概率论与数理统计复习题

合集下载

[考研数学]概率论考试复习题

[考研数学]概率论考试复习题

概率论与数理统计练习1一、选择题:1、设随机事件A 与B 满足A B ⊃,则( )成立。

A.()()P A B P A +=B.()()P AB P A =C.()()P B A P B =D.()()()P B A P B P A -=-2、甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,则目标被击中的概率为( B )。

A.0.5B.0.8C.0.55D.0.63、连续型随机变量X 的密度函数()f x 必满足条件( D )。

A.0()1f x ≤≤B.()f x 为偶函数C.()f x 单调不减D. ()1f x dx +∞-∞=⎰4、设12,,,n X X X 是来自正态总体2(,)N μσ 的样本,则22μσ+的矩估计量是( D )。

A. 211()n i i X X n =-∑ B. 211()1n i i X X n =--∑ C. 221()n i i X n X =-∑ D. 211n i i X n =∑ 5、设总体(,1)X N μ ,123,,X X X 为总体X 的一个样本,若^1231123X X CX μ=++为未知参数μ的无偏估计量,则常数C =( ) A.12 B. 13 C. 15 D. 16二、填空题:1、袋子中装有50个乒乓球,其中20个黄的,30个白的,现有两人依次随机地从袋中各取一球,取后不放回,则第二人取得黄球的概率是 0.42、设A ,B 为两个随机事件,()0.6P A =,()0.2P A B -=,则()P AB = 0.63、已知二维随机向量(,)X Y 的联合分布为则= 0.34、设总体X 服从正态分布2(2,)N σ,1216,,,X X X 是来自总体X 的一个样本,且161116i i X X ==∑,则48X σ-服从 5、若(,)X Y 服从区域22{(,)4}G x y x y =+≤上的均匀分布,则(,)X Y 的联合密度函数为三、计算题:1、设A ,B 为随机事件,且()P A p =,()()P AB P A B =,求()P B 。

概率论与数理统计复习题目_徐雅静_河南理工大学

概率论与数理统计复习题目_徐雅静_河南理工大学

(θ + 1) x θ 27、设总体 X 的概率密度为 f ( x) = 0
其中, θ
0 < x <1 其他
> −1 是未知参数.
设X 1 ,X2,…,X n 是来自于总体X的简单随机
样本,试求出 θ 的极大似然估计量。 29、甲、乙、丙 3 人进行独立射击, 每人的命中率分别为 0.3, 0.4, 0.6, 设每人射 击一次, 试求 3 人命中总数之概率分布律及其分布函数。 30、设随机变量(X, Y)具有联合概率密度 1 | x | + | y |≤1 , f ( x, y) = 2 0 其他 试求(1) E(X),E(Y); (2)Cov(X,Y) ,问 X 与 Y 是否不相关?(3)X 与 Y 是否 相互独立? 33、设每门高射炮击中飞机的概率均为 0.6. 三门高射炮同时向一架入侵飞机射 击. 若飞机被一门炮击中,则飞机被击落的概率为 0.6. 若飞机被两门炮击中, 则飞机被击落的概率为 0.9. 若飞机被三门炮击中, 则飞机一定被击落. 求飞机 被击落的概率. 34、设随机变量 X 具有概率密度 x f X ( x) = 8 0 求随机变量 Y = 2 X + 8 的概率密度。 0< x<4 其他
{
}
≤ 0)= ____ቤተ መጻሕፍቲ ባይዱ______。
34、设 X~t(10) ,Y=1/ X 2 ,则 Y~_____________。 44、设总体X,均值E (X) =µ存在,样本(X 1 ,X 2 ,…,X n ) ,则样本均值 X = 是总体均值E (X) =µ的 估计。 5、设样本(X 1 ,X 2 ,…,X n )来自于总体X~N(µ,σ2) , X 是样本均值,S2是 (n − 1) s 2 X −µ 样本方差,则 ~ , ~ σ2 σ/ n 35、正态总体X~ N ( µ , σ 2 ) ( σ 未知) ,X 1 ,X 2 ,…,X n 为来自总体X的简单随机 样本,对假设检验 H 0 :µ =µ0 ,H1:µ ≠ µ0 ,µ0为已知常数 ,当 σ 已知时应选取检验 统计量是 是 ;则当 σ 未知时应选取检验统计量 。

概率论与数理统计期末考试复习题

概率论与数理统计期末考试复习题

概率论与数理统计复习题一、 填空题1. 事件A 、B 、C 中至少有一个发生可用A 、B 、C 表示为C B A ⋃⋃ 2. 若事件A 、B 满足)()|(B P A B P =,则称A 、B __相互独立 3.X 则=)(X E 0.61.已知P (A)=0.8,P(A —B )=0。

5,且A 与B 独立,则P(B)= 3/8 ;2.设A ,B 是两个随机事件,P (A)=0.8,P(AB )=0.4,则P (A-B )= 0.4 ;3. 设事件A 与B 相互独立,P (A)=0.4,P (B )=0.5,则P(A ∪B)= 0。

7 ; 4。

事件A 与B 满足P(A )=0。

5,P(B )=0。

6, P (B|A)=0。

8,则P (A ∪B)= 0。

7 ; 5。

袋中有大小相同的红球4只,黑球3只,则此两球颜色不同的概率为 4/7 ; 6.某射手每次击中目标的概率为0。

28,今连续射击10次,其最可能击中的次数为 3 ; 8。

设随机变量X 服从[1,5]上的均匀分布,当5121<<<x x 时,=<<)(21x X x P 412-x10。

设随机变量X 的概率分布为 则=≥)1(2XP 0。

7 ;11。

设随机变量X 服从二项分布B(n ,p),且E(X)=15,D(X )=10,则n= 45 ;14。

设随机变量X ~N (1,4),,9332.0)5.1(,6915.0)5.0(==φφ则=>)2(X P 0。

3753 ;15.已知总体X ~N(0,1),n X X X ,,,21 是来自总体X 的样本,则21nii X=∑~)(2n χ16. 已知总体X ~n X X X N ,,),,(212σμ是来自总体X 的样本,要检验,:2020σσ=H 则采用的统计量为22)1(σS n -;17。

