中考数学试题分类汇编 整式与分式
北京中考数学试题分类汇编
目录北京中考数学试题分类汇编 ............................................................................................................一、实数(共18小题)..................................................................................................................二、代数式(共2小题)................................................................................................................三、整式与分式(共14小题)......................................................................................................四、方程与方程组(共11小题)..................................................................................................五、不等式与不等式组(共6小题) ............................................................................................六、图形与坐标(共4小题)........................................................................................................七、一次函数(共11小题)..........................................................................................................八、反比例函数(共5小题)........................................................................................................九、二次函数(共10小题)..........................................................................................................一十、图形的认识(共11小题)..................................................................................................一十一、图形与证明(共33小题) ..............................................................................................一十二、图形与变换(共12小题) ..............................................................................................一十三、统计(共15小题)..........................................................................................................一十四、概率(共6小题)............................................................................................................北京中考数学试题分类汇编(答案) ............................................................................................一、实数(共18小题)..................................................................................................................二、代数式(共2小题)................................................................................................................三、整式与分式(共14小题)......................................................................................................四、方程与方程组(共11小题)..................................................................................................五、不等式与不等式组(共6小题) ............................................................................................六、图形与坐标(共4小题)........................................................................................................七、一次函数(共11小题)..........................................................................................................八、反比例函数(共5小题)........................................................................................................九、二次函数(共10小题)..........................................................................................................一十、图形的认识(共11小题)..................................................................................................一十一、图形与证明(共33小题) ..............................................................................................一十二、图形与变换(共12小题) ..............................................................................................一十三、统计(共15小题)..........................................................................................................一十四、概率(共6小题)............................................................................................................2011-2016年北京中考数学试题分类汇编本套试卷汇编了11-16年北京市中考数学试题真题,将真题按照知识点内容重新进行编排,通过试卷可看出北京中考数学学科各知识点所占整套试卷的百分比,知识点所对应的出题类型。
2019-中考数学真题分类汇编(150套)分式专题
2019-2020 年中考数学真题分类汇编( 150 套) 分式专题一、选择题1.( 2011 云南红河哈尼族彝族自治州)使分式1 有意义的 x 的取值是3 xA.x ≠0B. x≠± 3C. x≠- 3D. x≠3【答案】 D2.( 2011 湖北随州) 化简: 1x 13) 的结果是()(3 x 2 ) ( xx 1A . 2B .2C .2D .x4x 1 x3x 1【答案】 B3.( 2011 福建三明) 当分式1 没有意义时, x 的值是x2( )A . 2B .1C . 0D .— 2【答案】 A4.( 2011 山东淄博) 以下运算正确的选项是( A ) ab1 ( B )mn m na b baab a b( C ) b b 1 1( D )2 a b 1aaaa b a 2 b 2a b【答案】 D5.( 2011 云南玉溪)若分式b 2 1的值为 0,则 b 的值是b 2 -2b-3A. 1B. -1C.± 1D. 2【答案】 A6.( 2011 内蒙古包头) 化简x 2 4 2 xx ,其结果是()x 24x 4 x2x2A .8B .8C .88 x 222D .xxx 2【答案】 D7.( 2011 江苏苏州) 化简a1 a1的结果是A .1a a 2.1B. aC. a - 1D1aa【答案】 C8.( 2011 山东威海) 化简bb 的结果是aa 2aA . a 1B . a 1C . ab 1D . ab b【答案】 B9.( 2011 浙江嘉兴) 若分式 3x6的值为0,则(▲)2x 1( A ) x 2( B ) x1( C ) x1 ( D ) x 222【答案】 D10.( 2011 浙江绍兴) 化简 11 , 可得 ( )x 1x 1A.2 B.2C. 2xD.2 x1x 21x 2 1x 21x 2 【答案】 B11.( 2011 山东聊城)使分式 2x1没心义的 x 的值是( )2x 1A . x =1 B . x =1C . x1 D . x12222【答案】 B12.( 2011 四川南充) 计算 1x 结果是().1xx1(D ) x ( A ) 0( B )1( C )- 1【答案】 C13.( 2011 黄冈) 化简: (1x 1 ) ( x 3) 的结果是( )x 3x 2 1A . 2B .2C .x 2 D .x4x 13x 1【答案】 Ba 2b 2的结果是14.( 2011 河北) 化简aa bbA .a2b2. ab. a b.1BCD【答案】 B15.( 2011 湖南株洲) 若分式2 有意义 ,则 x 的取值范围是x 5 ...A . x 5B . x5C . x 5D . x5【答案】 A16.( 2011 湖北荆州) 分式 x21 的值为0,则x1A. .x=-1 B .x=1C.x=±1D.x=0【答案】 B17.( 2011 福建泉州南安) 要使分式1 有意义,则 x 应满足的条件是( ).x 1A.x 1B.x1 C .x 0 D .x 1【答案】 B18.( 2011 广西柳州)若分式2有意义,则x 的取值范围是x3A .x≠3B. x=3C. x<3D. x>3【答案】 A二、填空题1.( 2011 四川凉山)已知:x24x 4 与| y 1 |互为相反数,则式子x y(x y)y x的值等于。
数学中考试题分类汇编(分式)
15.(芜湖市)已知,则代数式的值为 山东省马新华的分类 一、选择1、(宜宾市)若分式122--x x 的值为0,则x 的值为( ) A. 1 B. -1 C. ±1 D.2 1、(本题共3小题,每小题5分,共15分)(宜宾市)(1)请先将下式化简,再选择一个你喜欢又使原式有意义的数代入求值..121)11(2+-÷--a a a a 2.(四川省资阳市)先化简,再求值:(212x x --2144x x -+)÷222x x-,其中x =1.1、(08凉山州)先化简再求值2111224x x x -⎛⎫+÷⎪--⎝⎭,其中,3x =. (襄樊市)当m = 时,关于x 的分式方程213x mx +=--无解(黄冈市)计算()a b a bb a a+-÷的结果为( )A .a b b -B .a b b +C .a b a -D .a b a +简求值:222161816416x x x x x x ⎛⎫-+÷ ⎪++--⎝⎭,其中1x =. 答(恩施自治州)请从下列三个代数式中任选两个构成一个分式,并化简该分式x2-4xy+4y2x2-4y2x-2y(无锡)计算22()ab ab的结果为( ) A.b B .aC.1D.1b(常州市) 化简:211111a a a a +---+ (无锡)先化简,再求值:244(2)24x x x x -++-,其中x = 113x y -=21422x xy yx xy y----(苏州)若220x x --=2)A .3B .3 C D 或3 (苏州)解方程:222(1)160x x x x+++-=. (威海市)方程423532=-+-xx x 的解是 . (威海市)先化简,再求值:⎪⎭⎫⎝⎛--÷-+x x x x x 1211,其中2=x .(枣庄市)先化简,再求值:22212221x x x x x x --+--+÷x ,其中x =23. (枣庄市)某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成; (2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.(西宁市) 2.写出一个含有字母x 的分式(要求:不论x 取任何实数,该分式都有意义) .用你发现的规律解答下列问题.111122=-⨯ 1112323=-⨯ 1113434=-⨯ ┅┅(1) 计算111111223344556++++=⨯⨯⨯⨯⨯ . (2)探究1111......122334(1)n n ++++=⨯⨯⨯+ .(用含有n 的式子表示) (3)若1111......133557(21)(21)n n ++++⨯⨯⨯-+的值为1735,求n 的值.三、解答题(甘肃省白银市)化简: a a a a a a 4)22(2-⋅+--. (重庆市)先化简,再求值:32444)1225(222+=++-÷+++-a a a a a a a ,其中 以下是江苏省王伟根分类全国中考数学试题分类汇编(分式)1. (扬州市)(2)课堂上,李老师出了这样一道题:已知352008x -=,求代数式)1x 3x 1(1x 1x 2x 22+-+÷-+-的值。
中考数学专题复习:整式与分式测试题
2019-2020年中考数学专题复习:整式与分式测试题一、选择题(本大题共6题,每题4分,满分24分)1..化简(-x 2)3的结果是 …………………………………………( )(A)x 5 ; (B) x 6 ; (C) -x 5 ; (D) - x 6 .2. 下列计算中,正确的是……………………………………… ( )(A) ; (B);(C); (D) .3.化简:(a +1)2-(a -1)2=……………………………………… ( )(A )2; (B )4; C )4a; (D )2a 2+2.4.计算()()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-+-+313191331x x x x 的结果是………………( ) (A); (B); (C )0; (D).5.若把分式中的x 和y 都扩大3倍,那么分式的值………( )(A)扩大3倍;(B)不变; (C )缩小3倍; (D)缩小6倍.6. 计算:结果为…………………………………( )(A);1; (B)-1;; (C ); (D).二、填空题(本大题共12题,每题4分,满分48分)7.当x =2,代数式的值为________________.8.分解因式: .9.a 3÷a ·=___________________10.计算(a +2b )(a —b )= _______ .11. (a -b )2+ ____ =(a +b ) 212.分解因式: x 2-xy -2y 2= .13.当x 时,分式值为0;x 时,这个分式值无意义.14.若是同类项,则m +n =____________.15.计算:= _______________________.16.化简: __________________ .17. (16x 2y 3z +8x 3y 2z )÷8x 2y 2=_______________________.18.5号公路全长s 千米,骑车t 小时可跑完全程,若要跑完全程的时间减少40分钟,则每小时应多走___________千米.三、解答题(本大题共7题,满分78分)19. (本题满分10分) (5x -3y -2xy )-(6x +5y -2xy ),其中,解:20. (本题满分10分)先化简再求值:,其中解:21. (本题满分10分)(1)因式分解:2x -1+y 2-x 2 ; (2)因式分解:.22. (本题满分12分) (1)先化简112111122++-⋅--+x x x x x ,再求出x =时的值.(2))232(212++-÷-++x x x x x ,其中23. (本题满分12分)(1)已知(a +b )2=15,ab =2,求①a 2+b 2;②(a -b )2的值.(2)已知:222,053nm m n m m n m m n m ---++=-求的值.24.(1) (本题满分12分)已知方程,求①; ②.(2)已知x y y x xy y x +=-=+求,25,5的值.25. (本题满分12分)若,求[12(a +b )3(b -a )]3÷[4(a +b )2(a -b )]2的值.24073 5E09 帉; 122818 5922 夢,32110 7D6E 絮27114 69EA 槪23096 5A38 娸B25859 6503 攃#35151 894F 襏。
