初中数学专题复习等式和它的性质(含答案)

合集下载

初中数学代数专题复习(答案)

初中数学代数专题复习(答案)

初中数学代数专题复习(答案)
1. 代数基础知识
- 数的分类:自然数、整数、有理数、无理数、实数、复数
- 数及运算:加、减、乘、除、乘方、开方、分数、比例、百分数、整式、分式
- 代数式的概念及基本性质:代数式、同类项、合并同类项、系数、常数项、单项式、多项式
2. 一元一次方程式
- 方程式及解的概念:方程式、解、未知量
- 一元一次方程式的解法:加减消元法、倍数消元法、公式法
3. 一元一次不等式
- 不等式及解的概念:不等式、解、解集
- 一元一次不等式的解法:加减法、倍数法、分式法、倒数法
4. 一元二次方程式
- 一元二次方程式的概念及一般式
- 一元二次方程式的解法:配方法、公式法、完全平方公式
5. 一元二次不等式
- 一元二次不等式的概念及解法
6. 笛卡尔坐标系
- 直角坐标系的概念、性质、坐标表示
- 解直线方程:解析法、斜率公式、截距公式
- 解圆方程:标准式、一般式
7. 实数集合及数轴
- 实数的分类及性质
- 数轴的绘制及应用
8. 几何初步
- 等腰三角形、等边三角形、直角三角形、全等三角形、相似三角形的定义及判定
- 余弦定理、正弦定理、勾股定理
9. 附加题及答案
以上是初中数学代数专题的复习材料及答案,希望能帮助大家顺利完成复习,获得优异成绩。

杭州学军中学七年级数学下册第九单元《不等式与不等式组》知识点总结(含答案解析)

杭州学军中学七年级数学下册第九单元《不等式与不等式组》知识点总结(含答案解析)

一、选择题1.若点A (a ,b )在第二象限,则点B (﹣a ,b+1)在( )A .第一象限B .第二象限C .第三象限D .第四象限A 解析:A【分析】根据第二象限内的点的横坐标小于零,纵坐标大于零,可得关于a 、b 的不等式,再根据不等式的性质,可得B 点的坐标符号.【详解】解:∵点P (a ,b )在第二象限,∴a <0,b >0,∴-a >0,b+1>0,∴点B (﹣a ,b+1)在第一象限.故选A .【点睛】本题主要考查平面直角坐标系中象限内的点的坐标的符号特征和不等式的性质.注意第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 2.不等式()2533x x ->-的解集为( )A .4x <-B .4x >C .4x <D .4x >- C 解析:C【分析】根据解一元一次不等式的方法解答即可.【详解】解:去括号,得2539x x ->-,移项、合并同类项,得4x ->-,不等式两边同时除以﹣1,得4x <.故选:C .【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是关键.3.在数轴上表示不等式2(1﹣x )<4的解集,正确的是( )A .B .C .D . A解析:A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x )<4去括号得:2﹣2x<4移项得:2x >﹣2,系数化为1得:x >﹣1,故选A .“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4.不等式组1030x x -≤⎧⎨+>⎩中的两个不等式的解集在同一个数轴上表示正确的是( ) A .B .C .D . A解析:A【分析】 先分别解两个不等式得到x≤1和x >-3,然后利用数轴分别表示出x≤1和x >-3,于是可得到正确的选项.【详解】解不等式x-1≤0得x≤1,解不等式x+3>0得x >-3,所以不等式组的两个不等式的解集在同一个数轴上表示为:.故选:A .【点睛】本题考查了在数轴上表示不等式的解集:用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.5.如果a b >,可知下面哪个不等式一定成立( )A .a b ->-B .11a b <C .2a b b +>D .2a ab > C解析:C【分析】由基本不等式a >b ,根据不等式的性质,逐一判断.【详解】解:A 、∵a >b ,∴-a <-b ,故本选项不符合题意;B 、∵a >b ,∴当a 与b 同号时有11a b <,当a 与b 异号时,有11a b>, 故本选项不符合题意;C 、∵a >b ,∴a+b >2b ,故本选项符合题意;D 、∵a >b ,且a >0时,∴a 2>ab ,故本选项不符合题意;故选:C .【点睛】本题考查了不等式的性质.不等式的基本性质: (1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.不等式组3114x x +>⎧⎨-≤⎩的最小整数解是( ) A .5B .0C .-1D .-2C解析:C【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来,写出这个不等式组的最小整数解即可.【详解】 解:3114x x +>⎧⎨-≤⎩①② 解不等式①得 x >-2,解不等式②得 x≤5,所以不等式组的解集为-2<x≤4,所以,这个不等式组的最小整数解是-1,故选C .【点睛】本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.7.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2C解析:C【解析】 ∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a−3a+2)⩽0,解得:a ⩽2,∵x=1不是这个不等式的解,∴(1−5)(a−3a+2)>0,解得:a>1,∴1<a ⩽2,故选C.8.不等式组21x x ≥-⎧⎨<⎩的解集在数轴上表示正确的是( ) A .B .C .D . A 解析:A【分析】先解出不等式组的解集,然后再根据选项解答即可.【详解】解:由题意可得:不等式组的解集为:21x , 在数轴上表示为:故答案为A.【点睛】本题主要考查了不等式组解集在数轴上的表示方法,在表示解集时“≥”或“≤”要用实心圆点表示,“<”,“>”要用空心圆点表示成为解答本题的关键.9.下列说法中不正确的是( )A .若a b >,则a 1b 1->-B .若3a 3b >,则a b >C .若a b >,且c 0≠,则ac bc >D .若a b >,则7a 7b -<- C 解析:C【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A 、∵a >b ,∴a-1>b-1,故本选项正确,不符合题意;B 、∵3a >3b ,∴a >b ,故本选项正确,不符合题意;C 、∵a >b 且c≠0,当c >0时,ac >bc ;当c <0时,ac <bc ,故本选项错误,符合题意;D 、∵a >b ,∴-a <-b ,∴7-a <7-b ,故本选项正确,不符合题意.故选:C .【点睛】本题考查的是不等式的性质,熟记不等式的基本性质是解答此题的关键.10.若关于x的不等式组3122x ax x->⎧⎨->-⎩无解,则a的取值范围是()A.a<-2 B.a≤-2 C.a>-2 D.a≥-2D解析:D【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】解:3122 x ax x->⎧⎨->-⎩①②解①得:x>a+3,解②得:x<1.根据题意得:a+3≥1,解得:a≥-2.故选:D.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.二、填空题11.对于实数x,我们规定[]x表示不大于x的最大整数,例如[1.2]1,[3]3,[ 2.5]3==-=-,若4510x+⎡⎤=⎢⎥⎣⎦,则x的取值可以是______________(任写一个).50(答案不唯一)【分析】由于规定表示不大于x的最大整数则表示不大于的最大整数接下来根据可列出不等式组求解即可【详解】解:表示不大于x的最大整数表示不大于的最大整数又可列不等式组x的取值可以是范围内解析:50(答案不唯一)【分析】由于规定[]x表示不大于x的最大整数,则410x+⎡⎤⎢⎥⎣⎦表示不大于410x+的最大整数,接下来根据4510x+⎡⎤=⎢⎥⎣⎦,可列出不等式组,求解即可.【详解】解:[]x表示不大于x的最大整数,∴410x+⎡⎤⎢⎥⎣⎦表示不大于410x+的最大整数,又45 10x+⎡⎤=⎢⎥⎣⎦,∴可列不等式组45104610x x +⎧≥⎪⎪⎨+⎪<⎪⎩ ,450460x x +≥⎧⎨+<⎩, ∴4656x x ≥⎧⎨<⎩,∴4656≤<x , ∴x 的取值可以是范围内的任何实数.故答案为:50(答案不唯一).【点睛】本题主要考查了一元一次不等式组的应用,解题的关键是根据[x]表示不大于x 的最大整数列出不等式组.12.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是_________.【分析】先求出每个不等式的解集然后得到不等式组的解集再求出整数解即可【详解】解:解不等式①得;解不等式②得;∴不等式组的解集为:;∴不等式组的整数解是;故答案为:【点睛】本题考查了解一元一次不等式组解析:4x =-【分析】先求出每个不等式的解集,然后得到不等式组的解集,再求出整数解即可.【详解】 解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②, 解不等式①,得4x ≤-;解不等式②,得5x >-;∴不等式组的解集为:54x -<≤-;∴不等式组的整数解是4x =-;故答案为:4x =-.【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法进行解题.13.a b ≥,1a -+_____1b -+≤【分析】根据不等式的性质判断即可【详解】∵a≥b ∴-a≤-b ∴-a+1≤-b+1故答案为≤【点睛】本题考查不等式的性质需要特别注意不等式两边同时乘除一个负数不等号要变号解析:≤【分析】根据不等式的性质判断即可.【详解】∵a≥b∴-a≤-b∴ -a+1≤-b+1故答案为≤.【点睛】本题考查不等式的性质,需要特别注意不等式两边同时乘除一个负数不等号要变号. 14.已知:[]x 表示不超过x 的最大整数.例:[]4.84=,[]0.81-=-.现定义:{}[]x x x =-,例:{}[]1.5 1.5 1.50.5=-=,则{}{}{}3.9 1.81+--=________.【分析】根据题意列出代数式解答即可【详解】解:故答案为:【点睛】此题考查解一元一次不等式关键是根据题意列出代数式解答解析:1.1【分析】根据题意列出代数式解答即可.【详解】解:{}{}{}3.9 1.81+--()()()()39318211⎡⎤=-+-----⎣⎦..0902=+..11=.故答案为:11.. 【点睛】此题考查解一元一次不等式,关键是根据题意列出代数式解答.15.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________.-2【分析】根据一元一次方程的定义列出关于m 的方程组求解即可【详解】解:∵∴解得m=-2故答案为-2【点睛】本题主要考查了一元一次方程的定义和不等式组的解法根据一元一次方程的定义列出关于m 的方程组成解析:-2【分析】根据一元一次方程的定义列出关于m 的方程组求解即可.【详解】解:∵||1(2)3m m x --= ∴2011m m -≠⎧⎨-=⎩,解得m=-2. 故答案为-2.【点睛】本题主要考查了一元一次方程的定义和不等式组的解法,根据一元一次方程的定义列出关于m 的方程组成为解答本题的关键.16.若关于x 的不等式组103420x a x ⎧->⎪⎨⎪-≥⎩无解,a 则的取值范围为___________.【分析】先解不等式组中的两个不等式然后根据不等式组无解可得关于a 的不等式解不等式即得答案【详解】解:对不等式组解不等式①得解不等式②得∵原不等式组无解∴解得:故答案为:【点睛】此题主要考查了解不等式 解析:23a ≥【分析】先解不等式组中的两个不等式,然后根据不等式组无解可得关于a 的不等式,解不等式即得答案.【详解】 解:对不等式组103420x a x ⎧->⎪⎨⎪-≥⎩①②,解不等式①,得3x a >,解不等式②,得2x ≤,∵原不等式组无解,∴32a ≥, 解得:23a ≥. 故答案为:23a ≥. 【点睛】此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则,得出关于a 不等式是解题关键.17.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________.0【分析】求出不等式组的解集确定出最小整数解即可【详解】不等式组整理得:不等式组的解集为:-1<x≤2最小的整数解为0故答案为:0【点睛】本题主要考查一元一次不等式组的整数解掌握一元一次不等式组的求解析:0【分析】求出不等式组的解集,确定出最小整数解即可.【详解】不等式组整理得:21x x ≤⎧⎨>-⎩, ∴不等式组的解集为:-1<x ≤2,∴最小的整数解为0.故答案为:0.【点睛】本题主要考查一元一次不等式组的整数解,掌握一元一次不等式组的求解是解题关键.18.不等式组210360x x ->⎧⎨-<⎩的解集为_______.【分析】先求出两个不等式的解再找出它们的公共部分即为不等式组的解集【详解】解不等式①得:解不等式②得:则不等式组的解集为故答案为:【点睛】本题考查了解一元一次不等式组熟练掌握不等式组的解法是解题关键 解析:122x << 【分析】先求出两个不等式的解,再找出它们的公共部分即为不等式组的解集.【详解】210360x x ->⎧⎨-<⎩①②, 解不等式①得:12x >, 解不等式②得:2x <, 则不等式组的解集为122x <<, 故答案为:122x <<. 【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键. 19.关于x 的不等式132x a x -≤⎧⎨-<⎩有5个整数解,则a 的取值范围是______.【分析】首先解每个不等式两个不等式的解集的公共部分就是不等式组的解集确定整数解据此即可写出a 的范围【详解】解:解不等式①得;解不等式②得:则不等式的解集为∵不等式有5个整数解∴一定是01234∴即故解析:12a ≤<【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,确定整数解,据此即可写出a 的范围.【详解】解:132x a x -≤⎧⎨-<⎩①②, 解不等式①得,4x ≤;解不等式②得:2x a >-,则不等式的解集为24a x -<≤,∵不等式132x a x -≤⎧⎨-<⎩有5个整数解, ∴一定是0,1,2,3,4.∴120a ,即12a ≤<,故答案为:12a ≤<.【点睛】此题考查的是一元一次不等式组的解法,根据x 的取值范围,得出x 的整数解,然后代入方程即可解出a 的值.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20.不等式组20210x x +>⎧⎨-≤⎩的所有整数解的和是_____________-1【分析】先分别解两个不等式求出它们的解集再求两个不等式解集的公共部分然后找出解集中的整数相加即可【详解】解①得x>-2;解②得x≤∴原不等式组的解集是-2<x≤∴其中的整数有:-10∴-1+0=解析:-1【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分,然后找出解集中的整数相加即可.【详解】20210x x +>⎧⎨-≤⎩①②, 解①得,x >-2;解②得,x ≤12, ∴原不等式组的解集是-2<x ≤12. ∴其中的整数有:-1,0,∴-1+0=-1.故答案为-1.【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大三、解答题21.为发展校园足球运动,某城区四校决定联合购买一批足球运动装备.市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少元;(2)若城区四校联合购买100套队服和()10a a >个足球,请用含a 的式子分别表示出到甲商场和乙商场购买装备所花费用;(3)在(2)的条件下,计算a 为何值时,两家商场所花费用相同;(4)在(3)的条件下,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?(直接写出方案)解析:(1)150元;100元;(2)甲商场()10014000a + ,乙商场()8015000a +元;(3)50a =;(4)当50a =时,两家花费一样;当1050a <<时,到甲处购买更合算;当50a 时,到乙处购买更合算【分析】(1)设每个足球的定价是x 元,则每套队服是()50x +元,根据“两套队服与三个足球的费用相等”得出等量关系,列出一元一次方程,求解即可;(2)根据甲商场和乙商场的方案列出式子即可;(3)令100140008015000,a a ++=解方程即可;(4)列出不等式分别求解即可.【详解】解:(1)设每个足球的定价是x 元,则每套队服是()50x +元.根据题意得()2503x x +=解得100,50150x x +==. 答:每套队服150元,每个足球100元.(2)到甲商场购买所花的费用为:()1001001501001001400010a a ⎛⎫⨯+-=+ ⎪⎝⎭元; 到乙商场购买所花的费用为:()100150+100808015000a a ⨯⨯%=+元;(3)由100140008015000,a a ++=得:50a =,所以:当50a =时,两家花费一样。

初中数学方程与不等式之二元一次方程组知识点总复习附答案解析(1)

初中数学方程与不等式之二元一次方程组知识点总复习附答案解析(1)

初中数学方程与不等式之二元一次方程组知识点总复习附答案解析(1)一、选择题1.已知关于x ,y 的二元一次方程组57345x y a x y a-=⎧⎨-+=⎩,且x ,y 满足x –2y =0,则a 的值为( )A .2B .–4C .0D .5 【答案】C【解析】【分析】将二元一次方程组中的两个方程相加,化简整理得x –2y =4a,进而求出4a =0即可解题.【详解】 方程组57345x y a x y a -=⎧⎨-+=⎩,两个方程相加可得:x –2y =4a , ∵x –2y =0,∴4a =0,解得a =0,故选C .【点睛】本题考查了加减消元的实际应用,属于简单题,熟悉加减消元的步骤,建立新的等量关系是解题关键.2.如果方程组3921ax y x y +=⎧⎨-=⎩无解,则a 为( ) A .6B .-6C .9D .-9 【答案】B【解析】【分析】用代入法或加减法把未知数y 消去,可得方程(6)12a x +=,由原方程无解可得60a +=,由此即可解得a 的值.【详解】把方程21x y -=两边同时乘以3,再与方程39ax y +=相加,消去y 得:693ax x +=+,即(6)12a x +=,∵原方程无解,∴60a +=,解得6a =-.故选B.【点睛】本题考查了二元一次方程组解的问题,明白“关于某一个未知数的一元一次方程无解,则这个未知数的系数为0”是解答本题的关键.3.已知二元一次方程1342x y -=的一组解是x a y b =⎧⎨=⎩,则63a b -+的值为( ) A .11B .7C .5D .无法确定 【答案】A【解析】【分析】 把二元一次方程12x-3y=4的一组解先代入方程,得12a-3b=4,即a-6b=8,然后整体代入求出结果.【详解】 ∵x a y b=⎧⎨=⎩是二元一次方程12x-3y=4的一组解, ∴12a-3b=4, 即a-6b=8,∴a-6b+3=8+3=11.故选:A .【点睛】此题考查二元一次方程的解,解题的关键是运用整体代入的方法.4.若关于x ,y 的方程组2315x y m x y +=-⎧⎨-=⎩的解满足x +y =3,则m 的值为 ( ) A .-2 B .2 C .-1 D .1【答案】D【解析】【分析】首先把m 看成常数,然后进一步解关于x 与y 的方程组,求得用m 表示的x 与y 的值后,再进一步代入3x y +=加以求解即可.【详解】由题意得:2315x y m x y +=-⎧⎨-=⎩①②, ∴由①−②可得:()2315x y x y m +--=--,化简可得:336y m =-,即:2y m =-,将其代入②可得:25x m -+=,∴3x m =+∵3x y +=,∴323m m ++-=,∴1m =,故选:D.【点睛】本题主要考查了二元一次方程组的综合运用,熟练掌握相关方法是解题关键.5.小李去买套装6色水笔和笔记本,若购买4袋笔和6本笔记本,他身上的钱还差22元,若改 成购买1袋笔和2本笔记本,他身上的钱会剩下34元.若他把身上的钱都花掉,购买这两种 物品(两种都买)的方案有( )A .3种B .4种C .5种D .6种 【答案】C【解析】【分析】设1袋笔的价格为x 元,1本笔记本的价格为y 元,根据“若购买4袋笔和6本笔记本,他身上的钱还差22元,若改成购买1袋笔和2本笔记本,他身上的钱会剩下34元”,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可得出结论,再设可购买a 袋笔和b 本笔记本,根据总价=单价×数量可得出关于a ,b 的二元一次方程,结合a ,b 均为正整数即可得出结论.【详解】设1袋笔的价格为x 元,1本笔记本的价格为y 元,依题意,得:4x+6y-22=x+2y+34,∴3x+4y=56,即y=14-34x . ∵x ,y 均为正整数,∴411x y ⎧⎨⎩==,88x y ⎧⎨⎩==,125x y ⎧⎨⎩==,162x y ⎧⎨⎩==. 设可购买a 袋笔和b 本笔记本.①当x=4,y=11时,4x+6y-22=60,∴4a+11b=60,即a=15-114b , ∵a ,b 均为正整数,∴44a b ⎧⎨⎩==; ②当x=8,y=8时,4x+6y-22=58, ∴8a+8b=58,即a+b=294,∵a ,b 均为正整数,∴方程无解;③当x=12,y=5时,4x+6y-22=56,∴12a+5b=56,即b=56125a -, ∵a ,b 均为正整数, ∴34a b ==⎧⎨⎩; ④当x=16,y=2时,4x+6y-22=54,∴16a+2b=54,即b=27-8a ,∵a ,b 均为正整数,∴119a b ⎧⎨⎩==,211a b ⎧⎨⎩==,33a b ⎧⎨⎩==. 综上所述,共有5种购进方案.故选:C .【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.6.某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x 天,生产乙种玩具零件y 天,则有( )A .30200100x y x y +=⎧⎨=⎩B .30100200x y x y +=⎧⎨=⎩C .302200100x y x y +=⎧⎨⨯=⎩D .302100200x y x y +=⎧⎨⨯=⎩【答案】C【解析】【分析】根据题意可以列出相应的二元一次方程组,本题得以解决.【详解】由题意可得,{x y 302200x 100y +=⨯=,故答案为C【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.7.用四个完全一样的长方形和一个小正方形拼成如图所示的大正方形,若已知大正方形的面积是196,小正方形的面积是4,若用(),x y x y >表示长方形的长和宽,则下列四个等式中不成立的是( )A .14x y +=B .2x y -=C .22196x y +=D .48xy =【答案】C【解析】【分析】 根据大正方形及小正方形的面积,分别求出大正方形及小正方形的边长,然后解出x 、y 的值,即可判断各选项.【详解】由题意得,大正方形的边长为14,小正方形的边长为2∴x+y=14,x−y=2,则142x y x y +=⎧⎨-=⎩, 解得:86x y =⎧⎨=⎩, 故可得C 选项的关系式符合题意.故选C.【点睛】此题考查二元一次方程组的应用,解题关键在于理解题意找出等量关系.8.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( ) A .530020015030x y x y +=⎧⎨+=⎩ B .530015020030x y x y +=⎧⎨+=⎩ C .302001505300x y x y +=⎧⎨+=⎩ D .301502005300x y x y +=⎧⎨+=⎩ 【答案】C【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案. 详解:设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为:302001505300x y x y +=⎧⎨+=⎩.故选C .点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.9.若方程组32232732x y k x y k -=-⎧⎨+=-⎩的解满足2020x y +=,则k 等于( ) A .2018B .2019C .2020D .2021 【答案】D【解析】【分析】把两个方程相加,可得5x +5y =5k-5,再根据2020x y +=可得到关于k 的方程,进而求k 即可.【详解】解:32232732x y k x y k -=-⎧⎨+=-⎩①② ①+②得 5x +5y =5k-5,∴x +y =k -1.∵2020x y +=,∴k -1=2020,∴k=2021.故选:D .【点睛】本题考查了二元一次方程组的特殊解法,依据方程系数特点整体代入是求值的关键.10.|21|0a b -+=,则2019()b a -等于( )A .1-B .1C .20195D .20195-【答案】A【解析】【分析】根据二次根式的性质和绝对值的概念先列出关于a,b 的方程组,求出解,然后代入式子中求值.【详解】解:因为512110a b a b +++-+=,所以50,210,a b a b ++=⎧⎨-+=⎩①② 由②,得21b a =+③,将③代入①,得2150a a +++=,解得2a =-,把2a =-代入③中,得3b =-,所以20192019()(1)1b a -=-=-. 故选A.【点睛】本题考查了二元一次方程组的解法,也考查了二次根式和绝对值的性质,比较基础.11.用5个大小相同的小长方形拼成了如图所示的大长方形,若大长方形的周长是28,则每个小长方形的周长是( )A .12B .14C .13D .16【答案】A【解析】【分析】设小长方形的长为x,宽为y ,根据题意列出方程组,解方程组求出x,y 的值,进而可求小长方形的周长.【详解】设小长方形的长为x,宽为y ,根据题意有 2(3)228x y y x x =⎧⎨++⨯=⎩ 解得42x y =⎧⎨=⎩ ∴小长方形的周长为(42)212+⨯= ,故选:A .【点睛】本题主要考查二元一次方程组的应用,读懂题意列出方程组是解题的关键.12.关于x ,y 的方程组2647x ay x y -=⎧⎨+=⎩的解是整数,则整数a 的个数为() A .4个B .3个C .2个D .1个【答案】C【分析】先解方程组求出x y 、的值,根据y 和a 都是整数求出121a +=-或125a +=或121a +=或125a +=-,求出a 的值,再代入x 求出x ,再逐个判断即可;【详解】2647x ay x y -=⎧⎨+=⎩①② 2⨯①-②得:()215a y --= 解得:521y a =-- 把521y a =--代入②得:54721x a -=+ 解得:7624a x a +=+ Q 方程组的解为整数∴ ,x y 均为整数∴ 121a +=-或125a +=或121a +=或125a +=-解得:1,2,0,3a =--,当1a =-时,12x =,不是整数,舍去; 当2a =时,2x =,是整数,符合;当0a =时,3x =,是整数,符合;当3a =-时,32x =,不是整数,舍去; 故选:C.【点睛】本题主要考查二元一次方程组的含参问题,准确的解出方程组并且列出整数解的情况是求解本题的关键.13.用加减消元法解方程组2333211x y x y +=⎧⎨-=⎩,下列变形正确的是( ) A .4639611x y x y +=⎧⎨-=⎩ B .6396222x y x y +=⎧⎨-=⎩ C .4669633x y x y +=⎧⎨-=⎩ D .6936411x y x y +=⎧⎨-=⎩【答案】C【解析】【分析】运用加减法解方程组时,要满足方程组中某一个未知数的系数相等或互为相反数,把原方程变形要根据等式的性质,本题中方程①×2,②×3,就可把y 的系数变成互为相反数.解:233 {3211 x yx y+=-=①×2得,4x+6y=6③,②×3得,9x-6y=33④,组成方程组得:466{9633 x yx y+=-=.故选C.【点睛】本题考查二元一次方程组的解法有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.运用加减法解方程组时,要满足方程组中某一个未知数的系数相等或互为相反数.14.A地至B地的航线长9360km,一架飞机从A地顺风飞往B地需12h,它逆风飞行同样的航线要13h,则飞机无风时的平均速度是()A.720km/h B.750 km/h C.765 km/h D.780 km/h【答案】B【解析】【分析】设飞机无风时的平均速度为x千米/时,风速为y千米/时,根据飞机顺风速度×时间=路程,飞机逆风速度×时间=路程,列方程组进行求解.【详解】设飞机无风时的平均速度为x千米/时,风速为y千米/时,由题意得,12()9360 13()9360x yx y+=⎧⎨-=⎩,解得,75030xy=⎧⎨=⎩,答:飞机无风时的平均速度为750千米/时,故选B.【点睛】本题考查二元一次方程组的应用,熟练掌握顺风速度=静风速度+风速,逆风速度=静风速度-风速是解题的关键.15.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是()A .106cmB .110cmC .114cmD .116cm 【答案】A【解析】【分析】通过观察图形,可知题中有两个等量关系:单独一个纸杯的高度加上3个纸杯叠放在一起高出单独一个纸杯的高度等于9,单独一个纸杯的高度加上8个纸杯叠放在一起高出单独一个纸杯的高度等于14.根据这两个等量关系,可列出方程组,再求解.【详解】解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm ,单独一个纸杯的高度为ycm , 则29714x y x y +=⎧⎨+=⎩,解得17x y =⎧⎨=⎩ 则99x +y =99×1+7=106即把100个纸杯整齐的叠放在一起时的高度约是106cm .故选:A .【点睛】本题以实物图形为题目主干,图形形象直观,直接反映了物体的数量关系,这是近年来比较流行的一种命题形式,主要考查信息的收集、处理能力.本题易错点是误把9cm 当作3个纸杯的高度,把14cm 当作8个纸杯的高度.16.一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,汽车从A 地到B 地一共行驶了2.2h .设普通公路长、高速公路长分别为km km x y 、,则可列方程组为( )A .2 2.210060x y x y =⎧⎪⎨+=⎪⎩B .2 2.260100x y x y =⎧⎪⎨+=⎪⎩C .2 2.260100x y x y =⎧⎪⎨+=⎪⎩D .2 2.210060x y x y =⎧⎪⎨+=⎪⎩ 【答案】C【解析】【分析】设普通公路长、高速公路长分别为xkm 、ykm ,由普通公路占总路程的13,结合汽车从A 地到B 地一共行驶了2.2h ,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】设普通公路长、高速公路长分别为xkm 、ykm ,依题意,得:2 2.260100x y x y =⎧⎪⎨+=⎪⎩ 故答案为:C .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.17.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ). A .m >2 B .m >-3 C .-3<m <2 D .m <3或m >2【答案】A【解析】【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可.【详解】解325x y m x y m -=+⎧⎨+=⎩,得 212x m y m =+⎧⎨=-⎩. ∵x >y >0,∴21220m m m +>-⎧⎨->⎩ , 解之得m >2.故选A.【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.18.若关于,x y 的方程组2315x y a x y +=-⎧⎨-=⎩的解满足3,x y +=则a 的值是 ( ) A .4B .1-C .2D .1 【答案】D【解析】【分析】①2⨯+②得21x y a +=+,再根据3x y +=,即可求出a 的值.2315x y a x y +=-⎧⎨-=⎩①② ①2⨯+②得3363x y a +=+21x y a +=+∵3,x y +=∴1a =故答案为:D .【点睛】本题考查了解二元一次方程组的问题,掌握解二元一次方程组的方法是解题的关键.19.利用两块相同的长方体木块测量一张桌子的高度,首先按图①方式放置,再交换两木块的位置,按图②方式放置测量的数据如图,则桌子的高度是( )A .73cmB .74cmC .75cmD .76cm【答案】C【解析】【分析】 设长方体木块的长是xcm ,宽是ycm ,由题意得5x y -=,再代入求出桌子的高度即可.【详解】设长方体木块的长是xcm ,宽是ycm ,由题意得8070x y y x -+=-+可得5x y -=则桌子的高度是8080575x y cm -+=-=故答案为:C .【点睛】本题考查了二元一次方程的实际应用,掌握解二元一次方程的方法是解题的关键.20.已知关于x,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩ 的解适合方程25x y -=,则m 的A .1B .2C .3D .4【答案】C【解析】【分析】 整理方程为3x+7y=2,与25x y -=组成新的方程组,求解得31x y =⎧⎨=-⎩,代入原方程组中任意一个方程即可求出m.【详解】解:将m=2x+3y 代入3232x y m +=-中得,3x+7y=2,∵x,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩ 的解适合方程25x y -=, ∴联立方程组25372x y x y -=⎧⎨+=⎩,解得:31x y =⎧⎨=-⎩, ∴23m x y =+=3,故选C.【点睛】本题考查解二元一次方程组的方法,属于简单题,熟练掌握加减消元和代入消元的方法是解题关键.。