设T 服从自由度为n 的t 分布,若,)(αλ=>T P 则=<)(λT P 21α-18。

《概率论与数理统计》分章复习题

《概率论与数理统计》分章复习题

第一章 随机事件与概率一、 选择题1、以A 表示甲种产品畅销,乙种产品滞销,则A 为( ).(A) 甲种产品滞销,乙种产品畅销 (B) 甲、乙产品均畅销(C) 甲种产品滞销 (D) 甲产品滞销或乙产品畅销2、设A 、B 、C 为三个事件,则A 、B 、C 中至少有一个发生的事件可以表示为( ).(A)ABC (B) A B C ⋂⋂ (C) A B C ⋃⋃ (D) ABC3、已知事件B A ,满足A B =Ω(其中Ω是样本空间),则下列式( )是错的. (A) B A = (B ) Φ=B A (C) B A ⊂ (D ) A B ⊂4、设A 、B 、C 为三个事件,则A 、B 、C 中至少有一个不发生的事件可以表示为( )。

(A)ABC (B )ABC (C) A B C ⋃⋃ (D ) ABC5、假设事件,A B 满足(|)1P B A =,则( ).(A) A 是必然事件 (B) (|)0P B A = (C)A B ⊃ (D)A B ⊂6、设()0P AB =, 则有( ).(A) A 和B 不相容 (B) A 和B 独立 (C) P(A)=0或P(B)=0 (D) P(A-B)=P(A)7、设A 和B 是任意两个概率不为零的互不相容事件,则下列结论中肯定正确的是(). (A )A 与B 不相容 (B )A 与B 相容(C )()()()P AB P A P B = (D )()()P A B P A -=8、设A B ⊂,则下面正确的等式是( ). (A) )(1)(A P AB P -= (B) )()()(A P B P A B P -=-(C) )()|(B P A B P = (D) )()|(A P B A P =9、事件,A B 为对立事件,则下列式子不成立的是( ).(A)()0P AB = (B )()0P AB = (C)()1P A B ⋃= (D )()1P A B ⋃=10、对于任意两个事件,A B ,下列式子成立的是( ).(A) ()()()P A B P A P B -=- (B ) ()()()()P A B P A P B P AB -=-+(C) ()()()P A B P A P AB -=- (D ) ()()()P A B P A P AB -=+11、设事件B A ,满足1)(=B A P , 则有( ).(A )A 是必然事件 (B )B 是必然事件(C )A B φ⋂=(空集) (D ))()(B P A P ≥ 12、设,A B 为两随机事件,且B A ⊂,则下列式子正确的是( ).(A )()()P A B P A ⋃=; (B )()P(A);P AB =(C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -13、设,A B 为任意两个事件,0)(,>⊂B P B A ,则下式成立的为( )(A )B)|()(A P A P < (B )B)|()(A P A P ≤(C )B)|()(A P A P > (D )B)|()(A P A P ≥14、设A 和B 相互独立,()0.6P A =,()0.4P B =,则()P A B =( )(A )0.4 (B )0.6 (C )0.24 (D )0.515、设 (),(),(),P A c P B b P A B a ==⋃= 则 ()P AB 为 ( ).(A) a b - (B ) c b - (C) (1)a b - (D ) b a -16、设A ,B 互不相容,且()0,()0P A P B >>,则必有( ). (A) 0)(>A B P (B ))()(A P B A P = (C) )()()(B P A P AB P = (D ) 0)(=B A P17、设,A B 相互独立,且()0.82P A B ⋃=,()0.3P B =,则()P A =( )。

《概率论与数理统计》复习题

《概率论与数理统计》复习题

《概率论与数理统计》复习题第一章:随机事件及其概率1.某射手向一目标射击两次,Ai表示事件“第i次射击命中目标”,i=1,2,B表示事件“仅第一次射击命中目标”,则B=()A.A1AB.A1A2C.A1A2D.A1A22.设A,B为两个互不相容事件,则下列各式错误的是()..A.P(AB)=0C.P(AB)=P(A)P(B)B.P(A∪B)=P(A)+P(B)D.P(B-A)=P(B)13.设事件A,B相互独立,且P(A)=,P(B)>0,则P(A|B)=()3A.1141B.C.D.1551534.已知P(A)=0.4,P(B)=0.5,且AB,则P(A|B)=()A.0B.0.4C.0.8D.15.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为()A.0.20B.0.30C.0.38D.0.573126.设A,B为两事件,已知P(A)=,P(A|B)=,P(B|A),则P (B)=()335A.1234B.C.D.55557.设随机事件A与B互不相容,且P(A)=0.2,P(A∪B)=0.6,则P(B)=________.8.设A,B为两个随机事件,且A与B相互独立,P(A)=0.3,P(B)=0.4,则P(AB)=__________.9.10件同类产品中有1件次品,现从中不放回地接连取2件产品,则在第一次取得正品的条件下,第二次取得次品的概率是________.10.某工厂一班组共有男工6人、女工4人,从中任选2名代表,则其中恰有1名女工的概率为________11.盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为_________.12.一医生对某种疾病能正确确诊的概率为0.3,当诊断正确时,他能治愈的概率为0.8。

