工程流体力学概念
工程流体力学 第二章
只反映 在空间点(x,y,z) 处的时间变化特性 (即不同时刻经过该空间点的流体质点具有不 同的 ),不代表同一质点物理量的变化,所 以不是质点导数。
30
2.2.4 质点导数
( x , y , z , t ) t
反映了物理量在空间点(x,y,z)处的时间变化 特性,故可用来判定流场是否是稳态流场, 若是稳态的,则
或以速度分量表示为: dx vx v x ( a, b, c, t ) dt dy vy v y ( a, b, c, t ) dt dz vz v z ( a, b, c, t ) dt
16
2.2.1 拉格朗日法
一般地,流体任意运动参数或物理量(无 论矢量或标量)都同样可表示成拉格朗日 变量函数:
(a, b, c, t )
( x, y , z , t )
23
2.2.3欧拉表达式变换为拉格朗日
已知欧拉法描述的速度场:u=x,v=-y和 初始条件: x=a,y=b. 求速度和加速度的拉格朗日描述。
24
2.2.3欧拉表达式变换为拉格朗日表达式
已知流场速度和压力分布为:
xy v vxi v y j vz k i yj ztk t 1 e At 2 p 2 x y2 z2
的有限空间或微元空间作为研究对象,通过
研究该空间的流体运动及其受力,建立相应动
力学关系。
3
2-1 流场及流动分类
流场的概念 流场所占据的空间。为描述流体在流场内各 点的运动状态,将流体的运动参数表示为流 场空间坐标(x,y,z)和时间t的函数。
v v( x, y, z, t ) vx i v y j vz k
水力学、工程流体力学、流体力学的联系与区别
水力学、工程流体力学、流体力学的了解与区别水力学,流体力学,工程流体力学,都是力学的一个分支。
水力学是研究以水为代表的液体的宏观机械运动规律,及其在工程技术中的应用。
工程流体力学包含于水力学体系之中。
流体力学,是研究流体(液体和气体)的力学运动规律及其应用的学科。
水力学侧重于研究液体的宏观机械运动,而流体力学侧重于研究流体的力学运动规律。
1水力学水力学是研究以水为代表的液体的宏观机械运动规律,及其在工程技术中的应用。
水力学包括水静力学和水动力学。
1.1水静力学水静力学研究液体静止或相对静止状态下的力学规律及其应用,探讨液体内部压强分布,液体对固体接触面的压力,液体对浮体和潜体的浮力及浮体的稳定性,以解决蓄水容器,输水管渠,挡水构筑物,沉浮于水中的构筑物,如水池、水箱、水管、闸门。
堤坝、船舶等的静力荷载计算问题。
1.2水动力学水动力学研究液体运动状态下的力学规律及其应用,主要探讨管流、明渠流、堰流、孔口流、射流多孔介质渗流的流动规律,以及流速、流量、水深、压力、水工建筑物结构的计算,以解决给水排水、道路桥涵、农田排灌、水力发电、防洪除涝、河道整治及港口工程中的水力学问题。
1.3水力学作用随着经济建设的发展,水力学学科衍生了一些新的分支,以处理特定条件下的水力学问题,如以解决河流泥沙运动所导致的河床演变问题的动床水力学,以解决风浪对防护构筑物的动力作用和对近岸底砂的冲淤作用等问题的波浪理论等。
2流体力学流体力学,是研究流体(液体和气体)的力学运动规律及其应用的学科。
主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。
流体力学是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。
在生活、环保、科学技术及工程中具有重要的应用价值。
流体力学分为理论流体力学、实验流体力学、计算流体力学、应用流体力学。
工程流体力学课件-第一章
二、流体力学在石油化工工业中的应用
流体力学是一门重要的工程学科,它的应用几乎遍及国民经济的各个部门, 尤其在石油工程和石油化工工业中,流体力学是其重要的理论核心之一。
在石油工业中 ,用到流体力学原理分析流体在管内的流动规律,压力、阻 力、流速和输量的关系,据此设计管径,校核管材强度,布置管线及选择泵的类 型和大小,设计泵的安装位置等;在校核油罐和其他储液容器的结构强度,估算 容器、油槽车、油罐的装卸时间,解释气蚀、水击等现象 。
实验方法的优点是能直接解决生产中的复杂问题,能发现流动中的新现象。
它的结果往往可作为检验其他方法是否正确的依据。这种方法的缺点是对不同 情况,需作不同的实验,也即所得结果的普适性较差。
3 、数值计算方法
数值计算方法是按照理论分析方法建立数学模型,在此基础上选择合理 的计算方法,如有限差分法、特征线法、有限元法、边界元法、谱方法等,将 方程组离散化,变成代数方程组,编制程序,然后用计算机计算,得到流动问 题的近似解。数值计算方法是理论分析法的延伸和拓展。
