高中抽象函数问题的题型综述
抽象函数常见题型及解法综述
是[- 1, 1]; ③在其定义域上递减; ④ f( x) +f( y) = f( xy) 对于
任意实数 x, y 都成立.解不等式 f-1( x)·f-1( 1 ) ≤ 1 . 1- x 2
联想
因 为 loga( x·y) =logax+logay, 而 log 1
2
1 2
=1, y=
log 1 x 在其定义域内为减函数, 所以猜测它的模型函数
#!f -1( x+ 1 ) ≤f -1( 1) , #x+ 1 ≥1,
% 1- x
% 1- x
%%- 1≤x+ 1 ≤1,
$
1- x
%%- 1≤x+ 1 ≤1,
∴(
1- x
∴x=0.
%- 1≤x≤1,
%- 1≤x≤1,
&%%- 1≤
1 1- x
≤1.
&%%- 1≤
1 1- x
≤1.
故 原 不 等 式 的 解 集 为 {0}.
二 、寻 觅 特 殊 函 数 的 模 型
1.指 数 函 数 模 型
例 6 设 f( x) 定义于实数集 R 上, 当 x>0 时, f( x) >1,
且对于任意实数 x, y, 有 f( x+y) = f( x)·f( y) , 同时 f( 1) =2,
解不等式 f( 3x- x2) >4.
联 想 由于 ax+y=a·x ay( a>0, a≠1) , 于是猜测它的模型
x- 1
x- 1
x- 1
①- ②+③并化简得 f( x) = x3- x2- 1 . 2x( x- 1)
小 结 把 x 和 x- 1 分 别 看 作 两 个 变 量 , 怎 样 实 现 由 x
高一数学抽象函数常见题型解法综述
抽象函数常见题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。
由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。
本文就抽象函数常见题型及解法评析如下:一、定义域问题例1. 已知函数)(2x f 的定义域是[1,2],求f (x )的定义域。
解:)(2x f 的定义域是[1,2],是指21≤≤x ,所以)(2x f 中的2x 满足412≤≤x从而函数f (x )的定义域是[1,4]评析:一般地,已知函数))((x f ϕ的定义域是A ,求f (x )的定义域问题,相当于已知))((x f ϕ中x 的取值范围为A ,据此求)(x ϕ的值域问题。
例2. 已知函数)(x f 的定义域是]21[,-,求函数)]3([log 21x f -的定义域。
解:)(x f 的定义域是]21[,-,意思是凡被f 作用的对象都在]21[,-中,由此可得4111)21(3)21(2)3(log 11221≤≤⇒≤-≤⇒≤-≤--x x x 所以函数)]3([log 21x f -的定义域是]4111[,评析:这类问题的一般形式是:已知函数f (x )的定义域是A ,求函数))((x f ϕ的定义域。
正确理解函数符号及其定义域的含义是求解此类问题的关键。
这类问题实质上相当于已知)(x ϕ的值域B ,且A B ⊆,据此求x 的取值范围。
例2和例1形式上正相反。
二、求值问题例3. 已知定义域为+R 的函数f (x ),同时满足下列条件:①51)6(1)2(==f f ,;②)()()(y f x f y x f +=⋅,求f (3),f (9)的值。
解:取32==y x ,,得)3()2()6(f f f +=因为51)6(1)2(==f f ,,所以54)3(-=f 又取3==y x ,得58)3()3()9(-=+=f f f 评析:通过观察已知与未知的联系,巧妙地赋值,取32==y x ,,这样便把已知条件51)6(1)2(==f f ,与欲求的f (3)沟通了起来。
抽象函数问题的题型综述
抽象函数问题的题型综述一. 求某些特殊值1.定义在R 上的函数f x ()满足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值。
2.已知函数f x ()对任意实数x y ,都有f x y f x f y ()()()+=+,且当x >0时,f x f ()()>-=-012,,求f x ()在[]-21,上的值域。
二. 求参数范围3.已知f x ()是定义在(-11,)上的偶函数,且在(0,1)上为增函数,满足f a f a ()()---<2402,试确定a 的取值范围。
4.已知f x ()是定义在[-∞,3]上的减函数,若f m x f m x (sin )(cos )221-≤++对x R ∈恒成立,求实数m 的取值范围。
三. 解不等式5.已知函数f x ()对任意x y R ,∈有f x f y f x y ()()()+=++2,当x >0时,f x ()>2,f ()35=,求不等式f a a ()2223--<的解集。
四. 证明某些问题6.设f x ()定义在R 上且对任意的x 有f x f x f x ()()()=+-+12,求证:f x ()是周期函数,并找出它的一个周期。
7.已知f x ()对一切x y ,,满足f f x y f x f y ()()()()00≠+=⋅,,且当x <0时,f x ()>1,求证:(1)x >0时,01<<f x ();(2)f x ()在R 上为减函数。
五. 综合问题求解8 设函数y f x =()定义在R 上,当x >0时,f x ()>1,且对任意m n ,,有f m n f m f n ()()()+=⋅,当m n ≠时f m f n ()()≠。
(1)证明f ()01=;(2)证明:f x ()在R 上是增函数;(3)设{}A x y f x f y f =⋅<()|()()(),221,B x y f ax by c a b c R a =++=∈≠{()|()},,,,,10,若A B I =∅,求a b c ,,满足的条件。
讲座(三):抽象函数常见题型解法综述(教师版)1
抽象函数常见题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数.由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.本文就抽象函数常见题型及解法评析如下: 一、定义域问题例1. 已知函数)(x f 的定义域是]21[,-,求函数)]3([log 21x f -的定义域.解:)(x f 的定义域是]21[,-,意思是凡被f 作用的对象都在]21[,-中,由此可得4111)21(3)21(2)3(log 11221≤≤⇒≤-≤⇒≤-≤--x x x所以函数)]3([log 21x f -的定义域是]4111[,二、求值问题例2.(1) 已知定义域为+R 的函数f (x ),同时满足下列条件: ①51)6(1)2(==f f ,;②)()()(y f x f y x f +=⋅,求f (3),f (9)的值. 解:取32==y x ,,得)3()2()6(f f f +=因为51)6(1)2(==f f ,,所以54)3(-=f 又取3==y x得58)3()3()9(-=+=f f f(2)定义在R 上的函数f x ()满足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值.解:由f x f x ()()220-+-=, 以t x =-2代入,有f t f t ()()-=, ∴f x ()为奇函数且有f ()00= 又由f x f x ()[()]+=--44=-=-∴+=-+=f x f x f x f x f x ()()()()()84故f x ()是周期为8的周期函数, ∴==f f ()()200000三、值域问题例3. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域.解:令0==y x ,得2)]0([)0(f f =,即有0)0(=f 或1)0(=f 。
归纳抽象函数常见题型及解法
5归纳抽象函数常见题型及解法抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数•由于抽象函数表现 形式的抽象性,使得这类问题是函数内容的难点之一,其性质常常是隐而不漏,但一般情况下大多是以学过的常见 函数为背景,对函数性质通过代数表述给出•抽象函数的相关题目往往是在知识网络的交汇处设计,高考对抽象函 数的要求是考查函数的概念和知识的内涵及外延的掌握情况、逻辑推理能力、抽象思维能力和数学后继学习的潜 能•为了扩大读者的视野,特就抽象函数常见题型及解法评析如下.一、函数的基本概念问题 1 •抽象函数的定义域问题2 例1 已知函数f(x )的定义域是[1 , 2],求f (X)的定义域.2 2解:由f(x )的定义域是[1 , 2],是指1 ≤ X ≤ 2 ,所以1 ≤x ≤ 4, 即函数f(x)的定义域是[1 , 4] • 评析:一般地,已知函数 f [ (X)]的定义域是A,求f (X)的定义域问题,相当于已知 f [ (X)]中X 的取值范围为A 据此求 (X)的值域问题.例2已知函数f (X)的定义域是[—1, 2],求函数f [log 1(3 X)]的定义域.2解:由f (X)的定义域是[—1, 2],意思是凡被f 作用的对象都在[—1 , 2]中,由此易得 f(x)的定义域是A,求函数f ( (X))的定义域.正确理解函数符号及其定义域的含义是求解此类问题的关键•一般地,若函数f (X)的定义域是A,则X 必须是A 中的元素,而不能是 A以外的元素,否则,f (X)无意义.因此,如果f(χo )有意义,则必有x o A 所以,这类问题实质上相当于已知 (X)的值域是A,据此求X 的取值范围,即由(X) A 建立不等式,解出 X 的范围•例2和例1形式上正相反.2 •抽象函数的求值问题1例3已知定义域为R 的函数f(x),同时满足下列条件:①f(2) = 1, f (6)=1:②f(x y)=f(x) + f(y),求 f(3)、f(9)的值.—1≤ log 1 (3 — X )≤ 2 (1) 2 ≤ 3 — X ≤( 1) 12 2111 ≤ X ≤4•••函数f[∣og 1(3X )]的定义域是[1 , 7]评析:这类问题的一般形式是:已知函数解:取 X = 2 , y = 3 ,得 f(6)= f(2) + f (3),1 4•• f(2) = 1 , f(6)= ,∙∙∙ f(3)=-5 5又取 X = y = 3 ,得 f (9) = f (3) + f (3) =- 8.51评析:通过观察已知与未知的联系,巧妙地取X = 2 , y = 3 ,这样便把已知条件f (2) = 1 , f (6)= 与欲求的5f(3)沟通了起来.这是解此类问题的常用技巧.3.抽象函数的值域问题例4设函数f (x)定义于实数集上,对于任意实数 X 、y, f (x + y) = f (x) f (y)总成立,且存在 X I ≠χ设存在 X 0 ∈ R 使得 f ( X 0) = 0 ,则 f (0) = f ( X 0 — x 0) = f ( X 0) f ( — x 0) = 0 这与f (0) ≠0矛盾,因此,对任意 X∈ R f (x) ≠0. 所以 f (x) > 0.4 .抽象函数的解析式问题1 2x 一 1f (———)=,⑵使得f (X 1 ) ≠ f ( X 2 ),求函数f (X)的值域.解:令 X = y = 0 ,得 f (0) = f 2(0),即有 f (0) = 0若 f (0) = 0 ,贝U f (X) = f (X + 0) = f (X) f (0) 由于 f (X + y)==f (X)f (y) 对任意X 、 y ∈R 均成立, XZX X 上,x 、 r X2f (X) = f (- + —) =(―) f (―)=[f (―)] 2 ≥2 22 22下面只需证明,对任意x ∈ R f (0) ≠0 即可.或 f (0) = 1 .,对任意X ∈R 均成立,这与存在实数 X I ≠χ 2 ,使得因此,对任意 x∈ R 有评析:在处理抽象函数的问题时, 往往需要对某些变量进行适当的赋值,这是 般向特殊转化的必要手段.