中考数学《方程与不等式》专题知识训练50题(含参考答案)

中考数学《方程与不等式》专题知识训练50题(含参考答案)

中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.若3x >﹣3y ,则下列不等式中一定成立的是( ) A .x >yB .x <yC .x ﹣y >0D .x +y >02.如果1x -大于0,那么x 的取值范围是( ) A .1x >B .1x <C .0x <D .0x >3.一元一次不等式x +1<2的解集在数轴上表示为( ) A . B . C .D .4.不等式﹣3x≤9的解集在数轴上表示正确的是( ) A .B .C .D .5.用配方法解方程22990x x --=,配方后得( ) A .2(1)99x -=B .2(1)100x +=C .2(1)98x -=D .2(1)100x -=6.若关于x 的分式方程43233m xx x +=+--有增根,则m 的值为( ) A .2B .3C .4D .57.一项工程,A 独做10天完成,B 独做15天完成,若A 先做5天,再A 、B 合做,完成全部工程的23,共需( ) A .8天B .7天C .6天D .5天8.若关于x 的方程534x kx -=+有整数解,那么满足条件的所有整数k 的和为( ) A .20B .6C .4D .29.不等式组372378x x -≥⎧⎨-<⎩的所有整数解共有( )A .1个B .2个C .3个D .4个10.下列运用等式性质进行的变形中,正确的是( ) A .如果a b =,那么23a b +=+ B .如果a b =,那么23a b -=- C .如果2a a =,那么1a =D .如果a bc c=,那么a b = 11.下列是一元一次方程的是( ) A .231x y +=B .20x -=C .3x +D .11x= 12.为了践行“绿色生活”的理念,甲、乙两人每天骑自行车出行,甲匀速骑行30公里的时间与乙匀速骑行25公里的时间相同,已知甲每小时比乙多骑行2公里,设甲每小时骑行x 公里,根据题意列出的方程正确的是( ) A .30252=+x x B .30252=+x x C .30252=-x x D .30252=-x x13.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同. 设2,3月份利润的月增长率为x ,那么x 满足的方程为( ) A .B .C .D .14.如图所示两个天平都平衡,则3个球体的质量等于( )个正方体的质量,括号内应填A .2B .3C .4D .515.若﹣3<a ≤3,则关于x 的方程x +a =2解的取值范围为( ) A .﹣1≤x <5B .﹣1<x ≤1C .﹣1≤x <1D .﹣1<x ≤516.下列变形中,正确的是( ) A .若a b =,则11a b +=-B .若32a b =,则a b =C .若2a b -=,则2a b =-D .若44b a -=-,则a b =17.在2019年女排世界杯比赛中,中国队以11场全胜积32分的成绩成为女排世界杯五冠王、女排世界杯比赛积分规则如表所示,若中国队以大比分3:2取胜的场次有x 场,则根据以上信息所列方程正确的是( )A .3x+2x =32B .3(11﹣x )+3(11﹣x )+2x =32C .3(11﹣x )+2x =32D .3x+2(11﹣x )=3218.三元一次方程组10318x y z x y x y z ++=⎧⎪+=⎨⎪=+⎩的解是( )A .532x y z =⎧⎪=⎨⎪=⎩B .352x y z =⎧⎪=⎨⎪=⎩C .542x y z =⎧⎪=⎨⎪=⎩D .431x y z =⎧⎪=⎨⎪=⎩19.已知4个矿泉水空瓶可以换矿泉水一瓶,现有15个矿泉水空瓶,若不交钱,最多可以喝矿泉水( ) A .3瓶B .4瓶C .5瓶D .6瓶20.甲、乙、丙三名打字员承担一项打字任务,已知如下信息:如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需( )A .1316小时B .1312小时C .1416小时D .1412小时二、填空题21.一罐饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为____克. 22.如果方程23252x x -+=-的解与方程72x b -=的解相同,则b =________. 23.由4x ﹣3y +6=0,可以得到用y 表示x 的式子为x =__.24.已知不等式组212(1)43x x x+>⎧⎨-+>⎩,请写出一个该不等式组的整数解___________.25.已知关于x 的一元二次方程x 2+x+m =0有实数根,则m 的取值范围是_____.26.若关于x 的方程()21410k x x ---=是一元二次方程,则k 的取值范围是______.27.当a =_____时,分式32a a +-的值为-4. 28.三角形的三边长分别为7,1+2x ,13,则x 的取值范围是___ 29.25y x +=用含x 的式子表示y 为________________________.30.若关于x ,y 的二元一次方程组2630x my x y -=⎧⎨-=⎩的解是正整数,则整数m =_______.31.某种服装打折销售,如果每件服装按标价的5折出售将亏35元,而按标价的8折出售将赚55元,则成本价为______元.32.已知A ∠与的B ∠两边分别平行,且A ∠比B ∠的3倍少20°,则A ∠的大小是__________.33.已知x ,y 满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩, (1)代数式224x y +的值是_____. (2)代数式112x y+的值是______.34.已知关于x ,y 的方程组225,234x y m x y m +=-⎧⎨-=-⎩的解满足1x <,2y <,则m 的取值范围为______.35.已知关于x ,y 的不等式组100x x a ->⎧⎨-⎩有以下说法:①若它的解集是1<x ≤4,则a =4;①当a =1时,它无解;①若它的整数解只有2,3,4,则4≤a <5;①若它有解,则a ≥2.其中所有正确说法的序号是_____.36.若关于x ,y 的二元一次方程组221x y x y k +=⎧⎨+=+⎩的解为正数,则k 的取值范围为__.37.不等式组的解集为23113x x -<⎧⎨-≤⎩的解集为______.38.如果关于x 的方程x2+2ax ﹣b2+2=0有两个相等的实数根,且常数a 与b 互为倒数,那么a +b=_____.39.某车间 56 名工人,每人每天能生产螺栓 16 个或螺母 24 个,设有 x 名工人生产螺栓, 有 y 名工人生产螺母,每天生产的螺栓和螺母按 1:2 配套,所列方程组是________. 40.若分式方程2211x m x x x x x+-=++有增根,则m 的值是______.三、解答题 41.解下列方程: (1)3x +7=32﹣2x ; (2)121224x x +--=+. 42.解方程:242111x x x++=---. 43.解方程组:(1)32528x y x y +=⎧⎨-=⎩;(2)234347x y x y ⎧+=⎪⎨⎪-=-⎩.44.某商场进货员预测某商品能畅销市场,就用8万元购进该商品,上市后果然供不应求.商场又用17.6万购进了第二批这种商品,所购数量是第一批购进量的2倍,但进货的单价贵了4元,商场销售该商品时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这两笔生意中,商场共盈利多少元? 45.当k 为何值时,方程x 2﹣6x+k ﹣1=0, (1)两根相等; (2)有一根为0. 46.解方程组或不等式组:(1)20346x y x y +=⎧⎨+=⎩;(2)53231204x x x +≥⎧⎪⎨--<⎪⎩ 47.已知一个四位自然数N ,它的各个数位上的数字均不为0,且满足千位数字与百位数字的和等于十位数字与个位数字的和,则称这个数为“和对称数”,将这个四位自然数N 的千位数字和百位数字互换,十位数字和个位数字互换,得到N ',规定()101N N F N '+=. 例如:4536N =,①4536+=+,①4536是“和对称数”,()45365463453699101F +==.2346N =,①2346+≠+,①2346不是“和对称数”.(1)请判断2451、3972是不是“和对称数”,并说明理由.若是,请求出对应的()F N 的值.(2)已知A ,B 均为“和对称数”,其中100010746A a b =++,1002026B m n =++(其38a ≤≤,05b ≤≤,29m ≤≤,512n ≤≤,且均为整数),令()()32k F A F B =+,当k能被77整除时,求出所有符合条件的A 的值. 48.解决以下问题:(1)221x y ±++,的算术平方根是5,求2318x y -+的立方根; (2)的值互为相反数,求a b c 、、的值. 49.为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”活动.去年学校通过采购平台在某体育用品店购买A 品牌足球共花费2880元,B 品牌足球共花费2400元,且购买A 品牌足球数量是B 品牌数量的1.5倍,每个足球的售价,A 品牌比B 品牌便宜12元. (1)求去年A ,B 两种足球的售价;(2)今年由于参加俱乐部人数增加,需要从该店再购买A ,B 两种足球共50个,已知该店对每个足球的售价,今年进行了调整,A 品牌比去年提高了5%,B 品牌比去年降低了10%,如果今年购买A ,B 两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个B 品牌足球?50.某生态柑橘园现有柑橘31吨,租用9辆A 和B 两种型号的货车将柑橘一次性运往外地销售.已知每辆车满载时,A 型货车的总费用500元,B 型货车的总费用480元,每辆B型货车的运费是每辆A型货车的运费的1.2倍.(1)每辆A型货车和B型货车的运费各多少元?(2)若每辆车满载时,租用1辆A型车和7辆B型车也能一次性将柑橘运往外地销售,则每辆A型货车和B型车货各运多少吨?参考答案:1.D【分析】利用不等式的性质由已知条件可得到x+y>0,从而得到正确选项.【详解】①3x>﹣3y,①3x+3y>0,①x+y>0.故选D.【点睛】本题考查了不等式的性质:应用不等式的性质应注意的问题,在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.2.Ax->,即可求得x的取值范围.【分析】1x-大于0即10【详解】根据题意得:x->10x>解得:1故选A.【点睛】本题主要考查了一元一次不等式的应用,把判断一个式子的值的取值范围的问题掌握不等式的问题,这是解本题的关键.3.B【分析】求出不等式的解集,表示出数轴上即可.【详解】解:不等式x+1<2,解得:x<1,如图所示:故选B.【点睛】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.4.A【详解】试题分析:本题考查了在数轴上表示不等式的解集:利用数轴表示不等式的解集体现了数形结合的思想.也考查了解一元一次不等式.先解不等式得到x≥﹣3,在数轴上表示为﹣3的右侧部分且含﹣3,这样易得到正确选项. 考点:在数轴上表示不等式的解集;解一元一次不等式 5.D【分析】把常数项-99移项后,应该在左右两边同时加上一次项系数-2的一半的平方. 【详解】把方程x 2-2x -99=0的常数项移到等号的右边,得到x 2-2x =99 方程两边同时加上一次项系数一半的平方,得到x 2-2x +1=100 配方得(x -1)2=100. 故选D .【点睛】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 6.D【分析】根据分式方程有增根可求出3x =,方程去分母后将3x =代入求解即可. 【详解】解:①分式方程43233m xx x +=+--有增根, ①3x =,去分母,得()4323m x x +=+-, 将3x =代入,得49m +=, 解得5m =. 故选:D .【点睛】本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键. 7.C【分析】此题是工程问题,它的等量关系是A 独做的加上A 、B 合做的是总工程的23,此题可以分段考虑,A 独做了5天,合作了(x -5)天,利用等量关系列方程即可解得. 【详解】设共需x 天. 根据题意得:5112(5)()1010153x +-+= 解得:x =6. 故选C .8.A【分析】先解方程可得75x k=-,再根据关于x 的方程534x kx -=+有整数解,k 为整数,可得51k -=±或57k -=±,从而可得答案. 【详解】解:①534x kx -=+, ①57x kx -=,即()57k x -=, 当50k -≠时, ①75x k=-, ①关于x 的方程534x kx -=+有整数解,k 为整数, ①51k -=±或57k -=±,解得:4k =或6k =或2k =-或12k =, ①()4621220++-+=,①满足条件的所有整数k 的和为20. 故选A .【点睛】本题考查的是一元一次方程的解与方程的解法,掌握“方程的整数解的含义以及求解整数解的方法”是解本题的关键. 9.B【分析】解不等式组,得到关于x 的解集,再找出符合x 取值范围的整数解即可. 【详解】解:解不等式3x −7≥2得:x ≥3, 解不等式3x −7<8得:x <5, 即不等式组的解集为:3≤x <5,符合3≤x <5的x 的整数解为:3,4共2个, 故选:B .【点睛】本题考查一元一次不等式组的整数解,解题的关键是掌握解一元一次不等式组的方法. 10.D【分析】根据等式的基本性质进行分析判断即可.【详解】解:A 选项中,“如果a b =,那么23a b +=+”是不成立的,故不能选A ; B 选项中,“如果a b =,那么23a b -=-”是不成立的,故不能选B ;C选项中,“如果2a a=,那么1a=”不一定成立,因为a的值可能为0,故不能选C;D选项中,“如果a bc c=,那么a b=”成立,故选D.故选:D.【点睛】本题考查等式的基本性质,熟记“等式的基本性质:(1)等式的两边都加上或者减去同一个整式,所得结果仍是等式;(2)等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式”是解答本题的关键.11.B【分析】根据一元一次方程的定义逐项分析判断即可求解.【详解】解:A、不是一元一次方程,故本选项错误;B、是一元一次方程,故本选项正确;C、不是等式,即不是一元一次方程,故本选项错误;D、不是整式方程,即不是一元一次方程,故本选项错误.故选B.【点睛】本题考查了一元一次方程的定义,掌握一元一次方程的定义是解题的关键.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).12.C【详解】解:设甲每小时骑行x公里,根据题意得:30252=-x x.故选C.13.D【详解】试题分析:一月份获利10万元,二月份获利10(1+x)万元,三月份获利10万元,然后根据一季度的总获利得出方程.考点:一元二次方程的应用14.D【分析】根据等式的性质求解即可.【详解】解:由图可知,2个球体的质量=5个圆柱的质量,2个正方体的质量=3个圆柱的质量,①6个球体的质量=15个圆柱的质量,10个正方体的质量=15个圆柱的质量,①6个球体的质量=10个正方体的质量,①3个球体的质量=5个正方体的质量,故选D .【点睛】本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式. 15.A【分析】先求出方程的解,再根据﹣3<a ≤3的范围,即可求解.【详解】解:由x +a =2,得:x =2-a ,①﹣3<a ≤3,①﹣1≤2-a <5,即:﹣1≤x <5,故选A .【点睛】本题主要考查解一元一次方程以及不等式的性质,用含a 的代数式表示x ,是解题的关键.16.D【分析】根据等式的性质逐个判断即可得到答案.【详解】解:由题意可得,若a b =,则111a b b +=+>-,故A 选项错误不符合题意;若32a b =,则23a b =,故B 选项错误不符合题意; 若2a b -=,则2a b =+,故C 选项错误不符合题意;若44b a -=-,则a b =,故D 选项正确符合题意;故选D .【点睛】本题考查等式的性质:等式两边同时加上或减去同一个数等式性质不变,等式两边同时乘以或除以同一个不为0的数等式性质不变.17.C【分析】设中国队以大比分3:2取胜的场次有x 场,则中国队以小比分3:1或3:0取胜的场次有(11﹣x )场,根据总积分=3×小比分获胜的场次数+2×大比分获胜场次数,即可得出关于x 的一元一次方程.【详解】解:设中国队以大比分3:2取胜的场次有x 场,则中国队以小比分3:1或3:0取胜的场次有(11﹣x)场,依题意,得:2x+3(11﹣x)=32.故选:C.【点睛】本题考查了一元一次方程的应用,正确理解题意、找准相等关系是解题的关键. 18.A【分析】由①代入①、①消去x,解二元一次方程组得出y、z的数值,再进一步求得x的数值解决问题.【详解】10318x y zx yx y z++=⎧⎪+=⎨⎪=+⎩①②③,把①代入①得:y+z=5①,把①代入①得:4y+3z=18①,①×4–①得:z=2,把z=2代入①得:y=3,把y=3,z=2代入①得:x=5,则方程组的解为532xyz=⎧⎪=⎨⎪=⎩,故选A.【点睛】此题考查三元一次方程组的解法,注意逐步消元是解决问题的关键.19.C【详解】试题分析:因为15÷4=3余3空瓶,所以可换3瓶喝完,还剩3+3=6空瓶,拿出4空瓶换一瓶,还剩3个空瓶子,找人借一个瓶子凑齐四个喝完还剩一个再把这个瓶子还给那个人,故最多可以喝五瓶矿泉水.故选C.考点:命题.20.C【分析】设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时;根据信息二提供的信息列出方程并解答;根据信息三得到丙的工作效率,易得按照甲、乙、丙的顺序至完成工作任务所需的时间.【详解】解:设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时,则5x x -解得x =20.经检验x =20是原方程的根,且符合题意.①x =20是所列方程的解.①x -5=15.①甲的工作效率是120,乙的工作效率是115, 则丙的工作效率是110. ①一轮的工作量为:1111320151060++=. ①4轮后剩余的工作量为:52216015-=. ①还需要甲、乙分别工作1小时后,丙需要的工作量为:211115201560--=. ①丙还需要工作16小时. 故一共需要的时间是:3×4+2+16=14 16小时. 故选:C . 【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 21.2【分析】根据题意直接列一元一次不等式,并求解即可.【详解】解:设蛋白质的含量至少应为x 克,依题意得:0.4%500x ≥, 解得x ≥2,则蛋白质的含量至少应为2克.【点睛】本题考查了一元一次不等式的应用,根据题意正确列出不等式是解题的关键. 22.7 【分析】先解方程23252x x -+=-,得97x =,因为这个解也是方程72x b -=的解,根据方程的解的定义,把x 代入方程72x b -=中求出b 的值. 【详解】解:由23252x x -+=-,得2420(515),x x -=-+7所以可得97277b =⨯-= 故答案为:7.【点睛】本题考查了解一元一次方程和方程的解的定义,方程的解就是能够使方程左右两边相等的未知数的值.23.364y - 【详解】方程4x −3y +6=0,解得:x =364y -, 故答案为364y -. 24.0##1【分析】分别求出两个不等式的解集,再求出两个解集的公共部分,即可得到答案.【详解】()212143x x x +>⎧⎪⎨-+>⎪⎩①② 解不等式①得:1x >-;解不等式①得:2x <;所以不等式组的解集为:12x -<<;则其整数解为0与1.故答案为:0(或1).【点睛】本题考查了求一元一次不等式组的整数解,正确并熟练地解一元一次不等式是解题的关键.25.m≤14【分析】一元二次方程有实数根,则①≥0,建立关于m 的不等式,求出m 的取值范围.【详解】解:由题意知,①=1﹣4m≥0, ①m≤14, 故答案为m≤14. 【点睛】本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,①≥0. 26.1k ≠【分析】根据一元二次方程的定义列式计算即可得解.【详解】①关于x 的方程()21410k x x ---=是一元二次方程,①10k -≠,①1k ≠,故答案为:1k ≠.【点睛】本题主要考查了一元二次方程定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.27.1【分析】根据题意列出方程即可求出答案. 【详解】解:由题意得:342a a +=--, 去分母得,()342a a +=-- ,解得,1a =,经检验1a =是分式方程的解,故答案为:1【点睛】本题考查分式方程,解题的关键是熟练运用分式方程的解法.28.3<x <6【详解】试题分析:根据三角形三边之间的关系:两边之和大于第三边,两边之差小于第三边,可得13-7< 1+2x <20,解得3<x <6 .考点:三角形三边之间的关系点评:该题考查了三角形三边之间的关系,已知三角形的两边长,可以求第三边的范围,即两边之差<第三边长<两边之和.29.y=-2x+5【分析】把x 看做已知数求出y 即可.【详解】解:方程y+2x=5,解得:y=-2x+5.故答案为:y=-2x+5.【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .30.0,3,4,5【分析】先解方程组2630x myx y-=⎧⎨-=⎩,用m表示出方程组的解,根据方程组有正整数解得出m的值.【详解】解:2630x myx y-=⎧⎨-=⎩①②由①得:x=3y ①,把①代入①得:6y−my=6,①y=66-m,①x=186-m,①方程组2630x myx y-=⎧⎨-=⎩的解是正整数,①6−m>0,①m<6,并且66-m和186-m是正整数,m是整数,①m的值为:0,3,4,5.故答案是:0,3,4,5.【点睛】本题考查了二元一次方程组的解,一般情况下二元一次方程组的解是唯一的.数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.31.185【分析】设每件服装标价为x元,再根据无论亏本或盈利,其成本价相同,列出方程,求出x的解,最后根据成本价=服装标价×折扣,即可得出答案.【详解】解:设每件服装标价为x元,根据题意得:0.5x+35=0.8x-55,解得:x=300.则每件服装标价为300元,成本价是:300×50%+35=185(元),故答案为:185.【点睛】此题主要考查了一元一次方程的应用,正确找出等量关系是解题的关键.32.10°或130°【分析】根据A ∠与B ∠两边分别平行,由A ∠比B ∠的3倍少20°列方程求解即可得到答案.【详解】①A ∠比B ∠的3倍少20°,①A ∠=3B ∠- 20°,①A ∠与B ∠两边分别平行,①①A 与①B 相等或互补,①当A ∠=B ∠时,得到①A =3①A - 20°,①①A =10°;①当①A +①B =180°时,得到①A =3(180°-①A )-20°,①①A =130°,故答案为:10°或130°.【点睛】此题考查平行线的性质,解一元一次方程,能正确理解两边分别平行的两个角的关系是解题的关键.33. 17 54± 【分析】(1)令224n x y m xy +==,,将原方程组可化为关于m 、n 的二元一次方程组,进行求解即可;(2)先根据完全平方公式求出25x y +=±,再将112x y+通分进行计算即可. 【详解】(1)令224n x y m xy +==,,原方程组可化为3247236m n m n -=⎧⎨+=⎩, 解得172m n =⎧⎨=⎩, 即221724x y xy +==,,故答案为:17;(2)222(2)4178254x y x y xy +=+=+=+,25x y ∴+=±1125224x y x y xy +±∴+==,故答案为:54±. 【点睛】本题考查了解二元一次方程组,完全平方公式的变形,异分母分式相加等,熟练掌握知识点并运用整体代入法是解题的关键.34.823m -<< 【分析】先解出方程组的解,再根据解的情况列出关于m 的不等式组,解不等式组即可求解.【详解】解:225234x y m x y m +=-⎧⎨-=-⎩①② ①+①得:x =-1-m ,将x =-1-m 代入①中,得:y =342m -, ①该方程组的解满足1x <,2y <, ①113422m m --<⎧⎪⎨-<⎪⎩, 解得:823m -<<. 故答案为:823m -<<. 【点睛】本题考查解二元一次方程组的应用、解一元一次不等式组,熟练掌握二元一次方程组、一元一次不等式组的解法,正确解出x 、y 值是解答的关键.35.①①①【分析】先求出各不等式的解集,再根据各小题的结论解答即可.【详解】解:解不等式x ﹣1>0得,x >1;解不等式x ﹣a ≤0得,x ≤a ,故不等式组的解集为:1<x ≤a .①①它的解集是1<x ≤4,①a =4,故本小题正确;①①a =1,x >1,①不等式组无解,故本小题正确;①①它的整数解只有2,3,4,则4≤a <5,①4≤a <5,故本小题正确;①①它有解,①a >1,故本小题错误.故答案为:①①①.【点睛】本题主要考查了解一元一次不等式组,掌握解一元一次不等式组是解题的关键. 36.13k <<【分析】先求出方程组的解,根据题意得出关于k 的不等式组,再求出不等式组的解集即可.【详解】解:解方程组221x y x y k +=⎧⎨+=+⎩得:13x k y k=-⎧⎨=-⎩, 关于x ,y 的二元一次方程组221x y x y k +=⎧⎨+=+⎩的解为正数, ∴1030k k ->⎧⎨->⎩, 解得:13k <<,故答案为:13k <<.【点睛】本题考查了二元一次方程组的解,解二元一次方程组和解一元一次不等式组等知识点,能得出关于k 的不等式组是解此题的关键.37.22x -≤<【分析】分别求出每个不等式的解集,再取它们的公共部分即可得到不等式组的解集.【详解】解:23113x x -<⎧⎨-≤⎩①② 解不等式①得,x <2,解不等式①得,x ≥-2所以,不等式组的解集为:22x -≤<故答案为:22x -≤<.【点睛】此题考查了解一元一次不等式组,解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大中间找,大大小小无法找(空集).38.±2.【分析】根据根的判别式求出△=0,求出a 2+b 2=2,根据完全平方公式求出即可.【详解】解:①关于x 的方程x 2+2ax-b 2+2=0有两个相等的实数根,①①=(2a )2-4×1×(-b 2+2)=0,即a 2+b 2=2,①常数a 与b 互为倒数,①ab=1,①(a+b )2=a 2+b 2+2ab=2+2×1=4,①a+b=±2,故答案为±2.【点睛】本题考查了根的判别式和解高次方程,能得出等式a 2+b 2=2和ab=1是解此题的关键.39.5621624x y x y +=⎧⎨⨯=⎩【分析】此题中的等量关系有:①生产螺栓人数+生产螺母人数=56人;①每天生产的螺栓和螺母按1:2配套,那么螺栓要想与螺母的数量配套,则螺栓数量的2倍=螺母数量.【详解】解:根据生产螺栓人数+生产螺母人数=56人,得方程x+y=56;根据螺栓数量的2倍=螺母数量,得方程2×16x=24y .列方程组为:5621624x y x y +=⎧⎨⨯=⎩故答案为5621624x y x y +=⎧⎨⨯=⎩【点睛】本题考查了由实际问题抽象出二元一次方程组,难点在于理解第二个等量关系:若要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.40.1-或2【分析】根据增根是化为整式方程后产生的不适合分式方程的根,先把分式方程去分母化为整式方程,再通过使最简公分母不为0确定增根的可能值,将其代入整式方程即可算出m 的值.【详解】解:①2211x m x x x x x+-=++, ①()2221x m x -=+,①221m x x =--. ①2211x m x x x x x+-=++有增根, ①0x =或=1x -.当0x =时,2211m x x =--=-;当=1x -时,2212m x x =--=.①m 的值为1-或2.故答案为:1-或2【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;①化分式方程为整式方程;①把增根代入整式方程即可求得相关字母的值. 41.(1)x =5;(2)x =4.【分析】(1)移项,合并同类项,系数化成1即可;(2)去分母,然后移项,合并同类项,系数化成1即可.【详解】解:(1)移项合并得:5x =25,解得:x =5;(2)去分母得:2x +2﹣4=8+2﹣x ,移项合并得:3x =12,解得:x =4.【点睛】本题考查一元一次方程的解法,掌握一元一次方程的解法是关键.42.13x = 【分析】观察可得最简公分母是(x +1)(x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 【详解】解:242111x x x ++=--- 整理,得:421(1)(1)1x x x x +-=-+-- 方程两边都乘以(x +1)(x ﹣1),得4﹣(x +1)(x +2)=﹣(x 2﹣1),整理,得,3x =1, 解得1x=3. 经检验,1x=3是原方程的根.①原方程的解是1x=3.【点睛】本题考查解分式方程,注意解分式方程,结果要检验.43.(1)32x y =⎧⎨=-⎩;(2)34x y =⎧⎨=⎩. 【分析】(1)利用加减消元法求出解即可.(2)去分母后,加减法消元解方程.【详解】解:(1)32528x yx y+=⎧⎨-=⎩①②,①×2得,4x﹣2y=16①,①+①得,7x=21,解得x=3,把x=3代入①得,2×3﹣y=8,解得y=﹣2,所以,方程组的解是32xy=⎧⎨=-⎩;(2)方程组可化为4324347x yx y+=⎧⎨-=-⎩①②,①×4得,16x+12y=96①,①×3得,9x﹣12y=﹣21①,①+①得,25x=75,解得x=3,把x=3代入①得,3×3﹣4y=﹣7,解得y=4,所以,方程组的解是34xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.44.在这两笔生意中,商场共盈利90260元.【分析】盈利=总售价-总进价,应求出某商品的数量.总价明显,一定是根据单价来列等量关系.本题的关键描述语是:“单价贵了4元”;等量关系为:第一次的单价=第二次的单价-4.【详解】设商场第一次购进某商品x件,则第二次购进某商品2x件,根据题意得:8000017600042x x-=.160000=176000-8x解这个方程得:x=2000.经检验:x=2000是原方程的根.商场利润:(2000+4000-150)×58+58×0.8×150-80000-176000=90260(元).答:在这两笔生意中,商场共盈利90260元.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.45.(1)k=10;(2)k=1.【分析】(1)方程由两个相等的根,则△=0;(2)有一个根是0,则两根之积为0.【详解】解:(1)△=36﹣4(k-1)=40-4k,①两根相等,①①=0,即k=10;(2)①有一根为0,①0∆≥,即10k≤,由根与系数的关系可得,k﹣1=0,①k=1.【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,熟练掌握是解题的关键.一元二次方程根的情况与判别式①的关系:(1)①>0⇔方程有两个不相等的实数根;(2)①=0⇔方程有两个相等的实数根;(3)①<0⇔方程没有实数根.46.(1)63xy=⎧⎨=-⎩;(2)13x-≤<【分析】(1)方程组利用代入消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分求出不等式组的解集,表示在数轴上即可.【详解】(1)解:20 346 x yx y+=⎧⎨+=⎩①②方程①可化为2x y=-①把①代入①,得解得y=-3把y=-3代入①,得x=()236-⨯-=所以原方程组的解为:63x y =⎧⎨=-⎩(2)53231204x x x +≥⎧⎪⎨--<⎪⎩①② 解不等式①得1x ≥-解不等式①得3x <所以不等式组的解集为13x -≤<将其在数轴上表示如下:【点睛】本题两个小题分别考查了解二元一次方程组和解一元一次不等式组,根据相关题目要求按步骤求解是解题的关键47.(1)3972不是“和对称数”,2451是“和对称数”,理由见解析,()F N 值为66(2)A 的值为3746,4756,6776,5766,7786,8796【分析】(1)根据“和对称数”的定义,即可求解;(2)根据题意分别表示出()(),F A F B ,再由()()32k F A F B =+,k 能被77整除,并结合a ,m 的取值范围进行分类讨论,即可求解.【详解】(1)解:3972不是“和对称数”,①3924+≠,①3972不是“和对称数”.2451是“和对称数”,①2451+=+,。