中考数学考前满分计划:整式、分式、二次根式、因式分解(含解析)
○热○点○考○点○解○读一、整式1.单项式与多项式单独的一个数或一个字母也是单项式.2.合并同类项合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变,例如:合并同类项3x 2y 和4x 2y 为3x 2y +4x 2y =(3+4)x 2y =7x 2y .3.整式的运算(1)整式的加减运算实际就是合并同类项.(2)整式的乘法:()()a b m n am an bm bn ++=+++.(3)整式的除法:单项式除以单项式时,把系数、相同字母的幂分别相除,作为商的因式,对于只在被除式中含有的字母,则照抄下来;多项式除以单项式时,用多项式的每一项分别除以单项式,再把所得的商相加.(4)乘法公式①平方差公式:22()()a b a b a b +-=-.②完全平方公式:222()2a b a ab b ±=±+.4.幂的运算性质(1)同底数幂相乘法则:m n m n a a a +⋅=(,m n 为整数,0a ≠)(2)幂的乘方法则:()m n mn a a =(,m n 为整数,0a ≠)(3)积的乘方法则:()n n n ab a b =(n 为整数,0ab ≠)整式、分式、二次根式、因式分解常识必背语言叙述:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.5.用十字相乘法分解因式利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )乘法法则.它的一般规律是:(1)对于二次项系数为1的二次三项式,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式(2)对于二次项系数不是1的二次三项式(a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数,使,,且,那么.一个式子是分式需满足的三个条件:q px x ++2))(()(2b x a x ab x b a x ++=+++c bx ax ++22121,,,c c a a a a a =⋅21c c c =⋅21b c a c a =+1221c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=易错易混2.约分(1)分式约分时,要注意不注意符号导致的错误.(2)要注意约分不彻底导致的错误.(3)约分时需注意分式的分子、分母都是乘积形式时才能进行约分;分子、分母是多项式时,通常先将分子、分母分解因式,再约分.(4)约分的结果是整式或最简分式.(5)分式的约分是恒等变形,约分前后分式的值不变.3.分解因式要彻底.方法必知1.同类项(1)几个项是不是同类项,一看所含字母是否完全相同.二看相同字母的指数是否相同.“二同”缺一不可.(2)同类项与单项式的系数无关,与字母顺序无关,几个常数项也是同类项.(3)同类项不一定是两项,也可以是三项,四项……但至少为两项.2.合并同类项(1)合并同类项时,注意合并的只是系数,字母部分不变,不要漏掉.(2)合并同类项时,注意各项系数的符号,尤其系数为负数时,不要遗漏负号,同时不要丢项.(3)如果两个同类项的系数互为相反数,合并同类项的结果为0.3.整式的加减的最后结果的要求:(1)不能含有同类项,即要合并到不能再合并为止;(2)一般按照某一字母的降幂或升幂排列;(3)不能出现带分数,带分数必须要化为假分数.4.整式的化简求值(1)化简求值题一般先按整式的运算法则进行化简,然后再代入求值.(2)在求整式的值时,代入负数时应用括号括起来,作为底数的分数也应用括号括起来5.约分时需要注意的问题:(1)如果分子、分母中至少有一个是多顶式,就应先分解因式,然后找出分子、分母的公因式,再约分.(2)注意发现分式的分子和分母的一些隐含的公因式,如a﹣5与5﹣a表面虽不相同,但通过提取“﹣”可发现含有公因式(a﹣5).(3)当分式的分子或分母的系数是负数时,可利用分式的基本性质,把负号提到分式的前面.通分时确定了分母乘什么,分子也必须随之乘什么,要防止只对分母变形而忽略了分子,导致变形前后分式的值发生变化而出错.6.分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,在运算过程中要注意正确地运用运算法则,灵活地运用运算律,使运算尽量简便.7.因式分解(1)因式分解是针对多项式而言的,一个单项式本身就是数与字母的积,不需要再分解因式;(2)因式分解的结果是整式的积的形式,积中几个相同因式的积要写成幂的形式;(3)因式分解必须分解到每一个因式都不能再分解为止;(4)因式分解与整式乘法是方向相反的变形,二者不是互为逆运算.因式分解是一种恒等变形,而整式乘法是一种运算.8.提公因式法(1)多项式的公因式提取要彻底,当一个多项式提取公因式后,剩下的另一个因式中不能再有公因式.(2)提公因式后括号内的项数应与原多项式的项数一样.(3)若多项式首项系数为负数时,通常要提出负因数.9.十字相乘法这类式子在许多问题中经常出现,其特点是:(1)二次项系数是1;(2)常数项是两个数之积;(3)一次项系数是常数项的两个因数之和.◇以◇练◇带◇学1.(鞍山)下列运算正确的是( )A .222(4)8ab a b =B .22423a a a +=C .642a a a ÷=D .222()a b a b +=+2.(攀枝花)我们可以利用图形中的面积关系来解释很多代数恒等式.给出以下4组图形及相应的代数恒等式:其中,图形的面积关系能正确解释相应的代数恒等式的有( )A .1个B .2个C .3个D .4个3.(邵阳)下列计算正确的是( )A .623a a a =B .235()a a =C .22()()a ba ba b a b +=+++D .01()13-=4.(内蒙古)下列运算正确的是( )A+=B .236()a a -=C .11223a a a+=D .21133b ab a b÷=5.(成都)若23320ab b --=,则代数式2222(1)ab b a ba a b---÷的值为 .6.x 的取值范围是 .7.(扬州)分解因式:24xy x -= .8.(内蒙古)分解因式:34x x -= .9.(盐城)先化简,再求值:2(3)(3)(3)a b a b a b +++-,其中2a =,1b =-.10.(滨州)先化简,再求值:22421()244a a a a a a a a -+-÷---+,其中a 满足211(6cos6004a a --⋅+︒=.1.(官渡区校级模拟)按一定规律排列的式子:a ,32a ,54a ,78a ,916a ,⋯,则第2024个式子为( )A .202320252a B .20244047(21)a -C .202340472a D .202440492a 2.(济南一模)下列运算正确的是( )A .22a b ab+=B .2222a b a b a b-=C .238()a a =D .84222a a a ÷=3.(金山区二模)单项式22a b -的系数和次数分别是( )A .2-和2B .2-和3C .2和2D .2和34.(龙岗区模拟)下列计算正确的是( )A .236a a a ⋅=B .2323a a a +=C .2234(3)218ab ab a b -⋅=-D .326(2)3ab ab b ÷-=-5.(中山市校级一模)下列各式从左到右的变形,因式分解正确的是( )A .2()a a b a ab+=+B .23()3a ab a a b +-=+-C .22282(4)ab a a b -=-D .228(2)(4)a a a a --=+-6.(钱塘区一模)下列因式分解正确的是( )A .241(41)(41)a a a -=+-B .225(5)(5)a a a -+=+-C .22269(3)a ab b a b --=-D .22816(8)a a a -+=-7.(新乡一模)化简2422a a a ---的结果是( )A .2a +B .2a -C .12a +D .12a -8.(东莞市校级模拟)分式23x x --的值为0时,x 的值是( )A .0x =B .2x =C .3x =D .2x =或3x =9.(碑林区校级一模)先化简,再求值:2[(2)(2)(2)](4)a b b a b a a --+-÷,其中12a =,2b =.10.(龙湖区校级一模)先化简,再求值:2344(111x x x x -+-÷++,其中3x =.1.按一定规律排列的单项式:3x ,54x -,79x ,916x -,⋯,第n 个单项式是( )A .1221(1)n n n x ---B .1221(1)n n n x ++-C .1221(1)(1)n n n x ---+D .1221(1)(1)n n n x ++-+2.下列运算正确的是( )A .22(4)16x x -=-B .325x y xy +=C .432x x x ÷=D .2224()xy x y =3.下列语句正确的是( )A .5-不是单项式B .a 可以表示负数C .25a b -的系数是5,次数是2D .221a ab ++是四次三项式4.下列因式分解正确的一项是( )A .222()x y x y +=+B .24(2)(2)x x x -=+-C .2221(1)x x x --=-D .242(2)xy x xy x +=+5.要使分式11x x -+有意义,则x 应满足的条件是( )A .1x ≠-B .1x ≠C .1x <-D .1x >-6.下列二次根式中,属于最简二次根式的是( )AB C D7.计算:0|1tan 60|(2024-︒+.8.先化简,再求值:2344(111x x x x -+-÷++,其中3x =.9.先化简,再求值:2(2)(4)a a a -++,其中a =.10.先化简,再求值:(2)(2)4()a b a b a a b -+--,其中2a =-,1b =.1.【答案】C【分析】根据积的乘方,合并同类项,同底数幂的除法法则,完全平方公式进行计算,逐一判断即可解答.【解答】解:A 、222(4)16ab a b =,故A 不符合题意;B 、22223a a a +=,故B 不符合题意;C 、642a a a ÷=,故C 符合题意;D 、222()2a b a ab b +=++,故D 不符合题意;故选:C .2.【答案】D【分析】观察各个图形及相应的代数恒等式即可得到答案.【解答】解:图形的面积关系能正确解释相应的代数恒等式的有①②③④,故选:D .3.【答案】D【分析】分别根据分式的加减法则、幂的乘方与积的乘方法则、零指数幂的运算法则对各选项进行逐一计算即可.【解答】解:A 、633a a a=,原计算错误,不符合题意;B 、236()a a =,原计算错误,不符合题意;C 、221()()a b a b a b a b+=+++,原计算错误,不符合题意;D 、01()13-=,正确,符合题意.故选:D .4.【答案】D【分析】根据二次根式的加法、幂的乘法与积的乘方以及分式的运算的计算方法解题即可.【解答】解:A +=≠B .2366()a a a -=-≠,故该选项不正确,不符合题意;C .11123222223a a a a a a+=+=≠,故该选项不正确,不符合题意;21131.333b a D ab a ab b b ÷=⨯=,故该选项正确,符合题意;故选:D .5.【答案】23.【分析】先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,算乘法,最后代入求出答案即可.【解答】解:2222(1ab b a b a a b---÷2222(2)a ab b a b a a b--=⋅-222()a b a b a a b-=⋅-()b a b =-2ab b =-,23320ab b --= ,2332ab b ∴-=,223ab b ∴-=,∴原式23=.故答案为:23.6.【答案】3x >.【分析】根据记二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:30x ->,解得:3x >,故答案为:3x >.7.【分析】原式提取x ,再利用平方差公式分解即可.【解答】解:原式2(4)(2)(2)x y x y y =-=+-,故答案为:(2)(2)x y y +-8.【分析】应先提取公因式x ,再对余下的多项式利用平方差公式继续分解.【解答】解:34x x -,2(4)x x =-,(2)(2)x x x =+-.故答案为:(2)(2)x x x +-.9.【分析】依据题意,利用平方差公式和完全平方公式将原式进行化简,再将a ,b 的值代入计算即可求解.【解答】解:2(3)(3)(3)a b a b a b +++-2222699a ab b a b =+++-226a ab =+.当2a =,1b =-时,原式22262(1)=⨯+⨯⨯-812=-4=-.10.【答案】244a a -+,1.【分析】将括号里面通分运算,再利用分式的混合运算法则计算,结合负整数指数幂的性质、特殊角的三角函数值化简,整体代入得出答案.【解答】解:原式2421[(2)(2)a a a a a a a -+-=÷---224(2)(2)(1)[](2)(2)a a a a a a a a a a -+--=÷---22244(2)a a a a a a a ---+=÷-24(2)4a a a a a --=⋅-2(2)a =-244a a =-+, 211()6cos6004a a --⋅+︒=,2430a a ∴-+=,243a a ∴-=-,∴原式341=-+=.1.【答案】C【分析】由题目可得式子的一般性规律:第n 个式子为:1212n n a --⋅,当2024n =时,第2024个式子为:202340472a ⋅,即可得出答案.【解答】解:式子的系数为1,2,4,8,16, ,则第n 个式子的系数为:12n -;式子的指数为1,3,5,7,9, ,则第n 个式子的指数为:21n -,∴第n 个式子为:1212n n a --⋅,当2024n =时,第2024个式子为:202340472a ⋅,故选:C .2.【答案】B【分析】根据合并同类项法则、幂的乘方法则、单项式除以单项式法则分别判断即可.【解答】解:A 、2a 与b 不是同类项,不能合并,故此选项不符合题意;B 、2222a b a b a b -=,故此选项符合题意;C 、236()a a =,故此选项不符合题意;D 、84422a a a ÷=,故此选项不符合题意;故选:B.3.【答案】B【分析】数字与字母的积叫做单项式,其中数字因数叫做单项式的系数,所有字母的指数之和叫做单项式的次数;由此计算即可.【解答】解:单项式22a b -的系数和次数分别是2-和3,故选:B .4.【答案】D【分析】根据整式相关运算法则逐项判断即可.【解答】解:235a a a ⋅=,故A 错误,不符合题意;a 与22a 不能合并,故B 错误,不符合题意;2234(3)218ab ab a b -⋅=,故C 错误,不符合题意;326(2)3ab ab b ÷-=-,故D 正确,符合题意;故选:D .5.【答案】D【分析】根据因式分解的定义逐个判断即可.【解答】解:A .从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .从左到右的变形不属于因式分解,故本选项不符合题意;C .22282(4)2(2)(2)ab a a b a b b -=-=+-,分解不彻底,从左到右的变形不属于因式分解,故本选项不符合题意;D .从左到右的变形属于因式分解,故本选项符合题意.故选:D .6.【答案】B【分析】根据平方差公式和完全平方公式逐个判断即可.【解答】解:A .241(21)(21)a a a -=+-,故本选项不符合题意;B .225(5)(5)a a a -+=+-,故本选项符合题意;C .22269(3)a ab b a b -+=-,故本选项不符合题意;D .22816(4)a a a -+=-,故本选项不符合题意;故选:B .7.【答案】A【分析】根据分式的加减法运算法则计算即可.【解答】解:2244(2)(2)22222a a a a a a a a a --+-===+----,故选:A .8.【分析】分式的值为零时:分子等于零且分母不为零.据此求得x 的值.【解答】解:依题意得:20x -=,解得2x =.经检验当2x =时,分母30x -≠,符合题意.故选:B .9.【答案】2a b -,1-.【分析】先利用平方差公式和完全平方公式进行计算,再根据多项式除以单项式的法则进行计算,最后把12a =,2b =代入计算即可.【解答】解:原式2222[44(4)](4)a ab b b a a =-+--÷2222(444)(4)a ab b b a a =-+-+÷2(84)(4)a ab a =-÷2a b =-,当12a =,2b =时,原式12212=⨯-=-.10.【答案】12x -,1.【分析】先算小括号里面的,然后算括号外面的,最后代入求值.【解答】解:原式213(2)()111x x x x x +-=-÷+++2211(2)x x x x -+=⋅+-12x =-,当3x =时,原式1132==-.1.【答案】B【分析】根据单项式的数字系数的符号,数字系数和指数的变化规律即可得出结果.【解答】解:在上述单项式中,可以发现:奇数项的数字系数的符号为正,偶数项的数字系数的符号为负,∴可得:第n 个单项式的数字系数的符号为:1(1)n --或1(1)n +-,单项式的数字系数为:1,4,9,16, ,∴第n 个单项式的数字系数为:2n ,单项式的指数为:3,5,7,9, ,∴第n 个单项式的指数为:21n +,∴第n 个单项式是1221(1)n n n x ++-,故选:B .2.【答案】D【分析】根据整式的运算法则逐项分析判断即可.