式.解:在 设对满足 X≠0, X≠1的所有实数X,函数f (X)满足f (X) + f (X 1)=1 + X ,求f (X)的解析Xf (X) + f (+ X , (1)X 1中以 代换其中X ,得:Xf (x 1 ) ≠ f ( X 2 )成立矛盾•故 f (0) ≠0,即 f (0) =1X 1 X1 1 X 2再在(1)中以一——代换X,得:f(———)+ f (X)= ------------------- , ⑶X 1 X 1 X 13 2 1(1) — (2) + ⑶ 化简得:f(x) = -__X——.2X(X— 1)X 1评析:如果把X和-一1分别看作两个变量,怎样实现由两个变量向一个变量的转化是解题关键•通常情况下,X给某些变量适当赋值,使之在关系中“消失”,进而保留一个变量,是实现这种转化的重要策略.二、寻觅特殊函数模型问题1 •指数函数模型例6 设f (X)定义于实数集 R上,当x>0时,f (X) > 1 ,且对于任意实数 X、y ,有f (x + y) = f (X)∙ f (y),同时f (1) = 2 ,解不等式f (3x — X2 ) >4•联想:因为a x y= a X∙a y(a > 0,a≠ 1),因而猜测它的模型函数为f(x) = a x (a > 0,a≠ 1)(由f(1) = 2 ,还可以猜想f (X) = 2 x) •思路分析:由f(2)= f (1 1)=f(1)∙ f (1)= 4 ,需解不等式化为f(3x — X2 ) > f (2) •这样,证明函数f(x) 的(由f (X) = 2 X ,只证明单调递增)成了解题的突破口.解:由f (x + y) = f (x) ∙ f (y)中取 X =y = 0 2得f (0) = f (0),若f (O) = 0 ,令 x> 0 , y = 0 ,则f(X)=0 ,与f (X) > 1 矛盾.∙∙∙ f (0) ≠ 0 ,即有f (0)= 1当X > 0时,f (X) > 1 > 0 ,当XV 0 时,—X > 0 , f ( — X) > 1> 0 ,而f(X) •f ( — x) = f (0) = 1∙∙∙ f(X)=1 > 0 •f( X)又当X = 0 时,f (0) = 1 > 0 ,∙ X∈R , f (X) > 0 •设一∞V X I V X 2 V +∞ ,贝y X 2 —X 1 > 0 ,f ( X 2 —X I) > 1•∙ f ( X 2) =f [ X I + ( X 2 - X1 )]= :f (X1) f ( X 2 — X1 ) > f ( X I ) •∙∙∙ y = f在R上为增函数(X)又∙∙∙ f! ,∙ f (3x — X2) > f (1) • f (1) = f (1 + 1) = f (2),由f (X)的单调递增性质可得: (1) = 23x — x 2> 2,解得 K XV 2. 2. 对数函数模型1例7已知函数f (X)满足:⑴f (1) = 1;⑵函数的值域是[—1, 1];⑶在其定义域上单调递减;⑷ f (X) +2I I1 1f(y)= f (X ∙ y)对于任意正实数x 、y 都成立•解不等式 f (x) ∙ f () ≤ 1 X 2以猜测它的模型函数为 f (X) =log I X 且f 1 (x)的模型函数为f 1(x) = (1)x .22思路分析:由条件⑵、⑶知,f(x)的反函数存在且在定义域 [—1, 1]上递减,由⑴知f 1(1) =- •剩下的只需2由f 1(x)的模型函数性质和运算法则去证明 f 1(X 1) ∙ f 1(X 2) = f 1(X 1 X 2),问题就能解决了.解:由已知条件⑵、⑶知,f (x)的反函数存在,且 f 1(1)=—,又在定义域[—1 , 1]上单调递减.2设 y 1= f 1 (X 1), y 2 = f 1(X 2),则有 χ1=f (yj , χ2=f ( y 2),1∙∙∙χ 1 + X 2 =f (y 1) + f ( y 2) = f (y 1y 2),即有 yd 2=f (X 1 + X 2).∙∙∙ f 1(x 1) ∙ f 1(x 2) = f 1(X 1 X 2),于是,原不等式等价于:11 11f (X )f (1),X11 X1 X1 ,11 X 1 ,1 X1,1 X1 XX = 0 .1 X 1,1 X 1,111 - 1 .1 1 . 1 X1 X故原不等式的解集为{0}.解这类冋题可以通过化抽象为具体的方法,即通过联想、分析,然后进行类比猜测,经过带有非逻辑思维成份的推理,即可寻觅出它的函数模型,由这些函数模型的性质、法则来探索此类问题的解题思路.3 •幕函数模型例8 已知函数f (x)对任意实数x 、y 都有f (Xy) = f (x) ∙ f (y),且f( 1) =1, f (27) =9,当0≤XV 1时, 0≤f (x) V 1 时.⑴判断f(x)的奇偶性;联想:因为 Iog a (X ∙ y) = Iog X + log a y,而 Iog1 丄=1 , y = Iog2 21 X 在其定义域[—1, 1]内为减函数,所 2⑵判断f (X)在[0,+∞ )上的单调性,并给出证明;⑶若a≥0且f (a 1) ≤ 39 ,求a的取值范围.2 联想:因为X n∙y n = (X ∙ y)n,因而猜测它的模型函数为 f (x) = X n (由f(27)=9,还可以猜想f (x) = X ).2思路分析:由题设可知 f (X)是幕函数y = X1的抽象函数,从而可猜想 f (X)是偶函数,且在[O,+∞ )上是增函数.解:⑴令 y = -1 ,则f( X) = f(X) ∙f( 1),∙∙∙ f( 1)=1,∙∙∙ f ( X)= f(X),即f (X)为偶函数.⑵若X≥0,贝y f(X)= f (、. X X) = f X) ∙ f (、. x) =[ f ( '一X)] 2≥0.设 0≤χ I VX2 ,则 0≤ 0 V 1,X2X1X1∙ f (X I)= f (一X2)=f( I)∙ f (X2 ),X2X2∙.∙当 x≥0 时f (x) ≥0,且当0≤X V 1 时,0≤ f (x) V 1.∙0≤ f (XI) V 1, ∙ f (x1) V f (X2),故函数f (x)在[0 ,+∞ )上是增函数.X2⑶∙∙∙ f (27)=9 ,又f(3 9)= f (3) ∙f(9)=f(3) ∙f(3) ∙f(3) = [ f (3) ] 3,∙ 9 = [ f(3)] 3 ,∙∙∙ f(3) =39 ,∙∙∙ f (a 1) ≤ 39 ,∙ f (a 1) ≤ f(3),τa≥0 , (a + 1), 3 [0 , +∞ ),函数在[0 , +∞ )上是增函数.∙a+ 1 ≤ 3,即a≤ 2 ,又a≥0,故0≤a≤2.三、研究函数的性质问题1•抽象函数的单调性问题例9 设f (x)定义于实数集上,当x>0时,f(X)> 1 ,且对于任意实数 X、y ,有f (x + y) = f (x) ∙ f (y), 求证:f (X)在R上为增函数.证明:由f (x + y) = f (x) f (y)中取 X = y = 0 ,得f (O) = f 2(0),若f (O) = O ,令 x> O, y = O,贝U f (x) = O ,与f(X)> 1 矛盾..∙. f (O) ≠0,即有f (O) = 1 .当 X>O 时,f (X) > 1 > O,当 X V O 时,一X>O, f ( — x) > 1> O,1而f (X) ∙ f ( — X) = f (O) = 1 ------------------ ,∙∙∙ f (X) = > O .f( X)又当 X = O 时,f (O) = 1 > O ,∙ X ∈ R f (x) > O.设一∞V X I Vx2 V +∞,贝U x2— X I >O, f ( X 2— X I ) > 1.∙ f ( X 2) = f [ X I + ( X 2 — x1 )] = f (X 1 ) f ( X 2 — x1 ) > f ( X I ).∙ y = f (X)在R上为增函数.评析:一般地,抽象函数所满足的关系式,应看作给定的运算法则,而变量的赋值或变量及数值的分解与组合都应尽量与已知式或所给关系式及所求的结果相关联.2.抽象函数的奇偶性问题例1O已知函数f (x) (X ∈ R, x≠O)对任意不等于零实数x1' X2都有f (x 1∙χ 2 ) = f (x 1) + f (x 2 ), 试判断函数f (X)的奇偶性.解:取 X I =— 1, X2 = 1 得:f( — 1) = f ( — 1) + f (1) , ∙ f (1) = O .又取 x1 = X 2 =— 1 得:f (1) = f ( — 1) + f ( — 1) , ∙ f ( — 1) = O .再取 x1 = X , X 2 = — 1 则有f( — x) = f ( — 1) + f (x),即f( — x) = f (x),∙∙∙ f (X)为非零函数,∙ f (X)为偶函数.3.抽象函数的周期性问题例11函数f(X)定义域为全体实数,对任意实数a、b,有f (a + b) + f (a — b) =2 f (a) ∙ f (b),且存在C C> O,使得f( ) = O ,求证f (x)是周期函数.2联想:因为 cos(a + b) + cos(a — b) = 2cosacosb ,且cos — = 0,因而得出它的模型函数为y = CoSX ,由y = CoSX2的周期为2 ,可猜想2C为f(x)的一个周期.思路分析:要在证明2C为f (X)的一个周期,则只需证 f (X 2C) = f (X),而由已知条件f (C) = 0和f (a +Cb) + f (a — b) =2 f (a) ∙ f (b)知,必须选择好a、b的值,是得条件等式出现f()和f (χ).2C C证明:令 a = X + , b = ,代入f (a + b) + f (a — b) = 2 f (a) ∙ f (b)可得2 2f (X + C ) = —f (x).∙∙∙ f (X + 2C ) = f [(x + C) + C ] = —f (X + C ) = f (X),即f (X)是以 2C 为周期的函数.评析:如果没有余弦函数作为模型,就很难想到2C就是所求函数的周期,解题思路是难找的•由此可见,寻求或构造恰当的模型函数,可以为思考与解题定向,是处理开放型问题的一种重要策略.4•抽象函数的对称性问题例 12 已知函数 y = f (X)满足f (X) + f ( X) = 2002 ,求f 1(χ)+f 1(2002 χ)的值.解:由已知,在等式f (a X) + f (a X) = 2b中a = 0 , b = 2002 ,所以,函数y = f (X)关于点(0 , 2002)对称,根据原函数与其反函数的关系,知函数y = f 1(X)关于点(2002 , 0)对称.∙ f 1(X 1001)+ f 1(1001 X) = 0 ,将上式中的 X用 x— 1001 换,得f 1(x)+ f 1(2002 X)= 0 .评析:这是同一个函数图象关于点成中心对称问题,在解题中使用了下述命题:即:设a、b均为常数,函数y=f (X)对一切实数X都满足f(a X)+ f (a X) = 2b ,则函数y = f (x)的图象关于点(a , b)成中心对称图形.四、抽象函数中的网络综合问题例13定义在R上的函数f (x)满足:对任意实数 m n,总有f (m n)=f(m)∙f(n),且当x>0时,0v f (x) V 1.⑴判断f (X)的单调性;⑵设 A = {(x , y)| f(x2) ∙ f (y2) > f(1)}, B = {(x , y)| f (ax y ,2) = 1 , a R},若 A B =,试确定 a的取值范围.解:⑴在f (m n)=f(m) ∙f(n)中,令 m= 1, n = 0 ,得f(1)=f(1) ∙ f (0),因为f(1) ≠ 0,所以f (0) = 1.在f(m n)=f(m) ∙f(n)中,令 m = X , n = — X,■/当 x> 0 时,0V f (x) V 1,∙当 XV 0 时,一X > 0, 0V f ( x) V 1,又当X = 0 时,f (0) = 1 > 0,所以,综上可知,对于任意X ∈ R 均有f (X)> 0.设一∞v X I V X 2 V +∞ ,贝y X 2 — X I > 0, 0v f ( X 2 — X I ) V1.∙∙∙ f ( X 2) = f [ X 1 + ( X 2 — X 1 )] = f (X 1 ) ∙ f ( X 2 — X 1 ) V f ( X 1 ).∙∙∙ y = f (X)在R 上为减函数.2 2 2 2 2 2⑵由于函数y = f (X)在R 上为减函数,所以 f (X ) ∙ f(y)=f(χ + y ) > f (1),即有X + y V 1. 又f (ax y ',2) = 1 = f (0),根据函数的单调性,有ax — y + -, 2 = 0 ._/2由A I B =,所以,直线ax — y+ 2 = 0与圆面X 2+ y 2V 1无公共点,因此有:_ ------------ ≥ 1,解得一1≤a≤ 1.评析:⑴要讨论函数的单调性必然涉及到两个问题,一是f (0)的取值问题,二是 f (X) > 0的结论都成为解题的关键性步骤,完成这些又在抽象函数式中进行,由特殊到一般的解题思想,联想类比思维都有助于问题的思考和 解决.而 f (X)f ( - x) = f (0) = 1 , f (χ)=> 1> 0f( X)。