九年级数学中考复习专题——方程与不等式(附答案)

九年级数学中考复习专题——方程与不等式(附答案)

知识点一 一元一次方程及其解法1.一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠.注意:x 前面的系数不为0.2.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 3.一元一次方程0(0)ax b a +=≠的求解步骤知识点二 二元一次方程(组)及解法1.二元一次方程:含有2个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.知识点三分式方程及其解法1.分式方程:分母中含有的方程叫做分式方程;2.分式方程的解法:(1)解分式方程的基本思路是把分式方程转化为整式方程。

(2)解分式方程的一般步骤:第一步:,将分式方程转化为整式方程;第二步:解整式方程;第三步:.(3)增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为的根,称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为的根是增根应舍去。

(4)产生增根的原因:将分式方程化为整式方程时,在方程两边同乘以使最简公分母为的因式。

知识点四一元二次方程及其解法1.一元二次方程:只含有个未知数(一元),并且未知数最高次数是2(二次)的方程,叫做一元二次方程。

中考专题复习-一元一次方程(组)含答案

中考专题复习-一元一次方程(组)含答案

中考数学总复习-方程与不等式一次方程(组)【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减)所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以(除数不为0)所得结果仍是等式即:若a=b,那么a c= ,若a=b(c≠o)那么a c =【名师提醒:①用等式性质进行等式变形,必须注意“都",不能漏项②等式两边都除以一个数或式时必须保证它的值】二、方程的有关概念:1、含有未知数的叫做方程2、使方程左右两边相等的的值,叫做方程的组3、叫做解方程4、一个方程两边都是关于未知数的,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是的方程叫做一元一次方程,一元一次方程一般可以化成的形式。

2、解一元一次方程的一般步骤:1。

2。

3。

4。

5。

【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意.】四、二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b 。

c 是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、 二元一次方程组中两个方程的 叫做二元一次方程组的解;4、 解二元一次方程组的基本思路是: ;5、 二元一次方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【名师提醒:1、列方程(组)解应用题的关键是: 2、几个常用的等量关系:①路程= × ②工作效率= 】 【重点考点例析】考点一:二元一次方程组的解法对应训练 1.(2016•湘西州)解方程组: 213211x y x y +=⎧⎨-=⎩①②. .x=a y=b 的形式考点二:一(二)元一次方程的应用例2 (2016•齐齐哈尔)假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.5种B.4种C.3种D.2种故选:C.例3 (2016•张家界)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2。

初中七年级上册数学复习定义性质(人教新目标)

初中七年级上册数学复习定义性质(人教新目标)

1.把0以外的数分为正数和负数,大于0 的数叫做正数,小于0的数叫做负数,0既不是正数也不是负数。

应用:(1)海拔高度:正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度。

例如:珠穆朗玛峰的海拔高度为8844M,吐鲁番盆地的海拔高度为-155M。

(2)记录帐目时,通常用正数表示收入款额,负数表示支出款额。

(3)天气的温度:零上5度,即50,零下5度,即-50(4)相反的方向,也可用正负来表示。

例如东和西,如果东为正的话,西则为负。

同理,假设南为正的话,北则为负。

(5)水位升高可用正数表示,水位降低可用负数表示,水位不变可记作0。

正整数整数2.有理数0 或或:有理数可以写作两整数之比。

负整数分数数轴:用一条直线上的点表示数,这条直线叫做数轴。

它满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点。

(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向。

(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点。

分数或小数也可以用数轴上的点表示。

(4)在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

3.绝对值:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

4.符号相反且绝对值相等的数互为相反数。

正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

5.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

(4)两个数相加,交换加数的位置,和不变。

三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

6.有理数减法法则:减去一个数,等于加上这个数的相反数。

中考数学复习考点知识与题型专题讲解3--- 一元一次方程(解析版)

中考数学复习考点知识与题型专题讲解3--- 一元一次方程(解析版)

