2018-2019学年高二数学上册基础巩固检测试题6
2018-2019年河南数学高二水平会考真题及答案解析
2018-2019年河南数学高二水平会考真题及答案解析班级:___________ 姓名:___________ 分数:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一、选择题1.如图,下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度和时间之间的关系,其中正确的有()A.1个B.2个C.3个D.4个【答案】B【解析】试题分析:根据题意,由于四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止,那么单位时间内进去的水量相等,选项A,应该是匀速上升,错误,选项B,先快后慢,成立,对不C,先快后慢,再快,故答案成立,丢与D,由于先慢后快再慢,故成立,因此正确的选项为B考点:函数图象点评:主要是考查了函数解析式与函数图象的关系,属于基础题。
2.设函数的定义域为R,是的极大值点,以下结论一定正确的是()A.B.是的极小值点C.是的极小值点D.是的极小值点【答案】D【解析】试题分析:对于A 项,x 0(x 0≠0)是f (x )的极大值点,不一定是最大值点,因此不能满足在整个定义域上值最大;对于B 项,f (-x )是把f (x )的图象关于y 轴对称,因此,-x 0是f (-x )的极大值点;对于C 项,-f (x )是把f (x )的图象关于x 轴对称,因此,x 0是-f (x )的极小值点; 对于D 项,-f (-x )是把f (x )的图象分别关于x 轴、y 轴做对称,因此-x 0是-f (-x )的极小值点. 故选D .考点:命题及命题的否定,函数的极值。
点评:小综合题,关键是理解命题的概念,明确函数存在极值的条件。
3.设, ,则的大小关系是( ) A .B .C .D .【答案】B 【解析】试题分析:根据题意,由于,,故那么有A-B=,故可知结论为,选B.考点:比较大小点评:主要是考查了运用作差法的思想,来比较大小,属于基础题。
2018-2019学年上学期高二数学12月月考试题含解析(1679)
天柱县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=x 2﹣2x+3在[0,a]上有最大值3,最小值2,则a 的取值范围( ) A .[1,+∞) B .[0.2} C .[1,2] D .(﹣∞,2]2. 已知双曲线的渐近线与圆x 2+(y ﹣2)2=1相交,则该双曲线的离心率的取值范围是( )A .(,+∞) B .(1,)C .(2.+∞)D .(1,2)3. 已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是( ) A .M ∪NB .M ∩NC .∁I M ∪∁I ND .∁I M ∩∁I N4. 若向量=(3,m ),=(2,﹣1),∥,则实数m 的值为( )A .﹣B .C .2D .65. f ()=,则f (2)=( )A .3B .1C .2D .6. 复数z=(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限7. 空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( )A .(4,1,1)B .(﹣1,0,5)C .(4,﹣3,1)D .(﹣5,3,4)8. 若f (x )=﹣x 2+2ax 与g (x )=在区间[1,2]上都是减函数,则a 的取值范围是( )A .(﹣∞,1]B .[0,1]C .(﹣2,﹣1)∪(﹣1,1]D .(﹣∞,﹣2)∪(﹣1,1]9. 已知向量(,1)a t =,(2,1)b t =+,若||||a b a b +=-,则实数t =( ) A.2- B.1- C. 1 D. 2【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力. 10.设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的取值范围是()A.3,12e⎡⎫-⎪⎢⎣⎭B.33,24e⎡⎫-⎪⎢⎣⎭C.33,24e⎡⎫⎪⎢⎣⎭D.3,12e⎡⎫⎪⎢⎣⎭1111]11.在极坐标系中,圆的圆心的极坐标系是( )。
2018-2019学年上学期高二数学12月月考试题含解析(371)
永胜县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( )A .50x -<<或5x >B .5x <-或5x >C .55x -<<D .5x <-或05x <<2. 抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A .B .C .D .33. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( ) A .8B .1C .5D .﹣14. 若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假5. 若函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点,则实数m 的取值范围是( ) A .m ≥0或m <﹣1B .m >0或m <﹣1C .m >1或m ≤0D .m >1或m <06. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件7. