第1章 碳碳复合材料
炭炭复合材料
1 C/C复合材料概述炭/炭复合材料(C/C)是由炭纤维及其制品(炭毡或炭布)增强的炭纤维复合材料。
C/C的组成元素只有一个,即碳元素,因而C/C具有许多炭和石墨材料的优点,如密度低(石墨的理论密度为2.2 g/cm3)和优异的热性能,即高的导热性、低热膨胀系数以及对热冲击不敏感等特性。
作为新型结构材料,C/C还具有优异的力学性能,如高温下的高强度和模量,尤其是其随温度的升高,强度不但不降低,反而升高的特性以及高断裂韧性、低蠕变等性能。
这些特性,使C/C复合材料成为目前唯一可用于高温达2800 ℃的高温复合材料。
C/C复合材料自上世纪60年代问世以来,在航空航天、核能、军事以及许多民用工业领域受到极大关注,并得到迅速发展和广泛应用。
1.1 C/C复合材料的性能特点(1) 物理性能C/C复合材料在高温热处理后的化学成分,碳元素高于99%,像石墨一样,具有耐酸、碱和盐的化学稳定性。
其比热容大,热导率随石墨化程度的提高而增大,线膨胀系数随石墨化程度的提高而降低等。
(2) 力学性能C/C复合材料的力学性能主要取决于炭纤维的种类、取向、含量和制备工艺等。
单向增强的C/C复合材料,沿炭纤维长度方向的力学性能比垂直方向高出几十倍。
C/C复合材料的高强高模特性来自炭纤维,随着温度的升高,C/C复合材料的强度不仅不会降低,而且比室温下的强度还要高。
一般的C/C复合材料的拉伸强度大于270 MPa,单向高强度C/C复合材料可达700 MPa以上。
在1000 ℃以上,强度最低的C/C复合材料的比强度也较耐热合金和陶瓷材料的高。
C/C复合材料的断裂韧性与传统的炭材料相比,有极大的提高,其破坏方式是逐渐破坏,而不是突然破坏,因为基体炭的断裂应力和断裂应变低于炭纤维。
经表面处理的炭纤维与基体炭之间的化学键与机械键结合强度强,拉伸应力引起基体中的裂纹扩展越过纤维/基体界面,使纤维断裂,形成脆性断裂。
而未经表面处理的炭纤维与基体炭之间结合强度低,C/C复合材料受载一旦超过基体断裂应变,基体裂纹在界面会引起基体与纤维脱粘,裂纹尖端的能量消耗在炭纤维的周围区域,炭纤维仍能继续承受载荷,从而呈现非脆性断裂方式。
碳碳复合材料简介
及零部件等
四 发展趋势及应用
(1) 因其良好的生物相容性 ,在生物医学方面 ,可作人体骨 骼的替代材料 ,比如人工髋关节、 膝关 节、 牙根等.
(2) 汽车、 赛车的制动系统. (3) 在核反应堆中制造无线电频率限幅器. (4) 利用其高导电率和很高尺寸稳定性 ,制造卫星通讯抛物 面无线电天线反射器. (5) 用碳/碳复合材料代替石棉制造熔融玻璃的滑道 ,其寿命 可提高100倍以上. (6) 制作高温紧固件.在700 ℃ 以上 ,金属紧固件强度很低 , 而碳/碳复合材料在高温下呈现优异承 载能力 ,可作高温下使用的螺栓、 螺母、 垫片等.
(7) 制作热压模具和超塑性加工模具.在陶瓷和粉未冶金 生产中采用碳/碳复合材料制作热压模 具 ,可减少模具厚度 ,缩短加热周期 ,节约能源和提高产 量;用碳/碳复合材料制作钛合金超塑性加工模 具 ,因其低膨胀性和钛合金的相容性 ,可提高成型效率 , 并减少成型时钛合金的折叠缺陷.
(8) 制作加热元件.与传统的石墨发热体强度低、 脆 ,加工与运输困难相比 ,碳/碳复合材料的强度 高 ,韧性好 ,可减少发热体体积 ,扩大工作区.
CC复合材料
Байду номын сангаас姚祥瑞
目录
• 定义 • 性能 • 制备工艺 • 发展前景及用途
一 定义
• 碳/碳复合材料是复合材料 的一种 ,它是以碳为基体 ,由 碳纤维或其制品(碳毡或碳布) 增强的复合材料.
