2005高等代数大纲
《高等代数》教学大纲
《高等代数》教学大纲课程名称:高等代数课程编号:总学时:168适用对象:数学系数学与应用数学专业一、教学目的与任务1、教学目的:《高等代数》课是数学与应用数学专业必修基础课。
通过《高等代数》的学习,使学生初步掌握基本的系统的代数知识和抽象、严格的代数方法,以加深对中学数学的理解,并为进一步学习其它课程打下基础。
从而培养合格中学数学教师与各种高级专门人才。
2、教学任务:通过本课程的教学,使学生初步比较系统的掌握高等代数的基本内容,进一步熟悉和掌握代数处理问题的方法;进一步提高抽象思维能力和严格的逻辑推理能力;进一步理解具体与抽象、特殊与一般、有限与无限等辨证关系。
能应用所学理论指导中学数学教学以及其它工作,培养学生独立提出问题、分析问题和解决问题的能力,培养学生的数学基本素质,同时为今后继续学习奠定基础。
二、教学基本要求通过本课程的教学,使学生掌握一元多项式,行列式线性方程组与矩阵,向量空间线性变换,欧氏空间和二次型的有关理论和计算。
三、教学内容及要求第一章基本概念1.掌握集合映射等概念;2.理解自然数集的一个基本性质——最小数原理,会用最小数原理证明问题,熟练运用两个数学归纳法;3.理解并掌握整数整除性质及它与除法的区别;4.对带余除法,最大公因数的存在性能掌握并会应用;5.对最大公因数的表示及互素有深刻的理解。
掌握素数的基本性质;6.掌握数环和数域概念,判别方法,理解有理数域的最小性。
重点:最小数原理,第二数学归纳法原理,整除性理论,最大公因数,素数,数环,数域。
第二章多项式1.掌握一元多项式的定义,运算及运算律;理解并掌握多项式的次数及次数定理;2.理解并掌握多项式的整除概念和性质,掌握带余除法及其应用;3.理解最大公因式的存在性,掌握其求法及表示法;4.掌握多项式的互素概念及性质;5.掌握不可约多项式的概念、性质及唯一分解定理,了解标准分解式及应用;6.理解多项式导数的定义,求法及重因式概念,掌握多项式有无重因式的判别法;7.掌握多项式函数概念及余式定理,理解两个多项式相等与多项式函数相等的区别和关系;8.掌握复数域、实数域上多项式因式分解定理及不可约多项式的类型。
2005年高考数学考试大纲解读
正三棱锥,D、E、F分别为棱PA、PB、PC上的点.截面 DEF∥底面ABC,且棱台DEF—ABC与棱锥P—ABC的棱 长和相等.(棱长和指多面体中所有棱的长度之和) (1)证明:P—ABC为正四面体; (2)若PD=PA,求二面角D—BC —A的大小;
P
(3)设棱台的体积为V,是否存
在体积为V的平行六面体,使 得它与棱台DEF—ABC有相 A 同的棱长和?若存在,请具体 构造出这样的一个平行六面
对比即知,只要证:
A
x1 3 x1 2 ,即:2 x1 x2 5( x1 x2 ) 12 0 x2 3 2 x2
将韦达定理代入即可。
| PH | | AP | | BP | | BP | e | PF | | QN | | AQ | | CQ | | CQ | e | QF |
(6)[文1]强调,现代脑科学研究表明,人脑系统 是非加和性的,不能把系统简单地视为其构成 部分的叠加,各部分知识点比较完整,但解决 问题,特别是解决综合性问题仍然可能能力较 差,原因在于其知识的系统不合理,较低层次 的知识点和能力元难以组成较高层次的功能系 统,各知识点和能力元在系统中不能形成耦合 和互补关系,一旦解决问题受阻,就无法另辟 蹊径。
这些都为理性思维的考查指明了方向。
例3(04年江苏20题)设无穷等差数列{an}的前 n项和为Sn, 的Байду номын сангаас整数k;
3 (1)若首项a1= 2
,公差d=1,求满足 Sk 2 (Sk )2
(2)求所有的无穷等差数列{an} ,使得对 于一切正整数k都有 S 2 (S )2 成立。
k k
例4(04年上海理,21题)如图P—ABC是底面边长为1的
[高考必看]2005年数学高考复习大纲
2005年数学高考复习大纲根据教育部考试中心2005年数学科《考试大纲》提出的考试能力要求、考试内容、考试形式与试卷结构及专家分析预测提出的新观点构成了2005年数学高考复习大纲,即复习的内容、重点、策略等。
