-⎝⎛⎭⎫12n =⎝⎛⎭⎫12n .又b 1=a 1=12也符合上式,∴b n =⎝⎛⎭⎫12n . ∴b n +1b n =12,数列{b n }是等比数列. [类题通法]证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.[针对训练]已知数列{a n }满足:a 1=1,a 2=a (a ≠0),a n +2=p ·a 2n +1a n(其中p 为非零常数,n ∈N *).(1)判断数列⎩⎨⎧⎭⎬⎫a n +1a n 是不是等比数列; (2)求a n .解:(1)由a n +2=p ·a 2n +1a n ,得a n +2a n +1=p ·a n +1a n .令c n =a n +1a n,则c 1=a ,c n +1=pc n .∵a ≠0,∴c 1≠0,c n +1c n=p (非零常数),∴数列⎩⎨⎧⎭⎬⎫a n +1a n 是等比数列. (2)∵数列{c n }是首项为a ,公比为p 的等比数列, ∴c n =c 1·p n -1=a ·p n -1,即a n +1a n=ap n -1.当n ≥2时,a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=(ap n -2)×(ap n -3)×…×(ap 0)×1=a n -1p n 2-3n +22,∵a 1满足上式,∴a n =an -1p n 2-3n +22,n ∈N *.等比数列的性质[典例] (1)(2014·苏州期末)在等比数列{a n }中,若a 3a 5a 7=-8,则a 2a 8=________.(2)(2014·盐城二模)若等比数列{a n }满足a m -3=4且a m a m -4=a 24(m ∈N *且 m >4),则a 1a 5的值为________.[解析] (1)根据等比数列的性质可知a 2a 8=a 3a 7=a 25=(3-8)2=4.(2)令m =5得a 1a 5=a 24且a 2=4,再令m =6得a 2a 6=a 24且a 3=4,从而等比数列是常数列,故a 1a 5=16.[答案] (1)4 (2)16[备课札记] [类题通法]等比数列常见性质的应用等比数列的性质可以分为三类:①通项公式的变形,②等比中项的变形,③前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.[针对训练]1.(2014·苏北四市调研)已知在等比数列{a n }中,a 1+a 2=12,a 3+a 4=1,则a 7+a 8+a 9+a 10=________.解析:由题意得,{a n +a n +1}是首项为12,公比为2的等比数列,所以a 7+a 8=4,a 9+a 10=8,从而a 7+a 8+a 9+a 10=12.答案:122.(2014·南京二模)已知等比数列{a n }的公比q >0,a 2=1,a m +2+a m +1=6a m ,则{a n }的前4项和是________.解析:由a m +2+a m +1=6a m 得a m q 2+a m q =6a m ,即q 2+q =6,解得q =2或q =-3(舍去).从而a 1=a 2q =12,所以S 4=a 1(1-q 4)1-q =12×(1-24)1-2=152.答案:152对应学生用书P73[课堂练通考点]1.(2014·南京学情调研)已知等比数列{a n }的公比q =-12,S n 为其前n 项和,则S 4a 4=________.解析:因为S 4=a 1(1-q 4)1-q,a 4=a 1q 3,所以S 4a 4=1-q 4q 3(1-q )=1-116(-18)×(1+12)=-5.答案:-52.(2014·连云港期末)在正项等比数列{a n }中,a 3a 11=16,则log 2a 2+log 2a 12=________. 解析:因为等比数列{a n }中,a 3a 11=16,所以a 2a 12=a 3a 11=16,所以log 2a 2+log 2a 12=log 2(a 2a 12)=log 216=4.答案:43.已知等比数列{a n }的各项均为正数,且a 1+2a 2=3,a 24=4a 3a 7,则数列{a n }的通项公式为________.解析:设等比数列{a n }的首项为a 1,公比为q ,则由等比数列{a n }的各项均为正数知,q >0.又由⎩⎪⎨⎪⎧ a 1+2a 2=3,a 24=4a 3a 7得⎩⎪⎨⎪⎧a 1(1+2q )=3,a 24=4(a 4q )2,解得⎩⎨⎧a 1=32,q =12,所以数列{a n }的通项公式为a n =a 1q n-1=32·(12)n -1=32n . 答案:a n =32n4.已知数列{a n }是等比数列,a 1,a 2,a 3依次位于下表中第一行,第二行,第三行中的某一格内,又a 1,a 2,a 3中任何两个都不在同一列,则a n =________(n ∈N *).解析:123n 2,公比为3的等比数列,∴a n =2·3n -1.答案:2·3n -15.设数列{a n }的前n 项和为S n ,a 1=1,且数列{S n }是以2为公比的等比数列. (1)求数列{a n }的通项公式;(2)求a 1+a 3+…+a 2n +1. 解:(1)∵S 1=a 1=1,且数列{S n }是以2为公比的等比数列, ∴S n =2n -1,又当n ≥2时,a n =S n -S n -1=2n -2(2-1)=2n -2.∴a n =⎩⎪⎨⎪⎧1,n =1,2n -2,n ≥2.(2)a 3,a 5,…,a 2n +1是以2为首项,以4为公比的等比数列, ∴a 3+a 5+…+a 2n +1=2(1-4n )1-4=2(4n -1)3.∴a 1+a 3+…+a 2n +1=1+2(4n -1)3=22n +1+13.[课下提升考能]第Ⅰ卷:夯基保分卷1.(2013·镇江期末)在等比数列{a n }中,S n 为其前n 项和,已知a 5=2S 4+3,a 6=2S 5+3,则此数列的公比q 为________.解析:由已知a 5=2S 4+3,a 6=2S 5+3,两式相减得a 6-a 5=2a 5,即a 6=3a 5,所以q =3. 答案:32.已知等比数列{a n }的各项均为正数,若a 1=3,前三项的和为21,则a 4+a 5+a 6=________. 解析:由题意a n =a 1q n -1(q >0),a 1+a 2+a 3=21,即⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=21,a 1=3,q >0,即1+q +q 2=7,解得q =2.所以a 4+a 5+a 6=(a 1+a 2+a 3)q 3=21×8=168. 答案:1683.在数列{a n }中,a n +1=ca n (c 为非零常数),前n 项和为S n =3n +k ,则实数k 的值为________. 解析:依题意得,数列{a n }是等比数列,a 1=3+k ,a 2=S 2-S 1=6,a 3=S 3-S 2=18,则62=18(3+k ),由此解得k =-1.答案:-14.(2014·江西省七校联考)设各项都是正数的等比数列{a n },S n 为前n 项和,且S 10=10,S 30=70,那么S 40=________.解析:依题意,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列,因此有(S 20-S 10)2=S 10(S 30-S 20),即(S 20-10)2=10(70-S 20),故S 20=-20或S 20=30;又S 20>0,因此S 20=30,S 20-S 10=20,S 30-S 20=40,故S 40-S 30=80,S 40=150.答案:1505.(2014·盐城二模)已知在等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=40,则a 5a 6a 7=________. 解析:由条件得a 2=35,a 8=340,于是q 6=2,故a 5a 6a 7=a 32q 12=5×4=20. 解析:206.(2013·南通三模)已知三个数x +log 27 2,x +log 92,x +log 32成等比数列,则公比为________. 解析:由条件得(x +log 92)2=(x +log 272)(x +log 32),展开得x 2+log 32·x +14(log 32)2=x 2+43log 32·x +13(log 32)2,解得x =-14log 32,从而公比q =-14log 32+log 92-14log 32+log 272=-14log 32+12log 32-14log 32+13log 32=3.答案:37.在等比数列{a n }中,若a 1=12,a 4=-4,则|a 1|+|a 2|+…+|a 6|=________.解析:由题意得-4=12·q 3,故q =-2,从而|a 1|+|a 2|+…+|a 6|=12+1+2+4+8+16=632.答案:6328.(2014·常州调研)已知数列{a n }的前n 项的和为S n ,若S n =3n -1(n ∈N *),则a 2 012+a 2 014a 2 013的值为________.解析:依题意可知数列{a n }为等比数列,且公比q =3,从而a 2 012+a 2 014a 2 013=a 2 0133+3a 2 013a 2 013=13+3=103.答案:1039.(2014·苏北四市质检)设数列{a n }的前n 项和为S n ,已知S n +1=pS n +q (p ,q 为常数,n ∈N *),且a 1=2,a 2=1,a 3=q -3p .(1)求p ,q 的值;(2)求数列{a n }的通项公式;(3)是否存在正整数m ,n 使S n -m S n +1-m <2m 2m +1成立?若存在,求出所有符合条件的有序数对(m ,n );若不存在,请说明理由.解:(1)由题意知⎩⎪⎨⎪⎧ S 2=pa 1+q ,S 3=pS 2+q ,即⎩⎪⎨⎪⎧3=2p +q ,3+q -3p =3p +q ,解得⎩⎪⎨⎪⎧p =12,q =2.(2)由(1)知,S n +1=12S n +2.① 当n ≥2时,S n =12S n -1+2,②①-②,得a n +1=12a n (n ≥2).又a 2=12a 1,所以a n +1=12a n (n ∈N *),所以数列{a n }是首项为2,公比为12的等比数列,所以a n =12n -2.(3)由(2)得S n =2(1-12n )1-12=4(1-12n ).假设存在符合条件的m ,n .则由S n -m S n +1-m <2m 2m +1,得4(1-12n )-m4(1-12n +1)-m<2m 2m +1,即2n (4-m )-42n (4-m )-2<2m 2m +1,即22n (4-m )-2>12m +1.因为2m +1>0,所以2n (4-m )-2>0, 所以m <4,且2<2n (4-m )<2m +1+4.(*)因为m ∈N *,所以m =1或2或3.当m =1时,由(*)得2<2n ×3<8,所以n =1; 当m =2时,由(*)得2<2n ×2<12,所以n =1或2; 当m =3时,由(*)得2<2n <20,所以n =2或3或4.综上可知,存在符合条件的所有有序数对(m ,n )为(1,1),(2,1),(2,2),(3,2),(3,3),(3,4). 10.设数列{a n }的各项都为正数,其前n 项和为S n ,对于任意正整数m ,n ,S m +n =2a 2m (1+S 2n )-1恒成立.(1)若a 1=1,求a 2,a 3,a 4及数列{a n }的通项公式; (2)若a 4=a 2(a 1+a 2+1),求证:数列{a n }是等比数列.解:(1)由条件得1+S m +n =2a 2m (1+S 2n ). ① 在①中,令m =1得1+S n +1=2a 2(1+S 2n ). ② 令m =2得1+S n +2= 2a 4(1+S 2n ).③③÷②得1+S n +21+S n +1=a 4a 2(n ∈N *). 记a 4a 2=q ,则数列{1+S n }(n ≥2,n ∈N *)是公比为q 的等比数列. 所以1+S n =(1+S 2)q n -2(n ≥2,n ∈N *). ④ 当n ≥3时,1+S n -1=(1+S 2)q n -3.⑤④-⑤得a n =(1+S 2)q n -3(q -1)(n ≥3,n ∈N *), (*) 在①中,令m =n =1 得1+S 2=2a 2(1+S 2).所以(1+S 2)2=2a 2(1+S 2).则1+S 2=2a 2. 所以a 2=1+a 1. 因为a 1=1,所以a 2=2.在①中,令m =1,n =2得1+S 3=2a 2(1+S 4), 则(4+a 3)2=4(4+a 3+a 4).⑥在①中,令m =2,n =1得1+S 3=2a 4(1+S 2). 则(4+a 3)2=8a 4.⑦由⑥⑦解得a 3=4,a 4=8.则q =2. 由a n =(1+S 2)q n -3(q -1)(n ≥3,n ∈N *)得a n =4×2n -3·(2-1)=2n -1(n ≥3,n ∈N *),因为a 1=1,a 2=2也适合上式, 所以a n =2n -1(n ∈N *).(2)证明:在①中,令m =2,n =2, 得1+S 4=2a 4(1+S 4), 则1+S 4=2a 4,所以1+S 3=a 4. 又1+S 3=2a 2(1+S 4), 则1+S 3=2a 2(1+S 3+a 4), 所以a 4=2a 2·2a 4, 则a 4=4a 2,q =2.代入(*)得a n =(1+S 2)2n -3(n ≥3,n ∈N *).由条件a 4=a 2(a 1+a 2+1)得a 1+a 2+1=4. 因为a 2=1+a 1,所以a 1=1,所以a 2=2,则 a n =4×2n -3=2n -1(n ≥3,n ∈N *),因为a 1=1,a 2=2也适合上式, 所以a n =2n -1(n ∈N *).所以数列{a n }是等比数列. 第Ⅱ卷:提能增分卷1.(2013·南京、盐城一模)记等比数列{a n }的前n 项积为T n (n ∈N *),若a m -1·a m +1-2a m =0,且T 2m -1=128,则m =________.解析:因为{a n }是等比数列,所以a m -1a m +1=a 2m .又因为a m -1a m +1-2a m =0,即a 2m -2a m =0,所以a m =2(a m =0舍去).又T 2m -1=a 1a 2…a 2m -2a 2m -1=a 2m -1m =128=27,所以2m -1=7,解得m=4.答案:42.(2014·苏中三市、连云港、淮安调研)各项均为正数的等比数列{a n }中,a 2-a 1=1.当a 3取最小值时,数列{a n }的通项公式a n =________.解析:法一:由a 22=a 1a 3,a 2-a 1=1及a n >0得a 3=(a 1+1)2a 1=a 1+1a 1+2≥4,当且仅当a 1=1时取等号,此时a 2=2,则a n =2n -1.法二:设公比为q (q >0),则由条件得a 1q -a 1=1,即q =a 1+1a 1,从而a 3=a 1q 2,以下同解法一.答案:2n -13.(2014·南京、盐城一模)若数列{a n }是首项为6-12t ,公差为6的等差数列,数列{b n }的前n 项和为S n =3n -t ,其中t 为实常数.(1)求数列{a n }和{b n }的通项公式;(2)若数列{b n }是等比数列,求证:对于任意的n (n ∈N *),均存在正整数c n ,使得b n +1=ac n ,并求数列{c n }的前n 项和T n ;(3)设数列{d n }满足d n =a n ·b n .若{d n }中不存在这样的项d k ,使得“d k <d k -1”与“d k <d k +1”同时成立(k ≥2,k ∈N *),求实数t 的取值范围.解:(1)因为{a n }是等差数列,所以a n =(6-12t )+6(n -1)=6n -12t (n ∈N *).因为数列{b n }的前n 项和为S n =3n -t ,所以当n ≥2时,b n =(3n -t )-(3n -1-t )=2·3n -1. 又b 1=S 1=3-t ,故b n =⎩⎪⎨⎪⎧3-t ,n =1,2·3n -1,n ≥2. (2)证明:因为{b n }是等比数列,所以3-t =2·31-1, 解得t =1.从而a n =6n -12,b n =2·3n -1(n ∈N *). 由于b n +1=2·3n =6·3n -1=6(3n -1+2)-12 令c n =3n -1+2∈N *,则ac n =6(3n -1+2)-12=b n +1, 所以命题成立.从而数列{c n }的前n 项和T n =2n +1-3n 1-3=12·3n +2n -12. (3)由题意得d n =⎩⎪⎨⎪⎧6(3-t )(1-2t ),n =1,4(n -2t )×3n ,n ≥2. 当n ≥2时,d n +1-d n =4(n +1-2t )·3n +1-4(n -2t )×3n =8[n -(2t -32)]·3n . ①若2t -32<2,即t <74时,d n +1>d n (n ∈N *,n ≥2). 由题意得d 1≤d 2,即6(3-t )(1-2t )≤36(2-2t ), 解得-5-974≤t ≤-5+974<74. 所以t ∈⎣⎢⎡⎦⎥⎤-5-974,-5+974; ②若2≤2t -32<3,即74≤t <94时,d n +1>d n (n ∈N *,n ≥3). 而d 1>d 2≥d 3,由题意得d 2=d 3,即4(2t -2)×32=4(2t -3)×33,解得t =74; ③若m ≤2t -32<m +1,即m 2+34≤t <m 2+54(m ∈N ,m ≥3)时,d n +1≥d n (n ∈N *,n ≥m +1),而d n +1≤d n (n ∈N *,2≤n ≤m ).由题意得d m =d m +1,即4(2t -m )·3m =4(2t -m -1)·3m +1,解得t =2m +34. 综上所述,t 的取值范围是⎩⎨⎧ t |-5-974≤t ≤-5+974或 ⎭⎬⎫t =2m +34(m ∈N ,m ≥2). 4.(2014·苏北三市统考)已知a >0,b <0,且a +b ≠0,令a 1=a ,b 1=b ,且对任意的正整数k ,当a k +b k ≥0时,a k +1=12a k -14b k ,b k +1=34b k ;当a k +b k <0时,b k +1=-14a k +12b k ,a k +1=34a k . (1)求数列{a n +b n }的通项公式;(2)若对任意的正整数n ,a n +b n <0恒成立,问:是否存在a ,b ,使得{b n }为等比数列?若存在,求出a ,b 满足的条件;若不存在,请说明理由;(3)若对任意的正整数n ,a n +b n <0,且b 2n =34b 2n +1,求数列{b n }的通项公式. 解:(1)当a n +b n ≥0时,a n +1=12a n -14b n ,b n +1=34b n , 所以a n +1+b n +1=12a n -14b n +34b n =12(a n +b n ); 又当a n +b n <0时,b n +1=-14a n +12b n ,a n +1=34a n , 所以a n +1+b n +1=34a n -14a n +12b n =12(a n +b n ), 因此数列{a n +b n }是以a +b 为首项,12为公比的等比数列,所以a n +b n =(a +b )⎝⎛⎭⎫12n -1. (2)因为a n +b n <0,所以a n +1=34a n ,所以a n =a ⎝⎛⎭⎫34n -1,b n =()a +b ⎝⎛⎭⎫12n -1-a n =(a +b )⎝⎛⎭⎫12n -1-a ⎝⎛⎭⎫34n -1.假设存在a ,b ,使得{b n }能构成等比数列,则b 1=b ,b 2=2b -a 4,b 3=4b -5a 16, 故⎝⎛⎭⎫2b -a 42=⎝⎛⎭⎫4b -5a 16b ,化简得a +b =0,与题中a +b ≠0矛盾.故不存在a ,b ,使得{b n }为等比数列.(3)因为a n +b n <0且b 2n =34b 2n +1, 所以b 2n =-14a 2n -1+12b 2n -1, 所以34b 2n +1=-14a 2n -1+12b 2n -1=-14a 2n -1+34b 2n -1-14b 2n -1, 所以34(b 2n +1-b 2n -1)=-14(a 2n -1+b 2n -1).由(1)知a 2n -1+b 2n -1=(a +b )⎝⎛⎭⎫122n -2,所以b 2n +1-b 2n -1=-a +b 3(12)2n -2, b 2n -1=b 1+(b 3-b 1)+…+(b 2n -1-b 2n -3)=b -a +b 3·⎣⎡⎦⎤1+⎝⎛⎭⎫122+⎝⎛⎭⎫124+…+⎝⎛⎭⎫122n -4 =b -4(a +b )9·⎣⎡⎦⎤1-⎝⎛⎭⎫14n -1, b 2n =34b 2n +1=34b -(a +b )3·⎣⎡⎦⎤1-⎝⎛⎭⎫14n , 所以b n =⎩⎨⎧ b -4(a +b )9·⎣⎡⎦⎤1-⎝⎛⎭⎫14n -12,n 为奇数,34b -(a +b )3·⎣⎡⎦⎤1-⎝⎛⎭⎫14n 2,n 为偶数.。

