二次函数-实际问题与二次函数(1)(含答案)
26.3实际问题与二次函数(1)
= − 20 x + 100 x + 6000 (0≤x≤20)
2
当x = −
1 所以降价时,定价为 所以降价时 定价为 57 2 6125元. 元
b 5 5 5 = 时, y 最大 = − 20 × + 100 × + 6000 = 6125 2a 2 2 2
2
元,利润最大,最大利润为 利润最大,
S=- 2 +30l =-l =- 因此, 因此,当 l = −
( 0 < l < 30 )
b 30 时 =− = 15 , 2a 2× (−1)
4ac − b2 − 302 = = 225, S有最大值 有最大值 4a 4×(−1)
也就是说, 最大( = 也就是说, 当l是15m时,场地的面积 最大(S= 是 时 场地的面积S最大 225m2).
6 4 2 0
x 2
-4 -2
探究
用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边 的篱笆围成矩形场地,矩形面积 随矩形一边 用总长为 的篱笆围成矩形场地 的变化而变化, 是多少时,场地的面积S最大 最大? 长 l 的变化而变化,当 l 是多少时,场地的面积 最大?
分析: 的函数关系式, 分析:先写出S与l的函数关系式,再求出使S最大的l值. s 矩形场地的周长是60m,一边长为 , 矩形场地的周长是 ,一边长为l, 60 则另一边长为 − l m ,场地的面积 2 200 S=l ( 30-l ) = - 即 S=- +30l =-l =-
请大家带着以下几个问题读题
(1)题目中有几种调整价格的方法? )题目中有几种调整价格的方法? (2)题目涉及到哪些量之间的关系? )题目涉及到哪些量之间的关系? (3)哪一个量是自变量?哪些量随之发生 哪一个量是自变量? 哪一个量是自变量 了变化? 了变化?
实际问题与二次函数(1)
D
C B A
25m
实际问题与二次函数(1)
探究1:面积问题
例题:用总长为60m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化.当l 是多少米时,场地的面积S 最大?针对训练(一)
用一段长为30m 的篱笆围成一个一边靠墙的矩形菜园,墙长为18m ,这个矩形的长,宽各为多少时?菜园的面积最大,面积是多少?针对训练(二)
为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如下图).设绿化带的BC 边长为x m ,绿化带的面积为y m 2.
(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围.
(2)当x 为何值时,满足条件的绿化带的面积最大?
探究(二)利润问题
例题:已知某商品的进价为每件40元。
现在的售价是每件60元,每星期可卖出300件。
市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;如何定价才能使利润最大?
针对训练(一)
商场销售一批衬衫,每天可售出20件,每件盈利40元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价1元,每天可多售出2件。
每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?
针对训练(二)
某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?。
22.3实际问题与二次函数(一)
22.3实际问题与二次函数(一)一、课前导学1.二次函数c bx ax y ++=2的顶点坐标是( _, )2.一般地:(1)如果抛物线c bx ax y ++=2中a>0,那么当=x _______时,二次函数c bx ax y ++=2有最_______值是_____________;(2)如果抛物线c bx ax y ++=2中a<0,那么当=x _______时,二次函数c bx ax y ++=2有最_______值是_____________。
3.分别用配方法和公式法,求当x 取何值时,y 有最值。
(1)223y x x =+- (2)21252y x x =-+-二、自主探究,合作交流问题:从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系为2305(06)h t t t =-≤≤.小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?探究:借助函数图象解决这个问题,画出2305(06)h t t t =-≤≤函数图象如图 可以看出这个函数图象是一条抛物线的 一部分,这条抛物线的顶点是这个函数图象的最高点,也就是说,当t 取顶点横坐标时这个函数之最大. 因此,当2b t a =-=时,h 有最大值244ac b a -=.也就是说小球运动 秒时,小球运动最大高度 米.三、自主探究,交流展示☆探究1:用总长为60m 的篱笆围成矩形场地,矩形的面积S 随一边长l 的变化而变化,当l 是多少米时,场地面积S 最大?☆应用举例:1.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).(1)若设绿化带的BC 边长为x m ,绿化带的面积为y m 2.求y 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)绿化带的最大面积是多少?2.如图,点E 、F 、G 、H 分别位于正方形ABCD 的四条边上,四边形EFGH 也是正方形.当点E 位于何处时,正方形EFGH 的面积最小?H G F E DC BA☆练检巩固:1. 用长为20cm 的铁丝作两个正方形,两个正方形的边长分别为多少时,面积和最大?是多少?2. 已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?3. 如图,四边形的两条对角线AC 、BD 互相垂直,AC +BD =10,当AC 、BD 的长是多少时,四边形ABCD 的面积最大?4.一块三角形废料如图所示,∠A =30°,∠C =90°,AB =12.用这块废料剪出一个长方形CDEF ,其中,点D 、E 、F 分别在AC 、AB 、BC 上.要使剪出的长方形CDEF 面积最大,点E 应造在何处?D C BAF E DC BA☆能力提升:1. 如图,点E,F,G,H 分别在菱形ABCD 的四条边上,BE=BF=DG=DH ,连接EF 、FG 、GH 、HE ,得到四边形EFGH.(1)求证:四边形EFGH 是矩形;(1)设AB=a ,∠A=60°,当BE 为何值时,矩形EFGH 面积最大?BAC2.为了改善小区环境,某小区决定要在一块一边靠墙(墙长16m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).(1)若设绿化带的BC 边长为x m ,绿化带的面积为y m 2.求y与x 之间的函数关系式,并写出自变量x 的取值范围.(2)绿化带的最大面积是多少?。
26.3_实际问题与二次函数_(含答案)
实际问题与二次函数一、自主学习1.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h=3.5t -4.9t 2(t 的单位:s ;h 的单位:m)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( ) A.0.7l s B.0.70 s C.0.63 s D.0.36 s2.行驶中的汽车刹车后,由于惯性的作用,还会继续向前滑行一段距离,这段距离称为“刹车距离”.某车的刹车距离s(m)与车速x(km/h)间有下述的函数关系式:s=0.01x 2+0.002x ,现该车在限速140km ∠h 的高速公路上出了交通事故,事后测得其刹车距离为46.5 m ,请推测刹车时汽车________(填“是”或“不是”)超速.3.有一座抛物线型拱桥(如图26-10所示),正常水位时桥下河面宽20 m ,河面距拱顶4 m(1)在如图26-10所示的平面直角坐标系中,求出抛物线解析式;(2)为了保证过往船只顺利航行,桥下水面的宽度不得小于18m ,求水面在正常水位基础上涨多少米时,就会影响过往船只?图26-104.某商人开始时,将进价为每件8元的某种商品按每件10元出售,每天可售出100件.他想采用提高售价的办法来增加利润,经试验,发现这种商品每件每提价1元,每天的销售量就会减少10件.(1)写出售价x(元/件)与每天所得的利润y(元)之间的函数关系式;(2)每件售价定为多少元,才能使一天的利润最大?二、基础巩固5.某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x 台机器,每天的生产总量为y 件,请你写出y 与x 之间的关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?6.如图26-11所示,隧道的截面由抛物线AED 和矩形ABCD 构成,矩形的长BC 为8 m ,宽AB 为2 m ,以BC 所在的直线为x 轴,线段BC 的中垂线为y 轴,建立平面直角坐标系,y 轴是抛物线的对称轴,顶点E 到坐标原点O 的距离为6 m.(1)求抛物线的解析式;(2)如果该隧道内设双行道,现有一辆货运卡车高4.2 m ,宽2.4 m ,这辆货运卡车能否通过该隧道?通过计算说明你的结论.图26-117.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日生产出的产品全部售出,已知生产x 只玩具熊猫的成本为R(元),售价每只为P(元)且R 、P 与x 的关系式为R=500+30x ,P=170-2x.(1)当日产量为多少时,每日获得的利润为1750元;(2)当日产量为多少时,可获得最大利润?最大利润是多少?8.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表26-2所示.表26-2若日销售量y是销售价x的一次函数;(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?9.图26-12是某段河床横断面的示意图.查阅该河段的水文资料,得到表26-3中的数据.图26-12图26-13表26-3(1)请你以表26-3中的各对数据(x,y)作为点的坐标,尝试在图26-13所示的坐标系中画出y关于x的函数图象;(2)①填写表26-4.表26-4②根据所填表中数据呈现的规律,猜想出用x表示y的二次函数关系式:________.(3)当水面宽度为36 m时,一船吃水深度(船底部到水面的距离)为1.8 m的货船能否在这个河段安全通过?为什么?三、能力提高10.学校要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰好在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线距径落下.且在过OA的任意平面上的抛物线如图26-14所示,建立平面直角坐标系(如图26-15所示),水流喷出的高度y(m)与水面距离x(m)之间的函数关系式是y=-x2+2325x,请回答下列问题:图26-14 图26-15(1)花形柱子OA的高度;(2)若不计其他因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?11.《西游记》中的孙悟空对花果山的体制进行全面改革后,为了改善旅游环境,决定对水帘洞进行改造翻新,计划在水帘洞前建一个由喷泉组成的水帘门洞,让游客在进入水帘洞前先经过一段由鹅卵石铺就的小道,小道两旁布满喷水管,每个喷管喷出的水最高达4 m ,落在地上时距离喷水管4 m ,现在设如图26-16是喷泉所经过的路线,与喷头A 和喷泉落地点B 的连线为横轴,AB 垂直平分线为纵轴建立直角坐标系.问小道的边缘距离喷水管至少应为多少米,才能使身高不大于1.75 m 的游客进入水帘洞时不会被水淋湿?图26-112.我区某镇地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销售,我区政府对该花木产品每投资x 万元,所获利润为P=501-(x -30)2+10万元.为了响应我国西部大开发的宏伟决策,我区政府在制定经济发展的10年规划时,拟开发此花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元.若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路,且5年修通.公路修通后,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每投资x 万元可获利润Q=308)50(5194)50(50492+-+--x x 万元.(1)若不进行开发,求10年所获利润的最大值是多少?(2)若按此规划进行开发,求10年所获利润的最大值是多少?(3)根据(1)、(2)计算的结果,请你用一句话谈谈你的想法.13.在体育测试时,初三的一名高个子男同学在推铅球.已知铅球所经过的路线是某个二次函数图象的一部分,如图26-17所示,如果这个男同学的出手处A 点的坐标(0,2),铅球路线的最高处B 点的坐标为(6,5).(1)求这个二次函数的解析式;(2)该男同学把铅球推出去多远?(精确到0.01 m ,15=3.873)图26-17四、模拟链接1 14、设抛物线y=2x 2+kx+1-2k(k 为常数)与x 轴交于A 、B 两点,与y 轴交于C 点,且A 点在原点O 的左侧,B 点在原点O 的右侧,满足(OA+OB)2-OC=429(1)求抛物线的解析式;(2)在抛物线上是否存在D 、E 两点,使AO 恰为△ADE 的中线,若存在,求出△ADE 的面积,若不存在,说明理由.15.已知抛物线y=x 2+(2n -1)x+n 2-1(n 为常数).(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式; (2)如图26-18所示,设A 是(1)所确定的抛物线上位于x 轴下方且在对称轴左侧的一个动点,过A 作x 轴的平行线,交抛物线于另一点D ,再作AB ⊥x 轴于B ,DC ⊥x 轴于C.①当BC=1时,求矩形ABCD 的周长;②试问矩形ABCD 的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A 点的坐标;如果不存在,请说明理由.图26-1816.已知OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴上,点C 在y 轴上,OA=10,OC=6.(1)如图26-19甲所示,在OA 上选取一点D ,将△COD 沿CD 翻折,使点O 落在BC 边上,记为E.求折痕CD 所在直线的解析式;(2)如图26-19乙所示,在OC 上选取一点F ,将△AOF 沿AF 翻折,使点O 落在BC 边,记为G.①求折痕AF 所在直线的解析式;②再作GH ∥AB 交AF 于点H ,若抛物线y=121x 2+h 过点H ,求此抛物线的解析式,并判断它与直线AF 的公共点的个数.(3)如图26-19丙所示:一般地,在以OA 、OC 上选取适当的点I 、J ,使纸片沿IJ 翻折后,点O 落在BC 边上,记为K ,请你猜想:①折痕IJ 所在直线与第(2)题②中的抛物线会有几个公共点;②经过K 作KL ∥AB 与IJ 相交于L ,则点L 是否必定在抛物线上.将以上两项猜想在(1)的情形下分别进行验证.图26-19参考答案一、自主学习1.