若未被确诊,病人能自然痊愈的概率为0.1。

①求病人能够痊愈的概率;②若某病人已经痊愈,问他是被医生确诊的概率是多少?第二章:随机变量及其分布1.下列函数中可作为某随机变量的概率密度的是()100,某100,A.某2某1000,10,某0,B.某0,某0131,某,D.222其他0,1,0某2,C.0,其他2.设随机变量某在[-1,2]上服从均匀分布,则随机变量某的概率密度f(某)为()1,1某2;A.f(某)30,其他.1,1某2;C.f(某)0,其他.3,1某2;B.f(某)0,其他.1,1某2;D.f(某)30,其他.13.设随机变量某~B3,,则P{某1}=()3A.181926B.C.D.272727274.设随机变量某在区间[2,4]上服从均匀分布,则P{2C.P{2.55.设离散型随机变量某的分布律如右,B.P{1.5某-101则常数C=_________.P2C0.4CA某2,0某1;6.设随机变量某的概率密度f(某)则常数A=_________.其他,0,某1;0,0.2,1某0;7.设离散型随机变量某的分布函数为F(某)=0.3,0某1;0.6,1某2;某2,1,8.设连续型随机变量某的分布函数为则P{某>1}=_________.0,某0,ππF(某)in某,0某,其概率密度为f(某),则f()=________.62π1,某,29.设随机变量某~N(2,22),则P{某≤0}=___________。

概率论与数理统计复习题

概率论与数理统计复习题

题型:一、单项选择题15道题每题2分共30分;二、填空题15题每题2分共30分;三、计算题2题每题8分共16分;四、综合题2题共16分;五、应用题1题共8分。

1.一名射手连续向某目标射击三次,事件i A 表示第i 次射击时击中目标(1,2,3)i =,则“三次射击中恰有两次命中目标”表示为: 。

(A) 321A A A (B) 321A A A (C) 321321321A A A A A A A A A (D) 123A A A[ ]2.一名射手连续向某目标射击三次,事件i A 表示第i 次射击时击中目标(1,2,3)i =,则“三次射击至少有一次命中目标”表示为 。

(A) 321A A A (B) 321A A A(C) 321321321A A A A A A A A A (D) 123A A A [ ]3.一名射手连续向某目标射击三次,事件i A 表示第i 次射击时击中目标(1,2,3)i =,则“三次射击都命中目标”可表示为:(A) 321A A A (B) 321A A A(C) 321321321A A A A A A A A A (D) 123A A A [ ]4.设随机事件A 与B 互不相容,且,)(,)(00>>B P A P 则 。

(A) )()(B P A P -=1 (B) )()()(B P A P AB P = (C) 0=)(AB P (D) 1=)(B A P [ ]5.设随机事件A 与B 互不相容,且,)(,)(00>>B P A P 则 。

(A) )()(B P A P -=1 (B) )()()(B P A P AB P =(C) 1=)(B A P (D) 1=)(AB P [ ]6.设随机事件A 与B 互不相容,且,)(,)(00>>B P A P 则 。

(A) )()(B P A P -=1 (B) )()()(B P A P AB P =(C) )()()(B P A P B A P += (D) 1=)(B A P [ ]7. 抛一枚不均匀硬币,正面朝上的概率为32,将此硬币连抛4次,则恰好1次正面朝上的概率是 。

概率论与数理统计复习题 带答案

概率论与数理统计复习题  带答案

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。

2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。

3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。

4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。

5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。

6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。

7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。

12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则AB =( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =( 0.2 )17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。

概率论与数理统计习题含解答,答案)

概率论与数理统计习题含解答,答案)

概率论与数理统计复习题(1)一.填空.1.3.0)(,4.0)(==B P A P 。

若A 与B 独立,则=-)(B A P ;若已知B A ,中至少有一个事件发生的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σμN X ,且3.0}42{ },2{}2{=<<≥=<X P X P X P ,则=μ ;=>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独立,则=-<-<-}12{Y X P (用Φ表示),=XY ρ 。

8.已知X 的期望为5,而均方差为2,估计≥<<}82{X P 。

9.设1ˆθ和2ˆθ均是未知参数θ的无偏估计量,且)ˆ()ˆ(2221θθE E >,则其中的统计量 更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的长度愈 愈好。

但当增大置信水平时,则相应的置信区间长度总是 。

二.假设某地区位于甲、乙两河流的汇合处,当任一河流泛滥时,该地区即遭受水灾。

设某时期内甲河流泛滥的概率为0.1;乙河流泛滥的概率为0.2;当甲河流泛滥时,乙河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受水灾的概率;(2)当乙河流泛滥时,甲河流泛滥的概率。

三.高射炮向敌机发射三发炮弹(每弹击中与否相互独立),每发炮弹击中敌机的概率均为0.3,又知若敌机中一弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。

《概率论与数理统计》复习题(含答案)

《概率论与数理统计》复习题(含答案)

概率论与数理统计复习题一、选择题(1)设0)(,0)(>>B P A P ,且A 与B 为对立事件,则不成立的是 。

(a)A 与B 互不相容;(b)A 与B 相互独立; (c)A 与B 互不独立;(d)A 与B 互不相容(2)10个球中有3个红球,7个白球,随机地分给10个人,每人一球,则最后三个分到球的人中恰有一个得到红球的概率为 。

(a))103(13C ;(b)2)107)(103(;(c)213)107)(103(C ;(d)3102713C C C (3)设X ~)1,1(N ,概率密度为)(x f ,则有 。

(a)5.0)0()0(=≥=≤X P X p ;(b)),(),()(∞-∞∈-=x x f x f ; (c)5.0)1()1(=≥=≤X P X P ;(d)),(),(1)(∞-∞∈--=x x F x F (4)若随机变量X ,Y 的)(),(Y D X D 均存在,且0)(,0)(≠≠Y D X D ,)()()(Y E X E XY E =,则有 。

(a)X ,Y 一定独立;(b)X ,Y 一定不相关;(c))()()(Y D X D XY D =;(d))()()(Y D X D Y X D -=-(5)样本4321,,,X X X X 取自正态分布总体X ,已知μ=)(X E ,但)(X D 未知,则下列随机变量中不能作为统计量的是 。

(a)∑==4141i i X X ;(b)μ241-+X X ;(c)∑=-=4122)(1i i X X K σ;(d)∑=-=4122)(31i i X X S(6)假设随机变量X 的密度函数为)(x f 即X ~)(x f ,且)(X E ,)(X D 均存在。