一、考试内容的知识要求、能力要求和个性品质要求1.知识要求知识是指《全日制高级中学数学教学大纲》所规定的教学内容中的数学概念、性质、法则、公式、公理、定理以及其中的数学思想和方法.对知识的要求由低到高分为三个层次,依次是了解、理解和掌握、灵活和综合运用,且高一级的层次要求包括低一级的层次要求.(1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,并能在有关的问题中直接应用.(2)理解和掌握:要求对所列知识内容有较深刻的理性认识,能够解释、举例或变形、推断,并能利用知识解决有关问题.(3)灵活和综合运用:要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题.【注意】在命题范围内,常用的数学技能和方法,如配方法、换元法、待定系数法、数学归纳法和数形结合法等,以及常用的逻辑推理方法,如分析法、综合法、归纳法、演绎法和反证法等,都是考查的主要内容.考查中,重在通性通法的正确与灵活的运用.对于处理问题的重要的数学思想方法,如函数与方程、变换与转化、分类与归纳、数形的结合与分离、定常与变化的对立与统一等思想观点和方法,也将通过具体问题,测试考生掌握的程度.2.能力要求能力是指思维能力、运算能力、空间想像能力以及实践能力和创新意识.(1)思维能力:会对问题或资料进行观察、比较、分析、综合、抽象与概括;会用演绎、归纳和类比进行推理;能合乎逻辑地、准确地进行表述.【注意】对思维能力的考查要求,与试题的解答过程结合起来就是:能正确领会题意,明确解题的目标与方向;会采用适当的步骤,合乎逻辑地进行推理和演算,实现解题目标;并加以正确表述.(2)运算能力:会根据法则、公式进行正确运算、变形和处理数据;能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.【注意】在数学科考试中,数值计算、字符运算和各种式子的变换运算,都是重要的考查内容.应懂得恰当地应用估算、图算、近似计算和精确计算进行解题.(3)空间想像能力:能根据条件作出正确的图形,根据图形想像出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合与变换;会运用图形与图表等手段形象地揭示问题的本质.【注意】空间想像能力强调的是对图形的认识、理解和应用,既会用图形表现空间形体,又会由图形想像出直观的形象;既会观察、分析各种几何要素(点、线、面、体)的相互位置关系,又能对图形进行变换分解和组合.为了增强和发展空间想像能力,必须强化空间观念,培养直觉思维的习惯,把抽象思维与形象思维结合起来.(4)实践能力:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题;能阅读、理解对问题进行陈述的材料;能够对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表述、说明.(5)创新意识:对新颖的信息、情境和设问,选择有效的方法和手段收集信息,综合与灵活地应用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.3.个性品质要求个性品质是指考生个体的情感、态度和价值观. 具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.二、命题基本原则数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识在各自的发展过程中的纵向联系和各部分知识之间的横向联系.要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试题的结构框架.对数学基础知识的考查,要求全面又突出重点,对于支撑学科知识体系的重点知识,考查时要保持较高的比例,构成数学试题的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使考查达到必要的深度.数学思想和方法是数学知识在更高层次上的抽象和概括,蕴涵在数学知识发生、发展和应用的过程中,能够迁移并广泛应用于相关学科和社会生活中.因此,对于数学思想和方法的考查必然要与数学知识的考查结合进行,通过数学知识的考查,反映考生对数学思想和方法理解和掌握的程度.考查时要从学科整体意义和思想价值立意,要有明确的目的,加强针对性,注意通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.数学是一门思维的科学,是培养理性思维的重要载体,通过空间想像、直觉猜想、归纳抽象、符号表达、运算推理、演绎证明和模式构建等诸方面,对客观事物中的数量关系和数学模式进行思考和判断,形成和发展理性思维,构成数学能力的主体.对能力的考查,强调"以能力立意",就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料.对知识的考查侧重于理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同的情境中去的能力,从而检测出考生个体理性思维的广度和深度,以及进一步学习的潜能.对能力的考查,以思维能力为核心,全面考查各种能力,强调综合性、应用性,切合考生实际.运算能力是思维能力和运算技能的结合,它不仅包括数的运算,还包括式的运算,对考生运算能力的考查主要是算理和逻辑推理的考查,以含字母的式的运算为主.空间想像能力是对空间形式的观察、分析、抽象的能力,考查时注意与推理相结合.