2019届高考数学一轮总复习冲刺第六章数列第二节等差数列及其前n项和夯基提能作业布置讲解本文

合集下载

高考数学一轮复习 第六章 数列 第二节 等差数列及其前n项和讲义(含解析)-高三全册数学教案

高考数学一轮复习 第六章 数列 第二节 等差数列及其前n项和讲义(含解析)-高三全册数学教案

第二节 等差数列及其前n 项和突破点一 等差数列的基本运算[基本知识]1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n n -12d =n a 1+a n 2.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)若一个数列从第2项起,每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) 答案:(1)× (2)√ (3)√ (4)√ 二、填空题1.若m 和2n 的等差中项为4,2m 和n 的等差中项为5,则m 与n 的等差中项是________. 答案:32.在等差数列{a n }中,a 2=3,a 3+a 4=9,则a 1a 6的值为________. 答案:143.已知{a n }是等差数列,且a 3+a 9=4a 5,a 2=-8,则该数列的公差是________. 答案:44.在等差数列{a n }中,已知d =2,S 100=10 000,则S n =________. 答案:n 2[典例感悟]1.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .12解析:选B 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得3(3a 1+3d )=2a 1+d +4a 1+6d ,即3a 1+2d =0.将a 1=2代入上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)=-10.2.(2019·山东五校联考)已知等差数列{a n }为递增数列,其前3项的和为-3,前3项的积为8.(1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n .解:(1)设等差数列{a n }的公差为d ,d >0,∵等差数列{a n }的前3项的和为-3,前3项的积为8,∴⎩⎪⎨⎪⎧3a 1+3d =-3,a 1a 1+da 1+2d =8,∴⎩⎪⎨⎪⎧a 1=2,d =-3或⎩⎪⎨⎪⎧a 1=-4,d =3.∵d >0,∴a 1=-4,d =3,∴a n =3n -7. (2)∵a n =3n -7,∴a 1=3-7=-4, ∴S n =n -4+3n -72=n 3n -112.[方法技巧]解决等差数列基本量计算问题的思路(1)在等差数列{a n }中,a 1与d 是最基本的两个量,一般可设出a 1和d ,利用等差数列的通项公式和前n 项和公式列方程(组)求解即可.(2)与等差数列有关的基本运算问题,主要围绕着通项公式a n =a 1+(n -1)d 和前n 项和公式S n =n a 1+a n2=na 1+n n -12d ,在两个公式中共涉及五个量:a 1,d ,n ,a n ,S n ,已知其中三个量,选用恰当的公式,利用方程(组)可求出剩余的两个量.[针对训练]1.已知数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,且a 3=2,a 9=12,则a 15=( )A .10B .30C .40D .20解析:选B 法一:设数列⎩⎨⎧⎭⎬⎫a n n 是公差为d 的等差数列,∵a 3=2,a 9=12,∴6d =a 99-a 33=129-23=23,∴d =19,a 1515=a 33+12d =2.故a 15=30.法二:由于数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,故2×a 99=a 33+a 1515,即a 1515=2×129-23=2,故a 15=30.2.(2018·信阳二模)《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代一种质量单位),在这个问题中,甲得________钱.( )A.53 B .32 C.43D .54解析:选C 甲、乙、丙、丁、戊五人所得钱数依次设为成等差数列的a 1,a 2,a 3,a 4,a 5,设公差为d ,由题意知a 1+a 2=a 3+a 4+a 5=52,即⎩⎪⎨⎪⎧2a 1+d =52,3a 1+9d =52,解得⎩⎪⎨⎪⎧a 1=43,d =-16,故甲得43钱,故选C.3.(2018·菏泽二模)已知等差数列{a n }的前n 项和为S n ,n ∈N *,满足a 1+a 2=10,S 5=40.(1)求数列{a n }的通项公式;(2)设b n =|13-a n |,求数列{b n }的前n 项和T n . 解:(1)设等差数列{a n }的公差为d , 由题意知,a 1+a 2=2a 1+d =10,S 5=5a 3=40,即a 3=8,所以a 1+2d =8,所以⎩⎪⎨⎪⎧a 1=4,d =2,所以a n =4+(n -1)·2=2n +2.(2)令c n =13-a n =11-2n ,b n =|c n |=|11-2n |=⎩⎪⎨⎪⎧11-2n ,n ≤5,2n -11,n ≥6,设数列{c n }的前n 项和为Q n ,则Q n =-n 2+10n . 当n ≤5时,T n =b 1+b 2+…+b n =Q n =-n 2+10n .当n ≥6时,T n =b 1+b 2+…+b n =c 1+c 2+…+c 5-(c 6+c 7+…+c n )=-Q n +2Q 5=n 2-10n +2(-52+10×5)=n 2-10n +50.突破点二 等差数列的性质及应用[基本知识]等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *). (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d .(5)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1),遇见S 奇,S 偶时可分别运用性质及有关公式求解.(6)若{a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(7)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.(8)若等差数列{a n }的项数为偶数2n ,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 偶-S 奇=nd ,S 奇S 偶=a na n +1. (9)若等差数列{a n }的项数为奇数2n +1,则 ①S 2n +1=(2n +1)a n +1;②S 奇S 偶=n +1n. [基本能力]1.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________. 解析:依题意,得a 2+a 4+a 6+a 8=(a 2+a 8)+(a 4+a 6)=2(a 3+a 7)=74. 答案:742.设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是________. 答案:23.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是________.答案:26[全析考法]考法一 等差数列的性质[例1] (1)(2019·武汉模拟)若数列{a n }为等差数列,S n 为其前n 项和,且a 1=2a 3-3,则S 9=( )A .25B .27C .50D .54(2)(2019·莆田九校联考)在等差数列{a n }中,若a 1,a 2 019为方程x 2-10x +16=0的两根,则a 2+a 1 010+a 2 018=( )A .10B .15C .20D .40[解析] (1)设等差数列{a n }的公差为d ,a 1=2a 3-3=2a 1+4d -3, ∴a 5=a 1+4d =3,S 9=9a 5=27.(2)因为a 1,a 2 019为方程x 2-10x +16=0的两根,所以a 1+a 2 019=10. 由等差数列的性质可知,a 1 010=a 1+a 2 0192=5,a 2+a 2 018=a 1+a 2 019=10,所以a 2+a 1 010+a 2 018=10+5=15.故选B. [答案] (1)B (2)B [方法技巧]利用等差数列的性质求解问题的注意点(1)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件;若求a m 项,可由a m =12(a m -n +a m +n )转化为求a m -n ,a m +n 或a m +n +a m -n 的值.(2)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n =a m +(n -m )d ,d =a n -a m n -m ,S 2n -1=(2n -1)a n ,S n =n a 1+a n 2=n a 2+a n -12(n ,m ∈N *)等. [提醒] 一般地,a m +a n ≠a m +n ,等号左、右两边必须是两项相加,当然也可以是a m -n+a m +n =2a m .考法二 等差数列前n 项和最值问题等差数列的通项a n 及前n 项和S n 均为n 的函数,通常利用二次函数法或通项变号法解决等差数列前n 项和S n 的最值问题.[例2] (2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值. [解] (1)设{a n }的公差为d , 由题意得3a 1+3d =-15. 又a 1=-7,所以d =2.所以{a n }的通项公式为a n =2n -9. (2)法一:(二次函数法)由(1)得S n =n a 1+a n2=n 2-8n =(n -4)2-16,所以当n =4时,S n 取得最小值,最小值为-16. 法二:(通项变号法) 由(1)知a n =2n -9,则S n =n a 1+a n2=n 2-8n .由S n 最小⇔⎩⎪⎨⎪⎧a n ≤0,a n +1≥0,即⎩⎪⎨⎪⎧2n -9≤0,2n -7≥0,∴72≤n ≤92, 又n ∈N *,∴n =4,此时S n 的最小值为S 4=-16. [方法技巧]求等差数列前n 项和S n 最值的2种方法(1)二次函数法利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)通项变号法①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m . [集训冲关]1.[考法一]设S n 为公差不为零的等差数列{a n }的前n 项和,若S 9=3a 8,则S 153a 5等于( )A .15B .17C .19D .21解析:选A 因为S 9=a 1+a 2+…+a 9=9a 5=3a 8,即3a 5=a 8.又S 15=a 1+a 2+…+a 15=15a 8,所以S 153a 5=15a 8a 8=15.2.[考法一]在项数为2n +1的等差数列{a n }中,所有奇数项的和为165,所有偶数项的和为150,则n 等于( )A .9B .10C .11D .12解析:选B ∵等差数列有2n +1项,∴S 奇=n +1a 1+a 2n +12,S 偶=n a 2+a 2n2.又a 1+a 2n +1=a 2+a 2n ,∴S 偶S 奇=n n +1=150165=1011,∴n =10. 3.[考法二]等差数列{a n }中,S n 为前n 项和,且a 1=25,S 17=S 9,请问:数列前多少项和最大?解:法一:∵a 1=25,S 17=S 9,∴17a 1+17×162d =9a 1+9×82d ,解得d =-2.∵a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2n -1≥0,a n +1=25-2n ≤0,得⎩⎪⎨⎪⎧n ≤1312,n ≥1212.∴当n =13时,S n 有最大值. 法二:∵a 1=25,S 17=S 9, ∴17a 1+17×162d =9a 1+9×82d ,解得d =-2. 从而S n =25n +n n -12(-2)=-n 2+26n=-(n -13)2+169. 故前13项之和最大.突破点三 等差数列的判定与证明[典例] (2019·济南一中检测)各项均不为0的数列{a n }满足a n +1a n +a n +22=a n +2a n ,且a 3=2a 8=15.(1)证明数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =a n2n +6,求数列{b n }的前n 项和S n .[解] (1)证明:依题意,a n +1a n +a n +2a n +1=2a n +2a n ,两边同时除以a n a n +1a n +2,可得1a n +2+1a n=2a n +1,故数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,设数列⎩⎨⎧⎭⎬⎫1a n 的公差为d .因为a 3=2a 8=15,所以1a 3=5,1a 8=10,所以1a 8-1a 3=5=5d ,即d =1,所以1a n =1a 3+(n -3)d =5+(n -3)×1=n +2,故a n =1n +2.(2)由(1)可知b n =a n 2n +6=12·1n +2n +3=12( 1n +2-1n +3 ),故S n =12( 13-14+14-15+…+1n +2-1n +3)=n6n +3. [方法技巧]等差数列的判定与证明方法 方法 解读适合题型定义法 对于数列{a n },a n -a n -1(n ≥2,n ∈N *)为同一常数⇔{a n }是等差数列解答题中的证明问题等差中项法 2a n -1=a n +a n -2(n ≥3,n ∈N *)成立⇔{a n }是等差数列通项公式法 a n =pn +q (p ,q 为常数)对任意的正整数n 都成立⇔{a n }是等差数列选择、填空题定中的判问题前n 项和公式法验证S n =An 2+Bn (A ,B 是常数)对任意的正整数n 都成立⇔{a n }是等差数列[提醒] 判断时易忽视定义中从第2项起,以后每项与前一项的差是同一常数,即易忽视验证a 2-a 1=d 这一关键条件.[针对训练](2019·沈阳模拟)已知S n 是等差数列{a n }的前n 项和,S 2=2,S 3=-6. (1)求数列{a n }的通项公式和前n 项和S n ;(2)是否存在正整数n ,使S n ,S n +2+2n ,S n +3成等差数列?若存在,求出n ;若不存在,请说明理由.解:(1)设数列{a n }的公差为d ,则⎩⎪⎨⎪⎧2a 1+d =2,3a 1+3×22d =-6,∴⎩⎪⎨⎪⎧a 1=4,d =-6,∴a n =4-6(n -1)=10-6n ,S n =na 1+n n -12d =7n -3n 2.(2)由(1)知S n +S n +3=7n -3n 2+7(n +3)-3(n +3)2=-6n 2-4n -6,2(S n +2+2n )=2(-3n 2-5n +2+2n )=-6n 2-6n +4, 若存在正整数n 使得S n ,S n +2+2n ,S n +3成等差数列, 则-6n 2-4n -6=-6n 2-6n +4,解得n =5, ∴存在n =5,使S n ,S n +2+2n ,S n +3成等差数列.。

2019版高考数学一轮复习第六章数列与数学归纳法第二节等差数列

2019版高考数学一轮复习第六章数列与数学归纳法第二节等差数列
答案:11
4.设 Sn 为等差数列{an}的前 n 项和,a12=-8,S9=-9,则 S16=________.
解析:设等差数列{an}的首项为 a1,公差为 d, a12=a1+11d=-8, a1=3, 由已知,得 解得 9×8 S9=9a1+ d=-9, d=-1. 2 16×15 ∴S16=16×3+ ×(-1)=-72. 2
n a1+an n n- 1 na1+ d 2 2 (2)前 n 项和公式:Sn=_______________= ________ .
3.等差数列的常用性质 (1)通项公式的推广: an= am+ (n-m)d (n, m∈ N*). (2)若 {an}为等差数列,且 k+ l= m+ n(k, l, m,n∈ N*), 则 ak+al=am+an 为 2d . (4)若 {an}, {bn}是等差数列,则 {pan+ qbn}也是等差数列. (5)若 {an}是等差数列,公差为 d,则 ak,ak+ m,ak+2m,…(k,m ∈ N*)是公差为 md 的等差数列. .
课 堂 考 点突破
自主研、合作探、多面观、全扫命题题点
考点一 等差数列的基本运算
[题组练透]
S1 1. (2017· 嘉兴二模)设 Sn 为等差数列{an}的前 n 项和, 若 = S4 1 S3 ,则 = 10 S5 2 A. 5 3 B. 5 3 C. 7 4 D. 7 ( )
解析:设数列{an}的公差为 d,因为 Sn 为等差数列{an}的前 n S1 1 S3 项和,且 = ,所以 10a1=4a1+6d,所以 a1=d.所以 = S4 10 S5 3a1+3d 6d 2 = = . 15 d 5 5a1+10d
差 都等于同一个常数,那么这个数列就叫做等差数列, ____

