高一数学必修2课件1.2空间几何体的结构习题课(新人教A版)
【数学】1.2 空间几何体的三视图和直观图课件(人教A版必修2)2
F A
M
E D
x
y
A
B
O
F M E
N
O
D
C
x
B
N C
~请您总结斜二测画法画水平放置的平面图形的方法步骤~
斜二测画法的步骤
(1)在已知图形中取互相垂直的x轴和y轴,两轴相交于O点. 画直观图时,把它画成对应的x’轴、y’轴,两轴交于O’,使 x'Oy' 45 (或135 ) ,它们确定的平面表示水平平面. (2)已知图形中平行于x轴或y轴的线段,在直观图中分别画 成平行于x’轴或y’轴的线段.
问题提出
1.把一本书正面放置,其视觉效果 是一个矩形;把一本书水平放置,其视 觉效果还是一个矩形吗?这涉及水平放 置的平面图形的画法问题.
2.对于柱体、锥体、台体及简单的组 合体,在平面上应怎样作图才具有强烈 的立体感?这涉及空间几何体的直观图 的画法问题.
知识探究(一):水平放置的平面图形的画法
z
y′
正视图
侧视图
A′ o′
B′ y B x′
俯视图
A
o
x
理论迁移
例 如图,一个平面图形的水平放 置的斜二测直观图是一个等腰梯形,它 的底角为45°,两腰和上底边长均为1, 求这个平面图形的面积.
D D C C
A
B
A
S 2 2
B
例1.用斜二测画法画水平放置的六边形的直观图 (1)在六边形ABCDEF中,取AD所在的直线为X轴,对称轴MN 所在直线为Y轴,两轴交于点O.画对应的 X ' , Y ' 轴,两轴相交 于点 O ' ,使 X ' OY ' 45
Z
人教A版高中数学必修2第一章 空间几何体1.1 空间几何体的结构习题
1.1空间几何体的结构一.判断正误(1)在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;()(2)圆锥顶点与底面圆周上任意一点的线段是圆锥的母线;(对)(3)在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;()(4)圆柱的任意两条母线所在的直线是互相平行的.(对)(5)棱垂直于底面的棱柱是直棱柱(对)(6)底面是正多边形的棱柱是正棱柱(7)棱柱的侧面都是平行四边形.(对)(8)有两个面平行,其余各面都是平行四边形的几何体叫棱柱(9)有一个面是多边形,其余各面都是三角形的几何体叫棱锥(10)由五个面围成的多面体一定是四棱锥(11)棱台各侧棱的延长线交于一点(对)(12)棱柱的侧棱都相等,侧面都是全等的平行四边形;(13)存在每个面都是直角三角形的四面体;(对)(14)棱台的侧棱延长后交于一点.(对)(15)棱柱的侧面可以是三角形(16)正方体和长方体都是特殊的四棱柱(对)(17)棱柱的各条棱都相等(18)所有的几何体的表面都展成平面图形(19)有两个平面互相平行,其余各面都是四边形的多面体一定是棱柱;(20)有一个面是多边形,其余各面都是三角形的多面体一定是棱锥;(21)用一个面去截棱锥,底面与截面之间的部分叫棱台;(22)侧面都是长方形的棱柱叫长方体.(23)多面体至少有四个面(对)(24)有两个侧面是矩形的棱柱是直棱柱;(25)各侧面都是正方形的棱柱一定是正棱柱;(26)一个三棱锥四个面可以都为直角三角形.(对)(27)有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱(对)(28)直角三角形的一边为轴旋转一周所得的旋转体是圆锥;(29)以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;(30)一个平面截圆锥,得到一个圆锥和一个圆台.(31)两底面互相平行,其余各面都是梯形,侧棱延长线交于一点的几何体是棱台(对)(32)如图,在透明塑料制成的长方体ABCD﹣A1B1C1D1容器内装进一些水,将容器底面一边BC固定于底面上,再将容器倾斜,随着倾斜度的不同,有下列三个说法:①水的形状始终是棱柱形状;②水面形成的四边形EFGH的面积不改变;③当E∈AA1时,AE+BF是定值.其中正确说法是.(写出所以正确说法的序号)【答案】①③(33)若正棱锥底面边长与侧棱长相等,则该棱锥一定不是()A.三棱锥B.四棱锥C.五棱锥D.六棱锥【答案】D二.多面体和旋转体表面上的最短距离问题1.已知侧棱长为2的正三棱锥S﹣ABC如图所示,其侧面是顶角为20°的等腰三角形,一只蚂蚁从点A出发,围绕棱锥侧面爬行两周后又回到点A,则蚂蚁爬行的最短路程为.【答案】2.如图所示,在三棱柱ABC ﹣A 1B 1C 1中,AA 1⊥底面A 1B 1C 1,底面为直角三角形,∠ACB=90°,AC=2,BC=1,CC 1=,P 是BC 1上一动点,则A 1P+PC 的最小值是 .【答案】3.如图:已知正三棱锥P ﹣ABC ,侧棱PA ,PB ,PC 的长为2,且∠APB=30°,E ,F 分别是侧棱PC ,PA 上的动点,则△BEF 的周长的最小值为( )【答案】C .224.如图,直三棱柱111C B A ABC -中,1=AB ,2=BC ,5=AC ,31=AA ,M 为线段1BB 上的一动点,则当1MC AM +最小时,△1AMC 的面积为______。
人教A版高中数学必修二 1.1 空间几何体的结构(共40张PPT)
如果我们只考虑这些物体的形状和大小, 而不考虑其他因素,那么由这些物体抽象出 来的空间图形就叫做空间几何体。
观察下面的图片,这些图片中的物体具有怎样的 形状?我们如何描述它们的形状?