实践能力在考试中表现为解答应用问题,考查的重点是客观事物的数学化,这个过程主要是依据现实的生活背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题,并加以解决.命题时要坚持"贴近生活,背景公平,控制难度"的原则,要把握好提出问题所涉及的数学知识和方法的深度和广度,要切合我国中学数学教学的实际,让数学应用问题的难度更加符合考生的水平,引导考生自觉地置身于现实社会的大环境中,关心自己身边的数学问题,促使学生在学习和实践中形成和发展数学应用的意识.创新意识和创造能力是理性思维的高层次表现.在数学学习和研究过程中,知识的迁移、组合、融汇的程度越高,展示能力的区域就越宽泛,显现出的创造意识也就越强.命题时要注意试题的多样性,设计考查数学主体内容,体现数学素质的题目,反映数、形运动变化的题目,研究型、探索型或开放型的题目.让考生独立思考,自主探索,发挥主观能动性,研究问题的本质,寻求合适的解题工具,梳理解题程序,为考生展现其创新意识发挥创造能力创设广阔的空间.数学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查,注重展现数学的科学价值和人文价值.同时兼顾试题的基础性、综合性和现实性,重视试题的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.三、考试内容1.平面向量考试内容:向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离.平移.考试要求:(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念.(2)掌握向量的加法与减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.(6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用.掌握平移公式.【注意】向量是数学的重要概念之一,它给平面解析几何奠定了必要的基础,同时也为物理学提供了工具,这部分内容与实际结合比较密切.在高考中的考查主要集中在两个方面:①向量的基本概念和基本运算;②向量作为工具的应用.2.集合、简易逻辑考试内容:集合.子集.补集.交集.并集.逻辑联结词.四种命题.充要条件.考试要求:(1)理解集合、子集、补集、交集、并集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词"或"、"且"、"非"的含义.理解四种命题及其相互关系.掌握充要条件的意义.【注意】近年的高考题中,集合的考查通常以两种方式出现:①考查集合的概念、集合的关系、集合的运算;②在考查其他部分内容时涉及到集合的知识.很少有正面考查逻辑的内容.逻辑与充要条件的知识往往是和其他知识结合起来考查.3.函数考试内容:映射.函数.函数的单调性、奇偶性。
05年数学三大纲
2005年全国硕士研究生入学统一考试数学三考试大纲考试科目微积分、线性代数、概率论考试时间 3小时总分 150分微积分一、函数、极限、连续考试内容函数的概念及其表示法 函数的有界性、单调性、周期性和奇偶性 反函数、复合函数、隐函数、分段函数 基本初等函数的性质及其图形 初等函数 简单应用问题函数关系的建立。
数列极限与函数极限的定义以及它们的性质 函数的左极限和右极限 无穷小和无穷大的概念及关系 无穷小的性质及无穷小的比较 极限四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限,)11(lim ,1sin lim 0e x x xx x x =+=∞→→函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立简单应用问题函数关系。
2.了解函数的有界性、单调性、周期性和奇偶性.3. 理解复合函数及分段函数的概念,了解隐函数及反函数的概念。
4.掌握基本初等函数的性质及其图形,理解初等函数的概念.5. 了解数列极限和函数极限(包括坐极限和右极限)的概念.6. 理解无穷小的概念和基本性质,掌握无穷小的比较方法,了解无穷大的概念及其与无穷小的关系.7. 了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,会应用两个重要极限.8. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用.