高中常见抽象函数题型归纳
抽象函数常见题型及解法没有明确给出解析式的函数统称为抽象函数。
常见题型及其解法如下:一、函数性质法1.利用奇偶性整体思考;2.利用单调性等价转化;3.利用周期性回归已知;4.利用对称性数形结合;5.借助特殊点.三、常用变换技巧()()()()[()]()()()()()f y f x y f x y f x f x y y f x y f x f y f x f y +-=⇒=+-=⇒+=四、经典例题及易混易错题型(一)定义域问题这类问题只要紧紧抓住:将函数f g x [()]中的g x ()看作一个整体,相当于f x ()中的x 这一特性,问题就会迎刃而解.例1. 函数y f x =()的定义域为(]-∞,1,则函数y f x =-[log ()]222的定义域是___. 分析:因为log ()22x 2-相当于f x ()中的x ,所以log ()2221x -≤,解得22<≤x 或-≤<-22x . 例2. 已知函数)(2x f 的定义域是[1,2],求f (x )的定义域.分析:已知函数的定义域是A ,求函数f(x)的定义域,相当于求内函数的值域.)(2x f 的定义域是[1,2],是指21≤≤x ,所以)(2x f 中的2x 满足412≤≤x ,从而函数f (x )的定义域是[1,4] )()()()()()(y f x f y x f y f x f y x f =-⇔=+()()()()()[()]()()()()f x f x y f x f y f x f x y y f x y f y f x y f y +=⇒=-+=-⇒-=)()()()()()(y f x f y x f y f x f y x f +=⋅⇔-=()()()()()()()()()()x x x f x y f x f y f x f y f f y f f x f y y y y ⋅=+⇒=⋅=+⇒=-()()x f ϕ()x ϕ例3.若函数)1(+=x f y 的定义域为)3,2[-,求函数)21(+=x f y 的定义域.解析:由)1(+=x f y 的定义域为)3,2[-,知1+x 中的)3,2[-∈x ,从而411<+≤-x ,对函数)21(+=x f y 而言,有1124x -≤+<,解之得:),21(]31,(+∞--∞∈ x . 所以函数)21(+=x f y 的定义域为),21(]31,(+∞--∞例4.已知f x ()的定义域为(0),1,则y f x a f x a a =++-≤()()(||)12的定义域是______. 分析:因为x a +及x a -均相当于f x ()中的x ,所以 010111<+<<-<⎧⎨⎩⇒-<<-<<+⎧⎨⎩x a x a a x a a x a (1)当-≤≤120a 时,则x a a ∈-+(),1 (2)当012<≤a 时,则x a a ∈-(),1f x ()的定义域为(0),1,意思是凡被f 作用的对象都在(0),1中.评析:已知f(x)的定义域是A ,求的定义域问题,相当于解内函数的不等式问题.例5.定义在上的函数f(x)的值域为,若它的反函数为f-1(x),则y=f-1(2-3x)的定义域为______,值域为______. 答案:(二)函数值问题1. 赋特殊值法求值例1.已知f x ()的定义域为R +,且f x y f x f y ()()()+=+对一切正实数x ,y 都成立,若f ()84=,则f (2)=_______.分析:在条件f x y f x f y ()()()+=+中,令x y ==4,得f f f f ()()()()844244=+==,∴=f ()42又令x y ==2,得f f f (4)(2)(2)=+=2,∴=f (2)1例2.设函数)(x f 的定义域为()+∞,0,且对于任意正实数y x ,都有)(xy f =)(x f )(y f +恒成立。
高考抽象函数全部题型剖析
抽象函数常见题型汇编抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。
由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。
本文就抽象函数常见题型及解法评析如下:一、定义域问题(一)已知的定义域,求的定义域,解法:若的定义域为,则中,从中解得的取值范围即为的定义域。
例题1:设函数的定义域为,则(1)函数的定义域为______;(2)函数的定义域为_______解析:(1)由已知有,解得,故的定义域为(2)由已知,得,解得,故的定义域为(二)已知的定义域,求的定义域。
解法:若的定义域为,则由确定的范围即为的定义域。
例题2:函数的定义域为,则的定义域为_____。
解析:由,得,所以,故填(三)已知的定义域,求的定义域。
解法:先由定义域求定义域,再由定义域求得定义域。
例题3:函数定义域是,则的定义域是_______ 解析:先求的定义域,的定义域是,,即的定义域是再求的定义域,,的定义域是(四)运算型的抽象函数求由有限个抽象函数经四则运算得到的函数的定义域,解法是:先求出各个函数的定义域,再求交集。
例题4:函数的定义域是,求的定义域。
解析:由已知,有,即函数的定义域由确定函数的定义域是【巩固1】已知函数的定义域是[1,2],求f(x)的定义域。
解析:的定义域是[1,2],是指,所以中的满足从而函数f(x)的定义域是[1,4]【巩固2】 已知函数的定义域是,求函数的定义域。
解析:的定义域是,意思是凡被f 作用的对象都在中,由此可得所以函数的定义域是【巩固3】f x ()定义域为(0),1,则y f x a f x a a =++-≤()()(||)12定义域是__。
解析:因为x a +及x a -均相当于f x ()中的x ,所以010111<+<<-<⎧⎨⎩⇒-<<-<<+⎧⎨⎩x a x a a x aa x a (1)当-≤≤120a 时,则x a a ∈-+(),1; (2)当012<≤a 时,则x a a ∈-(),1 二、解析式问题1. 换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
抽象函数题型汇编
抽象函数常见题型汇编抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数.由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.本文就抽象函数常见题型及解法评析如下:一、定义域问题(一)已知()f x 的定义域,求(())f g x 的定义域.解法:若()f x 的定义域为[]a b ,,则(())f g x 中()a g x b ≤≤,从中解得x 的取值范围即为(())f g x 的定义域.例1 设函数()f x 的定义域为[01],,则(1)函数2()f x 的定义域为 ;(2)函数2)f 的定义域为 . 解析:(1)由已知有201x ≤≤,解得11x -≤≤,故2()f x 的定义域为[11]-,;(2)由已知,得021≤,解得49x ≤≤,故2)f 的定义域为[49],. (二)已知(())f g x 的定义域,求()f x 的定义域.解法:若(())f g x 的定义域为m x n ≤≤,则由m x n ≤≤确定()g x 的范围即为()f x 的定义域. 例2 函数[lg(1)]y f x =+的定义域为09x ≤≤,则()y f x =的定义域为 . 解析:由09x ≤≤,得1110x +≤≤,所以0lg(1)1x +≤≤,故填[01], (三)已知(())f g x 的定义域,求(())f h x 的定义域.解法:先由(())f g x 定义域求()f x 定义域,再由()f x 定义域求得(())f h x 定义域. 例3 函数(1)y f x =+定义域是[23]-,,则(21)y f x =-的定义域是 . 解析:先求()f x 的定义域,∵(1)f x +的定义域是[23]-,,∴23x -≤≤ ∴114x +≤≤,即()f x 的定义域是[14]-,再求[()]f h x 的定义域,∵1214x --≤≤,∴502x ≤≤∴(21)f x -的定义域是502⎡⎤⎢⎥⎣⎦,. (四)运算型的抽象函数求由有限个抽象函数经四则运算得到的函数的定义域,解法是:先求出各个函数的定义域,再求交集. 例4 函数()f x 的定义域是(01],,求()1()()()02g x f x a f x a a =+⋅--<≤的定义域.解析:∵由已知,有0101x a x a <+⎧⎨<-⎩≤,≤,即11a x a a x a -<-⎧⎨<+⎩≤,≤,∴函数的定义域由(1)(1]a a a a --+I ,,确定 ∵102a -<≤∴11a a a a -<+-≤≤∴函数()g x 的定义域是(1]a a -+,.【巩固1】已知函数2()f x 的定义域是12[,],求()f x 的定义域. 解析:2()f x 的定义域是12[,],是指12x ≤≤, 所以2()f x 中的2x 满足214x ≤≤ 从而函数()f x 的定义域是[14],.【巩固2】已知函数()f x 的定义域是[12]-,,求函数()12log (3)f x -的定义域.解析:()f x 的定义域是[12]-,,意思是凡被f 作用的对象都在[12]-,中,由此可得 ()()211211111log (3)231224x x x ---⇒-⇒≤≤≤≤≤≤所以函数()12log (3)f x -的定义域是1114⎡⎤⎢⎥⎣⎦, 【巩固3】()f x 定义域为(01),,则()1()()||2y f x a f x a a =++-≤定义域是 .解析:因为x a +及x a -均相当于()f x 中的x ,所以011011x a a x a x a a x a <+<-<<-⎧⎧⇒⎨⎨<-<<<+⎩⎩,,,,(1)当102a -≤≤时,则(1)x a a ∈-+,; (2)当102a <≤时,则(1)x a a ∈-,.二、解析式问题1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力. 例5 已知 ()211x fx x =++,求()f x .解析:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1x f x x-=-.2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法. 