2019-2020年高考数学一轮总复习第6章数列第2节等差数列及其前n项和高考AB卷理

2019-2020年高考数学一轮总复习第6章数列第2节等差数列及其前n项和高考AB卷理

2019-2020年高考数学一轮总复习第6章数列第2节等差数列及其前n 项和高考AB 卷理等差数列中的运算问题1.(xx·全国Ⅰ,3)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A.100 B.99 C.98D.97解析 由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98,故选C.答案 C2.(xx·全国Ⅰ,7)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ) A.3 B.4 C.5D.6解析 ∵a m =S m -S m -1=2,a m +1=S m +1-S m =3, ∴d =a m +1-a m =1.∵S m =ma 1+m (m -1)2×1=0,∴a 1=-m -12.又∵a m +1=a 1+m ×1=3, ∴-m -12+m =3.∴m =5.故选C.答案 C3.(xx·全国Ⅱ,16)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析 设等差数列{a n }的首项为a 1,公差为d , 则S 10=10a 1+10×92d =10a 1+45d =0,①S 15=15a 1+15×142d =15a 1+105d =25.② 联立①②,得a 1=-3,d =23,所以S n =-3n +n (n -1)2×23=13n 2-103n .令f (n )=nS n ,则f (n )=13n 3-103n 2,设f (x )=13x 3-103x 2,则f ′(x )=x 2-203x ,令f ′(x )=0,得x =0或x =203,∴当x >203时,f ′(x )>0,0<x <203时,f ′(x )<0,则f (n )的最小值在f (6)、f (7)中取到. 则f (6)=-48,f (7)=-49, 所以当n =7时,f (n )取最小值-49. 答案 -494.(xx·全国Ⅱ,17)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1. (1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解 (1)设{a n }的公差为d ,据已知有7+21d =28,解得d =1.所以{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.5.(xx·大纲全国,18)等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解 (1)由a 1=10,a 2为整数知:等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0. 解得-103≤d ≤-52.因此d =-3.数列{a n }的通项公式为a n =13-3n .(2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n=13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫110-3n -113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n10(10-3n ). 6.(xx·全国Ⅰ,17)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解 (1)由a 2n +2a n =4S n +3,可知a 2n +1+2a n +1=4S n +1+3. 可得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,即 2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由于a n >0,可得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去),a 1=3. 所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1.(2)由a n =2n +1可知b n =1a n a n +1=1(2n +1)(2n +3)=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n =12⎣⎢⎡⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17⎦⎥⎤+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n 3(2n +3). 等差数列中的运算问题1.(xx·重庆,2)在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( ) A.-1 B.0 C.1D.6解析 由等差数列的性质,得a 6=2a 4-a 2=2×2-4=0,选B. 答案 B2.(xx·福建,3)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A.8 B.10 C.12D.14解析 设等差数列{a n }的公差为d ,则S 3=3a 1+3d ,所以12=3×2+3d ,解得d =2,所以a 6=a 1+5d =2+5×2=12,故选C. 答案 C3.(xx·辽宁,8)设等差数列{a n }的公差为d .若数列{2a 1a n }为递减数列,则( ) A.d <0B.d >0C.a 1d <0D.a 1d >0解析 {2a 1a n }为递减数列,可知{a 1a n }也为递减数列,又a 1a n =a 21+a 1(n -1)d =a 1dn +a 21-a 1d ,故a 1d <0,故选C.答案 C4.(xx·北京,12)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.解析 ∵a 3+a 5=2a 4=0,∴a 4=0. 又a 1=6,∴a 4=a 1+3d =0,∴d =-2. ∴S 6=6×6+6×(6-1)2×(-2)=6.答案 65.(xx·江苏,8)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.解析 设等差数列{a n }公差为d ,由题意可得:⎩⎪⎨⎪⎧a 1+(a 1+d )2=-3,5a 1+5×42d =10,解得⎩⎪⎨⎪⎧a 1=-4,d =3, 则a 9=a 1+8d =-4+8×3=20. 答案 206.(xx·陕西,13)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为________.解析 由题意设首项为a 1,则a 1+2 015=2×1 010=2 020,∴a 1=5. 答案 5 等差数列的性质7.(xx·北京,6)设{a n }是等差数列,下列结论中正确的是( ) A.若a 1+a 2>0,则a 2+a 3>0 B.若a 1+a 3<0,则a 1+a 2<0 C.若0<a 1<a 2,则a 2>a 1a 3 D.若a 1<0,则(a 2-a 1)(a 2-a 3)>0解析 A ,B 选项易举反例,C 中若0<a 1<a 2, ∴a 3>a 2>a 1>0,∵a 1+a 3>2a 1a 3, 又2a 2=a 1+a 3,∴2a 2>2a 1a 3, 即a 2>a 1a 3成立. 答案 C8.(xx·广东,10)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. 解析 因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,即a 5=5,a 2+a 8=2a 5=10. 答案 109.(xx·江西,12)设数列{a n },{b n }都是等差数列,若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________.解析 ∵{a n },{b n }均是等差数列,根据等差数列的性质a 1+a 5=2a 3,b 1+b 5=2b 3, 即a 5=2a 3-a 1,b 5=2b 3-b 1,∴a 5+b 5=2(a 3+b 3)-(a 1+b 1)=2×21-7=35. 答案 35等差数列的综合应用10.(xx·浙江,6)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A.{S n }是等差数列B.{S 2n }是等差数列 C.{d n }是等差数列D.{d 2n }是等差数列解析 S n 表示点A n 到对面直线的距离(设为h n )乘以|B n B n -1|长度一半,即S n =12h n |B n B n -1|,由题目中条件可知|B n B n -1|的长度为定值,过A 1作垂直得到初始距离h 1,那么A 1,A n 和两个垂足构成等腰梯形,则h n =h 1+|A 1A n |tan θ(其中θ为两条线所成的锐角,为定值),从而S n =12(h 1+|A 1A n |tan θ)|B n B n +1|,S n +1=12(h 1+|A 1A n +1|)|B n B n +1|,则S n +1-S n =12|A n A n +1||B n B n +1|tan θ,都为定值,所以S n +1-S n 为定值,故选A. 答案 A11.(xx·四川,16)设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.解 (1)由已知S n =2a n -a 1,有a n =S n -S n -1=2a n -2a n -1(n ≥2), 即a n =2a n -1(n ≥2),所以公比q =2, 从而a 2=2a 1,a 3=2a 2=4a 1, 又因为a 1,a 2+1,a 3成等差数列, 即a 1+a 3=2(a 2+1),所以a 1+4a 1=2(2a 1+1),解得a 1=2,所以,数列{a n }是首项为2,公比为2的等比数列,故a n =2n. (2)由(1)得1a n =12n ,所以T n =12+122+…+12n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-12n .由|T n -1|<11 000,得⎪⎪⎪⎪⎪⎪1-12n -1<11 000, 即2n>1 000,因为29=512<1 000<1 024=210,所以n ≥10, 于是,使|T n -1|<11 000成立的n 的最小值为10.12.(xx·山东,20)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且T n +a n +12n=λ(λ为常数).令c n =b 2n ,(n ∈N *),求数列{c n }的前n 项和R n .解 (1)设等差数列{a n }的公差为d ,令n =1, 则a 2=2a 1+1,即a 1=d -1,① 又S 4=4S 2,即2a 1=d ,② 由①②联立解得a 1=1,d =2, 所以a n =2n -1(n ∈N *). (2)由题意知,T n =λ-n2n -1,所以当n ≥2时,b n =T n -T n -1=⎝⎛⎭⎪⎫λ-n 2n-1-⎝ ⎛⎭⎪⎫λ-n -12n -2=n -22n -1.故c n =b 2n =n -14n -1(n ∈N *).∴R n =c 1+c 2+…+c n -1+c n =0+14+242+…+n -14n -1,14R n =142+243+…+n -24n -1+n -14n , 两式相减得34R n =14+142+…+14n -1-n -14n=14⎝ ⎛⎭⎪⎫1-14n -11-14-n -14n=13⎝⎛⎭⎪⎫1-3n +14n ,整理得R n =49⎝ ⎛⎭⎪⎫1-3n +14n =19⎝ ⎛⎭⎪⎫4-3n +14n -1.所以数列{c n }的前n 项和R n =19⎝ ⎛⎭⎪⎫4-3n +14n -1。

2019版高考数学(理科)一轮教师用书(人教):第6章 2 第2讲 等差数列及其前n项和Word版含答案

2019版高考数学(理科)一轮教师用书(人教):第6章 2 第2讲 等差数列及其前n项和Word版含答案

第2讲等差数列及其前n项和1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n+1-a n=d(n∈N*,d为常数).(2)等差中项:数列a,A,b成等差数列的充要条件是A=a+b2,其中A叫做a,b的等差中项.2.等差数列的有关公式(1)通项公式:a n=a1+(n-1)d.(2)前n项和公式:S n=na1+n(n-1)2d=(a1+a n)n2.3.等差数列的性质已知数列{a n}是等差数列,S n是其前n项和.(1)通项公式的推广:a n=a m+(n-m)d(n,m∈N*).(2)若k+l=m+n(k,l,m,n∈N*)a k+a l=a m+a n.(3)若{a n}的公差为d,则{a2n}也是等差数列,公差为2d.(4)若{b n}是等差数列,则{pa n+qb n}也是等差数列.(5)数列S m,S2m-S m,S3m-S2m,…构成等差数列.4.等差数列的增减性与最值公差d>0时为递增数列,且当a1<0时,前n项和S n有最小值;公差d<0时为递减数列,且当a1>0时,前n项和S n有最大值.5.等差数列与一次函数的关系由等差数列的通项公式a n=a1+(n-1)d可得a n=dn+(a1-d),如果设p=d,q=a1-d,那么a n =pn+q,其中p,q是常数.当p≠0时,(n,a n)在一次函数y=px+q的图象上,即公差不为零的等差数列的图象是直线y=px+q上的均匀排开的一群孤立的点.当p=0时,a n=q,等差数列为常数列,此时数列的图象是平行于x轴的直线(或x轴)上的均匀排开的一群孤立的点.判断正误(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起,每一项与它的前一项的差都是常数,则这个数列是等差数列.()(2)已知数列{a n}的通项公式是a n=pn+q(其中p,q为常数),则数列{a n}一定是等差数列.()(3)数列{a n}为等差数列的充要条件是其通项公式为n的一次函数.()(4)数列{a n}为等差数列的充要条件是对任意n∈N*,都有2a n+1=a n+a n+2.()(5)等差数列{a n}的单调性是由公差d决定的.()(6)等差数列的前n 项和公式是常数项为0的二次函数.( ) 答案:(1)× (2)√ (3)× (4)√ (5)√ (6)×(2017·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A .1 B .2 C .4D .8解析:选C.设等差数列{a n }的公差为d ,所以⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,所以d =4,故选C.(教材习题改编)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A .5 B .7 C .9D .11解析:选 A.法一:因为a 1+a 5=2a 3,所以a 1+a 3+a 5=3a 3=3,所以a 3=1,所以S 5=5(a 1+a 5)2=5a 3=5,故选A. 法二:因为a 1+a 3+a 5=a 1+(a 1+2d )+(a 1+4d )=3a 1+6d =3, 所以a 1+2d =1, 所以S 5=5a 1+5×42d =5(a 1+2d )=5,故选A.(教材习题改编)在等差数列11,8,5,…中,-49是它的第________项. 解析:a 1=11,d =8-11=-3, 所以a n =11+(n -1)×(-3)=-3n +14. 由-3n +14=-49,得n =21. 答案:21已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.解析:由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+9×(9-1)2×12=9+18=27.答案:27等差数列的基本运算(高频考点)等差数列基本量的计算是高考的常考内容,多出现在选择题、填空题或解答题的第(1)问中,属容易题.高考对等差数列的基本运算的考查常有以下三个命题角度: (1)求公差d 、项数n 或首项a 1; (2)求通项或特定项; (3)求前n 项和.[典例引领]角度一 求公差d 、项数n 或首项a 1(2018·洛阳市第一次统一考试)等差数列{a n }为递增数列,若a 21+a 210=101,a 5+a 6=11,则数列{a n }的公差d 等于( ) A .1 B .2 C .9D .10【解析】 依题意得(a 1+a 10)2-2a 1a 10=(a 5+a 6)2-2a 1a 10=121-2a 1a 10=101,所以a 1a 10=10,又a 1+a 10=a 5+a 6=11,a 1<a 10,所以a 1=1,a 10=10,d =a 10-a 110-1=1.【答案】 A角度二 求通项或特定项(方程思想)已知正项等差数列{a n }的前n 项和为S n ,且满足 a 1+a 5=27a 23,S 7=63.求数列{a n }的通项公式.【解】 法一:设正项等差数列{a n }的公差为d , 则由题意得⎩⎪⎨⎪⎧a 1+a 1+4d =27(a 1+2d )2,7a 1+21d =63,即⎩⎪⎨⎪⎧a 1+2d =17(a 1+2d )2,a 1+3d =9,又因为a n >0,所以a 3=a 1+2d >0,所以⎩⎪⎨⎪⎧a 1+2d =7,a 1+3d =9,所以⎩⎪⎨⎪⎧a 1=3,d =2,所以a n =3+(n -1)×2=2n +1(n ∈N *).法二:设正项等差数列{a n }的公差为d . 因为{a n }是等差数列,且a 1+a 5=27a 23,所以2a 3=27a 23,又a n >0,所以a 3=7.因为S 7=7(a 1+a 7)2=7a 4=63,所以a 4=9.所以d =a 4-a 3=2,所以a n =a 3+(n -3)d =2n +1(n ∈N *).角度三 求前n 项和设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________.【解析】 法一:设等差数列{a n }的公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×8d2=-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1. 所以S 16=16×3+16×152×(-1)=-72. 法二:由S 9=9a 5=-9, 所以a 5=-1,S 16=16(a 1+a 16)2=8(a 5+a 12)=-72.【答案】 -72等差数列基本运算的方法策略(1)等差数列中包含a 1,d ,n ,a n ,S n 五个量,可知三求二.解决这类问题一般设基本量a 1,d ,利用等差数列的通项公式与求和公式列方程(组)求解,体现方程思想.(2)如果已知等差数列中有几项的和是常数的计算问题,一般是等差数列的性质和等差数列求和公式S n =n (a 1+a n )2结合使用,体现整体代入的思想.[通关练习]1.(2017·高考全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( ) A .-24 B .-3 C .3D .8解析:选A.设等差数列{a n }的公差为d ,因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23,即(a 1+。