另设n X X ,,1 取自X 的一个样本以及X 是样本均值,则有 。

(a)X ~)(x f ;(b)X ni ≤≤1min ~)(x f ;(c)X ni ≤≤1max ~)(x f ;(d)(n X X ,,1 )~∏=ni x f 1)((7)每次试验成功率为)10(<<p p ,进行重复独立试验,直到第10次试验才取得4次成功的概率为 。

《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案《概率论与数理统计》复习题一、填空题1.未知p(ab)?p(a),则a与b的关系就是单一制。

2.未知a,b互相矛盾,则a与b的关系就是互相矛盾。

3.a,b为随机事件,则p(ab)?0.3。

p(a)?0.4,p(b)?0.3,p(a?b)?0.6,4.已知p(a)?0.4,p(b)?0.4,p(a?b)?0.5,则p(a?b)?0.7。

25.a,b为随机事件,p(a)?0.3,p(b)?0.4,p(ab)?0.5,则p(ba)?____。

36.已知p(ba)?0.3,p(a?b)?0.2,则p(a)?2/7。

7.将一枚硬币重复投掷3次,则正、反面都至少发生一次的概率为0.75。

8.设立某教研室共计教师11人,其中男教师7人,贝内旺拉拜教研室中要自由选择3名叫优秀教师,则3名优秀教师中至少存有1名女教师的概率为___26____。

339.设一批产品中有10件正品和2件次品,任意抽取2次,每次抽1件,抽出1___。

611110.3人单一制截获一密码,他们能够单独所译的概率为,,,则此密码被所译的5343概率为______。

5后不送回,则第2次取出的就是次品的概率为___11.每次试验成功的概率为p,进行重复独立试验,则第8次试验才取得第3235cp(1?p)7次顺利的概率为______。

12.已知3次独立重复试验中事件a至少成功一次的概率为1事件a顺利的概率p?______。

319,则一次试验中27c35813.随机变量x能取?1,0,1,取这些值的概率为,c,c,则常数c?__。

24815k14.随机变量x原产律为p(x?k)?,k?1,2,3,4,5,则p(x?3x?5)?_0.4_。

15x??2,?0?x?15.f(x)??0.4?2?x?0,是x的分布函数,则x分布律为__??pi?1x?0?0??__。

0.40.6??2?0,x?0??16.随机变量x的分布函数为f(x)??sinx,0?x??,则2?1,x2?p(x??3)?__3__。

(完整版)概率论与数理统计复习题带答案讲解

(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。

2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。

3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。

4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。

5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。

6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。

7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。

12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。

概率论与数理统计复习题答案

概率论与数理统计复习题答案

概率论与数理统计复习题 一.填空题1.设, , A B C 为三个事件,用, , A B C 的运算关系式表示下列事件:, , A B C 都发生_____________;, , A B C 中不多于一个发生______________.解:ABC ; AB BC AC ABC ABC ABC ABC ⋃⋃=⋃⋃⋃2.一副扑克牌共52张,无大小王,从中随机地抽取2张牌,这2张牌花色不相同的概率为解:211413132521317C C C p C ==或者1241325213117C C p C =-= 3.同时掷甲、已两枚骰子,则甲的点数大于乙的点数的概率为 解:155{(,)|,1,,6},{},()3612S i j i j A i j P A ===>== 4.设随机事件A 与B 相互独立,()0.5,()0.6P A P B ==,则()P A B -= ,()P A B ⋃= 。

解:()()()()0.2P A B P AB P A P B -===, ()()()()()0.8P A B P A P B P A P B ⋃=+-=5.已知61)(,31)|(,41)(===B P A B P A P ,则()P A B ⋃=______________. 解:111()()(|)4312P AB P A P B A ==⨯=,1()()()()3P A B P A P B P AB ⋃=+-=6.已知()0.6,()0.3P A P AB ==,且,A B 独立,则()P A B ⋃= . 解:()()()0.3()0.5()0.5P AB P A P B P B P B ==⇒=⇒=()()()()()()()()0.8P A B P A P B P AB P A P B P A P B ⋃=+-=+-=7.已知 P(A)=0.4,P(B)=0.3,且A,B 互不相容,则()_____,()_____P AB P AB ==. 解:()()()0.3,()()()0.3P AB P B P AB P AB P A P AB =-==-= 或()()1()()0.3P AB P A B P A P B =⋃=--=8.在三次独立的实验中,事件B 至少出现一次的概率为19/27,若每次实验中B 出现的概率均为p, 则p=_______________解:设X 表示3次试验中事件B 出现的次数,则(3,)XB p ,3191{1}1{0}1(1),273P X P X p p ≥=-==--=∴= 9.设(),0XP λλ>,则X 的分布律为解:{},0,1,2,!k e P X k k k λλ-===10.设随机变量X 服从泊松分布,且已知{1}{2}P X P X ===,那么{4}P X == 。