人教A版高考总复习一轮数学精品课件 第六章 数列 第三节 等比数列 (2)

人教A版高考总复习一轮数学精品课件 第六章 数列 第三节 等比数列 (2)
q.依题意,q≠±1,S6=
,S9=
.由
1-
1-
1+3 +6
1+3
=
3
1
3
,解得 q =- 或 q3=1(舍去).由
2
2
a1-a4=3 得 a1(1-q )=3,于是得 a1=2,则有 an=2·
q .由
3
1

2
-1
3
=
1 2
=
2
1 2
-1
− ,从而有 =2,解得
2
3
n-1
1
am=2得
·

=
(+2) +1
2 ·
(+1)

∴数列{bn}是首项为 2,公比为 4
=
(+2) 4(+1)2
2 ·(+2) =4,且
(+1)
+1
的等比数列,∴bn= ·
an=2·
4n-1,则


an= ·
22n-1.
+1
(2)解 ∵bn=2·
4 ,∴Tn=2×(1+4+…+4
或 Sn= 1 -
1-
, ≠ 1
1-
, ≠ 1.
微点拨在运用等比数列前n项和公式时,必须注意对q=1和q≠1分类讨论,防
止因忽略q=1这一特殊情况而导致解答错误.
3.等比数列的性质
(1)通项公式的推广:an=amqn-m(n,m∈N*).
(2)若数列{an}为等比数列,且m+n=p+q,则aman=apaq(m,n,p,q∈N*).
=q(n∈N*).

专题6.3等比数列及其前n项和(2021年高考数学一轮复习专题)

专题6.3等比数列及其前n项和(2021年高考数学一轮复习专题)