【解答】解:A 、22(4)816x x x -=-+,原计算错误,不符合题意;B 、3x 与2y 不是同类项,不能合并,故原计算错误,不符合题意;C 、43x x x ÷=,原计算错误不符合题意;D 、2224()xy x y =,正确,符合题意;故选:D .3.【答案】B【分析】根据单项式的定义可判断A ,根据字母表示数的意义可判断B ,根据单项式系数和次数的定义可判断C ,根据多项式的项和次数的定义可判断D ,进而可得答案.【解答】解:A 、5-是单项式,故本选项错误,不符合题意;B 、a可以表示负数,故本选项正确,符合题意;C 、25a b -的系数是5-,次数是3,故本选项错误,不符合题意;D 、221a ab ++是二次三项式,故本选项错误,不符合题意;故选:B .4.【答案】B【分析】根据因式分解的定义进行判断即可.【解答】解:A 、222()x y x y +≠+不符合因式分解的定义,故本选项不符合题意;B 、24(2)(2)x x x -=+-符合因式分解的定义,且因式分解正确,故本选项符合题意;C 、2221(1)x x x --≠-,不符合因式分解的定义,故本选项不符合题意;D 、242(2)xy x x y +=+,原因式分解错误,故本选项不符合题意;故选:B .5.【分析】先根据分式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【解答】解:由题意,得10x +≠,解得1x ≠-,故选:A .6.【分析】直接利用最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式,进而得出答案.【解答】解:A =,不是最简二次根式,故此选项错误;B ,是最简二次根式,故此选项正确;C 2=,不是最简二次根式,故此选项错误;D =故选:B .7..【分析】根据二次根式的混合运算法则和零指数幂与特殊的三角函数值等知识点计算即可.【解答】解:原式11=---+11=-+=.8.【答案】12x -,1.【分析】先算小括号里面的,然后算括号外面的,最后代入求值.【解答】解:原式213(2)()111x x x x x +-=-÷+++2211(2)x x x x -+=⋅+-12x =-,当3x =时,原式1132==-.9.【答案】224a +,原式8=.【分析】先利用完全平方公式,单项式乘多项式的法则进行计算,然后把a 的值代入化简后的式子进行计算,即可解答.【解答】解:2(2)(4)a a a -++22444a a a a=-+++224a =+,当a =224224448=⨯+=⨯+=+=.10.【答案】24ab b -,原式9=-.【分析】先利用平方差公式,单项式乘多项式的法则进行计算,然后把a ,b 的值代入化简后的式子进行计算,即可解答.【解答】解:(2)(2)4()a b a b a a b -+--222444a b a ab=--+24ab b =-,当2a =-,1b =时,原式24(2)11819=⨯-⨯-=--=-.。
整理中考数学知识归纳测试题重庆整式与分式
文件编号: 06-83-AF -62-BE整理人 尼克中考数学试题及答案分类汇编中考数学试题及答案分类汇编:方程(组)和不等式(组)一、选择题1(山西省2分)分式方程的解为A.B.C.D.【答案】B。
【考点】解分式方程。
【分析】观察可得最简公分母是2(+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解:方程的两边同乘2(+3),得+3=4,解得=1.检验:把=1代入2(+3)=8≠0。
∴原方程的解为:=1。
故选B。
2.(山西省2分)“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为元,根据题意,下面所列方程正确的是A.B.C.D.【答案】A。
【考点】由实际问题抽象出一元一次方程。
【分析】设该电器的成本价为元,根据按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元可列出方程:(1+30%)×80%=2080。
故选A。
3.(内蒙古巴彦淖尔、赤峰3分)不等式组错误!未找到引用源。
的解集在数轴上表示正确的是【答案】B。
【考点】解一元一次不等式组,在数轴上表示不等式的解集。
【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。
解不等式组得到﹣2<x≤2。
不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个。
在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示。
据此观察在数轴上的表示。
故选B。
4.(内蒙古巴彦淖尔、赤峰3分)如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是等腰三角形时,运动的时间是A、2.5秒B、3秒C、3.5秒D、4秒【答案】D。
广东省历年(2019-2023年)中考数学真题分类汇编 整式与因式分解
广东省历年(2019-2023年)中考数学真题分类汇编整式与因式分解一、选择题1.(2023·深圳)下列运算正确的是()A.a3⋅a2=a6B.4ab−ab=4C.(a+1)2=a2+1D.(−a3)2=a6【答案】D【解析】【解答】解:A、由于a3·a2=a5,故此选项计算错误,不符合题意;B、由于4ab-ab=3ab,故此选项计算错误,不符合题意;C、由于(a+1)2=a2+2a+1,故此选项计算错误,不符合题意;D、由于(-a3)2=a6,故此选项计算正确,符合题意.故答案为:D.【分析】由同底数幂的相乘,底数不变,指数相加,进行计算,可判断A选项;整式加法的实质就是合并同类项,所谓同类项就是所含字母相同,而且相同字母的指数也分别相同的项,同类项与字母的顺序没有关系,与系数也没有关系,合并同类项的时候,只需要将系数相加减,字母和字母的指数不变,但不是同类项的一定就不能合并,据此可判断B选项;由完全平方公式的展开式是一个三项式,可判断C 选项;由幂的乘方,底数不变,指数相乘,可判断D选项.2.(2021·广州)下列运算正确的是()A.|−(−2)|=−2B.3+√3=3√3C.(a2b3)2=a4b6D.(a-2)2=a2-4【答案】C【解析】【解答】A. |−(−2)|=2≠−2,选项A计算不符合题意;B. 3与√3不是同类项,不能合并,3+√3≠3√3,选项B计算不符合题意;C. (a2b3)2=a2×2b3×2=a4b6,选项C计算符合题意;D. (a−2)2=a2−4a+4≠a2−4,选项D计算不符合题意.故答案为:C.【分析】利用绝对值,同类项,幂的乘方,完全平方公式计算求解即可。
3.(2021·广东)设6−√10的整数部分为a,小数部分为b,则(2a+√10)b的值是()A.6B.2√10C.12D.9√10【答案】A【解析】【解答】解:∵√9<√10<√16∴3<√10<4∴−4<−√10<−3∴6−4<6−√10<6−3∴2<6−√10<3∴6−√10的整数部分a=2,小数部分b=6−√10−2=4−√10∴(2a+√10)b=(2×2+√10)(4−√10)=(4+√10)(4−√10)=16−10=6故答案为:A.【分析】考查无理数的估算、整数部分与小数部分,先估算出无理数的范围,确定整数部分,再用无理数减去整数部分,得到小数部分,最后再计算表达式的数值。
2024年中考数学真题分类汇编(全国通用)(第一期)专题05 分式及其运算(37题)(解析版)
专题05分式及其运算(37题)一、单选题1.(2024·甘肃·中考真题)计算:4222a ba b a b-=--()A .2B .2a b -C .22a b-D .2a b a b-【答案】A【分析】本题主要考查了同分母分式减法计算,熟知相关计算法则是解题的关键.【详解】解:()42422222222a b a b a b a b a a b a bb --===-----,故选:A .2.(2024·黑龙江绥化·中考真题)下列计算中,结果正确的是()A .()2139--=B .()222a b a b +=+C 93=±D .()3263x y x y -=【答案】A【分析】本题考查了负整数指数幂,完全平方公式,算术平方根,积的乘方,据此逐项分析计算,即可求解.【详解】解:A.()2139--=,故该选项正确,符合题意;B.()2222a b a ab b +=++,故该选项不正确,不符合题意;C.93=,故该选项不正确,不符合题意;D.()3263x y x y -=-,故该选项不正确,不符合题意;故选:A .3.(2024·黑龙江牡丹江·中考真题)下列计算正确的是()A .32622a a a ⋅=B .331(2)8a b a b-÷⨯=-C .()322a a a a a a++÷=+D .2233aa -=【答案】D【分析】本题考查了单项式的乘除法,多项式除以单项式,负整数指数幂,根据运算法则进行逐项计算,即可作答.4.(2024·山东威海·中考真题)下列运算正确的是()A .5510x x x +=B .21m m n n n÷⋅=C .624a a a ÷=D .()325a a -=-5.(2024·广东广州·中考真题)若0a ≠,则下列运算正确的是()A .235a a a +=B .325a a a ⋅=C .235a a a⋅=D .321a a ÷=故选:B .6.(2024·天津·中考真题)计算3311x x x ---的结果等于()A .3B .xC .1x x -D .231x -【答案】A【分析】本题考查分式加减运算,熟练运用分式加减法则是解题的关键;运用同分母的分式加减法则进行计算,对分子提取公因式,然后约分即可.【详解】解:原式()3133311x x x x --===--故选:A7.(2024·河北·中考真题)已知A 为整式,若计算22A y xy y x xy-++的结果为xy -,则A =()A .xB .yC .x y+D .x y-【答案】A【分析】本题考查了分式的加减运算,分式的通分,平方差公式,熟练掌握分式的加减运算法则是解题的关键.由题意得22y x y A x xy xy xy y -+=++,对2y x yx xy xy-++进行通分化简即可.【详解】解:∵22A y xy y x xy-++的结果为x yxy -,∴22y x y Ax xy xy xy y -+=++,∴()()()()()2222x y x y y x x Axy x y xy x y xy x y xy y xy y -++===+++++,∴A x =,故选:A .二、填空题8.(2024·四川南充·中考真题)计算-a b a b a b的结果为.【答案】1【分析】本题主要考查了同分母分式减法运算,按照同分母减法运算法则计算即可.【详解】解:1a b a ba b a b a b--==---,故答案为:1.9.(2024·湖北·中考真题)计算:111m m m +=.10.(2024·广东·中考真题)计算:333a a -=.11.(2024·吉林·中考真题)当分式11x +的值为正数时,写出一个满足条件的x 的值为.12.(2024·山东威海·中考真题)计算:422x x x+=.13.(2024·四川内江·中考真题)在函数1y x=中,自变量x 的取值范围是;【答案】0x ≠【分析】本题考查函数的概念,根据分式成立的条件求解即可.熟练掌握分式的分母不等于零是解题的关键.【详解】解:由题意可得,0x ≠,故答案为:0x ≠.14.(2024·四川眉山·中考真题)已知11a x =+(0x ≠且1x ≠-),23121111,,,111-==⋯=---n n a a a a a a ,则2024a 的值为.【答案】1x-【分析】此题考查了分式的混合运算,利用分式的运算法则计算得到每三个为一个循环,分别为1x +,1x-,1xx +,进一步即可求出2024a .【详解】解:11a x =+ ,()21111111a a x x∴===---+,32111111xa a x x ===-+⎛⎫-- ⎪⎝⎭,43111111111a x xa x x ∴====+--++,51a x∴=-,61x a x =+,……,由上可得,每三个为一个循环,2024367432÷=⨯+ ,20241a x∴=-.故答案为:1x-.三、解答题16.(2024·江苏盐城·中考真题)先化简,再求值:2391a a a---÷,其中4a =.17.(2024·四川泸州·中考真题)化简:2222y x y x y x x ⎛⎫-+-÷ ⎪⎝⎭.22222y x xy x x x y +-=⋅-()()()2x y xx x y x y -=⋅+-x y x y-=+18.(2024·四川广安·中考真题)先化简111a a a ++⎛⎫+-÷--⎝⎭,再从2-,0,1,2中选取一个适合的数代入求值.【答案】22a a -+,0a =时,原式1=-,2a =时,原式0=.【分析】本题考查的是分式的化简求值,先计算括号内分式的加减运算,再计算分式的除法运算,再结合分式有意义的条件代入计算即可.【详解】解:2344111a a a a a ++⎛⎫+-÷⎪--⎝⎭2213(2)111a a a a a ⎛⎫-+=-÷⎪---⎝⎭2(2)(2)11(2)a a a a a +--=⋅-+22a a -=+1a ≠ 且2a ≠-∴当0a =时,原式1=-;当2a =时,原式0=.19.(2024·山东·中考真题)(111422-⎛⎫+-- ⎪⎝⎭;(2)先化简,再求值:212139a a a +⎛⎫-÷ ⎪,其中1a =.【答案】(1)3(2)3a -2-【分析】本题主要考查实数的运算、分式的运算:(1)根据求算术平方根和负整数指数幂、有理数的减法的运算法则计算即可;(2)先通分,然后求解即可.【详解】(1)原式112+322=+=(2)原式()()3123333a a a a a a ++⎛⎫-÷ ⎪+++-⎝⎭()()332·32a a a a a +-+=++3a =-将1a =代入,得原式132=-=-21.(2024·江苏连云港·中考真题)计算0|2|(π1)-+-【答案】1-【分析】本题考查实数的混合运算,零指数幂,先进行去绝对值,零指数幂和开方运算,再进行加减运算即可.【详解】解:原式2141=+-=-22.(2024·江苏连云港·中考真题)下面是某同学计算21211m m ---的解题过程:解:2121211(1)(1)(1)(1)m m m m m m m +-=---+-+-①(1)2m =+-②1m =-③上述解题过程从第几步开始出现错误?请写出完整的正确解题过程.23.(2024·江西·中考真题)(1)计算:0π5+-;(2)化简:888x x x -.【答案】(1)6;(2)1【分析】题目主要考查零次幂、绝对值的化简,分式的加减运算,熟练掌握运算法则是解题关键.(1)先计算零次幂及绝对值化简,然后计算加减法即可;(2)直接进行分式的减法运算即可.【详解】解:(1)0π5+-=1+5=6;(2)888x x x ---88x x -=-1=.24.(2024·江苏苏州·中考真题)计算:()0429-+-.【答案】2【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式413=+-2=.25.(2024·福建·中考真题)计算:0(1)54-+-【答案】4【分析】本题考查零指数幂、绝对值、算术平方根等基础知识,熟练掌握运算法则是解题的关键.根据零指数幂、绝对值、算术平方根分别计算即可;【详解】解:原式152=+-4=.26.(2024·陕西·()()025723-+-⨯.【答案】2-【分析】本题考查了实数的运算.根据算术平方根、零次幂、有理数的乘法运算法则计算即可求解.【详解】解:()()025723--+-⨯516=--2=-.27.(2024·湖南·中考真题)先化简,再求值:22432x x x x x-⋅+,其中3x =.28.(2024·北京·中考真题)已知10a b --=,求代数式222a ab b-+的值.29.(2024·甘肃临夏·中考真题)计算:10120253-⎛⎫-+ ⎪⎝⎭.【答案】0【分析】本题考查实数的混合运算,先进行开方,去绝对值,零指数幂和负整数指数幂的运算,再进行加减运算即可.【详解】解:原式2310=-+=.30.(2024·甘肃临夏·中考真题)化简:21111a a a a a +⎛⎫++÷ ⎪.【答案】1a a +【分析】本题考查分式的混合运算,掌握分式的混合运算法则是解题关键.根据分式的混合运算法则计算即可.【详解】解:21111a a a a a +⎛⎫++÷ ⎪--⎝⎭,()()()1111111a a a a a a a ⎡⎤-+=⎢+÷⎣-⎥+--⎦()211111a a a a a -+=⨯--+()2111a a a a a =-⨯-+1a a =+.31.(2024·浙江·中考真题)计算:131854-⎛⎫-- ⎪⎝⎭【答案】7【分析】此题考查了负整数指数幂,立方根和绝对值,解题的关键是掌握以上运算法则.首先计算负整数指数幂,立方根和绝对值,然后计算加减.【详解】131854-⎛⎫-+- ⎪⎝⎭425=-+7=.32.(2024·四川广元·中考真题)先化简,再求值:22222a a b a b a b a ab b a b--÷-,其中a ,b 满足20b a -=.【答案】b a b +,23【分析】本题考查了分式的化简求值,熟练掌握分式的化简求值方法是解题的关键.先将分式的分子分母因式分解,然后将除法转化为乘法计算,再计算分式的加减得到b a b+,最后将20b a -=化为2b a =,代入b a b +即得答案.33.(2024·黑龙江牡丹江·中考真题)先化简,再求值:2669x x x x x --⎛⎫÷- ⎪⎝⎭,并从1-,0,1,2,3中选一个合适的数代入求值.34.(2024·山东烟台·中考真题)利用课本上的计算器进行计算,按键顺序如下:,若m 是其显示结果的平方根,先化简:27442393m m m m m m --⎛⎫+÷ ⎪--+⎝⎭,再求值.【答案】262m m --,25-.