(2),(5),(7),(9),(13),(14),(15),(16)具有相同的特点: 组成几何体的每个面都是平面图形,并且都是平面 多边形;
相邻两个面的公共边叫做多面
D
体的棱,棱与棱的公共点叫做多
C 面体的顶点。
B
大家身边有多面体吗?
一个多面体至少有几个面? 我们能不能给多面体分类呢?
我来答
一个多面体至少有四个面, 多面体按面数分为四面体,五 面体,六面体等。
A′
O′
A
O
旋转体
由一个平面图形绕它所在平面内的 一条直线旋转所形成的封闭几何体.
1.了解了立体几何的研究对 象和研究内容。
2.感受了我们生活中的空间几何体。
3 .认识了多面体和旋转体。 4.动手制作了多面体和旋转体。
一个形的世界,我处处离不开你.
几何学的简洁美却又正是几何学之所 以完美的核心所在--牛顿
一个理想的世界,我探索你的奥秘.
从航空测绘到土木建筑以至家居装潢,空间图形与我们的生活息 息相关.
探究:观察下面的实物图片, 这些图片中的物体具 有怎样的形状?它们可以抽象出怎样的几何图形?
空间几何体的概念
平面几何研究的对象、研究
内容是什么?
平面几何研究的对象是平面图形,研究 的内容是平面内的点、线的位置关系,平 面图形的画法,长度、角度、面积等相关 的计算及应用.
想一想:我们生活中的这些图形是平面图形吗?
人教版A版高中数学必修2课后习题解答
第一章空间几何体1.1 空间几何体的结构练习(第7 页)1.(1)圆锥;(2)长方体;(3)圆柱与圆锥组合而成的组合体;(4)由一个六棱柱挖去一个圆柱体而得到的组合体。
2.(1)五棱柱;(2)圆锥3.略习题1.1A组1.(1) C;(2)C;(3)D;(4) C2.(1)不是台体,因为几何体的“侧棱”不相交于一点,不是由平等于“底面”的平面截棱锥得到的。
(2)、(3)也不是台体,因为不是由平行与棱锥和圆锥底面平面截得的几何体。
3.(1)由圆锥和圆台组合而成的简单组合体;(2)由四棱柱和四棱锥组合而成简单组合体。
4.两个同心的球面围成的几何体(或在一个球体内部挖去一个同心球得到的简单组合体)。
5.制作过程略。
制作过程说明平面图形可以折叠成立体图形,立体图形可以展开为平面图形。
B组1.剩下的几何体是棱柱,截去的几何体也是棱柱;它们分别是五棱柱和三棱柱。
2.左侧几何体的主要结构特征:圆柱和棱柱组成的简单组何体;中间几何体的主要结构特征:下部和上部都是一个圆柱截去一个圆柱组成的简单组何体;右侧几何体的主要结构特征:下部是一个圆柱体,上部是一个圆柱截去一个圆柱组成的简单组何体。
1.2 空间几何体的三视图和直观图练习(第15 页)1.略2.(1)四棱柱(图略);(2)圆锥与半球组成的简单组合体(图略);(3)四棱柱与球组成的简单组合体(图略);(4)两台圆台组合而成的简单组合体(图略)。
3.(1)五棱柱(三视图略);(2)四个圆柱组成的简单组合体(三视图略);4.三棱柱练习(第19 页)1.略。
2.(1)√(2)×(3)×(4)√3.A4.略5.略习题1.2A组1.略2.(1)三棱柱(2)圆台(3)四棱柱(4)四棱柱与圆柱组合而成的简单组合体3~5.略B组1~2.略3.此题答案不唯一,一种答案是由15个小正方体组合而成的简单组合体,如图。
1.3 空间几何体的表面积与体积。
【同步课堂】人教A版高中数学必修2第一章1.1.1-2空间几何体的结构课件(共40张PPT)
3.每相邻两个侧面的公共边(侧棱)都互 相平行
10
探究问题 1:
长方体按如图截去一角后所得的两部分还是棱柱 吗?