专题 等比数列及其前n 项和一、题型全归纳题型一 等比数列基本量的运算【题型要点】1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n =q (q ≠0,n ∈N *).(2)等比中项如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔G 2=ab . “a ,G ,b 成等比数列”是“G 是a 与b 的等比中项”的充分不必要条件. 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.解决等比数列有关问题的2种常用思想4.等比数列的基本运算方法(1)等比数列可以由首项a 1和公比q 确定,所有关于等比数列的计算和证明,都可围绕a 1和q 进行. (2)对于等比数列问题,一般给出两个条件,就可以通过列方程(组)求出a 1,q .如果再给出第三个条件就可以完成a 1,n ,q ,a n ,S n 的“知三求二”问题.例1】记S n 为等比数列{a n }的前n 项和.若a 1=1,S 3=34,则S 4= .【答案】58.【解析】通解:设等比数列{a n }的公比为q ,由a 1=1及S 3=34,易知q ≠1.把a 1=1代入S 3=a 1(1-q 3)1-q=34,得1+q +q 2=34,解得q =-12,所以S 4=a 1(1-q 4)1-q =⎪⎭⎫⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⨯21--121--114=58.优解一:设等比数列{a n }的公比为q ,因为S 3=a 1+a 2+a 3=a 1(1+q +q 2)=34,a 1=1,所以1+q +q 2=34,解得q =-12,所以a 4=a 1·q 3=321-⎪⎭⎫⎝⎛=-18,所以S 4=S 3+a 4=34+⎪⎭⎫ ⎝⎛81-=58.优解二:设等比数列{a n }的公比为q ,由题意易知q ≠1.设数列{a n }的前n 项和S n =A (1-q n )(其中A 为常数),则a 1=S 1=A (1-q )=1 ①,S 3=A (1-q 3)=34 ②,由①②可得A =23,q =-12.所以S 4=23×⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⨯421--11=58.【例2】(2020·福州市质量检测)等比数列{a n }的各项均为正实数,其前n 项和为S n .若a 3=4,a 2a 6=64,则S 5=( )A .32B .31C .64D .63【解析】:通解:设首项为a 1,公比为q ,因为a n >0,所以q >0,由条件得⎩⎪⎨⎪⎧a 1·q 2=4,a 1q ·a 1q 5=64,解得⎩⎪⎨⎪⎧a 1=1,q =2,所以S 5=31,故选B.优解:设首项为a 1,公比为q ,因为a n >0,所以q >0,由a 2a 6=a 24=64,a 3=4,得q =2,a 1=1, 所以S 5=31,故选B.题型二 等比数列的判定与证明【题型要点】等比数列的判定方法(1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a na n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列通项公式可写成a n =c ·q n (c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列. (4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列. 【易错提醒】:(1)前两种方法是判定等比数列的常用方法,常用于证明;后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.【例1】已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a nn .(1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.【解析】 (1)由条件可得a n +1=2(n +1)n a n .将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4.将n =2代入得,a 3=3a 2,所以,a 3=12.从而b 1=1,b 2=2,b 3=4. (2){b n }是首项为1,公比为2的等比数列.由条件可得a n +1n +1=2a nn,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.【例2】设数列{a n }的前n 项和为S n ,满足:S n +a n =n -1n (n +1),n =1,2,…,n .(1)求证:数列⎭⎬⎫⎩⎨⎧+-11n S n 是等比数列;(2)求S n . 【解析】 (1)证明:由题意,n =1时,S 1+a 1=0,即a 1=0,n ≥2时,S n +S n -S n -1=2S n -S n -1=n -1n (n +1)=2n +1-1n,所以S n -1n +1=12⎭⎬⎫⎩⎨⎧-n S n 11-,S 1-12=-12,所以数列⎭⎬⎫⎩⎨⎧+-11n S n 是以-12为首项,12为公比的等比数列. (2)由(1)知,S n -1n +1=121-⎪⎭⎫⎝⎛n ⎪⎭⎫ ⎝⎛21-=n ⎪⎭⎫ ⎝⎛21-,所以S n =1n +1-n⎪⎭⎫⎝⎛21. 【例3】已知数列{a n }是等比数列,则下列命题不正确的是( ) A .数列{|a n |}是等比数列 B .数列{a n a n +1}是等比数列 C .数列⎭⎬⎫⎩⎨⎧n a 1是等比数列 D .数列{lg a 2n }是等比数列 【解析】.因为数列{a n }是等比数列,所以a n +1a n =q .对于A ,|a n +1||a n |=⎪⎪⎪⎪a n +1a n =|q |,所以数列{|a n |}是等比数列,A 正确;对于B ,a n +1a n +2a n a n +1=q 2,所以数列{a n a n +1}是等比数列,B 正确;对于C ,1a n +11a n=a n a n +1=1q ,所以数列⎭⎬⎫⎩⎨⎧n a 1是等比数列,C 正确;对于D ,lg a 2n +1lg a 2n =2lg a n +12lg a n =lg a n +1lg a n ,不一定是常数,所以D 错误. 【例4】已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ,若不存在,请说明理由. 【解析】:(1)当n =1时,S 1=a 1=2a 1-3,解得a 1=3, 当n =2时,S 2=a 1+a 2=2a 2-6,解得a 2=9, 当n =3时,S 3=a 1+a 2+a 3=2a 3-9,解得a 3=21.(2)假设{a n +λ}是等比数列,则(a 2+λ)2=(a 1+λ)(a 3+λ),即(9+λ)2=(3+λ)(21+λ),解得λ=3. 下面证明{a n +3}为等比数列:因为S n =2a n -3n ,所以S n +1=2a n +1-3n -3,所以a n +1=S n +1-S n =2a n +1-2a n -3,即2a n +3=a n +1, 所以2(a n +3)=a n +1+3,所以a n +1+3a n +3=2,所以存在λ=3,使得数列{a n +3}是首项为a 1+3=6,公比为2的等比数列. 所以a n +3=6×2n -1,即a n =3(2n -1)(n ∈N *).题型三 等比数列性质的应用【题型要点】1.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和(m ,n ,p ,q ,r ,k ∈N *) (1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r . (2)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列.(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时{a n }的公比q ≠-1). 常用结论2.记住等比数列的几个常用结论(1)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎭⎬⎫⎩⎨⎧n a 1,{a 2n },{a n ·b n },⎭⎬⎫⎩⎨⎧n n b a 仍是等比数列.(2)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .(3)一个等比数列各项的k 次幂,仍组成一个等比数列,新公比是原公比的k 次幂. (4){a n }为等比数列,若a 1·a 2·…·a n =T n ,则T n ,T 2n T n ,T 3nT 2n,…成等比数列.(5)当q ≠0,q ≠1时,S n =k -k ·q n (k ≠0)是{a n }成等比数列的充要条件,此时k =a 11-q.(6)有穷等比数列中,与首末两项等距离的两项的积相等.特别地,若项数为奇数时,还等于中间项的平方.类型一 等比数列项的性质的应用【例1】已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12D .18【解析】:法一:因为a 3a 5=a 24,a 3a 5=4(a 4-1),所以a 24=4(a 4-1),所以a 24-4a 4+4=0,所以a 4=2.又因为q 3=a 4a 1=214=8,所以q =2,所以a 2=a 1q =14×2=12,故选C. 法二:因为a 3a 5=4(a 4-1),所以a 1q 2·a 1q 4=4(a 1q 3-1),将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,所以a 2=a 1q =12,故选C.【例2】(2020·洛阳市第一次联考)等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的两根,则a 2a 16a 9的值为( )A .-2+22B .-2 C. 2D .-2或2【解析】设等比数列{a n }的公比为q ,因为a 3,a 15是方程x 2+6x +2=0的两根,所以a 3·a 15=a 29=2,a 3+a 15=-6,所以a 3<0,a 15<0,则a 9=-2,所以a 2a 16a 9=a 29a 9=a 9=- 2.类型二 等差数列前n 项和性质的应用【例3】等比数列{a n }中,前n 项和为48,前2n 项和为60,则其前3n 项和为________. 【解析】法一:设数列{a n }的前n 项和为S n .因为S 2n ≠2S n ,所以q ≠1,由前n 项和公式得⎩⎪⎨⎪⎧a 1(1-q n )1-q=48,①a 1(1-q 2n )1-q=60,②②÷①,得1+q n =54,所以q n =14.③将③将入①,得a 11-q=64. 所以S 3n =a 1(1-q 3n )1-q =64×⎪⎭⎫⎝⎛341-1=63.法二:设数列{a n }的前n 项和为S n ,因为{a n }为等比数列,所以S n ,S 2n -S n ,S 3n -S 2n 也成等比数列, 所以(S 2n -S n )2=S n (S 3n -S 2n ),即S 3n =(S 2n -S n )2S n +S 2n =(60-48)248+60=63.法三:设数列{a n }的前n 项和为S n ,因为S 2n =S n +q n S n ,所以q n =S 2n -S n S n =14,所以S 3n =S 2n +q 2n S n =60+241⎪⎭⎫⎝⎛×48=63.【例4】(2020·池州高三上学期期末)已知等比数列{a n }的公比q =2,前100项和为S 100=90,则其偶数项 a 2+a 4+…+a 100为( ) A .15 B .30 C .45D .60【解析】设S =a 1+a 3+…+a 99,则a 2+a 4+…+a 100=(a 1+a 3+…+a 99)q =2S ,又因为S 100=a 1+a 2+a 3+…+a 100=90,所以3S =90,S =30,所以a 2+a 4+…+a 100=2S =60.【例5】已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q = .【解析】由题意,得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160,所以q =S 偶S 奇=-160-80=2.【总结提升】1.掌握运用等比数列性质解题的两个技巧(1)在等比数列的基本运算问题中,一般是列出a 1,q 满足的方程组求解,但有时运算量较大,如果可利用等比数列的性质,便可减少运算量,提高解题的速度,要注意挖掘已知和隐含的条件. (2)利用性质可以得到一些新数列仍为等比数列或为等差数列,例如:①若{a n }是等比数列,且a n >0,则{log a a n }(a >0且a ≠1)是以log a a 1为首项,log a q 为公差的等差数列. ②若公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n . 2.牢记与等比数列前n 项和S n 相关的几个结论 (1)项的个数的“奇偶”性质:等比数列{a n }中,公比为q . ①若共有2n 项,则S 偶∶S 奇=q ;②若共有2n +1项,则S 奇-S 偶=a 1+a 2n +1q 1+q (q ≠1且q ≠-1),S 奇-a 1S 偶=q .(2)分段求和:S n +m =S n +q n S m ⇔q n =S n +m -S nS m(q 为公比).题型四 数列与数学文化及实际应用类型一.等差数列与数学文化【例1】(2020·广东潮州二模)我国古代名著《九章算术》中有这样一段话:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.”意思是:现有一根金箠,长5尺,头部1尺,重4斤,尾部1尺,重2斤.若该金箠从头到尾,每一尺的质量构成等差数列,则该金箠共重( ) A .6斤 B .7斤 C .9斤D .15斤【解析】 设从头到尾每一尺的质量构成等差数列{a n },则有a 1=4,a 5=2,所以a 1+a 5=6,数列{a n }的前5项和为S 5=5×a 1+a 52=5×3=15,即该金箠共重15斤.故选D.【题后升华】以数学文化为背景的等差数列模型题的求解关键:一是会脱去数学文化的背景,读懂题意;二是构建模型,即由题意构建等差数列的模型;三是解模,即把文字语言转化为求等差数列的相关问题,如求指定项、公差或项数、通项公式或前n 项和等.类型二.等比数列与数学文化【例2】(2020·湖南衡阳三模)中国古代数学名著《九章算术》中有如下问题.今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文如下:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还的粟(单位:升)为( ) A.253 B .503 C.507 D .1007【解析】5斗=50升.设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,由题意可知a 1,a 2,a 3构成公比为2的等比数列,且S 3=50,则a 1(1-23)1-2=50,解得a 1=507,所以马主人应偿还粟的量为a 2=2a 1=1007,故选D.【题后升华】以数学文化为背景的等比数列模型题的求解关键:一是会透过数学文化的“表象”看“本质”;二是构建模型,即盯准题眼,构建等比数列的模型;三是解模,即把文字语言转化为求等比数列的相关问题,如求指定项、公比或项数、通项公式或前n 项和等.类型三.递推数列与数学文化【例3】(2020·北京市石景山区3月模拟)九连环是我国从古至今广为流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.据明代杨慎《丹铅总录》记载:“两环互相贯为一,得其关捩,解之为二,又合而为一.”在某种玩法中,用a n 表示解下n (n ≤9,n ∈N *)个圆环所需的最少移动次数,数列{a n }满足a 1=1,且a n=⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,则解下4个环所需的最少移动次数a 4为( ) A .7 B .10 C .12D .22【解析】因为数列{a n }满足a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,所以a 2=2a 1-1=2-1=1,所以a 3=2a 2+2=2×1+2=4,所以a 4=2a 3-1=2×4-1=7.故选A.