两板间流体沿y方向的速度呈线性分布。
上面的现象说明,当流体中发生了层与层之间的相对运动时,速度快的流层对 速度慢的流层产生了一个拉力使它加速,而速度慢的流层对速度快的流层就有 一个阻止它向前运动的阻力,拉力和阻力是大小相等方向相反的一对力,分别 作用在两个流体层的接触面上,这就是流体黏性的表现,这种力称为内摩擦力 或黏性力。
体积弹性模量:在工程上流体的压缩性也常用p的倒数即体积弹性模量来描述
E 1 dp
p dV /V
2.可压缩流动与不可压缩流动
流体的压缩性及相应的体积弹性模量是随流体的种类、温度和压力而变化 的。当压缩性对所研究的流动影响不大,可以忽略不计时,这种流动成为不可 压缩流动,反之称为可压缩流动。通常,液体的压缩性不大,所以工程上一般 不考虑液体的压缩性,把液体当作不可压缩流体来处理。当然,研究一个具体 流动问题时,是否考虑压缩性的影响不仅取决于流体是气体还是液体,而更主 要是由具体条件来决定。
(完整版)工程流体力学
➢ Offshore structures, coastal structures, harbors, ports, …
➢ Ships, submarines, remote-operated vehicles,
Engineering Applications
Bernoulli
(1667-1748)
Euler
(1707-1783)
Navier
(1785-1836)
Stokes
(1819-1903)
Reynolds
(1842-1912)
Prandtl
(1875-1953)
Taylor
(1886-1975)
流体力学在生活中
• 无处不在
– 天气和气候 – 运输工具: 汽车, 火车, 船和飞机. – 环境 – 生物工程和医学 – 运动和休闲 – 人体内的流体 – ………………………………
• 秦朝在公元前256—公元前210年修建了我国历史上 的三大水利工程(都江堰、郑国渠、灵渠)——明 渠水流、堰流。
• 古代的计时工具“铜壶滴漏”——孔口出流。
• 清朝雍正年间,何梦瑶在《算迪》一书中提出流量 等于过水断面面积乘以断面平均流速的计算方法。
• 隋朝(公元587—610年)完成的南北大运河。
Water sports
运动和休闲
Cycling
Offshore racing
Auto racing
Surfing
What fluids are needed to run your
car?
➢ Gasoline (fuel) ➢ Air (air/fuel mixture,
工程流体力学1
PPT文档演模板
工程流体力学1
四、流体力学的研究方法及其应用
流体力学研究流体这样一个连续介质的宏 观运动规律以及它与其它运动形态之间的相互 作用,其研究方法有理论研究、数值计算和实 验三种,三种方法取长补短,相互促进,彼此 影响,从而促使流体力学得到飞速的发展。
PPT文档演模板
工程流体力学1
1.理论研究
PPT文档演模板
工程流体力学1
4.应用
流体力学在生产部门中有着非常广泛的应 用,可以这样说,目前已很难找出一个技术部 门,它与流体力学没有或多或少的联系。
航空工程和造船工业中,飞机和船的外形设 计;在水利工程中,大型水利枢纽,水库,水 电站,洪峰预报,河流泥沙;动力机械中蒸气 透平,喷气发动机,压缩机,水泵;在石油工 业中,油气集输,油、气、液的分离,钻井泥 浆循环,注水,压裂,渗流;金属冶炼和化学 工业等。
例如:在标准状态下, 1μm3任何气体含 有个分子2.69×107。 液体分子间距比气体小, 1μm3液体体积中有3.35×1010液体分子个。
PPT文档演模板
工程流体力学1
在大多数工程应用中,人们关心的是大量 分子的总体统计效应,而不是单个分子的行为, 流体力学的一切宏观参数(密度、温度、压强) 都是大量分子行为的统计平均值。当从宏观角 度研究流体的机械运动时,就认为流体物质是 连续。
在流体力学中,把流体质点作为最小的研 究对象,每个质点都含有大量的分子,故分子 随机出入该微小体积不会影响宏观特性,能保 持宏观力学特性。因此,有理由认为流体是连 续介质。
PPT文档演模板
工程流体力学1
连续性介质模型特点:
1).客观上存在宏观上足够小而微观上足够大的 小体积,这个小体积在几何上为一个点,此点称 为流体质点;
流体力学概念总结
第一章绪论1. 工程流体力学的研究对象:工程流体力学以流体(包括液体和气体)为研究对象,研究流体宏观的平衡和运动的规律,流体与固体壁面之间的相互作用规律,以及这些规律在工程实际中的应用。