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h=3.5t -4.9t 2(t 的单位:s ;h 的单位:m)可以描述他跳跃时重心高度的变化.如图26-9所示,则他起跳后到重心最高时所用的时间是( )A.0.7l sB.0.70 sC.0.63 sD.0.36 s图26-9答案:D2.行驶中的汽车刹车后,由于惯性的作用,还会继续向前滑行一段距离,这段距离称为“刹车距离”.某车的刹车距离s(m)与车速x(km/h)间有下述的函数关系式:s=0.01x 2+0.002x ,现该车在限速140km ∠h 的高速公路上出了交通事故,事后测得其刹车距离为46.5 m ,请推测刹车时汽车________(填“是”或“不是”)超速. 答案:是3.有一座抛物线型拱桥(如图26-10所示),正常水位时桥下河面宽20 m ,河面距拱顶4 m(1)在如图26-10所示的平面直角坐标系中,求出抛物线解析式;(2)为了保证过往船只顺利航行,桥下水面的宽度不得小于18m ,求水面在正常水位基础上涨多少米时,就会影响过往船只?图26-10答案:(1)y=251-x+4; (2)0.76 m 4.某商人开始时,将进价为每件8元的某种商品按每件10元出售,每天可售出100件.他想采用提高售价的办法来增加利润,经试验,发现这种商品每件每提价1元,每天的销售量就会减少10件.(1)写出售价x(元/件)与每天所得的利润y(元)之间的函数关系式;(2)每件售价定为多少元,才能使一天的利润最大? 答案:(1)y=-10x+280x -1600;(2)14y=(x -8)×[l00-(x -10)×10]=(x -8)(100-10x+100) =(x -8)(-l0x+200)=-10x+280x -1600 当x=)10(22802-⨯-=-a b =14,因为y=-10x+280x -1600中的a <0,故此时y 有最大值.二、基础巩固5.某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x 台机器,每天的生产总量为y 件,请你写出y 与x 之间的关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?答案:(1)y=-4x+64x+30720;(2)增加8台机器,最大生产总量是30976件 y=(80+x)(384-4x)=4x+64x+30720因为y=-4x+64x+30720=-4(x -8)2+30976 所以x=8时,y 最大值=30976.6.如图26-11所示,隧道的截面由抛物线AED 和矩形ABCD 构成,矩形的长BC 为8 m ,宽AB 为2 m ,以BC 所在的直线为x 轴,线段BC 的中垂线为y 轴,建立平面直角坐标系,y 轴是抛物线的对称轴,顶点E 到坐标原点O 的距离为6 m.图26-11(1)求抛物线的解析式;(2)如果该隧道内设双行道,现有一辆货运卡车高4.2 m ,宽2.4 m ,这辆货运卡车能否通过该隧道?通过计算说明你的结论. 答案:(1)y=41-x+6;(2)这辆货运卡车能通过隧道. 由图可设抛物线解析式为y=ax+c ,由题可知A(-4,2),E(0,6),c=6,代入,得2=(41-)2a+6,a=41-,故解析式为y=41-x+6;当x=2.4时,y=41-×2.42+6=4.56>4.2,所以这辆货运卡车能通过隧道.7.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日生产出的产品全部售出,已知生产x 只玩具熊猫的成本为R(元),售价每只为P(元)且R 、P 与x 的关系式为R=500+30x ,P=170-2x.(1)当日产量为多少时,每日获得的利润为1750元; (2)当日产量为多少时,可获得最大利润?最大利润是多少? 答案:(1)日产量为25只;(2)当日产量为35只时,可获得最大利润,最大利润是1950元.设生产x 只玩具熊猫的利润为y 元,依题意得y=px --2x)x -(500+30x)=-2x+140x -500,令y=1750,即--500=1750,解得x 1=25,x=45,但x=45>40去,所以当日产量为25只时,每日获得的利润为1750元. 对于y=-2x+140x -500,a=-2<0,x=)2(21402-⨯-=-a b =35时,y 最大值=)2(4140)500()2(44422-⨯--⨯-⨯=-ab ac =1950. 8.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表26-2所示.表26-2若日销售量y 是销售价x 的一次函数;(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?答案:(1)9=-x+40; (2)应定为25元,此时每日获得最大销售利润为225元.9.图26-12是某段河床横断面的示意图.查阅该河段的水文资料,得到表26-3中的数据.图26-12 表26-3(1)请你以表26-3中的各对数据(x ,y)作为点的坐标,尝试在图26-13所示的坐标系中画出y 关于x 的函数图象;图26-13(2)①填写表26-4.表26-4②根据所填表中数据呈现的规律,猜想出用x 表示y 的二次函数关系式:________.(3)当水面宽度为36 m 时,一船吃水深度(船底部到水面的距离)为1.8 m 的货船能否在这个河段安全通过?为什么? 答案:(1)略; (2)表略, y=2001x ; (3)这货船不能通过这河段.三、能力提高10.学校要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA ,O 恰好在水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线距径落下.且在过OA 的任意平面上的抛物线如图26-14所示,建立平面直角坐标系(如图26-15所示),水流喷出的高度y(m)与水面距离x(m)之间的函数关系式是y=-x 2+2325+x ,请回答下列问题:图26-14 图26-15 (1)花形柱子OA 的高度;(2)若不计其他因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?答案:(1)1.5m ;(2)半径至少是3m ,一段由鹅卵石铺就的小道,小道两旁布满喷水管,每个喷管喷出的水最高达4 m ,落在地上时距离喷水管4 m ,现在设如图26-16是喷泉所经过的路线,与喷头A 和喷泉落地点B 的连线为横轴,AB 垂直平分线为纵轴建立直角坐标系.问小道的边缘距离喷水管至少应为多少米,才能使身高不大于1.75 m 的游客进入水帘洞时不会被水淋湿?图26-1答案:小道边缘距离喷水管至少应为1 m.由已知,得A(-4,0),B(4,0),抛物线的顶点C(0,4). 设抛物线的关系式为y=ax+4,把x=4,y=0代入,得16a+4=0,解得a=41-,故抛物线的关系式为y=41-x+4;为了让身高1.75m 的游客不会被喷泉淋湿,抛物线上的点到小道的边缘的距离应不小于1.75 m 设E 是抛物线上纵坐标为1.75的点,当y=1.75时,41-x+4=1.75,解得x=±3,所以E 点的坐标为(-3,1.75).作ED ⊥x 轴,则D(-3,0),从而AD=1.12.我区某镇地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销售,我区政府对该花木产品每投资x 万元,所获利润为P=501-(x -30)2+10万元.为了响应我国西部大开发的宏伟决策,我区政府在制定经济发展的10年规划时,拟开发此花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元.若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路,且5年修通.公路修通后,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每投资x万元可获利润Q=308)50(5194)50(50492+-+--x x 万元. (1)若不进行开发,求10年所获利润的最大值是多少? (2)若按此规划进行开发,求10年所获利润的最大值是多少? (3)根据(1)、(2)计算的结果,请你用一句话谈谈你的想法. 答案:(1)10年所获利润的最大值是100万元;(2)3547.5万元; (3)该项目有极大的开发价值.若不开发此产品,按照原来的投资方式,由P=501-(x -30)2+10知,只需从50万元专款中拿出30万元投资,每年即可获得最大利润10万元,则10年的最大利润M 1=10×10=100万元.若对产品开发,在前5年中,当x=25时,每年最大利润是P=501-(25-30)2+10=9.5万元,则前5年的最大利润M 2=9.5×5=47.5万元.设5年中x 万元是用于本地销售的投资,则Q=5049-(50-x)2+5194(50-x)+308知,将余下的(50-x)万元全部用于外地销售的投资,才有可能获得最大利润,则后5年的利润是M 3=[501-(x -30)2+10]×5+(5049-x+5194x+308)×5 =-5(x -20)2+3500,故x=20时,M 3取得最大值为3500万元,所以10年的最大利润为M=M 2+M 3=47.5+3500=3547.5万元,因为3547.5>100,故该项目有极大的开发价值. 13.在体育测试时,初三的一名高个子男同学在推铅球.已知铅球所经过的路线是某个二次函数图象的一部分,如图26-17所示,如果这个男同学的出手处A 点的坐标(0,2),铅球路线的最高处B 点的坐标为(6,5). (1)求这个二次函数的解析式;(2)该男同学把铅球推出去多远?(精确到0.01 m ,15=3.873)图26-17答案:(1)y=121-x+x+2;(2)13.75m 设二次函数的解析式为y=a(x -h)2+k ,顶点坐标为(6,5) ∴y=a(x -6)2+5, A(0,2)在抛物线上, ∴2=62·a+5∴a=121- ∴y=121-(x -6)2+5,y=121-x+x+2. 当y=0时,121-x+x+2=0, x=6±52(舍6-52).∴x=6+52≈13.75m四、模拟链接14.设抛物线y=2x 2+kx+1-2k(k 为常数)与x 轴交于A 、B 两点,与y 轴交于C 点,且A 点在原点O 的左侧,B 点在原点O 的右侧,满足(OA+OB)2-OC=429(1)求抛物线的解析式;(2)在抛物线上是否存在D 、E 两点,使AO 恰为△ADE 的中线,若存在,求出△ADE 的面积,若不存在,说明理由.答案:(1)y=2x+3x -5;(2)存在抛物线上的D 、E 两点,使AO恰为△ADE 的中线,S △ADE =41015.设x 1,x 是方程2x -kx+1-2k=0的两根. A(x 1,0),B(x ,0),x 1<0<x. ∴OA=-x 1,OB=x. ∴x 1+x=2k -①x 1·x=221k -<0②∴k >21在抛物线解析式中,令x=0,则y=1-2k.. ∴C(0,1-2k),∴OC=|1-2k|=2k -1,由(OA+OB)2-OC=429,则(-x+x)2-(2k -1)429∴(x 1+x)2-4x 1 x -(2k -1)=429①②代入得(2k -)2-4×221k --2k+1=429.∴k 2-8k -33=0 ∴k 1=3或k 2=-11. 但k >21, ∴k=-11不合题意,舍去,∴k=3. 则所求抛物线的解析式为y=2x+3x -5.设存在抛物线上的D 、E 两点,使AO 恰为△ADE 的中线. ∴O 是DE 的中点,即D 、E 关于原点对称. 设直线DE 的解析式为y=kx ,联⎩⎨⎧-+==5322x x y kxy∴2x+(3-k)x -5=0 ③设D(x 1,y 1),E(x ,y 2),x 1,x 是方程③的解, ∴x 1+x=23k--=0, ∴k=3代入方程③中. ∴2x -5=0,∴x=±210,∴y=±2103. 易求A(25-,0),B(1,0). ∴S △ADE =2S △AOE =2×21·AO·|y E |=2×21×25×2103=41015 15.已知抛物线y=x 2+(2n -1)x+n 2-1(n 为常数).(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;(2)如图26-18所示,设A 是(1)所确定的抛物线上位于x 轴下方且在对称轴左侧的一个动点,过A 作x 轴的平行线,交抛物线于另一点D ,再作AB ⊥x 轴于B ,DC ⊥x 轴于C. ①当BC=1时,求矩形ABCD 的周长;②试问矩形ABCD 的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A 点的坐标;如果不存在,请说明理由.图26-18答案:(1)y=x -3x ;(2)① 6 ②存在最大值,A(21,45-) 由已知条件,得n 2-1=0,解这个方程,得n 1=1,n 2=-1 当n=1时,得y=x+x ,此抛物线的顶点不在第四象限; 当n=-1时,得y=x -3x ,此抛物线的顶点在第四象限, ∴所求的函数关系为y=x -3x.由y=x -3x ,令y=0,得x -3x=0,解得x 1=0,x=3. ∴抛物与x 轴的另一个交点为(3,0), ∴它的顶点为(49,23-),对称轴为直线x=23.①∵BC=1,由抛物线和矩形的对称性易知OB=21×(3-1)=1, ∴B(1,0).∴点A 的横坐标x=1,又点A 在抛物线y=x -3x 上,∴点A 的纵坐标y=12-3×1=-2, ∴AB=|y|=|-2|=2,∴矩形ABCD 的周长为2(AB+BC)=2×(2+1)=6.②∵点A 在抛物线y=x -3x 上,故可设A 点的坐标为(x ,x -3x),∴B 点的坐标为(x ,0)·(0<x <23) ∴BC=3-2x ,A 在x 轴下方,∴x -3x <0, ∴AB=|x -3x|=3x -x.∴矩形ABCD 的周长P=2[(3x -x)+(3-2x)]=-2(x -21)2+213. ∵a=-2<0,∴当x=21时,矩形ABCD 的周长P 最大值为213,此时点A 的坐标为A(21,45-)16.已知OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴上,点C 在y 轴上,OA=10,OC=6. (1)如图26-19甲所示,在OA 上选取一点D ,将△COD 沿CD 翻折,使点O 落在BC 边上,记为E.求折痕CD 所在直线的解析式;(2)如图26-19乙所示,在OC 上选取一点F ,将△AOF 沿AF翻折,使点O 落在BC 边,记为G. ①求折痕AF 所在直线的解析式;②再作GH ∥AB 交AF 于点H ,若抛物线y=121-x 2+h 过点H ,求此抛物线的解析式,并判断它与直线AF 的公共点的个数.图26-19(3)如图26-19丙所示:一般地,在以OA 、OC 上选取适当的点I 、J ,使纸片沿IJ 翻折后,点O 落在BC 边上,记为K ,请你猜想:①折痕IJ 所在直线与第(2)题②中的抛物线会有几个公共点;②经过K 作KL ∥AB 与IJ 相交于L ,则点L 是否必定在抛物线上.将以上两项猜想在(1)的情形下分别进行验证. 答案:(1)CD 的解析式为y=-x+6 由折法知:四边形ODEC 是正方形, ∴OD=OC=6 ∴D(6,0),C(0,6).设直线CD 的解析式为y=kx+b ,则⎩⎨⎧=-=⎩⎨⎧+=+=610660b k b b k 解得∴直线CD 的解析式为y=-x+6. (2)①AF ∶y=31-x+310③AF 与抛物线只有一个公共点 在Rt △ABG 中.因AG=AO=10, 故BG=22610-=8,∴CG=2. 没OF=t ,则FG=t ,CF=6-t , 在Rt △CFG 中,t 2=(6-t)2+22,解得t=310, 则F(0,310) 设直线AF ∶y=k′x+310,将A(10,0)代入,得k′=31- ∴AF ∶y=31-x+310∵GH ∥AB ,且G(2,6),可设H(2,y F ), 由于H 在直线AF 上, ∴把H 代入直线AF ∶y F =31-×2+310=38,知H(2,38),又H 在抛物线上,38=121-×22+h ,得h=3. ∴抛物线的解析式为y=121-x+3,再将直线y=31-x+310,代入抛物线y=121-x+3, 得121-x+31x 31-=0∵△=(31)2-4×(121-)×(31-)=0,∴直线AF 与抛物线只有一个公共点. (3)可以猜想以下两个结论: ①折痕所在直线与抛物线y=121-x+3只有一个公共点; ②若作KL ∥AB 与IJ 相交于点L ,则L 一定在抛物线y=121-x+3上. 验证①,在图甲中,将折痕CD :y=-x+6代入y=121-x+3特殊情形I 即为D,J 即为C ,G 即为E ,K 也是E ,KL 即为ED.L就是D ,得121-x+x -3=0. ∵△=1-4×(-3)×(121-)=0,∴.折痕CD 所在直线的确与抛物线y=121-x+3 只有一个公共点.验证②,在图甲的特殊情况中,I 就是C,J 就是D , 那么L 就是D(6,0),当x=6时,y=21-×62+3=0. ∴点L 在这条抛物线上. 。