【题后升华】以数学文化为背景的已知递推公式的数列模型的求解关键是耐心读题、仔细理解题,只有弄清题意,才能将实际问题转化为数学模型进行解答,“盯紧”题目条件中的递推公式,利用此递推公式往要求的量转化,如本题,剥去数学文化背景,实质就是已知a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,求a 4的问题.类型四.周期数列与数学文化【例4】(2020·山东临沂三模)意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2)(n ≥3,n ∈N *).此数列在现代物理、化学等方面都有着广泛的应用.若此数列被2除后的余数构成一个新数列{a n },则数列{a n }的前2 019项的和为( ) A .672 B .673 C .1 346D .2 019【解析】 由于{a n }是数列1,1,2,3,5,8,13,21,34,55,…各项除以2的余数,故{a n }为1,1,0,1,1,0,1,1,0,1,…,所以{a n }是周期为3的周期数列, 且一个周期中的三项之和为1+1+0=2.因为2 019=673×3, 所以数列{a n }的前2 019项的和为673×2=1 346.故选C.【题后反思】以数学文化为背景的周期数列模型题的求解关键是细审题,建立数学模型,并会适时脱去背景,如本题,脱去背景,实质是利用斐波那契数列的各项除以2的余数的特征,得出新数列的周期性,进而求出结果.类型五.数列在实际问题中的应用【例5】私家车具有申请报废制度.一车主购买车辆时花费15万,每年的保险费、路桥费、汽油费等约1.5万元,每年的维修费是一个公差为3 000元的等差数列,第一年维修费为3 000元,则该车主申请车辆报废的最佳年限(使用多少年的年平均费用最少)是________年.【解析】设这辆汽车报废的最佳年限为n 年,第n 年的费用为a n ,则a n =1.5+0.3n .前n 年的总费用为S n =15+1.5n +n 2(0.3+0.3n )=0.15n 2+1.65n +15,年平均费用:S n n =0.15n +15n+1.65≥20.15n ×15n+1.65=4.65,当且仅当0.15n =15n ,即n =10时,年平均费用S nn 取得最小值.所以这辆汽车报废的最佳年限是10年.【题后反思】数学建模是指对现实问题进行抽象,用数学语言表达和解决实际问题的过程.有关数列的应用问题,是让学生能够在实际情境中,用数学的思想分析数列问题,用数学的语言表达数列问题,用数学的知识得到数列模型,用数列的方法得到结论,验证数学结论与实际问题的相符程度,最终得到符合实际规律的结果.二、高效训练突破 一、选择题1.(2020·湖南衡阳一模)在等比数列{a n }中,a 1a 3=a 4=4,则a 6的所有可能值构成的集合是( ) A .{6} B .{-8,8} C .{-8}D .{8}【解析】:因为a 1a 3=a 22=4,a 4=4,所以a 2=2,所以q 2=a 4a 2=2,所以a 6=a 2q 4=2×4=8,故a 6的所有可能值构成的集合是{8},故选D.2.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( ) A .16 B .8 C .4D .2【解析】:设等比数列{a n }的公比为q (q >0),由a 5=3a 3+4a 1,得a 1q 4=3a 1q 2+4a 1,得q 4-3q 2-4=0,令q 2=t ,则t 2-3t -4=0,解得t =4或t =-1(舍去),所以q 2=4,即q =2或q =-2(舍去).又 S 4=a 1(1-q 4)1-q =15,所以a 1=1,所以a 3=a 1q 2=4.故选C.3.设等比数列{a n }的前n 项和为S n ,且满足a 6=8a 3,则( ) A .数列{a n }的公比为2 B .数列{a n }的公比为8 C.S 6S 3=8 D .S 6S 3=4【解析】:因为等比数列{a n }的前n 项和为S n ,且满足a 6=8a 3,所以a 6a 3=q 3=8,解得q =2,所以S 6S 3=1-q 61-q 3=1+q 3=9.4.(2020·山西3月高考考前适应性测试)正项等比数列{a n }中,a 1a 5+2a 3a 7+a 5a 9=16,且a 5与a 9的等差中项为4,则{a n }的公比是( ) A .1 B .2 C.22D .2【解析】:设公比为q ,由正项等比数列{a n }中,a 1a 5+2a 3a 7+a 5a 9=16,可得a 23+2a 3a 7+a 27=(a 3+a 7)2=16,即a 3+a 7=4,由a 5与a 9的等差中项为4,得a 5+a 9=8,则q 2(a 3+a 7)=4q 2=8,则q =2(舍负),故选D. 4.(2020·湘赣十四校第二次联考)中国古代著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问最后一天走了( ) A .6里 B .12里 C .24里D .96里【解析】:由题意可得,每天行走的路程构成等比数列,记作数列{a n },设等比数列{a n }的首项为a 1,公比为q ,则q =12,依题意有a 1(1-q 6)1-q =378,解得a 1=192,则a 6=192×(12)5=6,最后一天走了6里,故选A.5.一个等比数列的前三项的积为3,最后三项的积为9,且所有项的积为729,则该数列的项数是( ) A .13 B .12 C .11D .10【解析】:设该等比数列为{a n },其前n 项积为T n ,则由已知得a 1·a 2·a 3=3,a n -2·a n -1·a n =9,(a 1·a n )3=3×9=33,所以a 1·a n =3,又T n =a 1·a 2·…·a n -1·a n =a n ·a n -1·…·a 2·a 1,所以T 2n =(a 1·a n )n ,即7292=3n ,所以n =12.6.(2020·青岛模拟)已知各项均为正数的等比数列{a n }的前n 项和为S n ,且满足a 6,3a 4,-a 5成等差数列,则S 4S 2=( ) A .3 B .9 C .10D .13【解析】设等比数列{a n }的公比为q ,因为a 6,3a 4,-a 5成等差数列,所以6a 4=a 6-a 5,所以6a 4=a 4(q 2-q ).由题意得a 4>0,q >0.所以q 2-q -6=0,解得q =3,所以S 4S 2=S 2+q 2S 2S 2=1+q 2=10.7.(2020届福建厦门模拟)设等比数列{a n }的前n 项和为S n ,若S n =2n +1+λ,则λ=( ) A .-2 B .-1 C .1D .2【解析】: 解法一:当n =1时,a 1=S 1=4+λ. 当n ≥2时,a n =S n -S n -1=(2n +1+λ)-(2n+λ)=2n,此时a n +1a n =2n +12n =2.因为{a n }是等比数列,所以a 2a 1=2,即44+λ=2,解得λ=-2.故选A.解法二:依题意,a 1=S 1=4+λ,a 2=S 2-S 1=4,a 3=S 3-S 2=8,因为{a n }是等比数列,所以a 22=a 1·a 3,所以8(4+λ)=42,解得λ=-2.故选A.8.(2020·新乡调研)已知各项均不为0的等差数列{a n }满足a 3-a 272+a 11=0,数列{b n }为等比数列,且b 7=a 7,则b 1·b 13=( )A .25B .16C .8D .4【解析】由a 3-a 272+a 11=0,得2a 7-a 272=0,a 7=4,所以b 7=4,b 1·b 13=b 27=16. 9.(2020·福建厦门模拟)设等比数列{a n }的前n 项和为S n ,若S n =2n +1+λ,则λ=( ) A .-2 B .-1 C .1D .2【解析】:法一:当n =1时,a 1=S 1=4+λ. 当n ≥2时,a n =S n -S n -1=(2n +1+λ)-(2n+λ)=2n,此时a n +1a n =2n +12n =2.因为{a n }是等比数列,所以a 2a 1=2,即44+λ=2,解得λ=-2.故选A. 法二:依题意,a 1=S 1=4+λ,a 2=S 2-S 1=4,a 3=S 3-S 2=8,因为{a n }是等比数列,所以a 22=a 1·a 3,所以8(4+λ)=42,解得λ=-2.故选A.10.(2020·辽宁部分重点高中联考)已知数列{a n }的前n 项和为S n ,满足S n =2a n -1,则{a n }的通项公式a n =( ) A .2n -1 B .2n -1 C .2n -1D .2n +1【解析】:当n =1时,S 1=2a 1-1=a 1,所以a 1=1,当n ≥2时,a n =S n -S n -1=2a n -2a n -1,所以a n =2a n -1, 因此a n =2n -1,故选B.11.(2020·长春市质量监测(一))已知S n 是等比数列{a n }的前n 项和,若公比q =2,则a 1+a 3+a 5S 6=( )A.13B.17C.23D .37【解析】:法一:由题意知a 1+a 3+a 5=a 1(1+22+24)=21a 1,而S 6=a 1(1-26)1-2=63a 1,所以a 1+a 3+a 5S 6=21a 163a 1=13,故选A. 法二:由题意知S 6=a 1+a 2+a 3+a 4+a 5+a 6=a 1+a 3+a 5+(a 2+a 4+a 6)=a 1+a 3+a 5+2(a 1+a 3+a 5)=3(a 1+a 3+a 5),故a 1+a 3+a 5S 6=13,故选A.12.(2020·河南郑州三测)已知数列{a n },{b n }满足a 1=b 1=1,a n +1-a n =b n +1b n=3,n ∈N *,则数列{ba n }的前10项和为( )A.12×(310-1)B.18×(910-1)C.126×(279-1) D .126×(2710-1)【解析】:因为a n +1-a n =b n +1b n =3,所以{a n }为等差数列,公差为3,{b n }为等比数列,公比为3,所以a n=1+3(n -1)=3n -2,b n =1×3n -1=3n -1,所以ba n =33n -3=27n -1,所以{ba n }是以1为首项,27为公比的等比数列,所以{ba n }的前10项和为1×(1-2710)1-27=126×(2710-1),故选D.二、填空题1.(2020·陕西第二次质量检测)公比为2的等比数列{a n }的各项都是正数,且a 2a 12=16,则log 2a 15= .【解析】:等比数列{a n }的各项都是正数,且公比为2,a 2a 12=16,所以a 1qa 1q 11=16,即a 21q 12=16,所以a 1q 6=22,所以a 15=a 1q 14=a 1q 6(q 2)4=26,则log 2a 15=log 226=6.2.(2020·陕西榆林二模)已知数列{a n }满足a 1=2,na n +1-(n +1)a n =2(n 2+n ),若b n =22a n ,则{b n }的前n 项和S n = .【解析】:由na n +1-(n +1)a n =2(n 2+n ),得a n +1n +1-a n n =2,又a 1=2,所以数列⎭⎬⎫⎩⎨⎧n a n 是首项为2,公差为2的等差数列,所以a nn =2+2(n -1)=2n ,即a n =2n 2,所以b n =22a n =4n ,所以数列{b n }是首项为4,公比为4的等比数列,所以S n =4-4n +11-4=4n +1-43.3.(2020·安徽安庆模拟)数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值为________.【解析】:由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎪⎭⎫ ⎝⎛-λ2n a .由于数列{a n-1}是等比数列,所以2λ=1, 得λ=2.4.在递增的等比数列{a n }中,已知a 1+a n =34,a 3·a n -2=64,且前n 项和S n =42,则n =________. 【解析】:因为{a n }为等比数列,所以a 3·a n -2=a 1·a n =64.又a 1+a n =34, 所以a 1,a n 是方程x 2-34x +64=0的两根,解得⎩⎪⎨⎪⎧a 1=2,a n =32或⎩⎪⎨⎪⎧a 1=32,a n =2.又因为{a n }是递增数列,所以⎩⎪⎨⎪⎧a 1=2,a n =32. 由S n =a 1-a n q 1-q =2-32q 1-q=42,解得q =4.由a n =a 1q n -1=2×4n -1=32,解得n =3.5.已知数列{a n }满足a 1=2且对任意的m ,n ∈N *,都有a m +na m =a n ,则数列{a n }的前n 项和S n =________.【解析】:因为a n +m a m =a n ,令m =1,则a n +1a 1=a n ,即a n +1a n=a 1=2,所以{a n }是首项a 1=2,公比q =2的等比数列,S n =2(1-2n )1-2=2n +1-2.6.设等比数列{a n }的前n 项和为S n ,若S 10∶S 5=1∶2,则S 15∶S 5=________.【解析】因为S 10∶S 5=1∶2,所以设S 5=2a ,S 10=a (a ≠0),因为S 5,S 10-S 5,S 15-S 10成等比数列,即2a ,-a ,S 15-a 成等比数列,所以(-a )2=2a (S 15-a ), 解得S 15=3a2,所以S 15∶S 5=3∶4.三 解答题1.(2020·昆明市诊断测试)已知数列{a n }是等比数列,公比q <1,前n 项和为S n ,若a 2=2,S 3=7. (1)求{a n }的通项公式;(2)设m ∈Z ,若S n <m 恒成立,求m 的最小值.【解析】:(1)由a 2=2,S 3=7得⎩⎪⎨⎪⎧a 1q =2,a 1+a 1q +a 1q 2=7, 解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=1,q =2.(舍去)所以a n =4·121-⎪⎭⎫ ⎝⎛n =321-⎪⎭⎫ ⎝⎛n .(2)由(1)可知,S n =a 1(1-q n )1-q =4⎝⎛⎭⎫1-12n 1-12=8⎪⎭⎫⎝⎛n 21-1<8.因为a n >0,所以S n 单调递增.又S 3=7,所以当n ≥4时,S n ∈(7,8).又S n <m 恒成立,m ∈Z ,所以m 的最小值为8. 2.(2020·山西长治二模)S n 为等比数列{a n }的前n 项和,已知a 4=9a 2,S 3=13,且公比q >0. (1)求a n 及S n ;(2)是否存在常数λ,使得数列{S n +λ}是等比数列?若存在,求λ的值;若不存在,请说明现由.【解析】:(1)由题意可得⎩⎪⎨⎪⎧a 1q 3=9a 1q ,a 1(1-q 3)1-q=13,q >0,解得a 1=1,q =3,所以a n=3n -1,S n =1-3n 1-3=3n -12.(2)假设存在常数λ,使得数列{S n +λ}是等比数列,因为S 1+λ=λ+1,S 2+λ=λ+4,S 3+λ=λ+13, 所以(λ+4)2=(λ+1)(λ+13),解得λ=12,此时S n +12=12×3n ,则S n +1+12S n +12=3,故存在常数λ=12,使得数列⎭⎬⎫⎩⎨⎧+21n S 是等比数列.3.(2020届长春市高三质量监测)已知数列{a n }中,a 1=2,a n +1=2a n +2n +1,设b n =a n 2n .(1)求证:数列{b n }是等差数列;(2)求数列⎭⎬⎫⎩⎨⎧+11n n b b 的前n 项和S n .【解析】:(1)证明:当n ≥2时,b n -b n -1=a n 2n -a n -12n -1=a n -2a n -12n =1,又b 1=1,所以{b n }是以1为首项,1为公差的等差数列.(2)由(1)可知,b n =n ,所以1b n b n +1=1n -1n +1,所以S n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.4.(2020届南昌市第一次模拟)已知等比数列{a n }的前n 项和为S n ,且满足S 4=2a 4-1,S 3=2a 3-1. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =S n (n ∈N *),求数列{b n }的前n 项和T n .【解析】:(1)设等比数列{a n }的公比为q ,由S 4-S 3=a 4,得2a 4-2a 3=a 4,所以a 4a 3=2,所以q =2.又因为S 3=2a 3-1,所以a 1+2a 1+4a 1=8a 1-1,所以a 1=1,所以a n =2n -1. (2)由(1)知a 1=1,q =2,则S n =1-2n 1-2=2n-1,所以b n =2n-1,则T n =b 1+b 2+…+b n =2+22+…+2n -n =2(1-2n )1-2-n =2n +1-2-n .。