2019版高考理科数学一轮复习课件:第6章(2)等差数列及其前n项和

2019版高考理科数学一轮复习课件:第6章(2)等差数列及其前n项和

命题分析预测 1.分析预测 本讲是高考的考查热点,主要考查等差数列的基本运算和性质,
等差数列的通项公式和前n项和公式,尤其要注意以数学文化为背景的数列
题,题型既有选择题、填空题,也有解答题.
2.学科素养 本讲主要考查考生的数学运算能力和逻辑推理能力,以及考生
对函数与方程思想的应用.
理科数学 第六章:数列
当p=0时,an=q,等差数列为常数列,此时数列的图象是平行于x轴的直线(或x
轴)上的均匀排开的一系列孤立的点.
理科数学 第六章:数列
名师提醒 等差数列的单调性 当d>0时,数列{an}为递增数列;当d<0时,数列{an}为递减数列;当d=0时,数列 {an}为常数列.
考点2 等差数列的前n项和(重点)
考点1 等差数列
A考点帮·知识全通关
考点2 等差数列的前n项和 考点3 等差数列的前n项和与通项的关系
考点1 等差数列(重点)
理科数学 第六章:数列
3.等差数列的通项公式及其变形 通项公式:an=a1+(n-1)d,其中a1是首项,d是公差. 通项公式的变形:an=am+(n-m)d,m,n∈N*.
4.等差数列与一次函数的关系
由等差数列的通项公式an=a1+(n-1)d可得an=dn+(a1-d),如果设p=d,q=a1-d,那
么an=pn+q,其中p,q是常数.
当p≠0时,(n,an)在一次函数y=px+q的图象上,即公差不为零的等差数列的图
象是直线y=px+q上的均匀排开的一系列孤立的点.
所以an=2n-1,an+1-an=2.
因此存在λ=4,使得{an}为等差数列.
理科数学 第六章:数列