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分别为( )A .x=1,y=1B .x=1,y=C .x=,y=D .x=,y=18. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对9. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( )A .﹣1B .0C .1D .210.已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .11.设复数z 满足z (1+i )=2(i 为虚数单位),则z=( ) A .1﹣i B .1+i C .﹣1﹣iD .﹣1+i12.已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=()|x ﹣2|+()|x ﹣2|,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( )A .(﹣∞,)∪(2,+∞)B .(,2)C .(﹣∞,﹣)∪(2,+∞)D .(﹣,2)二、填空题13.下列关于圆锥曲线的命题:其中真命题的序号 .(写出所有真命题的序号).①设A ,B 为两个定点,若|PA|﹣|PB|=2,则动点P 的轨迹为双曲线;②设A ,B 为两个定点,若动点P 满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8; ③方程2x 2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率; ④双曲线﹣=1与椭圆有相同的焦点.14.对于集合M ,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )fB (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .15.在极坐标系中,直线l 的方程为ρcos θ=5,则点(4,)到直线l 的距离为 .16.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________. 18.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B为 .三、解答题19.电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女总计(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2名,求至少有1名女性观众的概率.附:K2=P(K2≥k0)0.50 0.40 0.25 0.15 0.10 0.05 0.0250.010 0.005 0.001k00.455 0.708 1.323 2.072 2.706 3.84 5.024 6.63520.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点.(1)若x0=﹣4,y0=1,求圆M的方程;(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.21.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()()3231312f x x k x kx =-+++,其中.k R ∈ (1)当3k =时,求函数()f x 在[]0,5上的值域; (2)若函数()f x 在[]1,2上的最小值为3,求实数k 的取值范围.22.如图,M 、N 是焦点为F 的抛物线y 2=2px (p >0)上两个不同的点,且线段MN 中点A 的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN 与x 轴交于点B 点,求点B 横坐标的取值范围.23.(本小题满分12分)已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;(2)若与夹角为锐角,求的取值范围.24.设椭圆C :+=1(a >b >0)过点(0,4),离心率为.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.永胜县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B考点:函数的奇偶性与单调性.【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于y 轴对称,单调性在y 轴两侧相反,即在0x >时单调递增,当0x <时,函数单调递减.结合(5)0f =和对称性,可知(5)0f ±=,再结合函数的单调性,结合图象就可以求得最后的解集.12. 【答案】A【解析】解:由,得3x 2﹣4x+8=0.△=(﹣4)2﹣4×3×8=﹣80<0.所以直线4x+3y ﹣8=0与抛物线y=﹣x 2无交点.设与直线4x+3y ﹣8=0平行的直线为4x+3y+m=0联立,得3x 2﹣4x ﹣m=0.由△=(﹣4)2﹣4×3(﹣m )=16+12m=0,得m=﹣.所以与直线4x+3y ﹣8=0平行且与抛物线y=﹣x 2相切的直线方程为4x+3y ﹣=0.所以抛物线y=﹣x 2上的一点到直线4x+3y ﹣8=0的距离的最小值是=.故选:A .