中考数学复习考点知识与题型专题讲解专题03一元一次方程【思维导图】【知识要点】知识点一一元一次方程的基础等式的概念:用等号表示相等关系的式子。

注意:1.等式可以是数字算式,可以是公式、方程,也可以是运算律、运算法则等。

2.不能将等式和代数式概念混淆,等式含有等号,表示两个式子相等关系,而代数式不含等号,你只能作为等式的一边。

方程的概念:含有未知数的等式叫做方程。

特征:它含有未知数,同时又是—个等式。

一元一次方程的概念:只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

标准形式:ax+b=0(x为未知数,a、b是已知数且a≠0)【特征】1. 只含有一个未知数x2. 未知数x的次数都是13. 等式两边都是整式,分母中不含未知数。

方程的解的概念:能使方程中等号左右两边相等的未知数的值叫方程的解。

一元方程的解又叫根。

知识点二等式的性质(解一元一次方程的基础)等式的性质1:等式两边(或减)同一个数(或式子),结果仍相等。

表示为:如果a=b,则a±c=b±c等式的性质2:等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。

表示为:如果 a=b,那么ac = bc如果 a=b(c≠0),那么 =【注意事项】1.等式两边都要参加运算,并且是同一种运算。

2.等式两边加或减,乘或除以的数一定是同一个数或同一个式子。

3.等式两边不能都除以0,即0不能作除数或分母.4.等式左右两边互换,所得结果仍是等式。

知识点三解一元一次方程合并同类项把若干能合并的式子的系数相加,字母和字母的指数不变,起到化简的作用。

移项把等式一边的某项变号后移到另一边,叫做移项。

(依据:等式的性质1)去括号括号前负号时,去掉括号时里面各项应变号。

去分母在方程的两边都乘以各自分母的最小公倍数。

去分母时不要漏乘不含分母的项。

当分母中含有小数时,先将小数化成整数。

解一元一次方程的基本步骤:知识点四实际问题与一元一次方程用方程解决实际问题的步骤:审:理解并找出实际问题中的等量关系;设:用代数式表示实际问题中的基础数据;列:找到所列代数式中的等量关系,以此为依据列出方程;解:求解;验:考虑求出的解是否具有实际意义;答:实际问题的答案.【考查题型】考查题型一 一元一次方程概念的应用【解题思路】关键是根据一元一次方程的概念和其解的概念解答.典例1.(2021·四川中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9 B .8 C .5 D .4【详解】解:因为关于x 的一元一次方程2x a-2+m=4的解为x=1, 可得:a-2=1,2+m=4, 解得:a=3,m=2, 所以a+m=3+2=5, 故选:C .变式1-1.(2021·内蒙古中考真题)关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____. 【详解】 解:关于x 的方程2m 1mx m 1x 20+﹣(﹣)﹣=如果是一元一次方程,2m 11∴﹣=,即m 1=或m 0=,方程为x 20﹣=或x 20--=, 解得:x 2=或x 2=-, 当2m-1=0,即m=12时, 方程为112022x --= 解得:x=-3,故答案为:x=2或x=-2或x=-3.变式1-2.(2021·四川南充市·中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为() A .9 B .8C .5D .4【答案】C【分析】根据一元一次方程的概念和其解的概念解答即可.【详解】解:因为关于x 的一元一次方程2x a-2+m=4的解为x=1,可得:a-2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选C . 考查题型二 解一元一次方程【解题思路】解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.典例2.(2021·重庆中考真题)解一元一次方程11(1)123x x +=-时,去分母正确的是()A .3(1)12x x +=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-【答案】D【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x +1)=6﹣2x ,故选:D .变式2-1.(2021·湖北恩施土家族苗族自治州·中考真题)在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是(). A .1- B .1 C .0 D .2【答案】C【分析】根据题目中给出的新定义运算规则进行运算即可求解. 【详解】解:由题意知:2211☆=+-=+x x x , 又21x =☆, ∴11x +=, ∴0x =. 故选:C .变式2-2.(2021·四川凉山彝族自治州·中考真题)解方程:221123x x x ---=- 【答案】27x =【分析】去分母、去括号、移项、合并同类项、系数化为1,依此即可求解. 【详解】解:221123x x x ---=- ()()6326221x x x --=--636642x x x -+=-+ 634662x x x -+=-+ 72x =27x =考查题型三 配套问题和工程问题【配套问题解题关键】配套问题的物品之间具有一定的数量关系,依次作为列方程的依据.【工程问题解题关键】常把总工作量看做1,并利用“工作量=人均效率×人数×时间”的关系考虑问题典例3.(2021·哈尔滨市模拟)某车间有27名工人,每个工人每天生产64个螺母或者22个螺栓,每个螺栓配套两个螺母,若分配x个工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下列所列方程中正确的是()A.22x=64(27﹣x)B.2×22x=64(27﹣x)C.64x=22(27﹣x)D.2×64x=22(27﹣x)【答案】B【分析】设分配x名工人生产螺栓,则(27﹣x)名生产螺母,根据每天生产的螺母数量=2倍的螺栓数量,可得出方程.【详解】解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母64个或螺栓22个,∴可得2×22x=64(27﹣x).故选:B.变式3-1.(2021·黑哈尔滨市二模)某车间有22名工人,每人每天可生产1200个螺钉或2000个螺母,1个螺钉需配2个螺母,为使生产的螺钉和螺母刚好配套,若设x名工人生产螺钉,依题意列方程为()A.1200x=2000(22﹣x)B.1200x=2×2000(22﹣x)C.1200(22﹣x)=2000x D.2×1200x=2000(22﹣x)【答案】D【分析】首先根据题目中已经设出每天安排x个工人生产螺钉,则(22-x)个工人生产螺母,由1个螺钉需要配2个螺母,可知螺母的个数是螺钉个数的2倍,从而得出等量关系,就可以列出方程.【详解】解:设每天安排x个工人生产螺钉,则(22-x)个工人生产螺母,利用一个螺钉配两个螺母.由题意得:2×1200x=2000(22-x),即2×1200x=2000(22-x),故选D.变式3-2.(2021·山西阳泉市模拟)在中国数学名著《九章算术》中,有这样一个问题:“今有共买牛,七家共出一百九十,不足三百三十;九家共出二百七十,盈三十. 问家数、牛价各几何?”大意是:几家人凑钱合伙买牛,如果每7家共出190元,那么还缺少330元钱;如果每9家共出270元,又多了30元钱. 问共有多少人家,每头牛的价钱是多少元?若设有x户人家,则可列方程为()A.1902703303079x x+=-B.1902703303079x x-=+C.7190927033030x x⨯⨯+=-D.7190927033030x x⨯⨯-=+【答案】A【分析】根据“如果每7家共出190元,那么还缺少330元钱;如果每9家共出270元,又多了30元钱”,可得每头牛的价钱是1903307x+或270309x-,即可得出关于x的方程.【详解】解:∵如果每7家共出190元,那么还缺少330元钱,∴每头牛的价钱是1903307x+;∵如果每9家共出270元,又多了30元钱,∴每头牛的价钱又可以表示为270309x-,∴可列方程为:19027033030 79x x+=-,故选A.变式3-3.(2021·广西南宁市一模)某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A.120350506x x+-=+B.350506x x-=+C.120350506x x+-=+D.120350650x x+-=+【答案】C【分析】关系式为:零件任务÷原计划每天生产的零件个数-(零件任务+120)÷实际每天生产的零件个数=3,把相关数值代入即可求解. 【详解】解:实际完成的零件的个数为x+120,实际每天生产的零件个数为50+6,所以根据时间列的方程为:12035050+6x x +-= 故选C .变式3-4.(2021·浙江杭州市·中考真题)已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( ) A .237230x xB .327230x xB .C .233072x xD .323072x x【答案】D【分析】先设男生x 人,根据题意可得323072x x .【详解】男生x 人,则女生有(30-x)人,由题意得:323072x x,故选D.变式3-5.(2021·哈尔滨市模拟)甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的13,应从乙队调多少人去甲队?如果设应从乙队调x 人到甲队,列出的方程正确的是() A .1(96)723x x -=-B .196723x x ⨯-=-C .1(96)723x x +=-D .196(72)3x x +=-【答案】C【分析】根据等量关系:乙队调动后的人数=13甲队调动后的人数,列出一元一次方程即可. 【详解】设应从乙队调x 人到甲队,此时甲队有(96+x )人,乙队有(72-x )人, 根据题意可得:13(96+x )=72-x .故选C . 考查题型四 销售盈亏问题 销售金额=售价×数量利润= 商品售价-商品进价利润率=(利润÷商品进价)×100%现售价 = 标价×折扣售价 = 进价×(1+利润率)典例4.(2021·长沙市一模)随着传统节日“端午节”临近,某超市决定开展“欢度端午,回馈顾客”的活动,将进价为120元一盒的某品牌粽子按标价的8折出售,仍可获利20%,则该超市该品牌粽子的标价为__元.()A.180 B.170 C.160 D.150【答案】A【分析】设该超市该品牌粽子的标价为x元,则售价为80%x元,根据等量关系:利润=售价﹣进价列出方程,解出即可.【详解】解:设该超市该品牌粽子的标价为x元,则售价为80%x元,由题意得:80%x﹣120=20%×120,解得:x=180.即该超市该品牌粽子的标价为180元.故选:A.变式4-1.(2021·广东深圳市模拟)某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩()A.不赔不赚B.赚9元C.赔18元D.赚18元【答案】C【分析】设盈利上衣成本x元,亏本上衣成本y元,由题意得:135-x=25%x;y-135=25%y;求出成本可得.【详解】设盈利上衣成本x元,亏本上衣成本y元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C变式4-2.(2021·长沙市二模)中国总理李克强2021年6月1日考察山东时表示,地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.市场、企业、个体工商户活起来,生存下去,再发展起来,国家才能更好!为了响应党中央、国务院的号召,各地有序开放了“地摊经济”、“马路经济”,长沙某地摊摊主将进价为10元的小商品提价100%后再6折销售,该小商品的利润率()A.40% B.20% C.60% D.30%【答案】B【分析】设该小商品的利润率为x,根据利润=售价﹣进价,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设该小商品的利润率为x,依题意,得:10×(1+100%)×0.6﹣10=10x,解得:x=0.2=20%.故选:B.考查题型五比赛积分问题比赛总场数=胜场数+负场数+平场数比赛总积分=胜场积分+负场积分+平场积分典例5.(2021·大庆市模拟)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.5【答案】B【分析】解答此题可设该队获胜x场,则负了(6-x)场,根据总分=3×获胜场数+1×负了的场数,即可得出关于x的一元一次方程,解之即可得出结论.【详解】设该队获胜x场,则负了(6-x)场.根据题意得3x+(6-x)=12,解得x=3.经检验x=3符合题意.故该队获胜3场.故选B.变式5-1.(2021·武汉市模拟)一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是()A.17道B.18道C.19道D.20道【答案】C【分析】设作对了x道,则错了(25-x)道,根据题意列出方程进行求解.【详解】设作对了x道,则错了(25-x)道,依题意得4x-(25-x)=70,解得x=19故选C.变式5-2.(2021·广东深圳市模拟)在2018﹣2021赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x场,则可列方程为()A.3x+(30﹣x)=74 B.x+3 (30﹣x)=74C.3x+(26﹣x)=74 D.x+3 (26﹣x)=74【答案】C【分析】根据题意分析,可以设曼城队一共胜了x场,则平了(30-x-4)场,找出等量关系:总积分=3×获胜场数+1×踢平场数,即可得出关于x的一元一次方程,此题得解.【详解】设曼城队一共胜了x场,则平了(30﹣x﹣4)场,依题意,得:3x+(30﹣x﹣4)=74,即3x+(26﹣x)=74.故选:C.考查题型六方案选择问题结合实际,分情况讨论,给出合理建议。

中考数学《方程与不等式》专题训练50题(含参考答案)

中考数学《方程与不等式》专题训练50题(含参考答案)

中考数学《方程与不等式》专题训练50题含参考答案一、单选题1.不等式组1036x x -<⎧⎨<⎩的解集是( )A .无解B .1x >C .2x <D .12x <<【答案】D【分析】分别解出两个不等式,取公共解集即可.【详解】解:1036x x -<⎧⎨<⎩①② 解①得:1x > , 解①得:2x < ,故此不等式组的解集为:12x << 故选D.【点睛】此题考查的是解不等式组,掌握解不等式的一般步骤、不等式的基本性质和不等式组公共解集的取法是解决此题的关键.2.如果3m =3n ,那么下列等式不一定成立的是( ) A . m -3=n -3 B .3m +3=3n +2 C .5+m =5+n D .3m -=3n -3.若()()221x ax x +--的展开式中不含x 的一次项,则a 的值为( )A .3-B .2-C .1-D .0【答案】B【分析】先将多项式展开,然后令x 的系数为0,求出a 的值即可.【详解】解:()()221x ax x +--32222x x ax ax x =-+--+()()32122x a x a x =+-+-++,①()()221x ax x +--展开后不含x 的一次项,①20a +=, ①2a =-; 故选:B .【点睛】本题考查了多项式乘多项式,熟练掌握多项式乘以多项式的运算法则是解题的关键. 4.方程23x +=11x -的解为( ) A .x =3 B .x =4C .x =5D .x =﹣5【答案】C【详解】方程两边同乘(x-1)(x+3),得 x+3-2(x-1)=0, 解得:x=5,检验:当x=5时,(x-1)(x+3)≠0, 所以x=5是原方程的解, 故选C.5.下列方程中,关于x 的一元二次方程的是( ) A .ax 2+bx +c =0 B .(x -1)2=x 2+3x +2 C .x 2=x +1D .2x 2-1x+1=0【答案】C【分析】根据一元二次方程的定义,逐项分析即可,一元二次方程的定义:含有一个未知数,未知数的最高次数是2;二次项系数不为0;是整式方程. 【详解】A. ax 2+bx +c =0(0a ≠),故该选项不正确,不符合题意;6.若2x-1=15与kx-1=15的解相同,则k的值为()A.8B.6C.-2D.2【答案】D【分析】先解2x-1=15求出x的值,再把求得的x的值代入kx-1=15,然后解关于k的方程即可求出k的值.【详解】①2x-1=15,①2x=16,①x=8.把x=8代入kx-1=15得8k-1=15,①k=2.故选D.【点睛】本题考查了一元一次方程解的定义及一元一次方程的解法,能使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解;解一元一次方程的基本步骤为:①去分母;①去括号;①移项;①合并同类项;①未知数的系数化为1.7.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.10080807644⨯-=B.2x-+=(100)7644x x【分析】利用平移的方法,平移后的剩余部分仍是矩形,且长与宽均减小x 米,从而由面积可列出方程.【详解】矩形场地上的两条路分别向上和向右平移后如图所示,则平移后剩余部分的长为(100-x )米,宽为(80-x )米,题意得:(100-x )(80-x )=7644 故选:C .【点睛】本题考查了一元二次方程的实际应用,关键是运用平移的思想,问题得以简化并得到解决.8.下列各组数中,是方程x+y=7的解的是( ) A .23x y =-⎧⎨=⎩B .31x y =-⎧⎨=⎩C .43x y =⎧⎨=⎩D .23x y =⎧⎨=⎩【答案】C【分析】将四个答案逐一代入,能使方程成立的即为方程的解. 【详解】解:A 、2317-+=≠,故此选项不符合题意; B 、3127-+=-≠,故此选项不符合题意; C 、437+=,故此选项符合题意; D 、2357+=≠,故此选项不符合题意; 故选C .【点睛】本题考查二元一次方程的解,理解掌握方程的解的定义是解答关键. 9.若表格中每对,的值都是同一个二元一次方程的解,则这个方程为( )A .53+=x yB .5x y +=C .20x y -=D .35x y +=【分析】设方程为y=kx+b ,把x 与y 的两对值代入求出k 与b 的值,即可确定出方程.【详解】解:设方程为y=kx+b ,把(0,5)与(1,2)代入得:52b k b =⎧⎨+=⎩ 解得:53b k =⎧⎨=-⎩,①这个方程为y=-3x+5,即3x+y=5, 故选:D .【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.10.若0xy ≤x ,y 满足的条件是( ). A .0x ≥,0y ≥ B .0x ≥,0y ≤ C .0x ≤,0y ≥ D .0x ≤,0y ≤【答案】C【分析】根据二次根式有意义的条件得出20x y ≥,结合题意即可得出结果. 【详解】解:根据题意得,20x y ≥, ①20x ≥, ①0y ≥, ①0xy ≤, ①0x ≤, 故选C .【点睛】题目主要考查二次根式有意义的条件及不等式的性质,熟练掌握二次根式有意义的条件是解题关键.11.若a b <,则下列各式正确的是( ) A .22a b > B .22a b ->-C .34a b -<-D .22a b> 【答案】B【分析】根据不等式的性质,进行计算逐一判断即可解答. 【详解】解:A 、①a <b ,①2a <2b ,故该选项不符合题意; B 、①a <b ,①-2a >-2b ,故该选项符合题意;12.下列说法:①a为任意有理数,a2+1总是正数;①方程x+2=1x是一元一次方程;①若ab>0,a+b<0,则a<0,b<0;①代数式2,,23t a bb+都是整式;①若a2=(﹣2)2,则a=﹣2.其中错误的有()A.4个B.3个C.2个D.1个13.观察下列方程,经分析判断得知有实数根的是()A.33x=-B.22301x+=+C.()32x xx+=+D.221x xx-+=-【答案】C【分析】根据解分式方程的步骤逐一解答即可选出正确选项.去分母化为整式方程,解14.用配方法解一元二次方程x 2+6x ﹣3=0,原方程可变形为( ) A .(x +3)2=9 B .(x +3)2=12 C .(x +3)2=15 D .(x +3)2=39【答案】B【分析】移项后两边配上一次项系数一半的平方即可得. 【详解】解:①x 2+6x =3, ①x 2+6x +9=3+9,即(x +3)2=12, 故选:B .【点睛】本题考查了用配方法解一元二次方程,解题需要注意解题步骤的准确应用,选择配方法解一元二次方程时,最好使方程的二次项系数为1,一次项系数是2的倍数15.已知关于x 、y 的二元一次方程()()23230m x m y m -+-+-=,当m 每取一个值时,就有一个方程,而这些方程有一个公共解,这个公共解是( ) A .31x y =⎧⎨=-⎩B .13x y =⎧⎨=-⎩C .13x y =-⎧⎨=⎩D .31x y =-⎧⎨=⎩【答案】D【分析】把原方程整理得:m (x +y +2)-(2x +3y +3)=0,根据“当m 每取一个值时就有一个方程,而这些方程有一个公共解”,可知这个公共解与m 无关,得到关于x 和y 的二元一次方程组,解之即可. 【详解】解:原方程可整理得: m (x +y +2)-(2x +3y +3)=0,根据题意得:202330x y x y ++=⎧⎨++=⎩ 解得31x y =-⎧⎨=⎩.故选D .【点睛】本题考查了二元一次方程组的解以及解二元一次方程组,正确掌握解二元一次方程组是解题的关键. 16.利用求根公式求21562x x +=的根时,a ,b ,c 的值分别是( ) A .5,12,6 B .5,6,12C .5,﹣6,12D .5,﹣6,﹣1217.如表是德国足球甲级联赛某赛季的部分球队积分榜:规定:负一场积0分.观察后可知,柏林赫塔在这个赛季的胜场次数是( )A .18场 B .19场C .20场D .21场【答案】B胜场次数x 场,根据胜场积分与平场积分的和=总积分列出方程,解方程即可. 【详解】解:设球队胜一场积m 分,平一场积n 分, 由题意得:2166920767m n m n +=⎧⎨+=⎩, 解得:31m n =⎧⎨=⎩,球队胜一场积3分,平一场积1分,设柏林赫塔在这个赛季的胜场次数x 场,则平(34-x -8)=(26-x )场, 根据题意得:3x +(26-x )=64, 解得:x =19,①柏林赫塔在这个赛季的胜场次数是19, 故选:B .【点睛】考查了一元一次方程和二元一次方程组的应用,本类题型清楚积分的组成部分及胜负积分的规则及各个量之间的关系,并与一元一次方程相结合即可解该类题型.总积分等于胜场积分与平场的和.18.同型号的甲、乙两辆车加满气体燃料后均可行驶600km .它们各自单独行驶并返回的最远距离是300km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .380km B .400kmC .450kmD .500km【答案】B【分析】设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回 A 地时燃料用完,根据题意得关于x 和y 的二元一次方程组,求解即可.【详解】解:如图,设行驶途中停下来的地点为C 地,AB xkm =,AC ykm =,根据题意,得226002600x y x y x +=⨯⎧⎨-+=⎩,解得400200x y =⎧⎨=⎩,①AB 的最大长度是400km .【点睛】本题考查了二元一次方程组在行程问题中的应用,理清题中的数量关系正确列出方程组是解题的关键.19.关于x 的方程220ax +=是一元二次方程,则a 满足( ) A .a >0 B .a =1C .a ≥0D .a ≠0【答案】A【详解】根据一元二次方程的定义,得000a a a ≠⎧⇒>⎨≥⎩ .故选A. 20.代数式22244619x xy y x -+++的最小值是( ) A .10 B .9 C .19 D .11【答案】A【分析】把代数式22244619x xy y x -+++根据完全平方公式化成几个完全平方和的形式,再进行求解即可.【详解】解:2222244619(3)(2)10x xy y x x x y -+++=++-+ ①22(3)0,(2)0x x y +≥-≥①代数式22244619x xy y x -+++的最小值是10. 故选:A .【点睛】本题考查的知识点是配方法的应用-用配方法确定代数式的最值,解此题的关键是将原代数式化成几个完全平方和的形式.二、填空题21.含有____________的_________叫方程. 【答案】 未知数; 等式.【分析】方程是指含有未知数的等式.所以方程必须具备两个条件:(1)含有未知数(2)等式.【详解】解:根据方程的定义可知:含有未知数的等式是方程. 故答案为未知数;等式.【点睛】本题主要考查了方程的定义,熟记方程的定义是解题的关键.22.某童装店按每套88元的价格购进1000套童装,应缴纳的税费为销售额的10%,如果要获得不低于20000元的纯利润,则每套童装至少售价_____元.【分析】设每套童装的售价为x 元,根据利润=销售收入﹣税费﹣进货成本结合利润不低于20000元,即可得出关于x 的一元一次不等式,解之取其最小值即可得出结论.【详解】解:设每套童装的售价为x 元,依题意,得:1000x ﹣10%×1000x ﹣88×1000≥20000,解得:x ≥120.故答案为:120.【点睛】此题主要考查一元一次不等式的应用,解题的关键是根据题意找到不等关系列式求解.23.如果方程1)k k x -(+3=0是关于x 的一元一次方程,那么k 的值是______. 【答案】-1【分析】根据一元一次方程的定义知|k |=1且未知数是系数k -1≠0,据此可以求得k 的值.【详解】解:①方程(k -1)x |k |+3=0是关于x 的一元一次方程,①|k |=1,且k -1≠0,解得,k =-1;故答案是:-1.【点睛】本题考查了一元一次方程的概念和绝对值方程.一元一次方程的未知数的指数为1,且未知数的系数不为零.24.我县某一天的最高气温是11①,最低气温是零下4①,则当天我县气温t (①)应满足的不等式是 __________.【答案】﹣4≤t ≤11【分析】根据题意写出不等式即可.【详解】解:因为最低气温是零下4①,所以﹣4≤t ,最高气温是11①,t ≤11,则今天气温t (①)的范围是﹣4≤t ≤11.故答案是:﹣4≤t ≤11.【点睛】本题考查的是不等式的定义,不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式.25.已如m 是方程2350x x --=的一个根,则代数式262m m -的值为______.【答案】10-【分析】方程的根就是方程的解,就是能够使方程左右两边相等的未知数的值;即用这个数代替未知数所得式子仍然成立;将m 代入原方程即可求m 2-3m 的值,然后对原式进行变形代入计算.【详解】解:把x=m 代入方程2350x x --=可得:235m m -=①22622(3)2510=m m m m ---=-⨯=-;故答案为:-10.【点睛】此题考查了一元二次方程的解,解题时应注意把m 2-3m 当成一个整体.利用了整体的思想.26.如果x -2y =1,那么用含x 的代数式表示y ,则y =______.27.对任意四个有理数 a ,b ,c ,d 定义新运算:,a b ad bc c d =-那么当43 77x x=-时,x =________.28.某种药品的说明书上注明:口服,每天30~60mg ,分2~3次服用.这种药品一次服用的剂量范围是_____mg~_____mg.【答案】1030【详解】试题分析:根据等量关系:一次服用剂量=每日用量÷每日服用次数,即可求出服用剂量的最大值和最小值,而一次服用的剂量应介于两者之间,依题意列出不等式组求解即可.解:设这种药品一次服用的剂量为xmg当每日用量30mg,分3次服用时,一次服用的剂量最小;当每日用量60mg,分2次服用时,一次服用的剂量最大;根据依题意列出不等式组,解得所以这种药品一次服用的剂量范围是10mg~30mg.考点:一元一次不等式组的应用点评:解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等关系,列出不等式求解.29.若不等式(a﹣3)x>1的解集为13xa<-,则a的取值范围是_____.30.如果不等式组112x mx m-≤⎧⎨+≥⎩无解,则不等式2x+2<mx+m的解集是______.【答案】1x>-【详解】分析:首先根据不等式无解得出m的取值范围,然后根据不等式的解法得出不等式的解.详解:解不等式组可得:121x m x m ≤+⎧⎨≥-⎩,①不等式无解, ①2m -1>m+1,解得:m >2,①2x -mx <m -2, 即(2-m)x <m -2, ①m >2, ①2-m <0, ①x >-1. 点睛:本题主要考查的是解不等式及不等式组的方法,属于中等难度的题型.理解不等式的解法是解题的关键.系数含参时,我们首先要判断系数的正负性,然后进行求解.如果在不等式的两边同时乘以或除以一个负数,则不等符号需要改变. 31.已知关于x 的方程()344a x x a +-=-的解为2x =-,则=a ______.【答案】4【分析】将x=-2代入方程,然后解方程求得a 的值.【详解】解:①()344a x x a +-=-的解为2x =-,①()23424a a -+-=--,解得:4a =故答案为:4.【点睛】本题考查方程的解和解一元一次方程,掌握方程的解的概念及解一元一次方程的步骤,正确计算是解题关键.32.不等式2x-1>5的解集为______.【答案】x>3【详解】考点:解一元一次不等式.分析:先移项,再合并同类项,系数化为1即可.解:移项得,2x>5+1,合并同类项得,2x>6,系数化为1得,x>3.故答案为x>3.点评:本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键. 33.若关于x 的一元二次方程ax 2﹣4x +1=0有实数根,则a 的最大整数值为_____.【答案】4.【分析】由关于x 的一元二次方程ax 2﹣4x +1=0有实数根,则a ≠0,且①≥0,即①=42﹣4a =16﹣4a ≥0,解不等式得到a 的取值范围,最后确定a 的最大整数值.【详解】解:①关于x 的一元二次方程ax 2﹣4x +1=0有实数根,①a ≠0,且①≥0,即①=42﹣4a =16﹣4a ≥0,解得a ≤4,①a 的取值范围为a ≤4且a ≠0,所以a 的最大整数值为4.故答案为:4.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0,a ,b ,c 为常数)根的判别式①=b 2−4ac .当①>0,方程有两个不相等的实数根;当①=0,方程有两个相等的实数根;当①<0,方程没有实数根.也考查了一元二次方程的定义和不等式的特殊解. 34.已知代数式4x -与3(2)x 的值相等,则x 的值为______.【答案】1x =【分析】根据题意列方程,然后进行解答即可得出x 的值.【详解】解:由题意,得4-x=3(2-x)解得x=1故答案为1x =.【点睛】本题考查了解一元一次方程.关键在于根据题意列出方程.35.某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得300元.若该店第二天销售香蕉t 千克,则第三天销售香蕉____千克.(用含t 的代数式表示.)36.若x 1,x 2是方程x 2+x -1=0的两根,则(x 12+x 1-2)(x 22+x 2-2)的值为_______.【答案】1【分析】根据一元二次方程的定义得到2111x x +=,2221x x +=,代入计算即可.【详解】解:①x 1,x 2是方程x 2+x -1=0的两根,①21110x x +-=,22210x x +-=,①2111x x +=,2221x x +=,①()()22112222x x x x +-+-=()()1212--=1故答案为:1.【点睛】本题考查了一元二次方程的解,解体的关键是掌握方程的解能使方程等式两边成立.37.若实数m 、n 满足|m ﹣3|+0,且m 、n 恰好是Rt △ABC 的两条边长,则第三条边长为_______.5##5【分析】先由非负数的性质求出m =3,n =4,由于题中直角三角形的斜边不能确定,38.若方程(a-3)x |a|-1+2x-8=0是关于x 的一元二次方程,则a 的值是_____.【答案】-3【分析】根据一元二次方程的定义列方程求出a 的值即可.39.一种药品现在售价56.10元,比原来降低了15%,原售价为____元.【答案】66.【详解】试题分析:设这种药品的原售价为x 元,则比原来降低了15%后的售价为(1-15%)x 元,根据题意得(1-15%)x=56.1,解得x=66.故答案为66.考点:列一元一次方程解应用题.40.如果关于x 的方程22220x ax b +-+=有两个相等的实数根,且常数a 与b 互为负倒数,那么a b +=__________. 【答案】0【分析】根据根的判别式求出0⊿=,得到222a b +=,再根据完全平方公式求出即可.【详解】关于x 的方程22220x ax b +-+=有两个相等的实数根,()()2224120a b ∴-⨯⨯-+=⊿=,化简得:222a b +=常数a 与b 互为负倒数,即1ab =-()222222(1)0a b a b ab ∴+=++=+⨯-= 0a b ∴+=故答案为0【点睛】本题考查了根的判别式,得到等式222a b +=和1ab =-是解题的关键.三、解答题41.某农场去年种植了10亩地的南瓜,亩产量为2000kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,今年南瓜亩产量的增长率是种植面积的增长率的12,设南瓜种植面积的增长率为x . (1)则今年南瓜的种植面积为________亩;今年南瓜亩产量为_______k g (用含x 的代数式表示)(2)今年南瓜的总产量为60000kg,求南瓜亩产量的增长率.42.已知点P(2m﹣4,m+4),解答下列问题:(1)若点P在y轴上,则点P的坐标为______;(2)若点P的纵坐标比横坐标大7,求出点P坐标;(3)若点P在过A(2,3)点且与x轴平行的直线上,则AP的长为多少?【答案】(1)(0,6)(2)P点的坐标为(﹣2,5)(3)AP=8【分析】(1)让横坐标为0求得m的值,代入点P的坐标即可求解;(2)利用纵坐标-横坐标=7得m的值,代入点P的坐标即可求解;(3)利用纵坐标为3求得m的值,代入点P的坐标即可求解.(1)解:令2m-4=0,解得m=2,所以P点的坐标为(0,6),故答案为:(0,6);(2)解:令m+4-(2m-4)=7,解得m=1,所以P点的坐标为(-2,5);(3)解:①点P在过A(2,3)点且与x轴平行的直线上,①m+4=3,解得m=-1.①P点的坐标为(-6,3),①AP=2+6=8.【点睛】本题考查坐标与图形性质,解题的关键是理解题意,灵活运用所学知识解决问题.43.甲乙两个施工队在六安(六盘水——安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,若设甲队每天铺设x 米,乙队每天铺设y米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?【答案】(1)100 56x yx y-=⎧⎨=⎩(2)甲施工队每天各铺设600米,乙施工队每天各铺设500米.【分析】(1)利用每天甲队比乙队多铺设100米钢轨,得x-y=100;利用甲队铺设5天的距离刚好等于乙队铺设6天的距离,得5x=6y,从而可得答案(2)解方程组即可得到答案.(1)解:设甲队每天铺设x米,乙队每天铺设y米,则10056x y x y -=⎧⎨=⎩ (2)10056x y x y -=⎧⎨=⎩解得:600500x y =⎧⎨=⎩答:甲施工队每天各铺设600米,乙施工队每天各铺设500米.44.解不等式:并把不等式的解集在数轴上表示出来:4-()314x +≥()528x ++2 【答案】x ≤0,数轴表示见解析【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得,再在数轴上表示出来即可.【详解】解:去分母,得:32-6(x +1)≥5(x +2)+16,去括号,得:32-6x -6≥5x +10+16,移项,得:-6x -5x ≥10+16-32+6,合并,得:-11x ≥0,系数化为1,得:x ≤0,将不等式的解集表示在数轴上如下:【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 45.(1)用配方法解方程:21090x x -+=.(2)某商品经过连续两次降价,销售单价由原来的125元降到80元,求平均每次降价的百分率.【答案】(1)121,9x x ==;(2)平均每次降价的百分率为:20%.【详解】试题分析:(1)先配方,再进行开方,化简即可;(2)利用数量关系:商品原来价格×(1﹣每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.试题解析:(1)21090x x -+=210252590x x -+-+=()2516x -=54x -=±121,9x x ==;(2) 设这种商品平均每次降价的百分率为x,根据题意列方程得,125(1﹣x )2=80,解得x 1=0.2=20%,x 2=﹣1.8(不合题意,舍去);故平均每次降价的百分率为:20%.考点:1. 配方法解方程,2. 一元二次方程的应用.46.解下列方程或不等式组:(1)解方程:122134x x -+=- (2)解不等式组()2563212x x x ⎧+≥⎨->+⎩47.在某校园超市中买1支英雄牌钢笔和3本硬皮笔记本需要18元钱;买同样的钢笔2支和笔记本5本需要31元.(1)求每支英雄牌钢笔和每本硬皮笔记本的价格;(2)九年一班准备用班费购买48件上述价格的钢笔和笔记本.作为毕业联欢会的奖品,已知班费不少于200元,求最少可以买多少本笔记本?【答案】(1)每支英雄牌钢笔3元,每本硬皮笔记本5元;(2)至少可以购买28本笔记本【分析】(1)用二元一次方程解决问题的关键是找到两个合适的等量关系.本问中两个等量关系是:1支钢笔的价钱+3本笔记本的价钱=18,2支钢笔的价钱+5本笔记本的价钱=31,根据这两个等量关系可以列出方程组;(2)本问可以列一元一次不等式解决.用钢笔数=48-笔记本数代入下列不等式关系:购买钢笔钱数+购买笔记本钱数≤200,可以列出一元一次不等式,求解即可.【详解】解:(1)设每支英雄牌钢笔x 元,每本硬皮笔记本y 元由题意得3182531x y x y +=⎧⎨+=⎩解得35x y =⎧⎨=⎩答:每支英雄牌钢笔3元,每本硬皮笔记本5元(2)设可以购买a 本笔记本由题意得()3485200a a -+≥解得28a ≥答:至少可以购买28本笔记本【点睛】本题考查了一元一次不等式的应用和二元一次方程组的应用,解题的关键是找出题中的等量关系或不等关系:1支钢笔的价钱+3本笔记本的价钱=18,2支钢笔的价钱+5本笔记本的价钱=31,购买钢笔钱数+购买笔记本钱数≤200.48.甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.请你根据上述信息,就这两个公司的“人数”或“人均捐款”提出一个用分式方程解决的题,并写出解题过程.【答案】问:甲、乙两公司各有多少名员工?;见解析;甲公司有30名员工,乙公司有25名员工【分析】问:甲、乙两公司各有多少名员工?设乙公司有x 名员工,则甲公司有1.2x 名员工,根据人均捐款钱数=捐款总钱数÷人数结合乙公司比甲公司人均多捐20元,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:问:甲、乙两公司各有多少名员工?设乙公司有x 名员工,则甲公司有1.2x 名员工,49.列方程(组)或不等式(组)解应用题:(1)甲工人接到240个零件的任务,工作1小时后,因要提前完成任务,调来乙和甲合作,合做了5小时完成.已知甲每小时比乙少做4个,那么甲、乙每小时各做多少个?(2)某工厂准备购进A 、B 两种机器共20台用于生产零件,经调查2台A 型机器和1台B 型机器价格为18万元,1台A 型机器和2台B 型机器价格为21万元.①求一台A 型机器和一台B 型机器价格分别是多少万元?①已知1台A 型机器每月可加工零件400个,1台B 型机器每月可加工零件800个,经预算购买两种机器的价格不超过140万元,每月两种机器加工零件总数不低于12400个,那么有哪几种购买方案,哪种方案最省钱?【答案】(1)甲每小时加工个20零件,乙每小时加工24个零件;(2)①A ,B 两种型号机器的单价分别为5万元和8万元;①有三种购买方案:方案一:购买A 型机器7台,B 型机器13台,方案二:购买A 型机器8台,B 型机器12台,方案三:购买A 型机器9台,B 型机器11台,方案三更省钱.【分析】(1)设甲每小时加工x 个零件,乙每小时加工y 个零件,利用乙每小时比甲多做4个,以及利用甲工作了1小时后,调来乙工人与甲合作了5小时完成,240个零件的任务得出等式方程求出即可;(2)①设A ,B 两种型号机器的单价分别为x 万元和y 万元,根据题意得方程组218221x y x y +⎧⎨+⎩==,解答即可; ①设购买A 型机器m 台,则购买B 型机器(20-m )台,根据购买总价和生产数量列出不等式组求解即可.【详解】(1)设甲每小时加工x 个零件,乙每小时加工y 个零件,根据题意得:465240x y x y +⎧⎨+⎩==,50.解方程组:(1)2(1)61x yx y+-=⎧⎨=-⎩(2)3(1)51135x yy x-=+⎧⎪-⎨=+⎪⎩【答案】(1)56 xy=⎧⎨=⎩(2)57x y =⎧⎨=⎩【分析】(1)用代入法求解即可;(2)用加减法求解即可.【详解】(1)解:()2161x y x y ⎧+-=⎨=-⎩①② , 将①代入①得:6y =,把6y =代入①得5x =,①原方程组的解为56x y =⎧⎨=⎩; (2)解:整理得:383520x y x y -=⎧⎨-=-⎩①②, ①-①,得428y =,解得:7y =,把7y =代入①,得378x -=,解得:5x =,①方程组的解是57x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,熟练掌握用代入法或加减法解二元一次方程组是解题的关键.。