(通用版)2019版高考数学一轮复习第6章数列2第2讲等差数列及其前n项和教案理

(通用版)2019版高考数学一轮复习第6章数列2第2讲等差数列及其前n项和教案理

第2讲 等差数列及其前n 项和1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数). (2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式(1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =(a 1+a n )n2.3.等差数列的性质已知数列{a n }是等差数列,S n 是其前n 项和. (1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *). (2)若k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }的公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{b n }是等差数列,则{pa n +qb n }也是等差数列. (5)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列. 4.等差数列的增减性与最值公差d >0时为递增数列,且当a 1<0时,前n 项和S n 有最小值;公差d <0时为递减数列,且当a 1>0时,前n 项和S n 有最大值. 5.等差数列与一次函数的关系由等差数列的通项公式a n =a 1+(n -1)d 可得a n =dn +(a 1-d ),如果设p =d ,q =a 1-d ,那么a n =pn +q ,其中p ,q 是常数.当p ≠0时,(n ,a n )在一次函数y =px +q 的图象上,即公差不为零的等差数列的图象是直线y =px +q 上的均匀排开的一群孤立的点.当p =0时,a n =q ,等差数列为常数列,此时数列的图象是平行于x 轴的直线(或x 轴)上的均匀排开的一群孤立的点.判断正误(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起,每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (4)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (5)等差数列{a n }的单调性是由公差d 决定的.( )(6)等差数列的前n 项和公式是常数项为0的二次函数.( ) 答案:(1)× (2)√ (3)× (4)√ (5)√ (6)×(2017·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A .1 B .2 C .4D .8解析:选C.设等差数列{a n }的公差为d ,所以⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,所以d =4,故选C. (教材习题改编)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A .5 B .7 C .9D .11解析:选 A.法一:因为a 1+a 5=2a 3,所以a 1+a 3+a 5=3a 3=3,所以a 3=1,所以S 5=5(a 1+a 5)2=5a 3=5,故选A. 法二:因为a 1+a 3+a 5=a 1+(a 1+2d )+(a 1+4d )=3a 1+6d =3, 所以a 1+2d =1,所以S 5=5a 1+5×42d =5(a 1+2d )=5,故选A.(教材习题改编)在等差数列11,8,5,…中,-49是它的第________项. 解析:a 1=11,d =8-11=-3, 所以a n =11+(n -1)×(-3)=-3n +14. 由-3n +14=-49,得n =21. 答案:21已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.解析:由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+9×(9-1)2×12=9+18=27.答案:27等差数列的基本运算(高频考点)等差数列基本量的计算是高考的常考内容,多出现在选择题、填空题或解答题的第(1)问中,属容易题.高考对等差数列的基本运算的考查常有以下三个命题角度: (1)求公差d 、项数n 或首项a 1; (2)求通项或特定项; (3)求前n 项和.[典例引领]角度一 求公差d 、项数n 或首项a 1(2018·洛阳市第一次统一考试)等差数列{a n }为递增数列,若a 21+a 210=101,a 5+a 6=11,则数列{a n }的公差d 等于( ) A .1 B .2 C .9D .10【解析】 依题意得(a 1+a 10)2-2a 1a 10=(a 5+a 6)2-2a 1a 10=121-2a 1a 10=101,所以a 1a 10=10,又a 1+a 10=a 5+a 6=11,a 1<a 10,所以a 1=1,a 10=10,d =a 10-a 110-1=1.【答案】 A角度二 求通项或特定项(方程思想)已知正项等差数列{a n }的前n 项和为S n ,且满足 a 1+a 5=27a 23,S 7=63.求数列{a n }的通项公式.【解】 法一:设正项等差数列{a n }的公差为d , 则由题意得⎩⎪⎨⎪⎧a 1+a 1+4d =27(a 1+2d )2,7a 1+21d =63,即⎩⎪⎨⎪⎧a 1+2d =17(a 1+2d )2,a 1+3d =9,又因为a n >0,所以a 3=a 1+2d >0,所以⎩⎪⎨⎪⎧a 1+2d =7,a 1+3d =9,所以⎩⎪⎨⎪⎧a 1=3,d =2,所以a n =3+(n -1)×2=2n +1(n ∈N *).法二:设正项等差数列{a n }的公差为d . 因为{a n }是等差数列,且a 1+a 5=27a 23,所以2a 3=27a 23,又a n >0,所以a 3=7.因为S 7=7(a 1+a 7)2=7a 4=63,所以a 4=9.所以d =a 4-a 3=2,所以a n =a 3+(n -3)d =2n +1(n ∈N *). 角度三 求前n 项和设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________.【解析】 法一:设等差数列{a n }的公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×8d2=-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1. 所以S 16=16×3+16×152×(-1)=-72.法二:由S 9=9a 5=-9,所以a 5=-1,S 16=16(a 1+a 16)2=8(a 5+a 12)=-72.【答案】 -72等差数列基本运算的方法策略(1)等差数列中包含a 1,d ,n ,a n ,S n 五个量,可知三求二.解决这类问题一般设基本量a 1,d ,利用等差数列的通项公式与求和公式列方程(组)求解,体现方程思想.(2)如果已知等差数列中有几项的和是常数的计算问题,一般是等差数列的性质和等差数列求和公式S n =n (a 1+a n )2结合使用,体现整体代入的思想.[通关练习]1.(2017·高考全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( ) A .-24 B .-3 C .3D .8解析:选A.设等差数列{a n }的公差为d ,因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23,即(a 1+d )(a 1+5d )=(a 1+2d )2,又a 1=1,所以d 2+2d =0,又d ≠0,则d =-2,所以a 6=a 1+5d =-9,所以{a n }前6项的和S 6=1-92×6=-24.2.在等差数列{a n }中,a 4=2,且a 1+a 2+…+a 10=65,则公差d 的值是( ) A .4 B .3 C .1D .2解析:选B.因为在等差数列{a n }中,a 4=2,且a 1+a 2+…+a 10=65,所以⎩⎪⎨⎪⎧a 1+3d =2,10a 1+10×92d =65, 解得a 1=-7,d =3. 所以公差d 的值是3.3.已知等差数列{a n }中,a 1=1,a 3=-3,S k =-35,则k =________. 解析:设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d ,由于a 1=1,a 3=-3,又a 3=a 1+2d , 所以d =-2,因此a n =3-2n . 得S n =1+(3-2n )2n =2n -n 2,所以S k =2k -k 2=-35,即k 2-2k -35=0, 解得k =7或k =-5,又因为k ∈N *,所以k =7. 答案:7等差数列的判定与证明[典例引领](2018·贵州省适应性考试)已知数列{a n }满足a 1=1,且na n +1-(n +1)a n =2n 2+2n . (1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式.【解】 (1)由已知,得a 2-2a 1=4, 则a 2=2a 1+4,又a 1=1,所以a 2=6. 由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15.(2)由已知na n +1-(n +1)a n =2n (n +1), 得na n +1-(n +1)a n n (n +1)=2,即a n +1n +1-a nn=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项a 11=1,公差d =2的等差数列.则a n n=1+2(n -1)=2n -1,所以a n =2n 2-n .判定数列{a n }是等差数列的常用方法(1)定义法:对任意n ∈N *,a n +1-a n 是同一个常数. (2)等差中项法:对任意n ≥2,n ∈N *,满足2a n =a n +1+a n -1. (3)通项公式法:数列的通项公式a n 是n 的一次函数.(4)前n 项和公式法:数列的前n 项和公式S n 是n 的二次函数,且常数项为0. [提醒] 判断是否为等差数列,最终一般都要转化为定义法判断.[通关练习]1.(2018·云南省11校跨区调研)在数列{a n }中,a 1=3,a n +1=3a na n +3,则a 4=( ) A. 34 B .1 C. 43D. 32解析:选A.依题意得1a n +1=a n +33a n =1a n +13,1a n +1-1a n =13,数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=13为首项、13为公差的等差数列,则1a n =13+n -13=n 3,a n =3n ,a 4=34,选A.2.设数列{a n }的前n 项和为S n ,且S n =2n-1.数列{b n }满足b 1=2,b n +1-2b n =8a n . (1)求数列{a n }的通项公式;(2)证明:数列⎩⎨⎧⎭⎬⎫b n 2n 为等差数列,并求{b n }的通项公式. 解:(1)当n =1时,a 1=S 1=21-1=1; 当n ≥2时,a n =S n -S n -1=(2n-1)-(2n -1-1)=2n -1.因为a 1=1适合通项公式a n =2n -1,所以a n =2n -1.(2)因为b n +1-2b n =8a n , 所以b n +1-2b n =2n +2,即b n +12n +1-b n2n =2.又b 121=1, 所以⎩⎨⎧⎭⎬⎫b n 2n 是首项为1,公差为2的等差数列.所以b n2n =1+2(n -1)=2n -1.所以b n =(2n -1)×2n.等差数列的性质及应用(高频考点)等差数列的性质是高考的常考内容,题型既有选择题、填空题,也有解答题,难度为中、低档题.高考对等差数列的性质的考查常有以下三个命题角度: (1)等差数列项的性质的应用; (2)等差数列前n 项和的性质的应用; (3)等差数列前n 项和的最值.[典例引领]角度一 等差数列项的性质的应用(1)(2018·太原市模拟试题)已知S n 是等差数列{a n }的前n 项和,2(a 1+a 3+a 5)+3(a 8+a 10)=36,则S 11=( ) A .66 B .55 C .44D .33(2)一个等差数列的前12项的和为354,前12项中偶数项的和与奇数项的和的比为32∶27,求该数列的公差d .【解】 (1)选D.法一:设等差数列{a n }的公差为d ,因为2(a 1+a 3+a 5)+3(a 8+a 10)=36,所以12a 1+60d =36,即a 1+5d =3,所以a 6=3,所以S 11=11(a 1+a 11)2=11×2a 62=11a 6=33,故选D.法二:因为a 1+a 5=2a 3,a 8+a 10=2a 9, 所以2(a 1+a 3+a 5)+3(a 8+a 10)=6a 3+6a 9=36, 所以a 3+a 9=6,所以S 11=11(a 1+a 11)2=11(a 3+a 9)2=33,故选D.(2)设等差数列的前12项中奇数项的和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.角度二 等差数列前n 项和的性质的应用等差数列{a n }的前m 项和为30,前3m 项和为90,则它的前2m 项和为________.【解析】 由S m ,S 2m -S m ,S 3m -S 2m 成等差数列, 可得2(S 2m -S m )=S m +S 3m -S 2m , 即S 2m =3S m +S 3m 3=3×30+903=60.【答案】 60角度三 等差数列的前n 项和的最值在等差数列{a n }中,已知a 1=10,前n 项和为S n ,若S 9=S 12,则S n 取得最大值时,n =________,S n 的最大值为________.【解析】 法一:因为a 1=10,S 9=S 12, 所以9×10+9×82d =12×10+12×112d ,所以d =-1. 所以a n =-n +11.所以a 11=0,即当n ≤10时,a n >0, 当n ≥12时,a n <0,所以当n =10或11时,S n 取得最大值,且最大值为S 10=S 11=10×10+10×92×(-1)=55. 法二:同法一求得d =-1. 所以S n =10n +n (n -1)2·(-1)=-12n 2+212n=-12⎝ ⎛⎭⎪⎫n -2122+4418.因为n ∈N *,所以当n =10或11时,S n 有最大值,且最大值为S 10=S 11=55. 法三:同法一求得d =-1. 又由S 9=S 12得a 10+a 11+a 12=0. 所以3a 11=0,即a 11=0.所以当n =10或11时,S n 有最大值. 且最大值为S 10=S 11=55. 【答案】 10或11 55(1)等差数列和的性质在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1).②S 2n -1=(2n -1)a n .③当项数为偶数2n 时,S 偶-S 奇=nd ;项数为奇数2n -1时,S 奇-S 偶=a 中,S 奇∶S 偶=n ∶(n -1).(2)求等差数列前n 项和S n 最值的两种方法①函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方结合图象借助求二次函数最值的方法求解. ②邻项变号法:〈1〉当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;〈2〉当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[通关练习]1.(2016·高考全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97解析:选C.设等差数列{a n }的公差为d ,因为{a n }为等差数列,且S 9=9a 5=27,所以a 5=3.又a 10=8,解得5d =a 10-a 5=5,所以d =1,所以a 100=a 5+95d =98,选C.2.设S n 是等差数列{a n }的前n 项和,若a 6a 5=911,则S 11S9=( )A .1B .-1C .2D.12解析:选A.S 11S 9=11(a 1+a 11)29(a 1+a 9)2=11a 69a 5=119×911=1.3.(2018·湖南省湘中名校高三联考)若{a n }是等差数列,首项a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,则使前n 项和S n >0成立的最大正整数n 是( )A .2 016B .2 017C .4 032D .4 033解析:选C.因为a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,所以d <0,a 2 016>0,a 2 017<0,所以S 4 032=4 032(a 1+a 4 032)2=4 032(a 2 016+a 2 017)2>0,S 4 033=4 033(a 1+a 4 033)2=4 033a 2 017<0,所以使前n 项和S n >0成立的最大正整数n 是4 032.等差数列{a n }的通项公式a n =a 1+(n -1)d 可变形为a n =dn +(a 1-d ).若d =0,则a n =a 1,其是常数函数; 若d ≠0,则a n 是关于n 的一次函数.(n ,a n )是直线y =dx +(a 1-d )上一群孤立的点.单调性:d >0时,{a n }为单调递增数列;d <0时,{a n }为单调递减数列.等差数列{a n }的前n 项和S n 可表示为S n =d2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,令A =d 2,B =a 1-d2,则S n =An2+Bn .当A ≠0,即d ≠0时,S n 是关于n 的二次函数,(n ,S n )在二次函数y =Ax 2+Bx 的图象上,为抛物线y =Ax 2+Bx 上一群孤立的点.利用此性质可解决前n 项和S n 的最值问题. 易错防范(1)要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.(2)注意区分等差数列定义中同一个常数与常数的区别.1.在等差数列{a n }中,a 1+a 5=8,a 4=7,则a 5=( ) A .11 B .10 C .7D .3解析:选B.设数列{a n }的公差为d ,则有⎩⎪⎨⎪⎧2a 1+4d =8,a 1+3d =7,解得⎩⎪⎨⎪⎧a 1=-2,d =3,所以a 5=-2+4×3=10.2.(2018·兰州市诊断考试)已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( )A .36B .72C .144D .288解析:选B.法一:因为a 8+a 10=2a 1+16d =28,a 1=2,所以d =32,所以S 9=9×2+9×82×32=72. 法二:因为a 8+a 10=2a 9=28,所以a 9=14,所以S 9=9(a 1+a 9)2=72. 3.已知数列{a n }满足a 1=15,且3a n +1=3a n -2,若a k ·a k +1<0,则正整数k =( ) A .21 B .22 C .23D .24解析:选C.3a n +1=3a n -2⇒a n +1=a n -23⇒{a n }是等差数列,则a n =473-23n .因为a k ·a k +1<0,所以⎝ ⎛⎭⎪⎫473-23k ⎝ ⎛⎭⎪⎫453-23k <0,所以452<k <472,所以k =23. 4.(2018·湖南衡阳八中、长郡中学等十三校模拟)等差数列{a n }的公差d ≠0,且a 3,a 5,a 15成等比数列,若a 5=5,S n 为数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n为( ) A .3 B .3或4 C .4或5D .5 解析:选B.由题意知⎩⎪⎨⎪⎧(a 1+2d )(a 1+14d )=25,a 1+4d =5,由d ≠0,解得a 1=-3,d =2,所以S nn=na 1+n (n -1)2dn=-3+n -1=n -4,由n -4≥0,得n ≥4,所以数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为3或4.故选B.5.(2018·衡水中学二调)今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,问:几何日相逢?( ) A .12日 B .16日 C .8日D .9日解析:选D.由题易知良马每日所行里数构成一等差数列,其通项公式为a n =103+13(n -1)=13n +90,驽马每日所行里数也构成一等差数列,其通项公式为b n =97-12(n -1)=-12n+1952,二马相逢时所走路程之和为2×1 125=2 250,所以n (a 1+a n )2+n (b 1+b n )2=2 250,即n (103+13n +90)2+n ⎝⎛⎭⎪⎫97-12n +19522=2 250,化简得n 2+31n -360=0,解得n =9或n =-40(舍去),故选D.6.已知等差数列{a n }的公差d ≠0,且a 3+a 9=a 10-a 8.若a n =0,则n =________. 解析:因为a 3+a 9=a 10-a 8,所以a 1+2d +a 1+8d =a 1+9d -(a 1+7d ), 解得a 1=-4d ,所以a n =-4d +(n -1)d =(n -5)d , 令(n -5)d =0(d ≠0),可解得n =5. 答案:57.(2018·重庆适应性测试(二))设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________.解析:依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.答案:2008.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时,S n 取得最大值,说明⎩⎪⎨⎪⎧a 8>0,a 9<0.所以⎩⎪⎨⎪⎧7+7d >0,7+8d <0.所以-1<d <-78.答案:⎝⎛⎭⎪⎫-1,-789.已知数列{a n }满足:a 3=-13,a n =a n -1+4(n >1,n ∈N *). (1)求a 1,a 2及通项公式a n ;(2)设S n 为数列{a n }的前n 项和,则数列S 1,S 2,S 3,…中哪一项最小? 解:(1)因为数列{a n }满足a 3=-13,a n =a n -1+4, 所以a n -a n -1=4,即数列{a n }为等差数列且公差为d =4, 所以a 2=a 3-d =-13-4=-17,a 1=a 2-d =-17-4=-21,所以通项公式a n =a 1+(n -1)d =-21+4(n -1)=4n -25. (2)令a n =4n -25≥0可解得n ≥254,所以数列{a n }的前6项为负值,从第7项开始为正数, 所以数列S 1,S 2,S 3,…中S 6最小.10.在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列. (1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |.解:(1)由题意得,a 1·5a 3=(2a 2+2)2,由a 1=10,{a n }为公差为d 的等差数列得,d 2-3d -4=0,解得d =-1或d =4.所以a n =-n +11(n ∈N *)或a n =4n +6(n ∈N *). (2)设数列{a n }的前n 项和为S n .因为d <0,由(1)得d =-1,a n =-n +11,所以当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n = -12n 2+212n ; 当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2-212n +110.综上所述,|a 1|+|a 2|+|a 3|+…+|a n | =⎩⎪⎨⎪⎧-12n 2+212n ,n ≤11,12n 2-212n +110,n ≥12.1.(2018·安徽省两校阶段性测试)已知数列{a n }是首项为a ,公差为1的等差数列,数列{b n }满足b n =1+a n a n.若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围是( )A .(-8,-7)B .[-8,-7)C .(-8,-7]D .[-8,-7]解析:选 A.因为{a n }是首项为a ,公差为1的等差数列,所以a n =n +a -1,因为b n =1+a n a n ,又对任意的n ∈N *,都有b n ≥b 8成立,所以1+1a n ≥1+1a 8,即1a n ≥1a 8对任意的n ∈N *恒成立,因为数列{a n }是公差为1的等差数列,所以{a n }是单调递增的数列,所以⎩⎪⎨⎪⎧a 8<0a 9>0,即⎩⎪⎨⎪⎧8+a -1<09+a -1>0,解得-8<a <-7. 2.(2018·石家庄市第一次模拟)已知函数f (x )的图象关于直线x =-1对称,且f (x )在(-1,+∞)上单调,若数列{a n }是公差不为0的等差数列,且f (a 50)=f (a 51),则数列{a n }的前100项的和为( ) A .-200 B .-100 C .-50D .0解析:选B.因为函数f (x )的图象关于直线x =-1对称,又函数f (x )在(-1,+∞)上单调,数列{a n }是公差不为0的等差数列,且f (a 50)=f (a 51),所以a 50+a 51=-2,所以S 100=100(a 1+a 100)2=50(a 50+a 51)=-100,故选B.3.(2018·兰州市诊断考试)已知数列{a n }中,a 1=1,S n 为数列{a n }的前n 项和,且当n ≥2时,有2a na n S n -S 2n=1成立,则S 2 017=________.解析:当n ≥2时,由2a n a n S n -S 2n =1,得2(S n -S n -1)=(S n -S n -1)S n -S 2n =-S n S n -1,所以2S n -2S n -1=1,又2S 1=2,所以⎩⎨⎧⎭⎬⎫2S n 是以2为首项,1为公差的等差数列,所以2S n =n +1,故S n =2n +1,则S 2 017=11 009.答案:11 0094.(2018·安徽省淮南模拟)设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“精致数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“精致数列”,则数列{b n }的通项公式为________. 解析:设等差数列{b n }的公差为d ,由S n S 2n 为常数,设S n S 2n =k 且b 1=1,得n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得(4k -1)dn +(2k -1)(2-d )=0.因为对任意正整数n ,上式恒成立,所以⎩⎪⎨⎪⎧d (4k -1)=0,(2k -1)(2-d )=0,解得d =2,k =14,所以数列{b n }的通项公式为b n =2n -1(n ∈N *).答案:b n =2n -1(n ∈N *)5.已知{a n }是公差为d 的等差数列,它的前n 项和为S n ,S 4=2S 2+4,数列{b n }中,b n =1+a na n.(1)求公差d 的值;(2)若a 1=-52,求数列{b n }中的最大项和最小项的值.解:(1)因为S 4=2S 2+4,所以4a 1+3×42d =2(2a 1+d )+4,解得d =1.(2)因为a 1=-52,所以数列{a n }的通项公式为a n =a 1+(n -1)=n -72,所以b n =1+1a n =1+1n -72.因为函数f (x )=1+1x -72在⎝ ⎛⎭⎪⎫-∞,72和⎝ ⎛⎭⎪⎫72,+∞上分别是单调减函数, 所以b 3<b 2<b 1<1,当n ≥4时,1<b n ≤b 4,所以数列{b n }中的最大项的值是b 4=3,最小项的值是b 3=-1.6.(2018·洛阳市第一次统一考试)已知数列{a n }的前n 项和为S n ,a n ≠0,a 1=1,且2a n a n +1=4S n -3(n ∈N *).(1)求a 2的值并证明:a n +2-a n =2; (2)求数列{a n }的通项公式. 解:(1)令n =1得2a 1a 2=4S 1-3, 又a 1=1,所以a 2=12.2a n a n +1=4S n -3,① 2a n +1a n +2=4S n +1-3.②②-①得,2a n +1(a n +2-a n )=4a n +1. 因为a n ≠0,所以a n +2-a n =2. (2)由(1)可知:数列a 1,a 3,a 5,…,a 2k -1,…为等差数列,公差为2,首项为1, 所以a 2k -1=1+2(k -1)=2k -1, 即n 为奇数时,a n =n .数列a 2,a 4,a 6,…,a 2k ,…为等差数列,公差为2,首项为12,所以a 2k =12+2(k -1)=2k -32,即n 为偶数时,a n =n -32.综上所述,a n =⎩⎪⎨⎪⎧n ,n 为奇数n -32,n 为偶数.。