二 性能
• 它兼有碳的惰性和碳纤维的高 强度 ,具有良好的机械性能、 耐 热性、 耐腐蚀性、 磨擦减振特 性及热、电传导特性等特点.而 且 ,其质轻 ,比强度和比弹性模 量都很高 ,更重要的是这种材料 随着温度的升高(可达2 200 ℃) 其强度不降低 ,甚至比室温条件 下还高。
碳碳复合材料ppt课件
循环浸渍-碳化曲线反映了浸渍-碳化工艺特点:
❖ 在进行1~3次浸渍碳化时,复合材料的密度增加较快, 从预制体密度(约1.2~1.3g/cm3)增加到1.6g/cm3以上;
❖ 从第四次循环浸渍碳化开始,则每次复合材料的密度增 加相对较慢。
❖ 为了减少浸渍-碳化次数,提高浸渍碳化效率和改善复 合材料的性能,一般采用真空压力浸渍工艺,形成了压 力浸渍碳化工艺(PIC, Pressure Impregnation Carbonization)。并且在沥青液态浸渍-碳化工艺中得 到应用。
沥青碳化率=0.95QI+0.85(BI-QI)+(0.3-0.5)BS
因此,沥青的碳化率随高分子量芳香族化合物的含量增加而增加。 最高的碳化率达90%,但与碳化时的压力有关。当碳化压力增强时, 低分子量物质挥发气化,并在压力下热解得到固态沥青碳。
★ 沥青碳化特性
★ 沥青碳化特性
沥青的压力碳化经历以下过程:
沥青液态压力浸渍-碳化 工艺是在常压、250℃下先浸 渍,然后在此温度下加压至 100MPa压力下继续浸渍,再 此压力下经650℃碳化。
同样需经历多次PIC工艺 使/C复合材料致密化。
● HIPIC工艺
HIPIC工艺是热等静压浸 渍碳化工艺(Hot Isostatic Pressure Carbonization),即 在等静压炉中进行PIC工艺。
沥青、树脂浸渍-碳化与CVD裂解碳填充孔隙的区别
C/C复合材料CVD/CVI工艺的种类主要有:
❖ 等温 (Isothermal)法; ❖ 压力梯度 (Pressure gradient)法; ❖ 温度梯度(Thrmal gradient)法; ❖ 化学液气相沉积法(Chemical Liquid Vapour
碳碳复合材料
气相沉积法
-预成型体。 主要工艺参数:温度、压力、时间。 成本问题:重要的是如何尽可能缩短工艺各工序,降
低成本。
预成型体和基体碳
制备的基本思路 先将碳增强材料预先制成预成型体,然后再以基体碳填充,
逐渐形成致密的C/C复合材料。 预成型体是一个多孔体系,含有大量孔隙,即使是在用成束
碳纤维编织的预成型体中,纤维束中的纤维之间仍含有大量 的孔隙。
一、碳/碳复合材料概述
我国碳/碳复合材料的研究和开发主要集中在航天、 航空等高技术领域,较少涉足民用高性能、低成本碳 /碳复合材料的研究。
目前整体研究水平还停留在对材料宏观性能的追求上, 对材料组织结构和性能的可控性、可调性等基础研究 还相当薄弱,难以满足国民经济发展对高性能碳/碳 复合材料的需求。
预成型体和基体碳
树脂碳:为无定形(非 晶态)碳,在偏光显微 镜下为各向同性。
图7-l4为碳纤维/酚醛 树脂碳基复合材料的 偏光显微组织。
可以看出树脂碳在碳 化时收缩所形成的显 微开裂。
碳/碳复合材料CVD工艺
CVD反应过程 1)反应气体通过层流流动向沉积衬底的边界层扩散; 2)沉积衬底表面吸附反应气体; 3)反应气体产生反应并形成固态产物和气体产物; 4)气体产物分解吸附,并沿一边界层区域扩散; 5)产生的气体产物排出。
化学气相沉积法
在沉积法中也可用等离子弧法。这种方法已经用来制 取微细碳化物,如碳化钛、碳化钽、碳化铌等。等离 子弧法的基本过程是使氢通过等离子体发生器将氢加 热到平均30000C的高温, 再将金属氯化物蒸气和碳 氢化合物气体喷入炽热的 氢气流(火焰)中,则金 属氯化物随即被还原、碳 化,在反射墙上骤冷而得 到极细的碳化物。
《碳碳复合材料简介》课件
高强度与高刚度
具有出色的强度和刚度,适用 于要求高强度和轻质化的领域。
良好的耐损性
具有优异的耐磨、耐热疲劳和 耐腐蚀性能。
碳碳复合材料的应用领域
1
航空航天
广泛应用于飞机结构、发动机部件和导弹热防护等领域。
2
能源工业
用于核电站中的炭碳复合材料管道和储罐,以及燃烧器等高温设备。
3
汽车工业
用于制造高性能汽车制动系统、排气系统和座椅结构。
碳碳复合材料的优势与局限性
优势
高温性能卓越,具有较高的强度和刚度。
局限性
制备工艺复杂,生产成本较高。
碳碳复合材料的发展趋势
随着技术的进步,碳碳复合材料将继续发展,更广泛地应用于航空航天、能 源、汽车等领域。同时,制备工艺将更加成熟,并不断降低生产成本。
结论和总结
碳碳复合材料具有独特的优点,是一种重要的高性能材料。它在航空航天、能源和汽车工业等领域发挥着重要 作用,并有着广阔的发展前景。
《碳碳复合材料简介》 PPT课件
碳碳复合材料是一种由碳纤维和炭素基体组成的高性能复合材料。它具有高 强度、高刚度、高温性能和优异的耐损性。
什么是碳碳复合材料
碳碳复合材料是一种由碳纤维和炭素基体组成的复合材料。碳纤维提供高强 度和高刚度,炭素基体则提供高温抗氧化性能。
碳碳复合材料的制备方法
1 化学气相沉积 (CVD)
通过化学反应在碳纤维表 面沉积炭素来制备碳碳复 合材料。
2 航空电弧加热法 (AIR) 3 热解石墨化 (HTI)
利用航空电弧对碳纤维进 行加热,使其与炭素基体 结合。
先将碳纤维石墨化,然后 与绿石墨和残余碳反应形 成碳碳复合材料。
碳碳复合材料的性质与特点
碳碳复合材料概述
碳碳复合材料概述1概述碳/碳复合材料就是由碳纤维(或石墨纤维)为增强体,以碳(或石墨)为基体得复合材料,就是具有特殊性能得新型工程材料,也称为“碳纤维增强碳复合材料”。