高考数学专题复习《等比数列求和,裂项相消思想》知识梳理及典型例题讲解课件(含答案)

高考数学专题复习《等比数列求和,裂项相消思想》知识梳理及典型例题讲解课件(含答案)
-
等比数列求和
——裂项相消思想
高考分析
纵观近几年高考命题,数列求和是高考中每年必考的内容之一.
全国卷经常以等差数列、等比数列为基础考查程序化计算类的数
列求和,近几年侧重于新的情境,考查内容更加灵活多变.
2020年全 2020年
2021年新 2021年全 2022年全国甲 2022年新高

考Ⅰ卷
国Ⅰ卷
∙ = ∙
前面学习了等差数列的前n项和,那么
如何求等比数列的前n项和呢?
忆一忆
等比数列的前n项和公式的推导
采用了什么方法?
等比数列前n项和:Sn=a1+a2+a3+ ···+an
即:Sn=a1+a1q+a1q2+······+a1qn-2+a1qn-1
qSn= a1q+a1q2+a1q3+······+ a1qn-1+a1qn
例:数列{an }的通项公式an n2,数列{bn }的通项公式bn 2n
求数列{anbn }的前n项和
解:anbn n2.2n cn
Sn c1 c2 c3 cn
Sn 1.21 4.22 9.23 n2.2n
2S n
1.22 4.23 (n 1)2 2n n2.2n1
S n bn 1
1 qn
b1 a1 (
)
1 q
例:数列{an }的通项公式an n,数列{b n }的通项公式b n 2 n
求数列{an bn }的前n项和
解:设anbn n.2 bn 1 bn
n

高考数学总复习 6-3 等比数列课件 新人教B版

高考数学总复习 6-3 等比数列课件 新人教B版

3.等比数列的设项技巧 a (1)对于连续奇数项的等比数列,通常可设为„, 2, q a ,a,aq,aq2,„; q (2)对于连续偶数项的等比数列,若公比大于 0,则 a a 通常可设为„, 3, ,aq,aq3,„. q q
等比数列的概念与通项公式
[例 1] (2011· 龙岩质检)已知数列{an}是首项为 a1 的
4.等比中项 如果三个数 a、G、b 成等比数列,那么 G 叫做 a 和 b 的等比中项,即 G2=ab.
5.等比数列的主要性质 (1){an}是等比数列⇒{c·n}是等比数列(c≠0). a an (2){an}{bn}均为等比数列⇒{an· n}、{ }是等比数列. b bn am qm-n (3){an}为等比数列,则 = . an
(6)a2=an- k·n+ k (1≤k<n,n、k∈N*). a n (7){an}是等比数列,则{a2}、{ n 均为等比数列. (8)非零常数列既是等差数列,也是等比数列. (9)若{an}是等差数列,b>0,则{ban}是等比数列. 若{an}是正项等比数列,则{lgan}是等差数列. 1 an}(an>0)、{ }、{|an|} an
二、分类讨论思想 当 q=1 时,{an}的前 n 项和 Sn=na1;当 q≠1 时, a11-qn a1-anq {an}的前 n 项和 Sn= = .等比数列的前 n 1-q 1-q 项和公式涉及对公比 q 的分类讨论,此处是常考易错点.
三、解题技巧 1.等比数列的判定方法 an+ 1 (1) =q(q 是不为 0 的常数,n∈N*,an≠0)⇔{an} an 是等比数列,证明一个数列是等比数列时主要用此方法. (2)an=cqn 1(c,q 均是不为 0 的常数,n∈N*)⇔{an} 是等比数列.