第二章流体的主要物理性质1. ★流体的概念:凡是没有固定的形状,易于流动的物质就叫流体。
2. ★流体质点:包含有大量流体分子,并能保持其宏观力学性能的微小单元体。
3. ★连续介质的概念:在流体力学中,把流体质点作为最小的研究对象,从而把流体看成是:1)由无数连续分布、彼此无间隙地;2)占有整个流体空间的流体质点所组成的介质。
4. 密度:单位体积的流体所具有的质量称为密度,以p表示。
5. 重度:单位体积的流体所受的重力称为重度,以丫表示。
6. 比体积:密度的倒数称为比体积,以u表示。
它表示单位质量流体所占有的体积。
7. 流体的相对密度:是指流体的重度与标准大气压下4C纯水的重度的比值,用d表示。
8. ★流体的热膨胀性:在一定压强下,流体体积随温度升高而增大的性质称为流体的热膨胀性。
9. ★流体的压缩性:在一定温度下,流体体积随压强升高而减少的性质称为流体的压缩性。
10. 可压缩流体:p随T和p变化量很大,不可视为常量。
11. 不可压缩流体:p随T和p变化量很小,可视为常量。
12. ★流体的粘性:流体流动时,在流体内部产生阻碍运动的摩擦力的性质叫流体的粘性。
13. 牛顿内摩擦定律:牛顿经实验研究发现,流体运动产生的内摩擦力与沿接触面法线方向的速度变化(即速度梯度)成正比,与接触面的面积成正比,与流体的物理性质有关,而与接触面上的压强无关。
这个关系式称为牛顿内摩擦定律。
14. 非牛顿流体:通常把满足牛顿内摩擦定律的流体称为牛顿流体,此时不随 d /dn而变化,否则称为非牛顿流体。
15. 动力粘度卩:动力粘度表示单位速度梯度下流体内摩擦应力的大小,它直接反映了流体粘性的大小。
16. 运动粘度v :在流体力学中,动力粘度与流体密度的比值称为运动粘度,以v表示。
工程流体力学知识点总结
工程流体力学知识点总结一、工程流体力学的内容1.流体力学的基本概念工程流体力学是一门重要的工程学科,它是研究运动的流体分布特性、流动过程的动力学特征、流体受力的控制机理以及提供理论支持的工程应用理论。
它综合了物理学、数学、材料学和力学等知识,它包括流体动力学、传热传质、流体力学和流体机械等方面的研究内容。
2.流体动力学流体动力学是流体运动的力学理论,它研究的是流体中的物理量,如流速、压力、密度等的变化和流体运动的规律。
它是流体物理学的基本内容,是工程流体力学的基础理论。
它的研究内容主要包括流体的静力学、流体的流变力学、流体的流动特性、流体的热力学性质、流体的动力学和流体的流动特性等。
3.传热传质传热传质是研究流体在传热和传质的过程中热量和物质的传递机理的一门学科。
它包括流体的热传导、热对流和热辐射、物质的传质、物质输运等方面的内容。
4.流体力学流体力学是一门综合学科,是研究流体的能量、动量和位置变化的动力学特性及其应用的学科。
流体力学研究的内容包括流体的流量和压力、流体的质量和动量、流体的流速、流体的流动特性等。
它主要研究的是流体受力的特性和运动特性,是工程流体力学中最重要的学科之一。
5.流体机械的理论流体机械是研究利用流体动力驱动转子的机械装置的科学,包括机械装置的流体的传动特性、涡轮机械和泵的流量控制、流体中的变频调速以及比热容与流场等。
它是工程流体力学中的重要内容,也是工程设计的重要基础。
二、工程流体力学的应用工程流体力学的基本理论可以应用于各种工程中,如机械制造、空气动力学、海洋技术、热能技术、新能源技术、能源储存和节能技术、化工反应技术等。
它在社会经济建设中发挥着重要作用,可以为社会生产提供良好的环境保护技术手段,也可以为工程设计和技术开发提供依据。
工程流体力学复习重点概念
三、简答题1、 稳定流动及不稳定流动。
---在流场中流体质点通过空间点时所有的运动要素都不随时间改变,这种流动称为稳定流;反之,通过空间点处得流体质点运动要素的全部或局部要素随时间改变,这种流动叫不稳定流。
2、 产生流动阻力的原因。
---外因:水力半径的大小;管路长度的大小;管壁粗糙度的大小。
内因:流体流动中永远存在质点的摩擦和撞击现象,质点摩擦所表现的粘性,以及质点发生撞击引起运动速度变化表现的惯性,才是流动阻力产生的根本原因。
3、 串联管路的水力特性。
---串联管路无中途分流和合流时,流量相等,阻力叠加。
串联管路总水头损失等于串联各管段的水头损失之和,后一管段的流量等于前一管段流量减去前管段末端泄出的流量。
4、 如何区分水力光滑管和水力粗糙管,两者是否固定不变?---不是固定不变的。
通过层流边层厚度及管壁粗糙度值的大小进展比拟。
水力粗糙管。
水力光滑管;∆<∆>δδ5、 静压强的两个特性。
---1.静压强的方向是垂直受压面,并指向受压面。