2022届高考一轮复习第6章数列第2节等差数列及其前n项和课时跟踪检测理含解

2022届高考一轮复习第6章数列第2节等差数列及其前n项和课时跟踪检测理含解

第六章 数 列第二节 等差数列及其前n 项和A 级·基础过关 |固根基|1.(2019届南昌市一模)已知{a n }为等差数列,若a 2=2a 3+1,a 4=2a 3+7,则a 5=( ) A .1 B .2 C .3D .6解析:选B 设等差数列{a n }的公差为d ,将题中两式相减可得2d =6,所以d =3,所以a 2=2(a 2+3)+1,解得a 2=-7,所以a 5=a 2+(5-2)d =-7+9=2,故选B .2.(2019届合肥市一检)已知正项等差数列{a n }的前n 项和为S n (n∈N *),a 5+a 7-a 26=0,则S 11的值为( )A .11B .12C .20D .22解析:选D 解法一:设等差数列的公差为d(d>0),由题意得(a 1+4d)+(a 1+6d)-(a 1+5d)2=0,即(a 1+5d)·(2-a 1-5d)=0,所以a 1+5d =0或a 1+5d =2.又{a n }为正项等差数列,所以a 1+5d>0,则a 1+5d =2,则S 11=11a 1+11×102d =11(a 1+5d)=11×2=22,故选D .解法二:因为{a n }为正项等差数列,所以由等差数列的性质,并结合a 5+a 7-a 26=0,得2a 6-a 26=0,所以a 6=2,所以S 11=11(a 1+a 11)2=11×2a 62=11a 6=22,故选D .3.(2019届贵阳市质量检测)在等差数列{a n }中,若a 1+a 9=8,则(a 2+a 8)2-a 5=( ) A .60 B .56 C .12D .4解析:选A 因为在等差数列{a n }中,a 1+a 9=a 2+a 8=2a 5=8,所以(a 2+a 8)2-a 5=64-4=60,故选A .4.(2019届广东七校第二次联考)已知等差数列{a n }的前n 项和为S n ,a 6+a 8=6,S 9-S 6=3,则S n 取得最大值时n 的值为( )A .5B .6C .7D .8解析:选D 解法一:设等差数列{a n }的公差为d ,则由题意得,⎩⎪⎨⎪⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎪⎨⎪⎧a 1=15,d =-2,所以a n =-2n +17,由于a 8=-2×8+17=1>0,a 9=-2×9+17=-1<0,所以S n 取得最大值时n 的值是8,故选D .解法二:设等差数列{a n }的公差为d ,则由题意得,⎩⎪⎨⎪⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎪⎨⎪⎧a 1=15,d =-2,则S n =15n +n (n -1)2×(-2)=-(n -8)2+64,所以当n =8时,S n 取得最大值,故选D .5.(2019届广州市第一次综合测试)设S n 是等差数列{a n }的前n 项和,若m 为大于1的正整数,且a m-1-a 2m +a m +1=1,S 2m -1=11,则m =( ) A .11 B .10 C .6D .5解析:选 C 由a m -1-a 2m +a m +1=1可得2a m -a 2m =1,即a 2m -2a m +1=0,解得a m =1.由S 2m -1=(a 1+a 2m -1)(2m -1)2=a m ×(2m -1)=11,得2m -1=11,解得m =6,故选C .6.(2019届桂林市、百色市、崇左市联考)设S n 为等差数列{a n }的前n 项和,若a 4a 3=34,则3S 5a 4=( )A .12B .15C .20D .25解析:选C 因为数列{a n }是等差数列,所以3S 5a 4=3×5a 3a 4=15a 3a 4.又a 4a 3=34,所以3S 5a 4=15a 3a 4=15×43=20.故选C .7.(2019届西安八校联考)设等差数列{a n }的前n 项和为S n ,若S 6>S 7>S 5,则满足S n S n +1<0的正整数n 的值为( )A .10B .11C .12D .13解析:选C 由S 6>S 7>S 5,得S 7=S 6+a 7<S 6,S 7=S 5+a 6+a 7>S 5,所以a 7<0,a 6+a 7>0.所以S 13=13(a 1+a 13)2=13a 7<0,S 12=12(a 1+a 12)2=6(a 6+a 7)>0,所以S 12S 13<0,即满足S n S n +1<0的正整数n 的值为12,故选C .8.设S n 是公差不为0的等差数列{a n }的前n 项和,S 3=a 22,且S 1,S 2,S 4成等比数列,则a 10=( ) A .15 B .19 C .21D .30解析:选B 设等差数列{a n }的公差为d.由S 3=a 22得3a 2=a 22,所以a 2=0或a 2=3.由S 1,S 2,S 4成等比数列可得S 22=S 1·S 4,又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d ,所以(2a 2-d)2=(a 2-d)·(4a 2+2d),化简得3d 2=2a 2d ,又d≠0,所以a 2=3,d =2,所以a n =3+2(n -2)=2n -1,所以a 10=19.9.已知{a n }是等差数列,S n 是其前n 项和,若S k +10-S k =12k +10,则S 2k +10=( )A .1B .12C .15D .110解析:选 D 由题意知S k +10-S k =a k +1+a k +2+…+a k +10=a k +1+a k +102×10=12k +10,∴a k +1+a k +10=110(k +5),∴S 2k +10=a 1+a 2k +102×(2k +10)=a k +1+a k +102×(2k +10)=110.10.正项等差数列{a n }的前n 项和为S n ,已知a 1=1,a 3+a 7-a 25+15=0,且S n =45,则n =( ) A .8 B .9 C .10D .11解析:选B 因为{a n }是正项等差数列,a 3+a 7-a 25+15=0,所以a 25-2a 5-15=0,解得a 5=5(a 5=-3舍去).设{a n }的公差为d ,由a 5=a 1+4d =1+4d =5,解得d =1,所以S n =n[2a 1+(n -1)d]2=n[2+(n -1)]2=n (n +1)2=45,即n 2+n -90=(n +10)(n -9)=0,解得n =9(n =-10舍去),故选B .11.(2019年全国卷Ⅲ)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10=________.解析:解法一:设等差数列{a n }的公差为d ,则由题意,得⎩⎪⎨⎪⎧a 1+2d =5,a 1+6d =13,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以S 10=10×1+10×92×2=100. 解法二:由题意,得公差d =14(a 7-a 3)=2,所以a 4=a 3+d =7,所以S 10=10(a 1+a 10)2=5(a 4+a 7)=100.答案:10012.(2019年江苏卷)已知数列{a n }(n∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.解析:解法一:设等差数列{a n }的公差为d ,则a 2a 5+a 8=(a 1+d)(a 1+4d)+a 1+7d =a 21+4d 2+5a 1d +a 1+7d =0,S 9=9a 1+36d =27,解得a 1=-5,d =2,则S 8=8a 1+28d =-40+56=16.解法二:设等差数列{a n }的公差为d.∵S 9=9(a 1+a 9)2=9a 5=27,∴a 5=3.又a 2a 5+a 8=0,则3(3-3d)+3+3d =0,解得d =2,则S 8=8(a 1+a 8)2=4(a 4+a 5)=4×(1+3)=16.答案:1613.(2019届广东七校第二次联考)已知数列{a n }满足a 1=1,a n +1=a n a n +1,且b n =1a n ,n∈N *.(1)求证:数列{b n }为等差数列;(2)设数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和为T n ,求T n 的表达式. 解:(1)证明:因为b n =1a n ,且a n +1=a na n +1,所以b n +1=1a n +1=a n +1a n =1+1a n =1+b n ,故b n +1-b n =1. 又b 1=1a 1=1,所以数列{b n }是以1为首项,1为公差的等差数列. (2)由(1)知数列{b n }的通项公式为b n =n , 又b n =1a n ,所以a n =1b n =1n .故a n n +1=1n (n +1)=1n -1n +1, 所以T n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1. 14.(2019届南昌市二模)已知数列{a n }是公差不为零的等差数列,a 1=1,且存在实数λ满足2a n +1=λa n +4,n ∈N *.(1)求λ的值及通项公式a n ; (2)求数列{a 2n -n }的前n 项和S n .解:(1)设等差数列{a n }的公差为d ,d≠0, 由2a n +1=λa n +4(n∈N *), ① 得2a n =λa n -1+4(n∈N *,n≥2),②两式相减得,2d =λd,又d≠0,所以λ=2.将λ=2代入①可得2a n +1=2a n +4,即2d =4,所以d =2. 又a 1=1,所以a n =1+(n -1)×2=2n -1.(2)由(1)可得a 2n-n =2(2n -n)-1=2n +1-(2n +1),所以S n =(22+23+…+2n +1)-[3+5+…+(2n +1)]=4(1-2n)1-2-n (3+2n +1)2=2n +2-n 2-2n -4.B 级·素养提升 |练能力|15.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为( )A .6斤B .9斤C .9.5斤D .12斤解析:选A 依题意,金箠由粗到细各尺的重量构成一个等差数列,设首项a 1=4,则a 5=2,由等差数列的性质得a 2+a 4=a 1+a 5=6,所以第二尺与第四尺的重量之和为6斤.故选A .16.已知数列{a n }为等差数列,若a 21+a 210≤25恒成立,则a 1+3a 7的取值范围为( ) A .[-5,5] B .[-52,52] C .[-10,10]D .[-102,102]解析:选D 由数列{a n }为等差数列,可知a 1+3a 7=a 1+3(a 1+6d)=4a 1+18d =2(a 1+a 1+9d)=2(a 1+a 10).由基本不等式⎝ ⎛⎭⎪⎫a 1+a 1022≤a 21+a 2102得2|a 1+a 10|≤102,当且仅当a 1=a 10时取等号,所以a 1+3a 7的取值范围为[-102,102].17.(2019届江西红色七校第一次联考)已知数列{a n }为等差数列,若a 2+a 6+a 10=π2,则tan(a 3+a 9)的值为( )A .0B .33C .1D . 3解析:选D 因为数列{a n }是等差数列,所以a 2+a 6+a 10=3a 6=π2,所以a 6=π6,所以a 3+a 9=2a 6=π3,所以tan(a 3+a 9)=tan π3= 3.故选D . 18.(2019年全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解:(1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ),即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8,即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)由(1)知,a n +b n =12n -1,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12,b n =12[(a n +b n )-(a n -b n )]=12n -n +12.。

2019届高三理科数学苏教版一轮复习教学课件:第六章 第2节 等差数列及其前n项和

2019届高三理科数学苏教版一轮复习教学课件:第六章 第2节 等差数列及其前n项和

主干知识 自主排查 核心考点 互动探究 真题演练 高考预测 课时作业 知能提升
首页
上页 下页
尾页
自测练习
2.在等差数列{an}中,a9+a11=10,则数列{an}的前 19 项之和
95 为________ .
解析:由等差数列求和公式得 19a1+a19 19a9+a11 19×10 S19= = = =95. 2 2 2
解析:由已知得,a1<0,d>0,a10<0,a11>0,a1+a19<0,a10+ a11>0,∴a1+a20>0,∴S19<0,S20>0,故 n=20.
主干知识 自主排查 核心考点 互动探究 真题演练 高考预测 课时作业 知能提升
首页
上页 下页
尾页
核心考点 互动探究
考点一|等差数列的判定与证明
主干知识 自主排查 核心考点 互动探究 真题演练 高考预测 课时作业 知能提升
首页
上页 下页
尾页
知识梳理
2.等差中项 如果 a,A,b 成等差数列,那么 A 叫做 a 与 b 的等差中项 a+b 且 A= 2 . 3.通项公式 如果等差数列{an}的首项为 a1,公差为 d,那么通项公式为 an
* a + ( n - 1) d , n ∈ N 1 =
.
主干知识 自主排查 核心考点 互动探究 真题演练 高考预测 课时作业 知能提升
首页
上页 下页
尾页
知识梳理
二、等差数列的前 n 项和 已知 条件 选用 首项 a1,公差 d 首项 a1,末项 an na1+an Sn= 2
nn-1 Sn=na1+ d 2 公式
主干知识 自主排查 核心考点 互动探究 真题演练 高考预测 课时作业 知能提升