【新高考】高三数学一轮基础复习讲义:第六章 6.3等比数列-(学生版+教师版)

【新高考】高三数学一轮基础复习讲义:第六章 6.3等比数列-(学生版+教师版)

等比数列1、判断下列结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( )(2)G 为a ,b 的等比中项⇔G 2=ab .( )(3)如果数列{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( )(4)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( )2、已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( ) A .-12B .-2C .2 D.123、设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6等于( )A .31B .32C .63D .644、在9与243中间插入两个数,使它们同这两个数成等比数列,则插入的两个数分别为________.5、设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________. 无题型一 等比数列基本量的运算例1 (1)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2等于( ) A .2 B .1 C.12 D.18(2)在各项均为正数的等比数列{a n }中,a 2,a 4+2,a 5成等差数列,a 1=2,S n 是数列{a n }的前n 项的和,则S 10-S 4等于( )A .1 008B .2 016C .2 032D .4 032【同步练习】 (1)已知等比数列{a n }的首项a 1=1,且a 2,a 4,a 3成等差数列,则数列{a n }的公比q =________,数列{a n }的前4项和S 4=________.(2)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 题型二 等比数列的判定与证明例2 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2.(1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列;(2)求数列{a n }的通项公式.引申探究若将例2中“S n +1=4a n +2”改为“S n +1=2S n +(n +1)”,其他不变,求数列{a n }的通项公式.【同步练习】1、已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明:{a n +12}是等比数列,并求{a n }的通项公式; (2)证明:1a 1+1a 2+…+1a n <32. 1.等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1.3.等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.4.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列. 5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n ,当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q. 6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .【知识拓展】等比数列{a n }的单调性(1)满足⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧ a 1<0,0<q <1时,{a n }是递增数列. (2)满足⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧ a 1<0,q >1时,{a n }是递减数列. (3)当⎩⎪⎨⎪⎧a 1≠0,q =1时,{a n }为常数列.(4)当q <0时,{a n }为摆动数列.题型三 等比数列性质的应用例3 (1)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.(2)设等比数列{a n }的前n 项和为S n ,若S 6S 3=12,则S 9S 3=________. 【同步练习】(1)已知在等比数列{a n }中,a 1a 4=10,则数列{lg a n }的前4项和等于( )A .4B .3C .2D .1(2)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( )A.18 B .-18 C.578 D.558题型四 分类讨论思想在等比数列中的应用典例 (15分)已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列. (1)求数列{a n }的通项公式;(2)证明:S n +1S n ≤136(n ∈N *). 一、等比数列的证明(1)证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.(2)利用递推关系时要注意对n =1时的情况进行验证.二、等比数列常见性质的应用等比数列性质的应用可以分为三类:(1)通项公式的变形;(2)等比中项的变形;(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.1.在各项均为正数的等比数列{a n }中,a 3=2-1,a 5=2+1,则a 23+2a 2a 6+a 3a 7等于( )A .4B .6C .8D .8-4 22.在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于( )A.32B.23 C .-23 D.23或-233.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( )A .12B .13C .14D .154.在各项均为正数的等比数列{a n }中,a 1=2,且a 2,a 4+2,a 5成等差数列,记S n 是数列{a n }的前n 项和,则S 5等于( )A .32B .62C .27D .815.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则15793log ()++a a a 的值是( )A .-15B .-5C .5 D.156.在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( ) A.12B.32 C .1 D .-327.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =________.8.设各项都是正数的等比数列{a n },S n 为前n 项和且S 10=10,S 30=70,那么S 40=________.9.已知数列{a n }的前n 项和为S n ,且满足a n +S n =1(n ∈N *),则通项a n =________.10.已知数列{a n }的首项为1,数列{b n }为等比数列且b n =a n +1a n,若b 10·b 11=2,则a 21=________. 11.已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }是等比数列.(1)求数列{a n }和{b n }的通项公式;(2)求数列{b n }的前n 项和.12.已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3;(2)求{a n }的通项公式.13.已知数列{a n }中,a 1=1,a n ·a n +1=⎝⎛⎭⎫12n ,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并求出b n ;(2)求T 2n .等比数列1、判断下列结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( × )(2)G 为a ,b 的等比中项⇔G 2=ab .( × )(3)如果数列{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( × )(4)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( × )2、已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( ) A .-12B .-2C .2D.12答案 D解析 由题意知q 3=a 5a 2=18,∴q =12. 3、设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6等于( )A .31B .32C .63D .64答案 C解析 根据题意知,等比数列{a n }的公比不是-1.由等比数列的性质,得(S 4-S 2)2=S 2·(S 6-S 4),即122=3×(S 6-15),解得S 6=63.故选C.4、在9与243中间插入两个数,使它们同这两个数成等比数列,则插入的两个数分别为________. 答案 27,81解析 设该数列的公比为q ,由题意知,243=9×q 3,q 3=27,∴q =3.∴插入的两个数分别为9×3=27,27×3=81.5、设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________. 答案 -11解析 设等比数列{a n }的公比为q ,∵8a 2+a 5=0,∴8a 1q +a 1q 4=0.∴q 3+8=0,∴q =-2,∴S 5S 2=a 1(1-q 5)1-q ·1-q a 1(1-q 2)=1-q 51-q 2=1-(-2)51-4=-11. 无题型一 等比数列基本量的运算例1 (1)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2等于( ) A .2 B .1 C.12 D.18(2)在各项均为正数的等比数列{a n }中,a 2,a 4+2,a 5成等差数列,a 1=2,S n 是数列{a n }的前n 项的和,则S 10-S 4等于( )A .1 008B .2 016C .2 032D .4 032答案 (1)C (2)B解析 (1)由{a n }为等比数列,得a 3a 5=a 24,又a 3a 5=4(a 4-1),所以a 24=4(a 4-1),解得a 4=2.设等比数列{a n }的公比为q ,则由a 4=a 1q 3,得2=14q 3,解得q =2, 所以a 2=a 1q =12.故选C. (2)由题意知2(a 4+2)=a 2+a 5,即2(2q 3+2)=2q +2q 4=q (2q 3+2),得q =2,所以a n =2n ,S 10=2(1-210)1-2=211-2=2 046,S 4=2(1-24)1-2=25-2=30, 所以S 10-S 4=2 016.故选B.思维升华 等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.【同步练习】(1)已知等比数列{a n }的首项a 1=1,且a 2,a 4,a 3成等差数列,则数列{a n }的公比q =________,数列{a n }的前4项和S 4=________.(2)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.答案 (1)1或-12 4或58(2)3n -1 解析 (1)由a 2,a 4,a 3成等差数列得2a 1q 3=a 1q +a 1q 2,即2q 3=q +q 2,解得q =1或q =-12. 当q =1时,S 4=4a 1=4,当q =-12时,S 4=1-(-12)41-(-12)=58.(2)由3S 1,2S 2,S 3成等差数列知,4S 2=3S 1+S 3, 可得a 3=3a 2,所以公比q =3, 故等比数列的通项a n =a 1q n -1=3n -1. 题型二 等比数列的判定与证明 例2 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2.(1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列;(2)求数列{a n }的通项公式.(1)证明 由a 1=1及S n +1=4a n +2, 得a 1+a 2=S 2=4a 1+2.∴a 2=5,∴b 1=a 2-2a 1=3. 又⎩⎪⎨⎪⎧S n +1=4a n +2, ①S n =4a n -1+2(n ≥2), ② 由①-②,得a n +1=4a n -4a n -1(n ≥2), ∴a n +1-2a n =2(a n -2a n -1)(n ≥2). ∵b n =a n +1-2a n ,∴b n =2b n -1(n ≥2), 故{b n }是首项b 1=3,公比为2的等比数列.(2)解 由(1)知b n =a n +1-2a n =3·2n -1, ∴a n +12n +1-a n 2n =34, 故{a n 2n }是首项为12,公差为34的等差数列. ∴a n 2n =12+(n -1)·34=3n -14,故a n =(3n -1)·2n -2.引申探究若将例2中“S n +1=4a n +2”改为“S n +1=2S n +(n +1)”,其他不变,求数列{a n }的通项公式. 解 由已知得n ≥2时,S n =2S n -1+n .∴S n +1-S n =2S n -2S n -1+1,∴a n +1=2a n +1,∴a n +1+1=2(a n +1),n ≥2,又a 1=1,S 2=a 1+a 2=2a 1+2,a 2=3,当n =1时上式也成立,故{a n +1}是以2为首项,以2为公比的等比数列,∴a n +1=2·2n -1=2n ,∴a n =2n -1.【同步练习】1、已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明:{a n +12}是等比数列,并求{a n }的通项公式; (2)证明:1a 1+1a 2+…+1a n <32. 证明 (1)由a n +1=3a n +1,得a n +1+12=3(a n +12). 又a 1+12=32, 所以{a n +12}是首项为32,公比为3的等比数列. 所以a n +12=3n 2,因此{a n }的通项公式为a n =3n -12.(2)由(1)知1a n =23n -1. 因为当n ≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1 =32(1-13n )<32, 所以1a 1+1a 2+…+1a n <32. 1.等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1.3.等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.4.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列. 5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n ,当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q. 6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .【知识拓展】等比数列{a n }的单调性(1)满足⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧ a 1<0,0<q <1时,{a n }是递增数列. (2)满足⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧ a 1<0,q >1时,{a n }是递减数列. (3)当⎩⎪⎨⎪⎧a 1≠0,q =1时,{a n }为常数列. (4)当q <0时,{a n }为摆动数列.题型三 等比数列性质的应用例3 (1)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.(2)设等比数列{a n }的前n 项和为S n ,若S 6S 3=12,则S 9S 3=________. 答案 (1)50 (2)34解析 (1)因为a 10a 11+a 9a 12=2a 10a 11=2e 5,所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln [(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50ln e =50.(2)方法一 ∵S 6∶S 3=1∶2,∴{a n }的公比q ≠1.由a 1(1-q 6)1-q ÷a 1(1-q 3)1-q=12,得q 3=-12, ∴S 9S 3=1-q 91-q 3=34. 方法二 ∵{a n }是等比数列,且S 6S 3=12,∴公比q ≠-1, ∴S 3,S 6-S 3,S 9-S 6也成等比数列,即(S 6-S 3)2=S 3·(S 9-S 6),将S 6=12S 3代入得S 9S 3=34. 【同步练习】(1)已知在等比数列{a n }中,a 1a 4=10,则数列{lg a n }的前4项和等于( )A .4B .3C .2D .1(2)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( )A.18 B .-18 C.578 D.558答案 (1)C (2)A解析 (1)前4项和S 4=lg a 1+lg a 2+lg a 3+lg a 4=lg(a 1a 2a 3a 4),又∵等比数列{a n }中,a 2a 3=a 1a 4=10, ∴S 4=lg 100=2.(2)因为a 7+a 8+a 9=S 9-S 6,且公比不等于-1,在等比数列中,S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以有8(S 9-S 6)=(-1)2,S 9-S 6=18,即a 7+a 8+a 9=18. 题型四 分类讨论思想在等比数列中的应用典例 (15分)已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列. (1)求数列{a n }的通项公式;(2)证明:S n +1S n ≤136(n ∈N *). 思想方法指导 (1)利用等差数列的性质求出等比数列的公比,写出通项公式;(2)求出前n 项和,根据函数的单调性证明.规范解答(1)解 设等比数列{a n }的公比为q ,因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4,可得2a 4=-a 3,于是q =a 4a 3=-12. [3分]又a 1=32,所以等比数列{a n }的通项公式为 a n =32×⎝⎛⎭⎫-12n -1=(-1)n -1·32n . [5分] (2)证明 由(1)知,S n =1-⎝⎛⎭⎫-12n , S n +1S n =1-⎝⎛⎭⎫-12n +11-⎝⎛⎭⎫-12n =⎩⎨⎧ 2+12n (2n +1),n 为奇数,2+12n (2n -1),n 为偶数. [8分]当n 为奇数时,S n +1S n随n 的增大而减小,所以S n +1S n ≤S 1+1S 1=136. [11分]当n 为偶数时,S n +1S n随n 的增大而减小, 所以S n +1S n ≤S 2+1S 2=2512. [13分]故对于n ∈N *,有S n +1S n ≤136(n ∈N *). [15分]一、等比数列的证明 (1)证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.(2)利用递推关系时要注意对n =1时的情况进行验证.二、等比数列常见性质的应用等比数列性质的应用可以分为三类:(1)通项公式的变形;(2)等比中项的变形;(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.1.在各项均为正数的等比数列{a n }中,a 3=2-1,a 5=2+1,则a 23+2a 2a 6+a 3a 7等于( )A .4B .6C .8D .8-4 2答案 C解析 在等比数列中,a 3a 7=a 25,a 2a 6=a 3a 5,所以a 23+2a 2a 6+a 3a 7=a 23+2a 3a 5+a 25=(a 3+a 5)2=(2-1+2+1)2=(22)2=8.2.在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于( )A.32B.23 C .-23 D.23或-23答案 C解析 由⎩⎪⎨⎪⎧ a 1q =18,a 1q 3=8解得⎩⎪⎨⎪⎧ a 1=27,q =23或⎩⎪⎨⎪⎧a 1=-27,q =-23. 又a 1<0,因此q =-23. 3.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( )A .12B .13C .14D .15答案 C解析 设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12, 可得q 9=3,a n -1a n a n +1=a 31q 3n -3=324, 因此q 3n -6=81=34=q 36,所以n =14,故选C.4.在各项均为正数的等比数列{a n }中,a 1=2,且a 2,a 4+2,a 5成等差数列,记S n 是数列{a n }的前n 项和,则S 5等于( )A .32B .62C .27D .81答案 B解析 设正项等比数列{a n }的公比为q ,则q >0,由a 2,a 4+2,a 5成等差数列,得a 2+a 5=2(a 4+2),即2q +2q 4=2(2q 3+2),(q -2)(1+q 3)=0,解得q =2或q =-1(舍去),∴S 5=2(1-25)1-2=62,故选B. 5.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则的值是( )A .-15B .-5C .5 D.15答案 B解析 由log 3a n +1=log 3a n +1(n ∈N *),得log 3a n +1-log 3a n =1,即log 3a n +1a n =1,解得a n +1a n =3,所以数列{a n }是公比为3的等比数列.因为a 5+a 7+a 9=(a 2+a 4+a 6)q 3,所以a 5+a 7+a 9=9×33=35.所以==-5.6.在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为() A.12 B.32C .1D .-32答案 B解析 因为a 3a 4a 5=3π=a 34,所以 15793log ()++a a a 15793log ()++a a a 513log 3π343.=alog 3a 1+log 3a 2+…+log 3a 7=log 3(a 1a 2…a 7)=log 3a 74==7π3,所以sin(log 3a 1+log 3a 2+…+log 3a 7)=32. 7.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =________. 答案 4解析 因为⎩⎪⎨⎪⎧3S 3=a 4-2, ①3S 2=a 3-2, ② 由①-②,得3a 3=a 4-a 3,即4a 3=a 4,则q =a 4a 3=4. 8.设各项都是正数的等比数列{a n },S n 为前n 项和且S 10=10,S 30=70,那么S 40=________. 答案 150解析 依题意,知数列{a n }的公比q ≠-1,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列,因此有(S 20-S 10)2=S 10(S 30-S 20),即(S 20-10)2=10(70-S 20),故S 20=-20或S 20=30;又S 20>0,因此S 20=30,S 20-S 10=20,S 30-S 20=40,故S 40-S 30=80,S 40=150.9.已知数列{a n }的前n 项和为S n ,且满足a n +S n =1(n ∈N *),则通项a n =________. 答案 12n解析 ∵a n +S n =1,① ∴a 1=12,a n -1+S n -1=1(n ≥2), ② 由①-②,得a n -a n -1+a n =0,即a n a n -1=12(n ≥2), ∴数列{a n }是首项为12,公比为12的等比数列, π337log 3则a n =12×(12)n -1=12n . 10.已知数列{a n }的首项为1,数列{b n }为等比数列且b n =a n +1a n,若b 10·b 11=2,则a 21=________. 答案 1 024解析 ∵b 1=a 2a 1=a 2,b 2=a 3a 2, ∴a 3=b 2a 2=b 1b 2,∵b 3=a 4a 3, ∴a 4=b 1b 2b 3,…,a n =b 1b 2b 3·…·b n -1,∴a 21=b 1b 2b 3·…·b 20=(b 10b 11)10=210=1 024.11.已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }是等比数列.(1)求数列{a n }和{b n }的通项公式;(2)求数列{b n }的前n 项和.解 (1)设等差数列的公差为d ,由题意得d =a 4-a 13=12-33=3, 所以a n =a 1+(n -1)d =3n (n ∈N *).设等比数列{b n -a n }的公比为q ,由题意得q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2. 所以b n -a n =(b 1-a 1)q n -1=2n -1.从而b n =3n +2n -1(n ∈N *).(2)由(1)知b n =3n +2n -1(n ∈N *),数列{3n }的前n 项和为32n (n +1), 数列{2n -1}的前n 项和为1×1-2n1-2=2n -1. 所以数列{b n }的前n 项和为32n (n +1)+2n -1. 12.已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3;(2)求{a n }的通项公式.解 (1)由题意,得a 2=12,a 3=14. (2)由a 2n -(2a n +1-1)a n -2a n +1=0,得2a n +1(a n +1)=a n (a n +1).因为{a n }的各项都为正数,所以a n +1a n =12. 故{a n }是首项为1,公比为12的等比数列, 因此a n =12n -1. 13.已知数列{a n }中,a 1=1,a n ·a n +1=⎝⎛⎭⎫12n ,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并求出b n ;(2)求T 2n .解 (1)∵a n ·a n +1=⎝⎛⎭⎫12n ,∴a n +1·a n +2=⎝⎛⎭⎫12n +1,∴a n +2a n =12,即a n +2=12a n . ∵b n =a 2n +a 2n -1,∴b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12, ∵a 1=1,a 1·a 2=12, ∴a 2=12⇒b 1=a 1+a 2=32. ∴{b n }是首项为32,公比为12的等比数列. ∴b n =32×⎝⎛⎭⎫12n -1=32n . (2)由(1)可知,a n +2=12a n , ∴a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列,∴T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝⎛⎭⎫12n 1-12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=3-32n .。