二、一元函数微分学考试内容导数的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 导数的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的导数 高阶导数 微分的概念和运算法则 一阶微分形式不变性 中值定理 洛必达(L'Hospital)法则 函数单调性函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际和弹性的概念).2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;掌握反函数与隐函数求导法,了解对数求导法.3.了解高阶导数的概念,会求简单函数的高阶导教.4.了解微分的概念,导数与微分之间的关系,以及一阶微分形式的不变性,会求函数的微分.5. 理解罗尔(Rolle)定理和拉格朗日(Lagrange)中值定理,了解柯西(Cauchy)中值定理,掌握这三个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法及简单应用,掌握函数极值、最大值和最小值的求法,会求解较简单的应用题.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点和渐近线.9.掌握函数作图的基本步骤和方法,会作简单函数的图形.三、一元函数积分学考试内容原函数与不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法广义积分的概念及计算定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式,以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解一些简单的经济应用问题.4.了解广义积分的概念,会计算广义积分。
《高等代数》考试大纲
《高等代数》考试大纲(一)多项式考试内容数域;一元多项式;整除的概念及性质;最大公因式及辗转相除法;互素的概念及性质;不可约多项式的概念及性质;因式分解及唯一性定理。
考试要求1。
掌握数域、一元多项式的概念,了解一元多项式的运算及性质。
2。
掌握多项式整除的概念,了解相关的性质。
3。
掌握最大公因式的概念,了解辗转相除法。
4。
理解互素的概念,掌握两个一元多项式互素的充分必要条件。
5。
了解不可约多项式的概念及其性质。
6。
了解一般系数的多项式的因式分解定理,掌握复系数与实系数多项式的因式分解定理。
(二)行列式考试内容行列式的概念和基本性质;行列式计算;行列式按行(列)展开;拉普拉斯(Laplace)定理及行列式的乘法法则。
考试要求1。
理解行列式的概念,掌握行列式的性质,了解拉普拉斯(Laplace)定理及行列式的乘法法则。
2。
会应用行列式概念计算行列式,会利用行列式的性质和行列式按行(列)展开定理计算行列式,会运用矩阵的初等行(列)变换计算行列式。
(三)向量和矩阵考试内容向量的线性组合和线性表示;向量组的等价;向量组的线性相关与线性无关;向量组的极大线性无关组;向量组的秩;向量组的秩与矩阵的秩之间的关系。
矩阵的概念;矩阵的基本运算;矩阵的转置、伴随矩阵、逆矩阵的概念和性质;矩阵可逆的充分必要条件;矩阵的初等变换和初等矩阵;矩阵的秩;矩阵的等价;分块矩阵及其运算考试要求1。
理解n维向量、向量的线性组合与线性表示等概念。
2。
理解向量组线性相关、线性无关的定义、熟练掌握判断向量组线性相关、线性无关的方法。
3。
理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩。
4。
理解向量组等价的概念、清楚向量组的秩与矩阵秩的关系。
5。
理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,熟悉它们的基本性质。
6。
掌握矩阵的数乘、加法、乘法、转置等运算。
掌握方阵的多项式概念。
7。
《高等代数》课程教学大纲
《高等代数》课程教学大纲一、教学大纲说明(一)课程的性质、地位、作用和任务《高等代数》是数学专业本科学生的三门主要基础课程之一。
它不仅是代数学的基础,也是其它数学课程必要的前提。
该课程是为大学一年级的学生开设的,总课时144学时,开设时间为一年。
通过本课程的教学,使学生掌握为进一步提高专业知识水平所必需的代数基础理论和基本方法。
本课程的任务是使学生系统地掌握基本的、系统的代数知识和抽象的严格的代数方法,为后继课程如近世代数、常微分方程、概率论与数理统计、泛函分析、计算方法等提供必须具备的代数知识,也为进一步学习数学与应用数学专业的各门课程所需要的抽象思维能力提供一定的训练。
(二)教学目的和要求通过本课程的学习,使学生掌握高等代数的基本概念、基本理论与基本方法,熟悉代数的语言、工具、方法,具有一定理解问题、分析问题、解决问题的能力。
为今后的学习打下扎实的基础。
1.熟练掌握:集合、映射、单射、满射、双射的概念,第一、第二数学归纳法,带余除法,不可约多项式,线性方程组的消元法,矩阵的行(列)初等变换,矩阵的秩,初等矩阵的性质,可逆矩阵,向量空间的基、维数,线性相关与线性无关,齐次线性方程组的基础解系,线性变换,矩阵特征值、特征向量的概念与求法,内积的定义,正交变换与正交矩阵,二次型的概念及与其矩阵的对应关系。