碳/碳复合材料完全就是由碳元素组成,能够承受极高得温度与极大得加热速率。
它具有高得烧蚀热与低得烧蚀率,抗热冲击与在超热环境下具有高强度,被认为就是超热环境中高性能得烧蚀材料。
在机械加载时,碳/碳复合材料得变形与延伸都呈现出假塑件性质,最后以非脆性方式断裂。
它得主要优点就是:抗热冲击与抗热诱导能力极强,具有一定得化学惰性,高温形状稳定,升华温度高,烧蚀凹陷低,在高温条件下得强度与刚度可保持不变,抗辐射,易加工与制造,重量轻。
碳/碳复合材料得缺点就是非轴向力学性能差,破坏应变低,空洞含量高,纤维与基体结合差,抗氧化性能差.制造加工周期长,设计方法复杂,缺乏破坏准则。
1958年,科学工作者在偶然得实验中发现了碳/碳复合材料,立刻引起了材料科学与工程研究人员得普遍重视。
尽管碳/碳复合材料具有许多别得复合材料不具备得优异性能,但作为工程材料在最初得10年间得发展却比较缓慢,这主要就是由于碳/碳得性能在很大程度上取决于碳纤维得性能与谈集体得致密化程度。
当时各种类型得高性能碳纤维正处于研究与开发阶段,碳/碳制备工艺也处于实验研究阶段,同时其高温氧化防护技术也未得到很好得解决。
在20世纪60年代中期到70年代末期,由于现代空间技术得发展,对空间运载火箭发动机喷管及喉衬材料得高温强度提出了更高要求,以及载人宇宙飞船开发等都对碳/碳复合材料技术得发展起到了有力得推功作用。
那时,高强与高模量碳纤维已开始应用于碳/碳复合材料,克服碳/碳各向异性得编织技术也得到了发展,更为主要得就是碳/碳得制备工艺也由浸渍树脂、沥青碳化工艺发展到多种CVD沉积碳基体工艺技术。
这就是碳/碳复合材料研究开发迅速发展得阶段,并且开始了工程应用。
由于20世纪70年代碳/碳复合材料研究开发工作得迅速发展,从而带动了80年代中期碳/碳复合材料在制备工艺、复合材料得结构设计,以及力学性能、热性能与抗氧化性能等方面基础理论及方法得研究,进一步促进与扩大了碳/碳复合材料在航空航天、军事以及民用领域得推广应用。
碳碳复合材料
碳/碳复合材料什么是碳/碳复合材料?它是碳纤维及其织物增强的碳基体复合材料,具有低密度(<2.0g/cm3)、高强度、高比模量、高导热性、低膨胀系数、摩擦性能好,以及抗热冲击性能好、尺寸稳定性高等优点,尤其是在1650℃以上应用的少数备选材料,最高理论温度更高达2600℃,因此被认为是全球最有发展前途的高温材料之一。
虽然碳/碳复合材料有很多十分优良的高温性能,但它在温度高于400℃的有氧环境中发生氧化反应,从而导致材料的性能急剧下降。
所以,碳/碳复合材料在高温有氧环境下的应用必须有氧化防护措施。
碳/碳复合材料的氧化防护主要通过以下两种途径,即在较低的温度下可以采取基体改性和表面活性点的钝化对碳/碳复合材料进行保护;随着温度的升高,则必须采用涂层的方法来隔绝碳/碳复合材料与氧的直接接触,以达到氧化防护的目的。
当前使用最多的是涂层的方法,随着科技不断进步,对碳/碳复合材料超高温性能的依赖越来越多,而在超高温条件下唯一可行的氧化防护方案只能是涂层防护。
值得一提的是,C/C基复合材料是近一些年来全球最受重视的一种更耐高温的新材料。
因为只有C/C复合材料是被认为唯一可做为推重比20以上,发动机进口温度可达1930-2227℃涡轮转子叶片的后继材料,曾经是美国21世纪重点发展的耐高温材料,尤其是全球先进工业国家拼力追求的最高战略目标。
所谓C/C基复合材料,就是碳纤维增强碳基本复合材料,它把碳的耐熔性与碳纤维的高强度及高刚性结合于一体,使其呈现出非脆性破坏。
由于C/C基复合材料具有重量轻、高强度,优越的热稳定性和极好的热传导性,因此,是当今最理想的耐高温材料,特别是在1000-1300℃的高温环境下,它的强度不仅没有下降,反而能够提高。
特别是在1650℃以下时仍然还保持着室温环境下的强度和风度。
因此C/C基复合材料在宇航制造业中具有非常大的发展潜力。
值得一提的是,C/C基复合材料在航空发动机应用的一个主要问题是抗氧化性能较差,所以,近几年美国通过采取一系列的工艺措施,让这一问题获得解决,并且逐步应用在新型发动机上。
碳碳复合材料
战车、高速列车、汽车用刹车片
导热、隔热材料
保温毡
加热体
发展趋势
1.今后将以结构C/C复合材料为主,向功能和 多功能C/C复合材料发展;
2.在编制技术方面:由单向朝多向发展; 3.机械针织技术方面:由简单机械向高度机械
化、微机化和计算机程控全自动化发展; 4.应用方面:由先进飞行器向普通航空和汽车、
碳碳复合材料
索引
0.历史 1、定义 2、材料概述 3、性能特点 4.制备工艺 5.应用概述 6.发展趋势和应用前景
C/C复合材料来源于Chance-
历史
Vought由于实验室事故,在碳纤维树
脂基复合材料固化时超过规定的温度,
却 导致树脂碳化, 形成碳碳复合材
料。
我国对此的研究和开发主要集中在
非航天高温结构领域发展,向民用化和低成本化发 展。
思考题
1.简述气相沉积法和液相浸渍法的工艺原理 2.请完整粗略复述材料合成过程 3.石墨化的原理
医学资料
• 仅供参考,用药方面谨遵医嘱
石墨化:利用热活 化将热力学不稳定 的炭原子实现由乱 层结构向石墨晶体 结构的有 序转 化。
应用概述
碳/碳复合材料以其优异的高温力学和热物理性能, 结合基体改性和抗氧化涂层技术,一直是先进国 家战略导弹弹头端头、发动机喷管、高超声速飞 行器关键热端部件首选的防热、热结构材料
军机、民机用刹车盘
应用和工作环境来选择纤维种类和编织方式,例如,
对重要的结构选用高强度、高模量纤维,对要求导 热系数低的则选用低模量炭纤维,如粘胶基炭纤维。
坯体可通过长纤维(或带)缠绕、碳毡、短纤维模压或喷