2025高考数学二轮复习数列

2025高考数学二轮复习数列

用两式相除(即比值)的方式进行相关计算.
对点练1
(1)(2024·新高考Ⅱ,12)设Sn为等差数列{an}的前n项和,若a3+a4=7,3a2+a5=5,
则S10=
95
.
解析 (方法一)设数列{an}的公差为d,因为
a3+a4=a1+2d+a1+3d=2a1+5d=7,3a2+a5=3(a1+d)+a1+4d=4a1+7d=5,
和为Tn,若
,
m,使得4S1,S3,Sm成等比数列?
,且b1=2,T4=5T2,是否存在大于2的正整数
解 设{an}的公差为 d,{bn}的公比为 q(q>0).
由题意知 q≠1,由
1 (1-4 )
T4=5T2,得
1-
=
51 (1-2 )
,
1-
整理得 1+q2=5,因为 q>0,所以 q=2.所以 bn=2n.
∴b1=a2-2a1=3.
∵Sn+1=4an+2,∴当n≥2时,Sn=4an-1+2,
∴an+1=Sn+1-Sn=4an-4an-1,∴an+1-2an=2(an-2an-1).
又bn=an+1-2an,∴bn=2bn-1,
∴{bn}是首项为3,公比为2的等比数列.
n-1
(2)由(1)可得 bn=an+1-2an=3×2 ,∴
1 + 3 = 8,
1 = 12,
21 + 2 = 8,
当选取①②时,有
所以
解得
4 + 5 = -16,

2023版高考数学一轮总复习6-3等比数列习题

2023版高考数学一轮总复习6-3等比数列习题

6.3 等比数列基础篇固本夯基考点一等比数列及其前n项和1.(2019课标Ⅲ,5,5分)已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=( )A.16B.8C.4D.2答案 C2.(2021安徽安庆一模,6)数列{a n}是各项均为正数的等比数列,3a2是a3与2a4的等差中项,则{a n}的公比等于( )A.2B.32C.3D.√2答案 B3.(2021黑龙江齐齐哈尔一模,6)已知等比数列{a n}中,a n a n+1=4n,则公比为( )A.√2B.2C.±2D.±√2答案 B4.(2020课标Ⅱ,6,5分)数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215-25,则k= ( )A.2B.3C.4D.5答案 C5.(2022届河北衡水一中调研一,7)在公差不为0的等差数列{a n}中,a1,a2,a a1,a a2,a a3成公比为4的等比数列,则k3=( )A.84B.86C.88D.96答案 B6.(2021哈尔滨六中期中,3)已知{a n}为等比数列,若a2a3=2a1,且a4与2a7的等差中项为54,则a1=( )A.35B.33C.16D.29答案 C7.(2022届四川绵阳第一次诊断,9)已知首项为1的数列{a n}的前n项和为S n,4a n a n+1=16n,则下列说法不正确的是( )A.数列{a n}是等比数列B.数列{S n }为单调递增数列C.a 5=256D.4a n =3S n +4n-1答案 D8.(2022届太原期中,9)已知{a n }为等比数列,且首项为31,公比为12,则数列的前n 项积取得最大值时,n=( )A.15B.16C.5D.6 答案 C9.(2021陕西渭南一模,10)已知等比数列{a n }的前n 项和为S n ,若a 2a a a =3332,a a +3a 3=a -45a +7,则数列{a n }的公比q=( )A.2B.-2C.12 D.-12 答案 C10.(2019课标Ⅰ,14,5分)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5= . 答案121311.(2021陕西宝鸡一模,15)记S n 为等比数列{a n }的前n 项和.若S 3=6,S 4=a 1-3,则S 6= . 答案21412.(2021河南、湖南名校联考,15)已知等比数列{a n }满足a 1-a 3=-827,a 2-a 4=-89,则使a 1a 2…a n取得最小值的n 为 . 答案 3或413.(2018课标Ⅲ,17,12分)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m.解析 (1)设{a n }的公比为q,由题设得a n =q n-1.由已知得q 4=4q 2,解得q=0(舍去)或q=-2或q=2.故a n =(-2)n-1或a n =2n-1. (2)若a n =(-2)n-1,则S n =1-(-2)a3.由S m =63得(-2)m =-188.此方程没有正整数解.若a n =2n-1,则S n =2n-1.由S m =63得2m=64,解得m=6.综上,m=6.14.(2020新高考Ⅰ,Ⅱ,18,12分)已知公比大于1的等比数列{a n}满足a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)(新高考Ⅰ)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100. (新高考Ⅱ)求a1a2-a2a3+…+(-1)n-1a n a n+1.解析(1)设{a n}的公比为q.由题设得a1q+a1q3=20,a1q2=8.解得q1=12(舍去),q2=2.由题设得a1=2.所以{a n}的通项公式为a n=2n.(2)(新高考Ⅰ)由题设及(1)知b1=0,且当2n≤m<2n+1时,b m=n.所以S100=b1+(b2+b3)+(b4+b5+b6+b7)+…+(b32+b33+…+b63)+(b64+b65+…+b100)=0+1×2+2×22+3×23+4×2 4+5×25+6×(100-63)=480.(新高考Ⅱ)a1a2-a2a3+…+(-1)n-1a n a n+1=23-25+27-29+…+(-1)n-1·22n+1=23[1-(-22)a]1-(-22)=85-(-1)n22a+35.考点二等比数列的性质1.(2021江西红色七校联考,6)在各项均为正数的等比数列{a n}中,a1a11+2a6a8+a3a13=25,则a1a13的最大值是( )A.25B.254C.5 D.25答案 B2.(2021云南名校检测,3)设等比数列{a n}的前n项和为S n,若S2=4,S4=16,则S6= ( )A.52B.75C.60D.70答案 A3.(2020南昌模拟,4)在公比不为1的等比数列{a n}中,若a1a5=a m a n,则mn不可能...为( ) A.5 B.6 C.8 D.9答案 B4.(2021河南名校联考,6)已知等比数列{a n}的前n项和S n=2λ+(λ-3)·2n(λ为常数),则λ=()A.-2B.-1C.1D.2答案 C5.(2021全国甲,7,5分)等比数列{a n}的公比为q,前n项和为S n.设甲:q>0,乙:{S n}是递增数列,则( )A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件 答案 B6.(2022届吉林东北师范大学附属中学摸底,8)若正项等比数列{a n }中的a 5,a 2017是方程x 2-4x+2=0的两根,则log 2a 1+log 2a 2+log 2a 3+…+log 2a 2021=( ) A.20223B.1010C.20212D.1011答案 C7.(2022届河南重点中学模拟一,8)已知公比不等于1的等比数列{a n }的前n 项乘积为T n ,若a 2a 82=a 62,则( )A.T 5=T 7B.T 3=T 6C.T 4=T 7D.T 3=T 9 答案 C8.(2021安徽黄山重点高中月考,10)已知函数f(x)=21+a 2(x∈R),若等比数列{a n }满足a 1a 2019=1,则f(a 1)+f(a 2)+f(a 3)+…+f(a 2019)= ( ) A.2019 B.20192C.2D.12答案 A9.(2021宁夏名校月考,7)已知数列{x n }满足lgx n+1=1+lgx n (n∈N *),且x 1+x 2+x 3+…+x 100=1,则lg(x 101+x 102+…+x 200)= . 答案 100综合篇 知能转换考法 等比数列的判定与证明 1.(2021皖江名校联盟考试,4)若数列{a n }的各项均为正数,满足a a 2a a +1=a n-1(n∈N *,n≥2),且a 2020=215,a 2022=25,则a 2021=( )A.25B.65C.2√315D.2√35答案 C2.(2021安徽安庆重点高中月考,16)已知数列{a n }是等比数列,有下列四个命题: ①数列{|a n |}是等比数列;②数列{1a a}是等比数列;③数列{lg a a 2}是等比数列; ④数列{a n ·a n+1}是等比数列. 其中正确命题的序号为 . 答案 ①②④3.(2022届河北衡水一中调研一,18)设数列{a n }的前n 项和为S n ,已知2S n =a n+1-2n+1+1(n∈N *),且a 2=5. (1)证明{a a 2a+1}为等比数列,并求数列{a n }的通项公式;(2)设b n =log 3(a n +2n),若对于任意的n∈N *,不等式b n (1+n)-λn(b n +2)-6<0恒成立,求实数λ的取值范围.解析 (1)由题可得2S n-1=a n -2n+1(n≥2),则2a n =2S n -2S n-1=a n+1-2n+1+1-(a n -2n+1)=a n+1-a n -2n,则a n+1=3a n +2n,从而有a a +12a +1+1=32(aa2a +1),n≥2,又当n=1时,2a 1=2S 1=a 2-22+1=5-4+1=2,所以a 1=1,且满足a 222+1=32(a 121+1),则a a +12a +1+1=32(aa 2a +1),n∈N *,故{a a2a +1}是以32为首项,32为公比的等比数列,则a a2a +1=(32)a,故a n =3n-2n.(2)由(1)知,b n =log 3(a n +2n)=n,则∀n∈N *,n(1+n)-λn(n+2)-6<0恒成立,即λ>a (1+a )-6a (a +2)=a 2+n -6a 2+2n =1-a +6a 2+2n =1-a +6(a +6)2-10(n +6)+24=1-1a +6-10+24a +6,令f(t)=1-1a -10+24a,t=n+6≥7,易知f(t)在[7,+∞)上单调递增,且t→+∞时,f(t)→1,则λ≥1. 4.(2021云南曲靖第二中学二模,17)已知数列{a n }的前n 项和为S n .(1)请从①2S n =3a n -3-4n,②a 1=-3,a n+1=-a n -4这两个条件中任选一个,证明数列{a n +2}是等比数列;(2)数列{b n }为等差数列,b 3=5,b 5=9,记c n =(a n +2)b n ,求数列{c n }的前n 项和T n .解析 (1)选条件①.当n=1时,2a 1=2S 1=3a 1-3-4,解得a 1=7.当n≥2时,由2S n =3a n -3-4n,可得2S n-1=3a n-1-3-4(n-1),两式相减,可得2a n =3a n -3a n-1-4,即a n =3a n-1+4,∴a n +2=3(a n-1+2),∴数列{a n +2}是以9为首项,3为公比的等比数列.选条件②.当n=1时,a 1+2=-3+2=-1,当n≥2时,a n+1+2=-a n -4+2=-(a n +2),∴数列{a n +2}是以-1为首项,-1为公比的等比数列. (2)设等差数列{b n }的公差为d,则d=a 5-a 35-3=2,b 1=b 3-2d=1,∴b n =1+2(n-1)=2n-1,n∈N *.选条件①.由(1)可得a n +2=9·3n-1=3n+1,则c n =(a n +2)b n =(2n-1)·3n+1,∴T n =c 1+c 2+c 3+…+c n , 即T n =1×32+3×33+5×34+…+(2n -1)·3n+1,3T n =1×33+3×34+…+(2n -3)·3n+1+(2n-1)·3n+2,两式相减,可得-2T n =1×32+2×33+2×34+…+2·3n+1-(2n-1)·3n+2=9+2×33-3a +21-3-(2n-1)·3n+2=-18-2(n-1)·3n+2,∴T n =(n-1)·3n+2+9,n∈N *.选条件②.由(1)可得a n +2=-1·(-1)n-1=(-1)n,则c n =(a n +2)b n =(2n-1)·(-1)n,∴T n =c 1+c 2+c 3+…+c n =-1+3-5+…+(2n -1)·(-1)n,当n 为偶数时,T n =-1+3-5+…+(2n -1)=2+2+…+2=2×a2=n,当n 为奇数时,T n =-1+3-5+…-(2n-1)=2+2+…+2-(2n-1)=2×a -12-(2n-1)=-n,∴T n ={-a ,a 为奇数,a ,a 为偶数.。