例6 已知()3311f x x x x +=+,求()f x解析:∵()()()()()()2221111113f x x x x x x xx xx+=+-+=++-又∵11||||1||x x x x +=+≥,∴23()(3)(||)13f x x x x x x =-=-≥,3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数. 例7 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解析:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+ 22222()24ax bx a c x x =+++=++比较系数得2()4132112222a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩,,,,,∴213()22f x x x =++4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例8 已知()y f x =为奇函数,当0x >时,()lg(1)f x x =+,求()f x .解析:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求0x <时的表达式. ∵0x ->,∴()lg(1)lg(1)f x x x -=-+=-, ∵()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当0x <时()lg(1)f x x =--∴lg(1)0()lg(1)0x x f x x x +⎧=⎨--<⎩,≥,例9 ()f x 为偶函数,()g x 为奇函数,且有1()()1f x g x x +=-, 求()f x ,()g x .解析:∵()f x 为偶函数,()g x 为奇函数,∴()()f x f x -=,()()g x g x -=-, 不妨用x -代换1()()1f x g x x +=- ………①中的x ,∴1()()1f x g x x -+-=--即1()()1f xg x x -=-+……② 显见①+②即可消去()g x ,求出函数21()1f x x =-再代入①求出2()1x g x x =-5.赋值法:给自变量取特殊值,从而发现规律,求出()f x 的表达式例10 设()f x 的定义域为自然数集,且满足条件(1)()()f x f x f y xy +=++,及(1)1f =,求()f x 解析:∵()f x 的定义域为N ,取1y =,则有(1)()1f x f x x +=++ ∵(1)1f =,∴(2)(1)2f f =+,(3)(2)3f f =+……()(1)f n f n n =-+ 以上各式相加,有(1)()1232n n f n n +=++++=L ,∴1()(1)2f x x x x =+∈N , 【巩固4】设函数()f x 存在反函数,1()()()g x f xh x -=,与()g x 的图象关于直线0x y +=对称,则函数 ()h x =( )A .()f x -B .()f x --C .1()f x --D .1()f x ---解析:要求()y h x =的解析式,实质上就是求()y h x =图象上任一点00()P x y ,的横、纵坐标之间的关系. 点00()P x y ,关于直线y x =-的对称点00()y x --,适合1()y f x -=, 即00()x g y -=-.又1()()g x f x -=,1000000()()()x f y y f x y f x -∴-=-⇒-=-⇒=--,即()()h x f x =--,选B .【巩固5】设对满足01x x ≠≠,的所有实数x ,函数()f x 满足()1()1x f x f x x -+=+,求()f x 的解析式.解析:在()1()1x f x f x x -+=+(1)中以1x x-代换其中x ,得:()()11211x x f f x x x --+-=-(2)再在(1)中以11x --代换x ,得()12()11x f f x x x --+=--(3)(1)-(2)+(3)化简得:321()2(1)x x f x x x --=- 评析:如果把x 和1x x -分别看作两个变量,怎样实现由两个变量向一个变量的转化是解题关键.通常情况下,给某些变量适当赋值,使之在关系中“消失”,进而保留一个变量,是实现这种转化的重要策略. 三、求值问题这类抽象函数一般给出定义域,某些性质及运算式而求特殊值.其解法常用“特殊值法”,即在其定义域内令变量取某特殊值而获解,关键是抽象问题具体化.或紧扣已知条件进行迭代变换,经有限次迭代可直接求出结果,或者在迭代过程中发现函数具有周期性,利用周期性使问题巧妙获解.例11 已知定义域为+R 的函数()f x ,同时满足下列条件:①1(2)1(6)5f f ==,;②()f x y ⋅=()()f x f y +,求(3)(9)f f ,的值.解析:取23x y ==,,得(6)(2)(3)f f f =+ 因为1(2)1(6)5f f ==,,所以4(3)5f =- 又取3x y ==,得8(9)(3)(3)5f f f =+=-例12 定义在R 上的函数()f x 满足:()(4)f x f x =-且(2)(2)0f x f x -+-=,求(2000)f 的值. 解析:由(2)(2)0f x f x -+-=,以2t x =-代入,有()()f t f t -=, ∴()f x 为奇函数且有(0)0f =,又由(4)[4()]f x f x +=--()()f x f x =-=-,∴(8)(4)()f x f x f x +=-+= ()f x 是周期为8的周期函数,∴(2000)(0)0f f ==【巩固6】已知()f x 的定义域为+R ,且()()()f x y f x f y +=+对一切正实数x y ,都成立,若(8)4f =, 则(2)f =_______.解析:在条件()()()f x y f x f y +=+中,令4x y ==,得 (8)(4)(4)2(4)4f f f f =+==,∴(4)2f =又令2x y ==,得(4)(2)(2)2f f f =+=,∴(2)1f =【巩固7】已知()f x 是定义在R 上的函数,且满足:(2)[1()]1()f x f x f x +-=+,(1)1997f =,求(2001)f 的值.解析:紧扣已知条件,并多次使用,发现()f x 是周期函数,显然()1f x ≠,于是 1()(2)1()f x f x f x ++=-,1()11(2)1()1(4)1(2)1()()11()f x f x f x f x f x f x f x f x ++++-+===--++--所以1(8)()(4)f x f x f x +=-=+,故()f x 是以8为周期的周期函数, 从而(2001)(82501)(1)1997f f f =⨯+== 四、值域问题例13 设函数()f x 定义于实数集上,对于任意实数x y ,,()()()f x y f x f y +=总成立,且存在12x x ≠,使得12()()f x f x ≠,求函数()f x 的值域.解析:令0x y ==,得2(0)[(0)]f f =,即有(0)0f =或(0)1f =.若(0)0f =,则()(0)()(0)0f x f x f x f =+==,对任意x ∈R 均成立,这与存在实数12x x ≠,使得12()()f x f x ≠成立矛盾,故(0)0f ≠,必有(0)1f =.由于()()()f x y f x f y +=对任意x y ∈R ,均成立,因此,对任意x ∈R ,有 ()()()()2()022222x x x x x f x f f f f ⎡⎤=+==⎢⎥⎣⎦≥下面来证明,对任意()0x f x ∈≠R ,设存在0x ∈R ,使得0()0f x =,则0000)(0)(()()0f f x x f x f x =-=-= 这与上面已证的(0)0f ≠矛盾,因此,对任意()0x f x ∈≠R , 所以()0f x >评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段. 【巩固8】已知函数()f x 对任意实数x y ,有()()()f x y f x f y +=+,且当0x >时,()0f x >,(1)2f -=-,求()f x 在[21]-,上的值域.解析:设12x x <,且12x x ∈R ,,则210x x ->, 由条件当0x >时,()0f x > ,21()0f x x ∴->又2211()[()]f x f x x x =-+2111()()()f x x f x f x =-+>,∴()f x 为增函数, 令y x =-,则(0)()()f f x f x =+-又令0x y == ,得(0)0f = ,()()f x f x ∴-=-,故()f x 为奇函数, (1)(1)2f f ∴=-=,(2)2(1)4f f -=-=-所以()f x 在[21]-,上的值域为[42]-, 五、求参数范围或解不等式这类参数隐含在抽象函数给出的运算式中,关键是利用函数的奇偶性和它在定义域内的增减性,去掉“ f ”符号,转化为代数不等式组求解,但要特别注意函数定义域的作用.例4 已知()f x 是定义在(11)-,上的偶函数,且在(01),上为增函数,满足(2)f a -- 2(4)0f a -<,试确定a 的取值范围.解析:∵()f x 是偶函数,且在(01),上是增函数,∴()f x 在(10)-,上是减函数, 由2121141a a -<-<⎧⎨-<-<⎩a < (1)当2a =时,2(2)(4)(0)f a f a f -=-=,不等式不成立. (2)2a <<时,2222120(2)(4)(4)140224a f a f a f a a a a a -<-<⎧⎪-<-=-⇔-<-<⇒<<⎨⎪->-⎩(3)当2a <2(2)(4)f a f a -<-222021(4)041224a f a a a a a <-<⎧⎪=-⇔<-<⇒<<⎨⎪-<-⎩综上所述,所求a的取值范围是2)(2U . 例15 ()f x 是定义在(1]-∞,上的减函数,若22(sin )(1cos )f m x f m x -++≤对x ∈R 恒成立,求实数m 的取值范围.解析::2222sin 31cos 3sin 1cos m x m x m x m x ⎧-⎪++⎨⎪-++⎩Q ≤,≤,≥,对x ∈R 恒成立222sin 3sin 1cos m x m x m x ⎧-⎪⇔⎨-++⎪⎩≤,≥,对x ∈R 恒成立⇔22223sin 151sin cos (sin )24m x m m x x x ⎧-⎪⎨--+=--+⎪⎩≤,≥, 对x ∈R 恒成立, 2231514m m m ⎧-⎪∴⎨--⎪⎩≤,≥,所以m 为所求【巩固9】已知函数()f x 是定义在(1]-∞,上的减函数,且对一切实数x ,不等式(sin )f k x -≥ 22(sin )f k x -恒成立,求k 的值.解析:由单调性,脱去函数记号,得222222221sin 1sin 111(sin )2sin sin 42k x k x k k x k x k x ⎧+⎧-⎪⎪⇔⎨⎨-+---⎪⎪⎩⎩≤,()≤,≥,()≤ 由题意知(1)(2)两式对一切x ∈R 恒成立,则有22min 22max (1sin )11119(sin )424k x k k k x ⎧⎫+=⎪⎪⇒=-⎨⎬-+-=⎪⎪⎩⎭≤≥ 【巩固10】已知函数()f x 对任意x y ∈R ,有()()2()f x f y f x y +=++,当0x >时,()2f x >,(3)5f =,求不等式2(22)3f a a --<的解集.