【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题.3. 【答案】B【解析】解:∵函数f (2x+1)=3x+2,且f (a )=2,令3x+2=2,解得x=0,∴a=2×0+1=1.故选:B.4.【答案】B【解析】解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,∴p假q真,故选:B.【点评】本题考查了复合命题的真假的判断,是一道基础题.5.【答案】A【解析】解:∵函数f(x)=3﹣|x﹣1|+m的图象与x轴没有交点,∴﹣m=3﹣|x﹣1|无解,∵﹣|x﹣1|≤0,∴0<3﹣|x﹣1|≤1,∴﹣m≤0或﹣m>1,解得m≥0或m>﹣1故选:A.6.【答案】A【解析】解:∵sinB+sin(A﹣B)=sinC=sin(A+B),∴sinB+sinAcosB﹣cosAsinB=sinAcosB+cosAsinB,∴sinB=2cosAsinB,∵sinB≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,故选:A7.【答案】C【解析】解:如图,++().故选C.8.【答案】A【解析】解:∵线段AB在平面α内,∴直线AB上所有的点都在平面α内,∴直线AB与平面α的位置关系:直线在平面α内,用符号表示为:AB⊂α故选A.【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.9.【答案】D【解析】解:命题p:∃x∈R,cosx≥a,则a≤1.下列a的取值能使“¬p”是真命题的是a=2.故选;D.10.【答案】D【解析】解:∵g(x)=﹣f(2﹣x),∴y=f(x)﹣g(x)=f(x)﹣+f(2﹣x),由f(x)﹣+f(2﹣x)=0,得f(x)+f(2﹣x)=,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x>2,﹣x<﹣2,2﹣x<0,则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.作出函数h (x )的图象如图:当x ≤0时,h (x )=2+x+x 2=(x+)2+≥,当x >2时,h (x )=x 2﹣5x+8=(x ﹣)2+≥,故当=时,h (x )=,有两个交点,当=2时,h (x )=,有无数个交点,由图象知要使函数y=f (x )﹣g (x )恰有4个零点,即h (x )=恰有4个根,则满足<<2,解得:b ∈(,4),故选:D .【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.11.【答案】A【解析】解:∵z (1+i )=2,∴z===1﹣i .故选:A .【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题.12.【答案】B【解析】解:∵α,β为锐角△ABC 的两个内角,可得α+β>90°,cos β=sin (90°﹣β)<sin α,同理cos α<sin β,∴f (x )=()|x ﹣2|+()|x ﹣2|,在(2,+∞)上单调递减,在(﹣∞,2)单调递增,由关于x的不等式f(2x﹣1)﹣f(x+1)>0得到关于x的不等式f(2x﹣1)>f(x+1),∴|2x﹣1﹣2|<|x+1﹣2|即|2x﹣3|<|x﹣1|,化简为3x2﹣1x+8<0,解得x∈(,2);故选:B.二、填空题13.【答案】②③.【解析】解:①根据双曲线的定义可知,满足|PA|﹣|PB|=2的动点P不一定是双曲线,这与AB的距离有关系,所以①错误.②由|PA|=10﹣|PB|,得|PA|+|PB|=10>|AB|,所以动点P的轨迹为以A,B为焦点的图象,且2a=10,2c=6,所以a=5,c=3,根据椭圆的性质可知,|PA|的最大值为a+c=5+3=8,所以②正确.③方程2x2﹣5x+2=0的两个根为x=2或x=,所以方程2x2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率,所以③正确.④由双曲线的方程可知,双曲线的焦点在x轴上,而椭圆的焦点在y轴上,所以它们的焦点不可能相同,所以④错误.故正确的命题为②③.故答案为:②③.【点评】本题主要考查圆锥曲线的定义和性质,要求熟练掌握圆锥曲线的定义,方程和性质.14.【答案】{1,6,10,12}.【解析】解:要使f A(x)f B(x)=﹣1,必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}={6,10}∪{1,12}={1,6,10,12,},所以A△B={1,6,10,12}.故答案为{1,6,10,12}.【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题.15.【答案】3.【解析】解:直线l的方程为ρcosθ=5,化为x=5.点(4,)化为. ∴点到直线l 的距离d=5﹣2=3.故答案为:3.【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.16.【答案】1 【解析】试题分析:两直线垂直满足()02-12=⨯+⨯a ,解得1=a ,故填:1. 考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,0:1111=++c y b x a l ,0:2222=++c y b x a l ,当两直线垂直时,需满足02121=+b b a a ,当两直线平行时,需满足01221=-b a b a 且1221c b c b ≠,或是212121c c b b a a ≠=,当直线是斜截式直线方程时,两直线垂直121-=k k ,两直线平行时,21k k =,21b b ≠.117.