2019-2020高考数学一轮复习第六章数列第二节等差数列及其前n项和课后作业理

2019-2020高考数学一轮复习第六章数列第二节等差数列及其前n项和课后作业理
∴bn+1-bn= - =2.
又b1= =1,∴数列{bn}是以1为首项,2为公差的等差数列.
(2)由(1)知数列{bn}的通项公式为bn=1+(n-1)×2=2n-1,又bn= ,∴an= = .
∴数列{an}的通项公式为an= .
10.解:∵2an+1=an+an+2,∴an+1-an=an+2-an+1,
7.(20xx·温州模拟)在等差数列{an}中,a9= a12+6,则数列{an}的前11项和S11等于________.
8.已知等差数列{an}中,an≠0,若n≥2且an-1+an+1-a =0,S2n-1=38,则n等于________.
三、解答题
9.已知数列{an}满足a1=1,an= (n∈N*,n≥2),数列{bn}满足关系式bn= (n∈N*).
3.解析:选B 由 - =1得 - =a1+d- = =1,所以d=2.
4.解析:选A 因为a1+a2+a3=34,an-2+an-1+an=146,
所以a1+a2+a3+an-2+an-1+an=34+146=180,
又因为a1+an=a2+an-1=a3+an-2,
所以3(a1+an)=180,从而a1+an=60,
A.-1B.0C.D.6
2.(20xx·泉州模拟)等差数列 的前三项为x-1,x+1,2x+3,则这个数列的通项公式为()
A.an=2n-5B.an=2n-3
C.an=2n-1D.an=2n+1
3.已知等差数列{an}的前n项和为Sn,且满足 - =1,则数列{an}的公差d是( )
A.1 B.2 C.4 D.6
2019-2020高考数学一轮复习第六章数列第二节等差数列及其前n项和课后作业理
编 辑:__________________

2019年高考数学(理)大一轮复习人教版 第六章 数列 第2节 等差数列及其前n项和

2019年高考数学(理)大一轮复习人教版 第六章 数列 第2节 等差数列及其前n项和

第2节 等差数列及其前n 项和最新考纲 1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题;4.了解等差数列与一次函数的关系.知 识 梳 理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . 通项公式的推广:a n =a m +(n -m )d (m ,n ∈N *).(2)等差数列的前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d (其中n ∈N *). 3.等差数列的有关性质已知数列{a n }是等差数列,S n 是{a n }的前n 项和.(1)若m +n =p +q (m ,n ,p ,q ∈N *),则有a m +a n =a p +a q .(2)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(4)数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).4.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.[常用结论与微点提醒]1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.用定义法证明等差数列应注意“从第2项起”,如证明了a n +1-a n =d (n ≥2)时,应注意验证a 2-a 1是否等于d ,若a 2-a 1≠d ,则数列{a n }不为等差数列.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.诊 断 自 测1.思考辨析(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(4)等差数列的前n 项和公式是常数项为0的二次函数.( )解析 (3)若公差d =0,则通项公式不是n 的一次函数.(4)若公差d =0,则前n 项和不是二次函数.答案 (1)√ (2)√ (3)× (4)×2.在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( )A.-1B.0C.1D.6解析 由等差数列的性质,得a 6=2a 4-a 2=2×2-4=0.答案 B3.(2016·全国Ⅰ卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A.100B.99C.98D.97解析 设等差数列{a n }的公差为d ,由已知,得⎩⎨⎧9a 1+36d =27,a 1+9d =8,所以⎩⎨⎧a 1=-1,d =1,所以a 100=a 1+99d =-1+99=98.答案 C4.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为______.解析 由题意知d <0且⎩⎨⎧a 8>0,a 9<0,即⎩⎨⎧7+7d >0,7+8d <0, 解得-1<d <-78.答案 ⎝ ⎛⎭⎪⎫-1,-78 5.(必修5P68A8改编)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________.解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180.答案 180考点一 等差数列基本量的运算【例1】 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A.2B.10C.52D.54(2)(2017·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A.1B.2C.4D.8解析 (1)由2a n +1=1+2a n 得a n +1-a n =12,所以数列{a n }是首项为-2,公差为12的等差数列,所以S 10=10×(-2)+10×(10-1)2×12=52. (2)设{a n }的公差为d ,首项为a 1,由⎩⎨⎧a 4+a 5=24,S 6=48,得⎩⎨⎧2a 1+7d =24, ①6a 1+15d =48, ②解得d =4.答案 (1)C (2)C规律方法 1.等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【训练1】 (1)(2015·全国Ⅰ卷)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10等于( )A.172B.192C.10D.12(2)(一题多解)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________.解析 (1)由S 8=4S 4,得8a 1+8×72×1=4×⎝ ⎛⎭⎪⎫4a 1+4×32×1,解得a 1=12,∴a 10=a 1+9d =192.(2)法一 设数列{a n }的首项为a 1,公差为d ,由S 3=6,S 4=12,可得⎩⎨⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎨⎧a 1=0,d =2,所以S 6=6a 1+15d =30.法二 由{a n }为等差数列,故可设前n 项和S n =An 2+Bn ,由S 3=6,S 4=12可得⎩⎨⎧S 3=9A +3B =6,S 4=16A +4B =12, 解得⎩⎨⎧A =1,B =-1,即S n =n 2-n ,则S 6=36-6=30. 答案 (1)B (2)30考点二 等差数列的判定与证明(典例迁移)【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列; (2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2, 故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n=2n ,∴S n =12n . 当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式. 故a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.【迁移探究1】 本例条件不变,判断数列{a n }是否为等差数列,并说明理由. 解 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0,所以S n -S n -1+2S n S n -1=0(n ≥2).所以1S n -1S n -1=2(n ≥2). 又1S 1=1a 1=2, 所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n=2+(n -1)×2=2n ,故S n =12n . 所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1), 所以a n +1=-12n (n +1),又a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1). 所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.【迁移探究2】 将本例条件“a n +2S n S n -1=0(n ≥2),a 1=12”改为“S n (S n -a n )+2a n =0(n ≥2),a 1=2”,问题不变,试求解.(1)证明 当n ≥2时,a n =S n -S n -1且S n (S n -a n )+2a n =0.∴S n [S n -(S n -S n -1)]+2(S n -S n -1)=0,即S n S n -1+2(S n -S n -1)=0.即1S n -1S n -1=12. 又1S 1=1a 1=12. 故数列⎩⎨⎧⎭⎬⎫1S n 是以首项为12,公差为12的等差数列. (2)解 由(1)知1S n=n 2,∴S n =2n ,当n ≥2时, a n =S n -S n -1=-2n (n -1). 当n =1时,a 1=2不适合上式,故a n =⎩⎪⎨⎪⎧2,n =1,-2n (n -1),n ≥2. 规律方法 等差数列的证明方法:(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数.(2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立.考点三 等差数列的性质及应用【例3】 (1)(2018·贵阳质检)等差数列{a n }的前n 项和为S n ,且a 3+a 9=16,则S 11=( )A.88B.48C.96D.176(2)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A.63B.45C.36D.27解析 (1)依题意得S 11=11(a 1+a 11)2=11(a 3+a 9)2=11×162=88. (2)由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列.即2(S 6-S 3)=S 3+(S 9-S 6),得到S 9-S 6=2S 6-3S 3=45.答案 (1)A (2)B规律方法 等差数列的常用性质和结论(1)在等差数列{a n }中,若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m +a n =a p +a q =2a k .(2)在等差数列{a n }中,数列 S m ,S 2m -S m ,S 3m -S 2m 也成等差数列.【训练2】 (1)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为( )A.13B.12C.11D.10(2)设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 解析 (1)因为a 1+a 2+a 3=34,a n -2+a n -1+a n =146,a 1+a 2+a 3+a n -2+a n -1+a n =34+146=180,又因为a 1+a n =a 2+a n -1=a 3+a n -2,所以3(a 1+a n )=180,从而a 1+a n =60,所以S n =n (a 1+a n )2=n ×602=390,即n =13. (2)因为{a n },{b n }为等差数列,所以a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. 故a 6b 6=2a 62b 6=a 1+a 11b 1+b 11=S 11T 11=2×11-34×11-3=1941. 答案 (1)A (2)1941考点四 等差数列前n 项和及其最值【例4】 (1)(一题多解)等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是( )A.5B.6C.7D.8(2)设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________.解析 (1)法一 由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质,可得a 7+a 8=0.根据首项等于13可推知这个数列递减,从而得到a 7>0,a 8<0,故n=7时S n 最大.法二 由S 3=S 11,可得3a 1+3d =11a 1+55d ,把a 1=13代入,得d =-2,故S n =13n -n (n -1)=-n 2+14n .根据二次函数的性质,知当n =7时S n 最大.(2)由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.答案 (1)C (2)130规律方法 求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项;(2)利用性质求出其正负转折项,便可求得和的最值;(3)将等差数列的前n 项和S n =An 2+Bn (A ,B 为常数)看作二次函数,根据二次函数的性质求最值.【训练3】 (1)设数列{a n }是公差d <0的等差数列,S n 为其前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n 的值为( )A.5B.6C.5或6D.11(2)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.解析 (1)由题意得S 6=6a 1+15d =5a 1+10d ,所以a 6=0,故当n =5或6时,S n 最大.(2)因为等差数列{a n }的首项a 1=20,公差d =-2,S n =na 1+n (n -1)2d =20n -n (n -1)2×2 =-n 2+21n =-⎝ ⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122, 又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110. 答案 (1)C (2)110基础巩固题组(建议用时:40分钟)一、选择题1.(2018·安徽江南十校联考)已知数列{a n }是等差数列,a 3+a 13=20,a 2=-2,则a 15=( )A.20B.24C.28D.34解析 由已知,得a 3+a 13=2a 8=20,∴a 8=10,又a 2=-2,∴d =2,∴a 15=a 2+13d =-2+13×2=24.答案 B2.已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为( )A.10B.20C.30D.40解析 设项数为2n ,则由S 偶-S 奇=nd 得,25-15=2n 解得n =5,故这个数列的项数为10.答案 A3.(2018·郑州质检)已知⎩⎨⎧⎭⎬⎫1a n 是等差数列,且a 1=1,a 4=4,则a 10=( )A.-45B.-54C.413D.134 解析 设等差数列⎩⎨⎧⎭⎬⎫1a n 的公差为d ,由已知,得14=1+3d ,解得d =-14,所以1a 10=1+9×⎝ ⎛⎭⎪⎫-14=-54,即a 10=-45. 答案 A4.(2017·全国Ⅲ卷)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A.-24B.-3C.3D.8解析 根据题意得a 23=a 2·a 6,即(a 1+2d )2=(a 1+d )(a 1+5d ),解得d =-2,所以数列{a n }的前6项和为S 6=6a 1+6×52d =1×6+6×52×(-2)=-24.答案 A5.(2018·东北三省三校联考)已知数列{a n }是等差数列,满足a 1+2a 2=S 5,下列结论中错误的是( )A.S 9=0B.S 5最小C.S 3=S 6D.a 5=0解析 由题意知a 1+2(a 1+d )=5a 1+5×42d ,则a 5=0,∴a 4+a 6=0,∴S 3=S 6,且S 9=9a 5=0,故选B.答案 B二、填空题6.已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 解析 ∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=10+2×10=30,∴S 30=60.答案 607.正项数列{a n }满足a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),则a 7=________.解析 由2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),得数列{a 2n }是等差数列,公差d =a 22-a 21=3,首项a 21=1,所以a 2n =1+3(n -1)=3n -2,∴a n =3n -2,∴a 7=19.答案 198.已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________.解析 因为{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+a 6=21. 答案 21三、解答题9.(2016·全国Ⅱ卷)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解 (1)设数列{a n }首项为a 1,公差为d ,由题意得⎩⎨⎧2a 1+5d =4,a 1+5d =3.解得⎩⎪⎨⎪⎧a 1=1,d =25.所以{a n }的通项公式为a n =2n +35.(2)由(1)知,b n =⎣⎢⎡⎦⎥⎤2n +35. 当n =1,2,3时,1≤2n +35<2,b n =1; 当n =4,5时,2≤2n +35<3,b n =2;当n =6,7,8时,3≤2n +35<4,b n =3; 当n =9,10时,4≤2n +35<5,b n =4.所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.10.(2018·桂林、百色、崇左调研)已知数列{a n }的前n 项和为S n ,且S n =2n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =log 4a n +1,求{b n }的前n 项和T n .解 (1)当n ≥2时,a n =S n -S n -1=2n -1,当n =1时,a 1=2-1=1,满足a n =2n -1,∴数列{a n }的通项公式为a n =2n -1(n ∈N *).(2)由(1)得,b n =log 4a n +1=n +12,则b n +1-b n =n +22-n +12=12,∴数列{b n }是首项为1,公差d =12的等差数列,∴T n =nb 1+n (n -1)2d =n 2+3n 4. 能力提升题组(建议用时:20分钟)11.(2017·石家庄模拟)已知正项等差数列{a n }的前n 项和为S n ,若S 12=24,则a 6·a 7的最大值为( )A.36B.6C.4D.2解析 在等差数列{a n }中,∵S 12=6(a 6+a 7)=24,∴a 6+a 7=4,又a 6>0,a 7>0,∴a 6·a 7≤⎝ ⎛⎭⎪⎫a 6+a 722=4,当且仅当a 6=a 7=2时,“=”成立.故a 6·a 7的最大值为4.答案 C12.(2018·河南百校联盟联考)我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由细到粗是均匀变化的,其重量为M ,现将该金杖截成长度相等的10段,记第i 段的重量为a i (i =1,2,…,10),且a 1<a 2…<a 10,若48a i =5M ,则i =________.解析 根据题意知,由细到粗每段的重量成等差数列,记为{a n },设公差为d ,则⎩⎨⎧a 1+a 2=2,a 9+a 10=4,解得⎩⎪⎨⎪⎧a 1=1516,d =18.所以该金杖的总重量M =10×1516+10×92×18=15,因为48a i =5M ,所以48⎣⎢⎡⎦⎥⎤1516+(i -1)×18=75,即39+6i =75,解得i =6. 答案 613.(2018·康杰中学、晋城一中联考)已知数列{a n }的前n 项和为S n ,a n ≠0,a 1=1,且2a n a n +1=4S n -3(n ∈N *).(1)求a 2的值并证明:a n +2-a n =2;(2)求数列{a n }的通项公式.解 (1)令n =1得2a 1a 2=4S 1-3,又a 1=1,∴a 2=12.2a n a n +1=4S n -3, ①2a n +1a n +2=4S n +1-3. ②②-①得,2a n +1(a n +2-a n )=4a n +1.∵a n ≠0,∴a n +2-a n =2.(2)由(1)可知:数列a 1,a 3,a 5,…,a 2k -1,…为等差数列,公差为2,首项为1, ∴a 2k -1=1+2(k -1)=2k -1,当n 为奇数时,a n =n .数列a 2,a 4,a 6,…,a 2k ,…为等差数列,公差为2,首项为12,∴a 2k =12+2(k -1)=2k -32, 则当n 为偶数时,a n =n -32.综上所述,a n =⎩⎪⎨⎪⎧n ,n 为奇数,n -32,n 为偶数.。