2.掌握:整数的整除性、素数的性质,集合的表示与运算,辗转相除法,综合除法,多项式的互素,根与系数的关系,重因式及其判定,行列式的性质,行列式的展开,矩阵的乘法,矩阵的行列式,子空间的交与和,坐标,过渡矩阵,线性方程组的特解与通解,线性变换的运算及其形成的向量空间,线性变换的向量空间与矩阵的向量空间的同构,矩阵的相似,几类向量空间的内积,Cauchy不等式,正交基与正交化,三维空间中的几种正交变换,正交变换与正交矩阵的关系,二次型的矩阵的合同及其求法,对称矩阵合同于对角矩阵,复数域上的二次型的规范形、实数域上二次型的惯性定理、规范形、分类,正定二次型的判定。
高等代数课程教学大纲
《高等代数》课程教学大纲适用专业数学与应用数学(师范)、数学与应用数学总学时 168学分 10一、编写说明(一)本课程的性质、地位和作用高等代数是数学与应用数学专业(师范)、数学与应用数学专业的一门重要的专业基础课,其主要内容有多项式理论与线性代数两部分。
本课程的教学目的是使学生初步掌握基本的、系统的代数知识和抽象的严格的代数方法,为后继课程如近世代数、常微分方程、概率论与数理统计、泛函分析、计算方法等提供必须具备的代数知识,也为进一步学习数学与应用数学专业的各门课程所需要的抽象思维能力提供一定的训练。
高等代数课程是中学代数的继续和提高。
通过本课程的教学,要使学生加深对中学代数的理解。
本课程在教学中要求学生确切理解高等代数中的基本概念,不仅要正确掌握这些概念的内涵,还要了解这些概念的实际背景。
对于一些基本的重要概念,还要求了解它们产生与发展的过程及概念推广的原则;与中学代数有直接联系或者平行的概念,要求学生能与中学数学中相应概念加以比较,以确立较高的观点。
对于高等代数中的基本理论,要求学生掌握基本理论的结果,对于典型定理还要求掌握论证方法或思想,同时要求学生能了解严谨的理论体系,体会建立这种体系的抽象的代数方法。
通过本课程的教学,要求学生能显著地提高应用基本概念、基本理论作抽象论证的能力;较好地掌握基本的论证方法与基本的计算方法,特别要掌握基本的线性代数计算法。
(二)本大纲制订的依据根据本专业人才的培养目标所需要的基本理论和基本技能的要求,根据本课程的教学性质、条件和教学实践而制定。
(三)大纲内容选编原则与要求1.本大纲所列各单元讲授顺序与北京大学数学系几何与代数教研室代数小组编《高等代数》(高等教育出版社第二版)所列基本相同,讲授时可根据具体情况作适当调整。
2.为了避免教学上的难点过于集中,有些定理的掌握可以侧重于定理的结果和证明定理的方法,以达到掌握基本的代数方法的目的。
3.每一章的重点内容要重点讲解,在讲清概念的基础上,通过适当的练习(习题课、作业、问题探讨)以达到掌握高等代数中常用的计算方法、基本运算中的技能和技巧以及提高综合计算和解决问题的能力的目的。
《高等代数》课程教学提纲
《高等代数》课程教学大纲授课学时:总学分:作者:课程类型:专业必修课适用专业:数学与应用数学专业本科一、课程性质、地位和任务高等代数是数学系各专业开设的一门基础课,它不仅是应用学科的重要工具课,而且在抽象代数理论中也是一门很重要的理论基础课,特别是随着当今电子科技的发展,更加显示出高等代数的作用。
二、课程主要内容概述及教学基本要求本课程分以一元多项式为主体的多项式理论和线性代数两部分。
线性代数部分涉及行列式、线性方程组、矩阵、二次型、线性空间、线性变换、矩阵、欧几里得空间。
通过对这门课的学习,使学生不仅能掌握一些处理问题的基本方法,而且能使他们对于高等代数的基础理论有一个深刻的了解,从而为进一步学习专业课打下良好的基础。
培养学生的独立思维能力和解决实际问题的能力。
三、课程内容第一章多项式基本要求:通过本章学习,使学生掌握带余除法、辗转相除法、因式分解定理、复系数与实系数多项式的因式分解定理及有理系数多项式的有关结论。
教学重点:多项式的整除性理论和有理系数多项式,分解定理及复数域,实数域上分解形式。
有理根检验,Eisenstein判别法之使用,有理多项式分解归纳为整系数多项式分解。
教学难点:辗转相除法和有理系数多项式为。
分解定理及复数域,实数域上分解形式。
第二章行列式基本要求:通过本章的学习,使学生深刻理解行列式定义及性质并能用其计算简单行列式熟练掌握行列式的性质、按行(列)展开定理并在计算行列式时有思路。
会运用Cramer法则求线性方程组的解。
教学重点:行列式的定义、行列式按行(列)展开公式、Vandermonde行列式和Cramer法则教学难点:行列式的计算第三章线性方程组基本要求:通过教学使学生掌握n维向量的线性关系、矩阵的秩、线性方程组解的判定及求法。
教学重点:n维向量的线性相关性、向量组秩的概念及求秩方法、线性方程组有解的判别定理及解的结构。
教学难点:线性相关性理论和线性方程组解的理论。