概率论与数理统计复习题

概率论与数理统计复习题

概率论与数理统计复习题(一)判断题第一章 随机事件与概率 1.写出下列随机试验的样本空间(1) 一枚硬币掷三次,观察硬币字面朝上的次数,样本空间为S={}0,123,,. √ (2)袋中有编号为1、2、3的3个球,从中随机取2个,样本空间为{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)}S = . ╳2. 袋中有编号为1、2、3、4、5的5个球,从中随机取一个.设A =(取到1、2、3号球),B =(取到奇数号球),C =(取到3、4、5号球),D =(取到4、5号球),E =(取到2号球),则(1)A B +=(取到1、1、2、3、3、5号球);╳ (2)\A B E ≠(取到2号球); ╳ (3)CD = (取到1、2、3、4、5号球); ╳ (4)\C D = (取到3号球); √ (5)A D +=(取到1、2、3、4、5号球); √ (6)AD =(取到1、2、3、4、5号球). ╳ 3. 甲、乙二人打靶,每人射击一次,设A ,B 分别为甲、乙命中目标,用A 、B 事件的关系式表示下列事件,则(1)(甲没命中目标)AB = ; ╳ (2)(甲没命中目标)A = ; √ (3)(甲、乙均命中目标)A B =+; ╳ (4)(甲、乙均命中目标)AB = . √ 4.一批产品中有3件次品,从这批产品中任取5件检查,设i A =(5件中恰有i 件次品),i=0,1,2,3 叙述下列事件,则(1)0A =(5件中恰有0件次品)=(5件中没有次品);√(2)0A =(5件中恰有1件次品); ╳(3)0A =(5件中至少有1件次品); √ (4)3A =(5件中最多有2件次品); ╳ (5)23A A + =(5件中至少有3件次品); ╳ (6)23A A + =(5件中至少有2件次品). √ 5.指出下列命题中哪些成立,哪些不成立(1)B A A B A +≠+;╳(2)A B AB AB AB +=++ ;√(3)AB A B A -=-;√(4)A B AB -≠;╳ (5)ABC A B C =;╳ (6)ABC A B C =++ . √6. 袋中有编号为1、2、3、4、5的5个球,从中随机取一个.设A =(取到1、2、3号球),B =(取到奇数号球),C =(取到3、4、5号球),D =(取到4、5号球),E =(取到2号球),则(1)3()5P A =; √ (2)4()()()5P B E P B P E +=+= ; √ (3)4()()()5P A E P A P E +=+= ;╳ (4)3()()5P A E P A +== ; √(5) ()()()P A B P A P B +=+; ╳ (6)4()5P A B += . √7.(1)设事件A 、B 互斥,2.0)(=A P , )(B P = ,则 5.0)(=+B A P . √ (2) 设事件A 、B 互斥,2.0)(=A P ,5.0)(=+B A P 则)(B P = . ╳(3) 设()0.5P A =,()0.4P B =,()0.7P A B +=, 则()0.2P AB = . √ 8. 设事件,()0.5,A B P A ⊃=()0.2P B = ,则(1)(\)()()0.3P A B P A P B =-= ;√ (2)()()()0.7P A B P A P B +=+= ; ╳ (3)()()0.5P A B P A +== ;√ (4)()0.5P AB = ; ╳ (5)()0.2P AB =; √(6)(\)()()0.3P B A P B P A =-= . √9. 箱中有2件次品与3件正品,一次取出两个,则 (1)恰取出2件次品的概率为251C ;√ (2)恰取出2件次品的概率为251A ; ╳ (3)恰取出1件次品1件正品的概率为112325C C C ; √ (4)恰取出1件次品1件正品的概率为112325C C A . ╳10.上中下三本一套的书随机放在书架上,则 (1)恰好按上中下顺序放好的概率为3311321A =⨯⨯;√ (2)恰好按上中下顺序放好的概率为13; ╳ (3)上下两本放在一起的概率为3322A ⨯ ; √(4)上下两本放在一起的概率为332A . ╳ 11. 若111(),(),()234P A P B P AB === 则 (1) 1()2P B A = √ (2) 2()3P B A = ╳(3) 3()4P A B = √ (4) ()()P A B P A = ╳12. 已知10只电子元件中有2只是次品,在其中取2次,每次任取一只,作不放回抽样,则(1)(P 第一次取到正品8)10= √ (2)(P 第一次取到次品12110)C C = ╳(3)(P 第一次取到正品,第二次取到次品1182210)C C A = ; √ (4)(P 第一次取到正品,第二次取到次品1182210)C C C = ; ╳ (5)(P 第一次取到正品,第二次取到次品82)109=⨯ ; √ (6)(P 一次取到正品,一次取到次品82)109=⨯. ╳13.设甲袋中有6只红球,4只白球,乙袋中有7只红球,3只白球,现在从甲袋中随机取一球,放入乙袋,再从乙袋中随机取一球,则(1)两次都取到红球的概率为⨯681011;√ (2)两次都取到红球的概率为⨯671010; ╳ (3)已知从甲袋取到红球,从乙袋中取到红球的概率为710 ; ╳(4)已知从甲袋取到白球,从乙袋中取到红球的概率为⨯371011. ╳14.某人打靶,命中率为,则下列事件的概率为(1)第一枪没打中的概率为;√ (2)第二枪没打中的概率为; √ (3)第二枪没打中的概率为 ;╳(4)第一枪与第二枪全打中的概率为0.20.20.4+= . ╳ (5)第一枪与第二枪全打中的概率为0.20.20.04⨯= √ (6)第三枪第一次打中的概率为20.80.2⨯. √15 .几点概率思想(1)概率是刻画随机事件发生可能性大小的指标;√ (2)随机现象是没有规律的现象; ╳(3)随机现象的确定性指的是频率稳定性,也称统计规律性;√(4)频率稳定性指的是随着试验次数的增多,事件发生的频率接近一个常数;√ (5)实际推断原理为:一次试验小概率事件一般不会发生;√ (6)实际推断原理为:一次试验小概率事件一定不会发生. ╳第二章 随机变量及其分布16.随机变量X 的分布律为1231133p ⎛⎫⎪ ⎪ ⎪⎝⎭,则(1)13p = ;√ (2)23p = ╳17.