近年高考数学一轮复习第六章数列第二节等差数列及其前n项和夯基提能作业本文(2021年整理)

近年高考数学一轮复习第六章数列第二节等差数列及其前n项和夯基提能作业本文(2021年整理)

(北京专用)2019版高考数学一轮复习第六章数列第二节等差数列及其前n项和夯基提能作业本文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((北京专用)2019版高考数学一轮复习第六章数列第二节等差数列及其前n项和夯基提能作业本文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(北京专用)2019版高考数学一轮复习第六章数列第二节等差数列及其前n项和夯基提能作业本文的全部内容。

第二节等差数列及其前n项和A组基础题组1.若等差数列{a n}的前5项之和S5=25,且a2=3,则a7=( )A。

12 B.13 C。

14 D.152.已知等差数列{a n}前9项的和为27,a10=8,则a100=( )A。

100 B.99 C.98 D。

973.在等差数列{a n}中,如果a1+a2=40,a3+a4=60,那么a7+a8= ( )A.95 B。

100C。

135 D。

804.(2015北京石景山一模)等差数列{a n}中,a m=,a k=(m≠k),则该数列的前mk项之和为()A.-1 B。

C。

+1 D。

5.若数列{a n}满足a1=15,且3a n+1=3a n-2,则使a k·a k+1<0的k值为()A.22 B。

21 C.24 D。

236。

(2017北京海淀期末)已知数列{a n}满足a n+1—a n=2,n∈N*,且a3=3,则a1= ,其前n项和S n= .7.(2016北京朝阳一模)已知递增的等差数列{a n}(n∈N*)的首项a1=1,且a1,a2,a4成等比数列,则数列{a n}的通项公式为a n= ;a4+a8+a12+…+a4n+4= .8。