二次函数与实际问题
二次函数与实际问题一、引言二次函数是高中数学中非常重要的一部分,它在实际生活中有着广泛的应用。
本文旨在介绍二次函数的基本概念、性质以及如何应用到实际问题中。
二、二次函数的定义与性质1. 二次函数的定义二次函数是形如y=ax²+bx+c(a≠0)的函数,其中a,b,c为常数,x,y为自变量和因变量。
2. 二次函数的图像特征(1)对称轴:x=-b/2a(2)顶点:(-b/2a, c-b²/4a)(3)开口方向:当a>0时,开口向上;当a<0时,开口向下。
(4)零点:即方程ax²+bx+c=0的解。
当b²-4ac>0时,有两个不相等实根;当b²-4ac=0时,有一个重根;当b²-4ac<0时,无实根。
3. 二次函数与一次函数、常数函数的比较(1)一次函数y=kx+b是一个斜率为k、截距为b的直线。
(2)常数函数y=c是一个水平直线,其值始终为c。
(3)与一次函数相比,二次函数具有更加复杂的图像特征;与常数函数相比,二次函数具有更加丰富的变化。
三、二次函数的应用1. 最值问题对于二次函数y=ax²+bx+c,当a>0时,其最小值为c-b²/4a,即顶点的纵坐标;当a<0时,其最大值为c-b²/4a。
2. 零点问题对于二次函数y=ax²+bx+c,求其零点即为求解方程ax²+bx+c=0的解。
可以使用求根公式或配方法等方式来求解。
3. 优化问题在实际生活中,很多问题都可以转化为求某个目标函数的最大值或最小值。
例如,在制作一个长方形纸箱时,如何使得纸箱的容积最大?假设纸箱长为x,宽为y,高为h,则容积V=xyh。
由于长和宽已知,因此我们只需要确定h的取值范围,并找出使得V最大的h即可。
由于纸箱需要稳定,在实际中我们还需要考虑其他因素(如纸板厚度等),从而确定出一个合适的取值范围。
实际问题与二次函数
实际问题与二次函数引言:二次函数是高中数学中的重要内容,它在实际问题中有着广泛的应用。
本文将从几个实际问题入手,探讨二次函数在解决这些问题中的作用和应用。
第一部分:抛物线与物体运动问题一:一个物体从地面上以初速度v0竖直向上抛出,忽略空气阻力,求物体的运动轨迹。
解决方法:根据物体竖直上抛运动的运动方程,可以得到物体的高度y与时间t的关系为y=-gt^2/2+v0t,其中g是重力加速度。
这个运动方程正好是一个二次函数,它的图像是一个抛物线,描述了物体的运动轨迹。
问题二:一个人从桥上向下抛掷物体,求物体的最大高度和落地点。
解决方法:根据物体竖直抛体运动的运动方程,可以得到物体的高度与时间的关系为y=-gt^2/2+v0t,其中g是重力加速度,v0是初速度。
我们可以通过求解二次函数的顶点,得到物体的最大高度和落地点的位置。
第二部分:二次函数与开口方向问题三:一块矩形花坛,长边是20米,宽边是10米,现在要在花坛四周修建一圈高度为h的围墙,求围墙的最小高度h。
解决方法:假设围墙的高度为h,围墙的长度为L,围墙的宽度为W。
根据题意,可以得到L=2(20+2h),W=2(10+2h),围墙的面积为S=LW。
我们可以将围墙的面积S表示为关于h的二次函数,然后求解这个二次函数的最小值,即可得到围墙的最小高度h。
第三部分:二次函数与最值问题问题四:某公司生产某种产品,每生产x单位的产品需要花费C(x)=80x+2000元,售价为p(x)=0.1x^2+2000元,求使得利润最大的生产数量。
解决方法:利润等于售价减去成本,即P(x)=p(x)-C(x)=0.1x^2-80x。
我们可以求解二次函数P(x)的最大值,得到使得利润最大的生产数量。
问题五:某人在银行存款10000元,银行的年利率为r%,每年计息一次,求多少年后存款会翻倍。
解决方法:存款的本利和可以表示为S(t)=10000(1+r/100)^t,其中t为年数。
二次函数与实际问题典型例题
二次函数与实际问题典型例题摘要:一、二次函数简介1.二次函数的定义2.二次函数的图像和性质二、二次函数与实际问题的联系1.实际问题中的二次函数模型2.二次函数在实际问题中的应用案例三、二次函数典型例题解析1.求解二次函数的顶点坐标2.求解二次函数的图像与x 轴的交点3.求解二次函数的最值问题4.二次函数在实际问题中的综合应用正文:二次函数与实际问题典型例题一、二次函数简介二次函数是数学中一种常见的函数形式,一般表示为f(x) = ax^2 + bx + c,其中a、b、c 为常数,x 为自变量。
二次函数的图像通常为抛物线,具有一定的对称性和顶点特征。
根据a 的值,二次函数可以分为开口向上或向下的两种情况,分别具有不同的性质。
二、二次函数与实际问题的联系1.实际问题中的二次函数模型在实际问题中,二次函数常常作为问题的数学模型出现。
例如,物体在重力作用下的自由落体运动、抛射物体的运动轨迹、电池的放电过程等都可以用二次函数来描述。
2.二次函数在实际问题中的应用案例(1)物体自由落体运动:假设物体从高度h 自由落下,空气阻力不计,仅受重力作用。
根据牛顿第二定律,物体下落的速度v 与时间t 的关系可以表示为v = gt - 1/2gt^2,其中g为重力加速度。
可以看出,这是一个开口向下的二次函数模型。
(2)抛射物体运动:假设一个物体在水平方向以初速度v0 抛出,仅受重力作用。
根据牛顿第二定律,物体在竖直方向上的运动可以表示为h = v0t - 1/2gt^2,其中h为物体的高度,t为时间。
这也是一个开口向下的二次函数模型。
三、二次函数典型例题解析1.求解二次函数的顶点坐标顶点坐标是二次函数的一个重要特征,可以通过公式法或配方法求解。
例如,对于二次函数f(x) = ax^2 + bx + c,顶点的x 坐标为x = -b/2a,y坐标为y = f(x) = c - b^2/4a。
2.求解二次函数的图像与x 轴的交点二次函数与x 轴的交点即为函数值为0 时的自变量解。
实际问题及二次函数-详解及练习含答案
- -初中数学专项训练:实际问题与二次函数(人教版)一、利用函数求图形面积的最值问题一、围成图形面积的最值1、 只围二边的矩形的面积最值问题例1、 如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。
(1) 设矩形的一边长为x (米),面积为y (平方米),求y 关于x 的函数关系式;(2) 当x 为何值时,所围成的苗圃面积最大?最大面积是多少?分析:关键是用含x 的代数式表示出矩形的长与宽。
解:(1)设矩形的长为x (米),则宽为(18- x )(米),根据题意,得:x x x x y 18)18(2+-=-=; 又∵180,0180<x<x >x >∴⎩⎨⎧-(2)∵x x x x y 18)18(2+-=-=中,a= -1<0,∴y 有最大值,即当9)1(2182=-⨯-=-=a b x 时,81)1(41804422max =-⨯-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。
点评:在回扣问题实际时,一定注意不要遗漏了单位。
2、 只围三边的矩形的面积最值例2、 如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。
问如何围,才能使养鸡场的面积最大?分析:关键是明确问题中的变量是哪两个,并能准确布列出函数关系式解:设养鸡场的长为x (米),面积为y (平方米),则宽为(250x -)(米),根据题意,得:x x x x y 2521)250(2+-=-=; 又∵500,02500<x<>x x >∴⎪⎩⎪⎨⎧- ∵x x x x y 2521)250(2+-=-=中,a=21-<0,∴y 有最大值, 即当25)21(2252=-⨯-=-=a b x 时,2625)21(42504422max =-⨯-=-=a b ac y故当x=25米时,养鸡场的面积最大,养鸡场最大面积为2625平方米。
点评:如果设养鸡场的宽为x ,上述函数关系式如何变化?请读者自己完成。
二次函数实际问题(含答案)难度较大
二次函数实际问题1、某公司在固定线路上运输,拟用运营指数Q量化考核司机的工作业绩.Q=W+100,而W的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x的平方成正比,另一部分与x的n倍成正比.试行中得到了表中的数据.次数n 2 1速度x 40 60指数Q 420 100(1)用含x和n的式子表示Q;(2)当x=70,Q=450时,求n的值;(3)若n=3,要使Q最大,确定x的值;(4)设n=2,x=40,能否在n增加m%(m>0)同时x减少m%的情况下,而Q的值仍为420?若能,求出m的值;若不能,请说明理由.2、某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y =1001-x +150, 成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳1001x 2 元的附加费,设月利润为w 外(元)(利润 = 销售额-成本-附加费).(1)当x = 1000时,y = 元/件,w 内 = 元;(2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围);(3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线的顶点坐标是24(,24b ac b a a --.2(0)y ax bx c a =++≠3、研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为(吨)时,所需的全部费用(万元)与满足关系式,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,(万元)均与满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润(万元)与之间的函数关系式;(2)成果表明,在乙地生产并销售吨时,(为常数),且在乙地当年的最大年利润为35万元.试确定的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?x y x 2159010y x x =++p 甲p 乙x x 11420p x =-+甲x w 甲x x 110p x n =-+乙n n。
26.3.1实际问题与二次函数 (1)
寄语
生活是数学的源泉, 探索是数学的生命线.
作业:
同步训练25页 规范化作业一
Y=(X-20)〔400-20﹙X-30﹚〕 =-20X² -1400X-20000
=-20(X-35)² +4500
∴ 当X=35时,Y最大=4500
即售价为35元时,在半个月内获得利润最大为 4500元。
练习
旅行社何时营业额最大
3.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行 社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价 就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行 社可以获得最大营业额? 解: 设旅行团人数为x人,营业额为y元,则
练习
日用品何时获得最大利润
2.售某商店购进一批单价为20元的日用品,如果以单价30元 销,那么半个月内可以售出400件.根据销售经验,提高单价会 导致销售量的减少,即销售单价每提高1元,销售量相应减少 20件.如何提高售价,才能在半个月内获得最大利润? 解:设销售价为x元(x≥30元), 利润为y元,则
y x800 10x 30
10 x 2 1100 x
10x 55 30250.
2
4.某商店销售一种销售成本为40元的水产品,若按50元/千克销售, 一月可售出500千克,销售价每涨价1元,月销售量就减少10千克.
练习
水产品何时利润最大
(1)写出售价x(元/千克)与月销售利润y(元)之间的函数关系式;
练习
1、某商店经营T恤衫,已知成批购进时单价是2.5元,根据市场调查, 销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销 售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析,销售单价是多少时,可以获利最多? 设降价 x( x ≤13.5)元,那么 500+200x (1)销售量可以表示为__________________; (13.5-x)(500+200x) (2)销售额可以表示为____________________; (13.5-x-2.5)(500+200x) (3)所获利润可以表示为____________________; 9.25元 (4)当销售单价是_____________元时,可以获得最大利润, 9112.5元 最大利润是___________________.
实际问题与二次函数(一)
尺 = ( 2= 一 x 8 )4 - 0 2P Q ) ( 2 + 0 ( 5 2 ) 5 x 2 0 ( 1 ≤3 . 0+0 0 2 ≤ 0 且 为整数 ) .
= 一
() l 2 在 ≤ ≤2 , 0 且 为 整数 时 ,
・ . ’ຫໍສະໝຸດ R= (— o 9 0, l一 l ) 0 +
・ . .
设货 车速度 应提高 到 千米/ 时. 当 4 + 0 1 2 0时 ,- 0 x 4  ̄= 8 X' , - 6
・
. .
要使货 车安全 通过此 桥 , 车的速度 应超过 6 货 0千米/ 时.
一
种 外 语 的传 播 不是 依 靠 火 与剑 , 而是 依 靠 这 种语 言本 身的 丰富 与优 越 。— — 亚历 山大 ・ 希 金 普
・
. .
当x 1 = 0时 , 的最 大值 为 9 0 尺。 0.
2≤ 1 ≤3 . 0 且 为整 数时 .
、
、
2 8
、 、
A fr in t n u p d n t yf ea d te s o d b t yi wn r h e sa d s p r rt e g g e i s  ̄a o r n w r u t o c n s n u e o i o o s b i h b s i i y
( 1 ≤3 , 2≤ 0 且 为 整数 ) .