解析:设12x x ∈R ,且12x x <,则210x x ->, 21()2f x x ∴->,即21()20f x x -->22112111()[()]()()2()f x f x x x f x x f x f x ∴=-+=-+->,21()()f x f x ∴>故()f x 为增函数,又(3)(21)(2)(1)23(1)45f f f f f =+=+-=-=,(1)3f ∴=,2(22)3(1)f a a f ∴--<=,即2221a a --<,13a ∴-<<因此不等式2(22)3f a a --<的解集为{}|13a a -<<. 六、单调性问题例16 设()f x 定义于实数集上,当0x >时,()1f x >,且对于任意实数x y ,,有()f x y +=()()f x f y ,求证:()f x 在R 上为增函数.证明:在()()()f x y f x f y +=中取0x y ==,得2(0)[(0)]f f = 若(0)0f =,令00x y >=,,则()0f x =,与()1f x >矛盾 所以(0)0f ≠,即有(0)1f =当0x >时,()10f x >>;当0x <时,0()10x f x ->->>, 而()()(0)1f x f x f ⋅-==,所以1()0()f x f x =>-又当0x =时,(0)10f =>,所以对任意x ∈R ,恒有()0f x > 设12x x <,则21210()1x x f x x ->->,∴21211211()[()]()()()f x f x x x f x f x x f x =+-=->,∴()y f x =在R 上为增函数例17 已知偶函数()f x 在(0)+∞,上是减函数,问()f x 在(0)-∞,上是增函是减函数,并证明你的结论. 证明:如图所示,易知()f x 在(0)-∞,上是增函数,证明如下: 任取121200x x x x <<⇒->->因为()f x 在(0)+∞,上是减函数,所以12()()f x f x -<-. 又()f x 是偶函数,所以1122()()()()f x f x f x f x -=-=,, 从而12()()f x f x <,故()f x 在(0)-∞,上是增函数.【巩固11】如果奇函数()f x 在区间[37],上是增函数且有最小值为5,那么()f x 在区间[73]--,上是( ) A .增函数且最小值为5- B .增函数且最大值为5- C .减函数且最小值为5-D .减函数且最大值为5-解析:画出满足题意的示意图1,易知选B . 七、奇偶性问题例18 已知函数()(0)f x x x ∈≠R ,对任意不等于零的实数12x x ,都有121()()f x x f x ⋅=2()f x +,试判断函数()f x 的奇偶性.解析:取1211x x =-=,得:(1)(1)(1)f f f -=-+,所以(1)0f = 又取121x x ==-得:(1)(1)(1)f f f =-+-,所以(1)0f -= 再取121x x x ==-,,则()(1)()f x f f x -=-+,即()()f x f x -= 因为()f x 为非零函数,所以()f x 为偶函数.【巩固12】若函数()(()0)y f x f x =≠与()y f x =-的图象关于原点对称,求证:函数()y f x =是偶函数. 证明:设()y f x =图象上任意一点为00()P x y , ()y f x =Q 与()y f x =-的图象关于原点对称,00()P x y ∴,关于原点的对称点00()x y --,在()y f x =-的图象上,00()y f x ∴-=--,00()y f x ∴=-又00()y f x =,00()()f x f x ∴-=即对于函数定义域上的任意x 都有()()f x f x -=,所以()y f x =是偶函数. 八、周期性问题几种特殊的抽象函数:具有周期性的抽象函数:函数()y f x =满足对定义域内任一实数x (其中a 为常数), 1.()()f x f x a =+,则()y f x =是以T a =为周期的周期函数; 2.()()f x a f x +=-,则()f x 是以2T a =为周期的周期函数; 3.1()()f x a f x +=±,则()f x 是以2T a =为周期的周期函数;4.()()f x a f x a +=-,则()f x 是以2T a =为周期的周期函数; 5.1()()1()f x f x a f x -+=+,则()f x 是以2T a =为周期的周期函数.6.1()()1()f x f x a f x -+=-+,则()f x 是以4T a =为周期的周期函数.7.1()()1()f x f x a f x ++=-,则()f x 是以4T a =为周期的周期函数.8.函数()y f x =满足()()(0)f x a f a x a +=->,若()f x 为奇函数,则其周期为4T a =,若()f x 为偶函数,则其周期为2T a =.9.函数()()y f x x =∈R 的图象关于直线x a =和()x b a b =<都对称,则函数()f x 是以2()b a -为周期的周期函数;10.函数()()y f x x =∈R 的图象关于两点00()()()A a y B b y a b <,,,都对称,则函数()f x 是以2()b a -为周期的周期函数;11.函数()()y f x x =∈R 的图象关于0()A a y ,和直线()x b a b =<都对称,则函数()f x 是以4()b a -为周期的周期函数;例19 设()f x 定义在R 上且对任意的x 有()(1)(2)f x f x f x =+-+,求证:()f x 是周期函数,并找出它的一个周期.解析:这同样是没有给出函数表达式的抽象函数,其一般解法是根据所给关系式进行递推,若能得出()()f x T f x +=(T 为非零常数)则()f x 为周期函数,且周期为T .证明:()(1)(2)f x f x f x =+-+Q (1) (1)(2)(3)f x f x f x ∴+=+-+ (2)(1)+(2)得()(3)f x f x =-+(3) 由(3)得(3)(6)f x f x +=-+(4) 由(3)和(4)得()(6)f x f x =+.上式对任意x ∈R 都成立,因此()f x 是周期函数,且周期为6.例20 设函数()f x 的定义域为R ,且对任意的x y ,()()2()()f x y f x y f x f y ++-=⋅,并存在正实数c ,使()02c f =.试问()f x 是否为周期函数?若是,求出它的一个周期;若不是,请说明理由. 解析:仔细观察分析条件,联想三角公式,就会发现:cos y x =满足题设条件,且cos 02π=,猜测()f x 是以2c 为周期的周期函数.()()()()20222222()()(2)()()c c c c c c f x f x f x f f x c f x f x c f x c f x ⎡⎤⎡⎤++++-=+=⎢⎥⎢⎥⎣⎦⎣⎦∴+=-∴+=-+=Q 故()f x 是周期函数,2c 是它的一个周期.【巩固13】设()f x 是定义在R 上的偶函数,其图象关于直线1x =对称.对任意12x x ∈,102⎡⎤⎢⎥⎣⎦,都有 1212()()()f x x f x f x +=⋅.证明()f x 是周期函数.证明:依题设()y f x =关于直线1x =对称,故()(2)f x f x x =-∈R , 又由()f x 是偶函数知()()f x f x x -=∈R ,()(2)f x f x x ∴-=-∈R ,,将上式中x -以x 代换,得()(2)f x f x x =+∈R ,这表明()f x 是R 上的周期函数,且2是它的一个周期 ()f x 是偶函数的实质是()f x 的图象关于直线0x =对称又()f x 的图象关于1x =对称,可得()f x 是周期函数,且2是它的一个周期 由此进行一般化推广,我们得到思考一:设()f x 是定义在R 上的偶函数,其图象关于直线(0)x a a =≠对称,证明()f x 是周期函数,且2a 是它的一个周期.证明:()f x Q 关于直线x a =对称.()(2)f x f a x x ∴=-∈R , 又由()f x 是偶函数知()()f x f x x -=∈R ,,()(2)f x f a x x ∴-=-∈R , 将上式中x -以x 代换,得()(2)f x f a x x =+∈R , ()f x ∴是R 上的周期函数,且2a 是它的一个周期思考二:设()f x 是定义在R 上的函数,其图象关于直线x a =和()x b a b =≠对称.证明()f x 是周期函数,且2()b a -是它的一个周期.证明:()f x Q 关于直线x a =和x b =对称()(2)f x f a x x ∴=-∈R ,,()(2)f x f b x x =-∈R ,,(2)(2)f a x f b x x ∴-=-∈R , 将上式的x -以x 代换得(2)(2)f a x f b x x +=+∈R ,[2()][(2)2][(2)2]()f x b a f x a b f x a a f x x ∴+-=-+=-+=∈R , ()f x ∴是R 上的周期函数,且2()b a -是它的一个周期若把这道高考题中的“偶函数”换成“奇函数”,()f x 还是不是周期函数?我们得到思考三:设()f x 是定义在R 上的奇函数,其图象关于直线1x =对称.证明()f x 是周期函数,且4是它的一个周期.,证明:()f x Q 关于1x =对称,()(2)f x f x x ∴=-∈R ,又由()f x 是奇函数知()()f x f x x -=-∈R ,,(2)()f x f x x ∴-=--∈R , 将上式的x -以x 代换,得(2)()f x f x x +=-∈R ,(4)[2(2)](2)[()]()f x f x f x f x f x x ∴+=++=-+=--=∈R , ()f x ∴是R 上的周期函数,且4是它的一个周期()f x 是奇函数的实质是()f x 的图象关于原点(00),中心对称,又()f x 的图象关于直线1x =对称,可得()f x 是周期函数,且4是它的一个周期.由此进行一般化推广,我们得到思考四:设()f x 是定义在R 上的函数,其图象关于点(0)M a ,中心对称,且其图象关于直线()x b b a =≠对称.证明()f x 是周期函数,且4()b a -是它的一个周期. 证明:()f x Q 关于点(0)M a ,对称,(2)()f a x f x x ∴-=-∈R , ()f x Q 关于直线x b =对称,()(2)f x f b x x ∴=-∈R ,,(2)(2)f b x f a x x ∴-=--∈R ,将上式中的x -以x 代换,得(2)(2)f b x f a x x +=-+∈R , [4()][2(24)][2(24)]f x b a f b x b a f a x b a ∴+-=++-=-++-[2(2)][2(2)]()f b x a f a x a f x x =-+-=+-=∈R , ()f x ∴是R 上的周期函数,且4()b a -是它的一个周期由上我们发现,定义在R 上的函数()f x ,其图象若有两条对称轴或一个对称中心和一条对称轴,则()f x 是R 上的周期函数.进一步我们想到,定义在R 上的函数()f x ,其图象如果有两个对称中心,那么()f x 是否为周期函数呢?经过探索,我们得到思考五:设()f x 是定义在R 上的函数,其图象关于点(0)M a ,和(0)()N b a b ≠,对称.证明()f x 是周期函数,且2()b a -是它的一个周期.证明:()f x Q 关于(0)(0)M a N b ,,,对称 (2)()f a x f x x ∴-=-∈R , (2)()f b x f x x -=-∈R , (2)(2)f a x f b x x ∴-=-∈R ,将上式中的x -以x 代换,得 (2)(2)f a x f b x x +=+∈R ,,[2()][2(2)][2(2)]()f x b a f b x a f a x a f x x ∴+-=+-=+-=∈R , ()f x ∴是周期函数,且2()b a -是它的一个周期九、对称性问题(1)对称性的概念及常见函数的对称性 1.