D’
C’
A’
B’
D C
A
B
11
探究问题 2:
有两个面互相平行,其余各面都是平行四边形的几 何体是棱柱吗? 定义: 1、有两个面互相平行,
2、其余各面都是四边形,
D
C 底面
的侧棱。
A
B
棱锥可以表示为:棱锥S-ABCD
底面是三角形,四边形,五边形----的棱锥分 别叫三棱锥,四棱锥,五棱锥---
13
思考:一个棱锥至少有几个面?一个N棱锥有分别 有多少个底面和侧面?有多少条侧棱?有多少个 顶点?
至少有4个面;1个底面,N个侧面,N条侧棱,1个顶 点.
14
练习:下列几何体是不是棱锥,为什么?
旋转体: 由一个平面图形绕它所在平面内的
一条定直线旋转所形成的封闭几何体
注:棱柱与圆柱统称为柱体
5
1.棱柱的结构特征:
①有两个面互相平行 ②其余各面都是四边形
③每相邻两个四边形的公共边互相平行
有两个面互相平行,其余各面都是四边形,每相邻两个四
边形的公共边互相平行,由这些面围成的图形叫做棱柱
6
1、棱柱 1、两个互相平行的面叫棱柱的底面。
3、每相邻两个四边形的公共边 都互相平行。
12
2.棱锥的结构特征
有一个面是多边形,其余各面都是有一个公共顶
点的三角形,由这些面所围成的多面体叫做棱锥.
底面:棱锥中的多边形面叫做棱锥的底面或底。 S 顶点
侧面:有公共顶点的各个三角形面叫做棱锥
最新人教版高一数学必修2全册教学课件
0002页 0165页 0263页 0329页 0368页 0399页 0446页 0486页 0549页 0551页 0578页 0632页 0655页 0687页 0755页 0816页
第一章 空间几何体 1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积 实习作业 复习参考题 2.1 空间点、直线、平面之间的位置关系 2.3 直线、平面垂直的判定及其性质 小结 第三章 直线与方程 探究与发现 魔术师的地毯 3.3 直线的交点坐标与距离公式 小结 第四章 圆与方程 阅读与思考 坐标法与机器证明 4.3 空间直角坐标系 小结
最新人教版高一数学必修2全册教 学课件
1.2 空间几何体的三视图和直 观图
最新人教版高一数学必修2全册教 学课件
阅读与思考 画法几何与蒙日
第一章 空间几何体
最新人教版高一数学必修2全册教 学课件
1.1 空间几何体的结构
最新人教版高一数学必修2全册教 学课件
1.3 空间几何体的表面积与体 积
最新人教版高一数学必修2全册教 学课件
探究与发现 祖暅原理与柱体 、椎体、球体的体积
最新人教版高一数学必修2全册教 学课件
实习作业
最新人教版高一数学必修2全册教 学课件
小结
最新人教版高一数学必修2全册教 学课件
复习参考题
最新人教版高一数学必修2全册教 学课件
第二章 点、直线、平面之间 的位置关系
新人教A版高中数学必修2课件:立体几何初步的习题课
②连接 FO,如图所示. ∵EF∥CO,EF=CO=1,且 CE=1, ∴四边形 CEFO 为菱形.∴CF⊥EO. ∵四边形 ABCD 为正方形,∴BD⊥AC. 又平面 ACEF⊥平面 ABCD, 且平面 ACEF∩平面 ABCD=AC, ∴BD⊥平面 ACEF.∴CF⊥BD. 又 BD∩EO=O,∴CF⊥平面 BDE.
下列结论一定正确的是
()
A.l1⊥l4 B.l1∥l4 C.l1 与 l4 既不垂直也不平行 D.l1 与 l4 的位置关系不确定
解析:如图,在长方体 ABCD-A1B1C1D1 中,记 l1=DD1, l2=DC,l3=DA,若 l4=AA1,满足 l1⊥l2,l2⊥l3,l3⊥ l4,此时 l1∥l4,可以排除选项 A 和 C.若 l4=DC1,也满 足条件,可以排除选项 B. 答案:D
【集训冲关】 如图,在四棱锥 P-ABCD 中,底面 ABCD 是直角梯形,∠DAB =∠ABC=90°,且 AB=BC=2AD=2,侧面 PAB⊥底面 ABCD, △PAB 是等边三角形.(1)求证:BD⊥PC; (2)求二面角 B-PC-D 的大小. 解:(1)证明:如图,取 AB 的中点 O,连接 PO,CO. 因为△PAB 是等边三角形,所以 PO⊥AB. 又侧面 PAB⊥底面 ABCD,所以 PO⊥底面 ABCD. 因为 BD⊂平面 ABCD,所以 PO⊥BD. 又 AB=BC=2AD=2,∠ABC=∠DAB=90°, 所以△DAB≌△OBC.所以∠BCO=∠ABD,所以 BD⊥OC.又 OC⊂平面 POC,PO⊂平面 POC,OC∩PO=O, 所以 BD⊥平面 POC.因为 PC⊂平面 POC,所以 BD⊥PC.