《高等代数》考试大纲
《高等代数》考试大纲一.课程任务二.教材与参考书目1.教材:1.《高等代数》北京大学数学系几何与代数教研室代数小组编,第三版,高等教育出版社,2003年7月。
2.《高等代数辅导与习题解答》王萼芳,石生明编,高等教育出版社,2007年2月。
3.《高等代数》丘维声编,第二版,高等教育出版社,2002年7月。
4.《LinearAlgebra》彭国华,李德琅编,高等教育出版社,2006年5月。
5.《高等代数解题方法与技巧》李师正主编,高等教育出版社,2004年2月。
三.课程考核方法与命题要求本课程考核以笔试为主,一般采用闭卷形式,主要考核学生对基础理论,基本概念的掌握程度,以及学生逻辑推理能力计算能力以及综合应用能力。
平时成绩占30%,期末成绩占70%。
考试大纲根据教学目标,划分标准为“识记、领会、简单应用、综合应用”四级,其中识记占20%,领会占30%,简单应用占40%,综合应用占10%,考试的试题应按照这四个层次,按比例命题。
本课程考试题型分为客观题和主观题两部分,其中客观题目有选择题(判断题)、填空题,主观题有解答题(计算题)、证明题等。
(第二学期考核第一至第五章部分;第三学期考核第六至第九章部分)四.课程内容与考核要求第一章基本概念1.知识范围:本章主要介绍集合,映射,数学归纳法,整数的一些整除性质,数环和数域的基本知识。
2.考核要求:深入理解集合的相等、子集、空集、交集、卡氏集等概念及他们之间的关系,掌握映射、满射、单射、双射、映射的合成、可逆映射的概念和映射可逆的充要条件,理解和掌握数学归纳法原理,整数的性质及带余除法、最大公因数与互素、素数的一些简单性质。
能够判别一些数集是否为数环、数域。
3.考核知识点:映射、满射、单射、双射、映射的合成、可逆映射,映射可逆的充要条件,数学归纳法原理,整数的性质及带余除法、最大公因数与互素、素数的一些简单性质,数环、数域的概念。
第二章多项式1.知识范围:本章主要讨论了多项式的整除性,最大公因,因式分解及在常见数域(有理数域、实数域、复数域)上多项式的约性,多项式根的一些性质,属多项式代数的基本知识,是对中学所学知识的加深和推广。
高等代数教学大纲(教学计划)
《高等代数》教学大纲(教学计划)第一学期第一周:(第一章§1)代数系统的概念;数域的定义;定理任一数域都包含有理数域;集合的运算,集合的映射(像与原像、单射、满射、双射)的概念;求和号与求积号。
(第一章§2)高等代数基本定理及其等价命题;推论数域上的两个次数小于m的多项式如果在m个不同的复数处的取值相等,则此二多项式相等;韦达定理;实系数代数方程的根成对出现;推论实数域上的奇数次一元代数方程至少有一个实根。
第二周:(第一章§3)数域K上的线性方程组的初等变换的定义;命题线性方程组经过初等变换后与原方程组同解;线性方程组的系数矩阵和增广矩阵的以及矩阵的初等变换的定义;线性方程组无解、有唯一解和有无穷多解的判别准则;命题变元个数大于方程个数的齐次线性方程组必有非零解;线性方程组的解的存在性与数域的变化无关(这不同于高次代数方程)。
(第二章§1)向量和n维向量空间的定义及性质;线性组合和线性表出的定义;向量组的线性相关与线性无关的定义以及等价表述。
第三周:(第二章§1)向量组的秩;向量组的线性等价;极大线性无关组;集合上的等价关系。
(第二章 §2)矩阵的行秩与列秩,行(列)初等变换不改变行(列)秩;命题 矩阵的行(列)初等变换不改变列(行)秩;矩阵的转置;推论 矩阵的行、列秩相等,称为矩阵的秩,矩阵A 的秩记为r )(A ;满秩方阵;矩阵的相抵;相抵是等价关系;秩是相抵等价类的完全不变量;用初等变换求矩阵的秩。
第四周:(第二章 §3)齐次线性方程组的基础解系;定理 数域上的齐次线性方程组的基础解系中的向量个数等于变元个数减去系数矩阵的秩;基础解系的求法;非齐次线性方程组的解的结构。
(第二章 §4)矩阵的加法和数乘的定义;矩阵的乘法的定义,矩阵的运算(加法、数乘、乘法、转置)的性质;矩阵的和与积的秩。
第五周:(第二章 §5)n 阶方阵,对角矩阵,数量矩阵,单位矩阵,初等矩阵,对称、反对称、上三角、下三角矩阵;命题 矩阵的初等行(列)变换等价于左(右)乘初等矩阵;定理 一个方阵是满秩的当且仅当它能表示为初等矩阵的乘积。
《高等代数》教学大纲
教学大纲一.课程的教学目的和要求通过这门课的学习,使学生掌握高等代数的基本知识,基本方法,基本思路,为进一步学习专业课打下良好的基础,适当地了解代数的一些历史,一些背景。
要突出传授数学思想和数学方法,让学生尽早地更多地掌握数学的思想和方法。
突出高等代数中等价分类的思想,分解结构的思想,同构对应的思想,揭示课程内部的本质的有机联系。
通过活泼互动的课堂教学,刺激学生的学习兴趣;通过探索讨论课,调动学生的学习主动性;通过写专题读书报告,训练学生的查阅资料和归纳总结的能力;通过难题攻关,享受理解和应用数学思想和方法的乐趣,提高创新能力。