【分析】本题考查了分式的化简求值,先利用分式的性质和运算法则对分式化简,然后根据题意求出m 的值,把m 的值代入到化简后的结果中计算即可求解,正确化简分式和求出m 的值是解题的关键.【详解】解:27442393m m m m m m --⎛⎫+÷ ⎪--+⎝⎭()22274393m m m m m m --⎛⎫=-÷ ⎪--+⎝⎭,()()()()()()3743333322m m m m m m m m m ⎡⎤+-+=-⨯⎢⎥+-+--⎢⎥⎣⎦,()()()()()23743333322m m m m m m m m m ⎡⎤+-+=-⨯⎢⎥+-+--⎢⎥⎣⎦,()()()24433322m m m m m m -++=⨯+--,()()()()2233322m m m m m -+=⨯+---,()223m m -=--,262m m -=-,∵2354-=,∴235-的平方根为2±,∵420m -≠,∴2m ≠,又∵m 为235-的平方根,∴2m =-,∴原式()2226225--==--⨯-.35.(2024·江苏苏州·中考真题)先化简,再求值:212124x x +-⎛⎫+÷ ⎪.其中3x =-.【答案】2x x+,13【分析】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.原式括号中两项通分并利用同分母分式的加法法则计算,同时利用因式分解和除法法则变形,约分得到最简结果,把x 的值代入计算即36.(2024·贵州·中考真题)(1)在①22,②2-,③()01-,④122⨯中任选3个代数式求和;(2)先化简,再求值:()21122x x -⋅,其中3x =.4=;(2)解:()21122x x -⋅+()()11(1)21x x x =-+⋅+12x -=;当3x =时,原式3112-==.37.(2024·四川乐山·中考真题)先化简,再求值:242x x ---,其中3x =.小乐同学的计算过程如下:解:()()2212142222x x x x x x x -=---+--…①()()()()222222x x x x x x +=-+-+-…②()()2222x x x x -+=+-…③()()222x x x +=+-…④12x =-…⑤当3x =时,原式1=.(1)小乐同学的解答过程中,第______步开始出现了错误;(2)请帮助小乐同学写出正确的解答过程.【答案】(1)③(2)见解析【分析】本题考查了分式的化简求值,异分母的分式减法运算,熟练掌握知识点是解题的关键.(1)第③步分子相减时,去括号变号不彻底;(2)先通分,再进行分子相减,化为最简分式后,再代入求值即可.【详解】(1)解:∵第③步分子相减时,去括号变号不彻底,应为:()()()()()()2222222222x x x x x x x x x x -----=+++-+;(2)解:()()2212142222x x x x x x x -=---+--()()()()222222x x x x x x +=-+-+-。
中考数学试题分类汇编整式与分式试题(共4页)
2021年中考(zhōnɡ kǎo)数学试题分类汇编整式与分式一、选择题a+b–a的结1、〔2021〕实数a、b在数轴上的位置如下图,那么化简代数式||果是〔〕D(第1题图)A.2a+b B.2a C.a D.b2、〔2021〕计算的结果是〔〕B〔A 〕〔B 〕〔C 〕〔D 〕3、〔2021〕以下计算中,正确的选项是〔〕CA .B .C .D .4、〔2021〕以下运算正确的选项是〔〕DA.B.C.D.4、〔2021〕化简:(a+1)2-(a-1)2=〔〕C〔A〕2 〔B〕4 〔C〕4a〔D〕2a2+25、〔2021〕以下计算中,正确的选项是〔〕DA .B .C .D .6.〔2021〕对于非零实数,以下式子运算正确的选项是〔〕DA .;B .;C .;D .。
7.〔2021〕以下因式分解正确的选项是〔〕CA .;B .;C .;D .。
8、〔2021〕以下计算(jì suàn)正确的选项是〔〕DA、 B、 C、 D、9、〔2021淮坊〕代数式的值是9,那么的值是〔〕A A.B.C.D.10、〔2021〕以下各式中,与相等的是〔〕BA.B.C.D.二、填空题1、〔200〕〕当x=2,代数式的值是____▲___.32、〔2021〕因式分解:xy2–2xy+x = .x〔y-1〕23、〔2021〕分解因式:.4、〔2021〕分解因式:-9=。
〔x+3〕〔x-3〕5、〔2021〕分解因式:.;6、〔2021〕分解因式a3-ab2=.a(a+b)(a-b)7、〔2021〕请你写一个能先提公因式、再运用公式来分解因式的三项式,并写出分解因式的结果.解:答案不唯一,如2+2=2〔+1〕28、〔2021株州〕假设9、〔2021〕计算:=______.10、〔2021〕化简:.111、〔2021淮坊〕在实数范围内分解因式:.解:三、解答题1、〔2021〕给出三个多项式:请你选择其中(q ízh ōng)两个进展加法运算,并把结果因式分解。
中考数学专题02整式与因式分解-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)
专题02 整式与因式分解一.选择题目1.(2021·湖北十堰市·中考真题)下列计算正确的是( )A .3332a a a ⋅=B .22(2)4a a -=C .222()a b a b +=+D .2(2)(2)2a a a +-=-【答案】B【分析】根据同底数幂相乘、积的乘方、乘法公式逐一判断即可.【详解】解:A .336a a a ⋅=,该项计算错误;B .22(2)4a a -=,该项计算正确;C .222()2a b a ab b +=++,该项计算错误;D .2(2)(2)4a a a +-=-,该项计算错误;故选:B .【点睛】本题考查整式乘法,掌握同底数幂相乘、积的乘方、乘法公式是解题的关键.2.(2021·四川成都市·中考真题)下列计算正确的是( )A .321mn mn -=B .()22346m n m n = C .()34m m m -⋅= D .()222m n m n +=+ 【答案】B【分析】利用合并同类项法则可判定A ,利用积的乘方法则与幂的乘方法则可判定B ,利用同底数幂乘法法则可判定C ,利用完全平方公式可判定D .【详解】解:A . 321mn mn mn -=≠,故选项A 计算不正确;B. ()()()222232346m n m n m n =⋅=,故选项B 计算正确; C . ()3344m m m m m m -⋅=-⋅=-≠,故选项C 计算不正确;D . ()222222m n m mn n m n +=++≠+,故选项D 计算不正确.故选择B .【点睛】本题考查同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式,掌握同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式是解题关键.3.(2021·陕西中考真题)计算:()23a b -=( )A .621a bB .62a bC .521a bD .32a b -【答案】A【分析】根据积的乘方,幂的乘方以及负整数指数幂运算法则计算即可.【详解】解:()23621a b a b -=,故选:A .【点睛】本题考查积的乘方,幂的乘方以及负整数指数幂等知识点,熟记相关定义与运算法则是解答本题的关键.4.(2021·上海中考真题)下列单项式中,23a b 的同类项是( )A .32a bB .232a bC .2a bD .3ab【答案】B【分析】比较对应字母的指数,分别相等就是同类项【详解】∵a 的指数是3,b 的指数是2,与23a b 中a 的指数是2,b 的指数是3不一致,∴32a b 不是23a b 的同类项,不符合题意;∵a 的指数是2,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3一致,∴232a b 是23a b 的同类项,符合题意;∵a 的指数是2,b 的指数是1,与23a b 中a 的指数是2,b 的指数是3不一致,∴2a b 不是23a b 的同类项,不符合题意;∵a 的指数是1,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3不一致,∴3ab 不是23a b 的同类项,不符合题意;故选B【点睛】本题考查了同类项,正确理解同类项的定义是解题的关键.5.(2021·浙江杭州市·中考真题)因式分解:214y -=( ) A .()()1212y y -+ B .()()22y y -+ C .()()122y y -+ D .()()212y y -+【答案】A【分析】利用平方差公式因式分解即可.【详解】解:214y -=()()1212y y -+,故选:A .【点睛】本题考查利用平方差公式进行因式分解,是重要考点,难度较易,掌握相关知识是解题关键. 6.(2020·柳州市柳林中学中考真题)下列多项式中,能用平方差公式进行因式分解的是( ) A .a 2﹣b 2B .﹣a 2﹣b 2C .a 2+b 2D .a 2+2ab +b 2【答案】A【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A 、a 2﹣b 2符合平方差公式的特点,能用平方差公式进行因式分解;B 、﹣a 2﹣b 2两平方项符号相同,不能用平方差公式进行因式分解;C 、a 2+b 2两平方项符号相同,不能用平方差公式进行因式分解;D 、a 2+2ab +b 2是三项,不能用平方差公式进行因式分解.故选:A .【点睛】本题考查了用平方差公式进行因式分解.熟记平方差公式的结构特点是解题的关键.平方差公式:()()22a b a b a b -=+-.7.(2021·湖北宜昌市·中考真题)从前,古希腊一位庄园主把一块边长为a 米(6a >)的正方形土地租给租户张老汉.第二年,他对张老汉说:“我把这块地的一边增加6米,相邻的另一边减少6米,变成矩形土地继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会( ) A .没有变化B .变大了C .变小了D .无法确定【答案】C【分析】分别求出2次的面积,比较大小即可.【详解】原来的土地面积为2a 平方米,第二年的面积为2(6)(6)36a a a +-=- 22(36)360a a --=-<∴ 所以面积变小了,故选C .【点睛】本题考查了列代数式,整式的运算,平方差公式,代数式大小的比较,正确理解题意列出代数式并计算是解题的关键.8.(2021·江苏苏州市·中考真题)已知两个不等于0的实数a 、b 满足0a b +=,则b a a b +等于( ) A .2-B .1-C .1D .2【答案】A【分析】先化简式子,再利用配方法变形即可得出结果. 【详解】解:∵22=b a b a a b ab ++,∴()2222==a b ab b a b a a b ab ab +-++, ∵两个不等于0的实数a 、b 满足0a b +=,∴()22-2===-2a b ab b a ab a b ab ab+-+,故选:A .【点睛】本题考查分式的化简、配完全平方、灵活应用配方法是解题的关键.9.(2021·浙江台州市·中考真题)将x 克含糖10%的糖水与y 克含糖30%的糖水混合,混合后的糖水含糖( )A .20%B .+100%2x y ⨯C .+3100%20x y ⨯D .+3 100%10+10x y x y⨯ 【答案】D 【分析】先求出两份糖水中糖的重量,再除以混合之后的糖水总重,即可求解. 【详解】解:混合之后糖的含量:10%30%3100%1010x y x y x y x y++=⨯++,故选:D . 【点睛】本题考查列代数式,理解题意是解题的关键.10.(2021·浙江台州市·中考真题)已知(a +b )2=49,a 2+b 2=25,则ab =( )A .24B .48C .12D . 【答案】C【分析】利用完全平方公式计算即可.【详解】解:∵()222249a b a b ab +=++=,2225a b +=,∴4925122ab -==,故选:C . 【点睛】本题考查整体法求代数式的值,掌握完全平方公式是解题的关键.11.(2021·山东临沂市·中考真题)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为表示镭的放射规律的函数图象,据此可计算32mg 镭缩减为1mg 所用的时间大约是( )A .4860年B .6480年C .8100年D .9720年【答案】C 【分析】根据物质所剩的质量与时间的规律,可得答案.【详解】解:由图可知:1620年时,镭质量缩减为原来的12, 再经过1620年,即当3240年时,镭质量缩减为原来的21142=,再经过1620×2=3240年,即当4860年时,镭质量缩减为原来的31182=,..., ∴再经过1620×4=6480年,即当8100年时,镭质量缩减为原来的511232=,此时132132⨯=mg ,故选C . 【点睛】本题考查了函数图象,规律型问题,利用函数图象的意义是解题关键.12.(2021·甘肃武威市·中考真题)对于任意的有理数,a b ,如果满足2323a b a b ++=+,那么我们称这一对数,a b 为“相随数对”,记为(),a b .若(),m n 是“相随数对”,则()323[]21m m n ++-=( )A .2-B .1-C .2D .3 【答案】A【分析】先根据新定义,可得9m +4n =0,将整式()21]2[33m m n ++-去括号合并同类项化简得942m n +-,然后整体代入计算即可.【详解】解:∵(),m n 是“相随数对”,∴2323m n m n ++=+,整理得9m +4n =0, ()323213642942[]2m m n m m n m n ++-=++-=+-=-.故选择A .【点睛】本题考查新定义相随数对,找出数对之间关系,整式加减计算求值,掌握新定义相随数对,找出数对之间关系,整式加减计算求值是解题关键.13.(2021·四川泸州市·中考真题)已知1020a =,10050b =,则1322a b ++的值是( ) A .2B .52C .3D .92 【答案】C【分析】根据同底数幂的乘法31010010a b ⋅=,可求23a b +=再整体代入即可.【详解】解: ∵1020a =,10050b =,∴2310100102050100010a b a b +⋅==⨯==,∴23a b +=,∴()()1311233332222a b a b ++=++=+=.故选:C . 【点睛】本题考查幂的乘方,同底数幂的乘法逆运算,代数式求值,掌握幂的乘方,同底数幂的乘法法则,与代数式值求法是解题关键.14.(2020·四川眉山市·中考真题)已知221224a b a b +=--,则132a b -的值为( ) A .4 B .2 C .2- D .4-【答案】A 【分析】根据221224a b a b +=--,变形可得:()22221121111042a a b b a b ⎛⎫-++++=-++= ⎪⎝⎭,因此可求出1a =,2b =-,把a 和b 代入132a b -即可求解. 【详解】∵221224a b a b +=--∴()22221121111042a a b b a b ⎛⎫-++++=-++= ⎪⎝⎭即2(1)0a -=,21(1)02b +=∴求得:1a =,2b =- ∴把a 和b 代入132a b -得:131(2)42⨯-⨯-=故选:A 【点睛】本题主要考查了完全平方公式因式分解,熟记完全平方公式,通过移项对已知条件进行配方是解题的关键.15.(2021·浙江温州市·中考真题)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( ) A .20a 元B .()2024a +元C .()17 3.6a +元D .()20 3.6a +元【答案】D【分析】分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可.【详解】解:∵20立方米中,前17立方米单价为a 元,后面3立方米单价为(a +1.2)元,∴应缴水费为17a +3(a +1.2)=20a +3.6(元),故选:D .【点睛】本题考查的是阶梯水费的问题,解决本题的关键是理解其收费方式,能求出不同段的水费,本题较基础,重点考查了学生对该种计费方式的理解与计算方法等.16.(2020·湖南娄底市·中考真题)下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为( )A .135B .153C .170D .189【答案】C 【分析】由观察发现每个正方形内有:224,236,248,⨯=⨯=⨯=可求解b ,从而得到a ,再利用,,a b x 之间的关系求解x 即可.【详解】解:由观察分析:每个正方形内有:224,236,248,⨯=⨯=⨯=218,b ∴= 9,b ∴= 由观察发现:8,a =又每个正方形内有:2419,36220,48335,⨯+=⨯+=⨯+=18,b a x ∴+= 1898170.x ∴=⨯+= 故选C .【点睛】本题考查的是数字类的规律题,掌握由观察,发现,总结,再利用规律是解题的关键. 17.(2020·湖南郴州市·中考真题)如图1,将边长为x 的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释下列哪个等式( )A .2221(1)x x x -+=-B .21(1)(1)x x x -=+-C .2221(1)x x x ++=+D .2(1)x x x x -=-【答案】B 【分析】利用大正方形的面积减去小正方形的面积得到空白部分的面积,然后根据面积相等列出等式即可.【详解】第一个图形空白部分的面积是x 2-1,第二个图形的面积是(x+1)(x -1).则x 2-1=(x+1)(x -1).故选:B .【点睛】本题考查了平方差公式的几何背景,正确用两种方法表示空白部分的面积是解决问题的关键. 18.