2.任一点静压强的大小和受压面方向无关,或者说任一点各方向的静压强均相等。
6、 连续介质假设的内容。
---即认为真实的流体和固体可以近似看作连续的,充满全空间的介质组成,物质的宏观性质依然受牛顿力学的支配。
这一假设忽略物质的具体微观构造,而用一组偏微分方程来表达宏观物理量〔如质量,数度,压力等〕。
这些方程包括描述介质性质的方程和根本的物理定律,如质量守恒定律,动量守恒定律等。
7、 实际流体总流的伯诺利方程表达式为〔22222212111122z g v a p h g v a p z +++=++-γγ〕,其适用条件是稳定流,不可压缩流体,作用于流体上的质量力只有重力,所取断面为缓变流动。
8、 因次分析方法的根本原理。
---就是因次和谐的原理,根据物理方程式中各个项的因次必须一样,将描述复杂物理现象的各个物理量组合而成无因次数群π,从而使变量减少。
工程流体力学
§1.1 流体的定义
一、流体特征(续)
液体与气体的区别 液体的流动性小于气体; 液体具有一定的体积,并取容器的形状; 气体充满任何容器,而无一定体积。
流体的定义
流体是一种受任何微小的剪切力作用时,都 会产生连续变形的物质。 流动性是流体的主要特征。
§1.2 连续介质假说
微观:流体是由大量作无规则热运动的分子所组成, 分子间存有空隙,在空间上是不连续的。
在通常情况下,一个很小的体积内流体的分子数量极多;
例如,在标准状态下,1mm3体积内含有2.69×1016个气体分 子,分子之间在10-6s内碰撞1020次。
宏观:流体力学研究流体的宏观机械运动,研究的是 流体的宏观特性,即大量分子的平均统计特性。 结论:不考虑流体分子间的间隙,把流体视为由无 数连续分布的流体微团组成的连续介质。
1686年牛顿(Newton,I.)发表了名著《自然哲学的数学原理》 对普通流体的黏性性状作了描述,即现代表达为黏性切应力 与速度梯度成正比—牛顿内摩擦定律。为了纪念牛顿,将黏 性切应力与速度梯度成正比的流体称为牛顿流体。 18世纪~ 19世纪,流体力学得到了较大的发展,成为独立的一门学科。 古典流体力学的奠基人是瑞士数学家伯努利(Bernoulli,D.) 和他的亲密朋友欧拉(Euler,L.)。1738年,伯努利推导出了 著名的伯努利方程,欧拉于17 55年建立了理想流体运动微分 方程,以后纳维(Navier,C .-L.-M.-H.)和斯托克斯(Stokes, G.G.)建立了黏性流体运动微分方程。拉格朗(Lagrange)、 拉普拉斯(Laplace)和高斯(Gosse)等人,将欧拉和伯努利所 开创的新兴的流体动力学推向完美的分析高度。但当时由于 理论的假设与实际不尽相符或数学上的求解困难,有很多疑 不能从理论上给予解决。
工程流体力学原理介绍
如果孔口直径d远小于管道直径D,则称为小孔口,(d/D)4≈0 于是从上式可得小孔口的出流速度以及所有的孔口出流系 数根据:孔口出流射入大气后即成为平抛运动,通过分析这 种运动规律可得与雷诺数有关的各种出流系数曲线图
流体力学
大孔口出流常常用于孔板流量计中,小孔口出流常常用于 小孔阻尼器或小空节流中; 孔板、喷嘴和文丘里管流量计原理:静压能转变成动能, 流量大小表现为压力降的大小。当d并非远小于D时,
流体力学
局部阻力:管路的功用是输送流体,为了保证流体输送 中可能遇到的转向、调节、加速、升压、过滤、测量 等需要,在管路上必须要装管路附件。例如常见的弯 头、三通、检测表、变径段、进出口、过滤器、溢流 阀、节流阀、换向阀等。
流体力学
经过这些装置时,流体运动受到扰乱,必然产生压强(或水 头、能量)损失,这种在管路局部范围内产生损失的原因 统称为局部阻力。 局部水头损失:hf=ξv2/2g ξ为局部阻力系数
流体力学
雷诺通过实验测定得知: 当Re>13800时,管中流动状态是紊流; Re<2320时,管中流动状态是层流; 2320<Re<13800时,层流紊流的可能性都存在,不过紊流 的情况居多。因为雷诺数较高时层流结构极不稳定,(实验 表明)遇有外界振动干扰就容易变为紊流。
流体力学
管路计算的基础知识 流体在管路中所受的阻力包括沿程阻力和局部阻力 沿程阻力:在等径管路中,由于流体与管壁以及流体本身的 内部摩擦,使得流体能量沿流动方向逐渐降低,这种引起能 量损失的原因叫作沿程阻力。用压强损失、水头损失、或 功率损失三种形式表示。 压强损失:∆p=32 µ lv/d2 水头损失:hf=32 עlv/gd2=λlv2/2gd 功率损失:N=128 µlQ2/πd4
工程流体力学-第三章
三、流管、流束和总流