射成型、石墨布叠层的方向石墨纤维针刺增强以及多向织 物等方法制得
碳碳复合材料剖析课件
多功能化
研发具有光、电、磁、热等功能的碳碳复合材料,拓展其在传感器、能源、环保 等领域的应用。
制造工艺优化
低成本化
简化生产流程,降低原材料和能源消耗,实现大规模生产, 降低成本,提高市场竞争力。
环保化
碳碳复合材料剖析课 件
目录
CONTENTS
• 碳碳复合材料简介 • 碳碳复合材料的制造工艺 • 碳碳复合材料的性能分析 • 碳碳复合材料的增强机制 • 碳碳复合材料的未来发展与挑战 • 案例研究:碳碳复合材料在航空航天领
域的应用
01 碳碳复合材料简介
定义与特性
碳碳复合材料定义
高强度与轻质
由碳纤维和碳基体组成的复合材料,其中 碳纤维提供强度和刚度,碳基体起到粘结 和传递载荷的作用。
应用领域
航空航天
用于制造飞机结构件、发动机 部件和航天器部件等,提高飞
行器的性能和安全性。
汽车工业
用于制造汽车刹车片、传动轴 和气瓶等部件,提高汽车的性 能和安全性。
体育器材
用于制造高尔夫球杆、自行车 车架和弓箭等运动器材,提高 运动表现和竞技水平。
机械工业
用于制造精密机械零件、刀具 和模具等,提高机械加工的精
03 碳碳复合材料的性能分析
力学性能
高强度和模量
碳碳复合材料由于其独特的微观结构和纤 维增强机制,展现出高强度和模量,使其 成为承受高负荷和高温环境的理想选择。
各向异性
由于纤维的排列方向和编织方式,碳碳复 合材料的力学性能在不同方向上表现出差
异性。
抗疲劳性能
碳碳复合材料具有良好的抗疲劳性能,能 在反复应力作用下保持性能稳定,降低疲 劳失效的风险。
碳碳复合材料
4
5
• 1.N2气瓶 2.干燥塔(分子筛)3.干燥塔(氯化钙)4.超 声波设备 5. 镁电极6. 橡皮塞7. 通气孔8. 搅拌棒 9. 电机 10. 进料口11.温度计
制备的PS
• 用CH3HSiCl2 、 CH3SiCl3 、 CH3HSiCl2/CH3SiCl3三种聚合体系合成可 溶性聚硅烷; • 用CH3SiCl3/CH2=CHCH2Cl合成含双键聚硅 烷。
最新研究成果
含不饱和基团、含金属Zr的聚硅 烷
提高先驱体陶瓷 产率,降低 C/C-SiC复合材 料的生产成本
浸渍-固化-裂解
ZrC 提高抗氧化性耐 烧蚀性能
C/C-ZrC-SiC
含锆聚硅烷合成原理
Cl n Cl Si Cl CH3 + m CH2 CHCH2Cl + x CH2 CHCH2 Si CH3 Si CH3 Si y
(a) C/C-SiC specimen at density 1.46 (b) C/C-SiC specimen at density 1.70 (c) C/C specimen at density 1.29
图1 C/C-SiC和C/C试样烧蚀后的宏观形貌
结论
• 在C/C基体材料中引入SiC能明显提高C/C 复合材料的抗氧化烧蚀性能。 • 随着C/C-SiC复合材料密度的增加,材料中 Si含量逐渐提高,材料线烧蚀率、质量烧蚀 率随之下降。
三、C/C复合材料的制备工艺 整体碳毡C/C复合材料喉衬的制造
整体碳毡 下料 CVD 表面加工 真空-压力浸渍 固化 反复循环 碳化 反复循环
C3H6
糠酮树脂
石墨化
机加
C/C喉衬
1.预成型体
2.基体碳
碳碳复合材料讲解
03
飞机刹车 材料关键
技术
C/C复合材料产业现状
C/C复合飞机刹车材料预制体成型技术 C/C复合飞机刹车材料快速致密化技术 C/C复合飞机刹车材料的氧化防护技术 C/C复合飞机刹车材料再生修复技术
ቤተ መጻሕፍቲ ባይዱ
C/C复合材料产业现状
03
C/C复合飞机刹车材料预制体成型技术
预制体是C/C复合材料的增强骨架,它直接决定或影响着后续制备复合 材料的力学、热物理和摩擦等性能。
03
①先进碳/ 碳复合飞机刹车材料关键技术研究
先进碳/碳复合材料是我国大型飞机和高性能军机的关键刹车材料,碳/ 碳(C/C)复合材料刹车盘(简称碳盘)是飞机刹车装置普遍使用的关键器材, 它不仅是一种摩擦元件,而且是一种热库和结构元件。碳盘替换传统的钢刹 车盘可以获得明显减重以及大幅度进步刹车盘性能和使用寿命的效果,因此, 自从20世纪70年代装机首飞成功以来,目前国际上已有100余种大中型民航 客 机和先进军机采用了碳刹车技术,是否采用碳刹车装置已成为衡量现代航 空 机轮水平的重要标志之一。
03
C/C复合材料产业现状
C/C复合飞机刹车材料快速致密化技术
为了解决制备周期长这一关键题目,国外进行了大量的研发工作。 早在1994年,美国Textron公司报道,他们研发的高效工艺能在8h内制 备出碳盘样品,但主要题目是该方法一炉只能制备一个样品,至今仍未 能实现工程化。Vaidyaraman S等人研究的强制活动热梯度法能使沉积 速率进步12~30倍,但仅适用于制备外形简单的小样品(直径小于 100mm,厚度小于10mm),同样一炉只能制备一个样品,仍然无法
03
C/C复合材料产业现状
C/C复合飞机刹车材料快速致密化技术
碳碳复合材料
3.1 物理性能
3.1.2 热学及烧蚀性能
碳/碳复合材料具有碳元素所特有的耐烧蚀、抗热震、高导热率和低膨胀系 数等性能。其导热性在常温下可与铝合金比拟;热膨胀系数远比金属低且随材 料的密度降低而降低;同时具有最好的生物相容性。
烧蚀防热是利用材料的分解、解聚、蒸发、气化及离子化等化学和物理过 程带走大量热能,并利用消耗材料本身来换取隔热效果。同时,也可利用在一 系列的变化过程中形成的隔热层,使物体内部温度不致升高。
料
壹 | 碳/碳复合材料概述 贰 | 碳/碳复合材料的制备 叁 | 碳/碳复合材料的性能 肆 | 碳/碳复合材料的应用