(2020·湖北中考真题)根据图中数字的规律,若第n 个图中出现数字396,则n =( )A .17B .18C .19D .20【答案】B【分析】观察上三角形,下左三角形,下中三角形,下右三角形各自的规律,让其等于396,解得n 为正整数即成立,否则舍去.【详解】根据图形规律可得:上三角形的数据的规律为:2(1)n n +,若2(1)396n n +=,解得n 不为正整数,舍去;下左三角形的数据的规律为:21n -,若21396n -=,解得n 不为正整数,舍去; 下中三角形的数据的规律为:21n -,若21396n -=,解得n 不为正整数,舍去;下右三角形的数据的规律为:(4)n n +,若(4)396n n +=,解得18n =,或22n =-,舍去,故选:B .【点睛】本题考查了有关数字的规律,能准确观察到相关规律是解题的关键.19.(2020·山东潍坊市·中考真题)若221m m +=,则2483m m +-的值是( )A .4B .3C .2D .1 【答案】D【分析】把所求代数式2483m m +-变形为24(2)3m m +-,然后把条件整体代入求值即可.【详解】∵221m m +=,∴2483m m +-=24(2)3m m +-=4×1-3=1.故选:D .【点睛】此题主要考查了代数式求值以及“整体代入”思想,解题的关键是把代数式2483m m +-变形为24(2)3m m +-.20.(2020·河南中考真题)电子文件的大小常用, ,,B KB MB GB 等作为单位,其中10101012,12,12GB MB MB KB KB B ===,某视频文件的大小约为1,1GB GB 等于( )A .302BB .308BC .10810B ⨯D .30210B ⨯【答案】A【分析】根据题意及幂的运算法则即可求解.【详解】依题意得1010101010101222222GB MB KB B ==⨯=⨯⨯=302B 故选A .【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的运算法则.21.(2020·江苏无锡市·中考真题)若2x y +=,3z y -=-,则x z +的值等于( )A .5B .1C .-1D .-5 【答案】C【分析】将两整式相加即可得出答案.【详解】∵2x y +=,3z y -=-,∴()()1x y z y x z ++-=+=-,∴x z +的值等于1-,故选:C .【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.(2020·湖南中考真题)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F【答案】D【分析】设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=12k(k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.【详解】设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=12k(k+1),应停在第12k(k+1)﹣7p格,这时P是整数,且使0≤12k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,12k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤2020,设k=7+t(t=1,2,3)代入可得,12k(k+1)﹣7p=7m+12t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.故选:D.【点睛】本题考查的是探索图形、数字变化规律,从图形中提取信息,转化为数字信息,探索数字变化规律是解答的关键.23.(2020·山东枣庄市·中考真题)图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2C.(m-n)2D.m2-n2【答案】C【详解】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)2-4mn=(m-n)2.故选C.24.(2020·山东日照市·中考真题)用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是()A.59B.65C.70D.71【答案】C【分析】由题意观察图形可知,第1个图形共有圆点5+2个;第2个图形共有圆点5+2+3个;第3个图形共有圆点5+2+3+4个;第4个图形共有圆点5+2+3+4+5个;…;则第n个图形共有圆点5+2+3+4+…+n+(n+1)个;由此代入n=10求得答案即可.【详解】解:根据图中圆点排列,当n=1时,圆点个数5+2;当n=2时,圆点个数5+2+3;当n=3时,圆点个数5+2+3+4;当n=4时,圆点个数5+2+3+4+5,…∴当n=10时,圆点个数5+2+3+4+5+6+7+8+9+10+11=4+(1+2+3+4+5+6+7+8+9+10+11)=1411(111)2+⨯⨯+70=.故选:C.【点睛】本题考查图形的变化规律,注意找出数量上的变化规律,从而推出一般性的结论,利用规律解决问题.25.(2019·湖北中考真题)一列数按某规律排列如下:1121231234 ,,,,,,,,,1213214321…,若第n个数为57,则n=()A.50B.60C.62D.71【答案】B【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n个数为57时n的值,本题得意解决.【详解】1121231234,,,,,,,,,1213214321,…,可写为: 1121231234,,,,,,,,,1213214321⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,…, ∵57的分子和分母的和为12, ∴分母为11开头到分母为1的数有11个,分别为1234567891011,,,,,,,,,,1110987654321, ∴第n 个数为57,则123410560n =++++⋯++=,故选B . 【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.26.(2019·重庆中考真题)按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,【答案】D 【分析】逐项代入,寻找正确答案即可.【详解】解:A 选项满足m≤n ,则y=2m+1=3; B 选项不满足m≤n ,则y=2n -1=-1;C 选项满足m≤n ,则y=2m -1=3;D 选项不满足m≤n ,则y=2n -1=1; 故答案为D ;【点睛】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确的所代入代数式及代入得值. 27.(2019·四川绵阳市·中考真题)已知4m a =,8n b =,其中m ,n 为正整数,则262m n +=( ) A .2abB .2a b +C .23a bD .23a b + 【答案】A【分析】先变形262m n +成4m 与8n 的形式,再将已知等式代入可得.【详解】解:∵4m a =,8n b =,∴2626222m n m n +=⨯()()22322m n =⋅248m n =⋅()248m n =⋅2ab =,故选A . 【点睛】本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与同底数幂的乘法运算法则. 28.(2019·广西柳州市·中考真题)定义:形如a bi +的数称为复数(其中a 和b 为实数,i 为虚数单位,规定21i =-),a 称为复数的实部,b 称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如2222(13)1213(3)16916986i i i i i i i +=+⨯⨯+=++=+-=-+,因此,2(13)i +的实部是﹣8,虚部是6.已知复数2(3)mi -的虚部是12,则实部是( )A .﹣6B .6C .5D .﹣5 【答案】C【分析】先利用完全平方公式得出(3-mi )2=9-6mi+m 2i 2,再根据新定义得出复数(3-mi )2的实部是9-m 2,虚部是-6m ,由(3-mi )2的虚部是12得出m=-2,代入9-m 2计算即可.【详解】解:∵222222(3)323()9696mi mi mi mi m i m mi -=-⨯⨯+=-+=--∴复数2(3)mi -的实部是29m -,虚部是6m -,∴612m -=,∴2m =-,∴2299(2)945m -=--=-=.故选C .【点睛】本题考查了新定义,完全平方公式,理解新定义是解题的关键.二.填空题目1.(2021·四川达州市·中考真题)已知a ,b 满足等式2690a a +++=,则20212020a b =___________. 【答案】-3【分析】先将原式变形,求出a 、b ,再根据同底数幂的乘法、积的乘方的逆运算即可求解.【详解】解:由2690a a +++=,变形得()230a ++=, ∴130,03a b +=-=,∴13,3a b =-=, ∴()()()()20202020202020212020202120201113=33=33=3333a b ⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:-3【点睛】本题考查了完全平方公式,平方、算术平方根的非负性,同底数幂的乘法、积的乘方的逆用等知识,根据题意求出a 、b 的值,熟知同底数幂的乘法、积的乘方是解题关键.2.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】100(21)m -【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++的和,即可计算1001011011992222++++的和.【详解】由题意规律可得:2399100222222++++=-. ∵1002=m ∴23991000222222=2m m +++++==, ∵22991001012222222+++++=-,∴10123991002222222=++++++12=2m m m m =+=.102239910010122222222+=++++++224=2m m m m m =++=.1032399100101102222222222=++++++++3248=2m m m m m m =+++=.…… ∴1999922m =.故10010110110199992222222m m m ++++=+++. 令012992222S ++++=① 12310022222S ++++=② ②-①,得10021S -=∴10010110110199992222222m m m ++++=+++=100(21)m -故答案为:100(21)m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.3.(2021·四川广安市·中考真题)若x 、y 满足2223x y x y -=-⎧⎨+=⎩,则代数式224x y -的值为______. 【答案】-6【分析】根据方程组中x +2y 和x -2y 的值,将代数式利用平方差公式分解,再代入计算即可.【详解】解:∵x -2y =-2,x +2y =3,∴x 2-4y 2=(x +2y )(x -2y )=3×(-2)=-6,故答案为:-6.【点睛】本题主要考查方程组的解及代数式的求值,观察待求代数式的特点与方程组中两方程的联系是解题关键.4.(2021·江苏苏州市·中考真题)若21m n +=,则2366m mn n ++的值为______.【答案】3【分析】根据21m n +=,将式子2366m mn n ++进行变形,然后代入求出值即可.【详解】∵ 21m n +=,∴2366m mn n ++=3m (m +2n )+6n =3m +6n =3(m +2n )=3.故答案为:3.【点睛】本题考查了代数式的求值,解题的关键是利用已知代数式求值.5.(2021·江苏扬州市·中考真题)将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【答案】1275【分析】首先得到前n 个图形中每个图形中的黑色圆点的个数,得到第n 个图形中的黑色圆点的个数为()12n n +,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可.【详解】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:()1222+⨯=3, 第③个图形中的黑色圆点的个数为:()1332+⨯=6,第④个图形中的黑色圆点的个数为:()1442+⨯=10,... 第n 个图形中的黑色圆点的个数为()12n n +, 则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,...,其中每3个数中,都有2个能被3整除,33÷2=16...1,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275,故答案为:1275. 【点睛】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.6.(2021·重庆中考真题)某销售商五月份销售A 、B 、C 三种饮料的数量之比为3:2:4,A 、B 、C 三种饮料的单价之比为1:2:1.六月份该销售商加大了宣传力度,并根据季节对三种饮料的价格作了适当的调整,预计六月份三种饮料的销售总额将比五月份有所增加,A 饮料增加的销售占六月份销售总额的115,B 、C 饮料增加的销售额之比为2:1.六月份A 饮料单价上调20%且A 饮料的销售额与B 饮料的销售额之比为2:3,则A 饮料五月份的销售数量与六月份预计的销售数量之比为_____________. 【答案】910【分析】设销售A 饮料的数量为3x ,销售B 种饮料的数量2x, 销售C 种饮料的数量4x ,A 种饮料的单价y .B 、C 两种饮料的单价分别为2y 、y .六月份A 饮料单价上调20%,总销售额为m ,可求A 饮料销售额为3xy+115m ,B 饮料的销售额为91210xy m +,C 饮料销售额:171420xy m +,可求=15m xy ,六月份A 种预计的销售额4xy ,六月份预计的销售数量103x ,A 饮料五月份的销售数量与六月份预计的销售数量之比103:3x x 计算即可 【详解】解:某销售商五月份销售A 、B 、C 三种饮料的数量之比为3:2:4,设销售A 饮料的数量为3x ,销售B 种饮料的数量2x, 销售C 种饮料的数量4x ,A 、B 、C 三种饮料的单价之比为1:2:1.,设A 种饮料的单价y . B 、C 两种饮料的单价分别为2y 、y .六月份A 饮料单价上调20%后单价为(1+20%)y,总销售额为m ,A 饮料增加的销售占六月份销售总额的115,A 饮料销售额为3xy+115m , A 饮料的销售额与B 饮料的销售额之比为2:3,,B 饮料的销售额为31913=215210xy m xy m ⎛⎫++ ⎪⎝⎭ B 饮料的销售额增加部分为3134215xy m xy ⎛⎫+- ⎪⎝⎭∴C 饮料增加的销售额为131342215xy m xy ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦∴C 饮料销售额:13117134+42215420xy m xy xy xy m ⎡⎤⎛⎫+-=+ ⎪⎢⎥⎝⎭⎣⎦∴191171315210420xy m xy m xy m m +++++= ∴=15m xy 六月份A 种预计的销售额1315415xy xy xy +⨯=,六月份预计的销售数量()1041+20%y 3xy x ÷= ∴A 饮料五月份的销售数量与六月份预计的销售数量之比1093:9:10=310x x =故答案为910【点睛】本题考查销售问题应用题,用字母表示数,列代数式,整式的加减法,单项式除以单项式,掌握销售额=销售单价×销售数量是解题关键7.(2021·浙江嘉兴市·中考真题)观察下列等式:22110=-,22321=-,22532=-,…按此规律,则第n 个等式为21n -=__________________.【答案】()221n n --.【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可.【详解】解:∵22110=-,22321=-,22532=-,…∴第n 个等式为:()22211n n n -=-- 故答案是:()221n n --.【点睛】本题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题的关键.8.(2021·湖北十堰市·中考真题)已知2,33xy x y =-=,则322321218x y x y xy -+=_________. 【答案】36【分析】先把多项式因式分解,再代入求值,即可.【详解】∵2,33xy x y =-=,∴原式=()222322336xy x y -=⨯⨯=,故答案是:36.【点睛】本题主要考查代数式求值,掌握提取公因式法和公式法分解因式,是解题的关键.9.(2021·陕西中考真题)分解因式:3269x x x ++=______.【答案】()23x x +【分析】题目中每项都含有x ,提取公因式x ;先提取公因式,再用完全平方公式即可得出答案.【详解】()322269(69)3x x x x x x x x ++=+++=故答案为()23x x +.【点睛】本题考查了整式的因式分解,提公因式法和公式法,熟练掌握提公因式法分解因式、完全平方公式法分解因式是解题关键.10.(2021·江苏连云港市·中考真题)分解因式:2961x x ++=____.