【答案】2 【解析】18.【答案】4π 【解析】考点:正弦定理.【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用三角形的三角和是︒180,消去多余的变量,从而解出B 角.三角函数题目在高考中的难度逐渐增加,以考查三角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷( )中以选择题的压轴题出现.三、解答题19.【答案】【解析】解:(1)由频率分布直方图中可知:抽取的100名观众中,“体育迷”共有(0.020+0.005)×10×100=25名.可得2×2列联表:非体育迷体育迷合计男30 15 45女45 10 55总计75 25 100将2×2列联表中的数据代入公式计算可得K2的观测值为:k==≈3.030.∵3.030<3.841,∴我们没有理由认为“体育迷”与性别有关.(2)由频率分布直方图中可知:“超级体育迷”有5名,从而一切可能结果所组成的基本事件空间Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},其中a i(i=1,2,3)表示男性,b j (j=1,2)表示女性.设A表示事件“从“超级体育迷”中任意选取2名,至少有1名女性观众”,则事件A包括7个基本事件:(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2).∴P(A)=.【点评】本题考查了“独立性检验基本原理”、古典概率计算公式、频率分布直方图及其性质,考查了推理能力与计算能力,属于中档题.20.【答案】【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0圆的方程为x2+y2﹣8y﹣9=0…(2)直线CD与圆M相切O、D分别是AB、BR的中点则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD,又∠CAO=∠ACO,∴∠DOB=∠COD又OC=OB,所以△BOD≌△COD∴∠OCD=∠OBD=90°即OC⊥CD,则直线CD与圆M相切.…(其他方法亦可)21.【答案】(1)[]1,21;(2)2k ≥.【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得()'f x =()()31x x k --,再分1k ≤和1k >两种情况进行讨论;试题解析:(1)解:3k = 时,()32691f x x x x =-++则()()()23129313f x x x x x =-+=--' 令0f x '=得121,3x x ==列表由上表知函数()f x 的值域为[]1,21(2)方法一:()()()()2331331f x x k x k x x k =-++=--'①当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]1,2单调递增 所以()()()min 31113132f x f k k ==-+++= 即53k =(舍) ②当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减所以()()()min 28613213f x f k k ==-++⋅+= 符合题意③当12k <<时,当[)1,x k ∈时,()'0f x <()f x 区间在[)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增所以()()()322min 313132f x f k k k k k ==-+++= 化简得:32340k k -+= 即()()2120k k +-=所以1k =-或2k =(舍)注:也可令()3234g k k k =-+则()()23632g k k k k k =='-- 对()()1,2,0k g k ∀∈'≤()3234g k k k =-+在()1,2k ∈单调递减所以()02g k <<不符合题意综上所述:实数k 取值范围为2k ≥方法二:()()()()2331331f x x k x k x x k =-++=--'①当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减 所以()()()min 28613213f x f k k ==-++⋅+= 符合题意 …………8分 ②当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]1,2单调递增所以()()min 23f x f <=不符合题意③当12k <<时,当[)1,x k ∈时,()'0f x <()f x 区间在[)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增 所以()()()min 23f x f k f =<=不符合题意综上所述:实数k 取值范围为2k ≥ 22.