壹 | 碳/碳复合材料概述
1.1 简介
碳/碳复合材料是以碳(石墨)纤维为基体/增强体通过加工和碳化处理制成的全 碳质复合材料。
其全碳质结构不仅保留了纤维增强材料优异的力学性能和灵活的结构可设计性, 还兼具碳素材料诸多优点,如低密度(<2.0g/cm3)、低的热膨胀系数、高导热导电 性、优异的耐热冲击、耐烧蚀及耐摩擦性等,是如今在1650℃以上应用的少数备选 材料,最高理论温度高达2600℃,因此被认为是最有发展前途的高温材料之一。该 材料力学性能随温度升高不降反升,使其成为航空航天、汽车、医学等领域理想的 结构材料。
2.2 基体碳制备
2.2.1 化学气相沉积 (CVD)/化学气相浸透(CVI)
原理:通过气相的分解或反应生成固态物质并在某固定基体(基底)上成核、生长。 CH4(g) 加热 C(s)+2H2(g) 一般认为,CVD(CVI)经历以下过程:
• 反应气体通过层流向沉积基体的边界层扩散; • 沉积基体表面吸附反应气体,反应气体产生反应并形成固态和气体产物; • 所产生的气体产物解吸附,并沿边界层区域扩散; • 产生的气体产物排除。
碳碳复合材料
碳碳复合材料碳碳复合材料是一种由碳纤维和碳基复合材料组成的复合材料。
它具有优异的力学性能和热学性能,被广泛应用于航天、航空、能源、汽车等领域。
碳纤维是碳碳复合材料的主要组成部分之一,它具有轻、强、刚、耐高温等特点。
碳纤维的强度比钢高五倍,刚度更高,而且密度只有一般钢材的四分之一。
这种优异的性能使得碳纤维成为航天航空领域中的重要材料,如制造飞机翼、导弹外壳等。
同时,碳纤维还可以用来制造汽车部件,如车身和刹车盘,以提高汽车的性能和燃油效率。
碳基复合材料是由含碳基体和碳基增强材料组成的复合材料。
它具有良好的导热性能和高温稳定性,可以在高温和极端环境下工作。
碳基复合材料通常用于制造火箭喷嘴、导弹外壳等需要耐高温和高速摩擦的部件。
此外,碳基复合材料还具有良好的耐磨性能和耐腐蚀性能,可以用于制造机械密封件和化学设备。
碳碳复合材料由碳纤维和碳基复合材料通过炭化、烧结等工艺制得。
碳纤维和碳基复合材料相结合,互补了各自的优点,形成了一种具有良好力学性能和热学性能的复合材料。
碳纤维可以增加碳基复合材料的强度和刚度,而碳基复合材料可以提高碳纤维的热传导性能和高温稳定性。
由于碳碳复合材料的优异性能,它被广泛应用于航天、航空、能源和汽车等领域。
在航天领域,碳碳复合材料可以用于制造导弹外壳、火箭喷嘴等高温高速工作的部件。
在航空领域,碳碳复合材料可以用于制造飞机翼、垂直尾翼等,提高飞机的性能和安全性。
在能源领域,碳碳复合材料可以用于制造核反应堆的导热元件,提高核反应堆的效率和安全性。
在汽车领域,碳碳复合材料可以用于制造车身和刹车盘,提高汽车的性能和燃油效率。
总之,碳碳复合材料具有优异的力学性能和热学性能,被广泛应用于航天、航空、能源和汽车等领域,对推动高科技产业的发展和提高产品性能起到了重要作用。
碳碳复合材料
目前应用最广泛的是等温CVI 法(ICVI),具有不损伤纤维、基体碳纯度高、工艺设备简单、
可对多个形状复杂预制体同时致密化等特点,是工业生产C/C 复合材料的主要工艺手段。ICVI 工
艺致密化过程极其复杂,沉积反应发生在多孔预制体的内表面,存在气相热解、表面沉积反应
和气体扩散过程;受温度、压力、预制体空隙结构、气体的种类及滞留时间等因素的影响;存
液相浸渍工艺
工艺原理
– 以树脂或沥青为基体前驱体,将其浸渍到织物 中,然后将浸渍有树脂或沥青的织物在惰性气 氛下热处理,使树脂或沥青转化为基体碳
工艺特 – 当在制品达到一定密度后(1.7g/cm3),
需要HIP工序实现材料的高密度
三维织物研究的重点在细编织及其工艺、各向纤维的排列对材 料的影响等方面。
2.致密化二法:CVD/CVI;液相浸渍 • 碳纤维编织预制体是空虚的,需向内渗碳使其致密化,以实现预制
体和碳基体的复合。 • 渗碳方法:液态浸渍热分解法、化学气相沉积法。 • 基本要求:基体的先驱体与预制体的特性相一致,以确保得到高致
碳毡可由人造丝毡碳化或聚丙烯腈预氧化、碳化后制得。碳毡叠层后,可以 碳纤维在X、Y、Z的方向三向增强,制得三向增强毡,如下图所示。
喷射成型是把切断的碳纤维 (约为0.025mm) 配制成碳纤维-树脂-稀释
剂的混合物,然后用喷枪将此混合物喷涂到芯模上使其成型。
或石墨化的脂碳(沥青)
用碳布或石墨纤维布叠层后进行针刺,可用空心细颈金属棒引纱。下 图是AVCD公司编织的坯体。
能
特
• 一旦产生裂纹,不会像石墨和陶瓷那样严重的力学性 对热应力不 能损失
敏感
点
物理性能
热膨胀性能低:常温下为-0.4~1.8×10-6/K,仅为金属材料 的1/5~1/10;
碳碳复合材料概述Word版
碳碳复合材料概述1概述碳/碳复合材料是由碳纤维(或石墨纤维)为增强体,以碳(或石墨)为基体的复合材料,是具有特殊性能的新型工程材料,也称为“碳纤维增强碳复合材料”。
碳/碳复合材料完全是由碳元素组成,能够承受极高的温度和极大的加热速率。
它具有高的烧蚀热和低的烧蚀率,抗热冲击和在超热环境下具有高强度,被认为是超热环境中高性能的烧蚀材料。
在机械加载时,碳/碳复合材料的变形与延伸都呈现出假塑件性质,最后以非脆性方式断裂。
它的主要优点是:抗热冲击和抗热诱导能力极强,具有一定的化学惰性,高温形状稳定,升华温度高,烧蚀凹陷低,在高温条件下的强度和刚度可保持不变,抗辐射,易加工和制造,重量轻。
碳/碳复合材料的缺点是非轴向力学性能差,破坏应变低,空洞含量高,纤维与基体结合差,抗氧化性能差.制造加工周期长,设计方法复杂,缺乏破坏准则。