【答案】(3x +1)2【分析】原式利用完全平方公式分解即可.【详解】解:原式=(3x +1)2,故答案为:(3x +1)2【点睛】此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.11.(2020·四川绵阳市·中考真题)因式分解:x 3y ﹣4xy 3=_____.【答案】xy (x+2y )(x ﹣2y )【分析】原式提取公因式xy ,再利用平方差公式分解即可;【详解】解:x 3y ﹣4xy 3,=xy (x 2﹣4y 2),=xy (x+2y )(x ﹣2y ).故答案为:xy (x+2y )(x ﹣2y ).【点睛】本题考查了提公因式法与公式法因式分解.一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.(2020·湖南中考真题)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为_____.【答案】x=2或x=﹣或x=﹣1.【分析】将原方程左边变形为x3﹣4x﹣x+2=0,再进一步因式分解得(x﹣2)[x(x+2)﹣1]=0,据此得到两个关于x的方程求解可得.【详解】解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1故答案为:x=2或x=﹣或x=﹣1【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到解方程的方法.13.(2020·贵州黔南布依族苗族自治州·中考真题)若单项式a m﹣2b n+7与单项式﹣3a4b4的和仍是一个单项式,则m﹣n=_______.【答案】9【分析】直接利用合并同类项法则得出m,n的值,进而得出答案.【详解】由题意知:单项式a m﹣2b n+7与单项式﹣3a4b4是同类项,∴m−2=4,n+7=4,解得:m=6,n=−3,故m−n=6−(−3)=9.故填:9.【点睛】此题主要考查了合并同类项,正确得出m,n的值是解题关键.14.(2020·四川中考真题)将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=_____.【答案】65【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m、n的值,然后即可得到m+n的值.【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m 组有m 个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+…+44=44(441)2⨯+=990,1+2+3+…+45=45(451)2⨯+=1035, ∴2020是第45组第1010-990=20个数,∴m =45,n =20,∴m +n =65.故答案为:65.【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键.15.(2020·四川绵阳市·中考真题)若多项式||22(2)1m n xy n x y 是关于x ,y 的三次多项式,则mn =_____.【答案】0或8【分析】直接利用多项式的次数确定方法得出答案. 【详解】解:多项式||22(2)1m n xy n x y 是关于x ,y 的三次多项式,20n ∴-=,1||3m n ,2n ∴=,||2m n ,2m n ∴-=或2n m ,4m ∴=或0m =,0mn 或8.故答案为:0或8.【点睛】本题主要考查了多项式,正确掌握多项式的次数确定方法是解题关键.16.(2020·山东威海市·中考真题)如图①,某广场地面是用A .B .C 三种类型地砖平铺而成的,三种类型地砖上表面图案如图②所示,现用有序数对表示每一块地砖的位置:第一行的第一块(A 型)地砖记作(1,1),第二块(B 型)地时记作(2,1)…若(,)m n 位置恰好为A 型地砖,则正整数m ,n 须满足的条是__________.【答案】m 、n 同为奇数或m 、n 同为偶数【分析】几何图形,观察A 型地砖的位置得到当列数为奇数时,行数也为奇数,当列数为偶数,行数也为偶数的,从而得到m 、n 满足的条件.【详解】解:观察图形,A型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若用(m,n)位置恰好为A型地砖,正整数m,n须满足的条件为m、n同为奇数或m、n同为偶数,故答案为:m、n同为奇数或m、n同为偶数.【点睛】本题考查了坐标表示位置:通过类比点的坐标考查解决实际问题的能力和阅读理解能力.分析图形,寻找规律是关键.17.(2020·宁夏中考真题)2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a,较长直角边为b.如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为____.【答案】27【分析】根据题意得出a2+b2=15,(b-a)2=3,图2中大正方形的面积为:(a+b)2,然后利用完全平方公式的变形求出(a+b)2即可.【详解】解:由题意可得在图1中:a2+b2=15,(b-a)2=3,图2中大正方形的面积为:(a+b)2,∵(b-a)2=3 a2-2ab+b2=3,∴15-2ab=3 2ab=12,∴(a+b)2=a2+2ab+b2=15+12=27,故答案为:27.【点睛】本题考查了完全平方公式在几何图形中的应用,熟知完全平方式的形式是解题关键.18.(2020·湖南长沙市·中考真题)某数学老师在课外活动中做了一个有趣的游戏:首先发给A,B,C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成下列三个步骤:第一步,A同学拿出三张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学,请你确定,最终B同学手中剩余的扑克牌的张数为___________________.【答案】9。
最新中考数学整式与分式试题及答案
§1.4整式与分式1★课标视点把握课程标准, 做到有的放矢21.了解整数指数幂的意义和基本性质,3会用科学记数法表示数(包括在计算器上表示)。
42.了解整式的概念,会用简单的整式的5加、减运算;会进行简单的整式的乘法运算(其中多项式相乘仅指一次式相6乘)。
73.会推导乘法公式:(a+b)(a-b)=a2-b2;8(a+b)2=a2+2ab+b2,了解公式的几何背景。
94.会用提取公因式法、公式法(直接用10公式不超过二次)进行因式分解(指数是正整数)。
115.了解分式的概念,会利用分式的基本12性质进行约分和通分,会进行简单的分式加、减乘、除运算。
13★热点探视把握考试脉搏, 做到心中有数141.把n aa a a a个记作15A.n aB.n+aC.n aD.a n (2009丽水16市)172.计算:a2·a3的结果是( )18A.a9 B.a8 C.a6 D.a5. (2009泉州市)19203.下列运算正确的是 21 A .236a a a =B .()22ab ab =22C .3a 2a 5a +=D .()325a a = (2009长沙市)23 4.下列运算正确的是( ).24 A . 6a+2a=8a 2 B . a 2÷a 2=0 25 C . a-(a-3)=-3 D.a -1·a 2=a 26 5. 因式分解4—4a+a 2,正确的是( ).27 A .4(1-a)+a 2 B .(2-a)2 C . (2-a)(2-a) D . (2+a)2(2009 玉28 林)29 6.已知:a +b =m ,ab =-4, 化简(a -2)(b -2)的结果是30 A. 6 B. 2 m -8 C. 2 m D. -2 m (2031 09厦门)32 33 7.34 (2009 35 扬州)368.计算的结果为( ).37 (A )1 (B )x+1 (C ) (D )38 (2009 武汉)399.若代数式21x x -+的值是零,则x = ;若代数式()()21x x -+的值是40 零,则x ; 当x 时,式子121x -有意义 . (2009 镇江) 41 10.如下图是由边长为a 和b 的两个正方形组成,通过用不同的方法,计算42 下图中阴影部分的面积,可以验证的一个公式43 是 .( 2009泰州)44 4546 4748 第10题49 案例导学 题型归纳引路, 做到各个击破50【题型一】整式的概念及整式的乘法运算 51 【例1】1.(1) 下列计算正确的是( ) 52 A.(-x)2009=x 2009 B.(2x)3=6x 3 C.2x 2+3x 2=5x 2 D.x 6÷x 2=x 353 (2)下列运算正确的是( )54 A.1836a a a =⋅ B.936)()(a a a -=-⋅- 55 C 236a a a =÷ D.936)()(a a a =-⋅-56(3)挪威数学家阿贝尔,年轻时就利用阶梯形,发现57 了一个重要的恒等式——阿贝尔公式:右图是一个简58 单的阶梯形,可用两种方法,每一种把图形分割成为59两个矩形.利用它们之间的面积关系,可以得到:a1b1+a2b2=60A . a1(b1-b2)+(a1+a2)b1B . a2(b2-b1)+(a1+a2)b261C. a1(b1-b2)+(a1+a2)b2D. a2(b1-b2)+(a1+a2)b162(4)现规定一种运算:,其中、为实数,则等于63A. B. C. D.642.计算322223(35)a b a b a b ab a b÷+⋅--65663.计算:(a2+3)(a-2)-a(a2-2a-2)67【解】1.故应选(B)(a2+3)(a-2)-a(a2-2a-2)68=a3-2a2+3a-6-a3+2a2+2a69=5a-670717273b bbababbba abbabbabba ab-=--+-+-+ =--+⋅-+-+ =22)()(7475【导学】题设规定了一种新的运算“*”,要求考生按照“*”的运算法则解决76与之有关的计算问题:77【题型二】乘法公式78【例2】1.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如79图1),把余下的部分拼成一个矩形(如图2),根据两个图形中阴影部分的面80积相等,可以验证( ) 81 A.222()2a b a ab b +=++ 82B.222()2a b a ab b -=-+83C.22()()a b a b a b -=+- 84D.22(2)()2a b a b a ab b +-=+-85 8687 【解】88 【导学】1. 代数式的几何解释或创设实际背景时把握情景或背景应该合理89 为原则,如“如果一个苹果4元,那么4a 表示a 个苹果的价钱”这样的解释欠90 妥.91 【题型三】因式分解92 【例3】1.下列各式由左边到右边的变形中,是分解因式的为:93 A.ay ax y x a +=+)(, B.4)4(442+-=+-x x x x 94 C.)12(55102-=-x x x x D.x x x x x 3)4)(4(3162+-+=+- 1. 95 2.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”96 法产生的密码,方便记忆.原理是:如对于多项式44y x -,因式分解的97 结果是))()((22y x y x y x ++-,若取x =9,y =9时,则各个因式的值是:(x 98 -y )=0,(x +y )=18,(x 2+y 2)=162,于是就可以把“018162”作为一个六99 位数的密码.对于多项式234xy x -,取x =10,y =10时,用上述方法产生100 的密码是: (写出一个即可).在实数范围内分解因式:ab 2-2a101a图2图1=_________.102 (2)若6=+b a ,ab =4,则b a -= .103(3)如果012=-+x x ,那么代数式7223-+x x 的值为…………………………104 ( )105 A 、6 B 、8 C 、—6 D 、—8106(3)若13x x+=.求2421x x x ++的值是( )107A.18 B.110 C.12 D.14108【导学】1.观察规律知13+=x y ; 109 2. 折叠时动手操作即可.110【题型四】分式运算 111 【例4】1.计算xx ----21442的结果是 112A.21+-x B.21--x C.21+x D.462---x x113 (2009 威海) 114115 2.已知若a b =35 ,则a +bb的值是( )116A.85B.35C.32D.581173. 化简22142x x x ---的结果是( ) 118 A. 12x + B. 12x - C. 2324x x -- D. 2324x x +- 119120 4. 下列分式的运算中,其中结果正确的是:121A .b a b a +=+211 B.323)(a a a =, C.b a b a b a +=++22,D.319632-=+--a a a a 1225.先化简后求值:)252(23--+÷--x x x x 其中x =22 123 6.计算:44()()xy xy x y x y x y x y-++--+ 124125解:2.∵222211111x x x x y x x x-+-=÷-+-+ 126=()21(1)11(1)(1)1x x x x x x x--÷-++-+ 127 =()21111(1)(1)(1)x x x x x x x-+⨯-++-- =111x x -+ =1.128 所以,在右边代数式有意义的条件下,不论x 为何值,y 的值不变。
中考分类汇编--整式与分式
中考分类汇编—整式与分式一、整式1. 计算x x ÷)2(3的结果正确的是( ) A )28x B )26x C )38x D )36x2.下列运算正确的是( )A .-3(x -1)=-3x -1B .-3(x -1)=-3x +1C .-3(x -1)=-3x -3D .-3(x -1)=-3x +3 3.下列命题中,正确的是( )A .若a ·b >0,则a >0,b >0B .若a ·b <0,则a <0,b <0C .若a ·b =0,则a =0,且b =0D .若a ·b =0,则a =0,或b =0 4. 34a a ⋅的结果是( )A. 4a B. 7a C.6a D. 12a 5.下列说法或运算正确的是( ) A .1.0×102有3个有效数字B .222)(b a b a -=-C .532a a a =+ D .a 10÷a 4= a 66.图①是一个边长为()m n +的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( )A .22()()4m n m n mn +--= B .222()()2m n m n mn +-+= C .222()2m n mn m n -+=+ D .22()()m n m n m n +-=-7.如果33-=-b a ,那么代数式b a 35+-的值是( )A .0B .2C .5D .8 8.由m (a +b +c )=ma +mb +mc ,可得:(a +b )(a 2-ab +b 2)=a 3-a 2b +ab 2+a 2b -ab 2+b 3=a 3+b 3,即(a +b )(a 2-ab +b 2)=a 3+b 3.我们把等式①叫做多项式乘法的立方公式。
下列应用这个立方公式进行的变形不正确...的是( ) (A )(x +4y )(x 2-4xy +16y 2)=x 3+64y 3 (B )(2x+y )(4x 2-2xy+y 2)=8x 3+y 3 (C )(a +1)(a 2+a +1)=a 3+1 (D )x 3+27=(x +3)(x 2-3x +9) 9.下列运算正确的是( )A .xy y x 532=+B .a a a =-23C .b b a a -=--)(D .2)2(12-+=+-a a a a )( 10.已知1=-b a ,则a 2-b 2-2b 的值为( )A .4B .3C .1D .0 11.下列计算正确的是( )A.= B.1)(11=C .422()a a a --÷= D .2111()24xy xy xy -⎛⎫= ⎪⎝⎭12.下列运算中正确的是( )A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+13.已知有一多项式与(2x 2+5x -2)的和为(2x 2+5x +4),求此多项式为何?( ) (A) 2 (B) 6 (C) 10x +6 (D) 4x 2+10x +2 。
(完整word)中考数学试题分类汇编(整式与分式),推荐文档
中考数学试题分类汇编(整式与分式)、选择题1、( 2007湖北宜宾)实数a 、b 在数轴上的位置如图所示,DA . 2a+bB . 2aC . aD . b33A . x?x x8、(2007湖北恩施)下列计算正确的是( )D3 2 6 A 、 a ?a aB 、b 4?b 44 —5 2b C 、x 5 x x 10 fD 、7 8y ?y y9、(2007山东淮坊) (2)6的值为9, 24 6的值为(4、(2007四川成都) 卜列运算止确的是( 2B . 2x 2)D1 2x 2A . 3x 2x 1c .2 36(a)・a a2\3D . ( a )6a4、(2007浙江嘉兴) 化简: (a + 1)2- (a —1)2=( )C(A ) 2 (4 (C ) 4a (D ) 2a 2+ 2 5、 (2007哈尔滨)下列计算中,正确的是( )D A.3a 2b 5abB . a ?a 4 4 a 6. (2007福建晋江)对于非零实数 m ,卜列式子运算止确的是( )D4m 。
3\ 2A . (m )932m ; B . m m6小 m ; C . 23m m5 m;D .6 2m m7. (2007福建晋江) 下列因式分解正确的是()CA . 4 x 2 3x (2x)(2 x)3x ; B . x 2 3x 4 (x 4)(x 1); C . 1 4xx 2(1 2x)2;D . x 2yxy3x yx(xy yx 2y)。