【备战高考】2019年高考数学一轮复习第6章第2节《等差数列及其前n项和》

【备战高考】2019年高考数学一轮复习第6章第2节《等差数列及其前n项和》

备战高考2019年高考数学一轮复习第6章 数列第2节 等差数列及其前n 项和考试要求:1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.知识梳理,自主学习一、基础知识梳理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . 通项公式的推广:a n =a m +(n -m )d (m ,n ∈N *).(2)等差数列的前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d (其中n ∈N *). 3.等差数列的有关性质已知数列{a n }是等差数列,S n 是{a n }的前n 项和.(1)若m +n =p +q (m ,n ,p ,q ∈N *),则有a m +a n =a p +a q .(2)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(4)数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).4.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.二、双基自测训练1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)等差数列{a n }的单调性是由公差d 决定的.( √ )(3)等差数列的前n 项和公式是常数项为0的二次函数.( × )(4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( √ )(5)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( √ )(6)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( √ )2.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( )A .31B .32C .33D .34 答案 B解析 由已知可得⎩⎪⎨⎪⎧ a 1+5d =2,5a 1+10d =30,解得⎩⎨⎧ a 1=263,d =-43,∴S 8=8a 1+8×72d =32. 3.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________.答案 180解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180.4.一个等差数列的首项为125,从第10项起开始比1大,则这个等差数列的公差d 的取值范围是( )A .d >875B .d <325 C.875<d <325D.875<d ≤325 答案 D解析 由题意可得⎩⎪⎨⎪⎧ a 10>1,a 9≤1,即⎩⎨⎧ 125+9d >1,125+8d ≤1,所以875<d ≤325.故选D. 5.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.6.一物体从1 960 m 的高空降落,如果第1秒降落4.90 m ,以后每秒比前一秒多降落9.80 m ,那么经过________秒落到地面.答案 20解析 设物体经过t 秒降落到地面.物体在降落过程中,每一秒降落的距离构成首项为4.90,公差为9.80的等差数列.所以4.90t +12t (t -1)×9.80=1 960, 即4.90t 2=1 960,解得t =20.考点突破,深度剖析考点一 等差数列基本量的运算【例1】 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A.2B.10C.52D.54(2)(2017·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A.1B.2C.4D.8解析 (1)由2a n +1=1+2a n 得a n +1-a n =12,所以数列{a n }是首项为-2,公差为12的等差数列,所以S 10=10×(-2)+10×(10-1)2×12=52. (2)设{a n }的公差为d ,首项为a 1,由⎩⎨⎧a 4+a 5=24,S 6=48,得⎩⎨⎧2a 1+7d =24, ①6a 1+15d =48, ②解得d =4.答案 (1)C (2)C【训练1】 (1)(2015·全国Ⅰ卷)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10等于( )A.172B.192C.10D.12(2)(一题多解)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________.解析 (1)由S 8=4S 4,得8a 1+8×72×1=4×⎝ ⎛⎭⎪⎫4a 1+4×32×1,解得a 1=12,∴a 10=a 1+9d =192.(2)法一 设数列{a n }的首项为a 1,公差为d ,由S 3=6,S 4=12,可得⎩⎨⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎨⎧a 1=0,d =2,所以S 6=6a 1+15d =30.法二 由{a n }为等差数列,故可设前n 项和S n =An 2+Bn ,由S 3=6,S 4=12可得⎩⎨⎧S 3=9A +3B =6,S 4=16A +4B =12,解得⎩⎨⎧A =1,B =-1,即S n =n 2-n ,则S 6=36-6=30. 答案 (1)B (2)30考点二 等差数列的判定与证明(典例迁移)【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列; (2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2, 又1S 1=1a 1=2, 故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n=2n ,∴S n =12n . 当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.【迁移探究1】 本例条件不变,判断数列{a n }是否为等差数列,并说明理由. 解 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0,所以S n -S n -1+2S n S n -1=0(n ≥2).所以1S n -1S n -1=2(n ≥2).又1S 1=1a 1=2, 所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列. 所以1S n=2+(n -1)×2=2n ,故S n =12n . 所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1), 所以a n +1=-12n (n +1),又a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1). 所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.【迁移探究2】 将本例条件“a n +2S n S n -1=0(n ≥2),a 1=12”改为“S n (S n -a n )+2a n =0(n ≥2),a 1=2”,问题不变,试求解.(1)证明 当n ≥2时,a n =S n -S n -1且S n (S n -a n )+2a n =0.∴S n [S n -(S n -S n -1)]+2(S n -S n -1)=0,即S n S n -1+2(S n -S n -1)=0.即1S n -1S n -1=12. 又1S 1=1a 1=12. 故数列⎩⎨⎧⎭⎬⎫1S n 是以首项为12,公差为12的等差数列. (2)解 由(1)知1S n=n 2,∴S n =2n ,当n ≥2时, a n =S n -S n -1=-2n (n -1). 当n =1时,a 1=2不适合上式,故a n =⎩⎪⎨⎪⎧2,n =1,-2n (n -1),n ≥2.考点三 等差数列的性质及应用【例3】 (1)(2018·贵阳质检)等差数列{a n }的前n 项和为S n ,且a 3+a 9=16,则S 11=( )A.88B.48C.96D.176(2)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A.63B.45C.36D.27解析 (1)依题意得S 11=11(a 1+a 11)2=11(a 3+a 9)2=11×162=88. (2)由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列.即2(S 6-S 3)=S 3+(S 9-S 6),得到S 9-S 6=2S 6-3S 3=45.答案 (1)A (2)B【训练2】 (1)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为( )A.13B.12C.11D.10(2)设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 解析 (1)因为a 1+a 2+a 3=34,a n -2+a n -1+a n =146,a 1+a 2+a 3+a n -2+a n -1+a n =34+146=180,又因为a 1+a n =a 2+a n -1=a 3+a n -2,所以3(a 1+a n )=180,从而a 1+a n =60,所以S n =n (a 1+a n )2=n ×602=390,即n =13. (2)因为{a n },{b n }为等差数列,所以a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. 故a 6b 6=2a 62b 6=a 1+a 11b 1+b 11=S 11T 11=2×11-34×11-3=1941. 答案 (1)A (2)1941考点四 等差数列前n 项和及其最值【例4】 (1)(一题多解)等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是( )A.5B.6C.7D.8(2)设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________.解析 (1)法一 由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质,可得a 7+a 8=0.根据首项等于13可推知这个数列递减,从而得到a 7>0,a 8<0,故n =7时S n 最大.法二 由S 3=S 11,可得3a 1+3d =11a 1+55d ,把a 1=13代入,得d =-2,故S n =13n -n (n -1)=-n 2+14n .根据二次函数的性质,知当n =7时S n 最大.(2)由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.答案 (1)C (2)130【训练3】 (1)设数列{a n }是公差d <0的等差数列,S n 为其前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n 的值为( )A.5B.6C.5或6D.11(2)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.解析 (1)由题意得S 6=6a 1+15d =5a 1+10d ,所以a 6=0,故当n =5或6时,S n 最大.(2)因为等差数列{a n }的首项a 1=20,公差d =-2,S n =na 1+n (n -1)2d =20n -n (n -1)2×2 =-n 2+21n =-⎝ ⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122, 又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110. 答案 (1)C (2)110高考频点等差数列的前n 项和及其最值考点分析 公差不为0的等差数列,求其前n 项和与最值在高考中时常出现,题型有小题,也有大题,难度不大.典例1 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10等于( )A .45B .60C .75D .90 (2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________.解析 (1)由题意得a 3+a 8=9,所以S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×92=45. (2)方法一 设数列{a n }的首项为a 1,公差为d ,则⎩⎨⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎨⎧ a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110.方法二 因为S 100-S 10=(a 11+a 100)×902=-90, 所以a 11+a 100=-2,所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110. 答案 (1)A (2)-110典例2 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值. 规范解答解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d , ∴d =-53. 方法一 由a n =20+(n -1)×⎝⎛⎭⎫-53=-53n +653, 得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0. ∴当n =12或n =13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53 =130.方法二 S n =20n +n (n -1)2·⎝⎛⎭⎫-53 =-56n 2+1256n =-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130. 方法三 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0. ∴5a 13=0,即a 13=0.∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130.自我检测,夯实智能一、选择题1.(2018·济南质检)在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( )A .-1B .0C .1D .6答案 B解析 因为数列是等差数列,a 2=4,2a 4=a 2+a 6=4,所以a 6=0,故选B. 2.(2018·安徽江南十校联考)已知数列{a n }是等差数列,a 3+a 13=20,a 2=-2,则a 15=( )A.20B.24C.28D.34解析 由已知,得a 3+a 13=2a 8=20,∴a 8=10,又a 2=-2,∴d =2,∴a 15=a 2+13d =-2+13×2=24.答案 B3.(2018·日照模拟)由公差为d 的等差数列a 1,a 2,a 3,…组成的新数列a 1+a 4,a 2+a 5,a 3+a 6,…是( )A .公差为d 的等差数列B .公差为2d 的等差数列C .公差为3d 的等差数列D .非等差数列答案 B解析 设新数列a 1+a 4,a 2+a 5,a 3+a 6,…的第n 项是b n ,则b n =a n +a n +3=2a 1+(n -1)d +(n +2)d =2a 1+(2n +1)d ,∴b n +1-b n =2d ,∴新数列是以2d 为公差的等差数列,故选B.4.已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为( )A.10B.20C.30D.40解析 设项数为2n ,则由S 偶-S 奇=nd 得,25-15=2n 解得n =5,故这个数列的项数为10.答案 A5.(2018·郑州质检)已知⎩⎨⎧⎭⎬⎫1a n 是等差数列,且a 1=1,a 4=4,则a 10=( )A.-45B.-54C.413D.134 解析 设等差数列⎩⎨⎧⎭⎬⎫1a n 的公差为d ,由已知,得14=1+3d ,解得d =-14,所以1a 10=1+9×⎝ ⎛⎭⎪⎫-14=-54,即a 10=-45.答案 A6.(2017·全国Ⅲ卷)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A.-24B.-3C.3D.8解析 根据题意得a 23=a 2·a 6,即(a 1+2d )2=(a 1+d )(a 1+5d ),解得d =-2,所以数列{a n }的前6项和为S 6=6a 1+6×52d =1×6+6×52×(-2)=-24.答案 A7.(2017·宁德一模)若数列{a n }为等差数列,S n 为其前n 项和,且a 2=3a 4-6,则S 9等于( )A .54B .50C .27D .25答案 C解析 数列{a n }为等差数列,设公差为d ,则a 4=a 2+2d ,∴a 2=3(a 2+2d )-6,∴2a 2+6d-6=0,∴a 2+3d =3,即a 5=3,则S 9=(a 1+a 9)×92=9×a 5=27.故选C. 8.(2017·河南百校联盟模拟)等差数列{a n }中,S n 是其前n 项和,a 1=-9,S 99-S 77=2,则S 10等于( )A .0B .-9C .10D .-10 答案 A解析 设公差为d ,∵S 99-S 77=2,∴9-12d -7-12d =2, ∴d =2,∵a 1=-9,∴S 10=10×(-9)+10×92×2=0,故选A. 9.(2018·东北三省三校联考)已知数列{a n }是等差数列,满足a 1+2a 2=S 5,下列结论中错误的是( )A.S 9=0B.S 5最小C.S 3=S 6D.a 5=0解析 由题意知a 1+2(a 1+d )=5a 1+5×42d ,则a 5=0,∴a 4+a 6=0,∴S 3=S 6,且S 9=9a 5=0,故选B.答案 B10.(2017·石家庄模拟)已知正项等差数列{a n }的前n 项和为S n ,若S 12=24,则a 6·a 7的最大值为( )A.36B.6C.4D.2解析 在等差数列{a n }中,∵S 12=6(a 6+a 7)=24,∴a 6+a 7=4,又a 6>0,a 7>0,∴a 6·a 7≤⎝ ⎛⎭⎪⎫a 6+a 722=4,当且仅当a 6=a 7=2时,“=”成立.故a 6·a 7的最大值为4.答案 C二、填空题11.(2017·安徽省安师大附中、马鞍山二中阶段性测试)若等差数列{a n }的前n 项和为S n ,且满足a 2+S 3=4,a 3+S 5=12,则a 4+S 7的值是________.答案 24解析 由a 2+S 3=4及a 3+S 5=12,得⎩⎪⎨⎪⎧ 4a 1+4d =4,6a 1+12d =12, 解得⎩⎪⎨⎪⎧a 1=0,d =1,∴a 4+S 7=8a 1+24d =24. 12.等差数列{a n }中的a 4,a 2 016是3x 2-12x +4=0的两根,则14log a 1 010=________.答案 -12解析 因为a 4和a 2 016是3x 2-12x +4=0的两根,所以a 4+a 2 016=4.又a 4,a 1 010,a 2 016成等差数列,所以2a 1 010=a 4+a 2 016,即a 1 010=2,所以14log a 1 010=-12. 13.已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 解析 ∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=10+2×10=30,∴S 30=60.答案 6014.正项数列{a n }满足a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),则a 7=________.解析 由2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),得数列{a 2n }是等差数列,公差d =a 22-a 21=3,首项a 21=1,所以a 2n =1+3(n -1)=3n -2,∴a n =3n -2,∴a 7=19.答案 1915.已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________. 解析 因为{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+a 6=21. 答案 2116.(2018·河南百校联盟联考)我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由细到粗是均匀变化的,其重量为M ,现将该金杖截成长度相等的10段,记第i 段的重量为a i (i =1,2,…,10),且a 1<a 2…<a 10,若48a i =5M ,则i =________. 解析 根据题意知,由细到粗每段的重量成等差数列,记为{a n },设公差为d ,则⎩⎨⎧a 1+a 2=2,a 9+a 10=4,解得⎩⎪⎨⎪⎧a 1=1516,d =18.所以该金杖的总重量M =10×1516+10×92×18=15, 因为48a i =5M ,所以48⎣⎢⎡⎦⎥⎤1516+(i -1)×18=75,即39+6i =75,解得i =6. 答案 6三、解答题17.(2018·桂林、百色、崇左调研)已知数列{a n }的前n 项和为S n ,且S n =2n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =log 4a n +1,求{b n }的前n 项和T n .解 (1)当n ≥2时,a n =S n -S n -1=2n -1,当n =1时,a 1=2-1=1,满足a n =2n -1,∴数列{a n }的通项公式为a n =2n -1(n ∈N *).(2)由(1)得,b n =log 4a n +1=n +12,则b n +1-b n =n +22-n +12=12,∴数列{b n }是首项为1,公差d =12的等差数列,∴T n =nb 1+n (n -1)2d =n 2+3n 4. 18.(2018·康杰中学、晋城一中联考)已知数列{a n }的前n 项和为S n ,a n ≠0,a 1=1,且2a n a n +1=4S n -3(n ∈N *).(1)求a 2的值并证明:a n +2-a n =2;(2)求数列{a n }的通项公式.解 (1)令n =1得2a 1a 2=4S 1-3,又a 1=1,∴a 2=12.2a n a n +1=4S n -3, ①2a n +1a n +2=4S n +1-3. ②②-①得,2a n +1(a n +2-a n )=4a n +1. ∵a n ≠0,∴a n +2-a n =2.(2)由(1)可知:数列a 1,a 3,a 5,…,a 2k -1,…为等差数列,公差为2,首项为1, ∴a 2k -1=1+2(k -1)=2k -1,当n 为奇数时,a n =n .数列a 2,a 4,a 6,…,a 2k ,…为等差数列,公差为2,首项为12, ∴a 2k =12+2(k -1)=2k -32,则当n 为偶数时,a n =n -32.综上所述,a n =⎩⎪⎨⎪⎧n ,n 为奇数,n -32,n 为偶数. 19.(2016·全国Ⅱ卷)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解 (1)设数列{a n }首项为a 1,公差为d ,由题意得⎩⎨⎧2a 1+5d =4,a 1+5d =3.解得⎩⎪⎨⎪⎧a 1=1,d =25.所以{a n }的通项公式为a n =2n +35.(2)由(1)知,b n =⎣⎢⎡⎦⎥⎤2n +35. 当n =1,2,3时,1≤2n +35<2,b n =1; 当n =4,5时,2≤2n +35<3,b n =2; 当n =6,7,8时,3≤2n +35<4,b n =3; 当n =9,10时,4≤2n +35<5,b n =4.所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节等差数列及其前n项和
A组基础题组
1.若等差数列{a n}的前5项和S5=25,且a2=3,则a7=( )
A.12
B.13
C.14
D.15
2.(2017安徽合肥第二次质量检测)等差数列{a n}的前n项和为S n,且S3=6,S6=3,则S10=( )
A. B.0
C.-10
D.-15
3.(2018陕西西安八校联考)等差数列{a n}为递增数列,若+=101,a5+a6=11,则数列{a n}的公差d等于( )
A.1
B.2
C.9
D.10
4.已知正项数列{a n}的前n项和为S n,若{a n}和{}都是等差数列,且公差相等,则a6=( )
A. B.
C. D.1
5.设数列{a n}的前n项和为S n,若为常数,则称数列{a n}为“吉祥数列”.已知等差数列{b n}的首项为1,公差不为0,若数列{b n}为“吉祥数列”,则数列{b n}的通项公式为( )
A.b n=n-1
B.b n=2n-1
C.b n=n+1
D.b n=2n+1
6.已知等差数列{a n}的前9项的和为27,a10=8,则a100= .
7.在等差数列{a n}中,公差d=,前100项的和S100=45,则a1+a3+a5+…+a99= .
8.在等差数列{a n}中,S10=100,S100=10,则S110= .
9.已知数列{a n}满足a1=1,a n=(n∈N*,n≥2),数列{b n}满足关系式b n=(n∈N*).
(1)求证:数列{b n}为等差数列;
(2)求数列{a n}的通项公式.
10.(2016课标全国Ⅱ,17,12分)等差数列{a n}中,a3+a4=4,a5+a7=6.
(1)求{a n}的通项公式;
(2)设b n=[a n],求数列{b n}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.
B组提升题组
1.(2017甘肃兰州模拟)等差数列{a n}中,是一个与n无关的常数,则该常数的可能值的集合为( )
A.{1}
B.
C. D.
2.设S n为等差数列{a n}的前n项和,若a4<0,a5>|a4|,则使S n>0成立的最小正整数n为( )
A.6
B.7
C.8
D.9
3.已知等差数列{a n}的前三项的和为-3,前三项的积为8.
(1)求数列{a n}的通项公式;
(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.
4.已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.
(1)证明:a n+2-a n=λ;
(2)是否存在λ,使得{a n}为等差数列?并说明理由.
答案精解精析
A组基础题组
1.B 设等差数列{a n}的公差为d.
由S5=⇒25=⇒a4=7,
所以7=a2+2d=3+2d⇒d=2,
所以a7=a4+3d=7+3×2=13,故选B.
2.D 由题意,得解得所以S10=10a1+45d=-15.故选D.
3.A 依题意得(a1+a10)2-2a1a10=(a5+a6)2-2a1a10=121-2a1a10=101,∴a1a10=10,又
a1+a10=a5+a6=11,a1<a10,∴a1=1,a10=10,d==1.故选A.
4.A 设{a n}的公差为d,由题意得,==,又{a n}和{}都是等差数列,且公差相同,∴解得
∴a6=a1+5d=+=.
5.B 设等差数列{b n}的公差为d(d≠0),=k,因为b1=1,则n+n(n-1)d=k,即
2+(n-1)d=4k+2k(2n-1)d,整理得(4k-1)dn+(2k-1)(2-d)=0.因为对任意的正整数n上式均成立,所以
(4k-1)d=0,(2k-1)(2-d)=0,解得d=2,k=.所以数列{b n}的通项公式为b n=2n-1.
6.答案98
解析设{a
n}的公差为d,由等差数列前n项和公式及通项公式,得解得
∴a n=a1+(n-1)d=n-2,∴a100=100-2=98.
7.答案10
解析S
100=(a1+a100)=45,a1+a100=0.9,a1+a99=a1+a100-d=0.4,则a1+a3+a5+…+a99=(a1+a99)=×0.4=10.
8.答案-110
解析解法一:因为数列{a
n}为等差数列,
∴S10=5(a1+a10)=100,S100=50(a1+a100)=10,
∴a100-a10=90d=-19.8,即d=-0.22,
又a1+a110=a1+a100+10d=-2,
∴S110=55(a1+a110)=-2×55=-110.
解法二:因为数列{a n}为等差数列,所以可设S n=An2+Bn.

②-①×10,得A=,B=,
∴S n=-n2+n,
∴S110=-×1102+×110
=-1 331+1 221=-110.
9.解析(1)证明:∵b n=,且a n=,
∴b n+1===,∴b n+1-b n=-=2.
又b1==1,∴数列{b n}是以1为首项,2为公差的等差数列.
(2)由(1)知数列{b n}的通项公式为b n=1+2×(n-1)=2n-1,又b n=,∴a n==.
∴数列{a n}的通项公式为a n=.
10.解析(1)设数列{a n}的公差为d,
由题意有2a1+5d=4,a1+5d=3.解得a1=1,d=.
所以{a n}的通项公式为a n=.
(2)由(1)知,b n=.
当n=1,2,3时,1≤<2,b n=1;
当n=4,5时,2≤<3,b n=2;
当n=6,7,8时,3≤<4,b n=3;
当n=9,10时,4≤<5,b n=4.
所以数列{b n}的前10项和为1×3+2×2+3×3+4×2=24.
B组提升题组
1.B ==,若a1=d,则=;若a1≠0,d=0,则=1.
∵a1=d≠0,∴≠0,∴该常数的可能值的集合为.
2.C 在等差数列{a n}中,因为a4<0,a5>|a4|,所以
a5>0,a5+a4>0,S7===7a4<0,S8===4(a4+a5)>0. 所以使S n>0成立的最小正整数n为8,故选C.
3.解析(1)设等差数列{a n}的公差为d,
则a2=a1+d,a3=a1+2d,
由题意得
解得或
所以由等差数列通项公式可得
a n=2-3(n-1)=-3n+5或a n=-4+3(n-1)=3n-7.
故a n=-3n+5或a n=3n-7.
(2)当a n=-3n+5时,a2,a3,a1分别为-1,-4,2,不成等比数列;
当a n=3n-7时,a2,a3,a1分别为-1,2,-4,成等比数列,满足条件.故|a n|=|3n-7|=
记数列{|a n|}的前n项和为S n.
当n=1时,S1=|a1|=4;当n=2时,S2=|a1|+|a2|=5;
当n≥3时,
S n=S2+|a3|+|a4|+…+|a n|=5+(3×3-7)+(3×4-7)+…+(3n-7)=5+=n2-n+10.
当n=2时,满足此式.
综上,S n=
4.解析(1)证明:由a n a n+1=λS n-1,知a n+1a n+2=λS n+1-1.两式相减得,a n+1(a n+2-a n)=λa n+1.
由于a n+1≠0,所以a n+2-a n=λ.
(2)存在.理由如下:由a1=1,a1a2=λa1-1,可得a2=λ-1,由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4. 故a n+2-a n=4,由此可得,{a2n-1}是首项为1,公差为4的等差数列,
a2n-1=1+4(n-1)=4n-3;
{a2n}是首项为3,公差为4的等差数列,
a2n=3+4(n-1)=4n-1.
所以a n=2n-1,a n+1-a n=2.
因此存在λ=4,使得{a n}为等差数列.。

相关文档
最新文档