人教版七年级下数学第9章不等式与不等式组复习巩固(含答案)

人教版七年级下数学第9章不等式与不等式组复习巩固(含答案)

第9章不等式与不等式组整章复习知识点1不等式及其解集1.下列各式:①-3<0;②4x+3y>0;③x=3;④x2+xy+y2;⑤x≠5;⑥x+2>y+3.其中不等式的个数有()A.5个B.4个C.3个D.1个2.下列是不等式5x-3>6的一个解的是()A.1B.2C.-1D.-23.下列说法中,正确的是()A.x=2是不等式x+3<4的解B.x=3是不等式3x<7的解C.不等式3x<7的解集是x=2D.x=3是不等式3x>8的解4.下列根据语句列出的不等式错误的是()A.“x的3倍与1的和是正数”,表示为3x+1>0B.“m的与n的的差是非负数”,表示为m-n≥0C.“x与y的和不大于a的”,表示x+y≤aD.“a,b两数的和的3倍不小于这两数的积”,表示为3a+b≥ab5.小明借到一本有72页的图书,要在10天之内读完,开始2天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x页,所列不等式为()A.10+8x≥72B.2+10x≥72C.10+8x≤72D.2+10x≤726.根据下列数量关系,列出不等式:(1)x与2的和是负数;(2)m与1的相反数的和是非负数;(3)a与-2的差不大于它的3倍;(4)a,b两数的平方和不小于它们的积的两倍.知识点2不等式的性质1.根据不等式的性质,下列变形正确的是()A.由a>b得ac2>bc2B.由ac2>bc2得a>bC.由-a>2得a<2D.由2x+1>x得x<-12.已知-x<-y,用“<”或“>”填空:(1)-2x-2y;(2)2x2y;(3)x y.3.如果不等式(a+1)x<a+1可变形为x>1,那么a必须满足.4.利用不等式的性质解下列不等式:(1)2x-2<0;(2)3x-9<6x;(3)x-2>x-5.5.根据不等式的性质,解下列不等式,并在数轴上表示解集: (1)2x+5≥5x-4;(2)4-3x≤4x-3;(3)-+1≥.知识点3一元一次不等式的解法1.下列不等式中,是一元一次不等式的是()A.5x-2>0B.-3<2+C.6x-3y≤-2D.y2+1>22.已知-x2a-1+5>0是关于x的一元一次不等式,则a的值是.3.解下列不等式,并把解集在数轴上表示出来:(1)2x-3<;(2)≤1.4.已知不等式x+8>4x+m(m是常数)的解集是x<3,求m的值.5.当y为何值时,代数式5y+46的值不大于代数式78-1-y3的值?并求出满足条件的最大整数.6.已知关于x,y的方程组的解满足不等式x+y<3,求实数a的取值范围.知识点4一元一次不等式的应用1.某商品的进价是120元,标价为180元,但销量较小.为了促销,商场决定打折销售,为了保证利润率不低于20%,那么最多可以打几折出售此商品?2.某次知识竞赛共有25道题,答对一道得4分,答错或不答都扣2分.小明得分要超过80分,他至少要答对多少道题?3.在一次爆破中,用一条1 m长的导火索来引爆炸药,导火索的燃烧速度为0.5 cm/s,引爆员点着导火索后,至少以每秒多少米的速度才能跑到600 m以外(包括600 m)的安全区域?4.小明家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1.8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元.小明家每月用水量至少是多少?5.有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排多少人种甲种蔬菜?6.为了保护环境,某企业决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表.经预算,该企业购买设备的资金不高于105万元.(1)该企业有几种购买方案?(2)若企业每月产生的污水量为2 040吨,为了节约资金,应选择哪种购买方案?知识点5一元一次不等式组的解法1.不等式组的解集在数轴上表示为()A BC D2.解下列不等式组,并把它们的解集在数轴上表示出来:(1)(2)3.求不等式组的整数解.4.若不等式组无解,则实数a的取值范围是()A.a≥-1B.a<-1C.a≤1D.a≤-15.某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果每位老人分5盒,则剩下38盒;如果前面每位老人分6盒,则最后一位老人分不到5盒,但至少能分到1盒.(1)设敬老院有x位老人,则这批牛奶共有多少盒(用含x的代数式表示)?(2)该敬老院至少有多少位老人?最多有多少位老人?第九章不等式与不等式组知识点1不等式及其解集1.B2.B3.D4.D5.A6.解:(1)x+2<0;(2)m-1≥0;(3)a+2≤3a;(4)a2+b2≥2ab.知识点2不等式的性质1.B2.(1)<(2)>(3)>3.a<-14.(1)x<1(2)x>-3(3)x<35.解:(1)不等式两边同时减5x,得-3x+5≥-4.不等式两边同时减5,得-3x≥-9.不等式两边同时除以-3,得x≤3.在数轴上表示解集如下:(2)不等式两边同时加-4x-4,得-7x≤-7.不等式两边同时除以-7,得x≥1.在数轴上表示解集如下:(3)不等式两边同时乘6,得-4x+6≥3x-3.不等式两边同时加-3x-6,得-7x≥-9.不等式两边同时除以-7,得x≤.在数轴上表示解集如下:知识点3一元一次不等式的解法1.A2.13.解:(1)去分母,得3(2x-3)<x+1,去括号,得6x-9<x+1,移项,合并同类项,得5x<10,系数化为1,得x<2.不等式的解集在数轴上表示如下:(2)去分母,得2(2x-1)-(9x+2)≤6,去括号,得4x-2-9x-2≤6,移项,得4x-9x≤6+2+2,合并同类项,得-5x≤10,系数化为1,得x≥-2.不等式的解集在数轴上表示如下:4.解:因为x+8>4x+m,所以x-4x>m-8,所以-3x>m-8,所以x<-(m-8).因为其解集为x<3,所以-(m-8)=3,解得m=-1.5.解:依题意,得,去分母,得4(5y+4)≤21-8(1-y),去括号,得20y+16≤21-8+8y,移项,得20y-8y≤21-8-16,合并同类项,得12y≤-3,把y的系数化为1,得y≤-.解集在数轴上表示如下:由图可知,满足条件的最大整数是-1.6.解:解方程组得∵x+y<3,∴2a+1+2a-2<3,∴4a<4,∴a<1.知识点4一元一次不等式的应用1.解:设可以打x折出售此商品,由题意得180×-120≥120×20%,解得x≥8.答:最多可以打8折出售此商品.2.解:设小明答对x道题,则他答错或不答的题数为(25-x)道.根据他的得分要超过80分,得4x-2(25-x)>80,解得x>21.因为x应是整数而且不能超过25,所以小明至少要答对22道题.答:小明至少要答对22道题.3.解:设以每秒x m的速度能跑到600 m以外(包括600 m)的安全区域.0.5 cm/s=0.005 m/s,依题意可得x≥600,解得x≥3.答:引爆员点着导火索后,至少以每秒3 m的速度才能跑到600 m以外(包括600 m)的安全区域.4.解:设小明家每月用水x立方米.∵5×1.8=9<15,∴小明家每月用水超过5立方米.则超出(x-5)立方米,按每立方米2元收费,列出不等式为5×1.8+(x-5)×2≥15,解得x≥8.答:小明家每月用水量至少是8立方米.5.解:设安排x人种甲种蔬菜,则种乙种蔬菜的为(10-x)人.根据题意得0.5×3x+0.8×2(10-x)≥15.6,解得x≤4.答:最多只能安排4人种甲种蔬菜.6.解:(1)设购买污水处理设备A型x台,则B型为(10-x)台.由题意得12x+10(10-x)≤105,解得x≤2.5.∵x取非负整数,∴x可取0,1,2.有三种购买方案:A型0台,B型10台;A型1台,B型9台;A型2台,B型8台.(2)由题意得240x+200(10-x)≥2 040,解得x≥1,所以x为1或2.当x=1时,购买资金为12×1+10×9=102(万元);当x=2时,购买资金为12×2+10×8=104(万元).为了节约资金,应选购A型1台,B型9台.知识点5一元一次不等式组的解法1.C2.解:(1)解不等式①,得x≥2,解不等式②,得x>2.所以这个不等式组的解集为x>2.将不等式组的解集在数轴上表示如下:(2)解不等式①,得x>1,解不等式②,得x≤4.所以这个不等式组的解集是1<x≤4.将不等式组的解集在数轴上表示如下:3.解:解不等式①,得x≤2,解不等式②,得x>-3.故此不等式组的解集为-3<x≤2,则x的整数解为-2,-1,0,1,2.4.D5.解:(1)牛奶数量为(5x+38)盒.(2)根据题意,得1≤(5x+38)-6(x-1)<5.解得39<x≤43.由x应为整数,得40≤x≤43.所以该敬老院至少有40位老人,最多有43位老人.。

最新初中数学方程与不等式之不等式与不等式组解析含答案(3)

最新初中数学方程与不等式之不等式与不等式组解析含答案(3)