在6只同类产品中有2只次品,4只正品.从中每次取一只,共取5次,每次取出产品立即放回,再取下一只,设X 为5次中取出的次品数,则(1)第3次取到次品的概率为0. ╳ (2)第3次取到次品的概率为13. √ (3)5次中恰取到2只次品的概率{}2522512233P X C -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭√(4)5次中恰取到2只次品的概率{}25212233P X -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭╳(5)最少取到1只次品的概率{}0505121133P X C ⎛⎫⎛⎫≥=- ⎪ ⎪⎝⎭⎝⎭√(6)最少取到1只次品的概率{}141512133P X C ⎛⎫⎛⎫≥= ⎪ ⎪⎝⎭⎝⎭╳ 18.某交通路口一个月内发生交通事故的次数X 服从参数为3的泊松分布(3)P ,则(1)该交通路口一个月内发生3次交通事故的概率{}31P X ==. ╳(2)该交通路口一个月内发生2次交通事故的概率{}23322!e P X -==. √(3)该交通路口一个月内最多发生1次交通事故的概率{}13311!e P X -==. ╳(4)该交通路口一个月内最多发生1次交通事故的概率为{}{}031333010!1!e e P X P X --=+==+. √19. 袋中有2个红球3个白球,从中随机取一个球,当取到红球令1X =,取到白球令0X =,则 (1)称X 为服从01-分布. √ (2)X 为连续型随机变量. ╳(3)X 的分布律为103255⎛⎫ ⎪ ⎪ ⎪⎝⎭. ╳ (4)X 的分布律为102355⎛⎫⎪⎪ ⎪⎝⎭. √ 20. 设随机变量X 的分布函数为⎪⎩⎪⎨⎧=1310)(x F 1100≥<≤<x x x ,则 (1)X 的分布律为⎪⎪⎭⎫⎝⎛323110. √ (2)X 的分布律为012133⎛⎫⎪ ⎪⎝⎭ ╳ (3){0.5}0P X ≤= ╳ (4)1{0.5}3P X ≤=√ (5){0.5}0P X ==√ (6)1{0.5}3P X == ╳(7)2{0.5 1.5}3P X <≤= √ (8){0.5 1.5}1P X <≤= ╳21.设随机变量X 的概率密度01()0Ax x f x ≤≤⎧=⎨⎩其它 , 则(1)常数A =2 . √ (2)常数A =1 . ╳ (3)由积分21Ax dx =⎰可以计算常数A. ╳ (4)由积分1Ax dx +∞-∞=⎰可以计算常数A. ╳(5) 由积分11Axdx =⎰可以计算常数A. √22.设随机变量X 的概率密度⎩⎨⎧=02)(x x f 其它10≤≤x , 则 (1)1{01}2P X xdx <<=⎰√ (2) 10.5{0.51}2P X xdx <<=⎰ √(3)2{02}2P X xdx <<=⎰╳ (4) 0.5{0.5}2P X xdx +∞>=⎰ ╳23.设随机变量X 的分布函数200()0111x F x xx x <⎧⎪=≤≤⎨⎪>⎩,则X 的概率密度 (1)201()0xx f x <<⎧=⎨⎩其它 √ (2)201()0x x f x ⎧<<=⎨⎩其它╳(3)()2f x x x R =∈ ╳ (4)00()20111x f x xx x <⎧⎪=≤≤⎨⎪>⎩╳ 24.公共汽车站每隔10分钟有一辆汽车通过,乘客随机到车站等车,则 (1)乘客候车时间不超过5分钟的概率为12;√ (2)乘客候车时间超过5分钟的概率为12√ (3)乘客候车时间不超过3分钟的概率为310;√(4)乘客候车时间超过3分钟的概率为310. ╳25. 随机变量~(0,1)X N 则 (1){}102P X ≥=√ (2) {}102P X ≤= √ (3) {}{}00P X P X ≥=≤ √ (4){}{}00P X P X ≥≠≤ ╳ 26. 随机变量)2,3(~2N X 则(1){}52≤<X P =)2/1()1(Φ+Φ ╳ (2) {}104≤<-X P =2)5.3(Φ–1 √ 27. 设01~0.40.6X ⎛⎫⎪⎝⎭,则(1)2Y X =的分布律为020.40.6⎛⎫ ⎪⎝⎭ √ (2)21Y X =+的分布律为130.40.6⎛⎫ ⎪⎝⎭√ 28.设随机变量X 的概率密度为⎩⎨⎧=02)(xx f 其它10<<x ,则X e Y =的概率密度为(1)⎩⎨⎧<<=其它01ln )(e y y y f Y ╳ (2)2ln 1()0Y yy e yf y ⎧<<⎪=⎨⎪⎩其它√第三章多维随机变量及其分布29.设二维随机变量(X ,Y )的分布函数为F x y (,),则(1){}2,1≤≤Y X P = F (1,2) √ (2){}1123131213P X Y F F F -<≤<≤=---,(,)(,)(,) ╳ 30. 设二维随机变量(X ,Y )的分布律为(1)Y 的边缘分布律为012020404...⎛⎫⎪⎝⎭╳ (2)X ,Y 不独立 ╳(3)(X ,Y )的分布函数在116(,.)点的值1610(.,)F = ╳(4)20016{,}.P X Y === √ (5)概率1012{}.P X Y +== ╳(6)Z X Y =-的分布律为101201203204016....-⎛⎫⎪⎝⎭√(7)072().E XY = √ (8)相关系数0XY ρ≠ ╳ 31. 设二维随机变量(X ,Y )的分布律为则 (1){}Y X M ,max =的分布律为⎪⎪⎭⎫⎝⎛167163166210 √(2){}Y X N ,min =的分布律为⎪⎪⎭⎫⎝⎛--167163166012√第四章 随机变量的数字特征32.设随机变量X 的分布律为⎪⎪⎭⎫ ⎝⎛-41212116121610311 则(1))(X E =31 √(2))(2X E = 4/55/]21)2/1(0)1[(22222=++++- ╳ (3)X 的方差D (X )=7297 √33.设随机变量X 的概率密度⎪⎩⎪⎨⎧-=02)(x xx f 其它2110≤<≤≤x x则(1) )(X E =1 √ (2))(X E =⎰⎰-+211)2(dx x dx x ╳(3))()(22X E X E -=61 √ (4)X 的方差61)(≠X D ╳34.一批产品中有一、二、三等品,等外品及废品五种,分别占产品总数的70%,10%,10%,6%,4%。