3.如图所示的三棱锥 O-ABC 为长方体的一角.其中 OA,OB,OC
高一数学必修2__1.1空间几何体的结构(练习题)
必修2 1.1空间几何体的结构(练习题)一、选择题1.在棱柱中()A.只有两个面平行 B.所有的棱都平行C.所有的面都是平行四边形 D.两底面平行,且各侧棱也互相平行2.将图1所示的三角形线直线l旋转一周,可以得到如图2所示的几何体的是哪一个三角形()3.若一个平行六面体的四个侧面都是正方形,则这个平行六面体是()A.正方体 B.正四棱锥C.长方体D.直平行六面体4.下面命题中,正确的是()①底面是正方形,侧面都是等腰三角形的棱锥是正四棱锥;②对角线相等的四棱柱必是直棱柱;③底面边长相等的直四棱柱为正四棱柱;④四个面都是全等的三角形的几何体是正四面体5.如图一个封闭的立方体,它6个表面各标出1、2、3、4、5、6这6个数字,现放成下面3个不同的位置,则数字l、2、3对面的数字是()A.4、5、6 B.6、4、5 C.5、4、6 D.5、6、46.如图,能推断这个几何体可能是三棱台的是()A.A1B1=2,AB=3,B1C1=3,BC=4B.A1B l=1,AB=2,B l C l=1.5,BC=3,A1C1=2,AC=3C.A l B l=1,AB=2,B1C l=1.5,BC=3,A l C l=2,AC=4D.AB=A1B1,BC=B1C1,CA=C1A17.有下列命题(1)在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;(2)圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;(3)在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;(4)圆柱的任意两条母线所在的直线是互相平行的.其中正确的是()A.(1)(2) B.(2)(3) C.(1)(3) D.(2)(4)8.下列命题中错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆D.圆锥所有的轴截面是全等的等腰三角形9.一个三棱锥四个面中,是直角三角形的最多有()A.1个 B.2个 C.3个 D.4个10.图,这是一个正方体的表面展开图,若把它再折回成正方体后,有下列命题:①点H与点C重合;②点D与点M与点R重合;③点B与点Q重合;④点A与点S重合.其中正确命题的序号是_______________.(注:把你认为正确的命题的序号都填上)11.高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是_______________.三、解答题12.察以下几何体的变化,通过比较,说出他们的特征.13.一个圆锥截成圆台,已知圆台的上下底面半径的比是1∶4,母线长为10cm,求圆锥的母线长__________.。
高一数学必修2空间几何体的结构1(新人教A版) 副本PPT课件
S
棱锥的顶点
棱锥的侧棱
D E
A
B
(1)底面是多边形 (2)侧面都是三角形. (3)侧棱相交于一点.
棱锥的侧面 C 棱锥的底面
40
S
A
BC
D
2、棱锥的分类: 按底面多边形的边数,可以分为三
棱锥、四棱锥、五棱锥、……
3、棱锥的表示方法:用表示顶点和底面 的字母表示,如四棱锥S-ABCD。
41
棱台的结构特征
全等 平行 平行四边形
平行且相等
棱柱的性质: 两个底面是全等的多边形,对应边互相平行, 侧面都是平行四边形.侧棱平行且相等。
15
探究
一个长方体,能作为棱柱底面的有几对?
16
探究
一个长方体,能作为棱柱底面的有几对?
17
探究
一个长方体,能作为棱柱底面的有几对?
18
探究
一个长方体,能作为棱柱底面的有几对?
D C
B
斜棱柱
29
问题
有各种各样的棱柱,你能不能把它们分类呢? 以什么为标准为好?
30
4、棱柱的分类:棱柱的底面可以是三角形、 四边形、五边形、 …… 我们把这样的棱柱分 别叫做三棱柱、四棱柱、五棱柱、……
三棱柱
四棱柱
五棱柱
31
5、棱柱的表示法(下图)
用平行的两底面多边形的字母表示棱 柱,如:棱柱ABCDE- A1B1C1D1E1 。
每相邻两个四边形的公共边都互 相平行,由这些面所围成的多面体。
13
2、认识棱柱:
底面:两个互相平行的面 侧面:其余的各个面
底面
E′
D′
F′ A′ B′ C′
侧 面
侧棱:相邻侧面的公共边 侧棱
高一数学人教A版必修2:1-1-1棱柱、棱锥、棱台的结构特征课件
第六页,编辑于星期日:二十二点 一分。
新课引入 中国人认为:没有规矩不成方圆,按照制定出来的规矩做 事,就可以获得整体的和谐统一.在中国传统文化中,“天圆 地方”的设计思想催生了“水立方”,它与圆形的“鸟 巢”——国家体育场相互呼应,相得益彰,可以说“水立方” 就是现代时尚和中国传统文化的智慧结晶,它的建成是我的中 华民族的骄傲,它给我们带来了美的享受和美的向往.“鸟巢” 和“水立方”也都是由一些简单几何体组成的,本节我们学习 棱柱、棱锥、棱台等这些简单几何体的结构特征.