1. 流管:在流场中任取一不是流 线的封闭曲线L,过曲线上的每 一点作流线,这些流线所组成的 管状表面称为流管。 2. 流束:流管内部的全部流体称 为流束。 3. 总流:如果封闭曲线取在管道 内部周线上,则流束就是充满管 道内部的全部流体,这种情况通 常称为总流。 4. 微小流束:封闭曲线极限近于 一条流线的流束 。
ax
dux dt
dux (x, y, z,t) dt
ux t
ux
ux t
uy
ux t
uz
ux t
ay
du y dt
duy (x, y, z,t) dt
u y t
ux
u y t
uy
u y t
uz
u y t
az
du z dt
duz (x, y, z,t) dt
x x(a,b,c,t)
y y(a,b,c,t)
z z(a,b,c,t)
欧拉法中的迹线微分方程
速度定义
u dr (dr为质点在时间间隔 dt内所移动的距离) dt
迹线的微分方程
dx dt
ux (x, y, z,t)
dy dt uy (x, y, z,t)
dz dt uz (x, y, z,t)
说明: (1)体积流量一般多用于表示不可压缩流体的流量。 (2)质量流量多用于表示可压缩流体的流量。
(3) 质量流量与体积流量的关系
Qm Q
(4) 流量计算 单位时间内通过dA的微小流量
dQ udA
通过整个过流断面流量
Q dQ udA A
工程流体力学基本概念复习
▲连续介质模型:将流体作为无穷多稠密、没有间隙的流体质点构成的连续介质▲压缩性质和膨胀性质:流体在一定的温度下压强增大,体积减小;压强一定,温度变化,体积相应变化。
所有流体都具有这种特性。
▲流体黏性:流体流动时产生的内摩擦力的性质,是物体固有属性,但只有在运动状态下才能显现。
▲影响粘性的因素:①压强:压强改变对气体和液体的粘性的影响有所不同。
由于压强变化,对分子的动量交换影响非常小,所以气体的粘性随压强的变化很小。
压强增大时对分子的间距影响明显,故液体的粘性受压强变化的影响较气体大。
②温度:温度升高时气体的分子热运动加剧,气体的粘性增大,分子距增大对气体粘性的影响可以忽略不计。
对于液体,由于温度升高体积膨胀,分子距增大,分子间的引力减小,故液体的粘性随温度的升高而减小。
而液体温度升高引起的液体分子热运动的变化对粘性的影响可以忽略不计。
▲理想流体:为了处理工程实际问题方便起见建立一个没有黏性的理想流体模型,即把假想没有黏性的流体作为理想流体。
▲牛顿流体:剪切应力和流体微团角变形速度成正比的流体即符合牛顿内摩擦定律的流体▲非牛顿流体:剪切应力和角变形之间不符合牛顿内摩擦定律的流体称为非牛顿流体▲表面张力:自由液体分子间引力引起的,其作用结果使得液面好像一张紧的弹性膜▲毛细现象:由于内聚力和附着力的差别使得微笑间隙的液面上升和下降的现象▲绝对压强:以绝对真空为基准度量的压强▲相对压强/计示压强:以大气压为基准的度量▲真空:当被测流体的绝对压强低于大气压时,测得的计示压强为负值,负的表压强▲流体静压强:当流体处于平衡或相对平衡状态时,作用在流体上的应力只有法向应力而没dF???pp(单位Pa)有切向应力;此时,流体作用面上的法向应力就是静压强p,nnn dA ▲流体静压强特性:①流体静压强的作用方向沿作用面的内法线方向。
②静止流体中任一点的流体静压强与作用面在空间的方位无关,只是坐标点的连续可微函数。
▲欧拉平衡方程物理意义:在静止流体内部的任一点上,作用在单位质量流体上的质量力和流体静压强相平衡。
工程流体力学
vx v y vz 0 x y z div v 0 v 0
定常
不可压缩 vx v y vz 0 x y z div v 0 v 0
例题1(p49,例3-3)船用真空泵利用海水流经喷嘴 时所形成的真空来抽取空气.进口截面直径 d1=5cm,出口直径d=2cm.进口va1=6.2m/s, 求出口va2.
(2)数学表达式
2.流线 在某一瞬时,在某一曲线上任意一点的切线方向与流体在该点
(1)定义 的速度方向一致。 (2)数学表达式 (3)特点
dx dy dz vx x, y, z, t vy ( x, y, z, t ) vz ( x, y, z, t )
二.流管与过水段面
1.流管 在流场中作一条本身不是流线又不相交的封闭曲线,通过这
1.流量
单位时间内通过某一空间表面的流体的量,称为经过该表面的流量。
2.平均流速
是指流体流经某一空间表面流速大小的平均值。
3.例题3-2:
流体流经半径r0的直圆管时,其速度分布对称于r=0 的轴线,为抛物线分布 vx=vxmax(1-(r/r0)2).式中vx为 流体在横截面上的最大速度,为已知,求体积流量和平均流 速.