概率论与数理统计复习

概率论与数理统计复习

概率统计综合复习一一、填空:1.已知()0.3,()0.5,(/)0.2P A P B P A B ===,则()P A B ⋃= _ ___。

2.设某批产品有4%是废品,而合格品中的75%是一等品,则任取一件产品是一等品的概率是 。

3.设1231()()()3P A P A P A ===,且三事件123,,A A A 相互独立,则三事件中至少发生一个的概率为 ,三事件中恰好发生一个的概率为 。

4.袋中装有1个黑球和2个白球,从中任取2个,则取得的黑球数X 的分布函数()F x = ,()E X = 。

5.设X (4,0.5),b Y 在区间[0,2] 上服从均匀分布,已知X 与Y 相互独立,则(3)D X Y -= _ _。

6.设2(2,)X N σ ,且{0}0.2P X ≤=,那么{24}P X <<= _ ___。

7.设随机变量X 服从参数为2的泊松分布,用切比雪夫不等式估计:{24}P X -≥≤ 。

8.设一批产品的某一指标2(,)X N μσ ,从中随机抽取容量为25的样本,测得样本方差的观测值2100s =,则总体方差2σ的95%的置信区间为 。

二、单项选择:1.甲、乙二人射击,A 、B 分别表示甲、乙击中目标,则AB 表示( )。

A.两人都没击中B.至少一人没击中C.两人都击中D.至少一人击中2.设,A B 为两个随机事件,且,则下列式子正确的是( )A.()()P A B P A ⋃=B.()()P AB P A =C.(/)()P B A P B =D.()()()P B A P B P A -=- 3.设123,(,4)X X X N μμ,是来自总体的样本,未知参数的下列无偏估计量中最有效的是 ( ).A.123111424X X X ++ B. 131122X X + C. 123122555X X X ++ D. 123111333X X X ++ 4.设某种电子管的寿命X ,方差为()D X a =,则10个电子管的平均寿命X 的方差()D X 是( ) A .a B. 10a C. 0.1a D. 0.2a5.在假设检验问题中,犯第一类错误是指( )A .原假设0H 成立,经检验接受0HB .原假设0H 成立,经检验拒绝0HC .原假设0H 不成立,经检验接受0HD .原假设0H 不成立,经检验拒绝0H 三、设一批混合麦种中一、二、三、四等品分别占60%、20%、15%、5%,,四个等级的发芽率依次为,0.98,0.95,0.9,0.85 求:1.这批麦种的发芽率;2.若取一粒能发芽,它是二等品的概率是多少?四、已知随机变量X 的概率密度函数为,01()0,cx x f x ⎧≤<=⎨⎩其它,求:1.常数c ; 2.{0.40.7}P X <≤; 3.方差()D X五、设二维随机变量(,)X Y 的联合密度函数(2)2,0,0(,)0x y e x y f x y -+⎧>>=⎨⎩,其它 ,1.求,X Y 的边缘密度函数;2.判断,X Y 是否相互独立、是否不相关;3.求概率{1}P X Y +≤六、设总体X 的密度函数为(1),01()0,x x f x θθ⎧+<<=⎨⎩其它,其中0θ>是未知参数,12,,,n X X X 是从该总体中抽取的一个样本,12,,,n x x x 是其样本观测值,试求参数θ 的最大似然估计量。

概率论与数理统计复习题

概率论与数理统计复习题

《概率论与数理统计》复习题1、什么是随机现象?随机现象有什么特征?2、常用的统计软件有哪些?3、简述概率论中包含哪些基本内容?4、简述数理统计中包含哪些基本内容?5、写出随机事件概率的一般加法公式。

6、写出随机事件概率的一般乘法公式。

7、设A 、B 、C 为三个事件,用事件运算关系表达复合事件“A 、B 、C 恰好有两个事件发生”。

8、设A 、B 、C 为三个事件,问(A+B ) 表示什么样的事件?9、某班学生100人,男生80人,女生20人。

男生中35人为本地人,45人为外地人。

女生中7人为本地人,13人为外地人。

全班免修英语共20人,其中男生12人,女生 8人。

从中任选一人,记事件A=“选中男生”、B=“选中本地人”、C=“选中免修英语”。

计算:P (A )、P (B )、P (C )、P (B ︱A )、P (C ︱A )、P(︱)、P (AB )、P (AC ) 10、在10个考签中有4个难签,3人参加考试抽签(不放回),甲先、乙次、丙后。

设事件A 、B 、C 分别表示甲、乙、丙各抽到难签。

计算P (A )、P (AB )、P(B )、P (ABC )。

11、写出全概率公式。

12、写出贝叶斯公式。

13、有10箱同样规格的产品,其中5箱为甲厂生产,3箱为乙厂生产,2箱为丙厂生产。

设甲、乙、丙三厂生产这种产品的次品率分别是 、 、 ,现从这10箱产品中任 取一箱,再从这箱中任取一件产品。

求:取得这件产品是正品的概率是多少?若取得正 品,这件正品是丙厂生产的概率是多少?14、一次贝努利试验中,事件A 发生的概率为ρ,问在n 次重复试验中事件A 恰好发生κ 次的概率是多少?15、一次贝努利试验中,事件A 发生的概率为ρ,问在重复试验中,第κ次试验时事件 A 首次发生的概率是多少?16、一次贝努利试验中,事件A 发生的概率为ρ,在n 次重复试验中事件A 恰好发生 κ次的概率服从二项分布。

(完整word版)概率论复习题及答案

(完整word版)概率论复习题及答案

概率论与数理统计复习题一.事件及其概率1. 设,,A B C 为三个事件,试写出下列事件的表达式:(1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。

解:(1) ABC A B C =⋃⋃(2) ABC A B C =⋃⋃ (3) A B C ⋃⋃ (4) BC AC AB ⋃⋃2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ⋃-。

解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ⋃=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。

3. 设,A B 互斥,()0.5P A =,()0.9P A B ⋃=,求(),()P B P A B -。

解:()()()0.4,()()0.5P B P A B P A P A B P A =⋃-=-==。

4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ⋃。

解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==⋃=+-= ()()()()0.2P AB P A B P A P AB =-=-=。