C .“ 3,、26 2D . (a b) a b则化简代数式|a+b | -a 的结果是(_____ III■a 0 __ b3 2、(2007重庆)计算6m2(3m )的结果是()B (A ) 3m(B )2m(C ) 2m(D ) 3mC . x 3 x2 小 ‘B . a 2a 1C . a 2a 1(第1题图)3、(2007广州)下列计算中,正确的是( )C6a2a3a代数式3x 4x 则x -x3 )AA. 7B. 18C. 12D. 910、(2007江西南昌)下列各式中,与(a 1)2相等的是() B 、填空题11 =11解:原式=—x1—时,原式=—221、 (200浙江义乌))当x=2, 2、 (2007湖北宜宾) 因式分解: 代数式2x 1的值为_______ ▲ —. 32 xy -2xy+x = __________________ .x (y — 1) 2 3、(2007浙江金华) 分解因式: 2x 2 18 .2(x 3)(x 3) 4、(2007江苏盐城) 分解因式:2 x - 9= 5、(2007哈尔滨)分解因式: 2 23ax 3ay -3a(x y)(x y); 6、 (2007湖北恩施)分解因式 7、 (2007山东烟台)请你写一个能先提公因式、再运用公式来分解因式的三项式,并写出分 解因式的结果 3 2a — ab = .a(a+b)(a-b) 解:答案不唯一,如 22x 4x + 2= 2 ( x + 1) 2 8、(2007湖南株州) 2x 3y m 与 3x n y 2是同类项,则 m+n = .5计算:mJ mn x 3 10、( 2007四川内江)化简: ----x 29、(2007浙江温州) m 1 2 xx 2 4 11、( 2007山东淮坊)在实数范围内分解因式: 4m 2 8m 解:4(m ,2 1)(m .2 1) 三、解答题 1 2 x 1- x 2 请你选择其中两个进行加法运算,并把结果因式分解。
全国中考数学真题分类汇编 3 整式与因式分解-人教版初中九年级全册数学试题
整式与因式分解考点一、整式的有关概念 (3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如c b a 235-是6次单项式。
考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。
(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。
4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。
整式的乘法:),(都是正整数n m aa a nm nm+=•),(都是正整数)(n m a a mn nm =)()(都是正整数n b a ab n n n = 22))((b a b a b a -=-+2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-整式的除法:)0,,(≠=÷-a n m aa a nm nm都是正整数注意:(1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。
浙江省各地市2023-中考数学真题分类汇编-02填空题(提升题)知识点分类
浙江省各地市2023-中考数学真题分类汇编-02填空题(提升题)知识点分类一.整式的混合运算(共1小题)1.(2023•金华)如图是一块矩形菜地ABCD,AB=a(m),AD=b(m),面积为s(m2),现将边AB增加1m.(1)如图1,若a=5,边AD减少1m,得到的矩形面积不变,则b的值是 .(2)如图2,若边AD增加2m,有且只有一个a的值,使得到的矩形面积为2s(m2),则s的值是 .二.分式有意义的条件(共1小题)2.(2023•宁波)要使分式有意义,x的取值应满足 .三.一元一次方程的应用(共1小题)3.(2023•丽水)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两).今有干丝12斤,问原有生丝多少?”则原有生丝为 斤.四.由实际问题抽象出二元一次方程组(共1小题)4.(2023•浙江)我国古代数学名著《张丘建算经》中有这样一题:一只公鸡值5钱,一只母鸡值3钱,3只小鸡值1钱,现花100钱买了100只鸡.若公鸡有8只,设母鸡有x只,小鸡有y只,可列方程组为 .五.解分式方程(共1小题)5.(2023•绍兴)方程的解是 .六.反比例函数系数k的几何意义(共1小题)6.(2023•绍兴)如图,在平面直角坐标系xOy中,函数(k为大于0的常数,x>0)图象上的两点A(x1,y1),B(x2,y2),满足x2=2x1,△ABC的边AC∥x轴,边BC∥y轴,若△OAB的面积为6,则△ABC的面积是 .七.反比例函数的应用(共1小题)7.(2023•温州)在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,加压后气体对汽缸壁所产生的压强p(kPa)与汽缸内气体的体积V(mL)成反比例,p关于V的函数图象如图所示.若压强由75kPa加压到100kPa,则气体体积压缩了 mL.八.二次函数的最值(共1小题)8.(2023•绍兴)在平面直角坐标系xOy中,一个图形上的点都在一边平行于x轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数y=(x﹣2)2(0≤x≤3)的图象(抛物线中的实线部分),它的关联矩形为矩形OABC.若二次函数图象的关联矩形恰好也是矩形OABC,则b= .九.平行线的性质(共1小题)9.(2023•杭州)如图,点D,E分别在△ABC的边AB,AC上,且DE∥BC,点F在线段BC 的延长线上.若∠ADE=28°,∠ACF=118°,则∠A= .一十.三角形的面积(共1小题)10.(2023•台州)如图,点C,D在线段AB上(点C在点A,D之间),分别以AD,BC 为边向同侧作等边三角形ADE与等边三角形CBF,边长分别为a,b,CF与DE交于点H,延长AE,BF交于点G,AG长为c.(1)若四边形EHFG的周长与△CDH的周长相等,则a,b,c之间的等量关系为 ;(2)若四边形EHFG的面积与△CDH的面积相等,则a,b,c之间的等量关系为 .一十一.菱形的性质(共1小题)11.(2023•绍兴)如图,在菱形ABCD中,∠DAB=40°,连接AC,以点A为圆心,AC 长为半径作弧,交直线AD于点E,连接CE,则∠AEC的度数是 .一十二.圆内接四边形的性质(共1小题)12.(2023•绍兴)如图,四边形ABCD内接于圆O,若∠D=100°,则∠B的度数是 .一十三.正多边形和圆(共1小题)13.(2023•杭州)如图,六边形ABCDEF是⊙O的内接正六边形,设正六边形ABCDEF的面积为S1,△ACE的面积为S2,则= .一十四.弧长的计算(共1小题)14.(2023•金华)如图,在△ABC中,AB=AC=6cm,∠BAC=50°,以AB为直径作半圆,交BC于点D,交AC于点E,则弧DE的长为 cm.一十五.扇形面积的计算(共2小题)15.(2023•温州)图1是4×4方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为 .若点A,N,M在同一直线上,AB∥PN,DE=EF,则题字区域的面积为 .16.(2023•浙江)一副三角板ABC和DEF中,∠C=∠D=90°,∠B=30°,∠E=45°,BC=EF=12.将它们叠合在一起,边BC与EF重合,CD与AB相交于点G(如图1),此时线段CG的长是 .现将△DEF绕点C(F)按顺时针方向旋转(如图2),边EF与AB相交于点H,连结DH,在旋转0°到60°的过程中,线段DH扫过的面积是 .一十六.圆的综合题(共1小题)17.(2023•宁波)如图,在Rt△ABC中,∠C=90°,E为AB边上一点,以AE为直径的半圆O与BC相切于点D,连结AD,BE=3,BD=3.P是AB边上的动点,当△ADP 为等腰三角形时,AP的长为 .一十七.坐标与图形变化-旋转(共1小题)18.(2023•金华)在直角坐标系中,点(4,5)绕原点O逆时针方向旋转90°,得到的点的坐标 .一十八.相似三角形的判定与性质(共1小题)19.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD=DF,则= (结果用含k的代数式表示).一十九.概率公式(共2小题)20.(2023•杭州)一个仅装有球的不透明布袋里只有6个红球和n个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则n= .21.(2023•台州)一个不透明的口袋中有5个除颜色外完全相同的小球,其中2个红球,3个白球.随机摸出一个小球,摸出红球的概率是 .二十.应用类问题(共1小题)22.(2023•台州)3月12日植树节期间,某校环保小卫士组织植树活动.第一组植树12棵;第二组比第一组多6人,植树36棵;结果两组平均每人植树的棵数相等,则第一组有 人.浙江省各地市2023-中考数学真题分类汇编-02填空题(提升题)知识点分类参考答案与试题解析一.整式的混合运算(共1小题)1.(2023•金华)如图是一块矩形菜地ABCD,AB=a(m),AD=b(m),面积为s(m2),现将边AB增加1m.(1)如图1,若a=5,边AD减少1m,得到的矩形面积不变,则b的值是 6 .(2)如图2,若边AD增加2m,有且只有一个a的值,使得到的矩形面积为2s(m2),则s的值是 6+4 .【答案】(1)6;(2)6+4.【解答】解:(1)∵边AD减少1m,得到的矩形面积不变,∴5b=(5+1)×(b﹣1),解得:b=6,故答案为:6;(2)根据题意知b=,∵边AB增加1m,边AD增加2m,得到的矩形面积为2s(m2),∴(a+1)(b+2)=2s,∴(a+1)(+2)=2s,整理得:2a++2﹣s=0,∴2a2+(2﹣s)a+s=0,∵有且只有一个a的值使得到的矩形面积为2s,∴Δ=0,即(2﹣s)2﹣8s=0,解得s=6﹣4(不符合题意舍去)或s=6+4,故答案为:6+4.二.分式有意义的条件(共1小题)2.(2023•宁波)要使分式有意义,x的取值应满足 x≠2 .【答案】x≠2.【解答】解:由题意得:x﹣2≠0,解得:x≠2,故答案为:x≠2.三.一元一次方程的应用(共1小题)3.(2023•丽水)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两).今有干丝12斤,问原有生丝多少?”则原有生丝为 斤.【答案】.【解答】解:设原有生丝为x斤,x:12=30:(30﹣3),解得x=.故原有生丝为斤.故答案为:.四.由实际问题抽象出二元一次方程组(共1小题)4.(2023•浙江)我国古代数学名著《张丘建算经》中有这样一题:一只公鸡值5钱,一只母鸡值3钱,3只小鸡值1钱,现花100钱买了100只鸡.若公鸡有8只,设母鸡有x只,小鸡有y只,可列方程组为 .【答案】.【解答】解:根据题意得:.故答案为:.五.解分式方程(共1小题)5.(2023•绍兴)方程的解是 x=3 .【答案】x=3.【解答】解:去分母,得3x=9,∴x=3.经检验,x=3是原方程的解.故答案为:x=3.六.反比例函数系数k的几何意义(共1小题)6.(2023•绍兴)如图,在平面直角坐标系xOy中,函数(k为大于0的常数,x>0)图象上的两点A(x1,y1),B(x2,y2),满足x2=2x1,△ABC的边AC∥x轴,边BC∥y 轴,若△OAB的面积为6,则△ABC的面积是 2 .【答案】2.【解答】解:如图,延长CA交y轴于E,延长CB交x轴于点F,∴CE⊥y轴,CF⊥x轴,∴四边形OECF为矩形,∵x2=2x1,∴点A为CE的中点,由几何意义得,S△OAE=S△OBF,∴点B为CF的中点,∴S△OAB=S矩形OECF=6,∴S矩形OECF=16,∴S△ABC=×16=2.故答案为:2.2七.反比例函数的应用(共1小题)7.(2023•温州)在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,加压后气体对汽缸壁所产生的压强p(kPa)与汽缸内气体的体积V(mL)成反比例,p关于V 的函数图象如图所示.若压强由75kPa加压到100kPa,则气体体积压缩了 20 mL.【答案】20.【解答】解:设这个反比例函数的解析式为V=,∵V=100ml时,p=60kpa,∴k=pV=100ml×60kpa=6000,∴V=,当p=75kPa时,V==80,当p=100kPa时,V==60,∴80﹣60=20(mL),∴气体体积压缩了20mL,故答案为:20.八.二次函数的最值(共1小题)8.(2023•绍兴)在平面直角坐标系xOy中,一个图形上的点都在一边平行于x轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数y=(x﹣2)2(0≤x≤3)的图象(抛物线中的实线部分),它的关联矩形为矩形OABC.若二次函数图象的关联矩形恰好也是矩形OABC,则b= 或﹣ .【答案】或﹣.【解答】解:由y=(x﹣2)2(0≤x≤3),当x=0时,y=4,∴C(0,4),∵A(3,0),四边形ABCO是矩形,∴B(3,4),①当抛物线经过O、B时,将点O(0,0),B(3,4)代入y=x2+bx+c(0≤x≤3)得,解得b=;②当抛物线经过A、C时,将点A(3,0),C(0,4)代入y=x2+bx+c(0≤x≤3)得,解得b=﹣,综上所述,b=或b=﹣,故答案为:或﹣,九.平行线的性质(共1小题)9.(2023•杭州)如图,点D,E分别在△ABC的边AB,AC上,且DE∥BC,点F在线段BC 的延长线上.若∠ADE=28°,∠ACF=118°,则∠A= 90° .【答案】90°.【解答】解:∵DE∥BC,∴∠B=∠ADE=28°,∵∠ACF=∠A+∠B,∴∠A=∠ACF﹣∠B=118°﹣28°=90°.故答案为:90°.一十.三角形的面积(共1小题)10.(2023•台州)如图,点C,D在线段AB上(点C在点A,D之间),分别以AD,BC 为边向同侧作等边三角形ADE与等边三角形CBF,边长分别为a,b,CF与DE交于点H,延长AE,BF交于点G,AG长为c.(1)若四边形EHFG的周长与△CDH的周长相等,则a,b,c之间的等量关系为 5a+5b =7c ;(2)若四边形EHFG的面积与△CDH的面积相等,则a,b,c之间的等量关系为 a2+b2=c2 .【答案】(1)5a+5b=7c;(2)a2+b2=c2.【解答】解:(1)∵△ADE和△CBF是等边三角形,∴∠A=∠ADE=∠B=∠BCF=60°,∴△CDH和△ABG是等边三角形,DE∥BG,CF∥AG,∴四边形EHFG是平行四边形,AB=AG=BG=c,CH=DH=CD=AD+BC﹣AB=a+b﹣c,∴EG=AG﹣AE=c﹣a,GF=BG﹣BF=c﹣b,∵四边形EHFG的周长与△CDH的周长相等,∴2[(c﹣a)+(c﹣b)]=3(a+b﹣c),整理得:5a+5b=7c,故答案为:5a+5b=7c;(2)∵S四边形EHFG=S△ABG﹣S△BCF﹣S△ADE+S△CDH,四边形EHFG的面积与△CDH 的面积相等,∴S△ABG﹣S△BCF﹣S△ADE+S△CDH=S△CDH,∴S△ABG=S△BCF+S△ADE,∵△ABG,△ADE和△CBF是等边三角形,∴c2=a2+b2,∴c2=a2+b2,故答案为:a2+b2=c2.一十一.菱形的性质(共1小题)11.(2023•绍兴)如图,在菱形ABCD中,∠DAB=40°,连接AC,以点A为圆心,AC 长为半径作弧,交直线AD于点E,连接CE,则∠AEC的度数是 10°或80° .【答案】10°或80°.【解答】解:以点A为圆心,AC长为半径作弧,交直线AD于点E和E′,如图所示,在菱形ABCD中,∠DAC=∠BAC,∵∠DAB=40°,∵AC=AE,∴∠AEC=(180°﹣20°)÷2=80°,∵AE′=AC,∴∠AE′C=∠ACE′=10°,综上所述,∠AEC的度数是10°或80°,故答案为:10°或80°.一十二.圆内接四边形的性质(共1小题)12.(2023•绍兴)如图,四边形ABCD内接于圆O,若∠D=100°,则∠B的度数是 80° .【答案】80°.【解答】解:∵四边形ABCD内接于圆O,∵∠D=100°,∴∠B=80°.故答案为:80°.一十三.正多边形和圆(共1小题)13.(2023•杭州)如图,六边形ABCDEF是⊙O的内接正六边形,设正六边形ABCDEF的面积为S1,△ACE的面积为S2,则= 2 .【答案】2.【解答】解:如图所示,连接OA,OC,OE.∵六边形ABCDEF是⊙O的内接正六边形,∴AC=AE=CE,∴△ACE是⊙O的内接正三角形,∵∠B=120°,AB=BC,∴∠BAC=∠BCA=(180°﹣∠B)=30°,∵∠CAE=60°,∴∠BAC=∠OAC=30°,同理可得,∠BCA=∠OCA=30°,又∵AC=AC,∴△BAC≌△OAC(ASA),∴S△BAC=S△AOC,圆和正六边形的性质可得,S△BAC=S△AFE=S△CDE,由圆和正三角形的性质可得,S△OAC=S△OAE=S△OCE,∵S1=S△BAC+S△AEF+S△CDE+S△OAC+S△OAE+S△OCE=2(S△OAC+S△OAE+S△OCE)=2S2,∴,故答案为:2一十四.弧长的计算(共1小题)14.(2023•金华)如图,在△ABC中,AB=AC=6cm,∠BAC=50°,以AB为直径作半圆,交BC于点D,交AC于点E,则弧DE的长为 π cm.【答案】π.【解答】解:连接OE,OD,∵OD=OB,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠C=∠ODB,∴OD∥AC,∴∠EOD=∠AEO,∵OE=OA,∴∠EOD=∠BAC=50°,∵OD=AB=×6=3(cm),∴的长==π(cm).