() 1 试写 出该 商 店前 2 0天 的 1销售 利 润 R。元 ) 3 ( 和后 l 0天 的
日销售利 润 尺 ( ) 元 分别 与销售 时 间 ( ) 间的 函数关 系式 ; 天 之
( ) 问在这 3 2请 0天 的试 销售 中 , 一天 的 日销 售利 润最 大 ? 哪 并
二次函数应用——实际生活问题讲义(含答案)
二次函数应用——实际生活问题一、知识点睛二次函数的应用:最大面积;最大利润;和一元二次方程的关系.二、精讲精练1. 已知:在△ABC 中,BC =20,高AD =16,内接矩形EFGH 的顶点E 、F 在BC 上,G 、H 分别在AC 、AB 上,求内接矩形EFGH 的最大面积.FD E GH CBA2. 星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.(1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x 的取值范围.苗圃园18米3. 某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x之间的函数关系式;(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?4.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?5.有一座抛物线型拱桥,正常水位时,桥下水面宽度为20m,拱顶距水面4m.(1)如图所示的直角坐标系中,求出该抛物线的表达式.(2)在正常水位的基础上,当水位上升h m时,桥下水面的宽度为d m,求出将d 表示为h的函数关系式.(3)设正常水位时,桥下的水深为2m,为保证过往船只的顺利通过,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下顺利航行?x6.如图,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?(0,3.5)yxO4m2.5m3.05m7. 如图,在水平地面点A 处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B .有人在直线AB 上点C (靠点B 一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB =4米,AC =3米,网球飞行最大高度OM =5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内? (2)当竖直摆放圆柱形桶多少个时,网球可以落入桶内?xx讲义答案:一、知识点睛 二、精讲精练1. 802.(1)=302y x -,6<15x ≤;(2)152m ,112.5m 2 ;(3)611x ≤≤,图略 3.(1)22=+24+320025y x x -(0400x ≤≤);(2)每台冰箱应降价200元; (3)每台冰箱降价150元,商场每天销售这种冰箱的利润最高,最高利润是5000元. 4.(1)210110+2100y =x +x -,x 的范围是015x ≤≤且x 为整数;(2)每件商品的售价定为55或56元时,每个月可获得最大利润,最大的月利润是2400元;(3)每件商品的售价定为51或60元时,每个月的利润恰为2200元;售价在51~60范围时,每个月的利润不低于2200元. 5.(1)2125y =x -;(2)4)d h ≤≤; (3)水深超过2.76m 时就会影响过往船只在桥下顺利航行.6.(1)21+3.55y =x -;(2)球出手时,他跳离地面的高度是0.2m.7.(1)不能落入桶内;(2)当竖直摆放圆柱形桶为8,9,10,11,或12个时,网球可以落入桶内。
人教版九年级上册数学实际问题与二次函数(含答案)
实际问题与二次函数一、基础练习。
1.一个正方形的面积是25 cm2,当边长增加a cm时,正方形的面积为S cm2,则S关于a 的函数关系式为__________.2.某品牌服装原价173元,连续两次降价x%后售价为y元,则y与x的关系式为____________.3.小强用一根长为8 cm的细铁丝围成矩形,则矩形的最大面积是________ cm2.4.小红想用篱笆围成一个周长为60米的矩形场地,设矩形面积为S(单位:平方米),一边长为x(单位:米).(1)S与x之间的函数关系式为____________,自变量x的取值范围为____________;(2)当x=________时,矩形场地面积S最大?最大面积是________平方米.5.水枪喷出的水流可以用抛物线y=-12x2+bx来描述,已知水流的最大高度为20米,则b的值为()A.210 B.±210C.-210 D.±10 26.已知二次函数的图象(0≤x≤3)如图,关于该函数在所给自变量取值范围内,下列说法正确的是()A.有最小值0,有最大值3B.有最小值-1,有最大值0C.有最小值-1,有最大值3D.有最小值-1,无最大值7.如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8 m、宽AB为2 m.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6 m.(1)求抛物线的解析式;(2)如果该隧道内设双行道,现有一辆货运卡车高4.2 m、宽2.4 m,这辆货运卡车能否通过该隧道?通过计算说明你的结论.8.我们在跳绳时,绳甩到最高处的形状可近似地看成是抛物线.如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4 m,距地面均为1 m,学生丙、丁分别站在距甲拿绳的手水平距离1 m,2.5 m处,绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m,则学生丁的身高为()A.1.5 m B.1.625 m C.1.66 m D.1.67 m9.某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润y(单位:元/千度)与电价x(单位:元/千度)的函数关系式为y=-15x+300(x≥0).(1)当电价为600元千度时,工厂消耗每千度电产生利润是多少?(2)为了实现节能减排目标,有关部门规定,该厂电价x(单位:元/千度)与每天用电量m(单位:千度)的函数关系为x=10m+500,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?二、提高训练。
实际问题与二次函数
22.3 实际问题与二次函数(1)1.经历探索实际问题中两个变量的变化过程,使学生理解用抛物线知识解决最值问题的思路.2.初步学会运用抛物线知识分析和解决实际问题.重难点:用抛物线知识解决实际问题.一、自学指导.(10分钟)自学:自学课本P 49~50,自学“探究1”,能根据几何图形及相互关系建立二次函数关系式,体会二次函数这一模型的意义.总结归纳:图象是抛物线的,可设其解析式为y =ax 2+bx +c 或y =a(x -h)2+k ,再寻找条件,利用二次函数的知识解决问题;实际问题中没有坐标系,应建立适当的坐标系,再根据图象和二次函数的知识解决实际问题.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.用长16 m 的绳子围成如图所示的矩形框,使矩形框的面积最大,那么这个矩形框的最大面积是323_m 2. 2.如图,点C 是线段AB 上的一个动点,AB =1,分别以AC 和CB 为一边作正方形,用S 表示这两个正方形的面积之和,下列判断正确的是( A )A .当C 是AB 的中点时,S 最小B .当C 是AB 的中点时,S 最大C .当C 为AB 的三等分点时,S 最小D .当C 是AB 的三等分点时,S 最大第2题图 第3题图3.如图,某水渠的横断面是等腰梯形,底角为120°,两腰与下底的和为4 cm ,当水渠深x 为233时,横断面面积最大,最大面积是433. 点拨精讲:先列出函数的解析式,再根据其增减性确定最值.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 某窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长为15 m (图中所有线条长度之和),当x 等于多少时,窗户通过的光线最多?此时,窗户的面积是多少?(结果精确到0.01 m )解:由题意可知4y +12×2πx +6x =15,化简得y =15-6x -πx 4,设窗户的面积为S m 2,则S =12πx 2+2x ×15-6x -πx 4=-3x 2+152x ,∵a =-3<0,∴S 有最大值.∴当x =1.25 m 时,S 最大值≈4.69(m 2),即当x =1.25 m 时,窗户通过的光线最多.此时,窗户的面积是4.69 m 2.点拨精讲:中间线段用x 的代数式来表示,要充分利用几何关系;要注意顶点的横坐标是否在自变量x 的取值范围内.探究2 如图,从一张矩形纸片较短的边上找一点E ,过E 点剪下两个正方形,它们的边长分别是AE ,DE ,要使剪下的两个正方形的面积和最小,点E 应选在何处?为什么?解:设矩形纸较短边长为a ,设DE =x ,则AE =a -x ,那么两个正方形的面积和y 为y =x 2+(a -x)2=2x 2-2ax +a 2,当x =--2a 2×2=12a 时,y 最小值=2×(12a)2-2a ×12a +a 2=12a 2. 即点E 选在矩形纸较短边的中点时,剪下的两个正方形的面积和最小.点拨精讲:此题要充分利用几何关系建立二次函数模型,再利用二次函数性质求解.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.如图,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等,设甬道的宽为x 米.①用含x 的式子表示横向甬道的面积;②当三条甬道的总面积是梯形面积的八分之一时,求甬道的宽;③根据设计的要求,甬道的宽不能超过6米,如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?点拨精讲:想象把所有的阴影部分拼在一起就是一个小梯形.点拨精讲:解答抛物线形实际问题的一般思路:1.把实际问题中的已知条件转化为数学问题;2.建立适当的平面直角坐标系,把已知条件转化为坐标系中点的坐标;3.求抛物线的解析式;4.利用抛物线解析式结合图象解决实际问题.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.3 实际问题与二次函数(2)能根据实际问题建立二次函数的关系式,并探求出在何时刻,实际问题能取得理想值,增强学生解决具体问题的能力.重点:用函数知识解决实际问题.难点:如何建立二次函数模型.一、自学指导.(10分钟)1.自学:自学课本P 50,自学“探究2”,理解求实际问题中的最值与二次函数最值之间的关系,完成填空.总结归纳:在日常生活、生产和科研中,常常会遇到求什么条件下可以使材料最省、时间最少、效率最高等问题,其中一些问题可以归结为求二次函数的最大值或最小值.用二次函数的知识解决实际问题时,关键是先将实际问题抽象成数学问题,即先建立二次函数关系,然后再利用二次函数的图象及性质进行解答.在二次函数y =a(x -h)2+k 中,若a>0,当x =h 时,函数y 有最小值,其值为y =k ;若a<0,当x =h 时,函数y 有最大值,其值为y =k .点拨精讲:遇到一般式,可先化成顶点式,再求最值;自变量有取值范围的还要考虑在范围内的最值.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.已知二次函数y =x 2-4x +m 的最小值是2,那么m 的值是6.2.边长为10 cm 的正方形铁片,中间剪去一个边长是x cm 的小正方形,剩下的四方框铁片的面积y(cm 2)与x(cm )之间的函数关系是y =-x 2+100(0<x <10).3.服装店将进价为100元的服装按x 元出售,每天可销售(200-x)件,若想获得最大利润,则x 应定为150元.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)探究 某经销店代销一种材料,当每吨售价为260元时,月销售量为45吨,该经销店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨,每售出1吨建筑材料共需支付厂家及其他费用100元,设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y 与x 的函数关系式;(不要求写出x 的取值范围)(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)王强说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.解:(1)45+260-24010×7.5=60(吨);(2)y =(x -100)(45+260-x 10×7.5), 化简,得y =-34x 2+315x -24000; (3)y =-34x 2+315x -24000=-34(x -210)2+9075 此经销店要获得最大月利润,材料的售价应定为每吨210元.(4)我认为,王强说得不对.理由:当月利润最大时,x 为210元,而月销售额W =x(45+260-x 10×7.5)=-34(x -160)2+19200,当x 为160元时,月销售额W 最大,∴当x 为210元时,月销售额W 不是最大.∴王强说得不对.点拨精讲:要分清每一吨的利润、销售量与售价的关系;分清最大利润与最大销售额之间的区别.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.若抛物线y =-x 2+bx +c 的最高点为(1,3),则b =________,c =________.2.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x 为正整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围.(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰好是2200元?根据以上的结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?3.某旅社有100张床位,每床每晚收费10元时,床位可全部租出;若每床每晚收费提高2元,则减少10张床位的租出,若每床每晚收费再提高2元,则再减少10张床位租出;以每次提高2元的这种方法变化下去,为了投资少而获利大,每床位每晚应提高多少元?点拨精讲:在根据实际问题建立函数模型时,要考虑自变量的取值范围.(3分钟)学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时的对应训练部分.(10分钟)22.3 实际问题与二次函数(3)能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能利用二次函数的知识解决实际问题.重难点:用抛物线知识解决实际问题.一、自学指导.(10分钟)自学:自学课本P 51,自学“探究3”,学会根据实际问题,建立适当的坐标系和二次函数关系,完成填空.总结归纳:建立二次函数模型解决实际问题的一般步骤:①根据题意建立适当的平面直角坐标系;②把已知条件转化为点的坐标;③合理设出函数关系式;④利用待定系数法求出函数关系式;⑤根据求得的关系式进一步分析、判断,并进行有关的计算.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.