5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ⋃⋃。

解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ⋃⋃=-⋃⋃=-=-=。

6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率;(2) 取到一个黄球、一个白球的概率。

概率论和数理统计期末考试题及答案

概率论和数理统计期末考试题及答案

概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6且X 与Y 相互独立。

则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2(()X f x , )(y f Y ;)3( X 与Y 是否相互独立?)4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立. (4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。

概率论与数理统计复习题

概率论与数理统计复习题

概率论与数理统计复习题(仅供参考)一. 练习题 (一) 填空1、一批产品的废品率为0.1,每次抽取1个,观察后放回去,下次再取1个,共重复3次,则3次中恰有两次取到废品的概率是 .2、袋中有12个大小规格相同的球,其中含有2个红球,从中任取3个球,则取出的3个球中红球个数ξ的概率分布为 .3、设在10只晶体管中有两个次品,从中任取两次,每次取一个,作不放回抽样,设{=A 第一次取得正品第二取得次品},则=)(A P .4、一批零件的直径服从正态分布,从中随机抽出100个测量其直径,测得平均直径为cm 2.5,标准差为6.1cm ,若想知道这批零件的直径是否符合标准直径cm 5,因此采用 检验.在显著水平α下接受域为 .8、若ξ)2,5(~2N ,则{}32<-ξP = .5、从总体ξ中取一样本),,(21n X X X ,μξ=E ,2σξ=D ,∑==ni i X n X 11,则=X E ,故X 是μ的 估计.6、 C B A ,,三人入学考试合格的概率分别是52,21,32,三人中恰有两人合格的概率是 。

7、加工一件产品需要经过三道工序,第一、二、三道工序不出废品的概率分别为0.95,0.85,0.9。

若三道工序是否出废品是相互独立的,则经过三道工序而不出废品的概率为 。

8.、设总体X ~()2,σμN ,2σ已知,n X X X ⋅⋅⋅,,21是取自总体X 的一个样本,2,S X 分别是样本的均值和方差,则总体μ的置信水平为α-1的置信区间是 。

9、随机变量ξ的概率分布如下表则 =ξE ;=ξD 。

10.已知ξ服从)4,150(2N ,则140(P <=≤)160ξ ,=≤)150(ξP 。

11、设随机变量X 服从参数为λ的泊松分布,且{}{}21===X P X P ,则)(X E =12.教材P69第9题13、 设⎩⎨⎧≥=-其它)(x e x xλλϕ,,0>λ 是随机变量ξ的密度函数,100=ξE ,则=λ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计复习题一
一、 填空题(每小题3分,满分15分)
1、设A 、B 是两个事件,且A 与B 互不相容,()0.2P B =,则()P AB = .
2、连续抛一枚硬币5次,则正面都不出现的概率是 .
3、随机变量X 的所有可能取值为0和a ,且{}00.8P X ==,()1E X =,则
a = .
4、假设(5,0.5)X b , (2,36)Y N ,则()E X Y += .
5、设总体X 服从参数为λ的指数分布,样本12,,,n X X X 是来自总体X 的一个样本,则λ的矩估计量为 .
二、单项选择题(每小题3分,满分15分)
1、设事件A 与B 相互独立,且()0,()0P A P B >>,则下列等式成立的是( )
A 、A
B φ=; B 、()()()P AB P A P B =;
C 、()1()P B P A =-;
D 、()0P B A =.
2、123,,X X X 是来自总体X ,X 的二阶矩存在,则下列统计量中,最有效的无偏估计
量是( )
A 、123111236X X X ++;
B 、123115488
X X X ++; C 、12311751010X X X ++; D 、123111456
X X X ++. 3、设随机变量(1,4),(1)0.8413,(0)0.5X N Φ=Φ= ,则{13}P x ≤≤=( ) A 、0.1385; B 、0.2413; C 、0.2934; D 、0.3413.
4、设二维随机变量(,)X Y 的分布率
则{0}P XY ==( ) A 、14; B 、512; C 、34
; D 、1. 5、设12,,,n X X X 来自正态总体2(,)X N μσ 的样本,则下列正确的是( )
A 、22(1)(1)n S n χ-- ;
B 、2
22(1)S n χσ- ;
C 、2
22(1)(1)n S n χσ-- ; D 、2
22(1)()n S n χσ- .
三、某用户从两厂家进了一批同类型的产品,其中甲厂生产的占60%,若甲、乙两厂产品的
次品率分别为5%,10%,
(1)今从这批产品中取一个,求为次品的概率。

(2)现随机取一个产品经检验是次品,求出自甲厂的概率。

(10分)
四、设随机变量X 的分布律是
已知()0.1E X =,2()0.9E X = 求:
(1)(21)D X -+; (2)(56)E X +; (3)1p ,2p ,3p ;
(4)随机变量X 的分布函数()F x 。

(14分)
五、设二维连续型随机变量(,)X Y 的联合概率密度函数为
01,01(,)0,
Axy x y f x y ⎧<<<<⎪=⎨⎪⎩,
其它. (1)求常数A 的值;
(2)求边缘概率密度函数()X f x 及()Y f y ;
(3)X ,Y 是否相互独立;
(4)求(),(),()E X E Y E XY ;
(5)并判定是否相关;
(6)求11,22P X Y ⎧
⎫<<⎨⎬⎩⎭
; (7)求{}1P X Y +<. (30分)
六、设总体X 服从参数为λ的指数分布, 其概率密度为, >0, ()0, 0.
x e x f x x λλ-⎧⎪=⎨≤⎪⎩,
12,,,n x x x 为一个样本取值,求参数λ的极大似然估计.(10分)
七、设X 的概率密度为, 0<<4,()80, . x x f x ⎧⎪=⎨⎪⎩其它,求28Y X =+的概率密度.。

相关文档
最新文档