(1)vx ax 2 by 2 cz 2 , v y dxy eyz fzx y2 z2 x2 z 2 (2)vx ln 2 2 , v y sin 5 连续方程
一.微元流束与总流的连续方程
1.总流连续方程的形式 2.具有分支的管流计算 3.方程推导
(1)微元流束连续方程的推导 (2)总流连续方程的推导
二.直角坐标系中的连续方程
工程流体第一章
考核方法、学习要求、答疑 考核方法、学习要求、
考核方法: 1. 平时考勤、作业成绩占20%; 考核方法: 平时考勤、作业成绩占20% 2. 期末考试占80%。 期末考试占80% 学习要求: 学习要求: 1. 重点掌握 : 基础流体力学的基本概念 、 基本 重点掌握:基础流体力学的基本概念、 方程、 方程、基本应用 2. 按时 、 独立 、 认真完成作业 。 作业要求画图 , 按时、 独立、 认真完成作业。 作业要求画图, 代入数据。 代入数据。 答疑:1. 随时、随地欢迎同学们交流; 答疑: 随时、随地欢迎同学们交流; 2.主楼F613热工教研室; 主楼F613热工教研室 热工教研室; 3.Tel:61772472(O) Tel:61772472(O) 12 4.Email:lwy@ Email:lwy@.
7
4、我国水利事业的历史: 我国水利事业的历史:
4000多年前的 大禹治水”的故事——顺水之性,治 顺水之性, 4000多年前的 “大禹治水”的故事 顺水之性 水须引导和疏通 秦朝在公元前256 前210年修建了我国历史上的三大 秦朝在公元前256—前210年修建了我国历史上的三大 256 水利工程(都江堰、郑国渠、灵渠) 水利工程(都江堰、郑国渠、灵渠)-明渠水流和堰流 古代的计时工具“铜壶滴漏” 古代的计时工具“铜壶滴漏”——孔口出流 孔口出流 清朝雍正年间,何梦瑶在《算迪》一书中提出流量等 清朝雍正年间,何梦瑶在《算迪》 于过水断面面积乘以断面平均流速的计算方法。 于过水断面面积乘以断面平均流速的计算方法。 隋朝(公元587 610年 587—610 隋朝(公元587 610年)完成的南北大运河 隋朝工匠李春在冀中蛟河修建(公元605—617 隋朝工匠李春在冀中蛟河修建(公元605 617年)的 605 617年 赵州石拱桥——拱背的4个小拱,既减压主拱的负载, 拱背的4 赵州石拱桥 拱背的 个小拱,既减压主拱的负载, 又可宣泄洪水。 又可宣泄洪水。 8
工程流体力学
工程流体力学引言工程流体力学是研究流体在工程应用中行为的科学和技术领域。
它涉及流体的运动、压力、力学特性、流动的稳定性等问题。
工程流体力学是许多工程领域的基础,如航空航天、能源、建筑等。
本文将介绍工程流体力学的基本原理、应用以及相关的数学模型和实验技术。
基本概念流体的特性流体是一种物质的形态,其特点是可以流动。
流体包括气体和液体。
相比固体,流体在外力作用下可以流动,具有较高的分子间自由度。
流体的主要特性包括密度、压力、速度等。
流体力学基本方程工程流体力学研究流体的运动和相互作用。
在研究中,以下几个基本方程是非常重要的:•质量守恒方程:描述了流体质量的守恒原理,表示流体质量的变化率与流体的进出和积累有关。
•动量守恒方程:描述了流体的动量守恒原理,表示流体的动量变化率与外力和内力有关。
•能量守恒方程:描述了流体的能量守恒原理,表示流体的能量变化率与外界的热流和功有关。
•热力学状态方程:描述了流体在热平衡状态下的物态关系,如理想气体状态方程等。
流体的流动性质流体的流动性质是工程流体力学的核心内容之一。
流动性质包括速度场、压力场、流线和湍流等。
流体的流动性质受到流体的物理性质、边界条件和流动过程中的各种相互作用的影响。
数学模型和实验技术为了研究流体的行为和特性,工程流体力学采用了数学模型和实验技术。
数学模型数学模型是通过建立流体运动的数学方程来描述和预测流体行为的工具。
常用的数学模型包括流体运动的偏微分方程,如Navier-Stokes方程,以及一些简化的模型,如边界层理论、湍流模型等。
数学模型的选择和建立要考虑流体的性质和问题的复杂程度。
实验技术实验技术是验证和研究数学模型的重要手段。
工程流体力学中常用的实验技术包括水槽试验、风洞试验、流速测量技术等。
实验技术可以帮助研究者观察流体的实际行为,获取流体的相关参数,并与数学模型的预测结果进行比较。
应用领域工程流体力学广泛应用于各个工程领域。
以下是一些常见的应用领域:航空航天工程航空航天工程是工程流体力学的重要应用领域。
工程流体力学第1章_流体的主要物理性质
1
第1章 流体的主要物理性质
§1.1 流体的概念
1、什么是流体?