些物体抽象出来的空间图形就叫做空间几何体
第一章 1.1 1.1.1
第九页,编辑于星期日:二十二点 一分。
概念
定义
一般地,我们把由若干个 平面多边形 围成的几何体叫
多面 做多面体.围成多面体的各个多边形叫做多面体的 面 ;
体 相邻两个面的 公共边 叫做多面体的棱;棱与棱的 公共点
叫做多面体的顶点
旋转 体
故(1)(2)(3)正确,(4)不正确.
第一章 1.1 1.1.1
第三十一页,编辑于星期日:二十二点 一分。
根据下列关于几何体的描述,说出几何体的名称: (1)由八个面围成,其中两个面是互相平行且全等的正六 边形,其他各面都是矩形; (2)由五个面围成,其中一个面是正方形,其他各面都是 有一个公共顶点的全等三角形; (3)由五个面围成,其中上、下两个面是相似三角形,其 余各面都是梯形,并且这些梯形的腰延长后能相交于一点.
定义 之间的部分叫做棱台 原棱锥的底面和截面分别叫做棱台的下底面 和 上底面
有关 ;其他各面叫做棱台的 侧面 ;相邻侧面的公共边 叫 概念 做棱台的侧棱;底面与 侧面 的公共顶点叫做棱台的
人教a版高中数学必修2一课一练全册汇编含答案
人教A版高中数学必修2《一课一练》全册汇编含答案《1.1 空间几何体的结构》一课一练1《1.1 空间几何体的结构》一课一练2《1.2 空间几何体的三视图》一课一练1《1.2 空间几何体的直观图》一课一练2《1.3 柱体、锥体、台体的体积》一课一练2《1.3 柱体、锥体、台体的表面积》一课一练1《2.1 直线与平面、平面与平面位置关系》一课一练2《2.1 空间中直线与直线之间的位置关系》一课一练1《2.2 直线、平面平行的判定及其性质》一课一练1《2.2 直线、平面平行的判定及其性质》一课一练2《2.2 直线、平面平行的判定及其性质》一课一练3《2.2 直线、平面平行的判定及其性质》一课一练4《2.3 直线、平面垂直的判定及其性质》一课一练1《2.3 直线、平面垂直的判定及其性质》一课一练2《2.3 直线、平面垂直的判定及其性质》一课一练3《2.3 直线、平面垂直的判定及其性质》一课一练4《3.1 直线的倾斜角与斜率》一课一练1《3.1 直线的倾斜角与斜率》一课一练2《3.2 直线的方程》一课一练1《3.2 直线的方程》一课一练2《3.2 直线的方程》一课一练3《3.2 直线的方程》一课一练4《3.2 直线的方程》一课一练5《3.2 直线的方程》一课一练6《3.3 直线的交点坐标与距离公式》一课一练1《3.3 直线的交点坐标与距离公式》一课一练2《4.1 圆的方程》一课一练1《4.1 圆的方程》一课一练2《4.1 圆的方程》一课一练3《4.1 圆的方程》一课一练4《4.2 直线、圆的位置关系》一课一练1《4.2 直线、圆的位置关系》一课一练2《4.3 空间直角坐标系》一课一练1《4.3 空间直角坐标系》一课一练2新课标高一数学同步测试(1)—1.1空间几何体本试卷分第Ⅰ卷和第Ⅱ卷两部分.共150分.第Ⅰ卷(选择题,共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.直线绕一条与其有一个交点但不垂直的固定直线转动可以形成 ( ) A .平面 B .曲面 C .直线 D .锥面 2.一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成 ( ) A .棱锥 B .棱柱 C .平面 D .长方体 3.有关平面的说法错误的是 ( )A .平面一般用希腊字母α、β、γ…来命名,如平面α…B .平面是处处平直的面C .平面是有边界的面D .平面是无限延展的4.下面的图形可以构成正方体的是 ( )A B C D5.圆锥的侧面展开图是直径为a 的半圆面,那么此圆锥的轴截面是 ( ) A .等边三角形 B .等腰直角三角形 C .顶角为30°的等腰三角形 D .其他等腰三角形 6.A 、B 为球面上相异两点,则通过A 、B 两点可作球的大圆有 ( ) A .一个 B .无穷多个 C .零个 D .一个或无穷多个 7.四棱锥的四个侧面中,直角三角最多可能有 ( ) A .1 B .2 C .3 D .4 8.下列命题中正确的是 ( ) A .由五个平面围成的多面体只能是四棱锥 B .棱锥的高线可能在几何体之外 C .仅有一组对面平行的六面体是棱台 D .有一个面是多边形,其余各面是三角形的几何体是棱锥 9.长方体三条棱长分别是AA ′=1,AB=2,AD=4,则从A 点出发,沿长方体的表面到C ′的最短矩离是( )A .5B .7C .29D .3710.已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直平行六面体},则 ( ) A .E F D C B A ⊂⊂⊂⊂⊂ B .A C B F D E ⊂⊂⊂⊂⊂ C .C A B D F E ⊂⊂⊂⊂⊂ D .