【答案】【解析】解:(1)设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=8﹣p ,|MF|=x 1+,|NF|=x 2+, ∴|MF|+|NF|=x 1+x 2+p=8;(2)p=2时,y 2=4x ,若直线MN 斜率不存在,则B (3,0);若直线MN 斜率存在,设A (3,t )(t ≠0),M (x 1,y 1),N (x 2,y 2),则代入利用点差法,可得y 12﹣y 22=4(x 1﹣x 2)∴k MN =,∴直线MN 的方程为y ﹣t=(x ﹣3),∴B 的横坐标为x=3﹣,直线MN 代入y 2=4x ,可得y 2﹣2ty+2t 2﹣12=0△>0可得0<t 2<12,∴x=3﹣∈(﹣3,3),∴点B 横坐标的取值范围是(﹣3,3). 【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题.23.【答案】(1)2或2)(1,0)(0,3)-.【解析】试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量,a b 的夹角为锐角的充要条件是0a b ⋅>且,a b 不共线,由此可得范围.试题解析:(1)由//a b ,得0x =或2x =-, 当0x =时,(2,0)a b -=-,||2a b -=, 当2x =-时,(2,4)a b -=-,||25a b -=.(2)与夹角为锐角,0a b ∙>,2230x x -++>,13x -<<,又因为0x =时,//a b , 所以的取值范围是(1,0)(0,3)-.考点:向量平行的坐标运算,向量的模与数量积.【名师点睛】由向量的数量积cos a b a b θ⋅=可得向量的夹角公式,当为锐角时,cos 0θ>,但当cos 0θ>时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是0a b a b⋅>且,a b 不同向,同样两向量夹角为钝角的充要条件是0a b a b⋅<且,a b 不反向.24.【答案】【解析】解:(1)将点(0,4)代入椭圆C 的方程得=1,∴b=4,…由e==,得1﹣=,∴a=5,…∴椭圆C的方程为+=1.…(2)过点(3,0)且斜率为的直线为y=(x﹣3),…设直线与椭圆C的交点为A(x1,y1),B(x2,y2),将直线方程y=(x﹣3)代入椭圆C方程,整理得x2﹣3x﹣8=0,…由韦达定理得x1+x2=3,y1+y2=(x1﹣3)+(x2﹣3)=(x1+x2)﹣=﹣.…由中点坐标公式AB中点横坐标为,纵坐标为﹣,∴所截线段的中点坐标为(,﹣).…【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键.。
2018-2019学年高二上学期期末考试数学试题 (答案+解析)
2018-2019学年高二上学期期末考试一、单选题1.与圆224630x y x y +-++=同圆心,且过()1,1-的圆的方程是( )A .224680x y x y +-+-=B .224680x y x y +-++= C .224680x y x y ++--= D .224680x y x y ++-+= 2.下列说法中正确的是( ) A .命题“若,则方程有实数根”的逆否命题为“若方程无实数根,则” B .命题“,”的否定“,”C .若为假命题,则,均为假命题D .“”是“直线:与直线:平行”的充要条件 3.已知双曲线的一个焦点坐标为,渐近线方程为,则双曲线的标准方程是( )A .B .C .D .4.如图所示的程序框图的算法思路来源于“欧几里得算法”.图中的“”表示除以的余数,若输入的值分别为和,则执行该程序输出的结果为( )A .B .C .D .5.已知抛物线上一点到抛物线焦点的距离等于,则直线的斜率为( )A .B .C .D .6.将一颗质地均匀的骰子先后抛掷次,则出现向上的点数之和小于的概率是( )A .B .C .D .7.已知12,F F 是椭圆221169x y +=的两焦点,过点2F 的直线交椭圆于,A B 两点,在1AF B ∆中,若有两边之和是10,则第三边的长度为( )A .3B .4C .5D .6 8.在直三棱柱中,底面边长和侧棱长都相等,则异面直线与所成角的余弦值为( )A .B .C .D . 9.在棱长为的正方体中,分别为棱、的中点,为棱上的一点,且,则点到平面的距离为( )A .B .C .D .10.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,P 为x 轴上的动点,则||||PN PM -的最大值是( ) A .254+ B .9 C .7 D .252+点,若,则实数的值为()A.B.C.2 D.312.已知双曲线22221x ya b-=的左、右顶点分别为,A B,P为双曲线左支上一点,ABP∆为等腰三角形且外接圆的半径为5a,则双曲线的离心率为()A.155B.154C.153D.152二、填空题13.某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:,,…,后得到频率分布直方图(如下图所示),则分数在内的人数是__________.14.过点作斜率为的直线与椭圆C:相交于两点,若是线段的中点,则椭圆C的离心率等于______.15.三棱锥中,已知平面,是边长为的正三角形,为的中点,若直线与平面所成角的正弦值为,则的长为_____.三、解答题16.设命题:函数的定义域为;命题:不等式对一切均成立.(1)如果是真命题,求实数的取值范围;17.为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某校课外兴趣小组记录了组昼夜温差与颗种子发芽数,得到如下资料:组号 1 2 3 4 5温差()10 11 13 12 8发芽数(颗)23 25 30 26 16经分析,这组数据具有较强的线性相关关系,因此该小组确定的研究方案是:先从这五组数据中选取组数据求出线性回归方程,再用没选取的组数据进行检验.