凡是没有一定形状、容易流动的物质都称为流体。流体包括液体和气体。
2
第1章 流体的主要物理性质
2、流体的基本特征
与固体相比较: 固体:分子间距小,分子排列紧密,不易变形,体积固定。 从力学性质看:可以承受压力、拉力、切力。 流体:分子间距大,分子排列松散,易变形(受任何微小剪切力作用时, 就要发生连续不断的变形,即流动),易流动性是流体和固体的显著区 别。从力学性质看:可以承受压力,一般不能承受拉力,静止时不受切 力。 液体与气体的不同点: 液体:不容易被压缩,体积较为固定,在容器内有自由表面。 气体:很容易被压缩,体积不固定,无自由表面。
数学表达式:
M MV ,即 水 水 M 水 M 水 V 水 水
3 注意:式中 水、 水 始终为常数,应记住: 水 1000kg m
水 9800N m3
气体的相对密度;在同温同压下,气体的密度与空气的密度之比。
注意:相对密度 是一比值,为无因次量。
粘性:指当流体微团发生相对运动时产生切向阻力的性质。
18
第1章 流体的主要物理性质
(2)粘性产生的原因
粘性内摩擦力实质上是流体微观分子作用的宏观表现。分析其产生的物理原 因,需要从分子微观运动来说明。
粘性产生的原因有两个:
①由于分子间的吸引力(内聚力); ②由于分子不规则运动的动量交换。
对于液体:由于分子间距小,在低速流动时,不规则运动较弱,因此,粘性 力的产生主要取决于分子间的引力。 对于气体:由于分子间距较大,吸引力很小,不规则运动强烈,所以,其粘 性力产生的原因主要取决于分子不规则运动的动量交换。
工程流体力学禹华谦 第四版
工程流体力学禹华谦第四版引言工程流体力学是研究流体在工程中的运动和相互作用的学科。
它在工程领域中具有广泛的应用,例如航空航天工程、建筑工程、能源工程等。
禹华谦教授的《工程流体力学》是工程流体力学领域的经典教材之一。
本文将对禹华谦教授所著的《工程流体力学》第四版进行介绍和评价。
内容概述《工程流体力学禹华谦第四版》是一本全面系统地介绍了工程流体力学理论和应用的教材。
全书共分为十三章,包括流体力学基础、不可压缩流体力学基本理论、层流和湍流、动量守恒方程、控制体积法基本方程、动量方程高级应用、能量守恒方程、流体阻力和阻力系数、边界层流动、流体的相似性与模型试验、柱状体运动、水浪和气浪、小波流的振动与扰动。
每章都有清晰的目录和详细的内容,涵盖了工程流体力学的基础知识和经典理论,同时也介绍了一些高级应用和实际问题的解决方法。
通过理论与实践相结合的方式,读者能够更好地理解和应用工程流体力学的知识。
特点《工程流体力学禹华谦第四版》具有以下几个特点:1.系统全面:本书内容覆盖了工程流体力学的各个方面,从基础理论到高级应用,涵盖了广泛的实际工程问题。
2.逻辑清晰:每章内容都按照一定的逻辑顺序组织,层次清晰,易于理解和学习。
作者通过详细的讲解和示例,帮助读者更好地掌握各个概念和理论。
3.理论实践结合:本书理论与实践相结合,既介绍了基础理论,又通过实际问题进行了具体的应用。
这样使得读者能够更好地将理论知识应用于实际工程问题的解决中。
4.兼顾深度和广度:本书不仅深入探讨了工程流体力学的基础理论和经典问题,同时也介绍了一些前沿和热点问题,如边界层流动、柱状体运动、水浪和气浪等,使读者对工程流体力学的各个方面都有所了解。
评价《工程流体力学禹华谦第四版》是一本非常优秀的工程流体力学教材,具有以下几个优点:1.内容全面:作者通过系统的组织方式,将工程流体力学的各个方面内容完整地呈现给读者,让读者对工程流体力学有一个全面的了解。
2.讲解详细:作者对每个概念和理论都进行了详细的讲解,配以图表和示例,使得读者更容易理解和掌握。
工程流体力学3.2流体运动的一些基本概念 2
流线
某一瞬时,速度方向线 欧拉法
微分方程
u
dx dt
(t为自变量,
v
dy dt
x, y, z 为t
w
dz dt
的函数 )
dx dy dz u(x, y, z,t) v(x, y, z,t) w(x, y, z,t)
(x,y,z为t的函数,t为参数)
第二节 流体运动的一些基本概念
质量流量(kg / s):
qv V dA
A
qm V dA
A
平均流速——是一个假想的流速,即பைடு நூலகம்定在有效截面上各点都以相
同的平均流速流过,这时通过该有效截面上的体积流量仍与各点以真 实流速流动时所得到的体积流量相同。
V qv A
第二节 流体运动的一些基本概念
知识点(三)
流管 流束 流量
第二节 流体运动的一些基本概念
一、 流管、流束和总流
流管——在流场中作一不是流线的封闭周线C,过该周线上的所有流线
组成的管状表面。 流体不能穿过流管,流管就像真正的管子一样将其内外的流体分开。 定常流动中,流管的形状和位置不随时间发生变化。
流束——充满流管的一束流体。 微元流束——截面积无穷小的流束。