它们之间不都存在包含关系第Ⅱ卷(非选择题,共100分)二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.线段AB长为5cm,在水平面上向右平移4cm后记为CD,将CD沿铅垂线方向向下移动3cm后记为C′D′,再将C′D′沿水平方向向左移4cm记为A′B′,依次连结构成长方体ABCD—A′B′C′D′.①该长方体的高为;②平面A′B′C′D′与面CD D′C′间的距离为;③A到面BC C′B′的距离为 .12.已知,ABCD为等腰梯形,两底边为AB,CD且AB>CD,绕AB所在的直线旋转一周所得的几何体中是由、、的几何体构成的组合体.13.下面是一多面体的展开图,每个面内都给了字母,请根据要求回答问题:①如果A在多面体的底面,那么哪一面会在上面;②如果面F在前面,从左边看是面B,那么哪一个面会在上面;③如果从左面看是面C,面D在后面,那么哪一个面会在上面.14.长方体ABCD—A1B1C1D1中,AB=2,BC=3,AA1=5,则一只小虫从A点沿长方体的表面爬到C1点的最短距离是.三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分)15.(12分)根据图中所给的图形制成几何体后,哪些点重合在一起.16.(12分)若一个几何体有两个面平行,且其余各面均为梯形,则它一定是棱台,此命题是否正确,说明理由.17.(12分)正四棱台上,下底面边长为a,b,侧棱长为c,求它的高和斜高.18.(12分)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长10cm.求:圆锥的母长.19.(14分)已知正三棱锥S-ABC的高SO=h,斜高SM=n,求经过SO的中点且平行于底面的截面△A1B1C1的面积.20.(14分)有在正方形ABCD中,E、F分别为AB、BC的中点,现在沿DE、DF及EF把△ADE 、△CDF 和△BEF 折起,使A 、B 、C 三点重合,重合后的点记为P . 问:①依据题意制作这个几何体;②这个几何体有几个面构成,每个面的三角形为什么三角形; ③若正方形边长为a ,则每个面的三角形面积为多少.参考答案(一)一、DBCCA DDBAB二、11.①3CM ②4CM ③5CM ; 12.圆锥、圆台、圆锥; 13.①F ②C ③A ; 14.52.三、15.解:J 与N ,A 、M 与D ,H 与E ,G 与F ,B 与C.16.解:未必是棱台,因为它们的侧棱延长后不一定交于一点,如图,用一个平行于楔形底面的平面去截楔形,截得的几何体虽有两个面平行,其余各面是梯形,但它不是棱台,所以看一个几何体是否棱台,不仅要看是否有两个面平行,其余各面是否梯形,还要看其侧棱延长后是否交于一点. 小结:棱台的定义,除了用它作判定之外,至少还有三项用途: ①为保证侧棱延长后交于一点,可以先画棱锥再画棱台;②如果解棱台问题遇到困难,可以将它还原为棱锥去看,因为它是由棱锥截来的;③可以利用两底是相似多边形进行有关推算.17.分析:棱台的有关计算都包含在三个直角梯形B E BE E E O O B B O O ''''''和,及两个直角三角形OBE 和E B O '''∆中,而直角梯形常需割成一个矩形和一个直角三角形对其进行求解,所以要熟悉两底面的外接圆半径(B O OB '',)内切圆半径(E O OE '',)的差,特别是正三、正四、正六棱台.略解:hOO B F h EE B G ='=''='=',2222)(222)(21)(21)(22a b c a b c h a b BG a b BF --=--=∴-=-='=--=--h c b a c b a 222214124()()18.解:设圆锥的母线长为l ,圆台上、下底半径为r R ,.l l rR l l l cm -=∴-=∴=101014403()答:圆锥的母线长为403cm. 19.解:设底面正三角形的边长为a ,在RT △SOM 中SO=h ,SM=n ,所以OM=22l n -,又MO=63a ,即a =2236l n -,)(3343222l n a s ABC-==∴∆,截面面积为)(34322l n -. 20.解:①略.②这个几何体由四个面构成,即面DEF 、面DFP 、面DEP 、面EFP .由平几知识可知DE =DF ,∠DPE =∠EPF =∠DPF =90°,所以△DEF 为等腰三角形,△DFP 、△EFP 、△DEP 为直角三角形. ③由②可知,DE =DF =5a ,EF=2a ,所以,S△DEF=23a 2。
高一数学人教A版必修二课件:1.1.1.1 棱柱、棱锥、棱台的结构特征
解:所截两部分分别是四棱柱和三棱柱.几何体ABCD-
一二三
知识精要 思考探究 典题例解 迁移应用
三、简单几何体的表面展开与折叠问题 1.绘制展开图
(1)绘制多面体的表面展开图要结合多面体的几何特征,发 挥空间想象能力或者是亲手制作多面体模型.