故答案为:π.一十五.扇形面积的计算(共2小题)15.(2023•温州)图1是4×4方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为 5 .若点A,N,M在同一直线上,AB∥PN,DE=EF,则题字区域的面积为 .【答案】5;.【解答】解:如图所示,依题意,GH=2=GQ,∵过左侧的三个端点Q,K,L作圆,QH=HL=4,又NK⊥QL,∴O在KN上,连接OQ,则OQ为半径,∵OH=r﹣KH=r﹣2,在Rt△OHQ中,OH2+QH2=QO2,∴(r﹣2)2+42=r2,解得:r=5;连接OE,取ED的中点T,连接OT,交AB于点S,连接PB,AM,过点O作OU⊥AM 于点U.连接OA.由△OUN∽△NPM,可得==,∴OU=.MN=2,∴NU=,∴AU==,∴AN=AU﹣NU=2,∴AN=MN,∵AB∥PN,∴AB⊥OT,∴AS=SB,∴NS∥BM,∴NS∥MP,∴M,P,B共线,又NB=NA,∴∠ABM=90°,∵MN=NB,NP⊥MP,∴MP=PB=2,∴NS=MB=2,∵KH+HN=2+4=6,∴ON=6﹣5=1,∴OS=3,∵,设EF=ST=a,则,在Rt△OET中,OE2=OT2+TE2,即,整理得5a2+12a﹣32=0,即(a+4)(5a﹣8)=0,解得:或a=﹣4,∴题字区域的面积为.故答案为:.16.(2023•浙江)一副三角板ABC和DEF中,∠C=∠D=90°,∠B=30°,∠E=45°,BC=EF=12.将它们叠合在一起,边BC与EF重合,CD与AB相交于点G(如图1),此时线段CG的长是 6﹣6 .现将△DEF绕点C(F)按顺时针方向旋转(如图2),边EF与AB相交于点H,连结DH,在旋转0°到60°的过程中,线段DH扫过的面积是 18+12π﹣18 .【答案】6﹣6;18+12π﹣18.【解答】解:如图1,过点G作GK⊥BC于K,则∠CKG=∠BKG=90°,∵∠BCD=45°,∴△CGK是等腰直角三角形,∴CK=GK=CG,∵BC=12,∴BK=BC﹣CK=12﹣CG,在Rt△BGK中,∠GBK=30°,∴=tan∠GBK=tan30°=,∴BK=GK,即12﹣CG=×CG,∴CG=6﹣6;如图2,以C为圆心,CD为半径作圆,当△CDE绕点C旋转60°时,CE′交AB于H ′,连接DD′,过点D作DM⊥AB于M,过点C作CN⊥DD′于N,则∠BCE′=∠DCD′=60°,点D的运动轨迹为,点H的运动轨迹为线段BH ′,∴在旋转0°到60°的过程中,线段DH扫过的面积为S△BDD′+S扇形CDD′﹣S△CDD′,∵CD=BC•cos CBD=12cos45°=6,∴DG=CD﹣CG=6﹣(6﹣6)=12﹣6,∵∠BCD+∠ABC=60°+30°=90°,∴∠BH′C=90°,在Rt△BCH′中,CH′=BC•sin30°=12×=6,BH′=BC•cos30°=12×=6,∵△CD′E′是等腰直角三角形,∠CD′E′=90°,D′H′⊥CE′,∴D′H′=CE′=6,∴BD′=6+6,∵DM⊥AB,∴∠DMG=90°,∴∠DMG=∠CH′G,∵∠DGM=∠CGH′,∴△DGM∽△CGH′,∴=,即=,∴DM=3﹣3,∵CD′=CD=6,∠DCD′=60°,∴△CDD′是等边三角形,∴∠CDD′=60°,∵CN⊥DD′,∴CN=CD•sin∠CDD′=6sin60°=3,∴S△BDD′+S扇形CDD′﹣S△CDD′=×(6+6)×(3﹣3)+﹣×6×3=18+12π﹣18;故答案为:6﹣6;18+12π﹣18.一十六.圆的综合题(共1小题)17.(2023•宁波)如图,在Rt△ABC中,∠C=90°,E为AB边上一点,以AE为直径的半圆O与BC相切于点D,连结AD,BE=3,BD=3.P是AB边上的动点,当△ADP 为等腰三角形时,AP的长为 6或2 .【答案】6或2.【解答】解:如图1,连接OD,DE,∵半圆O与BC相切于点D,∴OD⊥BC,在Rt△OBD中,OB=OE+BE=OD+3,BD=3.∴OB2=BD2+OD2,∴(OD+3)2=(3)2+OD2,解得OD=6,∴AO=EO=OD=6,①当AP=PD时,此时P与O重合,∴AP=AO=6;②如图2,当AP′=AD时,在Rt△ABC中,∵∠C=90°,∴AC⊥BC,∴OD∥AC,∴△BOD∽△BAC,∴==,∴==,∴AC=10,CD=2,∴AD===2,∴AP′=AD=2;③如图3,当DP′′=AD时,∵AD=2,∴DP′′=AD=2,∵OD=OA,∴∠ODA=∠BAD,∴OD∥AC,∴∠ODA=∠CAD,∴∠BAD=∠CAD,∴AD平分∠BAC,过点D作DH⊥AE于点H,∴AH=P″H,DH=DC=2,∵AD=AD,∴Rt△ADH≌Rt△ADC(HL),∴AH=AC=10,∴AH=AC=P″H=10,∴AP″=2AH=20(E为AB边上一点,不符合题意,舍去),综上所述:当△ADP为等腰三角形时,AP的长为6或2.故答案为:6或2.一十七.坐标与图形变化-旋转(共1小题)18.(2023•金华)在直角坐标系中,点(4,5)绕原点O逆时针方向旋转90°,得到的点的坐标 (﹣5,4) .【答案】(﹣5,4).【解答】解:如图,点A(4,5)绕原点O逆时针方向旋转90°,得到的点B的坐标(﹣5,4).故答案为:(﹣5,4).一十八.相似三角形的判定与性质(共1小题)19.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD=DF,则= (结果用含k的代数式表示).【答案】.【解答】解:方法一:∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB,∵AD=DF,∴∠A=∠DFA,∵点B和点F关于直线DE对称,∴∠BDE=∠FDE,∵∠BDE+∠FDE=∠BDF=∠A+∠DFA,∴∠FDE=∠DFA,∴DE∥AC,∴∠C=∠DEB,∠DEF=∠EFC,∵点B和点F关于直线DE对称,∴∠DEB=∠DEF,∴∠C=∠EFC,∵AB=AC,∴∠C=∠B,∵∠ACB=∠EFC,∴△ABC∽△ECF,∴=,∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴==,∴EC=BC,∵=k,∴BC=k•AB,∴EC=k•AB,∴=,∴CF=k2•AB,∴====.方法二:如图,连接BF,∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB=DF,∴BF⊥AC,设AB=AC=1,则BC=k,设CF=x,则AF=1﹣x,由勾股定理得,AB2﹣AF2=BC2﹣CF2,∴12﹣(1﹣x)2=k2﹣x2,∴x=,∴AF=1﹣x=,∴=.故答案为:.一十九.概率公式(共2小题)20.(2023•杭州)一个仅装有球的不透明布袋里只有6个红球和n个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则n= 9 .【答案】9.【解答】解:根据题意,=,解得n=9,经检验n=9是方程的解.∴n=9.故答案为:9.21.(2023•台州)一个不透明的口袋中有5个除颜色外完全相同的小球,其中2个红球,3个白球.随机摸出一个小球,摸出红球的概率是 .【答案】.【解答】解:∵一个口袋里有5个除颜色外完全相同的小球,其中2个红球,3个白球,∴摸到红球的概率是.故答案为:.二十.应用类问题(共1小题)22.(2023•台州)3月12日植树节期间,某校环保小卫士组织植树活动.第一组植树12棵;第二组比第一组多6人,植树36棵;结果两组平均每人植树的棵数相等,则第一组有 3 人.【答案】3.【解答】解:设第一组有x人,则第二组有(x+6)人,依题意有:=,解得x=3,经检验,x=3是原方程的解.故第一组有3人.故答案为:3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学试题分类汇编:整式与分式一、选择题1、实数a 、b 在数轴上的位置如图所示,则化简代数式||a +b –a 的结果是( ) A .2a +b B .2a C .a D .b2、计算)3(623m m -÷的结果是( )(A )m 3- (B )m 2- (C )m 2m 3 3、下列计算中,正确的是( )A .33x x x =∙B .3x x x -=C .32x x x ÷=D .336x x x += 4、下列运算正确的是( ) A.321x x -= B.22122xx--=-C.236()a a a -=· D.236()a a -=-4、化简:(a +1)2-(a -1)2=( )(A )2 (B )4 (C )4a (D )2a 2+25、下列计算中,正确的是( )A .325a b ab +=B .44a a a =∙ C .623a a a ÷= D .3262()a b a b = 6.对于非零实数m ,下列式子运算正确的是( )A .923)(m m =;B .623m m m =⋅;C .532m m m =+;D .426m m m =÷。
7.下列因式分解正确的是( )A .x x x x x 3)2)(2(342++-=+-;B .)1)(4(432-+-=++-x x x x ;C .22)21(41x x x -=+-;D .)(232y x y xy x y x xy y x +-=+-。
8、下列计算正确的是( )A 、623a a a =∙B 、4442b b b =∙C 、1055x x x =+ D 、87y y y =∙ 9、代数式2346x x -+的值为9,则2463x x -+的值为( )A .7 B .18 C .12D .9 10、下列各式中,与2(1)a -相等的是( )A .21a -B .221a a -+ C .221a a -- D .21a + 二、填空题1、当x=2,代数式21x -的值为_______.2、因式分解:xy 2–2xy +x = .3、分解因式:2218x -= .4、分解因式:2x -9= 。
5、分解因式:2233ax ay -= . 6、分解因式a 3-ab 2= .7、请你写一个能先提公因式、再运用公式来分解因式的三项式,并写出分解因式的结果8、若3223m n x y x y -与 是同类项,则m+n =______.9、计算:11-⨯-m nmn m = ___. 10、化简:23224x xx x +-+=+- .11、在实数范围内分解因式:2484m m +-= . 三、解答题1、给出三个多项式:2221111,31,,222x x x x x x +-++-请你选择其中两个进行加法运算,并把结果因式分解。
2、先化简,再求值:)1()1(2---a a a ,其中12-=a 。
3、先化简,再求值:⎪⎭⎫ ⎝⎛+---÷--11211222x x x x x x ,其中21=x 。
4、化简:24214a a a+⎛⎫+ ⎪-⎝⎭· 6、24142x x --- 5、有意道题:“先化简,再求值:22361()399x x x x x -+÷+--,其中“x=题时把“x= ,回事.7、先化简,再求代数式22a b ab b a a a ⎛⎫--÷- ⎪⎝⎭的值,其中3tan301a =+,45b = .8、求代数式的值:(12-x x -xx -12)÷1-x x ,其中x =3+1.9、先化简代数式22221244a b a b a ba ab b--÷-+++,然后选择一个使原式有意义的a 、b 值代入求值. 1.若212y x m -与n y x 2-是同类项,则()nm -= ; 2.已知012=--x x ,则2005223++-x x 的值为_____________; 3.给出下列程序:OO30频率且已知当输入的x 值为1时,输出值为1;输入的x 值为-1时.输出值为-3.当输入的x 值为21时,输出值为 ;4.则当输入的下面是用棋子摆成的“上”字:第一个“上”字 第二个“上”字 第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用 和枚棋子; (2)第n 个“上”字需用 枚棋子. 5.已知:3223222⨯=+,8338332⨯=+,154415442⨯=+,…若ba b a ⨯=+21010(a 、b 为正整数),则______=+b a .6. 将一张长方形纸片对折,可得到一条折痕,继续对折,对折时每次折痕与上次折痕保持平行,那么对折n 次后折痕条数是(用含n 的代表式表示) .1.某工厂一月份产值为a 万元,二月份比一月份增长5%,则二月份产值为 ( ) A)1(+a ²5%万元 B 5%万元 C(1+5%) a 万元 D (1+5%) 2a 2.下列运算中,正确的是 ( )A x x x 236⋅= B 235222x x x += C ()x x 238= D ()x y x y +=+22243.如图,是一个正方体纸盒展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,则A 、B 、C 表示的数依次是 ( )A 235、、π-- B 235、、π- C π、、235- D 235-、、π 4. 把多项式1-x 2+2xy-y 2分解因式的结果是 ( )A (1+x-y)(1-x+y)B (1-x-y)(1+x-y)C (1-x-y)(1-x+y)D (1+x-y)(1+x+y)5. 如图所示,图(1)是一个水平摆放的小正方体木块,图(2),(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,•至第七个叠放的图形中,小正方体木块总数应是 ( ) A 25 B 66 C 91 D 120 三.解答题 1.化简:(1)(3a 2b )2+(8a 6b 3)÷(-2a 2b )(2))2(2)()2)(2(22xy x y x y x y x --++-+2.先化简,再求值:22)32()32)(32()32(b a b a b a b a ++-+--,其中:31,2=-=b a 3.把下列各式分解因式 (1)a 3-2a 2b +ab 2(2)a b a 2221--+4.设 a 、b 、c 都是实数,且满足()08222=+++++-c c b a a ,02=++c bx ax ;求代数式12++x x 的值一、选择题(每小题3分,共45分)1.下列式子中,符合代数式的书写格式的是( )。
A.2y x + B.332x 2y C.a÷2b D.x+y 小时 2、下列运算中,结果正确的是( )。
A .532)(x x =B .422523x x x =+ C .633·x x x = D .222()x y x y +=+ 3、计算 a m ÷a n ÷a p等于( )。
A . a m-n-p B. a m+n-p C. a m-n+p D. a m+n+p4、计算 (-2a 2)2的结果是( )。
A. 2a 4 B. -2a 4 C. 4a 4 D .-4a 45、下列式子中,正确的是( )。
A. ( - a 2 b )2²a = a 5 b 2B. ( - b 8 )² ( - b )2 = b 10C .〔 ( -1 ) a 4〕2= - a 8 D. ( - a 3 b c 2 )2 = a 6 b c 46、使式子1||1-x 有意义的x 取值范围为( )。
A.x>0 B.x ≠1 C.x ≠-1 D .x ≠±17.等式3-x x +2 =3-xx +2 成立的条件是( )。
A.-2<x ≤3 B.-2≤x ≤3 C.x>-2 D .x ≤3 8.把分式3xx+y中的x,y 都扩大两倍,那么分式的值( )。
A.扩大两倍B. 不变C. 缩小 D . 缩小两倍9.在二次根式45, 2x 3, 11, 54, x 4中,最简二次根式个数是( )。
A.1个B.2个C.3个 D .4个10.当1<x<2时,化简∣1-x ∣+4-4x +x 2的结果是( )。
A.-1B.2x -1C.1 D .3-2x11.(x -2)2 +(2-x )2的值一定是( )。
A.0 B.4-2x C.2x -4 D .412、已知下列四个根式: )。
A.①②③ B.①②④ C.①③④ D .②③④13、 化简12x 的结果是( )。
A. 2x 3B. 2x 3xC.2x 2x D . 3x2x14、设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( )。
A.P+Q 是关于的八次多项式B.P-Q 是关于的二次多项式C.P ²Q 是关于的八次多项式 D .QP是关于的二次多项式15.不论a为何值,代数式-a2+4a-5值( )。
A.大于或等于0B.0C.大于0 D .小于0 二、填空题(每小题3分,共45分)1、- лa 2b 312的系数是_________,是_________次单项式。
2、分解因式2x 2-4xy +2y 2=__________________。
3、分解因式: ab -a+b -1=_________________________________。
4、计算24111a aa a++--的结果是______________。
5、若x 2+kx -6有一个因式是(x -2),则k 的值是_________。
6>”、“<”或“=”)7_________。
8、单项式113a ba xy +--与345y x 是同类项,则a b -的值为_________。
9、一个十位数字是a ,个位数字是b 的两位数表示为10a +b ,交换这个两位数的十位数字和个位数字,又得一个新的两位数,它是_________,这两个数的差是_________。
10.代数式y 2+my +254是一个完全平方式,则m 的值是_________。
11.(x 2+y 2)(x 2-1+y 2)-12=0,则x 2+y 2的值是_________。
12.已知2a -b =4, 2(b -2a)2-3(b -2a)+1=_________。
13、一张纸片,第一次把它撕成3片, 第二次把其中一片又撕成3片,…如此下去,第n 次撕后共得小纸片_________片。