对称性的概念①轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴.②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心.2.常见函数的对称性(所有函数自变量可取有意义的所有值)①常函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数;⑨正弦型函数sin()y A x ωϕ=+既是轴对称又是中心对称;⑩余弦函数;○13正切函数;○12耐克函数;○13三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异;○14绝对值函数:这里主要说的是(||)y f x =和|()|y f x =两类.前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如|ln |y x =就没有对称性,而|sin |y x =却仍然是轴对称.○15形如(0)ax b y c ad bc cx d+=≠≠+,的图像是双曲线,其两渐近线分别直线d x c =-(由分母为零确定)和直线a y c=(由分子、分母中x 的系数确定),对称中心是点()d a c b -,. (2)抽像函数的对称性1.函数()y f x =图像本身的对称性(自对称问题) (1)轴对称①()y f x =的图像关于直线x a =对称()()()(2)f a x f a x f x f a x ⇔+=-⇔=- ()(2)f x f a x ⇔-=+②()()()f a x f b x y f x +=-⇔=的图像关于直线()()22a xb x a bx ++-+==对称.特别地,函数()y f x =的图像关于y 轴对称的充要条件是()()f x f x =-. (2)中心对称①()y f x =的图像关于点()a b ,对称()()2()(2)2f a x f a x b f x f a x b ⇔++-=⇔+-= ()(2)2f x f a x b ⇔-++=.②()()2()f a x f b x c f x ++-=⇔的图像关于点()2a b c +,对称. 特别地,函数()y f x =的图像关于原点(00),对称的充要条件是()()0f x f x +-=. (3)对称性与周期性之间的联系①若函数()f x 既关于直线x a =对称,又关于直线()x b a b =≠对称,则函数()f x 关于无数条直线对称,相邻对称轴的距离为||b a -;且函数()f x 为周期函数,周期2||T b a =-;特别地:若()y f x =是偶函数,图像又关于直线x a =对称,则()f x 是周期为2||a 的周期函数; ②若函数()f x 既关于点(0)a ,对称,又关于点(0)b ,对称()a b ≠,则函数()f x 关于无数个点对称,相邻对称中心的距离为||b a -;且函数()f x 为周期函数,周期2||T b a =-;③若函数()f x 既关于直线x a =对称,又关于点(0)b ,对称()a b ≠,则函数()f x 关于无数个点和直线对称,相邻对称轴和中心的距离为||b a -,相邻对称轴或中心的距离为2||b a -;且函数()f x 为周期函数,周期4||T b a =-.特别地:若()y f x =是奇函数,图像又关于直线x a =对称,则()f x 是周期为4||a 的周期函数. 2.两个函数图像的对称性(互对称问题)(1)函数()y f a x =+与()y f a x =-图像关于直线0x =对称. (2)函数()y f x =与(2)y f a x =-图像关于直线x a =对称 (3)函数()y f x =-与(2)y f a x =+图像关于直线a x -=对称(4)函数()y f a x =+与()y f b x =-图像关于直线()()0a x b x +--=对称即直线2b a x -=对称(5)函数()y f x =与()y f x =-图像关于x 轴对称.(6)函数()y f x =与()y f x =-图像关于y 轴对称.(7)函数()y f x =与()a x f a y -=-图像关于直线x y a +=成轴对称. (8)函数()y f x =与()x a f y a -=+图像关于直线x y a -=成轴对称. (9)函数()y f x =与1()y f x -=的图像关于直线y x =对称. (10)函数()y f x =与1()y f x -=--的图像关于直线y x =-对称.(11)函数()y f x =有反函数,则()y f a x =+和1()y f a x -=+的图像关于直线y x a =+对称.(12)函数()y f x =与2(2)y b f a x =--的图像关于点()a b ,成中心对称.特别地,函数()y f x =与()y f x =--图像关于原点对称.例21 函数()y f x =满足()()2002f x f x +-=,求11()(2002)f x f x --+-值. 解析:已知式即在对称关系式()()2f a x f a x b ++-=中取02002a b ==,, 所以函数()y f x =的图象关于点(02002),对称.根据原函数与其反函数的关系,知函数1()y f x -=的图象关于点(20020),对称. 所以11(1001)(1001)0f x f x --++-=将上式中的x 用1001x -代换,得11()(2002)0f x f x --+-=评析:这是同一个函数图象关于点成中心对称问题,在解题中使用了下述命题:设a b ,均为常数,函数()y f x =对一切实数x 都满足()()2f a x f a x b ++-=,则函数()y f x =的图象关于点()a b ,成中心对称图形. 十、综合问题 (1)比较函数值大小利用函数的奇偶性、对称性等性质将自变量转化到函数的单调区间内,然后利用其单调性使问题获解. 例22 已知函数()f x 是定义域为R 的偶函数,0x <时,()f x 是增函数,若10x <,20x >,且12||||x x <,则12()()f x f x --,的大小关系是_______.解析:1200x x <>Q ,且12||||x x <,122100x x x x ∴<-<⇒-<< 又0x <时,()f x 是增函数,21()()f x f x ∴-<()f x Q 是偶函数,11()()f x f x ∴-=,故12()()f x f x ->-(2)讨论方程根的问题例23 已知函数()f x 对一切实数x 都满足(1)(1)f x f x +=-,并且()0f x =有三个实根,则这三个实根之和是 .分析:由(1)(1)f x f x +=-知直线1x =是函数()f x 图象的对称轴.又()0f x =有三个实根,由对称性知11x =必是方程的一个根,其余两根23x x ,关于直线1x =对称, 所以23212x x +=⨯=,故1233x x x ++=. (3)研究函数的图象这类问题只要利用函数图象变换的有关结论,就可获解.例24 若函数(2)y f x =+是偶函数,则()y f x =的图象关于直线 对称.解析:()y f x =的图象22垐垐垐?噲垐垐?左移个单位右移个单位(2)y f x =+的图象,而(2)y f x =+是偶函数,对称轴是0x =,故()y f x =的对称轴是2x =.例25 若函数()f x 的图象过点(01),,则(4)f x +的反函数图象必过定点 .解析:()f x 的图象过点(01),,从而(4)f x +的图象过点(41)-,,由原函数与其反函数图象间的关系易知,(4)f x +的反函数的图象必过定点(14)-,.【巩固14】定义在R 上的函数()f x 满足:对任意实数m n ,,总有()()()f m n f m f n +=⋅,且当0x >时,0()1f x <<.(1)判断()f x 的单调性;(2)设22{()|()()(1)}A x y f x f y f =⋅>,,{()|(1}B x y f ax y a =-=∈R ,,,若A B =∅I ,试确定a 的取值范围.解析:(1)在()()()f m n f m f n +=⋅中,令10m n ==,,得(1)(1)(0)f f f =⋅,因为(1)0f ≠,所以(0)1f =.在()()()f m n f m f n +=⋅中,令m x n x ==-,因为当0x >时,0()1f x <<,所以当0x <时00()1x f x -><-<, 而()()(0)1f x f x f ⋅-==,所以1()10()f x f x =>>-又当0x =时,(0)10f =>,所以,综上可知,对于任意x ∈R ,均有()0f x >. 设12x x <,则2121)00(1x x f x x -><-<,所以[]21211211((((()))))f x f x x x f x f x x f x =+-=⋅-<,∴在R 上为减函数. (2)由于函数()y f x =在R 上为减函数,所以2222()())((1)f x f y f x y f ⋅=+>即有221x y +<,又(1(0)f ax y f -==,由单调性,有0ax y -由A B =∅I ,所以直线0ax y -+与圆面221x y +<无公共点.1,解得11a -≤≤.【巩固15】设函数()y f x =定义在R 上,当0x >时,()1f x >,且对任意m n ,,有 ()()()f m n f m f n +=⋅,当m n ≠时()()f m f n ≠.(1)证明(0)1f =;(2)证明:()f x 在R 上是增函数; (3)设22{()|()()(1)}A x y f x f y f =⋅<,,{()|()10}B x y f ax by c a b c a =++=∈≠R ,,,,,,若A B =∅I ,求a b c ,,满足的条件.解析:(1)令0m n ==得(0)(0)(0)f f f =⋅,(0)0f ∴=或(0)1f =.若(0)0f =,当0m ≠时,有(0)()(0)f m f m f +=⋅,与当m n ≠时,()()f m f n ≠矛盾,(0)1f ∴=. (2)设12x x <,则210x x ->,由已知得21()1f x x ->,因为10x ≥,1()1f x >,若10x <时,110()1x f x ->->,,由11(0)()()f f x f x =⋅- 12211111()0()()()()()f x f x f x x f x f x f x ∴=>=-⋅>-,()f x ∴在R 上为增函数.(3)由22()()(1)f x f y f ⋅<得221x y +< (1) 由()1f ax by c ++=得0ax by c ++= (2)从(1)、(2)中消去y 得22222()20a b x acx c b +++-<,因为A B =∅I 22222(2)4()()0ac a b c b ∴∆=-+-<,即222a b c +<.。
[实用参考]高一必修一数学抽象函数常见题型解法综述.doc
抽象函数常见题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。
由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。
本文就抽象函数常见题型及解法评析如下:一、定义域问题例1.已知函数)(2x f 的定义域是[1,2],求f (G )的定义域。
解:)(2x f 的定义域是[1,2],是指21≤≤x ,所以)(2x f 中的2x 满足412≤≤x 从而函数f (G )的定义域是[1,4]评析:一般地,已知函数))((x f ϕ的定义域是A ,求f (G )的定义域问题,相当于已知))((x f ϕ中G 的取值范围为A ,据此求)(x ϕ的值域问题。
例2.已知函数)(x f 的定义域是]21[,-,求函数)]3([log 21x f -的定义域。