二.课程的主要内容:《高等代数》分为两个部分主要内容。
一块是基本工具性质的,包括多项式,行列式,矩阵初步,二次型。
既然是工具性质的,因而除了多项式内容外,也是数学专业以外的理科、工科、经管类《线性代数》的内容。
另外一块是研究线性空间的结构,这是研究代数结构的起点和模型。
从元素的角度看,研究向量间的线性表示,线性相关性,基向量;从子集角度看,研究子空间和直和分解;从空间之间的关系来研究空间结构,就是线性映射,线性变换,线性映射的核与值域,Jordan标准形对应的空间分解。
而欧氏空间则是具体的研究空间的例子。
三.教学重点与难点:在讲解内容的同时,要尽早地更多讲授高等代数中的数学的思想和方法,重点是传授代数学的基本思想,如等价分类的思想,分解结构的思想,特别是同构对应的思想。
所选教材以线性空间为纲的做法,即把高等代数的主要内容放在线性空间的框架下展开,同时将必要的代数方法做了尽可能详细的介绍。
所以讲课的难点在于把握几何直观和代数方法的对应关系和互动关系,使学生即能从几何的观点更好地理解内容,又可把握简洁和直接的代数方法。
四.课程教材和参考书:教材:姚慕生编著,高等代数,复旦大学出版社,第一版(2003年)参考书:1. 姚慕生编著,高等代数(指导丛书),复旦大学出版社(2003)2. 北京大学数学系编,高等代数,高等教育出版社,北京(1987)3. 张禾瑞、郝炳新,高等代数,高等教育出版社,北京(1999)4. 樊恽、郑延履、刘合国,线性代数学习指导,科学出版社,北京(2003)5. 林亚南编:高等代数方法选讲,2002年,见厦门大学精品课程“高等代数”网站,五.课程内容及学时分配本课程开课时间:第一学年(共三学期),共180学时;其中,第一学期,72课时,期中考1次;第二学期,78课时,期中考1次;第三学期,30课时;以上不包括复习考试周。
(完整word版)《高等代数》课程教学大纲
《高等代数》课程教学大纲课程编号:090085、090022总学时:162学分:8适用专业:数学与应用数学、信息与计算科学课程类型:专业必修课开课单位:一、课程的性质、目的与任务通过本课程的教学,使学生对高等代数乃至代数学的思想和方法有较深刻的认识, 提高他们的抽象思维、逻辑推理和运算的能力;使学生初步地掌握基本的、系统的代数知识和抽象的、严格的代数方法,进而加深对中学代数的理解;使学生能应用代数思想和方法去理解与处理有关的问题, 培养与提高代数的理论分析问题与解决问题的能力;使学生学习数学学科后续课程(如近世代数、离散数学、计算方法、偏微分方程、泛函分析等)提供一些所需要的基础理论和知识;使学生在智能开发、创新能力培养等方面获得重要的平台。
《高等代数》是数学与应用数学、信息与计算科学本科专业最重要的基础课程之一,是数学各专业报考研究生的必考课程之一,也是理论性、应用性很强的一门数学基础课。
讲授本课程的目的主要在于培养学生的代数基础理论和思想素质,基本掌握代数中的论证方法, 获得较熟练的演算技能和初步应用的技巧, 提高分析问题、解决问题的能力,为进一步学习其它数学知识打下坚实的基础。
本课程的主要任务是通过教学的主要环节(课堂讲授与讨论、习题课、作业、辅导答疑等),使学生学习和掌握多项式理论、线性代数的代数理论(行列式、线性方程组、矩阵、λ矩阵)及线性代数的几何理论(线性空间、线性变换、欧氏空间)。
二次型、-二、课程教学内容和基础要求(1)理解多项式的定义,掌握最大公因式,互素,不可约多项式, 因式分解等有关的一系列性质。
(2)理解行列式的定义, 掌握行列式的基本运算性质和行列式的行(列)展开性质;理解向量组的线性相关性,掌握线性方程组的通解求法;理解矩阵的概念和运算,掌握矩阵的可逆、矩阵的分块、矩阵的等价关系的性质及应用;理解二次型的定义,掌握二次型的标准形的求法及正定二次型的一系列性质。
(3)理解线性空间的定义,掌握交空间、和空间及直和的判定及性质;理解线性变换的定义及简单性质,掌握线性变换在不同基下的矩阵的性质、线性变换的值域与核的应用问题;会求矩阵的若当标准形;理解欧氏空间及对称变换的定义,掌握对称变换与实对称矩阵之间的关系的有关性质。
《高等代数》考试大纲
《高等代数》考试大纲一、课程目标1.课程性质高等代数是高等院校数学专业(基础数学,应用数学,概率统计和信息专业)的三门最主要基础课之一,对学生的抽象思维能力、逻辑推理能力的培养,以及后继课程的学习起着非常重要的作用。
本课程内容包涵:行列式、矩阵、线性方程组、线性空间、线性变换、二次型、欧氏空间和多项式理论。
行列式是高等代数的一个基本概念,它不仅是讨论线性方程组理论的有力工具,而且在求逆矩阵、求矩阵秩及向量组线性相关性、特征值等方面都要用到。
而线性方程组的理论在数学各分支及其它许多领域有着广泛应用。
矩阵及矩阵的运算是高等代数主要内容之一,是数学及许多科学领域的重要工具,也有广泛应用。