(1)若选取的是第组的数据,求出关于的线性回归方程;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:,)18.在一次商贸交易会上,某商家在柜台前开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖. 抽奖规则是:从一个装有个红球和个白球的袋中无放回地取出个球,当三个球同色时则中奖.每人只能抽奖一次.(1)求甲乙恰有一人中奖的概率;(2)若甲计划在之间赶到,乙计划在之间赶到,求甲比乙提前到达的概率.19.已知圆与圆关于直线+1对称.(1)求圆的方程;(2)过点的直线与圆交与两点,若,求直线的方程.20.如图,四边形ABCD与BDEF均为菱形,设AC与BD相交于点O,若∠DAB=∠DBF=60°,且FA=FC.(1)求证:FC∥平面EAD;(2)求二面角A-FC-B的余弦值.21.已知椭圆的右焦点为,为椭圆的上顶点,为坐标原点,且是等腰直角三角形.(1)求椭圆的方程; (2)是否存在直线交椭圆于两点,且使为的垂心(垂心:三角形三条高的交点)?若存在,求出直线的方程;若不存在,请说明理由.参考答案一、单选题1.与圆224630x y x y +-++=同圆心,且过()1,1-的圆的方程是( )A .224680x y x y +-+-=B .224680x y x y +-++= C .224680x y x y ++--= D .224680x y x y ++-+= 【答案】B【解析】试题分析:把原圆的方程写成标准方程为()()222310x y -++=,由于两圆共圆心,可设另一个圆方程为:()()22223x y r -++=,把1,1x y ==-代入所设方程,得:()()22221213,5r r -+-+=∴=,所以所求的圆的方程为()()22235x y -++=,化简为:22-4680x y x y +++=,故选B.【考点】1、圆的一般式方程;2、圆的标准方程的. 2.下列说法中正确的是( ) A .命题“若,则方程有实数根”的逆否命题为“若方程无实B.命题“,”的否定“,”C.若为假命题,则,均为假命题D.“”是“直线:与直线:平行”的充要条件【答案】A【解析】根据命题的条件、结论及逆否命题的定义判断;根据特称命题的否定是全称命题判断,根据复合命题的真值表判断;根据平行线的性质判断.【详解】否定“若,则方程有实数根”条件与结论,再将否定后的条件与结论互换可得其逆否命题为“若方程无实数根,则”,正确;命题“,”的否定“,”,不正确;若为假命题,则至少有一个是假命题,不正确;“直线:与直线:平行”的充要条件是“或”,不正确,故选A.【点睛】本题通过对多个命题真假的判断,综合考查逆否命题的定义、特称命题的否定、复合命题的真值表、平行线的性质,属于中档题.这种题型综合性较强,也是高考的命题热点,做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.3.已知双曲线的一个焦点坐标为,渐近线方程为,则双曲线的标准方程是( )A.B.C.D.【答案】C【解析】根据焦点坐标求得、双曲线的渐近线方程,结合,利用待定系数法进行求解即可.【详解】对应的双曲线方程为,双曲线的一个焦点是,且,则,则,则,则,即双曲线的方程为,故选C.【点睛】本题主要考查双曲线方程的求解,属于基础题. 求解双曲线方程的题型一般步骤:(1)判断焦点位置;(2)设方程;(3)列方程组求参数;(4)得结论.4.如图所示的程序框图的算法思路来源于“欧几里得算法”.图中的“”表示除以的余数,若输入的值分别为和,则执行该程序输出的结果为( )A.B.C.D.【答案】A【解析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输.【详解】若输入的值分别为,则,不满足条件,循环;,余数为13 ,即,不满足条件,循环;,余数为0 ,即,满足条件,输出,故选A.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可. 5.已知抛物线上一点到抛物线焦点的距离等于,则直线的斜率为( )A.B.C.D.【答案】A【解析】根据抛物线的定义可求出的横坐标,代入抛物线方程解出的纵坐标,代入斜率公式计算斜率.【详解】抛物线的焦点为,准线方程为,点到焦点的距离等于到准线的距离,所以,代入抛物线方程解得,,故选A.【点睛】本题主要考查抛物线的定义和几何性质,斜率公式的应用,属于中档题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决..6.将一颗质地均匀的骰子先后抛掷次,则出现向上的点数之和小于的概率是()A.B.C.D.【答案】D【解析】出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,利用对立事件概率计算公式,结合古典概型概率公式能求出向上的点数之和小于10的概率.【详解】将一颗质地均匀的骰子(一种各个面上分别标有个点的正方体玩具)先后抛掷2次,基本事件总数为,出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,出现向上的点数之和不小于10包含的基本事件有:共6个,出现向上的点数之和小于10的概率为,故选D.【点睛】本题考查古典概型概率公式的应用以及对立事件概率计算公式的应用,属于中档题. 