最新初中数学方程与不等式之不等式与不等式组解析含答案(3)一、选择题1.关于x 的不等式组x 15x 322x 2x a 3><+⎧-⎪⎪⎨+⎪+⎪⎩只有4个整数解,则a 的取值范围是( ) A .145a 3-≤≤-B .145a 3-≤<-C .145a 3-<≤-D .145a 3-<<- 【答案】C【解析】【分析】首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解:不等式组的解集是2-3a <x <21,因为不等式组只有4个整数解,则这4个解是20,19,18,17.所以可以得到16≤2-3a <17,解得-5<a≤-143. 故选:C .【点睛】此题考查解不等式组,正确解出不等式组的解集,正确确定2-3a 的范围,是解决本题的关键.2.若a b <,则下列变形错误的是( )A .22a b <B .22a b +<+C .1122a b <D .22a b -<- 【答案】D【解析】【分析】根据不等式的性质解答.【详解】∵a b <,∴22a b <,故A 正确;∵a b <,∴22a b +<+,故B 正确;∵a b <,∴1122a b <,故C 正确; ∵a b <,∴2-a>2-b ,故D 错误,故选:D.【点睛】此题考查不等式的性质,熟记性质定理并运用解题是关键.3.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ). A .m >2 B .m >-3 C .-3<m <2 D .m <3或m >2【答案】A【解析】【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可.【详解】解325x y m x y m -=+⎧⎨+=⎩,得 212x m y m =+⎧⎨=-⎩. ∵x >y >0,∴21220m m m +>-⎧⎨->⎩ , 解之得m >2.故选A.【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.4.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x +90(15﹣x )≥1.8B .90x +210(15﹣x )≤1800C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.8【答案】C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x )≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.5.若关于x 的不等式mx ﹣n >0的解集是x <13,则关于x 的不等式(m+n )x >n ﹣m 的解集是( ) A .x <﹣12B .x >﹣12C .x <12D .x >12 【答案】A【解析】【分析】 根据不等式mx ﹣n >0的解集是x <13,则0m <,0n <,3m n =,即可求出不等式的解集.【详解】 解:∵关于x 的不等式mx ﹣n >0的解集是x <13, ∴0m <,0n <,3m n =,∴0m n +<,解不等式()m n x n m >-+, ∴n m x m n -<+, ∴3132n m n n x m n n n --<==-++; 故选:A.【点睛】本题考查了解一元一次不等式,以及不等式的性质,解题的关键是熟练掌握解不等式的方法和步骤.6.若m n >,则下列不等式中成立的是( )A .m+a<n+bB .ma>nbC .ma 2>na 2D .a-m<a-n【答案】D【解析】【分析】根据不等式的性质判断.【详解】A. 不等式两边加的数不同,错误;B. 不等式两边乘的数不同,错误;C. 当a =0时,错误;D. 不等式两边都乘−1,不等号的方向改变,都加a ,不等号的方向不变,正确;点睛:不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.7.若关于x 的不等式6234x x a x x +<+⎧⎪⎨+>⎪⎩有且只有三个整数解,则实数a 的取值范围是( )A .15<a ≤18B .5<a ≤6C .15≤a <18D .15≤a ≤18【答案】A【解析】【分析】解不等式组,由有且只有三个整数解确定出a 的范围即可.【详解】 解不等式组得:23x a x >⎧⎪⎨<⎪⎩,即2<x <3a , 由不等式组有且只有三个整数解,得到整数解为3,4,5,∴5<3a ≤6, 解得:15<a≤18,故选:A .【点睛】此题考查了一元一次不等式组的整数解,熟练掌握解不等式组的方法是解本题的关键.8.不等式组13x x -≤⎧⎨<⎩的解集在数轴上可以表示为( ) A .B .C .D .【答案】B【解析】【分析】分别解不等式组中的每一个不等式,再求解集的公共部分.【详解】由-x≤1,得x≥-1,则不等式组的解集为-1≤x <3.故选:B .此题考查在数轴上表示不等式的解集.解题关键是求不等式组的解集,判断数轴的表示方法,注意数轴的空心、实心的区别.9.某商品的标价比成本价高%a ,根据市场需要,该商品需降价%b .为了不亏本,b 应满足( )A .b a ≤B .100100a b a ≤+C .100a b a ≤+D .100100a b a ≤- 【答案】B【解析】【分析】根据最大的降价率即是保证售价大于等于成本价,进而得出不等式即可.【详解】解:设成本为x 元,由题意可得:()()1%1%x a b x +-?,整理得:100100b ab a +?, ∴100100a b a≤+, 故选:B .【点睛】 此题主要考查了一元一次不等式的应用,得出正确的不等关系是解题关键.10.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <,则k 的取值范围为( ) A .1k >B .1k <C .1k ³D .1k ≤【答案】C【解析】【分析】首先将不等式组中的不等式的解集分别求出,根据题意得出关于k 的不等式,求出该不等式的解集即可.【详解】 解不等式组29611x x x k +>+⎧⎨-<⎩可得:21x x k <⎧⎨<+⎩, ∵该不等式组的解集为:2x <,∴12k +≥,∴1k ≥,故选:C.【点睛】本题主要考查了解一元一次不等式组的运用,熟练掌握相关方法是解题关键.11.若关于x 的不等式x <a 恰有2个正整数解,则a 的取值范围为( )A .2<a ≤3B .2≤a <3C .0<a <3D .0<a ≤2【答案】A【解析】【分析】结合题意,可确定这两个正整数解应为1和2,至此即可求出a 的取值范围【详解】由于x<a 恰有2个正整数解,即为1和2,故2<a ≤3故正确答案为A【点睛】此题考查了不等式的整数解,列出关于a 的不等式是解题的关键12.不等式组32110x x -<⎧⎨+≥⎩的解集在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】 32110 x x -<⎧⎨+≥⎩①② 解不等式①得,1x <,解不等式②得,1x ≥-所以,不等式组的解集为:-11x ≤<,在数轴上表示为:故选D.【点睛】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.13.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折 【答案】B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.14.在数轴上表示不等式x <2的解集,正确的是( )A .B .C .D .【答案】A【解析】【分析】 把不等式x <2的解集在数轴上表示出来可知答案.【详解】在数轴上表示不等式x <2的解集故选:A .【点睛】本题运用了不等式的解集在数轴上的表示方法,体现了数形结合的数学思想.15.若不等式组236x x x m -<-⎧⎨<⎩无解,那么m 的取值范围是( ) A .m >2B .m <2C .m ≥2D .m ≤2 【答案】D【解析】【分析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m 的取值范围.【详解】解:236x x x m -<-⎧⎨<⎩②①由①得,x >2,由②得,x <m ,又因为不等式组无解,所以根据“大大小小解不了”原则,m ≤2.故选:D .【点睛】此题考查解一元一次不等式组,解题关键在于掌握求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.16.若m -n >0,则下列各式中一定正确的是( )A .m >nB .mn >0C .0m n <D .-m >-n【答案】A【解析】∵m -n >0,∴m >n (不等式的基本性质1).故选A.17.不等式组0321x a x -<⎧⎨-≤-⎩的整数解共有3个,则a 的取值范围是( ) A .45a <<B .45a <≤C .45a ≤<D .45a ≤≤【答案】B【解析】【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到a 的范围.【详解】0321x a x -<⎧⎨-≤-⎩①②, 由①解得:x <a ,由②解得:x≥2,故不等式组的解集为2≤x <a ,由不等式组的整数解有3个,得到整数解为2,3,4,则a 的范围为4<a≤5.故选:B .【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.18.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a≤﹣3B .a <﹣3C .a >3D .a≥3【答案】A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a 的取值范围即可. 【详解】∵不等式组324x a x a <+⎧⎨>-⎩无解, ∴a ﹣4≥3a+2,解得:a≤﹣3,故选A .【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.19.若不等式组1,1x x m <⎧⎨>-⎩恰有两个整数解,则m 的取值范围是( ) A .10m -≤< B .10m -<≤ C .10m -≤≤ D .10m -<<【答案】A【解析】∵不等式组11x x m <⎧⎨>-⎩有解, ∴不等式组的解集为m-1<x<1,∵不等式组11x x m <⎧⎨>-⎩恰有两个整数解, ∴-2≤m-1<-1,解得10m -≤<,故选A.20.已知a >b ,则下列不等式中,正确的是( )A .-3a >-3bB .3a ->3b -C .3-a >3-bD .a-3>b-3【答案】D【解析】【分析】由题意可知,根据不等式的性质,看各不等式是加(减)什么数或乘(除)以哪个数得到的,用不用变号即可求解.【详解】A.a >b ,-3a <-3b ,故A 错误;B.a >b ,3a -<3b - ,故B 错误; C.a >b ,3-a <3-b ,故C 错误; D. a >b ,a -3>b -3,故D 正确;故答案为:D.【点睛】本题考查了不等式的性质,熟练掌握该知识点是本题解题的关键.。

初中数学专题复习代数综合题(含答案)

初中数学专题复习代数综合题(含答案)

初中数学专题复习代数综合题(含答案)代数综合题是一类综合题,主要包括方程、函数、不等式等内容,需要用到化归思想、分类思想、数形结合思想以及代入法、待定系数法、配方法等数学思想方法。

解决代数综合题需要注意归纳整理教材中的基础知识、基本技能、基本方法,抓住题意,化整为零,层层深入,各个击破。

同时,需要注意各知识点之间的联系和数学思想方法、解题技巧的灵活运用,从而达到解决问题的目的。

已知关于x的一元二次方程x-(k+1)x-6=0的一个根是2,求方程的另一根和k的值。

解:设方程的另一根为x1,由韦达定理:2 x1 =-6,∴x1 =-3.由韦达定理:-3+2= k+1,∴k=-2.已知关于x的一元二次方程(k+4)x+3x+k-3k-4=0的一个根为2,求k的值。

解:把x=0代入这个方程,得k-3k-4=0,解得k1=1,k2=-4.因为k+4≠0,所以k≠-4,所以k=1.需要注意需满足k+4的系数不能为0,即k≠-4.已对方程2x+3x-l=0,求作一个二次方程,使它的两根分别是已知方程两根的倒数。

解:设2x+3x-l=0的两根为x1、x2,则新方程的两根为1/x1、1/x2.得到1/x1+1/x2=3,所以新方程为y2-3y-2=0.某产品每件成本10元,试销阶段每件产品的日销售价x (元)与产品的日销售量y(件)之间的关系如下表:x(元)xxxxxxxx… y(件)xxxxxxxx…(省略号表示数据继续往下延伸)。

⑴在草稿纸上描点,观察点的分布,建立y与x的恰当函数模型。

⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?解:⑴经观察发现各点分布在一条直线上,∴设y=kx+b(k≠0)。

⑵由题意可知每件产品的销售价应为20元,此时每日销售利润为200元。

1、根据题意可列出函数关系:y=ax^2+bx+c,代入三组数据得到三个方程组成的线性方程组:begin{cases} 8.6=1990a+1990b+c \\ 10.4=1995a+1995b+c \\ 12.9=2000a+2000b+c \end{cases}$$解得:$a=0.45,b=-1792.5,c=xxxxxxx$,所以二次函数为$y=0.45x^2-1792.5x+xxxxxxx$,代入$x=15$得到2005年该市国内生产总值为14.1亿元人民币。

初中数学专题复习一元二次方程及二次函数的图象和性质(含答案)

初中数学专题复习一元二次方程及二次函数的图象和性质(含答案)

热点7 一元二次方程及二次函数的图象和性质(时间:100分钟 分数:100分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个符合题目要求的)1.抛物线y=x 2-2x-3的对称轴和顶点坐标分别是( )A .x=1,(1,-4);B .x=1,(1,4);C .x=-1,(-1,4);D .x=-1,(-1,-4) 2.用配方法解一元二次方程x 2+8x+7=0,则方程可变形为( )A .(x-4)2=9B .(x+4)2=9C .(x-8)2=16D .(x+8)2=57 3.如图,已知二次函数y=a x 2+bx+c (a ≠0)的图象的顶点P 的横坐标是4,图象交x 轴于点A (m ,0)和点B ,且m>4,那么AB 的长是( ) A .4+m B .m C .2m-8 D .8-2m4.若方程ax 2+bx+c=0(a≠0)有两个相等的实数根,则关于二次函数y=ax 2+bx+c (•a≠0)与x轴的交点说法正确的是( )A .有两个交点;B .只有一个交点;C .无交点;D .交点的个数超过2 5.抛物线y=3x 2,y=-3x 2,y=13x 2+3共有的性质是( ) A .开口向上; B .对称轴是y 轴; C .都有最高点; D .y 随x 的增大而增大 6.如图,四个二次函数的图象,哪一个函数在x=2时,有最大值( )7.如图四个二次函数的图象中,分别对应的是①y=ax 2;②y=bx 2;③y=cx 2;•④y=dx 2,则a 、b 、c 、d 的大小关系是( ) A .a>b>c>d B .a>b>d>c C .b>a>c>d D .b>a>d>c8.已知二次函数y=x 2+4x+5,则函数值y 的取值范围为( )A .任意实数B .y ≤1C .y ≥0D .y ≥19.已知二次函数y=ax 2+bx+c (a>0)的对称轴为x=1,点A (x 1,y 1),B (x 2,y 2),C (x 2,x 3)是函数图象上的三点,且x 1<1<x 2<x 3,则下列说法正确的是( ) A .可判断出y 1<y 2<y 3 B .只能判断出y 2<y 3C .可判断出y 1>y 2>y 3D .根本不能判断出y 1、y 2、y 3的关系10.在同一个直角坐标系中,一次函数y=ax+c ,二次函数y=ax 2+c 的图象大致为( )二、填空题(本大题共8小题,每小题3分,共24分) 11.方程x 2-2x-3=0的解是_______.12.用长为16米的细绳围成一个矩形,矩形的长为x ,面积为y ,则y 与x 之间的函数关系式为______,y 的最大值为________.13.已知m 是方程x 2-x-2=0的一个根,则代数式m 2-m 的值等于_______. 14.若抛物线y=m x m2-2+4x-1开口方向向上,则m=_______. 15.若函数y=x 2-23x+c 的图象的顶点在x 轴上,则c=_________. 16.已知二次函数y=x 2-6x+m 的最小值是1,则m=_________. 17.已知函数y =x 2-2001x+2002与x 轴的交点为(m ,0),(n ,0),则(m 2-2001m+2002)(n 2-2001n+2002)=_________.18.若抛物线y=-4x 2+16x-15的顶点为A ,与x 轴的交点为B 、C ,•则△ABC•的面积是________.三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分,解答题应写出文字说明、证明过程或演算步骤)19.已知二次函数y=x 2+bx+c 的图象经过(1,0)与(2,5)两点,求这个二次函数的关系式.20.已知抛物线y=ax2与直线y=2x+3交于点A、B,已知A点的横坐标为3,求A、B•两点的坐标及抛物线的关系式.21.已知:二次函数y=a x2-5x+c的图象如图。

初中数学不等式专题复习

初中数学不等式专题复习

一、不等式的基本性质1.若x>y,则下列等式不一定成立的是()A.x+4>y+4 B.﹣3x<﹣3y C.D.x2>y2 2.下列命题中,正确的是()A.若a>b,则ac2>bc2B.若a>b,c=d则ac>bd C.若ac2>bc2,则a>b D.若a>b,c<d则3.下列不等式变形正确的是()A.由a>b得ac>bc B.由a>b得﹣2a>﹣2b C.由a>b得﹣a<﹣b D.由a>b得a﹣2<b﹣2 4.若a<﹣1,那么不等式(a+1)x>a+1的解集为()二、不等式(组)的解集和整数解1.如图,数轴所表示的不等式的解集是.2.不等式2(1﹣x)<4的解集表示正确的是()A.B.C.D.3.不等式x﹣3≤3x+1的解集在数轴上表示正确的是()A.B.C.D.4.不等式组的解集是()5.不等式11﹣3x>1的所有非负整数解的和为.6.不等式组的最小整数解为()7.不等式组的所有整数解的积是()8.定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集为.三、解不等式(组)1.解不等式,并把解集表示在数轴上.①2x+9≥3(x+2)②③≤﹣12.解不等式组,并把它的解集在数轴上表示出来(注意原点和单位长度的比例).(1)(2)(3)(4)四、可转化为不等式(组)1.“x的2倍与3的差不大于8”列出的不等式是()2.如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围是 .3.若代数式的值不小于1,则t 的取值范围是.4.已知(x﹣2)2+|2x﹣3y﹣m|=0中,y为正数,则m的取值范围为 .5.不等式组的解集为﹣1<x<1,求(a+1)(b+1)的值.6.关于x,y的方程组的解满足x+y>2,求m的取值范围.7.若方程组中,x是正数,y是非正数.求k的正整数解. 五、求不等式(组)中字母的取值范围1.若不等式组的解集为x<5,则m的取值范围是()2.如果不等式组无解,那么m的取值范围是()3.若不等式组的解集是x>4,则n的取值范围是4.若不等式组的解集是x>3,则m的取值范围是.5.若不等式x<a的正整数解有两个,那么a的取值范围是.6.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()7.对于任意实数m、n,定义一种运运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是.六、不等式(组)与一次函数1.函数y=中自变量x的取值范围是()2.如左图,当y>0时,自变量x的取值范围是.3.如中图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为()4.如右图直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为.5.在k=1的条件下求一次函数y=与坐标轴围成的面积.七、不等式(组)应用题1.学校举行百科知识抢答赛,共有20道题,规定每答对一题记10分,答错或放弃记﹣4分,八年级一班代表的得分目标为不低于88分,则这个队至少要答对道题才能达到目标要求.2.出租车的收费标准是:起步价6元(即行驶距离不超过3千米都需付6元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地路程是x千米,出租车费为16.5元,那么x 的最大值是()3.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40% B.33.4% C.33.3% D.30%4.一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:(1)若甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?选1.某校为开展好大课间活动,欲购买单价为20元的排球和单价为80元的篮球共100个.(1)设购买排球数为x(个),购买两种球的总费用为y(元),请你写出y与x的函数关系式(不要求写出自变量的取值范围);(2)如果购买两种球的总费用不超过6620元,并且篮球数不少于排球数的3倍,那么有哪几种购买方案?(3)从节约开支的角度来看,你认为采用哪种方案更合算?选2.学校图书馆准备采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.选3.某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克,乙种原料3千克,可获利700元;生产1件B种产品需甲种原料4千克,乙种原料10千克,可获利1200元.设生产A、B两种产品可获总A种水果/箱B种水果/箱甲店11元17元乙店9元13元利润是y元,其中A种产品的生产件数是x.(1)写出y与x之间的函数关系式;(2)符合题意的生产方案有几种?请你帮忙设计出来;(3)如何安排A、B两种产品的生产件数,使总利润y有最大值,并求出y的最大值.。

初中数学专题复习38

初中数学专题复习38

初中数学专题复习38.含参不等式1.【易】如果3x+2a=x+4的解是负数,则a>2.2.【易】如果5x-2a=8的解是非负数,则a≥-4.3.【易】如果3m(x+1)+1=m(3-x)-5x的解是负数,则m>-4/5.4.【中】如果5ax1/5,则a<1/5.5.【中】如果(m-2)x>m-2的解集为x<1,则m<2.6.【中】如果(a+1)x>a+1的解集为x<1,则a<-1.7.【中】如果(x-m)>2-m的解集是x>2,则m=2.8.【中】如果3(x+4)=2a+5的解大于(4a+1)x(3x-4)=43/77的解,则a>1/2.9.如果(2x+1)/(ax-13)+1>335/3的解集是x<1/16,则a=5.10.【中】如果(1-a)x>2的解集为x1.的不等式2x a a1的解集为x______.答案】a 224.【中】(2012年第二学期期中考试初一数学试卷)若不等式a1x a1的解集为x1,则a的取值范围是________.答案】a1或a 225.【中】(2011年XXX初二下期中)已知不等式x a 的解集为x b,则不等式XXX的解集为________.答案】空集26.【中】(2011年恩施自治州中考)已知不等式x a的解集为x b,则不等式XXX的解集为________.答案】空集27.【易】若不等式x a的解集为x b,则a与b的关系是________.答案】a<b28.【易】若不等式x a的解集为x b,则a与b的关系是________.答案】a>b29.【易】若不等式x a的解集为x b,则a与b的关系是________.答案】a≤b24.如果关于$x$的不等式$(a+b)x+(2a-b)>0$的解集是$x<\frac{b-a}{a+b}$,则关于$x$的不等式$(b-a)x+(a+2b)\leq 0$的解集是$x\geq \frac{-4}{5}$。

初中数学中考专项复习有理数的运算(填空题)复习习题1-100(含答案解析)

初中数学中考专项复习有理数的运算(填空题)复习习题1-100(含答案解析)

初中数学中考专项复习有理数的运算(填空题)复习习题1-100(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.若|x|=4,|y|=5,则x -y 的值为____________.2.若“△”表示一种新运算,规定a △b =a ×b -(a +b ),则2△[(-4)△(-5)]=______. 3.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________. 4.若0abc >,化简a cb abcab c abc+++结果是________. 5.已知|x|=5,|y|=4,且x>y ,则2x +y 的值为____________.6.截止今年4月2日,华为官方应用市场“学习强国”APP 下载量约为88300000次.将数88300000科学记数法表示为_______.7.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.8.若|a|=5,b=﹣2,且ab >0,则a+b=_____. 9.已知,|a|=﹣a ,b b=﹣1,|c|=c ,化简|a+b|﹣|a ﹣c|﹣|b ﹣c|=_____.10.若|3b-1|+(a+3)2=0,则a-b 的倒数是______.11.已知a ,b 为整数,且4ab =,则a b -=________. 12.计算:6﹣(3﹣5)=_____.13.已知a 是最大的负整数,b 是最小的正整数,c 是绝对值最小的数,则(a +c )÷b =___________. 14.计算111111111111111111(1)()(1)()234523456234562345----++++------+++的结果是____.15.定义新运算:a ※b=a 2+b ,例如3※2=32+2=11,已知4※x=20,则x=_____. 16.已知|a|=2,|b|=3,且ab <0,则a+b 的值为_____.17.|﹣7﹣3|=_____.18.计算:23-+=__________.19.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=____.20.如果a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式a2015+2016b+c2017的值为21.若1m+与2-互为相反数,则m的值为_______.22.某公园划船项目收费标准如下:某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为________元.23.按图中程序运算,如果输入−1,则输出的结果是________.24.有三个互不相等的整数a,b,c,如果abc=4,那么a+b+c=__________25.计算(−1.5)3×(−23)2−123×0.62=___________.26.若(2x﹣3)x+5=1,则x的值为________.27.每袋大米以50kg为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际重量是______ kg.28.如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示-1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示-2的点重合…),则数轴上表示-2018的点与圆周上表示数字______的点重合.29.当n 为正整数时,(﹣1)2n+1+(﹣1)2n 的值是_________.30.对于正数x 规定1()1f x x =+,例如:11(3)=134f =+,115()=15615f =+,,则f (2019)+f (2018)+……+f (2)+f (1)+1111()+()++()()2320182019f f f f +L =___________. 31.计算111112612209900++++⋯+的值为__________________. 32.若定义一种新的运算,规定a c b d =ab-cd,则14 23-=_____.33.有一数值转换器,原理如图所示,如果开始输入x 的值是4,则第一次输出的结果是5,第二次输出的结果是8,……,那么第2019次输出的结果是______.34.已知x ,y 都是实数,且y+4,则y x =________.35.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则1(2)?()3a b a b ++- 的值为_____.36.已知a 与b 互为倒数,m 与n 互为相反数,x 的绝对值等于1, 则2014(m+n )﹣2015x 2+2016ab 的值为______.37.亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_____.38.已知4x =,12y =,且0xy <,则x y 的值等于_________.39.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为_____.40.在数1、2、3、4、…、2009、2010的每个数字前添上“+”或“-”,使得算出的结果是一个最小的非负数,请写出符合条件的式子:________. 41.如图为洪涛同学的小测卷,他的得分应是_____分.42.按如图程序输入一个数x ,若输入的数x=﹣1,则输出结果为_________.43.若312m x y +-与432n x y +是同类项,则2017()m n +=______. 44.如图,按下列程序进行计算,经过三次输入,最后输出的数是12,则最初输入的数是 ________.45.已知:|m ﹣n|=n ﹣m ,|m|=4,|n|=3,则 m ﹣n =_______46.如图所示的运算程序中,若开始输入的x 值为64,我们发现第一次输出的结果为32,第二次输出的结果为16,……,则第2019次输出的结果为_____.47.已知a 是质数,b 是奇数,且a 2+b=2009,则a+b=____________。