解:)(x f 的定义域是]21[,-,意思是凡被f 作用的对象都在]21[,-中,由此可得4111)21(3)21(2)3(log 11221≤≤⇒≤-≤⇒≤-≤--x x x 所以函数)]3([log 21x f -的定义域是]4111[,评析:这类问题的一般形式是:已知函数f (G )的定义域是A ,求函数))((x f ϕ的定义域。
正确理解函数符号及其定义域的含义是求解此类问题的关键。
这类问题实质上相当于已知)(x ϕ的值域B ,且A B ⊆,据此求G 的取值范围。
例2和例1形式上正相反。
二、求值问题例 3.已知定义域为+R 的函数f (G ),同时满足下列条件:①51)6(1)2(==f f ,;②)()()(y f x f y x f +=⋅,求f (3),f (9)的值。
解:取32==y x ,,得)3()2()6(f f f += 因为51)6(1)2(==f f ,,所以54)3(-=f 又取3==y x 得58)3()3()9(-=+=f f f 评析:通过观察已知与未知的联系,巧妙地赋值,取32==y x ,,这样便把已知条件51)6(1)2(==f f ,与欲求的f (3)沟通了起来。
抽象函数常见题型和解法
抽象函数的常见题型及解法一、 抽象函数的定义域1. 已知f(x)的定义域,求f[g(x)]的定义域若已知f(x)的定义域x (a,b),求f[g(x)]的定义域,其方法是: 由a<g(x)<b,求得x 的范围,即为f[g(x)]的定义域。
即由内层函数的值域,求内层函数的定义域,即为f[g(x)]的定义域。
例1.已知f(x)的定义域为[1,4],求f()的定义域. 解: 由1≤≤4,得 -1≤≤2 即 -1≤<0 或 0<≤2 解得 X ≤-1 或x ≥∴函数的定义域为:2. 已知f[g(x)]的定义域,求f(x)的定义域若已知f[g(x)]的定义域x (a,b),求f(x)的定义域,其方法是: 由a<x<b,求得g(x)的范围,即为f(x)的定义域。
即由内层函数的定义域,求内层函数的值域,即为f(x)的定义域。
例2. 若已知f(x+2)的定义域为[-2,2],求函数f(x)的定义域. 解:∵f(x+2)的定义域为[-2,2], ∴-2≤x ≤2, ∴ 0≤x+2≤4 故f(x)的定义域为[0,4]3. 已知f[ (x)]的定义域,求f[g(x)]的定义域先由f[ (x)]的定义域,求f(x)的定义域,再由f(x)的定义域,求f[g(x)]的定义域。
即由第一个函数中内层函数的定义域,求得第一个函数内层函数的值域,第一个函数内层函数的值域就是第二个函数内层函数的值域,由第∈21+x21+x x1x 1x121()⎪⎭⎫⎢⎣⎡+∞⋃-∞-,211,∈ϕϕ二个函数内层函数的值域,再求出第二个函数内层函数的定义域。
例3.若已知f(x+1)的定义域为,求函数f ()的定义域. 解:∵f(x+1)的定义域为, ∴-2≤x 3, ∴ -1≤x+1 4 即f(x)的定义域为.∴ -1≤<4,∴ -3≤<2 即 -3≤<0 或 0<<2 解得 X ≤-或 x> ∴函数的定义域为:3. 已知f(x)的定义域,求f[ (x)] + f[g(x)]的定义域若已知f(x)的定义域x (a,b),求f[g(x)]+f[g(x)]的定义域,其方法是:由,求得x 的范围,即为f[ (x)] + f[g(x)]的定义域。
抽象函数及应用13种常考题型总结(原卷版)
抽象函数及应用13种常考题型总结题型1抽象函数的定义域问题题型2抽象函数的值域问题题型3求抽象函数的值题型4求抽象函数的解析式题型5抽象函数的奇偶性问题题型6抽象函数的单调性问题题型7抽象函数周期性问题题型8抽象函数的对称性问题题型9解抽象不等式题型10抽象函数比较大小题型11抽象函数的最值问题题型12抽象函数的零点问题题型13双函数混合型1.抽象函数概念:我们把没有给出具体解析式的函数称为抽象函数,题目中往往只给出函数的特殊条件或特征.2.抽象函数定义域的确定所谓抽象函数是指用()f x 表示的函数,而没有具体解析式的函数类型,求抽象函数的定义域问题,关键是注意对应法则。
在同一对应法则的作用下,不论接受法则的对象是什么字母或代数式,其制约条件是一致的,都在同一取值范围内。
抽象函数的定义域的求法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出.(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.注:求函数的定义域,一般是转化为解不等式或不等式组的问题,注意定义域是一个集合,其结果必须用集合或区间来表示.3.“赋值法”求抽象函数的值赋值法就是根据题目的具体情况,合理、巧妙地对某些元素赋予确定的特殊值(0,1,-1等),从而使问题获得简捷有效的解决。
注:(1)第一层次赋值:常常令字母取0,-1,1等.(2)第二层次赋值:若题中有条件0f x =t (),则再令字母取0x .(3)第三层次赋值:拆分赋值,根据抽象式子运算,把赋值数拆成某两个值对应的和与积(较多)或者差与商(较少).4.“赋值法”求抽象函数的解析式赋值法求抽象函数的解析式,首先要对题设中的有关参数进行赋值,再得到函数解析式的某种递推关系,最后求得函数的解析式。
5.“赋值法”探究抽象函数的奇偶性判断抽象函数的奇偶性的关键是得到()f x 与()f x -的关系,解题时要对有关变量进行赋值,使其最后只保留()f x 与()f x -的关系。
抽象函数常见题型解法综述.doc
二、求值问丿抽象函数常见题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式了的一类函数。
由于抽象函数表现形式的抽彖性,使得这类问题成为函数内容的难点z—。
木文就抽象函数常见题型及解法评析如下:一、定义域问题例1・已知函数/(X2)的定义域是[1, 2],求f(X)的定义域。
解:/(x2)的定义域是[1, 2],是指15x52,所以/(x2)中的/满足15^54从而函数f (x)的定义域是[1,4]评析:一般地,已知函数.f(0(劝的定义域是A,求f(x)的定义域问题,相当于已知/(^(x))中x的取值范I韦I为A,据此求0(兀)的值域问题。
例2・己知函数/(兀)的定义域是[-1, 2],求函数/[log 1 (3 -%)]的定义域。
解:才(朗的定义域是[-1, 2],意思是凡被f作用的对象都在[-1, 2|屮,由此可得一1 Slog】(3—兀)W 2 => (-)2 <3-x< (-)■' =>l<x< —3 2 2 4所以函数/[log. (3-X)]的定义域是[1,-]T 4评析:这类问题的一般形式是:己知函数f (x)的定义域是A,求函数的定义域。
正确理解函数符号及其定义域的含义是求解此类问题的关键。
这类问题实质上相当于已知0(兀)的值域B,且Be A,据此求x的取值范围。
例2和例1形式上正相反。
例3・已知定义域为/?+的函数f (x),同时满足下列条件:①/(2) = 1, /(6)=-;②f(x-y) = / W + /(y),求f (3) , f(9)的值。
解:取% = 2, y = 3,得/(6) = /(2) + /(3)1 4因为/(2) = 1, /(6)=-,所以/(3)=--又取x = y = 3Q得/(9) = /(3) + /(3)=--评析:通过观察已知与未知的联系,巧妙地赋值,取兀=2, y = 3,这样便把己知条件/(2) = 1, /(6)=-与欲求的f (3)沟通了起來。
【强烈推荐】高一数学抽象函数常见题型解法综述.doc
抽象函数常见题型解法综述赵春祥抽象换数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一•类凶数。
市于抽象两数表现形式的抽象性,使得这类问题成为两数内容的难点之一。
本文就抽象两数常见题型及解法评析如下:一、定义域问题例1・已知函数/(x2)的定义域是[1, 2],求f (x)的定义域。
解:/(x2)的定义域是[1, 2],是扌旨15兀52,所以/(x2)屮的,满足l<x2 <4从而函数f (x)的定义域是[1,4]评析:一般地,已知函数/Mx))的定义域是A,求f(x)的定义域问题,相当于已知/(俠朗) 屮x的取值范围为A,据此求gx)的值域问题。
例2・己知函数/(兀)的定义域是[-1, 2],求函数/[log, (3-x)]的定义域。
2解:/(x)的定义域是[-1, 2],意思是凡被f作用的对象都在[-1, 2]屮,由此可得-lGog](37)S2=> (丄尸<3-x <(-)■* =>l<x< —牙 2 2 4所以函数/[lo gl(3-x)]的定义域是[1,—]2 4评析:这类问题的一般形式是:己知函数f(X)的定义域是A,求函数MM的定义域。
正确理解两数符号及其定义域的含义是求解此类问题的关键°这类问题实质上相当于己知0(力的值域B,且Bo A,据此求x的取值范围。
例2和例1形式上正相反。
二、求值问题例3・己知定义域为/T的函数f (x),同吋满足下列条件:①/(2) = I, /(6)=-;② /(x-y) = /(x)4- f(y),求f (3) , f (9)的值。
解:取= 2, y = 3,得/(6) = /(2) + /(3)x1 4因为/(2) = 1, /(6)=-,所以/(3)=--乂取x = y = 3x得/(9) = / ⑶+ /(3)=—二评析:通过观察己知与未知的联系,巧妙地赋值,取X = Z= 这样便把己知条件/(2) = 1, f(6)=-与欲求的f (3)沟通了起来n赋值法是解此类问题的常用技巧。
高一数学抽象函数常见题型解法综述(下)
抽象函数常见题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。
由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。
本文就抽象函数常见题型及解法评析如下:一、定义域问题例1.已知函数f(x 2)的定义域是[1, 2],求f (x)的定义域。
解:f (x 2)的定义域是[1, 2],是指1M x M 2,所以f(x 2)中的x 2满足1 <x 2<4从而函数f (x)的定义域是[1,4]评析:一般地,已知函数 f (9(x))的定义域是 A,求f (x)的定义域问题,相当于已知 f(9(x))中x 的取值范围为A,据此求9(x)的值域问题。
例2.已知函数f(x)的定义域是[—1, 2],求函数f [log 1 (3 . x)]的定义域。
2解:f(x)的定义域是[-1, 2],意思是凡被f 作用的对象都在[-1, 2]中,由此可得 -1 m log 1(3 - x)三 2二(1)11. 所以函数f [log 1 (3 —x)]的定义域是[1, 一] 24评析:这类问题的一般形式是:已知函数 f (x)的定义域是 A,求函数f (中(x))的定义域。
正确理解函数符号这类问题实质上相当于已知 邛(x)的值域B,且B J A,据此求x 的取值范围。
例2和例1形式上正相反。
二、求值问题1 一一 一例3.已知定义域为R 的函数f(x),同时满足下列条件:①f (2)=1, f(6)=—;②f (x ))= f (x)+f(y),5求 f (3) , f (9)的值。
解:取 x = 2, y =3,得 f (6) = f (2) + f(3)1 4 8 因为 f (2) =1, f (6)=一,所以 f (3)= -一 又取 x = y = 3 ,得 f(9) = f(3) + f (3)= -一55512<3-x < (-)J2及其定义域的含义是求解此类问题的关键。
抽象函数1
抽象函数常见题型解法综述赵春祥抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。
由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。
本文就抽象函数常见题型及解法评析如下:一、定义域问题例1. 已知函数的定义域是[1,2],求f(x)的定义域。