第二节 流体运动的一些基本概念
二. 一维流动、二维流动和三维流动
一维流动: 流动参数是一个坐标的函数; 二维流动: 流动参数是两个坐标的函数; 三维流动: 流动参数是三个坐标的函数。
对于工程实际问题,在满足精度要求的情况下,将三维流动简 化为二维、甚至一维流动,可以使得求解过程尽可能简化。
二维流动→一维流动
定常流动: x, y, z
工程流体力学
在通常情况下,一个很小的体积内流体的分子数量极多; 例如,在标准状态下,1mm3体积内含有2.69×1016个气体分
子,分子之间在10-6s内碰撞1020次。
宏观:流体力学研究流体的宏观机械运动,研究的是 流体的宏观特性,即大量分子的平均统计特性。
结论:不考虑流体分子间的间隙,把流体视为由无 数连续分布的流体微团组成的连续介质。
工程流体力学
目录
前言 第一章 流体的定义与物理性质 第二章 流体静力学 第三章 流体动力学 第四章 相似原理和量纲分析 第五章 粘性流动和水力计算 第六章 流体的涡旋流动 第七章 理想不可压流体的无旋流动
前言
一、流体力学发展简史
流体力学是一门基础性很强和应用性很广的学科, 是力学的一个重要分支。它的研究对象随着生产的 需要与科学的发展在不断地更新、深化和扩大。 60年代以前,它主要围绕航空、航天、大气、海 洋、航运、水利和各种管路系统等方面,研究流体 运动中的动量传递问题,即局限于研究流体的运动 规律,和它与固体、液体或大气界面之间的相互作 用力问题。60年代以后,能源、环境保护、化工 和石油等领域中的流体力学问题逐渐受到重视,这 类问题的特征是:尺寸小、速度低,并在流体运动 过程中存在传热、传质现象。这样,流体力学除了 研究流体的运动规律以外,还要研究它的传热、传 质规律。同样,在固体、液液体或气体界面处,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 绪论
1、流体质点是指体积小到可以看作一个几何点,但它又含有大量的分子,且具有诸如速度、密度及压强等物理量的流体微团。
1、 牛顿内摩擦定律是d d v y τμ
=,而且速度梯度d d v y 是流体微团的剪切变形速度d d t γ,故
d d t γ
τμ=。
2、 流体的运动黏度υ的国际单位是/s m 2。
3、 不考虑黏性的流体称为理想流体。
4、 流体的特性是既不能承受拉力,同时具有很大的流动性,即平衡时不能承受切应力。
5、 满足牛顿内摩擦定律的流体称为牛顿流体。
6、 液体的黏性主要由分子内聚力决定。
第2章 流体静力学
1、相对压强的起算基准是当地大气压。
2、金属压力表的读值是相对压强。
3、真空压强是当相对压强为负值时它的绝对值。
4、绝对压强-当地大气压=相对压强,当相对压强为负值时,其绝对值即为真空压强。
5、在液体中潜体所受浮力的大小与潜体的密度成正比。
6、由于静止流场均可作为理想流体,因此其压强分布规律既适用于理想流体,也适用于黏
性流体。
7、由于平壁上的压强随着水深的增加而增加,因此压力中心淹深h 要比平壁形心淹深C h 大。
8、流体处于平衡状态的必要条件是质量力有势。
9、由于流体作加速直线运动时,质量力除了重力外还有惯性力。
第3章流体运动学
1、用欧拉法表示的流体质点的加速度为
()d d t t ∂==+∇∂v v a v v 2、 恒定流是指用欧拉法来观察流体的运动,在任何固定的空间点流体质点的所
有物理量皆不随时间而变化的流动.
3、一元流动限于运动参数是一个空间坐标和时间变量的函数。
4、 均匀流是迁移加速度为零。
5、无旋运动也称势流,是指流体微团作无旋转的流动,或旋度等于零的流动。
6、平面流动只要满足连续方程,则流函数是存在的。
7、对于恒定流动,流线和迹线在形式上是重合的。
8、流体微团的运动由以下三种运动:平移、旋转、变形迭加而成。
而刚体是不
变形的物体。
9、一维流动的连续方程VA C =成立的条件是不可压缩流体,倘若是可压缩流体,
则连续方程为VA C ρ=。
10、流线和流线在通常情况下是不能相交的,除非相交点该处的速度为零(称为
驻点),但通常情况下两条流线可以相切。
11、欧拉法也称空间点法,它是占据某一个空间点去观察经过这一空间点上的流
体质点的物理量,因而是间接的。
而拉格朗日法(质点法)是直接跟随
质点运动观察它的物理量。
12、对于恒定流动,流线和迹线在形式上一定重合,但对于非恒定流动,在某些
特殊情况下也可能重合,举一个简单例子,如果流体质点作直线运动,
尽管是非恒定的,但流线和迹线可能是重合。
13、速度势函数(速度势)存在的条件是势流(无旋流动)。
14、流体作无旋运动特征是任意一点的涡量都为零。
15、流函数存在条件是不可压缩流体平面流动,而速度势存在条件是无旋流动,
即流动是平面势流。