1958年,科学工作者在偶然的实验中发现了碳/碳复合材料,立刻引起了材料科学与工程研究人员的普遍重视。
尽管碳/碳复合材料具有许多别的复合材料不具备的优异性能,但作为工程材料在最初的10年间的发展却比较缓慢,这主要是由于碳/碳的性能在很大程度上取决于碳纤维的性能和谈集体的致密化程度。
当时各种类型的高性能碳纤维正处于研究与开发阶段,碳/碳制备工艺也处于实验研究阶段,同时其高温氧化防护技术也未得到很好的解决。
在20世纪60年代中期到70年代末期,由于现代空间技术的发展,对空间运载火箭发动机喷管及喉衬材料的高温强度提出了更高要求,以及载人宇宙飞船开发等都对碳/碳复合材料技术的发展起到了有力的推功作用。
那时,高强和高模量碳纤维已开始应用于碳/碳复合材料,克服碳/碳各向异性的编织技术也得到了发展,更为主要的是碳/碳的制备工艺也由浸渍树脂、沥青碳化工艺发展到多种CVD沉积碳基体工艺技术。
这是碳/碳复合材料研究开发迅速发展的阶段,并且开始了工程应用。
由于20世纪70年代碳/碳复合材料研究开发工作的迅速发展,从而带动了80年代中期碳/碳复合材料在制备工艺、复合材料的结构设计,以及力学性能、热性能和抗氧化性能等方面基础理论及方法的研究,进一步促进和扩大了碳/碳复合材料在航空航天、军事以及民用领域的推广应用。
碳碳复合材料
复合材料
C/C作为刹车盘
C/C在航空上的应用
索 引
• C/C复合材料来源于Chance-Vought由于实验室事 故,在碳纤维树脂基复合材料固化时超过规定的温
却 度,导致树脂碳化, 形成碳碳复合材料。
• 我国对此的研究和开发主要集中在航天航空等高
新技术领域,较少涉及民用高性能、低成本碳碳复
领域发展,向民用化和低成本化发展。
思考题
1.简述气相沉积法和液相浸渍法的工艺原理 2.请完整粗略复述材料合成过程 3.石墨化的原理
在坯体的研制中,发展的重点是多向织物,如三向、四向、五向或七 向等,目前是以三向织物为主。
碳纤维从X、Y、Z三个方向互成90º正 交排列,三个方向的纱线并不交织,X 和Y方向的纱线交替的叠层,Z方向的纱 线起增强作用。因此XYZ方向的纱线并 没有交织点,只有重合点,可充分发挥 织物里每个纤维的力学性能。
• 2.碳纤维(carbon fiber,简称CF) • 是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料。它是由
片状石墨微晶等有机纤维沿纤维轴向方向堆砌而成,经碳化及石墨化处 理而得到的微晶石墨材料。碳纤维"外柔内刚",质量比金属铝轻,但强度 却高于钢铁,并且具有耐腐蚀、高模量的特性,在国防军工和民用方面 都是重要材料。它不仅具有碳材料的固有本征特性,又兼备纺织纤维的 柔软可加工性,是新一代增强纤维。
• 液相浸渍工艺一般在常压或减压下进行工艺过程,达到致密预 制体 此工艺存在问题是:①工艺繁复、周期长、效率低;②液体 难以浸渍到预制体微孔中;③有些浸渍液在常压和减压下炭化收率 低,必须加压,如煤沥
• 青;④有些浸渍液炭化时粘附性过好,易于阻塞气孔口,难以达到 致密要求,如树脂
碳碳复合材料概述
碳碳复合材料概述第一篇:碳碳复合材料概述碳/碳复合材料碳/碳复合材料概述摘要本文介绍了碳碳复合材料的发展、工艺、特性以及应用。
关键词碳碳复合材料制备工艺性能应用1前言C/C复合材料是指以碳纤维或各种碳织物增强,或石墨化的树脂碳以及化学气相沉积(CVD)所形成的复合材料。
碳/碳复合材料在高温热处理之后碳元素含量高于99%, 故该材料具有密度低,耐高温, 抗腐蚀, 热冲击性能好, 耐酸、碱、盐,耐摩擦磨损等一系列优异性能。
此外, 碳/碳复合材料的室温强度可以保持到2500℃, 对热应力不敏感, 抗烧蚀性能好。
故该复合材料具有出色的机械特性, 既可作为结构材料承载重荷, 又可作为功能材料发挥作用, 适于各种高温用途使用[1]。
因而它广泛地应用于航天、航空、核能、化工、医用等各个领域。
2碳碳复合材料的发展碳碳复合材料是高技术新材料,自1958年碳碳复合材料问世以来,经历了四个阶段:60年代——碳碳工艺基础研究阶段,以化学气相沉积工艺和液相浸渍工艺的出现为代表; 70年代——烧蚀碳碳应用开发阶段,以碳碳飞机刹车片和碳碳导弹端头帽的应用为代表; 80年代——碳碳热结构应用开发阶段,以航天飞机抗氧化碳碳鼻锥帽和机翼前缘的应用为代表;90年代——碳碳新工艺开发和民用应用阶段,致力于降低成本,在高性能燃气涡轮发动机航天器和高温炉发热体等领域的应用。
由于碳碳具有高比强度、高比刚度、高温下保持高强度,良好的烧蚀性能、摩擦性能和良好抗热震性能以及复合材料的可设计性,得到了越来越广泛的应用。
当今,碳碳复合材料在四大类复合材料中就其研究与应用水平来说,仅次于树脂基复合材料,优先于金属基复合材料和陶瓷基复合材料,已走向工程应用阶段。
从技术发展看,碳碳复合材料已经从最初阶段的两向碳碳复合材料发展为三向、四向等多维碳碳复合材料;从单纯抗烧蚀碳碳复合材料发展为抗烧蚀—抗侵蚀和抗烧蚀—抗侵蚀—稳定外形碳碳复合材料;从但功能材料发展为多功能材料。
碳碳复合材料范文
碳碳复合材料范文碳碳复合材料,也称为C/C复合材料,是由碳纤维和碳基矩阵组成的一种强度高、刚度高、耐高温、耐磨损的复合材料。
碳纤维是以聚丙烯腈为原料制成的纤维,经过高温炭化和高温石墨化处理后,形成具有高强度和高模量特性的碳纤维。
碳基矩阵则是通过热裂解、化学气相沉积等技术在碳纤维表面沉积碳元素形成的。
碳碳复合材料具有多种优良性能,使其在航空航天、汽车制造、高温装备等领域具有广泛应用。
首先,碳碳复合材料具有极高的强度和刚度,其强度约为钢的两倍,刚度约为铝的两倍。
这种优良的力学性能使得碳碳复合材料在航空航天领域可以用于制造高速飞行器、导弹等要求强度和刚度的零部件。