二次型在数学其它分支和物理、力学、工程技术中也常常用到。
多项式理论是高等代数的重要内容之一。
虽然它在整个高等代数课程中是一个相对独立而自成体系的部分,但却为高等代数所讲述的基本内容提供了理论依据。
多项式理论中的一些重要定理和方法在进一步学习数学理论和解决实际问题时常常要用到。
线性空间是研究规定了加法,数乘的抽象集合的公共性质。
具有高度的抽象性和应用的广泛性。
对培养学生的抽象思维,有很好的帮助。
线性变换,又是反映了线性空间中元素之间的一种最基本的联系。
线性变换的运算、矩阵表示,特征值特征向量又是使抽象概念具体化。
欧氏空间是把线性空间引入度量,因而是几何空间的一种推广,从而产生了长度夹角,使其更接近几何空间,并有更丰富的内容与方法。
总之,通过教学使学生掌握本课程的基本理论和方法,培养解决实际问题的能力,打好坚实的数学基础十分重要。
二、课程结构1.行列式(14学时)知识点:数域、排列、行列式定义、行列式性质、行列式计算、行列式按行展开和拉普拉斯(Laplace)展开定理、克莱姆法则重点:n阶行列式计算、Laplace展开定理难点:排列、n阶行列式定义2.矩阵(18学时)知识点:矩阵的运算(包括加法、数乘和乘法)矩阵的初等变换,矩阵的秩,矩阵乘积的行列式与秩、矩阵的逆。
2005年数学一考研大纲
2005年数学一考研大纲考试科目:高等数学、线性代数、概率论与数理统计高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数简单应用问题的函数关系的建立数列极限与函数极限的定义及其性质,函数的左极限与右极限,无穷小和无穷大的概念及其关系,无穷小的性质及无穷小的比较,极限的四则运算,极限存在的两个准则,单调有界准则和夹逼准则,两个重要极限,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。
2.了解函数的有界性、单调性、周期性和奇偶性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形,了解初等函数的概念。
5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系。
6.掌握极限的性质及四则运算法则。
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
二、一元函数微分学考试内容。
导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线和法线,基本初等函数的导数,导数和微分的四则运算,复合函数、反函数、隐函数以及参数方程所确定的函数的微分法,高阶导数,一阶微分形式的不变性,微分中值定理洛必达(L‘Hospital)法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函数最大值和最小值,弧微分,曲率的概念,曲率半径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《404高等代数》
一、适用报考专业:数学学科各专业
二、题目类型:1.填空(选择题) 2.简答题 3.证明题 4.计算题
三、参考教材:
1、北京大学数学系编《高等代数》(第二版),高等教育出版社。
2、张禾瑞等编《高等代数》(第四版),高等教育出版社。
3、冯克勤等编《近世代数引论》,中国科技大学出版社,2002。
4、张禾瑞编《近世代数基础》,高等教育出版社,1978(修订本)。
四、基本内容:
1.一元多项式的性质
2.n阶行列式的定义、性质和计算,C ar a mer法则
3.向量的线性关系,向量组的极大线性无关组,等价向量组,向量组的秩,向量组的秩和矩阵的秩的关系,线性方程组有解的判定定理,解的结构及线性方面组的求解。
4.矩阵的概念,矩阵的线性运转,矩阵的乘法,方阵的方幂,方阵乘积的行列式,矩阵的转置,逆矩阵的概念,矩阵可逆的充要条件,伴随矩阵,矩阵的初等变换和初等方阵,矩阵等价,初等变换求逆阵的秩和逆矩阵的方法,分块矩阵及其运算。
5.二次型的矩阵表示,用正交变换和配方法化二次型为标准形,正定二次型及正定矩阵的性质。
6.线性空间的概念及简单性质,维数、基和坐标,线性子空间的概念有相关的性质。
7.线性变换的概念、运算及性质,线性变换(矩阵)的特征值与特征向量,线性变换的矩阵为对角矩阵的充要条件,线性变换的值域与核,不变子空间,最小多项式。
8.不变因子、初等因子,矩阵相似的条件,若当标准形。
9.欧几里得空间的概念与基本性质,标准正交基,正交变形,对称矩阵的标准形。
10.双线性函数和对偶空间。
*11、群的子群和正规子群、循环群、置换群、商群、同态基本定理、两个同构定理
*12、环的子环、理想和商环、同态和同构定理、交换环的因子分解
*13、素域、扩域、代数扩域、有限域、多项式的分裂域
注:加“*”号者为新增考试内容。