一个运动员打高尔夫球,如果球的飞行高度y(m)与水平距离x(m)之间的函数表达式为y=190(x-30)2+10,则高尔夫球在飞行过程中的最大高度为(A)A.10 mB.20 mC.30 mD.40 m2.某工厂大门是一个抛物线形水泥建筑物,大门的地面宽度为8米,两侧距地面3米高处各有一盏壁灯,两壁灯之间的水平距离为6米,如图所示,则厂门的高(水泥建筑物厚度不计,精确到0.1米)为(B)A.6.8米B.6.9米C.7.0米D.7.1米一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究小红家门前有一座抛物线形拱桥,如图,当水面在l时,拱顶离水面2 m,水面宽4 m,水面下降1 m时,水面宽度增加多少?解:由题意建立如图的直角坐标系,设抛物线的解析式为y=ax2,∵抛物线经过点A(2,-2),∴-2=4a,∴a=-1 2,即抛物线的解析式为y=-12x2,当水面下降1 m时,点B的纵坐标为-3.将y=-3代入二次函数解析式y=-12x2,得-3=-12x2,∴x=±6,∴此时水面宽度为2|x|=2 6 (m).即水面下降1 m时,水面宽度增加了(26-4)m.点拨精讲:用二次函数知识解决拱桥类的实际问题一定要建立适当的直角坐标系;抛物线的解析式假设恰当会给解决问题带来方便.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(11分钟)1.有一座抛物线形拱桥,正常水位时桥下水面宽度为20 m ,拱顶距离水面4 m .(1)在如图所示的直角坐标系中,求出该抛物线的解析式;(2)在正常水位的基础上,当水位上升h(m )时,桥下水面的宽度为d(m ),求出将d 表示为h 的函数解析式;(3)设正常水位时桥下的水深为2 m ,为保证过往船只顺利航行,桥下水面的宽度不得小于18 m ,求水深超过多少米时就会影响过往船只在桥下顺利航行?点拨精讲:以桥面所在直线为x 轴,以桥拱的对称轴所在直线为y 轴建立坐标系.设抛物线的解析式为y =ax 2,则点B 的坐标为(10,-4),即可求出解析式.2.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线y =-35x 2+3x +1的一部分,如图. (1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)。
实际问题与二次函数_详细讲解与练习(含答案)
.. .. ..初中数学专项训练:实际问题与二次函数(人教版)一、利用函数求图形面积的最值问题一、围成图形面积的最值1、 只围二边的矩形的面积最值问题例1、 如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。
(1) 设矩形的一边长为x (米),面积为y (平方米),求y 关于x的函数关系式;(2) 当x 为何值时,所围成的苗圃面积最大?最大面积是多少?分析:关键是用含x 的代数式表示出矩形的长与宽。
解:(1)设矩形的长为x (米),则宽为(18- x )(米),根据题意,得:x x x x y 18)18(2+-=-=; 又∵180,0180<x<x >x >∴⎩⎨⎧- (2)∵x x x x y 18)18(2+-=-=中,a= -1<0,∴y 有最大值,即当9)1(2182=-⨯-=-=a b x 时,81)1(41804422max =-⨯-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。
点评:在回扣问题实际时,一定注意不要遗漏了单位。
2、 只围三边的矩形的面积最值例2、 如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。
问如何围,才能使养鸡场的面积最大?分析:关键是明确问题中的变量是哪两个,并能准确布列出函数关系式解:设养鸡场的长为x (米),面积为y (平方米),则宽为(250x -)(米), 根据题意,得:x x x x y 2521)250(2+-=-=; 又∵500,02500<x<>x x >∴⎪⎩⎪⎨⎧- ∵x x x x y 2521)250(2+-=-=中,a=21-<0,∴y 有最大值, 即当25)21(2252=-⨯-=-=a b x 时,2625)21(42504422max =-⨯-=-=a b ac y 故当x=25米时,养鸡场的面积最大,养鸡场最大面积为2625平方米。
点评:如果设养鸡场的宽为x ,上述函数关系式如何变化?请读者自己完成。
23题实际问题与二次函数
实际问题与二次函数(1)1、某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在着如图所示的一次函数关系.(1)求y关于x的函数关系式;(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额一年销售产品总进价一年总开支).当销售单价x为何值时,年获利最大并求这个最大值;(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?2、在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数关系式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P 最大?3、某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x(x≥50)元/件的关系如下表:(1)直接写出y与x的函数关系式:(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请你求出该商家最大捐款数额是多少元?4、某商场将进价为4000元的电视以4400元售出,平均每天能售出6台.为了配合国家财政推出的“节能家电补贴政策”的实施,商场决定采取适当的降价措施,调查发现:这种电视的售价每降价50元,平均每天就能多售出3台.(1)现设每台电视降价x元,商场每天销售这种电视的利润是y元,请写出y与x之间的函数表达式.(不要求写出自变量的取值范围)(2)每台电视降价多少元时,商场每天销售这种电视的利润最高?最高利润是多少?(3)商场要想在这种电视销售中每天盈利3600元,同时又要使百姓得到更多实惠,每台电视应降价多少元?根据以上的结论,请你直接写出售价在什么范围时,每个月的利润不低于3600元?5、某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?6、某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x元(x≥50),一周的销售量为y件.(1)写出y与x的函数关系式.(标明x的取值范围)(2)设一周的销售利润为S,写出S与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?(3)在超市对该种商品投入不超过10 000元的情况下,使得一周销售利润达到8 000元,销售单价应定为多少?实际问题与二次函数(2)1、如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM 为12米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系. (1)直接写出点M 及抛物线顶点P 的坐标; (2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD-DC-CB ,使C 、D 点在抛物线上,A 、B 点在地面OM 上,则这个“支撑架”总长的最大值是多少?2、某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误. (1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为米,问此次跳水会不会失误? 并通过计算说明理由3、如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式y=a (x-6)2+h .已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m .(1)当h=2.6时,求y 与x 的关系式(不要求写出自变量x 的取值范围) (2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由; (3)若球一定能越过球网,又不出边界,求h 的取值范围.4、一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈。
实际问题与二次函数(一)
26.3 实际问题与二次函数(一)基础训练1.二次函数y=ax 2+bx+c(a ≠0)的最大值是0,那么代数式|a|+4ac-b 2的化简结果是( )A.aB.-aC.0D.12.抛物线y=-2x 2-8x+3的顶点关于y 轴对称的点的坐标为____________.3.两数之和为6,则之积最大为.____________强化训练1.抛物线y=x 2+2x+1的顶点是( )A.(0,1)B.(-1,0)C.(1,0)D.(-1,1)2.一名男同学推铅球时,铅球行进中离地的高度y(m)与水平距离x(m)之间的关系是y=35321212++-x x ,那么铅球推出后最大高度是______m ,落地时距出手地的距离是____m .3.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,求:(1)若商场平均每天要盈利1 200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,该商场平均每天盈利最多?4.某工厂现有80台机器,每台机器平均每天生产384件产品.现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x 台机器,每天的生产总量为y 件,请你写出y 与x 之间的关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?巩固训练1.已知二次函数y=x 2-6x+m 的最小值为1,那么m=_____________.2.抛物线y=21x 2-6x+21,当x=_________,y 最大=____________. 3.对于物体,在不计空气阻力的情况下,有关系式h=v 0t-21gt 2,其中h 是上升高度,v 0(m/s )是初速度,g(m/s 2)是重力加速度,t(s)是物体抛出后经过的时间,图26311是上升高度h 与t 的函数图象.(1)求v 0,g ;(2)几秒后,物体在离抛出点25 m 高的地方?图26-3-1-14.某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价0.5元其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚的利润最大?并求出最大利润.5.随着海峡两岸交流日益增强,通过“零关税”进入我市的一种台湾水果,其成本是每吨0.5万元,这种水果市场上的销售量y(吨)是每吨销售价x (万元)的一次函数,且x=0.6时,y=2.4;x=1时,y=2.(1)求出销售量y(吨)与每吨销售价x (万元)之间的函数关系式;(2)若销售利润为W(万元),请写出W与x之间的函数关系式,并求出销售价为多少时的销售利润最高?6.某经营商购进一种商品原料7 000千克存在某货场,进价为每千克30元,物价部门最高限价为每千克70元.市场调查发现,单价为70元,日均售60千克,每降一元,日多售2千克.每天需向货场支付500元存货费(不足一天,按一天计).问:(1)日销售单价为多少时,日均获利最大?(2)如将该种原料全部售完,比较日均获利最大和单价最高这两种销售方式,哪种总获利多?多多少?7.(2010山东青岛模拟,22)在2010年青岛崂山北宅樱桃节前夕,某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据:销售价x…25242322…(元/千克)销售量y… 2 000 2 500 3 000 3 500…(千克)(1)在如图26-3-1-2的直角坐标系内,作出各组有序数对(x,y)所对应的点.连结各点并观察所得的图形,判断y与x之间的函数关系,并求出y与x之间的函数关系式;(2)若樱桃进价为13元/千克,试求销售利润P(元)与销售价x (元/千克)之间的函数关系式,并求出当x取何值时,P的值最大?图26-3-1-2。
实际问题与二次函数选择填空习题精选(含标准答案)
实际问题与二次函数选择填空习题精选(含答案)————————————————————————————————作者:————————————————————————————————日期:2实际问题与二次函数选择填空习题精选(含答案)一.选择题(共22小题)1.(2014•淄博)如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2 B.y=x2﹣x+2 C.y=x2+x﹣2 D.y=x2+x+22.(2011•泰安)若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x ﹣7 ﹣6 ﹣5 ﹣4 ﹣3 ﹣2y ﹣27 ﹣13 ﹣3 3 5 3则当x=1时,y的值为()A.5B.﹣3 C.﹣13 D.﹣273.(2010•石家庄一模)如图所示,在平面直角坐标系中,二次函数y=ax2+bx+c的图象顶点为A(﹣2,﹣2),且过点B(0,2),则y与x的函数关系式为()A.y=x2+2 B.y=(x﹣2)2+2 C.y=(x﹣2)2﹣2 D.y=(x+2)2﹣24.(2009•台州)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是()x …﹣1 0 1 3 …y …﹣3 1 3 1 …A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x=4时,y>0 D.方程ax2+bx+c=0的正根在3与4之间5.抛物线y=ax2+bx+c与x轴的两个交点为(﹣1,0),(3,0),其形状与抛物线y=﹣2x2相同,则y=ax2+bx+c的函数关系式为()A.y=﹣2x2﹣x+3 B.y=﹣2x2+4x+5 C.y=﹣2x2+4x+8 D.y=﹣2x2+4x+66.若二次函数y=(m+1)x2+m2﹣2m﹣3的图象经过原点,则m的值必为()A.﹣1或3 B.﹣1 C.3D.无法确定7.已知抛物线的顶点坐标是(2,1),且抛物线的图象经过(3,0)点,则这条抛物线的解析式是()A.y=﹣x2﹣4x﹣3 B.y=﹣x2﹣4x+3 C.y=x2﹣4x﹣3 D.y=﹣x2+4x﹣38.某抛物线的顶点坐标为(1,﹣2),且经过(2,1),则抛物线的解析式为()A.y=3x2﹣6x﹣5 B.y=3x2﹣6x+1 C.y=3x2+6x+1 D.y=3x2+6x+59.抛物线与x轴交点的横坐标为﹣2和1,且过点(2,8),它的关系式为()A.y=2x2﹣2x﹣4 B.y=﹣2x2+2x﹣4 C.y=x2+x﹣2 D.y=2x2+2x﹣410.形状与抛物线y=﹣x2﹣2相同,对称轴是x=﹣2,且过点(0,3)的抛物线是()A.y=x2+4x+3 B.y=﹣x2﹣4x+3C.y=﹣x2+4x+3 D.y=x2+4x+3或y=﹣x2﹣4x+311.(2014•滨州二模)如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF.设BE=x,DF=y,则y是x的函数,函数关系式是()A.y=x+1 B.y=x﹣1 C.y=x2﹣x+1 D.y=x2﹣x﹣112.