等式的性质-初中数学习题集含答案

等式的性质-初中数学习题集含答案

等式的性质(北京习题集)(教师版)一.选择题(共6小题)1.(2019秋•海淀区期末)下列等式变形正确的是( ) A .若42x =,则2x =B .若4223x x -=-,则4322x x +=-C .若4(1)32(1)x x +-=+,则4(1)2(1)3x x +++=D .若3112123x x+--=,则3(31)2(12)6x x +--= 2.(2019秋•昌平区期末)下列等式变形正确的是( ) A .如果a b =,那么33a b +=- B .如果375a a -=,那么357a a += C .如果33x =-,那么66x =-D .如果23x =,那么23x =3.(2019秋•顺义区期末)在下列式子中变形正确的是( ) A .如果a b =,那么a c b c +=- B .如果a b =,那么55a b =C .如果42a=,那么2a = D .如果0a b c -+=,那么a b c =+4.(2019秋•海淀区校级期中)下列等式变形不正确的是( ) A .若a b =,则ac bc = B .若a b =,则33a b -=- C .若x y =,则x ya a= D .若b da c=,则bc ad = 5.(2018秋•丰台区校级期中)宋代数学家秦九韶,古希腊数字家海伦在探究三角形面积的求解过程中发现,若一个三角形的三边长分别为a ,b ,c ,设1()2p a b c =++,则这个三角形面积为:S =了严格证明,这个公式叫海伦秦九韶公式,当4a =,5b =,6c =时,三角形边a 上的高等于( )A B C D6.(2009秋•宣武区校级期中)等腰三角形一边长为7,那么这个等腰三角形的腰长为( )A .3.5B .C .3.52D .不能确定二.填空题(共7小题)7.(2016秋•房山区期中)斐波那契(约11701250)-是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花,飞燕草,万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n ]n n-表示.通过计算求出斐波那契数列中的第1个数为,第2个数为.8.(2019秋•通州区期末)我们知道,无限循环小数都可以转化为分数.例如:将0.6转化为分数时,可设0.6x=,则10 6.6x=,1060.6x=+,106x x=+,解得23x=,即20.63=.仿此方法,将0.5化成分数是,将0.45化成分数是.9.(2018秋•朝阳区期末)下面的框图表示了解这个方程的流程在上述五个步骤中依据等式的性质2的步骤有.(只填序号)10.(2016•朝阳区二模)在数学活动课上,老师说有人根据如下的证明过程,得到“12=”的结论.设a、b为正数,且a b=.a b=,2ab b∴=.①222ab a b a∴-=-.②()()()a b a b a b a∴-=+-.③a b a∴=+.④2a a∴=.⑤12∴=.⑥大家经过认真讨论,发现上述证明过程中从某一步开始出现错误,这一步是 (填入编号),造成错误的原因是 .11.(2018春•海淀区期中)如图,在长方形内有两个相邻的正方形A ,B ,正方形A 的面积为2,正方形B 的面积为4,则图中阴影部分的面积是 .12.(2017春•北京期中)定义:对非负实数x “四舍五入”到个位的值记为()z f x ,即:当n 为非负整数时,如果1122n x n -<+,则()z f x n =. 如:(0)(0.48)0z z f f ==,(0.64)(1.49)1z z f f ==,z f (4)(3.68)4z f ==,⋯ 试解决下列问题:①(3)z f = ;②2(33)z f += ; ③222222221111(11)(22)(22)(33)(33)(44)(20172017)(20182018)z z z z z z z z f f f f f f f f +++⋯+++++++++= .13.(2019春•东城区期末)如图,在长方形ABCD 内,两个小正方形的面积分别为1,2,则图中阴影部分的面积等于 .三.解答题(共2小题)14.(2019秋•昌平区期末)观察下列两个等式:22121133-=⨯⨯-,33222155-=⨯⨯-给出定义如下:我们称使等式21a b ab -=-成立的一对有理数a ,b 为“同心有理数对”,记为(,)a b ,如:数对2(1,)3,3(2,)5,都是“同心有理数对”.(1)数对(2,1)-,4(3,)7是“同心有理数对”的是 .(2)若(,3)a 是“同心有理数对”,求a 的值;(3)若(,)m n 是“同心有理数对”,则(,)n m -- “同心有理数对”(填“是”或“不是” ),说明理由. 15.(2017秋•西城区校级期中)小明问小白:“你知道为什么任何无限循环小数都可以写成分数形式吗?”,看着小白一脸的茫然,小明热心地为小白讲解:【小明提出问题】利用一元一次方程将0.7化成分数.【小明的解答】解:设0.7x=.方程两边都乘以10,可得100.710x⨯=.由0.70.777=⋯,可知100.77.77770.7⨯=⋯=+,即710x x+=.(请你体会将方程两边都乘以10起到的作用)可解得79x=,即70.79=.【小明的问题】将0.4写成分数形式.【小白的答案】49.(正确的!)请你仿照小明的方法把下列两个小数化成分数,要求写出利用一元一次方程进行解答的过程:①0.73;②0.432.等式的性质(北京习题集)(教师版)参考答案与试题解析一.选择题(共6小题)1.(2019秋•海淀区期末)下列等式变形正确的是( ) A .若42x =,则2x =B .若4223x x -=-,则4322x x +=-C .若4(1)32(1)x x +-=+,则4(1)2(1)3x x +++=D .若3112123x x+--=,则3(31)2(12)6x x +--= 【分析】根据等式的性质即可解决. 【解答】解:A 、若42x =,则12x =,原变形错误,故这个选项不符合题意; B 、若4223x x -=-,则4322x x +=+,原变形错误,故这个选项不符合题意;C 、若4(1)32(1)x x +-=+,则4(1)2(1)3x x +-+=,原变形错误,故这个选项不符合题意;D 、若3112123x x+--=,则3(31)2(12)6x x +--=,原变形正确,故这个选项符合题意; 故选:D .【点评】本题考查了等式的性质.熟知等式的性质是解题的关键.等式性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.2.(2019秋•昌平区期末)下列等式变形正确的是( ) A .如果a b =,那么33a b +=- B .如果375a a -=,那么357a a += C .如果33x =-,那么66x =-D .如果23x =,那么23x =【分析】根据等式的性质和各个选项中的式子,可以判断是否正确,从而可以解答本题. 【解答】解:如果a b =,那么33a b +=+,故选项A 错误; 如果375a a -=,那么357a a -=,故选项B 错误; 如果33x =-,那么66x =-,故选项C 正确; 如果23x =,那么32x =,故选项D 错误; 故选:C .【点评】本题考查等式的性质,解答本题的关键是明确等式的性质,会用等式的性质解答问题. 3.(2019秋•顺义区期末)在下列式子中变形正确的是( )A .如果a b =,那么a c b c +=-B .如果a b =,那么55a b =C .如果42a=,那么2a = D .如果0a b c -+=,那么a b c =+【分析】根据等式的性质,等式的两边同加或同减同一个整式,可判断A 、D ,根据等式的两边都乘或都除以同一个不为零的整式,可得答案.【解答】解:A 等式的左边加c 右边也加c ,故A 错误;B 等式的两边都除以5,故B 正确;C 两边都乘以2,故C 错误;D 0a b c -+=,a b c =-,故D 错误;故选:B .【点评】本题考查了等式的性质,两边都乘或除以同一个不为零的整式,结果不变,两边都加或都减同一个整式,结果仍是等式.4.(2019秋•海淀区校级期中)下列等式变形不正确的是( ) A .若a b =,则ac bc = B .若a b =,则33a b -=- C .若x y =,则x ya a= D .若b da c=,则bc ad = 【分析】根据等式的性质分别对每一项进行分析,即可得出答案. 【解答】解:A 、若a b =,则ac bc =,变形正确,故本选项正确;B 、若a b =,则33a b -=-,变形正确,故本选项正确;C 、若x y =,则(0)x ya a a=≠,故本选项不正确; D 、若b da c=,则bc ad =,变形正确,故本选项正确; 故选:C .【点评】此题考查了等式的性质,熟练掌握等式的性质是解题的关键;性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.5.(2018秋•丰台区校级期中)宋代数学家秦九韶,古希腊数字家海伦在探究三角形面积的求解过程中发现,若一个三角形的三边长分别为a ,b ,c ,设1()2p a b c =++,则这个三角形面积为:S =了严格证明,这个公式叫海伦秦九韶公式,当4a =,5b =,6c =时,三角形边a 上的高等于( )A B C D 【分析】先根据三角形的三边长求出p 的值,然后再代入三角形面积公式中计算面积,然后求得a 上的高即可. 【解答】解:由题意,得:4a =,5b =,6c =; 115()22p a b c ∴=++=;S∴===设a边上的高为h,则12ah s=22424sha∴===,故选:A.【点评】此题考查代数式求值以及二次根式的混合运算,读懂题意,弄清海伦公式的计算方法是解答此题的关键6.(2009秋•宣武区校级期中)等腰三角形一边长为7,那么这个等腰三角形的腰长为() A.3.5B.C.3.52D.不能确定【分析】已知条件中,本题没有明确说明已知的边长是否是腰长,所以有两种情况讨论,再根据三角形的周长公式进行解答,然后进行判定能否组成三角形,即可求出答案.【解答】解:①底边长为72 3.5-÷=+,所以另两边的长为3.53.5+能构成三角形;②腰长为77-,底边长为7,另一个腰长7,不能构成三角形.因此另两边长为3.5故选:A.【点评】本题考查了二次根式的应用;解题的关键是根据等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要.二.填空题(共7小题)7.(2016秋•房山区期中)斐波那契(约11701250)-是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花,飞燕草,万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n]n n-表示.通过计算求出斐波那契数列中的第1个数为1,第2个数为.【分析】分别把1、2代入式子化简求得答案即可. 【解答】解:第1个数,当1n =1515[(()]5n n +--1515(5+-=- 55=1=.第2个数,当2n =1515[((]5n n+--221515[()()]5+-=-15151515((5+-+-=⨯155=1=,故答案为:1,1【点评】此题考查二次根式的混合运算与化简求值,理解题意,找出运算的方法是解决问题的关键.8.(2019秋•通州区期末)我们知道,无限循环小数都可以转化为分数.例如:将0.6转化为分数时,可设0.6x =,则10 6.6x =,1060.6x =+,106x x =+,解得23x =,即20.63=.仿此方法,将0.5化成分数是 59 ,将0.45化成分数是 .【分析】设0.5x =①,根据等式性质得:1050.5x =+②,再由②-①得方程105x x -=,解方程即可; 设0.45x =①,根据等式性质得:100450.45x =+②,再由②-①得方程10045x x -=,解方程即可. 【解答】解:设0.5x =①,根据等式性质,得: 10 5.5x =,即1050.5x =+②, 由②-①得:105x x -=,解方程得:59x=.设0.45x=①,根据等式性质,得:10045.45x=,即100450.45x=+②,由②-①得:10045x x-=,即:9945x=,解方程得:511x=.故答案为:59,511.【点评】此题主要考查了一元一次方程的应用,解题的关键是正确理解题意,看懂例题的解题方法.9.(2018秋•朝阳区期末)下面的框图表示了解这个方程的流程在上述五个步骤中依据等式的性质2的步骤有①⑤.(只填序号)【分析】等式两边乘同一个数或除以一个不为零的数,结果仍得等式,依据性质2进行判断即可.【解答】解:去分母时,在方程两边同时乘上12,依据为:等式的性质2;系数化为1时,在等式两边同时除以28,依据为:等式的性质2;故答案为:①⑤.【点评】本题主要考查了等式的基本性质,等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式.10.(2016•朝阳区二模)在数学活动课上,老师说有人根据如下的证明过程,得到“12=”的结论.设a、b为正数,且a b=.a b=,2ab b ∴=. ① 222ab a b a ∴-=-. ②()()()a b a b a b a ∴-=+-. ③a b a ∴=+. ④ 2a a ∴=. ⑤12∴=. ⑥大家经过认真讨论,发现上述证明过程中从某一步开始出现错误,这一步是 ④ (填入编号),造成错误的原因是 .【分析】根据等式的性质:等式的两边都乘以(或除以)同一个不为零的整式,结果不变,可得答案. 【解答】解:由a b =,得0a b -=.两边都除以()a b -无意义.故答案为:④;等式两边除以零,无意义.【点评】本题考查了等式的性质,等式的两边都乘以(或除以)同一个不为零的整式,结果不变.11.(2018春•海淀区期中)如图,在长方形内有两个相邻的正方形A ,B ,正方形A 的面积为2,正方形B 的面积为4,则图中阴影部分的面积是 222- .【分析】设两个正方形A ,B 的边长是x 、()y x y <,得出方程22x =,24y =,求出2x 2y =,代入阴影部分的面积是()y x x -求出即可.【解答】解:设两个正方形A ,B 的边长是x 、()y x y <, 则22x =,24y =, 2x 2y =,则阴影部分的面积是()(22)2222y x x -=, 故答案为:22.【点评】本题考查了二次根式的应用、算术平方根性质的应用,主要考查学生的计算能力.12.(2017春•北京期中)定义:对非负实数x “四舍五入”到个位的值记为()z f x ,即:当n 为非负整数时,如果1122n x n -<+,则()z f x n =. 如:(0)(0.48)0z z f f ==,(0.64)(1.49)1z z f f ==,z f (4)(3.68)4z f ==,⋯ 试解决下列问题:①z f = 2 ;②z f = ; 222222211111)(22)(22)(33)(33)(44)(20172017)(20182018)z z z z z z z f f f f f f f +++⋯++++++++= .【分析】①②需要推导出通项f 12n +和12n -的大小关系,再按定义来化简所求的式子即可;③根据②推导出的通项f 等于什么,化简③的式子,再利用裂项法可解. 【解答】解:①按照定义,当1122n x n -<+,则()z f x n =. 112222-<+∴2z f =.②根据题意,需要推导出通项f 等于什么, 22211()42n n n n n +<++=+,∴12n +,12n -的大小关系, 平方法比较大小,2n n +与21()2n -,再作差:2211()224n n n n +--=-,n 为非负整数, ∴1204n ->, ∴221()2n n n +>-,∴12n -,综上所述,1122n n ->+,∴z f n =,∴2(33)3z f +=.③原式11111111111120171112233420172018223342017201820182018=+++⋯+=-+-+-+⋯+-=-=⨯⨯⨯⨯. 故答案为:①2;②3;③20172018. 【点评】本题考查了新定义类习题和裂项法等知识点,新定义类习题需要按照定义来分析对照题目中的数据,套用所给的公式化简计算即可.13.(2019春•东城区期末)如图,在长方形ABCD 内,两个小正方形的面积分别为1,2,则图中阴影部分的面积等于21- .【分析】由两个小正方形的面积分别为1,2,得出其边长分别为12则阴影部分合起来是长等于1,宽等于(21)的长方形,从而可得答案.【解答】解:面积为221, 则阴影部分面积为:(21)121⨯=- 21.【点评】本题考查了二次根式在面积计算中的应用,本题属于基础题,难度不大. 三.解答题(共2小题)14.(2019秋•昌平区期末)观察下列两个等式:22121133-=⨯⨯-,33222155-=⨯⨯-给出定义如下:我们称使等式21a b ab -=-成立的一对有理数a ,b 为“同心有理数对”,记为(,)a b ,如:数对2(1,)3,3(2,)5,都是“同心有理数对”.(1)数对(2,1)-,4(3,)7是“同心有理数对”的是 4(3,)7.(2)若(,3)a 是“同心有理数对”,求a 的值;(3)若(,)m n 是“同心有理数对”,则(,)n m -- “同心有理数对”(填“是”或“不是” ),说明理由. 【分析】(1)根据:使等式21a b ab -=-成立的一对有理数a ,b 为“同心有理数对”,判断出数对(2,1)-,4(3,)7是“同心有理数对”的是哪个即可.(2)根据(,3)a 是“同心有理数对”,可得:361a a -=-,据此求出a 的值是多少即可.(3)根据(,)m n 是“同心有理数对”,可得:21m n mn -=-,据此判断出(,)n m --是不是同心有理数对即可.【解答】解:(1)213--=-,2(2)115⨯-⨯-=-,35-≠-,∴数对(2,1)-不是“同心有理数对”;417377-=,41723177⨯⨯-=, 44323177∴-=⨯⨯-, 4(3,)7∴是“同心有理数对”, ∴数对(2,1)-,4(3,)7是“同心有理数对”的是4(3,)7.(2)(,3)a 是“同心有理数对”. 361a a ∴-=-,∴25a =-.(3)(,)m n 是“同心有理数对”, 21m n mn ∴-=-.()21n m n m m n mn ∴---=-+=-=-,(,)n m ∴--是“同心有理数对”. 故答案为:4(3,)7;是.【点评】此题主要考查了等式的性质,以及同心有理数对的含义和判断,要熟练掌握.15.(2017秋•西城区校级期中)小明问小白:“你知道为什么任何无限循环小数都可以写成分数形式吗?”,看着小白一脸的茫然,小明热心地为小白讲解:【小明提出问题】利用一元一次方程将0.7化成分数.【小明的解答】解:设0.7x =.方程两边都乘以10,可得100.710x ⨯=.由0.70.777=⋯,可知100.77.77770.7⨯=⋯=+,即710x x +=.(请你体会将方程两边都乘以10起到的作用)可解得79x =,即70.79=. 【小明的问题】将0.4写成分数形式. 【小白的答案】49.(正确的!) 请你仿照小明的方法把下列两个小数化成分数,要求写出利用一元一次方程进行解答的过程:①0.73;②0.432. 【分析】①设0.73m =,程两边都乘以100,转化为73100m m +=,求出其解即可. ②设0.432n =,程两边都乘以100,转化为430.2100n +=,求出其解即可. 【解答】解:①设0.73m =,方程两边都乘以100,可得1000.73100m ⨯=.由0.730.7373=⋯,可知1000.7373.7373730.73⨯=⋯=+; 即73100m m +=, 可解得7399m =, 即730.7399=. ②设0.432n =,方程两边都乘以100,可得1000.432100n ⨯=. 43.2100n ∴=. 20.29=, 2431009n ∴+= 389900n =3890.432900∴=. 【点评】本题考查了无限循环小数转化为分数的运用,运用一元一次方程解实际问题的运用,解答时根据等式的性质变形建立方程是解答的关键.。

专题2.1不等式的性质及常见不等式解法(精讲)(解析版)

专题2.1不等式的性质及常见不等式解法(精讲)(解析版)