高考数学(文科)总复习:等比数列

高考数学(文科)总复习:等比数列

思考题 2 (1)已知等比数列{an},a1+a2+a3=7,a1a2a3
=8,则 an=________. 【解析】 ∵a1a2a3=a23=8,∴a2=2,∴aa11+ a3=a3= 4. 5, 解得aa31==41,或aa31==14., 当 a1=1,a2=2,a3=4 时,q=2,an=2n-1;
题型一 等比数列的基本量 {an}为等比数列,求下列各值. (1)已知 a3+a6=36,a4+a7=18,an=12,求 n; (2)已知 a2·a8=36,a3+a7=15,求公比 q; (3)已知 q=- 2,S8=15(1- 2),求 a1; (4)已知 q>1,S3=7,且 a1+3,3a2,a3+4 构成等差数列, 求 an.
【解析】 设数列{an}的公比为 q,则 a3,a6,a9 组成的新数列 的公比为 q3.
若 a3=4,a9=1,则 a62=4,a6=±2,合题意; a3,a7,a11 组成的新数列的公比为 q4,由 a3=4,a11=1,得 a72 =4,当 a7=2 时,q4=12,合题意,当 a7=-2 时,q4=-12,不合 题意,舍去. 【答案】 ±2 2
(3)已知数列{an}是等比数列,且 Sm=10,S2m=30,则 S3m =________(m∈N*).
【解析】 ∵{an}是等比数列,∴(S2m-Sm)2=Sm·(S3m-S2m), 即 202=10·(S3m-30),得 S3m=70.
【答案】 70
(4)(2019·珠海质量监测)等比数列{an}共有奇数项,所有奇数 项和 S 奇=255,所有偶数项和 S 偶=-126,末项是 192,则首项
题型二 等比数列的性质
(1)已知各项均为正数的等比数列an中,a1a2a3=5,a7a8a9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§6.3 等比数列基础篇固本夯基【基础集训】考点一 等比数列的有关概念及运算1.S n 是正项等比数列{a n }的前n 项和,a 3=18,S 3=26,则a 1=( ) A.2 B.3 C.1 D.6 答案 A2.在数列{a n }中,满足a 1=2,a n 2=a n-1·a n+1(n ≥2,n ∈N *),S n 为{a n }的前n 项和,若a 6=64,则S 7的值为( ) A.126 B.256 C.255 D.254 答案 D3.已知{a n }是等比数列,若a 1=1,a 6=8a 3,数列{1a n}的前n 项和为T n ,则T 5=( ) A.3116 B.31 C.158D.7 答案 A4.已知正项等比数列{a n }满足log 2a n+2-log 2a n =2,且a 3=8,则数列{a n }的前n 项和S n = . 答案 2n+1-25.设数列{a n }的前n 项和为S n ,已知a 1=1,S n+1=4a n +2. (1)设b n =a n+1-2a n ,证明数列{b n }是等比数列; (2)求数列{a n }的通项公式. 解析 (1)证明:∵a 1=1,S n+1=4a n +2,∴a 1+a 2=4a 1+2,a 2=3a 1+2,∴b 1=a 2-2a 1=3,当n ≥2时,S n =4a n-1+2, ∴S n+1-S n =4a n -4a n-1,∴a n+1=4a n -4a n-1, ∴a n+1-2a n =2(a n -2a n-1).又∵b n =a n+1-2a n ,∴b n =2b n-1,n ≥2, ∴{b n }是首项为3,公比为2的等比数列. (2)由(1)知:b n =a n+1-2a n =3·2n-1,∴a n+12n+1-a n 2n =34, ∴数列{a n 2n }是首项为12,公差为34的等差数列, ∴a n 2n =12+(n-1)×34=34n-14,∴a n =(3n-1)·2n-2.6.已知S n 为数列{a n }的前n 项和,且2S n =3a n -2(n ∈N *). (1)求a n 和S n ;(2)若b n =log 3(S n +1),求数列{b 2n }的前n 项和T n . 解析 (1)∵2S n =3a n -2,∴当n=1时,2S 1=3a 1-2,解得a 1=2;当n ≥2时,2S n-1=3a n-1-2,∴2S n -2S n-1=3a n -3a n-1, ∴2a n =3a n -3a n-1,∴a n =3a n-1,∴数列{a n }是首项为2,公比为3的等比数列, ∴a n =2·3n -1,S n =2(1-3n )1-3=3n-1.(2)由(1)知S n =3n-1,∴b n =log 3(S n +1)=log 33n=n,∴b 2n =2n, ∴T n =2+4+6+…+2n=n(2+2n)2=n 2+n. 7.已知数列{a n }满足a 1=1,a n+1=2a n +λ(λ为常数). (1)试探究数列{a n +λ}是不是等比数列,并求a n ; (2)当λ=1时,求数列{n(a n +λ)}的前n 项和T n . 解析 (1)因为a n+1=2a n +λ,所以a n+1+λ=2(a n +λ). 又a 1=1,所以当λ=-1时,a 1+λ=0,数列{a n +λ}不是等比数列, 此时a n +λ=a n -1=0,即a n =1;当λ≠-1时,a 1+λ≠0,所以a n +λ≠0,所以数列{a n +λ}是以1+λ为首项,2为公比的等比数列, 此时a n +λ=(1+λ)2n-1,即a n =(1+λ)2n-1-λ.(2)当λ=1时,由(1)知a n =2n -1,所以n(a n +1)=n×2n, T n =2+2×22+3×23+…+n×2n①, 2T n =22+2×23+3×24+…+n×2n+1②, ①-②得:-T n =2+22+23+ (2)-n×2n+1=2(1-2n )1-2-n×2n+1=2n+1-2-n×2n+1=(1-n)2n+1-2.所以T n =(n-1)2n+1+2.考点二 等比数列的性质8.已知数列{a n }为等比数列,且a 1a 13+2a 72=4π,则tan(a 2a 12)的值为( )A.√3B.-√3C.±√3D.-√33答案 A9.在等比数列{a n }中,a 2,a 16是方程x 2+6x+2=0的根,则a 2a 16a 9的值为( )A.2B.-√2C.√2D.-√2或√2 答案 D10.已知递增的等比数列{a n }的公比为q,其前n 项和S n <0,则( ) A.a 1<0,0<q<1 B.a 1<0,q>1 C.a 1>0,0<q<1 D.a 1>0,q>1 答案 A综合篇知能转换【综合集训】考法一 等比数列基本量运算的解题技巧1.(2018湖北荆州一模,9)已知数列{a n }是公差d 不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }的连续三项,则b 3+b 4b 4+b 5的值为( )A.12 B.4 C.2 D.√2 答案 A2.(2019湖北荆州3月联考,4)已知数列{a n }为等差数列,且2a 1,2,2a 6成等比数列,则{a n }的前6项的和为( ) A.15 B.212C.6D.3答案 C3.(2018河南开封一模,5)已知等比数列{a n }的前n 项和为S n ,且9S 3=S 6,a 2=1,则a 1=( ) A.12 B.√22 C.√2 D.2 答案 A4.(2018陕西延安黄陵中学(重点班)第一次大检测,10)已知公比不为1的等比数列{a n }的前n 项和为S n ,且满足a 2,2a 5,3a 8成等差数列,则3S 3S 6=( )A.134B.1312C.94D.1112答案 C考法二 等比数列的判定与证明5.(2018山东实验中学诊断测试,7)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人应偿还a 升,b 升,c 升,1斗为10升,则下列判断正确的是( ) A.a,b,c 依次成公比为2的等比数列,且a=507B.a,b,c 依次成公比为2的等比数列,且c=507C.a,b,c 依次成公比为12的等比数列,且a=507 D.a,b,c 依次成公比为12的等比数列,且c=507答案 D6.(2019河南濮阳重点高中联考,17)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列. 解析 (1)易知q ≠0.当q=1时,S n =na 1.当q ≠1时,S n =a 1+a 2+…+a n , qS n =a 1q+a 2q+…+a n q=a 2+a 3+…+a n +a n q, ∴(1-q)S n =a 1-a n q, ∴S n =a 1-a n q 1-q =a 1(1-q n )1-q. 综上,S n ={na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q,q ≠1.(2)证明:假设q ≠1时,数列{a n +1}是等比数列. 则(a 2+1)2=(a 1+1)(a 3+1),即(a 1q+1)2=(a 1+1)(a 1q 2+1),化为a 1(q-1)2=0,易知a 1≠0,解得q=1,与q ≠1矛盾,因此假设不成立,故原结论成立,即q ≠1时,数列{a n +1}不是等比数列.【五年高考】考点一 等比数列的有关概念及运算1.(2019课标Ⅲ,5,5分)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( ) A.16 B.8 C.4 D.2 答案 C2.(2017课标Ⅱ,3,5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A.1盏 B.3盏 C.5盏 D.9盏 答案 B3.(2018北京,4,5分)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于√212.若第一个单音的频率为f,则第八个单音的频率为( ) A.√23f B.√223f C.√2512f D.√2712f 答案 D4.(2019课标Ⅰ,14,5分)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5= .答案12135.(2017北京,10,5分)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2= . 答案 16.(2017江苏,9,5分)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8= . 答案 327.(2015湖南,14,5分)设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n = . 答案 3n-18.(2018课标Ⅲ,17,12分)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m. 解析 本题考查等比数列的概念及其运算. (1)设{a n }的公比为q,由题设得a n =q n-1. 由已知得q 4=4q 2,解得q=0(舍去)或q=-2或q=2.故a n =(-2)n-1或a n =2n-1.(2)若a n =(-2)n-1,则S n =1-(-2)n3. 由S m =63得(-2)m=-188.此方程没有正整数解. 若a n =2n-1,则S n =2n-1.由S m =63得2m=64,解得m=6.综上,m=6.解后反思 等比数列基本量运算问题的常见类型及解题策略(1)求通项公式.求出等比数列的两个基本量a 1和q 后,通项公式便可求出. (2)求特定项.利用通项公式或者等比数列的性质求解. (3)求公比.利用等比数列的定义和性质建立方程(组)求解.(4)求前n 项和.直接将基本量代入等比数列的前n 项和公式求解或利用等比数列的性质求解. 9.(2016课标Ⅲ,17,12分)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式;(2)若S 5=3132,求λ.解析 (1)由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0.(2分)由S n =1+λa n ,S n+1=1+λa n+1得a n+1=λa n+1-λa n ,即a n+1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n+1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列, 于是a n =11-λ(λλ-1)n -1.(6分)(2)由(1)得S n =1-(λλ-1)n . 由S 5=3132得1-(λλ-1)5=3132,即(λλ-1)5=132. 解得λ=-1.(12分)方法指导 (1)利用a n+1=S n+1-S n 可得到a n+1与a n 的关系式,要证数列{a n }是等比数列,关键是得出a n+1与a n 之比为常数,其中说明a n ≠0是非常重要的.(2)利用第(1)问的结论列方程即可求出λ.考点二 等比数列的性质10.(2016课标Ⅰ,15,5分)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 答案 6411.(2015安徽,14,5分)已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于 . 答案 2n-1教师专用题组考点一 等比数列的有关概念及运算1.(2013课标Ⅱ,3,5分)等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B.-13 C.19 D.-19答案 C2.(2012课标,5,5分)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A.7 B.5 C.-5 D.-7 答案 D3.(2014安徽,12,5分)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q= . 答案 14.(2016四川,19,12分)已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n+1=qS n +1,其中q>0,n ∈N *. (1)若2a 2,a 3,a 2+2成等差数列,求数列{a n }的通项公式; (2)设双曲线x 2-y 2a n2=1的离心率为e n ,且e 2=53,证明:e 1+e 2+…+e n >4n -3n 3n -1.解析 (1)由已知,S n+1=qS n +1,S n+2=qS n+1+1, 两式相减得到a n+2=qa n+1,n ≥1. 又由S 2=qS 1+1得到a 2=qa 1, 故a n+1=qa n 对所有n ≥1都成立.所以,数列{a n }是首项为1,公比为q 的等比数列.从而a n =q n-1.由2a 2,a 3,a 2+2成等差数列,可得2a 3=3a 2+2,即2q 2=3q+2,则(2q+1)(q-2)=0, 由已知,q>0,故q=2.所以a n =2n-1(n ∈N *).(2)证明:由(1)可知,a n =q n-1.所以双曲线x 2-y 2a n 2=1的离心率e n =√1+a n2=√1+q 2(n -1). 由e 2=√1+q 2=53,解得q=43. 因为1+q2(k-1)>q2(k-1),所以√1+q 2(k -1)>q k-1(k ∈N *).于是e 1+e 2+…+e n >1+q+…+q n-1=q n -1q -1,故e 1+e 2+…+e n >4n -3n 3n -1.5.(2015山东,18,12分)设数列{a n }的前n 项和为S n .已知2S n =3n+3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . 解析 (1)因为2S n =3n+3,所以2a 1=3+3,故a 1=3,当n>1时,2S n-1=3n-1+3,此时2a n =2S n -2S n-1=3n-3n-1=2×3n-1,即a n =3n-1,所以a n ={3,n =1,3n -1,n >1.(2)因为a n b n =log 3a n ,所以b 1=13, 当n>1时,b n =31-nlog 33n-1=(n-1)·31-n.所以T 1=b 1=13; 当n>1时,T n =b 1+b 2+b 3+…+b n =13+[1×3-1+2×3-2+…+(n-1)×31-n], 所以3T n =1+[1×30+2×3-1+…+(n-1)×32-n],两式相减,得2T n =23+(30+3-1+3-2+…+32-n)-(n-1)×31-n=23+1-31-n 1-3-1-(n-1)×31-n =136-6n+32×3n , 所以T n =1312-6n+34×3n(n>1).经检验,n=1时也适合.综上可得T n =1312-6n+34×3n(n ∈N *).6.(2014课标Ⅱ,17,12分)已知数列{a n }满足a 1=1,a n+1=3a n +1. (1)证明{a n +12}是等比数列,并求{a n }的通项公式; (2)证明1a 1+1a 2+…+1a n <32.解析 (1)由a n+1=3a n +1得a n+1+12=3(a n +12).又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列. a n +12=3n 2,因此{a n }的通项公式为a n =3n -12.(2)证明:由(1)知1a n =23n-1.因为当n≥1时,3n-1≥2×3n-1,所以13n-1≤12×3n-1.于是1a1+1a2+…+1a n≤1+13+…+13n-1=32(1-13n)<32.所以1a1+1a2+…+1a n<32.考点二等比数列的性质7.(2018浙江,10,4分)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3).若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4答案B8.(2014大纲全国,10,5分)等比数列{a n}中,a4=2,a5=5,则数列{lg a n}的前8项和等于()A.6B.5C.4D.3答案C【三年模拟】一、单项选择题(每题5分,共45分)1.(2019北京朝阳二模,5)已知等差数列{a n}的首项为a1,公差d≠0,则“a1,a3,a9成等比数列”是“a1=d”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案C2.(2020届天津杨村一中第一次月考,2)等比数列{a n}的前n项和为S n,若a1+a2+a3=3,a4+a5+a6=6,则S12=()A.15B.30C.45D.60答案C3.(2020届山东济宁二中10月月考,11)《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(百分比)为“衰分比”.如:甲、乙、丙、丁衰分得100,60,36,21.6个单位,递减的比例为40%.今共有粮m(m>0)石,按甲、乙、丙、丁的顺序进行“衰分”,已知丙衰分得80石,乙、丁衰分所得的和为164石,则“衰分比”与m的值分别为()A.20%;369B.80%;369C.40%;360D.60%;365答案A4.(2018河南新乡二模,6)在公比为q的正项等比数列{a n}中,a4=4,则当2a2+a6取得最小值时,log2q=()A.14B.-14C.18D.-18答案A5.(2019湖南衡阳一模,8)在等比数列{a n}中,a1a3=a4=4,则a6的所有可能值构成的集合是()A.{6}B.{-8,8}C.{-8}D.{8}答案D6.(2019 5·3原创冲刺卷三,5)已知数列{a n}为正项等比数列,a2=√2,a3=2a1,则a1a2+a2a3+…+a n a n+1=()A.(2+√2)[1-(√2)n]B.(2+√2)[(√2)n-1]C.√2(2n-1)D.√2(1-2n)答案C7.(2018福建厦门模拟,8)设等比数列{a n}的前n项和为S n,若S n=2n+1+λ,则λ=()A.-2B.-1C.1D.2答案A8.(2019 5·3原创冲刺卷八,5)已知等比数列{a n}满足a1+a2=12,a1-a3=6,则当a1·a2·…·a n取到最大值时,n的值为()A.3B.4C.3或4D.5答案 C9.(2019届安徽黄山11月“八校联考”,7)设S n 是等比数列{a n }的前n 项和,S 4=5S 2,则a 52a 3a 8的值为()A.±12B.±2C.±2或-1D.±12或-1 答案 D二、多项选择题(每题5分,共10分)10.(改编题)已知各项均为正数的等比数列{a n },a 1>1,0<q<1,其前n 项和为S n ,则下列说法正确的是( ) A.数列{ln a n }为等差数列 B.若S n =Aq n+B,则A+B=0C.S n ·S 3n =S 2n 2D.记T n =a 1·a 2·…·a n ,则数列{T n }有最大值 答案 ABD11.(改编题)已知数列{a n }是等比数列,那么下列数列一定是等比数列的是( ) A.{1a n} B.{log 2(a n )2}C.{a n +a n+1}D.{a n +a n+1+a n+2} 答案 AD三、填空题(每题5分,共10分)12.(2020届天津静海大邱庄中学第一次质量检测,13)若S n 为数列{a n }的前n 项和,且S n =2a n -1(n ∈N *),则S 6等于 . 答案 6313.(2020届河北邯郸大名一中第六周周测,15)已知数列{a n }的各项均为正数,记S n 为{a n }的前n 项和,若a n+1=2a n2a n+1-a n(n ∈N *),a 1=1,则使不等式S n >2 019成立的n 的最小值是 . 答案 11四、解答题(共50分)14.设数列{a n }的前n 项和为S n ,且a n+1=2S n +1,在下列两个条件:①a 1=-1,②a 2=3中选择一个,求数列{a n }的通项公式并求其前n 项和. 解析 若选择条件①a 1=-1,由于a n+1=2S n +1, ∴当n ≥2时,a n =2S n-1+1,两式相减得a n+1-a n =2a n ,即a n+1=3a n ,又a 2=2S 1+1=-1, ∴数列a 2,a 3,…,a n 是首项为-1,公比为3的等比数列, 则a n =a 2·3n-2=-3n-2,n ≥2,∴a n ={-1,n =1,-3n -2,n ≥2,又当n=1时,S 1=a 1=-1,∴当n ≥2时,S n =a 1+a 2+a 3+…+a n =(-1)+(-1)+(-1)×3+…+(-1)×3n-2=(-1)+(-1)(1-3n -1)1-3=-1+1-3n -12=-12-3n -12,又当n=1时,S 1=-12-302=-1也符合上式, 因此S n =-12-3n -12,n ∈N *.若选择条件②a 2=3,∵a 2=3,∴a 2=2S 1+1=3,∴S 1=1,即a 1=1.∵a n+1=2S n +1,∴n≥2时,a n =2S n-1+1,∴a n+1-a n =2a n ,即a n+1=3a n ,又∵a 2a 1=31=3,∴数列{a n }是首项为a 1=1,公比为3的等比数列,∴a n =a 13n-1=3n-1,∴S n =1-3n 1-3=12(3n -1)=12·3n -12.15.(2020届山东济宁二中10月月考,20)已知{a n }是递增的等差数列,且a 2,a 4是方程x 2-5x+6=0的根,数列{b n }的前n 项和为S n ,且S n =2b n -2(n ∈N *).(1)求数列{a n },{b n }的通项公式;(2)若c n =a n ·b n (n ∈N *),求数列{c n }的前n 项和T n . 解析 (1)易得方程x 2-5x+6=0的两根为2,3,则由题意,得a 2=2,a 4=3.设等差数列{a n }的公差为d, 则a 4-a 2=2d,∴d=12.从而a 2=a 1+d=2,∴a 1=32. ∴数列{a n }的通项公式为a n =32+(n-1)×12=n 2+1. ∵S n =2b n -2,①∴当n ≥2时,S n-1=2b n-1-2,②①-②得,b n =S n -S n-1=(2b n -2)-(2b n-1-2)=2b n -2b n-1,∴b n =2b n-1(n ≥2).又b 1=S 1=2b 1-2,∴b 1=2.∴{b n }是以2为首项,2为公比的等比数列,∴b n =2×2n-1=2n. (2)由题意及(1)得c n =(n 2+1)×2n=(n+2)×2n-1,∴T n =(1+2)×20+(2+2)×21+(3+2)×22+…+(n+1)×2n-2+(n+2)×2n-1, 即T n =3×20+4×21+5×22+…+(n+1)×2n-2+(n+2)×2n-1,①∴2T n =3×21+4×22+5×23+…+(n+1)×2n-1+(n+2)×2n,② ①-②得-T n =3+21+22+23+…+2n-2+2n-1-(n+2)×2n, ∴-T n =3+2(1-2n -1)1-2-(n+2)×2n =1-(n+1)×2n, ∴T n =(n+1)×2n -1.16.(2019江西红色七校联考,17)已知数列{a n }为等差数列,S n 为{a n }的前n 项和,2a 2+a 5=a 8,S 5=25.数列{b n }为等比数列,且b n >0,b 1=a 1,b 22=a 1a 5.(1)求数列{a n }和{b n }的通项公式; (2)记c n =4(2log 3b n +3)·a n,其前n 项和为T n ,求证:T n ≥43.解析 (1)设数列{a n }的公差为d,则由2a 2+a 5=a 8,S 5=25得{2(a 1+d)=3d,5a 1+5×42×d =25,解得{a 1=1,d =2,所以a n =2n-1, 所以a 1=1,a 5=9.设{b n }的公比为q,因为b 1=a 1=1,b 22=a 1a 5=q 2,b n >0,所以q=3,则b n =3n-1.(2)证明:由(1)得c n =4(2log 3b n +3) ·a n =4(2n+1)(2n -1)=2(12n -1-12n+1),所以T n =2(1-13+13-15+…+12n -1-12n+1)=2(1-12n+1),易知T n 随着n 的增大而增大,所以T n ≥T 1=2(1-13)=43.17.(2019安徽六安3月联考,17)已知数列{a n }的前n 项和为S n ,a 1=1,a n >0,S n 2=a n+12-λS n+1,其中λ为常数.(1)证明:S n+1=2S n +λ;(2)是否存在实数λ,使得数列{a n }为等比数列?若存在,求出λ的值;若不存在,说明理由.解析 (1)证明:∵a n+1=S n+1-S n ,S n 2=a n+12-λS n+1, ∴S n 2=(S n+1-S n )2-λS n+1,∴S n+1(S n+1-2S n -λ)=0,∵a n >0,∴S n+1>0,∴S n+1-2S n -λ=0,∴S n+1=2S n +λ.(2)存在.∵S n+1=2S n +λ,∴S n =2S n-1+λ(n≥2),相减得a n+1=2a n (n ≥2),∴{a n }从第二项起成等比数列, ∵S 2=2S 1+λ,即a 2+a 1=2a 1+λ,∴a 2=1+λ>0,得λ>-1,∴a n ={1,n =1,(λ+1)2n -2,n ≥2,若使{a n }是等比数列,则a 1a 3=a 22,∴2(λ+1)=(λ+1)2,∴λ=1,经检验,符合题意. 故存在实数λ,使得数列{a n }为等比数列,λ的值为1.。

相关文档
最新文档