(2010•丽水)如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD 的面积为y,则y与x之间的函数关系式是()A.y=B.y=C.y=D.y=13.(2009•庆阳)图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x214.(2007•自贡)进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数关系式为()A.y=2a(x﹣1)B.y=2a(1﹣x)C.y=a(1﹣x2)D.y=a(1﹣x)215.某工厂一种产品的年产量是20件,如果每一年都比上一年的产品增加x倍,两年后产品y与x的函数关系是()A.y=20(1﹣x)2B.y=20+2x C.y=20(1+x)2D.y=20+20x2+20x16.一个容器内盛满纯酒精50kg,第一次倒出若干千克纯酒精后加入同千克的水;第二次又倒出相同千克的酒精溶液,这时容器内酒精溶液含纯酒精ykg,设每次倒出的xkg,则y与x之间的函数关系式为()A.y=50(50﹣x)B.C.y=(50﹣x)2D.17.喜迎圣诞,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.设每件商品的售价上涨x元(x正整数),每星期销售该商品的利润为y元,则y与x的函数解析式为()A.y=﹣10x2+100x+2000 B.y=10x2+100x+2000C.y=﹣10x2+200x D.y=﹣10x2﹣100x+200018.某种品牌的服装进价为每件150元,当售价为每件210元时,每天可卖出20件,现需降价处理,且经市场调查:每件服装每降价2元,每天可多卖出1件.在确保盈利的前提下,若设每件服装降价x元,每天售出服装的利润为y元,则y与x的函数关系式为()A.y=﹣x2+10x+1200(0<x<60)B.y=﹣x2﹣10x+1250(0<x<60)C.y=﹣x2+10x+1250(0<x<60)D.y=﹣x2+10x+1250(x≤60)19.两个正方形的周长和是10,如果其中一个正方形的边长为a,则这两个正方形的面积的和S关于a的函数关系式为()A.S=B.S=C.S=a2+(5﹣a)2D.20.有长24m的篱笆,一面利用围墙围城如图中间隔有一道篱笆的矩形花圃,设花圃的垂直于墙的一边长为x m,面积是s m2,则s与x的关系式是()A.s=﹣3x2+24x B.s=﹣2x2﹣24x C.s=﹣3x2﹣24x D.s=﹣2x2+24x21.把一根长为50cm的铁丝弯成一个长方形,设这个长方形的一边长为x(cm),它的面积为y(cm2),则y与x 之间的函数关系式为()A.y=﹣x2+50x B.y=x2﹣50x C.y=﹣x2+25x D.y=﹣2x2+2522.如图,铅球的出手点C距地面1米,出手后的运动路线是抛物线,出手后4秒钟达到最大高度3米,则铅球运行路线的解析式为()A.h=﹣t2B.y=﹣t2+tC.h=﹣t2+t+1D.h=﹣t2+2t+1二.填空题(共8小题)23.(2014•昌平区二模)如图,李大爷要借助院墙围成一个矩形菜园ABCD,用篱笆围成的另外三边总长为24m,设BC的长为x m,矩形的面积为y m2,则y与x之间的函数表达式为_________.24.(2014•安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=_________.25.(2012•崇明县一模)一个边长为2厘米的正方形,如果它的边长增加x厘米,面积随之增加y平方厘米,那么y关于x的函数解析式是_________.26.(2009•泰安)如图所示,矩形ABCD中,AB=8,BC=6,P是线段BC上一点(P不与B重合),M是DB上一点,且BP=DM,设BP=x,△MBP的面积为y,则y与x之间的函数关系式为_________.27.(2007•眉山)如图,已知等腰直角△ABC的直角边长与正方形MNPQ的边长均为20厘米,AC与MN在同一直线上,开始时点A与点N重合,让△ABC以每秒2厘米的速度向左运动,最终点A与点M重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为_________.28.某商店以40元的价格购进了一批服装,若按每件50元出售时,一周内可销售100件;当售价每提高1元时,其周售量就会减少5件.若设每件售价为x元,总利润是y元,则y关于x的函数解析式为_________.29.某果园有100棵枇杷树.每棵平均产量为40千克,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵树接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,若设增种x棵枇杷树,投产后果园枇杷的总产量为y千克,则y与x之间的函数关系式为_________.30.永嘉县九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,建立如图的平面直角坐标系,设篮球出手后离地的水平距离为xm,高度为ym,则y关于x的函数解析式是_________.实际问题与二次函数选择填空习题精选(含答案)参考答案与试题解析一.选择题(共22小题)1.(2014•淄博)如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2 B.y=x2﹣x+2 C.y=x2+x﹣2 D.y=x2+x+2考点:待定系数法求二次函数解析式;反比例函数图象上点的坐标特征.专题:计算题.分析:将A坐标代入反比例解析式求出m的值,确定出A的坐标,将A与B坐标代入二次函数解析式求出b与c的值,即可确定出二次函数解析式.解答:解:将A(m,4)代入反比例解析式得:4=﹣,即m=﹣2,∴A(﹣2,4),将A(﹣2,4),B(0,﹣2)代入二次函数解析式得:,解得:b=﹣1,c=﹣2,则二次函数解析式为y=x2﹣x﹣2.故选:A.点评:此题考查了待定系数法求二次函数解析式,以及反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.2.(2011•泰安)若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x ﹣7 ﹣6 ﹣5 ﹣4 ﹣3 ﹣2y ﹣27 ﹣13 ﹣3 3 5 3则当x=1时,y的值为()A.5B.﹣3 C.﹣13 D.﹣27考点:待定系数法求二次函数解析式.专题:计算题;压轴题.分析:由表可知,抛物线的对称轴为x=﹣3,顶点为(﹣3,5),再用待定系数法求得二次函数的解析式,再把x=1代入即可求得y的值.解答:解:法一:设二次函数的解析式为y=a(x﹣h)2+k,∵当x=﹣4或﹣2时,y=3,由抛物线的对称性可知h=﹣3,k=5,∴y=a(x+3)2+5,把(﹣2,3)代入得,a=﹣2,∴二次函数的解析式为y=﹣2(x+3)2+5,当x=1时,y=﹣27.法二:根据图表可得:对称轴x=﹣3,∴横坐标为1的对称点与横坐标为﹣7的点对称,∴当x=1时,y=﹣27.故选D.点评:本题看出来用待定系数法求二次函数的解析式,抛物线是轴对称图形,对称轴为x=﹣.3.(2010•石家庄一模)如图所示,在平面直角坐标系中,二次函数y=ax2+bx+c的图象顶点为A(﹣2,﹣2),且过点B(0,2),则y与x的函数关系式为()A.y=x2+2 B.y=(x﹣2)2+2 C.y=(x﹣2)2﹣2 D.y=(x+2)2﹣2考点:待定系数法求二次函数解析式.专题:计算题.分析:已知二次函数的顶点坐标,设顶点式比较简单.解答:解:设这个二次函数的关系式为y=a(x+2)2﹣2,将(0,2)代入得2=a(0+2)2﹣2解得:a=1故这个二次函数的关系式是y=(x+2)2﹣2,故选D.点评:本题考查了用待定系数法求函数解析式的方法,设解析式时注意选择顶点式还是选择一般式.4.(2009•台州)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是()x …﹣1 013…y …﹣3 131…A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x=4时,y>0 D.方程ax2+bx+c=0的正根在3与4之间考点:待定系数法求二次函数解析式;二次函数的性质.专题:图表型.分析:根据题意列出方程组,求出二次函数的解析式;根据二次函数的性质及与一元二次方程的关系解答即可.解答:解:由题意可得,解得,故二次函数的解析式为y=﹣x2+3x+1.因为a=﹣1<0,故抛物线开口向下;又∵c=1>0,∴抛物线与y轴交于正半轴;当x=4时,y=﹣16+12+1=﹣3<0;故A,B,C错误;方程ax2+bx+c=0可化为﹣x2+3x+1=0,△=32﹣4×(﹣1)×1=13,故方程的根为x===±,故其正根为+≈1.5+1.8=3.3,3<3.3<4,故选:D.点评:本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法,及二次函数与一元二次方程的关系等知识,难度不大.5.抛物线y=ax2+bx+c与x轴的两个交点为(﹣1,0),(3,0),其形状与抛物线y=﹣2x2相同,则y=ax2+bx+c的函数关系式为()A.y=﹣2x2﹣x+3 B.y=﹣2x2+4x+5 C.y=﹣2x2+4x+8 D.y=﹣2x2+4x+6考点:待定系数法求二次函数解析式.专题:压轴题.分析:抛物线y=ax2+bx+c的形状与抛物线y=﹣2x2相同,a=﹣2.y=ax2+bx+c与x轴的两个交点为(﹣1,0),(3,0),利用交点式求表达式即可.解答:解:根据题意a=﹣2,所以设y=﹣2(x﹣x1)(x﹣x2),求出解析式y=﹣2(x+1)(x﹣3),即是y=﹣2x2+4x+6.故选D.点评:本题考查了抛物线的形状系数的关系,本题用交点式比较容易解.6.若二次函数y=(m+1)x2+m2﹣2m﹣3的图象经过原点,则m的值必为()A.﹣1或3 B.﹣1 C.3D.无法确定考点:待定系数法求二次函数解析式.分析:将原点坐标代入二次函数y=(m+1)x2+m2﹣2m﹣3中即可求出m的值,注意二次函数的二次项系数不为零.解答:解:根据题意得m2﹣2m﹣3=0,所以m=﹣1或m=3,又因为二次函数的二次项系数不为零,即m+1≠0,所以m=3.故选C.点评:此题考查了点与函数的关系,解题时注意分析,注意理解题意.7.已知抛物线的顶点坐标是(2,1),且抛物线的图象经过(3,0)点,则这条抛物线的解析式是()A.y=﹣x2﹣4x﹣3 B.y=﹣x2﹣4x+3 C.y=x2﹣4x﹣3 D.y=﹣x2+4x﹣3考点:待定系数法求二次函数解析式.专题:计算题.分析:由于已知抛物线的顶点坐标,则设抛物线的顶点式为y=a(x﹣2)2+1,再把(3,0)代入可计算出a的值,然后把抛物线的解析式化为一般式即可.解答:解:设抛物线的解析式为y=a(x﹣2)2+1,把(3,0)代入得a×(3﹣2)2+1=0,解得a=﹣1,所以抛物线的解析式为y=﹣(x﹣2)2+1=﹣x2+4x﹣3.故选D.点评:本题考查了待定系数法法求二次函数解析式:先设二次函数的解析式(一般式、顶点式或交点式),然后把二次函数上的点的坐标代入得到方程组,再解方程组,从而确定二次函数的解析式.8.某抛物线的顶点坐标为(1,﹣2),且经过(2,1),则抛物线的解析式为()A.y=3x2﹣6x﹣5 B.y=3x2﹣6x+1 C.y=3x2+6x+1 D.y=3x2+6x+5考点:待定系数法求二次函数解析式.分析:设抛物线的解析式为y=a(x﹣1)2﹣2,把(2,1)代入得出1=a(2﹣1)2﹣2,求出a即可.解答:解:∵抛物线的顶点坐标为(1,﹣2),且经过(2,1),∴设抛物线的解析式为y=a(x﹣1)2﹣2,把(2,1)代入得:1=a(2﹣1)2﹣2,解得:a=3,∴y=3(x﹣1)2﹣2=3x2﹣6x+1,故选B.点评:本题考查了用待定系数法求二次函数的解析式的应用,注意:二次函数的顶点式是y=a(x﹣h)2+k,(h,k)是二次函数的顶点坐标.9.抛物线与x轴交点的横坐标为﹣2和1,且过点(2,8),它的关系式为()A.y=2x2﹣2x﹣4 B.y=﹣2x2+2x﹣4 C.y=x2+x﹣2 D.y=2x2+2x﹣4考点:待定系数法求二次函数解析式.分析:由抛物线与x轴交点的横坐标为﹣2和1设抛物线解析式为y=a(x﹣1)(x+2),再将(2,8)代入求得a 的值即可.解答:解:由题意,设抛物线解析式为y=a(x﹣1)(x+2),将(2,8)代入,可得8=a(2﹣1)(2+2),解得a=2,∴抛物线的解析式为:y=2(x﹣1)(x+2),化简得,y=2x2+2x﹣4.故选D.点评:本题考查了待定系数法求解二次函数解析式的求法,注意函数解析式的设法.10.形状与抛物线y=﹣x2﹣2相同,对称轴是x=﹣2,且过点(0,3)的抛物线是()A.y=x2+4x+3 B.y=﹣x2﹣4x+3C.y=﹣x2+4x+3 D.y=x2+4x+3或y=﹣x2﹣4x+3考点:待定系数法求二次函数解析式.分析:由题中给出的条件,对称轴和与y轴的交点坐标,可以确定c的值及a与b的关系,再从所给选项中判断出选项即可.解答:解:设所求抛物线的函数关系式为y=ax2+bx+c,由抛物线过点(0,3),可得:c=3,由抛物线形状与y=﹣x2﹣2相同,分为两种情况:①开口向下,则a<0,又∵对称轴x=﹣2,则x=﹣=﹣2.则b<0,由此可得出B选项符合题意.②开口向下,则a>0,又∵对称轴x=﹣2,则x=﹣=﹣2.则b>0,由此可得出A选项符合题意,综合上述,符合条件的是选项D,故选D.点评:本题考查了待定系数法求二次函数解析式的方法,对选择题,也可以用排除法,这样更简单.11.(2014•滨州二模)如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF.设BE=x,DF=y,则y是x的函数,函数关系式是()A.y=x+1 B.y=x﹣1 C.y=x2﹣x+1 D.y=x2﹣x﹣1考点:根据实际问题列二次函数关系式.专题:动点型.分析:易证△ABE∽△ECF,根据相似三角形对应边的比相等即可求解.解答:解:∵∠BAE和∠EFC都是∠AEB的余角.∴∠BAE=∠FEC.∴△ABE∽△ECF那么AB:EC=BE:CF,∵AB=1,BE=x,EC=1﹣x,CF=1﹣y.∴AB•CF=EC•BE,即1×(1﹣y)=(1﹣x)x.化简得:y=x2﹣x+1.故选C.点评:本题结合了正方形和相似三角形的性质考查了二次函数关系式.根据条件得出形似三角形,用未知数表示出相关线段是解题的关键.12.(2010•丽水)如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD 的面积为y,则y与x之间的函数关系式是()A.y=B.y=C.y=D.y=考点:根据实际问题列二次函数关系式.专题:压轴题.分析:四边形ABCD图形不规则,根据已知条件,将△ABC绕A点逆时针旋转90°到△ADE的位置,求四边形ABCD的面积问题转化为求梯形ACDE的面积问题;根据全等三角形线段之间的关系,结合勾股定理,把梯形上底DE,下底AC,高DF分别用含x的式子表示,可表示四边形ABCD的面积.解答:解:作AE⊥AC,DE⊥AE,两线交于E点,作DF⊥AC垂足为F点,∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE∴∠BAC=∠DAE又∵AB=AD,∠ACB=∠E=90°∴△ABC≌△ADE(AAS)∴BC=DE,AC=AE,设BC=a,则DE=a,DF=AE=AC=4BC=4a,CF=AC﹣AF=AC﹣DE=3a,在Rt△CDF中,由勾股定理得,CF2+DF2=CD2,即(3a)2+(4a)2=x2,解得:a=,∴y=S四边形ABCD=S梯形ACDE=×(DE+AC)×DF=×(a+4a)×4a=10a2=x2.故选C.