专题2.1不等式的性质及常见不等式解法(精讲)(解析版)专题2.1 不等式的性质及常见不等式解法【考纲要求】1.不等关系:了解现实世界和⽇常⽣活中的不等关系,了解不等式(组)的实际背景.2.⼀元⼆次不等式:(1)会从实际情境中抽象出⼀元⼆次不等式模型.(2)通过函数图像了解⼀元⼆次不等式与相应的⼆次函数、⼀元⼆次⽅程的联系.(3)会解⼀元⼆次不等式.3.会解|x+b|≤c,|x+b|≥c,|x-a|+|x-b|≥c,|x-a|+|x-b|≤c 型不等式.4.掌握不等式||a|-|b||≤|a+b|≤|a|+|b|及其应⽤.5.培养学⽣的数学抽象、数学运算、数学建模、逻辑推理等核⼼数学素养.【知识清单】1.实数的⼤⼩(1)数轴上的任意两点中,右边点对应的实数⽐左边点对应的实数⼤.(2)对于任意两个实数a和b,如果a-b是正数,那么a>b;如果a-b是负数,那么a2.不等关系与不等式我们⽤数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表⽰它们之间的不等关系,含有这些符号的式⼦,叫做不等式.3.不等式的性质(1)性质1:如果a>b,那么b如果bb.即a>b?b(2)性质2:如果a>b,b>c,那么a>c.即a>b,b>c?a>c.(3)性质3:如果a>b,那么a+c>b+c.(4)性质4:①如果a>b,c>0那么ac>bc.②如果a>b,c<0,那么ac(5)性质5:如果a>b,c>d,那么a+c>b+d.(6)性质6:如果a >b >0,c >d >0,那么ac >bd . (7)性质7:如果a >b >0,那么a n >b n ,(n ∈N ,n ≥2). (8)性质8:如果a >b >0,那么n a >nb ,(n ∈N ,n ≥2). 4.⼀元⼆次不等式的概念及形式(1)概念:我们把只含有⼀个未知数,并且知数的最⾼次数是2的不等式,称为⼀元⼆次不等式. (2)形式:①ax 2+bx +c >0(a ≠0);②ax 2+bx +c ≥0(a ≠0);③ax 2+bx +c <0(a ≠0);④ax 2+bx +c ≤0(a ≠0).(3)⼀元⼆次不等式的解集的概念:⼀般地,使某个⼀元⼆次不等式成⽴的x 的值叫做这个不等式的解,⼀元⼆次不等式的所有解组成的集合叫做这个⼀元⼆次不等式的解集. 5.分式不等式的解法定义:分母中含有未知数,且分⼦、分母都是关于x 的多项式的不等式称为__分式不等式__. f (x )g (x )>0?f (x )g (x )__>__0,f (x )g (x )<0?f (x )·g (x )__<__0. f (x )g (x )≥0??f (x )g (x ) ≥ 0,g (x )≠0. ?f (x )·g (x )__>__0或?f (x )=0g (x )≠0.f (x )g (x )≤0f (x )·g (x ) ≤ 0,g (x )≠0?f (x )·g (x )__<__0或?f (x )=0g (x )≠0. 6.简单的⾼次不等式的解法⾼次不等式:不等式最⾼次项的次数⾼于2,这样的不等式称为⾼次不等式. 解法:穿根法①将f (x )最⾼次项系数化为正数;②将f (x )分解为若⼲个⼀次因式的积或⼆次不可分因式的积;③将每⼀个⼀次因式的根标在数轴上,⾃上⽽下,从右向左依次通过每⼀点画曲线(注意重根情况,偶次⽅根穿⽽不过,奇次⽅根穿过);④观察曲线显现出的f (x )的值的符号变化规律,写出不等式的解集. 7.不等式恒成⽴问题 1.⼀元⼆次不等式恒成⽴问题(1)ax 2+bx +c >0(a ≠0)恒成⽴(或解集为R )时,满⾜ a >0Δ<0;(2)ax 2+bx +c ≥0(a ≠0)恒成⽴(或解集为R )时,满⾜a >0Δ≤0;(3)ax 2+bx +c <0(a ≠0)恒成⽴(或解集为R )时,满⾜a <0Δ<0;(4)ax 2+bx +c ≤0(a ≠0)恒成⽴(或解集为R )时,满⾜?a <0Δ≤0.2.含参数的⼀元⼆次不等式恒成⽴.若能够分离参数成k f (x )形式.则可以转化为函数值域求解.设f (x )的最⼤值为M ,最⼩值为m .(1)k f (x )恒成⽴?k >M ,k ≥f (x )恒成⽴?k ≥M . 8.绝对值不等式的解法1.形如|ax +b|≥|cx+d|的不等式,可以利⽤两边平⽅的形式转化为⼆次不等式求解. 2.形如|ax +b|≤c(c>0)和|ax +b|≥c(c>0)型不等式 (1)绝对值不等式|x|>a 与|x|(2)|ax +b|≤c(c>0)和|ax +b|≥c(c>0)型不等式的解法|ax +b|≤c ?-c≤ax +b≤c (c>0),|ax +b|≥c ?ax +b≥c 或ax +b≤-c(c>0). 9.绝对值不等式的应⽤如果a ,b 是实数,那么|a +b|≤|a|+|b|,当且仅当ab≥0时,等号成⽴.【考点梳理】考点⼀:⽤不等式表⽰不等关系【典例1】某种杂志原以每本2.5元的价格销售,可以售出8万本.根据市场调查,若单价每提⾼0.1元,销售量就可能相应减少2 000本,若把提价后杂志的定价设为x 元,怎样⽤不等式表⽰销售的总收⼊仍不低于20万元?【答案】见解析【解析】提价后杂志的定价为x 元,则销售的总收⼊为(8-x -2.50.1×0.2)x 万元,那么不等关系“销售的收⼊不低于20万元”⽤不等式可以表⽰为:(8-x -2.50.1×0.2)x ≥20.【规律总结】⽤不等式(组)表⽰实际问题中不等关系的步骤:①审题.通读题⽬,分清楚已知量和待求量,设出待求量.找出体现不等关系的关键词:“⾄少”“⾄多”“不少于”“不多于”“超过”“不超过”等.②列不等式组:分析题意,找出已知量和待求量之间的约束条件,将各约束条件⽤不等式表⽰.【变式探究】某钢铁⼚要把长度为4 000 mm 的钢管截成500 mm 和600 mm 两种,按照⽣产的要求,600 mm 钢管的数量不能超过500 mm 钢管的3倍.试写出满⾜上述所有不等关系的不等式.【答案】见解析【解析】分析:应先设出相应变量,找出其中的不等关系,即①两种钢管的总长度不能超过4 000 mm ;②截得600 mm 钢管的数量不能超过500 mm 钢管数量的3倍;③两种钢管的数量都不能为负.于是可列不等式组表⽰上述不等关系.详解:设截得500 mm 的钢管x 根,截得600 mm 的钢管y 根,依题意,可得不等式组:500x +600y ≤4 0003x ≥yx ≥0y ≥0,即5x +6y ≤403x ≥y x ≥0y ≥0考点⼆:⽐较数或式⼦的⼤⼩【典例2】(1)⽐较x 2+y 2+1与2(x +y -1)的⼤⼩; (2)设a ∈R 且a ≠0,⽐较a 与1a 的⼤⼩.【答案】见解析【解析】 (1)x 2+y 2+1-2(x +y -1)=x 2-2x +1+y 2-2y +2=(x -1)2+(y -1)2+1>0,∴x 2+y 2+1>2(x +y -1). (2)由a -1a =(a -1)(a +1)a当a =±1时,a =1a;当-1<a <0或a >1时,a >1a ;当a <-1或0<a <1时,a <1a.【领悟技法】 1.⽐较⼤⼩的常⽤⽅法 (1)作差法⼀般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采⽤配⽅、因式分解、通分、有理化等⽅法把差式变成积式或者完全平⽅式.当两个式⼦都为正数时,有时也可以先平⽅再作差. (2)作商法⼀般步骤:①作商;②变形;③判断商与1的⼤⼩关系;④结论. (3)函数的单调性法将要⽐较的两个数作为⼀个函数的两个函数值,根据函数的单调性得出⼤⼩关系.【变式探究】已知x <y <0,⽐较(x 2+y 2)(x -y )与(x 2-y 2)(x +y )的⼤⼩.【答案】见解析【解析】∵x <y <0,xy >0,x -y <0,∴(x 2+y 2)(x -y )-(x 2-y 2)(x +y )=-2xy (x -y )>0,∴(x 2+y 2)(x -y )>(x 2-y 2)(x +y ).考点三:不等式性质的应⽤【典例3】(2020·⿊龙江省佳⽊斯⼀中⾼⼀期中(理))对于任意实数a b c d ,,,,下列正确的结论为()A .若,0a b c >≠,则ac bc >;B .若a b >,则22ac bc >;C .若a b >,则11a b <; D .若0a b <<,则b a a b<.【答案】D 【解析】A :根据不等式的基本性质可知:只有当0c >时,才能由a b >推出ac bc >,故本选项结论不正确;B :若0c时,由a b >推出22ac bc =,故本选项结论不正确;C :若3,0a b ==时,显然满⾜a b >,但是1b没有意义,故本选项结论不正确; D :22()()b a b a b a b a a b ab ab-+--==,因为0a b <<,所以0,0,0b a ab a b ->>+<,因此0b a b aa b a b-【典例4】若a =ln33,b =ln44,c =ln55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c 【答案】B【解析】⽅法⼀易知a ,b ,c 都是正数, b a =3ln44ln3=log 8164<1,所以a >b ; b c =5ln44ln5=log 6251 024>1,所以b >c .即c <b <a . ⽅法⼆对于函数y =f (x )=ln xx ,y ′=1-ln x x2,易知当x >e 时,函数f (x )单调递减.因为e <3<4<5,所以f (3)>f (4)>f (5),即c <b <a .【典例5】设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4”,则f (-2)的取值范围是.【答案】[5,10]【解析】⽅法⼀(待定系数法)设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数),则4a -2b =m (a -b )+n (a +b ),即4a -2b =(m +n )a +(n -m )b ,于是得 m +n =4,n -m =-2,解得?m =3,n =1.所以f (-2)=3f (-1)+f (1).⼜因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,即5≤f (-2)≤10. ⽅法⼆(解⽅程组法)由?f (-1)=a -b ,f (1)=a +b ,a =12[f (-1)+f (1)],b =12[f (1)-f (-1)].所以f (-2)=4a -2b =3f (-1)+f (1).⼜因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.【规律总结】1.判断不等式的真假.(1)⾸先要注意不等式成⽴的条件,不要弱化条件.(2)解决有关不等式选择题时,也可采⽤特值法进⾏排除,注意取值要遵循以下原则:⼀是满⾜题设条件;⼆是取值要简单,便于验证计算.(3)若要判断某结论正确,应说明理由或进⾏证明,推理过程应紧扣有关定理、性质等,若要说明某结论错误,只需举⼀反例. 2.证明不等式(1)要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应⽤.(2)应⽤不等式的性质进⾏推证时,应注意紧扣不等式的性质成⽴的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则. 3.求取值范围(1)建⽴待求范围的代数式与已知范围的代数式的关系,利⽤不等式的性质进⾏运算,求得待求的范围. (2)同向(异向)不等式的两边可以相加(相减),这种转化不是等价变形,如果在解题过程中多次使⽤这种转化,就有可能扩⼤其取值范围.4.掌握各性质的条件和结论.在各性质中,乘法性质的应⽤最易出错,即在不等式的两边同时乘(除)以⼀个数时,必须能确定该数是正数、负数或零,否则结论不确定.【变式探究】1.(2020·陕西省西安中学⾼⼆期中(⽂))已知0a b <<,则下列不等式成⽴的是() A .22a b < B .2a ab <C .11a b< D .1b a< 【答案】D 【解析】22a b -=22)()0,,a b a b a b +->∴>(所以A 选项是错误的. 2a ab -=2()0,.a a b a ab ->∴>所以B 选项是错误的.11a b -=110,.b a ab a b ->∴>所以C 选项是错误的. 1b a -=0, 1.b a b a a -<∴<所以D 选项是正确的. D 故选:.2. (2020·江西省崇义中学⾼⼀开学考试(⽂))下列结论正确的是() A .若ac bc >,则a b >B .若88a b >,则a b >C .若a b >,0c <,则ac bc <D【答案】C 【解析】对于A 选项,若0c <,由ac bc >,可得a b <,A 选项错误;对于B 选项,取2a =-,1b =,则88a b >满⾜,但a b <,B 选项错误;对于C 选项,若a b >,0c <,由不等式的性质可得ac bc <,C 选项正确;对于D ,D 选项错误.故选:C. 3.已知12b的取值范围.【错解】∵123.【辨析】错解中直接将12b 的取值范围⽽致错.【正解】∵1515.⼜12b <4.【易错警⽰】错⽤不等式的性质致错. 考点四:⼀元⼆次不等式的解法【典例6】(2020·全国⾼考真题(⽂))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =()A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,⼜因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D. 【规律⽅法】1.解⼀元⼆次不等式的⼀般步骤(1)化:把不等式变形为⼆次项系数⼤于零的标准形式. (2)判:计算对应⽅程的判别式.(3)求:求出对应的⼀元⼆次⽅程的根,或根据判别式说明⽅程有没有实根. (4)写:利⽤“⼤于取两边,⼩于取中间”写出不等式的解集. 2.含有参数的不等式的求解,往往需要对参数进⾏分类讨论.(1)若⼆次项系数为常数,⾸先确定⼆次项系数是否为正数,再考虑分解因式,对参数进⾏分类讨论,若不易分解因式,则可依据判别式符号进⾏分类讨论.(2)若⼆次项系数为参数,则应先考虑⼆次项系数是否为零,确定不等式是不是⼆次不等式,然后再讨论⼆次项系数不为零的情形,以便确定解集的形式. (3)对⽅程的根进⾏讨论,⽐较⼤⼩,以便写出解集.【易错警⽰】忽视⼆次项系数的符号致误【变式探究】1.(2019·全国⾼考真题(理))已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ?=()A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C 【解析】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ?=-<<.故选C .2. (2020·⿊龙江省⼤庆实验中学⾼三⼀模(⽂))已知集合1|03x A x x -?=≥??-??,集合{|15}B x N x =∈-≤≤,则A B =()A .{0,1,4,5}B .{0,1,3,4,5}C .{1,0,1,4,5}-D .{1,3,4,5}【答案】A 【解析】因为集合{1|033x A x x x x -?=≥=??-??或}1x ≤,集合{|15}{0,1,2,3,4,5}B x N x =∈-≤≤=,所以A B ={0,1,4,5}.故选:A考点五:绝对值不等式的解法【典例7】(2020·江苏省⾼考真题)设x ∈R ,解不等式2|1|||4x x ++<.【答案】2(2,)3- 【解析】1224x x x <-??---?++21x ∴-<<-或10x -≤≤或203x <<所以解集为:2(2,)3-【典例8】(2020·周⼝市中英⽂学校⾼⼆⽉考(⽂))(1)求不等式|x -1|+|x +2|≥5的解集;(2)若关于x 的不等式|ax -2|<3的解集为51|33x x ?-<,求a 的值.【答案】(1) {x |x ≤-3或x ≥2} (2) a =-3 【解析】(1)当x <-2时,不等式等价于-(x -1)-(x +2)≥5,解得x ≤-3;当-2≤x <1时,不等式等价于-(x -1)+(x +2)≥5,即3≥5,⽆解;当x ≥1时,不等式等价于x -1+x +2≥5,解得x ≥2. 综上,不等式的解集为{x |x ≤-3或x ≥2}. (2)∵|ax -2|<3,∴-10时,15x a a -<< , 153a -=-,且513a =⽆解;当a =0时,x ∈R ,与已知条件不符;当a <0时,51x a a <<-,553a =-,且113a -=, 解得a =-3. 【规律⽅法】形如|x -a|+|x -b|≥c(或≤c)型的不等式主要有三种解法:(1)分段讨论法:利⽤绝对值号内式⼦对应⽅程的根,将数轴分为(-∞,a],(a ,b],(b ,+∞)(此处设ac(c>0)的⼏何意义:数轴上到点x 1=a 和x 2=b 的距离之和⼤于c 的全体,|x -a|+|x -b|≥|x-a -(x -b)|=|a -b|.(3)图象法:作出函数y 1=|x -a|+|x -b|和y 2=c 的图象,结合图象求解.【变式探究】1.(2017天津,⽂2)设x ∈R ,则“20x -≥”是“|1|1x -≤”的()(A )充分⽽不必要条件(B )必要⽽不充分条件(C )充要条件(D )既不充分也不必要条件【答案】B【解析】20x -≥,则2x ≤,11x -≤,则111,02x x -≤-≤≤≤,{}{}022x x x x ≤≤?≤ ,据此可知:“20x -≥”是“11x -≤”的的必要的必要不充分条件,本题选择B 选项. 2.(2014·⼴东⾼考真题(理))不等式的解集为 .【答案】(][),32,-∞-?+∞. 【解析】令()12f x x x =-++,则()21,2{3,2121,1x x f x x x x --<-=-≤≤+>,(1)当2x <-时,由()5f x ≥得215x --≥,解得3x ≤-,此时有3x ≤-;(2)当21x -≤≤时,()3f x =,此时不等式⽆解;(3)当1x >时,由()5f x ≥得215x +≥,解得2x ≥,此时有2x ≥;综上所述,不等式的解集为(][),32,-∞-?+∞. 考点六:绝对值不等式的应⽤如果a ,b 是实数,那么|a +b|≤|a|+|b|,当且仅当ab ≥0时,等号成⽴.【典例9】(2020·陕西省西安中学⾼⼆期中(理))已知不等式53m x x ≤-+-对⼀切x ∈R 恒成⽴,则实数m 的取值范围为() A .2m ≤B .2m ≥C .8m ≤-D .8m ≥-【答案】A【解析】()()-+-≥---=,∴根据题意可得2x x x x53532m≤.故选:A【典例10】(2018年理新课标I卷)已知.(1)当时,求不等式的解集;(2)若时不等式成⽴,求的取值范围.【答案】(1).(2).【解析】分析:(1)将代⼊函数解析式,求得,利⽤零点分段将解析式化为,然后利⽤分段函数,分情况讨论求得不等式的解集为;(2)根据题中所给的,其中⼀个绝对值符号可以去掉,不等式可以化为时,分情况讨论即可求得结果.(2)当时成⽴等价于当时成⽴.若,则当时;若,的解集为,所以,故.综上,的取值范围为.【总结提升】1.两类含绝对值不等式的证明问题⼀类是⽐较简单的不等式,往往可通过平⽅法、换元法去掉绝对值符号转化为常见的不等式证明题,或利⽤绝对值三⾓不等式性质定理:||a|-|b||≤|a±b|≤|a|+|b|,通过适当的添、拆项证明;另⼀类是综合性较强的函数型含绝对值的不等式,往往可考虑利⽤⼀般情况成⽴,则特殊情况也成⽴的思想,或利⽤⼀元⼆次⽅程的根的分布等⽅法来证明.2.含绝对值不等式的应⽤中的数学思想(1)利⽤“零点分段法”求解,体现了分类讨论的思想;(2)利⽤函数的图象求解,体现了数形结合的思想.3.求f(x)=|x+a|+|x+b|和f(x)=|x+a|-|x+b|的最值的三种⽅法(1)转化法:转化为分段函数进⽽利⽤分段函数的性质求解.(2)利⽤绝对值三⾓不等式进⾏“求解”,但要注意两数的“差”还是“和”的绝对值为定值. (3)利⽤绝对值的⼏何意义. 【变式探究】1.(2020·宁夏回族⾃治区⾼三其他(理))已知函数()|21||2|f x x x =-+-. (1)若()4f x <,求实数x 的取值范围;(2)若对于任意实数x ,不等式()|21|f x a >-恒成⽴,求实数a 的值范围.【答案】(1) 17,33??- ;(2) 15,44??-【解析】(1)由题,()133,211,2233,2x x f x x x x x ?-+≤??=+<-≥;当12x ≤时,334x -+<,解得1132x -<≤;当122x <<时,14x +<恒成⽴,解得122x <<;当2x ≥时,334x -<,解得723x ≤<.综上有3 137x -<<.故实数x 的取值范围为17,33??-(2)因为()133,211,2233,2x x f x x x x x ?-+≤??=+<-≥,当12x ≤时,()1322f x f ??≥= ;当122x <<时,()332f x <<;当2x ≥时,()()23f x f ≥=. 故()f x 的最⼩值为3 2.故3212a -<,即332122a -<-<,解得1544a -<<.故实数a 的值范围为15,44??-2.已知函数f(x)=|x?1|.(1)解不等式f(x)+f(x+4)≥8;(2)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f(ba).【答案】(1) {x|x≤?5或x≥3} (2)见解析【解析】(1)f(x)+f(x+4)=|x?1|+|x+3|={?2x?2,x1,当x当?3≤x≤1时,f(x)≥8不成⽴;当x>1时,由2x+2≥8,解得x≥3.所以不等式f(x)+f(x+4)≥8的解集为{x|x≤?5或x≥3}.(2)f(ab)>|a|f(ba),即|ab?1|>|a?b|.因为|a|<1,|b|<1,所以|ab?1|2?|a?b|2=(a2b2?2ab+1)?(a2?2ab+b2)=(a2?1)(b2?1)>0,所以|ab?1|>|a?b|,故所证不等式成⽴.。

人教版初一七年级上册数学 课时练《 等式的性质》02(含答案)

人教版初一七年级上册数学 课时练《 等式的性质》02(含答案)

人教版七年级上册数学《3.1.2等式的性质》课时练一、单选题1.已知x =y ,则下列等式不一定成立的是()A .x ﹣k =y ﹣kB .x+2k =y+2kC .x y k k=D .kx =ky2.运用等式的性质变形,正确的是()A .如果a b =,那么a c b c +=-B .如果a bc c=,那么a b =C .如果a b =,那么a b c c=D .如果3a =那么223a a =3.下列各式进行的变形中,不正确的是()A .若32a b =,则3222a b +=+B .若32a b =,则3525a b -=-C .若32a b =,则23a b =D .若32a b =,则94a b=4.已知等式3a =2b +5,则下列等式不一定成立的是()A .3a ﹣5=2bB .3a +1=2b +6C .3ac =2bcD .a =2533b +5.下列说法正确的是()A .如果a =b ,那么a +3=b ﹣3B .如果a =b ,那么3a ﹣1=2b ﹣1C .如果a =b ,那么a b c c=D .如果a =b ,那么ac =bc6.如果关于y 的方程6743n y y m -=-的解是1,则m 和n 应满足的关系为()A .21m n +=B .21m n -=C .21m n +=-D .3611m n +=7.下列根据等式的性质变形不正确的是()A .由x+2=y+2,得到x=yB .由2a ﹣3=b ﹣3,得到2a=bC .由cx=cy ,得到x=yD .由x=y ,得到2211x yc c =++8.下列说法正确的是()A .如果a b =,那么a c b c +=-B .如果a b =,那么a b =C .如果a b =,那么a b c c=D .如果x y =,那么22x y =9.利用等式的性质解方程2x+1=2的结果是()A .x =2B .x =-2C .x =4D .x =-410.下列方程的变形,符合等式的性质的是()A .由2x -3=7,得2x =7-3B .由3x -2=x +1,得3x -x =1-2C .由-2x =5,得x =5+2D .由-13x =1,得x =-3二、填空题11.如果34x x =-+,那么3x +________4=.12.在等式286x x -=-的两边同时加上______得到314x =.13.利用等式的基本性质填空,并说明运用了等式的哪条基本性质.(1)如果3x +7=8,那么3x =8-________;(2)如果2x =5-3x ,那么2x +________=5;(3)如果2x =10,那么x =________.14.如果-10m =5n,那么m =______,理由:根据等式的性质_____,在等式两边____三、解答题15.不论x 取何值,等式2ax +b =4x -3总成立,求a +b 的值.16.利用等式的性质解下列方程:(1)4311x +=;(2)5632y y -=+;(3)4521963y -=;(4)895y y -=-.17.设某数为x ,根据下列条件列方程并解方程.(1)某数的4倍是它的3倍与7的差;(2)某数的75%与-2的差等于它的一半;(3)某数的34与5的差等于它的相反数.18.已知梯形的面积公式为S=()2a b h+.(1)把上述的公式变形成已知S ,a ,b ,求h 的公式.(2)若a :b :S=2:3:4,求h 的值.参考答案1.C2.B3.D4.C5.D6.D7.C8.D9.A10.D 11.x12.x+813.(1)7,等式的基本性质1;(2)3x,等式的基本性质1;(3)5,等式的基本性质2. 14.-2n2都乘-1015.-1.【解析】∵不论x取何值,等式2ax+b=4x-3总成立,∴当x=0时,b=-3;当x=1时,a=2,即a=2,b=-3,∴a+b=2+(-3)=-1.16.(1)x=73;(2)y=4;(3)458y=;(4)y=-3.【解析】(1)等式两边同时减4得:3x=7,等式两边同时除以3得x=7 3;(2)等式两边同时减3y再加6得:2y=8,等式两边同时除以2得y=4;(3)等式两边同时加56得:4592y=,等式两边同时乘以94得458y=;(4)等式两边同时加上5y得:-3y=9,等式两边同时除以-3得y=-3.17.(1)4x=3x-7,x=-7;(2)75%x-(-2)=12x,x=-8;(3)34x-5=-x,x=20 7 .【解析】(1)4x=3x-7,解得x=-7,(2)75%x-(-2)=12x,解得x=-8,(3)34x-5=-x,解得x=207.18.(1)h=2Sa b+;(2)h=8 5 .【解析】(1)∵S=()2a b h+,∴2S=(a+b)h,∴h=2sa b+;(2)∵a:b:S=2:3:4,∴设a=2x,b=3x,S=4x,∴h=2sa b+=24xa b´+=85.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等式和它的性质
学习目标
1.理解等式的意义,并能举出有关等式的例子;
2.掌握等式的性质,会用等式的两条性质将等式变形,并能对变形说明理由;
3.通过应用等式的两条性质将等式变形,培养学生的计算能力.
知识讲解
一、重点、难点分析
本节教学的重点是熟练应用等式的性质进行等式的变形,难点是理解等式的两条性质.等式的变形建立在有理数的运算及整式的加减运算基础上,熟练地进行整式变形是进一步学习一元一次方程的解法等后继知识的前提.整式变形的理论基础是等式的性质.1.等式的定义从形式上确认了等式一定要含有等号,其中等号两边的式子分别称为等式的左边、右边.从内容上等式表示了数量之间的相等关系.
2.等式与代数式的区别体现在代数式不含等号,而等式一定有等号上.
3.等式的性质中强调两个“同”,一个是“等式两边同时”,一个是“加上同一个数”.有了这两个“同”,才能保证变形前后都是等式.
4.整式的变形一要正确、熟练,二要明确变形是根据等式的性质中的哪一条.
二、知识结构
三、教法建议
1.在给出等式的定义时,可以先复习代数式的定义,明确等式与代数式的区别:等
是等式,不是代数式;它的左边
式含有等号,代数式不含等号.例如,
和右边
都是代数式.等式可以用来表示两个代数式之间有相等关系,但等式不是代数
式.
2.可以在给出教材四个等式的基础上,让学生观察它们的共同特点,即:形式上都含有等号,表示的都是相等关系.
3.可以通过天平实验的演示帮助学生理解等式的性质,也可以用动画来演示这一实验.
4.在给出等式的两条性质后,可以举出正反两方面的例子来帮助学生理解等式的性质.需要强调除数不能为0.
5.对等式进行变形时,应通过练习使学生形成技能,同时要使学生明确变形的依据,对于方程的变形也是如此,最后,再说明变形的最后一步实际是解方程的结果.
四、代数式、等式、恒等式的区别与联系
表示相等关系的式子叫等式,等式的特征是式子中含有“=”号,而代数式不含“=”号,所以代数式不是等式,等式可用来表示两个代数式之间的相等关系,等式中“=”号两边的式子都是代数式,而代数式是用运算符号把数或表示数的字母连结而成的式子.当不论用任何数值代替等式中的字母,其左右两边的值总相等时,这样的等式叫恒等式,特别地,由数字计算组成的等式都是恒等式,由此可见,等式不一定是恒等式,但恒等式则一定是等式.
典型例题
例1指出下列各式哪些是等式?哪些是代数式?
(1)
;(2);
(3)
;(6).
(5)
点拨凡是用等号表示相等关系的式子,就是等式;而代数式中只有运算符号.
例2 用适当的数或整式填空,使所得结果仍是等式,并说明是根据哪条性质以及怎样变形的.
,那么;
(1)如果
,那么;
(3)如果
(4)如果,那么;
(5)如果,那么;
(6)如果,那么;
,那么;
(7)如果
,那么.
(8)如果
减去5得到的,所以
第二个等式的右边也应减5,即


(2)

(3)
根据等式性质1.等式两边都加上
根据等式性质2.等式两边都乘以2.
(5);

根据等式的性质1.等式两边都加上
根据等式的性质2.等式两边都除以4.

(7)

(8)
例3 回答下列问题;
(1)从
,能否得到,为什么?
(2)从
(3)从,能否得到,为什么?
,能否得到,为什么?
(4)从
(5)从
,能否得到,为什么?
(6)从
解:(1)从
不能得到.因为是是否为0不确定,因此不能根据等式的
(2)从
性质2,在等式的两边同除以
能得到.根据等式性质2,等式两边都乘以;
(3)从
能得到.根据等式性质1,在等式两边都加上;
能得到.由隐含着.因此根据等式的性质2.在
(5)从
等式两边都除以

不能得到.因为是否为零不能确定,因此不能在
两边同除以
隐含着.
反馈练习
1.下列式子中哪些是等式,哪些是代数式?
(1)
;(2);(3);
(4)
;(5);(6)
2.填空:
两边同时得;
(1)在等式
(2)在等式
(3)在等式
两边都得;
(4)在等式
的两边都得;
(5)在等式
(6)如果
(7)如果
(8)在等式
答案:
1.(1)等式;(2)等式;(3)即不是等式,也不是代数式;(4)代数式;(5)等式;(6)等式.
;(3)加上;(4)除以-5;(5)乘以-3(或除以);
2.(1)加上;(2)减去
(6)-3;(7)-2;(8)都减去,然后两边都除以2.。

相关文档
最新文档