(2)在解题过程中,常常给多面体的顶点标上字母,先把多面 体的底面画出来,然后依次画出各侧面,便可得到其表面展开
图
示
底面:两个互相平行的面
及
侧面:底面以外的其余各面
相
侧棱:相邻侧面的公共边
关
顶点:侧面与底面的公共顶
概
点
念
记 法
棱柱 ABCDEF-A'B'C'D'E'F'
分 类
按底面多边形的边数分为三棱柱、四棱柱…
目标导航 预习导引
12
(2)棱锥的结构特征:
定 有一个面是多边形,其余各面都是有一个公共顶
义 点的三角形,由这些面所围成的多面体叫做棱锥
紧扣概念解题 在解答关于空间几何体概念的判断题时,要注意紧扣定义 判断,这就要求熟悉各种空间几何体的概念的内涵和外延,切 忌只凭图形主观臆断,如本例若意识不到棱台各侧棱延长后
交于一点则会致错.
多个梯形相连.
一二三
知识精要 思考探究 典题例解 迁移应用
【例3】 (1)请画出如图所示的几何体的表面展开图.
(2)根据下面所给的平面图形,画出立体图形.
一二三
知识精要 思考探究 典题例解 迁移应用
思路分析:由题意首先弄清几何体的侧面各是什么形状,然 后再通过空间想象或动手实践进行展开或折叠. 解:(1)展开图如图所示
A1B1C1平行于平面ABC,
《1.1 空间几何体的结构》(同步训练)高中数学必修2_人教A版_2024-2025学年
《1.1 空间几何体的结构》同步训练(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、下列几何体中,哪一个是多面体?A、球体B、圆柱C、正方体D、圆锥2、在正方体的一个顶点上,有一个顶点到该顶点所在面的相邻三面的交线所形成的三角形,其内角和是多少?A. 180°B. 270°C. 360°D. 540°3、在长方体的长、宽、高分别为2cm、3cm、4cm的情况下,该长方体的对角线长度是:A. 5cmB. 7cmC. 9cmD. 10cm4、一个圆锥的底面半径为3cm,高为4cm,则其体积为()。
A、12π cm³B、24π cm³C、36π cm³D、48π cm³5、已知正方体ABCD-A1B1C1D1中,点E为棱CC1的中点,点F为棱A1B1上的一点,且BF=BB1,如果AE与EF垂直,则∠EFB=()A.30°B.45°C.60°D.90°6、已知正方体ABCD-A1B1C1D1的棱长为a,则体对角线A1D的长度为:A、√3aB、2√3aC、√6aD、√2a7、一个直三棱柱的底面是一个直角三角形,其中两个直角边的长度分别为3和4,斜边为5。
该直三棱柱的体积是多少?A. 6B. 12C. 18D. 248、正方体的所有棱长均为2厘米,该正方体的对角线长为()A、2√3 厘米B、4√2 厘米C、4√3 厘米D、6√3 厘米二、多选题(本大题有3小题,每小题6分,共18分)1、下列关于空间几何体的说法正确的是()A. 圆柱是由两个平行的圆形底面和一个曲面侧面组成的立体图形。
B. 棱锥的所有侧棱相交于一点,这一点叫做顶点。
C. 球体可以看作是一个半圆绕着它的直径所在的直线旋转一周形成的立体图形。
D. 棱台的上下底面不一定平行。
2、在下列各对几何体中,哪些是全等的关系?A. 正方体和长方体B. 正四面体和正六面体C. 球和圆柱D. 正方体和正方体的一个面E. 正四面体和正方体的一个面3、一个圆柱的底面半径为2,高为4,则该圆柱的侧面积和体积分别为()。
高一数学人教A版必修二 1.1.1空间几何体的结构1 课件
B1
棱
A
D B
面
C
O A
三、棱柱
1.棱柱的定义 ①有两个面互相平行; ②其余各面都是四边形; ③每相邻两个四边形的 公共边都互相平行。
E1 F1 A 1 B1 D1 C1
侧 面 侧棱
E F A
D C B
底面
顶点
2.棱柱的分类
棱柱的底面可以是三角形、四边形、五边形、 …… 我们把这样 的棱柱分别叫做三棱柱、四棱柱、五棱柱、……
检查自学效果
一、空间几何体 如果我们只考虑物体的形状和大小,而 不考虑其它因素,那么由这些物体抽象出来 的空间图形就叫做空间几何体。
二、多面体和旋转体 多面体 旋转体
由若干个平面多边形围 由一个平面图形绕它所在平面 成的几何体. 内的一条定直线旋转所形成的 轴 封闭几何体.