点评:本题运用了旋转法,将求不规则四边形面积问题转化为求梯形的面积,充分运用了全等三角形,勾股定理在解题中的作用.13.(2009•庆阳)图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x2考点:根据实际问题列二次函数关系式.专题:压轴题.分析:由图中可以看出,所求抛物线的顶点在原点,对称轴为y轴,可设此函数解析式为:y=ax2,利用待定系数法求解.解答:解:设此函数解析式为:y=ax2,a≠0;那么(2,﹣2)应在此函数解析式上.则﹣2=4a即得a=﹣,那么y=﹣x2.故选C.点评:根据题意得到函数解析式的表示方法是解决本题的关键,关键在于找到在此函数解析式上的点.14.(2007•自贡)进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数关系式为()A.y=2a(x﹣1)B.y=2a(1﹣x)C.y=a(1﹣x2)D.y=a(1﹣x)2考点:根据实际问题列二次函数关系式.分析:原价为a,第一次降价后的价格是a×(1﹣x),第二次降价是在第一次降价后的价格的基础上降价的,为a×(1﹣x)×(1﹣x)=a(1﹣x)2.解答:解:由题意第二次降价后的价格是a(1﹣x)2.则函数解析式是y=a(1﹣x)2.故选D.点评:本题需注意第二次降价是在第一次降价后的价格的基础上降价的.15.某工厂一种产品的年产量是20件,如果每一年都比上一年的产品增加x倍,两年后产品y与x的函数关系是()A.y=20(1﹣x)2B.y=20+2x C.y=20(1+x)2D.y=20+20x2+20x考点:根据实际问题列二次函数关系式.分析:根据已知表示出一年后产品数量,进而得出两年后产品y与x的函数关系.解答:解:∵某工厂一种产品的年产量是20件,每一年都比上一年的产品增加x倍,∴一年后产品是:20(1+x),∴两年后产品y与x的函数关系是:y=20(1+x)2.故选:C.点评:此题主要考查了根据实际问题列二次函数关系式,得出变化规律是解题关键.16.一个容器内盛满纯酒精50kg,第一次倒出若干千克纯酒精后加入同千克的水;第二次又倒出相同千克的酒精溶液,这时容器内酒精溶液含纯酒精ykg,设每次倒出的xkg,则y与x之间的函数关系式为()A.y=50(50﹣x)B.C.y=(50﹣x)2D.考点:根据实际问题列二次函数关系式.专题:应用题.分析:先求出加水后酒精浓度=,然后根据酒精质量=溶液质量×酒精浓度可得出答案.解答:解:加水后酒精浓度=,第二次倒出后容器内剩余的质量为:(50﹣x)kg,故剩余的酒精=(50﹣x)×=50(1﹣)2,故选D.点评:本题考查了根据实际问题抽象二次函数关系式的知识,求出酒精浓度及剩余的溶液质量是解答本题的关键.17.喜迎圣诞,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.设每件商品的售价上涨x元(x正整数),每星期销售该商品的利润为y元,则y与x的函数解析式为()A.y=﹣10x2+100x+2000 B.y=10x2+100x+2000C.y=﹣10x2+200x D.y=﹣10x2﹣100x+2000考点:根据实际问题列二次函数关系式.分析:根据题意,得出每件商品的利润以及商品总的销量,即可得出y与x的函数关系式.解答:解:设每件商品的售价上涨x元(x为正整数),则每件商品的利润为:(60﹣50+x)元,总销量为:(200﹣10x)件,商品利润为:y=(60﹣50+x)(200﹣10x),=(10+x)(200﹣10x),=﹣10x2+100x+2000.故选:A.点评:此题主要考查了根据实际问题咧二次函数解析式,根据每天的利润=一件的利润×销售量,建立函数关系式,借助二次函数解决实际问题是解题关键.18.某种品牌的服装进价为每件150元,当售价为每件210元时,每天可卖出20件,现需降价处理,且经市场调查:每件服装每降价2元,每天可多卖出1件.在确保盈利的前提下,若设每件服装降价x元,每天售出服装的利润为y元,则y与x的函数关系式为()A.y=﹣x2+10x+1200(0<x<60)B.y=﹣x2﹣10x+1250(0<x<60)C.y=﹣x2+10x+1250(0<x<60)D.y=﹣x2+10x+1250(x≤60)考点:根据实际问题列二次函数关系式.分析:设每件服装降价x元,那么每件利润为(210﹣150﹣x),所以可以卖出(20+)件,然后根据盈利为y元即可列出函数关系式解决问题.解答:解:设每件服装降价x元,每天售出服装的利润为y元,由题意得:y=(210﹣150﹣x)(20+),=﹣x2+10x+1200(0<x<60).故选:A.点评:此题主要考查了根据实际问题列二次函数解析式,表示出销量与每件服装的利润是解决问题的关键.19.两个正方形的周长和是10,如果其中一个正方形的边长为a,则这两个正方形的面积的和S关于a的函数关系式为()A.S=B.S=C.S=a2+(5﹣a)2D.考点:根据实际问题列二次函数关系式.分析:依据正方形的面积公式即可求解.解答:解:其中一个正方形的边长是a,则周长为4a,另一个正方形的边长为.所以面积之和为y=a2+()2=a2+()2,故选:D.点评:此题主要考查了根据实际问题列二次函数关系式,解决本题的难点是求得另一正方形的边长,根据题意,找到所求量的等量关系是解决问题的关键.20.有长24m的篱笆,一面利用围墙围城如图中间隔有一道篱笆的矩形花圃,设花圃的垂直于墙的一边长为x m,面积是s m2,则s与x的关系式是()A.s=﹣3x2+24x B.s=﹣2x2﹣24x C.s=﹣3x2﹣24x D.s=﹣2x2+24x考点:根据实际问题列二次函数关系式.分析:AB为x m,则BC为(24﹣3x)m,利用长方体的面积公式,可求出关系式.解答:解:S=(24﹣3x)x=24x﹣3x2.故选:A.点评:考查了根据实际问题列二次函数关系式的知识,解题的关键是能够表示出矩形的长与宽.21.把一根长为50cm的铁丝弯成一个长方形,设这个长方形的一边长为x(cm),它的面积为y(cm2),则y与x 之间的函数关系式为()A.y=﹣x2+50x B.y=x2﹣50x C.y=﹣x2+25x D.y=﹣2x2+25考点:根据实际问题列二次函数关系式.分析:由长方形的面积=长×宽可求解.解答:解:设这个长方形的一边长为xcm,则另一边长为(25﹣x)cm,以面积y=x(25﹣x)=﹣x2+25x.故选C.点评:根据题意,找到所求量的等量关系是解决问题的关键.22.如图,铅球的出手点C距地面1米,出手后的运动路线是抛物线,出手后4秒钟达到最大高度3米,则铅球运行路线的解析式为()A.h=﹣t2B.y=﹣t2+tC.h=﹣t2+t+1D.h=﹣t2+2t+1考点:根据实际问题列二次函数关系式.专题:图表型.分析:根据题意,抛物线的顶点坐标是(4,3),把抛物线经过的点(0,1),代入二次函数的顶点坐标式,列出方程,解出系数则可.解答:解:根据题意,设二次函数的表达式为h=a(t﹣4)2+3,抛物线过(0,1)即代入,解得a=﹣.这个二次函数的表达式为:h=﹣(t﹣4)2+3=﹣t2+t+1.故选C.点评:本题考查了用待定系数法利用顶点坐标式求函数的方法,同时还考查了方程的解法等知识,难度不大.二.填空题(共8小题)23.(2014•昌平区二模)如图,李大爷要借助院墙围成一个矩形菜园ABCD,用篱笆围成的另外三边总长为24m,设BC的长为x m,矩形的面积为y m2,则y与x之间的函数表达式为.考点:根据实际问题列二次函数关系式.分析:根据题意可得y=(24﹣x)x,继而可得出y与x之间的函数关系式.解答:解:由题意得:y=(24﹣x)x=﹣x2+12x,故答案为:y=﹣x2+12x.点评:此题考查了根据实际问题列二次函数关系式的知识,属于基础题,解答本题关键是根据三边总长应恰好为24米,列出等式.24.(2014•安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=a(1+x)2.考点:根据实际问题列二次函数关系式.专题:计算题.分析:由一月份新产品的研发资金为a元,根据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.解答:解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.点评:此题主要考查了根据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.25.(2012•崇明县一模)一个边长为2厘米的正方形,如果它的边长增加x厘米,面积随之增加y平方厘米,那么y关于x的函数解析式是y=x2+4x.考点:根据实际问题列二次函数关系式.分析:首先表示出原边长为2厘米的正方形面积,再表示出边长增加x厘米后正方形的面积,再根据面积随之增加y平方厘米可列出方程.解答:解:原边长为2厘米的正方形面积为:2×2=4(平方厘米),边长增加x厘米后边长变为:x+2,则面积为:(x+2)2平方厘米,∴y=(x+2)2﹣4=x2+4x.故答案为:y=x2+4x.点评:此题主要考查了根据实际问题列二次函数关系式,关键是正确表示出正方形的面积.26.(2009•泰安)如图所示,矩形ABCD中,AB=8,BC=6,P是线段BC上一点(P不与B重合),M是DB上一点,且BP=DM,设BP=x,△MBP的面积为y,则y与x之间的函数关系式为y=x2+4x(0<x≤6).考点:根据实际问题列二次函数关系式.分析:根据勾股定理可得BD=10,因为DM=x,所以BM=10﹣x,过点M作ME⊥BC于点E,可得到△BME∽△BDC,然后根据相似三角形的性质得到=,由此即可用x表示ME,最后根据三角形的面积公式即可确定函数关系式.解答:解:∵AB=8,BC=6,∴CD=8,∴BD=10,∵DM=x,∴BM=10﹣x,如图,过点M作ME⊥BC于点E,∴ME∥DC,∴△BME∽△BDC,∴=,∴ME=8﹣x,而S△MBP=×BP×ME,∴y=x2+4x,P不与B重合,那么x>0,可与点C重合,那么x≤6.故填空答案:y=x2+4x(0<x≤6).点评:本题的难点是利用相似得到△MBP中BP边上的高ME的代数式,此题主要考查了利用相似三角形的性质确定函数关系式.27.(2007•眉山)如图,已知等腰直角△ABC的直角边长与正方形MNPQ的边长均为20厘米,AC与MN在同一直线上,开始时点A与点N重合,让△ABC以每秒2厘米的速度向左运动,最终点A与点M重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为y=(20﹣2t)2.考点:根据实际问题列二次函数关系式.专题:压轴题;动点型.分析:根据△ABC是等腰直角三角形,则重叠部分也是等腰直角三角形,根据三角形的面积公式即可求解.解答:解:AM=20﹣2t,则重叠部分面积y=×AM2=(20﹣2t)2,y=(20﹣2t)2(0≤t≤10).点评:根据题意,找到所求量的等量关系是解决问题的关键.需注意AM的值的求法.28.某商店以40元的价格购进了一批服装,若按每件50元出售时,一周内可销售100件;当售价每提高1元时,其周售量就会减少5件.若设每件售价为x元,总利润是y元,则y关于x的函数解析式为y=﹣5x2+550x﹣14000.考点:根据实际问题列二次函数关系式.分析:根据每月售出衬衫的利润=每件的利润×每周的销售量得到y=(x﹣40)(100﹣5x),整理即可.解答:解:根据题意得出:y=(x﹣40)[100﹣5(x﹣50)]=﹣5x2+550x﹣14000.故答案为:y=﹣5x2+550x﹣14000.点评:本题考查了根据实际问题列二次函数关系式,表示出每件利润以及其销量是解题关键.29.某果园有100棵枇杷树.每棵平均产量为40千克,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵树接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,若设增种x棵枇杷树,投产后果园枇杷的总产量为y千克,则y与x之间的函数关系式为y=(100+x)(40﹣0.25x).考点:根据实际问题列二次函数关系式.分析:投产后果园枇杷的总产量=每棵树的产量×树的棵树=(40﹣减少的产量)×(100+增加的棵树),把相关数值代入即可求解.解答:解:∵每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,∴每多种x棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25x千克,∴每棵树的产量为(40﹣0.25x)千克,∵原来有100棵树,现在增加了x棵,∴现在有(100+x)棵,∴y=(100+x)(40﹣0.25x).点评:解决本题的关键是找到所求枇杷的总产量的等量关系,难点是得到增加树木棵树后平均每棵树的产量.30.永嘉县九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,建立如图的平面直角坐标系,设篮球出手后离地的水平距离为xm,高度为ym,则y关于x的函数解析式是.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题与二次函数练习(1)一、相信你的选择(每小题3分,共30分)1.下列关系中,可看作二次函数y =ax 2+bx +c (a ≠0)模型的是( ).A .在一定距离内,汽车的行驶速度与行驶时间的关系B .我国人口年增长率为0.5%,这样我国人口总数随年份的变化关系C .圆的周长与半径之间的关系D .竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不记空气阻力)2.一台机器原价100万元,若每年的折旧率是x ,两年后这台机器约为y 万元,则y 与x 的函数关系式为( ).A .y =100(1-x )2B .y =100(1-x )C .y =100-x 2D .y =100(1+x )23.某商店经营皮鞋,已知所获利润为y (元)与销售的单价x (元)之间的关系为y =-x 2+24x +2956,则获利最多为( ).A .3144B .3100C .144D .29564.如图,二次函数y =x 2-4x +3的图象交x 轴于A 、B 两点,交y 轴于点C ,则△ABC的面积为( ).A .6B .4C .3D .15.童装专卖店销售一种童装,若这种童装每天获利y (元)与销售单价x (元)满足关系y =-x 2+50x -500,则要想获得最大利润每天必须卖出( ).A .25件B .20件C .30件D .40件 6.如果一个实际问题的函数图象的形状与y =2312+-x 的形状相同,且顶点坐标是(4,-2),那么它的函数解析式为( ).A .y =2)4(312--x B . y =2)4(312--x 或y =2)4(312---xC .y =2)4(312-+-xD .y =2)4(312--x 或y =2)4(312-+-x7.有一块缺角矩形地皮ABCDE(如图),其中AB=110m ,BC=80m ,CD=90m ,∠EDC=135°.现准备用此块地建一座地基为长方形(图中用阴影部分表示)的实验大楼,以下四个方案中,地基面积最大的是( ).8.某幢建筑物,从10米高的窗口A 用水管向外喷水,喷出的水流呈抛物线状(抛物线所在平面与墙面垂直,如图).如果抛物线的最高点P 离墙一米,离地面340米,则水流落地点B 离墙的距离OB 是( ).A .2米B .3米C .4米D .5米9.长为20cm ,宽为10cm 的矩形,四个角上剪去边长为xcm 的小正方形,然后把四边折起来,作成底面为ycm 2的无盖的长方体盒子,则y 与x 的关系式为( ). A .y =(10-x )(20-x ) (0<x <5) B .y =10×20-4x 2 (0<x <5) C .y =(10-2x )(20-2x ) (0<x <5) D .y =200+4x 2 (0<x <5)10.