解:的定义域是[1,2],是指,所以中的满足从而函数f(x)的定义域是[1,4]评析:一般地,已知函数的定义域是A,求f(x)的定义域问题,相当于已知中x的取值范围为A,据此求的值域问题。
例2. 已知函数的定义域是,求函数的定义域。
解:的定义域是,意思是凡被f作用的对象都在中,由此可得所以函数的定义域是评析:这类问题的一般形式是:已知函数f(x)的定义域是A,求函数的定义域。
正确理解函数符号及其定义域的含义是求解此类问题的关键。
这类问题实质上相当于已知的值域B,且,据此求x的取值范围。
例2和例1形式上正相反。
二、求值问题例3. 已知定义域为的函数f(x),同时满足下列条件:①;②,求f(3),f(9)的值。
解:取,得因为,所以又取得评析:通过观察已知与未知的联系,巧妙地赋值,取,这样便把已知条件与欲求的f(3)沟通了起来。
赋值法是解此类问题的常用技巧。
三、值域问题例4. 设函数f(x)定义于实数集上,对于任意实数x、y,总成立,且存在,使得,求函数的值域。
解:令,得,即有或。
若,则,对任意均成立,这与存在实数,使得成立矛盾,故,必有。
由于对任意均成立,因此,对任意,有下面来证明,对任意设存在,使得,则这与上面已证的矛盾,因此,对任意所以评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。
四、解析式问题例5. 设对满足的所有实数x,函数满足,求f(x)的解析式。
解:在中以代换其中x,得:再在(1)中以代换x,得化简得:评析:如果把x和分别看作两个变量,怎样实现由两个变量向一个变量的转化是解题关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽象函数问题的题型综述一. 求某些特殊值这类抽象函数一般给出定义域,某些性质及运算式而求特殊值。
其解法常用“特殊值法”,即在其定义域内令变量取某特殊值而获解,关键是抽象问题具体化。
例1 定义在R 上的函数f x ()满足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值。
解:由f x f x ()()220-+-=, 以t x =-2代入,有f t f t ()()-=, ∴f x ()为奇函数且有f ()00= 又由f x f x ()[()]+=--44=-=-∴+=-+=f x f x f x f x f x ()()()()()84故f x ()是周期为8的周期函数, ∴==f f ()()200000例2 已知函数f x ()对任意实数x y ,都有f x y f x f y ()()()+=+,且当x >0时,f x f ()()>-=-012,,求f x ()在[]-21,上的值域。
解:设x x 12< 且x x R 12,∈, 则x x 210->,由条件当x >0时,f x ()>0 ∴->f x x ()210又f x f x x x ()[()]2211=-+=-+>f x x f x f x ()()()2111 ∴f x ()为增函数,令y x =-,则f f x f x ()()()0=+- 又令x y ==0 得f ()00= ∴-=-f x f x ()(), 故f x ()为奇函数,∴=-=f f ()()112,f f ()()-=-=-2214 ∴-f x ()[]在,21上的值域为[]-42,二. 求参数范围这类参数隐含在抽象函数给出的运算式中,关键是利用函数的奇偶性和它在定义域内的增减性,去掉“f ”符号,转化为代数不等式组求解,但要特别注意函数定义域的作用。
例3 已知f x ()是定义在(-11,)上的偶函数,且在(0,1)上为增函数,满足f a f a ()()---<2402,试确定a 的取值范围。
解: f x ()是偶函数,且在(0,1)上是增函数, ∴f x ()在()-10,上是减函数,由-<-<-<-<⎧⎨⎩1211412a a 得35<<a 。
(1)当a =2时,f a f a f ()()()-=-=2402,不等式不成立。
(2)当32<<a 时,f a f a f a a a a a a ()()()-<-=-⇔-<-<-<-<->-⎧⎨⎪⎩⎪<<24412014024322222解之得,(3)当25<<a 时, f a f a ()()-<-242=-⇔<-<<-<-<-⎧⎨⎪⎩⎪<<f a a a a a a ()22240210412425解之得,综上所述,所求a 的取值范围是()()3225,, 。
例4 已知f x ()是定义在(]-∞,1上的减函数,若f m x f m x (sin )(cos )221-≤++对x R ∈恒成立,求实数m 的取值范围。
解: m x m x m x m x 22223131-≤++≤-≥++⎧⎨⎪⎩⎪sin cos sin cos对x R ∈恒成立⇔-≤-≥++⎧⎨⎪⎩⎪m x m x m x22231sin sin cos 对x R ∈恒成立⇔m xm m x x x 2222311254-≤--≥+=--+⎧⎨⎪⎩⎪sin sin cos (sin ) 对x R ∈恒成立,∴-≤--≥⎧⎨⎪⎩⎪∴-≤≤-m m m m 223115421102为所求。
三. 解不等式这类不等式一般需要将常数表示为函数在某点处的函数值,再通过函数的单调性去掉函数符号“f ”,转化为代数不等式求解。
例5 已知函数f x ()对任意x y R ,∈有f x f y f x y ()()()+=++2,当x >0时,f x ()>2,f ()35=,求不等式f a a ()2223--<的解集。
解:设x x R 12、∈且x x 12< 则x x 210-> ∴->f x x ()212, 即f x x ()2120-->,∴=-+=-+->∴>f x f x x x f x x f x f x f x f x ()[()]()()()()()22112111212故f x ()为增函数,又f f f f f ()()()()()3212123145=+=+-=-=∴=∴--<=--<∴-<<f f a a f a a a ()()()1322312211322,即因此不等式f a a ()2223--<的解集为{}a a |-<<13。
四. 证明某些问题例6 设f x ()定义在R 上且对任意的x 有f x f x f x ()()()=+-+12,求证:f x ()是周期函数,并找出它的一个周期。
分析:这同样是没有给出函数表达式的抽象函数,其一般解法是根据所给关系式进行递推,若能得出f x T f x ()()+=(T 为非零常数)则f x ()为周期函数,且周期为T 。
证明: f x f x f x ()()()()=+-+121 ∴+=+-+f x f x f x ()()()()1232()()12+得f x f x ()()()=-+33 由(3)得f x f x ()()()+=-+364由(3)和(4)得f x f x ()()=+6。
上式对任意x R ∈都成立,因此f x ()是周期函数,且周期为6。
例7 已知f x ()对一切x y ,,满足f f x y f x f y ()()()()00≠+=⋅,,且当x <0时,f x ()>1,求证:(1)x >0时,01<<f x ();(2)f x ()在R 上为减函数。
证明: 对一切x y R ,∈有f x y f x f y ()()()+=⋅。
且f ()00≠,令x y ==0,得f ()01=, 现设x >0,则-<x 0,f x ()->1, 而f f x f x ()()()01=⋅-=∴-=>f x f x ()()11 ∴<<01f x (), 设x x R 12,∈且x x 12<, 则0121<-<f x x (), f x f x x x ()[()]2211=-+ =-⋅<f x x f x f x ()()()2111 ∴>f x f x ()()12, 即f x ()为减函数。
五. 综合问题求解抽象函数的综合问题一般难度较大,常涉及到多个知识点,抽象思维程度要求较高,解题时需把握好如下三点:一是注意函数定义域的应用,二是利用函数的奇偶性去掉函数符号“f ”前的“负号”,三是利用函数单调性去掉函数符号“f ”。
例8 设函数y f x =()定义在R 上,当x >0时,f x ()>1,且对任意m n ,,有f m n f m f n ()()()+=⋅,当m n ≠时f m f n ()()≠。
(1)证明f ()01=;(2)证明:f x ()在R 上是增函数;(3)设{}A x y f x f y f =⋅<()|()()(),221,B x y f ax by c a b c R a =++=∈≠{()|()},,,,,10,若A B =∅,求a b c ,,满足的条件。
解:(1)令m n ==0得f f f ()()()000=⋅, ∴=f ()00或f ()01=。
若f ()00=,当m ≠0时,有f m f m f ()()()+=⋅00,这与当m n ≠时,f m f n ()()≠矛盾,∴=f ()01。
(2)设x x 12<,则x x 210->,由已知得f x x ()211->,因为x 10≥,f x ()11>,若x 10<时,->->x f x 1101,(),由f f x f x ()()()011=⋅-∴=->=-⋅>∴f x f x f x f x x f x f x f x R ()()()()()()()11221111在上为增函数。
(3)由f x f y f ()()()221⋅<得x y 2211+<() 由f ax by c ()++=1得ax by c ++=0 (2)从(1)、(2)中消去y 得()a b x acx c b 2222220+++-<,因为A B =∅∴=-+-<∆()()()24022222ac a b c b , 即a b c 222+<例9 定义在(-11,)上的函数f x ()满足(1),对任意x y ,,∈-()11都有f x f y f x yxy()()()+=++1, (2)当x ∈-()10,时,有f x ()>0,(1)试判断f x ()的奇偶性;(2)判断f x ()的单调性; (3)求证f f f n n f ()()()()15111131122+++++>…。
分析:这是一道以抽象函数为载体,研究函数的单调性与奇偶性,再以这些性质为基础去研究数列求和的综合题。
解:(1)对条件中的x y ,,令x y ==0,再令y x =-可得f f f f x f x f f x f x ()()()()()()()()000000+=+-=⎧⎨⎩⇒=-=-⎧⎨⎩,所以f x ()是奇函数。
(2)设-<<<1012x x ,则f x f x f x f x f x x x x ()()()()()121212121-=+-=--x x x x 1212001-<<<,, ∴--<x x x x 121210,由条件(2)知f x x x x ()121210-->,从而有f x f x ()()120->,即f x f x ()()12>,故f x ()()在,-10上单调递减,由奇函数性质可知,f x ()在(0,1)上仍是单调减函数。
(3) f n n ()1312++=++-=++-+++-+⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥f n n f n n n n (()())()()()1121111211112=++-+=+-+∴+++++=-+-+++-+=-+<+<∴+<f n f n f n f n f f f n n f f f f f n f n f f n n f n ()()()()()()()()()()()()()()()()111211121511113112131314111212120121122,……, ∴-+>∴+++++>f f n f f f f n n f ()()()()()()()12121215111131122…。