其次,碳碳复合材料具有出色的耐高温性能。
碳纤维和碳基矩阵都具有良好的耐高温性能,可在3000℃以上的高温下仍能保持较好的稳定性。
这使得碳碳复合材料成为制造高温装备的理想材料,如航空发动机喷嘴内衬、热保护罩等。
此外,碳碳复合材料还具有良好的耐磨损性能。
由于碳碳复合材料具有低摩擦系数和优异的耐磨损特性,使得其在汽车制造领域有着广泛的应用,如制动器、离合器摩擦片等。
然而,碳碳复合材料也存在一些不足。
首先,碳碳复合材料具有较高的制造成本。
碳纤维的生产、碳基矩阵的制备以及碳碳复合材料的成型和加工过程都需要经历多个复杂的工序,导致制造成本昂贵。
其次,碳碳复合材料的断裂韧性较差。
碳纤维本身是一种方向性较强的材料,对于非平面应力分布的情况下容易发生断裂。
为了改善碳碳复合材料的断裂韧性,常常采用增加复合材料的纤维体积分数、引入填料、改变制备工艺等方法。
此外,在碳碳复合材料的应用过程中,还需注意其氧化烧蚀性能。
由于碳碳复合材料中碳元素的存在,其在高温气氛中容易氧化,从而导致材料性能下降。
为了解决这个问题,可以在碳基矩阵表面涂覆一层陶瓷涂层,提高复合材料的抗氧化性能。
综上所述,碳碳复合材料作为一种具有高强度、高刚度、耐高温和耐磨损性能的复合材料,在航空航天、汽车制造、高温装备等领域具有广泛应用前景。
碳碳复合材料制备
碳碳复合材料制备
碳碳复合材料制备通常包括以下几个步骤:
1. 制备碳纤维:通过化学气相沉积或纺丝方法制备出碳纤维。
2. 制备碳基体:将碳纤维与适量的树脂混合,经过热解得到碳基体。
3. 制备碳碳复合材料:将碳纤维和碳基体按照一定的比例混合,经过高温处理得到碳碳复合材料。
在制备过程中,需要注意以下几点:
1. 碳纤维的制备温度通常很高,需要保证设备的高温性能和稳定性。
2. 热解过程中,要控制好温度和时间,保证碳基体的质量和稳定性。
3. 混合过程中,要保证碳纤维和碳基体的均匀混合,以保证复合材料的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、C/C复合材料的制备工艺 整体碳毡C/C复合材料喉衬的制造
整体碳毡 下料 CVD 表面加工 真空-压力浸渍 固化 反复循环 碳化 反复循环
C3H6
糠酮树脂
石墨化
机加
C/C喉衬
1.预成型体
2.基体碳
• (1)CVD碳
C3 H 6 C H 2
– 等温工艺 – 压力梯度工艺 – 温度梯度工艺
西奥多· 冯· 卡门
C/C复合材料的起源
• C/C复合材料是于1958年在Chance Vought航空公司实验 室偶然得到的。当测定炭纤维在一定有机基体复合材料中 的含量时,由于实验过程中的失误,有机基体没有被氧化 反而被热解,得到了炭基体。结果发现这种复合材料具有 结构特性,从此C/C复合材料就诞生了。 • C/C复合材料技术在最初的十年间发展很慢,到六十年代 末期,才开始发展成为工程材料。 • 自七十年代始,在美国和欧洲得到很大的发展,推出了炭 纤维多向编织技术,高压液相浸渍工艺及化学气相渗透法 (CVI)有效地得到高密度的C/C复合材料。 • 八十年代以来,C/C复合材料的研究极为活跃,前苏联、 日本等国也都进入这一先进领域,各种功能C/C复合材料 得到了很快的发展,C/C复合材料的应用领域从航空航天 迅速扩展到核能、冶金、医疗、汽车等众多部门。
甲苯溶液
Me
回流
Si Me n
2n Na Cl
聚硅烷的合成方法
1.高温Na缩合法原理
R1 n Cl Si R2 Cl 2n Na
甲苯溶液
R1
回流
Si R2 n
2n Na Cl
2. 电化学聚合法
n Cl
Si Cl
+
2e
Mg,(((
Si
n
+
2Cl
聚硅烷的合成装置图
9 8 7 10 11
6
1
2
3
聚合物 Poly(silazones) Poly(silazanes) Polytitanocarbosilane Polysilastyrene Carboranesiloxane 所得的陶瓷材料 Si3N4 Si-C-N Si-Ti-C SiC SiC-B4C
Polyphenylborazole
81.5% 70% 69-73%
48% 40% 41-59%
Wurtz法
含Si-H的PS
30~50%
47%
注:裂解条件1300℃,Ar气保护。
制备C/C-SiC工艺路线
C/C PS 多次浸渍裂解,材料致密化 真空浸渍 交联固化 高温裂解
C/C+PS
预裂解体
C/C-SiC
H2-O2火焰烧蚀装置示意图
CH3 Si y M CH3 Si CH3 Si Si CHCH2 CH2
C/C-ZrC-SiC与C/C-SiC、C/C的比 较
0.035
)
Linear ablation rates (mm s
)
0.030 0.025 0.020 0.015 0.010 0.005 0.000 1.3 1.4 1.5 1.6
0.036 0.032
Linear ablation rates(mm s )
0.028 0.024 0.020 0.016 0.012 0.008 0.004 1.25 1.30 1.35 1.40 1.45 1.50 1.55
-3
c/c180s c/c-sic180s
-1
1.60
1.65
1.70
H2
O2
0.040 0.035 0.030
c/c60s c/c90s c/c-sic60s c/c-sic90s
线烧蚀率(mm/s)
0.025 0.020 0.015 0.010 0.005 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
3