某大学的校门是一抛物线形水泥建筑物(如图所示),大门的地面宽度为8米,两侧距地面4米高处各有一个挂校名匾用的铁环,两铁环的水平距离为6米,则校门的高为(精确到0.1米,水泥建筑物的厚度忽略不记)( ).A .5.1米B .9米C .9.1米D .9.2米 二、试试你的身手(每小题2分,共20分)11.如图所示是一学生推铅球时,铅球行进高度y (m )与水平距离x (m )的函数图象.现观察图象,铅球推出的距离是_____m .12.用长度一定的绳子围成一个矩形,如果矩形的一边长x (m )与面积y (m 2)满足函数关系y =-(x -12)2+144(0<x <24),那么该矩形面积的最大值为 m 2.13.某物体从上午7时至下午4时的温度M ( ℃)是时间t (h)的函数:M=t 3-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 ℃.14.用铝合金型材做一个形状如图(1)所示的矩形窗框,设窗框的一边为xm ,窗户的透光面积为ym 2,y 与x 的函数图象如图(2)所示.观察图象,当x = 时,窗户透光面积最大. 15.隧道的截面是抛物线,且抛物线的解析式为y =2812+-x ,一辆车高3m ,宽4m ,该车 通过该隧道.(填“能”或“不能”)16.人民币一年定期的年利率为x ,一年到期后,银行将本金和利息自动按一年定期储蓄转存.如果存款额是a 元,则两年后的本息和y (元)的表达式为 (不考虑利息税). 17.两个数的和为6,这两个数的积最大可以达到 .18.有一个抛物线形拱桥,其最大高度为16米,跨度为40米,现把它的示意图放在如图所示的平面直角坐标系中,则此抛物线的解析式为 .19.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加利润,尽快减少库存,商场决定采取适当的降价措施.经调查发现:如果每件衬衫降价1元,商场平均每天可多售出2件.则商场降价后每天盈利y (元)与降价x (元)的函数关系式为 .20.周长为13cm 的矩形铁板上剪去一个等边三角形(这个等边三角形的一边是矩形的宽),则矩形宽为cm ,长为 cm 时,剩下的面积最大,这个最大面积是 . 三、挑战你的技能(共30分)21.(5分)把一根长为120cm 的铁丝分成两部分,每一部分均弯曲成一个正方形,它们的面积和是多少?它们的面积和最小是多少?22.(5分)竖直向上发射物体的高度h(m )满足关系式h =-5t 2+v 0·t ,其中t(s)是物体运动的时间,v 0(m /s)是物体被发射时的速度.某公园计划设计园内喷泉,喷水的最大高度要求达到15m ,那么喷水的速度应该达到多少?(结果精确到0.01m /s)23.(6分)小明代表班级参加校运会的铅球项目.他想:“怎样才能将铅球推得更远呢?”于是找来小刚做了如下的探索:小明手挚铅球在控制每次推出时用力相同的条件下,分别沿水平线成30°,45°,60°方向推了三次.铅球推出后沿抛物线形运动,如图,小明推铅球时的出手点距地面2m,以铅球出手点(1)请你求出表格中两横线上的数据,写出计算过程,并将结果填入表格中的横线上.(2)请根据以上数据,对如何将铅球推得更远提出你的建议.24.(7分)心理学家发现,学生对概念的接受能力y和提出概念所用的时间x(单位:分)之间满足函数关系y=-0.1x2+2.6x+43(0≤x≤30),y值越大,表示接受能力越强.(1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内学生的接受能力逐步降低?(2)第10分钟,学生的接受能力是多少?(3)第几分钟时,学生的接受能力最强?25.(7分) 某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中运动路线是如图所示坐标系下的经过原点O 的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下该运动员在空中的最高处距水面1032m ,入水距池边的距离为4m ,同时运动员在距水面高度为5m 以前,必须完成规定的翻腾动作,并调整好入水的姿势,否则就会出现失误. (1)求这条抛物线的解析式; (2)在某次试跳时,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为353m ,问此次跳水会不会失误?并通过计算说明理由.四、思考与探索(共20分)26.(10分)某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y (万件)与销售单价x (元)之间存在着如图所示的一次函数关系. (1)求y 关于x 的函数关系式.(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x (元)的函数关系式(年获利=年销售额-年销售产品总进价-年总开支),当销售单价x 为何值时,年获利最大?并求出这个最大值.(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?27.(10分) 我区某镇地里环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销售,我区政府对该花木产品每投资x 万元,所获利润为P =-501(x -30)2+10万元.为了响应我国西部大开发的宏伟决策,我区政府在制定经济发展的10年规划时,拟开发此花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元.若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修筑一条公路,且5年修通.公路修通后,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每投资x 万元可获利润Q =-5049(50-x )2+5194(50-x )+308万元. (1)若不进行开发,求10年所获利润的最大值是多少?(2)若按此规划进行开发,求10年所获利润的最大值是多少? (3)根据(1)、(2)计算的结果,请你用一句话谈谈你的想法.备 用 题1.某商品的单件售价为a 元,经过二次降价,每次降价x %,则两次降价后的售价为( )元.A .a (1-x %)2B .a (1+x %)2C .a -(x %)2D .(1-x %)22.已知一个长方形场地的周长为60,一边长为m ,请你写出这个长方形场地的面积S 与这条边长m 之间的函数关系式____.3.(9分)如图,正方形ABCD 的边长为4cm ,点P 是BC 边上不与点B 、C 重合的任意一点,连结AP ,过点P 作PQ ⊥AP ,交DC 于点Q .设BP 的长为x (cm ),CQ 的长为y (cm ).求点P 在BC 上运动的过程中,y 的最大值.4.某校九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高920m ,与篮圈中心的水平距离为7m ,当球出手后水平距离为4m 时到达最大高度4m ,设篮球运动的轨迹为抛物线,篮圈距地面3m .(1)建立如图所示的平面坐标系,求抛物线的解析式并判断此球能否准确投中?(2)此时,若对方队员乙在甲前面1米处跳起盖帽拦截,已知乙的最大摸高为3.1m ,那么他能否获得成功?5.施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM 为12米.现以O 点为原点,OM 所在直线为X 轴建立直角坐标系(如图所示). (1)直接写出点M 及抛物线顶点P 的坐标; (2)求出这条抛物线的函数解析式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB ,使A 、D 点在抛物线上,B 、C 点在地面OM 上.为了筹备材料,需求出“脚手架”三根木杆AB 、AD 、DC 的长度之和....的最大值是多少?请你帮施工队计算一下.OMPD CBA yx参考答案一 、相信你的选择 1.D ; 2.A ; 3.B ; 4.C ; 5.A ; 6.B ; 7.A ; 8.B ; 9.C ; 10.C .二、试试你的身手 11.10; 12.144; 13.102; 14.1; 15.不能;16.y =a (x 2+2x +1); 17.9; 18.y =x x 582512+-; 19.y =-2x 2+60x +800; 20.34-,,325+()431313-cm 2. 三、挑战你的技能21.解:设将铁丝分成长为xcm 、(120-x )cm 的两段,并分别围成正方形,则正方形的边长分别为4xcm ,4120x -cm ,由题意设面积和为y ,则:y =(4x )2+(4120x -)2=82x -15x +900=81(x -60)2+450(0<x <120).当x =60时,最小值y =450.答:它们的面积和为y =82x -15x +900(0<x <120);最小值为450.22.解:y =-5t 2+v 0·t ,其对称轴为t =-10)5(200v v =-⋅.∴当t =100v 时,y max =-5·(100v )2+v 0·100v =2020v =15,v 20=300,∴v 0=103=17.32(m /s).答:喷水的速度应该达到17.23m /s .23.解 (1)-0.1,10.由抛物线y =a (x -4)2+3.6经过点(0,2),解得a =-0.1.当y =0时,-0.1(x -4)2+3.6=0,解得x =10. (2)推铅球时沿与水平线成45°方向用力推出,推得更远.24.解(1)由y =-0.1x 2+2.6x +43,得y =-0.1(x -13)2+59.9(0≤x ≤30).根据二次函数的性质可知,当0≤x ≤13时,学生的接受能力逐步增强;当13≤x ≤30时,学生的接受能力逐步降低. (2)第10分钟,学生的接受能力是y =-0.1(10-13)2+59.9=59.(3)二次函数顶点的纵坐标,就是函数y 的最大值或最小值.由于此函数的二次项系数为-0.1<0,抛物线开口向下,有最大值,所以,当x =13即第13分钟时,学生的接受能力最强.25.解 (1)在给定的直角坐标系中,设最高点为A ,入水点为B ,抛物线的解析式为y =ax 2+bx +c .由题意知,O 、B 两点坐标分别为(0,0)、(2,-10),顶点纵坐标为32.则有⎪⎪⎩⎪⎪⎨⎧-=++=-=.1024,3244,02c b a a b ac c 解得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=.0,310,625c b a 或 ⎪⎪⎩⎪⎪⎨⎧=-=-=.0,2,23c b a 因抛物线对称轴在y 右侧,所以-a b 2>0,即a 与b 异号,又开口向下,则a <0,b >0,所以a =-23,b =-2,c =0不符合题意,舍去.故所求抛物线的解析式为y =-625x 2+310x . (2)当运动员在空中距池边的水平距离为353m ,即x =353-2=58m 时,y =(-625)×(58)2+310×58=-316.所以此时运动员距水面的高为10-316=314<5.因此,此次跳水会出现失误. 四、思考与探索26.解(1)设y =k x +b ,它过点(60,5)、(80,4). ∴⎩⎨⎧+=+=.b k ,b k 804605 解得⎪⎩⎪⎨⎧=-=.b ,k 8201∴y =-201x +8.(2)z =yx -40y -120=-(201x +8)(x -40)-120=-201x 2+10x -440=-201(x -100)2+60.∴当x =100元时,年获利最大,为60万元. (3)令z =40,得40=-201x 2+10x -440.整理,得x 2-200x +9600=0.解得x 1=80,x 2=120. 由右图可知,要使年获利不低于40万元,销售单价应在80元到120元之间.又因为销售单价越低,销售量越大,所以要使销售量最大,又要使年获利不低于40万元,销售单价应定为80元. 27.解:(1)若不开发此产品,按原来投资方式P =-501×(x -30)2+10知,只需从50万元专款中拿出30万元投资,每年可获最大利润10万元.则10年的最大利润为M 1=10×10=100万元.(2)若对该产品开发,在前五年中,每年最多可投资25万元(另25万元用于修路),当x =25时,每年最大利润是P =-501(25-30)2+10=9.5万元,则前5年最大利润为M 2=9.5×5=47.5万元. 设后5年x 万元用于本地投资,则由Q =-5049(50-x )2+5194×(50-x )+308知,将余下的(50-x )万元全部用于外地销售投资,才有可能获得最大利润.那么后5年的利润是:M 3=5×[-501×(x -30)2+10]+5×{-5049[50-(50-x )]2+5194[50-(50-x )]+308}=-5(x -20)2+3500.故x =20时,M 3取最大值3500万元,所以10年的最大利润为M =M 2+M 3=3500+47.5=3547.5万元.(3)因为3547.5>100,故该项目有极大的开发价值.备 用 题 1.A ;2.S =-m 2+30m (0<m <30); 3.∵PQ ⊥AP ,∴∠CPQ +∠APB =90°.又∵∠BAP +∠APB =90°,∴∠CPQ +∠BAP ,∴∠CPQ =∠BAP ,∴t an ∠CPQ =t an ∠BAP .因此,点P 在BC 上运动时始终有AB BP =PCCQ.∵AB =BC =4,BP =x ,CQ =y ,∴4x =x y-4,∴y =-41(x 2-4x )=-41(x -2)2+1(0<x <4).∵a =-41<0,∴y 有最大值,当x =2时,y 最大=1cm . 4.(1)根据题意可知,抛物线经过(0,920),顶点坐标为(4,4),则可设其解析式为y =a (x -4)2+4,解得a =-91.则所求抛物线的解析式为y =-91(x -4)2+4.又篮圈的坐标是(7,3),代入解析式,y =-91(7-4)2+4=3.所以能够投中.(2)当x =1时,y =3,此时3.1>3,故乙队员能够拦截成功. 5.解:(1) ()()12,0,6,6M P⑵(法1)设这条抛物线的函数解析式为:()266y a x =-+∵抛物线过O(0,0)∴06)60(2=+-a , 解得16a =-. ∴这条抛物线的函数解析式为:()21666y x =--+即2126y x x =-+.(法2)设这条抛物线的函数解析式 为:c bx ax y ++=2∵抛物线过O(0,0),()()12,0,6,6M P 三点,∴⎪⎩⎪⎨⎧=+⋅+⋅=+⋅+⋅=01212666022c b a c b a c , 解得:⎪⎪⎩⎪⎪⎨⎧==-=0261c b a ,∴这条抛物线的函数解析式为:2126y x x =-+.⑶设点A 的坐标为21,26m m m ⎛⎫-+ ⎪⎝⎭, ∴OB=m ,AB=DC=m m 2612+-,根据抛物线的轴对称,可得:OB CM m ==,∴122BC m =-,即AD=12-2m ,∴l =AB+AD+DC=m m m m m 26121226122+--++-=122312++-m m =15)3(312+--m . ∴当m =3,即OB=3米时,三根木杆长度之和l 的最大值为15米..24.某玩具厂生产一种玩具熊猫,每日最高生产量为40只,且每日产出的产品全部售出,已知生产x 只玩具熊的成本为R(元),售价每只为P(元),且R 、P 与x 的关系分别为R =500+30x ,P =170-2x . (1)当日产量为多少时,每日获得利润为1750元.(2)当日产量为多少时,可获得最大利润?最大利润是多少? 24.解:(1)当日产量为25只时,每日获利为1750元. (2)p x -R =(170-2x )·x -(500+3x )=-2(x -35)2+1950,当每日生产量为35只时,可获得最大利润1950元.。