顶点
D1
A1
C1
A' O'
能作为棱柱的底面的有几对?
A1 D1 B以作为底面吗? 哪些能?哪些不能?
棱柱的结构特征
①有两个面互相平行 ②其余各面都是四边形 ③每相邻两个四边形的公共边都互相平行
• 3.过BC的截面截去长方体的一角,截去的几何 体是不是棱柱,余下的几何体是不是棱柱?
棱柱的结构特征
①有两个面互相平行 ②其余各面都是四边形 ③每相邻两个四边形的公共边都互相平行 •4.为什么定义中要说“其余 各面都是四边形,并且相 邻两个四边形的公共边都 互相平行,”而不简单的 只说“其余各面是平行四 边形呢”?
思考: 1).棱柱侧棱之间的关系如何?
2).棱柱的两个底面以及平行于底面的截面关 系如何?
棱锥、正棱锥的结构特征比较
结构特征 棱锥
S
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
——XXX(姓名)
金太阳教育
高一年级数学必修2
空间几何体的结构习题课
复习巩固
思考:用一个平面去截一个球,截面是什 么图形?
O
复习巩固
思考:设球的半径为R,截面圆半径为r, 球心与截面圆圆心的距离为d,则R、r、d 三者之间的关系如何?
O Rd
r Oˊ P
r R2 d 2
A
C
B
A
C
B
D
练习1:将一个直角梯形绕其较短的底 所在的直线旋转一周得到一个几何体, 关于该几何体的以下描绘中,正确的 是( )D
A、是一个圆台 B、是一个圆柱 C、是一个圆柱和一个圆锥的简单
组合体 D、是一个圆柱被挖去一个圆锥后
2、一个等腰梯形绕着两底边中点的连线所 在的直线旋转180度形成的封闭曲面所围成的 几何体是____圆__台
3. 已知长方体的长、宽、高之比为4∶3∶12,对 角线长为26cm, 则长、宽、高分别为多少?
4.如图,将直角梯形绕所在的直线 旋转一周,由此形成的几何体是由 哪些简单几何体构成的?
5、 长方体AC1中,AB=3,BC=2,BB1=1,
由A到C1在长方体表面上的最短距离是多
少?
D1 A1
C1 B1
4(y-10)=y
B
O
C
y 40 (cm)
A
3
答:圆锥的母线长为 40 cm. 3
O
10cm D
E
B
O
C
7、下图中不可能围成正方体的是( B)
A
B
C
D
作业:
1. 已知圆锥的轴截面等腰三角形的腰长为 5cm,面 积为12cm,求圆锥的底面半径. 2.已知圆柱的底面半径为3cm,,轴截面面积为 24cm,求圆柱的母线长.
D
C
A
B
D1
C1
A1
B1
C1
B1
C1
A1
B1 A
BC
A1
D1
A
B
A
D
作业: 6、预习空间几何体的直观图。
E
F
E
F
D
A
G
CD BA
C B
例4、 如图,各棱长都相等的三棱锥内接
于一个球,则经过球心的一个截面图形可
能是
(1).,(3)
(1)
(2)
(3)
(4)
例5、 在直角三角形ABC中,已知AC=2, BC= , 2 3 ,以C 直9线0 AC为轴将△ABC 旋转一周得到一个圆锥,求经过该圆锥任 意两条母线的截面三角形的面积的最大值.
3、一个矩形绕着一边的中垂线旋转180度 形成的封闭曲面所围成的几何体是_圆__柱_
4、一个等腰三角形绕着底边上的高所在 的直线旋转180度形成的封闭曲面所围成的 几何体是__圆锥
5、下列表达正确的是( D) A. 有一个面为多边形,其他各面都是
三角形的几何体是棱锥。 B. 以直角梯形的一腰为旋转轴,另一
例题讲解
例1、已知球的半径为10cm,一个截面圆
的面积是 3c6m2,则球心到截面圆圆心的
距离是
.8cm
O Rd
r Oˊ P
例2、 将下列平面图形绕直线AB旋转一 周,所得的几何体分别是什么?
B
B
B
A
A
A
图1
图2
图3
例3、 如图,四边形ABCD为平行四边 形,EF∥AB,且EF<AB,试说明这个简单 组合体的结构特征.
腰为母线的旋转面是圆台的侧面 C.以直角三角形的一条边所在直线为旋
转轴,其余两边旋转形成的曲面围成 的几何体叫圆锥 D.圆台的母线延长后与轴交于同一点
6、把一个圆锥截成 圆台,已知圆台的上、 下底面半径的比是1:4,母线长为10Acm, 求圆锥的母线长。
解:设圆锥的母线长为 y ,则有
D
O E
(y-10):y= OD : OB 1: 4