ρ g/cm
3.5
质量烧蚀率( mg/s)
Cl n Cl Si Cl CH3 + m CH2 CHCH2Cl ))), r.t. Mg electrode CH2 CHCH2 Si Si n/2
CH3 CH3
表1 合成的不同聚硅烷的固化比较
合成方法 PS的类型 PS 质量保留率 PS+DVB(1/0.5)
电化学合成法
含双键的PS 由MTS合成的PS 含Si-H的PS
六、先驱体转化法制备陶瓷基复合 材料
• Chantrell和Popper于1964年首次提出可使 用金属有机化合物(Organo-metallic)作 为先驱体制备陶瓷材料。
先驱体陶瓷的制备工艺流程
陶瓷先驱体的要求
• a:工艺可行性,即在常温下为液态或可溶于有机 溶剂,具有低的粘度,以利于浸渍。 • b:室温下性能稳定,长期放置不发生交联变性。 • c:高的陶瓷产率,以降低浸渍-热解次数,降低 成本。 • d:相对低的热解温度,以避免对纤维的破坏和节 约能源。 • e:可转化为难熔的陶瓷材料。 • f:与基体材料有良好的浸润性。
• 此方法的优点是:
– 裂解温度低(850~1200℃),可无压烧成,纤维的 机械和热损伤程度较小; – 烧成时不引入烧结助剂,制品高温性能好; – 对先驱体进行分子设计可制备出所需组成和结 构的单相或多相陶瓷基体; – 可借鉴聚合物基复合材料成熟的成型技术制备 复杂形状构件。
陶瓷先驱体及其所制得的陶瓷材料
C/C防氧化涂层的制备方法
• • • • 包埋法(pack cementation) 料浆法(slurry) 溶胶-凝胶法 化学气相沉积法(CVD)
化学气相沉积
C/C基体改性
• 抗氧化剂(如Si、Ti、B、SiC、TiB2、ZrB2、 MoSi2)以固体颗粒的形式引入C/C基体。 • 先驱体浸渍裂解法。
C/C复合材料在火箭发动机上烧蚀15 秒的扫描电镜图
C/C复合材料在1000℃氧化1.5h后 的扫描电镜图
C/C复合材料的抗氧化技术
Methods
涂层
基体改性
C/C的防氧化涂层
高温下氧化物陶瓷材料的氧扩散速率
SiC和Si3N4理想的抗氧化候选材料
• SiC和Si3N4与C/C复合材料的热膨胀系数最 为接近,与C/C复合材料的机械相容性较好; SiC和Si3N4在高温下能形成能形成具有流动 性的SiO2膜,能有效的封填由于热膨胀系 数不匹配而形成的涂层的裂纹,阻止氧化 气氛与碳基材的直接接触,而且最为关键 的是,SiO2与其他氧化物相比具有很低的 氧扩散速率,可以有效的阻止氧的渗入。
上海大学复合材料中心生产的C/C复合材料喉衬 和头锥
一、碳/碳复合材料的基本组成
• 碳纤维:
– 粘胶基碳纤维 – 沥青基碳纤维 – 聚丙烯腈基碳纤维
• 碳基体:
– 气相沉积碳 – 沥青碳 – 树脂碳
气相沉积碳
二、C/C复合材料的性能
• 耐高温、低密度、高比模、高比强度、抗 热震、耐腐蚀、磨擦性能好、热膨胀系数 小。
• 思考题:您认为还可以用什么碳氢气体通过 CVI来制备气相沉积碳?
(2)树脂碳与沥青碳
O O + CH CCH 3 3 CHO
NaOH O
O CH CH CCH3 + H2O
O O CH CH CCH3
+ O
NaOH CHO O
O CH CH C CH CH O
糠酮树脂的制备
思考题:还可以用什么高分子作为树脂炭的前 驱体?
图1 C/C-SiC和C/C试样烧蚀后的宏观形貌
结论
• 在C/C基体材料中引入SiC能明显提高C/C 复合材料的抗氧化烧蚀性能。 • 随着C/C-SiC复合材料密度的增加,材料中 Si含量逐渐提高,材料线烧蚀率、质量烧蚀 率随之下降。
最新研究成果
含不饱和基团、含金属Zr的聚硅 烷
提高先驱体陶瓷 产率,降低 C/C-SiC复合材 料的生产成本
97.1% 66.1% 68.1%
96.2% 76.7% 72.2%
Wurtz法
含Si-H的PS
40%
84.1%
注:固化条件200℃,3小时。
表2 合成的不同聚硅烷的陶瓷产率 比较
合成方法 PS的类型
PS
陶瓷产率
PS+DVB(1/0.5)
电化学合成法
含双键的PS 由MTS合成的PS 含Si-H的PS
1.75
1.80
(gcm )
图3 C/C和C/C-SiC复合材料的质量烧蚀率
3.5
Mass ablation rates(mg s )
-1
3.0
c/c180s c/c-sic180s
2.5
2.0
1.5
1.0 1.3 1.4 1.5
-3
1.6
1.7
1.8
(gcm )
(a) C/C-SiC specimen at density 1.46 (b) C/C-SiC specimen at density 1.70 (c) C/C specimen at density 1.29
•
孙晋良 (Sun Jin Liang) 男,1946年1月生,高级工程师(教授 级),中国工程院院士。
现任上海大学复合材料研究中心主任, 上海市纺织科学研究院副院长。专业: 材料科学、复合材料。主要研究领域: 碳/碳复合材料、碳/碳复合材料的开 发应用及特种纺织材料。获奖:碳/碳 复合材料等研究成果曾获国家发明三等 奖1项,国家科技进步二等奖3项,部、 委及上海市科技进步奖5项。荣誉称号: 1985年获国家科委、国家计委、国家经 委、国防科工委先进个人称号,获国家 纺织工业部先进个人称号。1986年国家 人事部批准为有突出贡献中青年专家, 获国防科工委授予的“献身国防科技事 业”荣誉章, 1992年获国务院批准享 受政府特殊津贴, 1995年获光华科技 基金二等奖,1997年当选为中国工程院 院士。目前承担的课题:“固体火箭发 动机喷管碳 碳喉衬材料”