在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.1AF B ∆中,若有两边之和是10,则第三边的长度为( )A .3B .4C .5D .6 【答案】D【解析】由椭圆的定义得12128{8AF AF BF BF +=+=两式相加得|AB|+|AF 2|+|BF 2|=16,又因为在△AF 1B 中,有两边之和是10, 所以第三边的长度为:16-10=6 故选D . 8.在直三棱柱中,底面边长和侧棱长都相等,则异面直线与所成角的余弦值为( )A .B .C .D .【答案】C 【解析】【详解】延长到点,使得,连接,则是平行四边形,可得,根据异面直线所成角的概念可知,所成的锐角即为所求的异面直线所成的角, 设三棱柱的棱长为1,则,在中,根据余弦定理可得,所以异面直线与所成角的余弦值为,故选C.【点睛】本题主要考查异面直线所成的角,属于中档题.求异面直线所成的角先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.9.在棱长为的正方体中,分别为棱、的中点,为棱上的一点,且,则点到平面的距离为( )A.B.C.D.【答案】D【解析】以为原点,为轴、为轴、为轴,建立空间直角坐标系,利用向量法能求出点到平面的距离 .【详解】以为原点,为轴、为轴、为轴,建立空间直角坐标系,则,,设平面的法向量,则,取,得,点到平面的距离为,故选D.【点睛】本题主要考查利用空间向量求点到平面的距离,是中档题. 空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.10.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,P 为x 轴上的动点,则||||PN PM -的最大值是( ) A .254+ B .9 C .7 D .252+ 【答案】B【解析】试题分析:圆()()221111C x y -++=:的圆心1(1)E -,,半径为1,圆()()222459C x y -+-=:的圆心5(4)F ,,半径是3.要使PN PM -最大,需PN 最大,且PM 最小,PN 最大值为3,PF PM +的最小值为1PE -,故PN PM -最大值是()()314PF PE PF PE +--=-+;5(4)F ,关于x 轴的对称点)5(4F '-,,2241515()()PF PE PF PE EF -='-≤'=-+-+=,故4PF PE -+ 的最大值为549+= ,故选:B .【考点】圆与圆的位置关系及其判定.【思路点睛】先根据两圆的方程求出圆心和半径,要使|PN PM -最大,需PN 最大,且PM 最小,PN 最大值为3,PF PM +的最小值为1PE -,故PN PM -最大值是()()314PF PE PF PE +--=-+,再利用对称性,求出所求式子的最大值. 11.已知抛物线的焦点为,直线与C 交于A 、B (A 在轴上方)两点,若,则实数的值为( )A .B .C .2D .3【答案】D【解析】试题分析:由得或,即,,又,所以,,显然,即.故选D .【考点】直线与抛物线的位置关系,向量的数乘.【名师点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式AB =x 1+x 2+p ,若不过焦点,则必须用一般弦长公式. (3)直线与抛物线相交问题,如果含有参数,一般采用“设而不求”方法,但象本题则是直接把直线方程与抛物线方程联立方程组解得交点坐标,再进行相减的运算.12.已知双曲线22221x y a b-=的左、右顶点分别为,A B , P 为双曲线左支上一点,ABP ∆为等腰三角形且外接圆的半径为5a ,则双曲线的离心率为( )A .155 B .154 C .153 D .152【答案】C【解析】由题意知等腰ABP ∆中, ||2AB AP a ==,设ABP APB θ∠=∠=,则12F AP θ∠=,其中θ必为锐角.∵ABP ∆外接圆的半径为5a , ∴225sin aa θ=, ∴5sin 5θ=, 25cos 5θ=, ∴25254253sin22,cos22155555θθ⎛⎫=⨯⨯==⨯-= ⎪ ⎪⎝⎭. 设点P 的坐标为(),x y ,则118cos2,sin255a ax a AP y AP θθ=+===, 故点P 的坐标为118,55a a ⎛⎫⎪⎝⎭.由点P在椭圆上得2222118551a aa b⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭-=,整理得2223ba=,∴221513c bea a==+=.选C .点睛:本题将解三角形和双曲线的性质结合在一起考查,综合性较强,解题时要抓住问题的关键和要点,从所要求的离心率出发,寻找双曲线中,a c之间的数量关系,其中通过解三角形得到点P的坐标是解题的突破口.在得到点P的坐标后根据点在椭圆上可得,a b间的关系,最后根据离心率的定义可得所求.二、填空题13.某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:,,…,后得到频率分布直方图(如下图所示),则分数在内的人数是__________.【答案】30【解析】由频率分布直方图得,分数在内的频率为:,分数在内的人数为:,故答案为.14.过点作斜率为的直线与椭圆C:相交于两点,若是线段的中点,则椭圆C的离心率等于______.【答案】【解析】利用点差法,结合是线段的中点,斜率为,可得,结合即可求出椭圆的离心率.【详解】设,则①,②,是线段的中点,,直线的斜率是,所以,①②两式相减可得,即,,,故答案为.【点睛】本题考查椭圆的离心率,以及“点差法”的应用,属于中档题. 对于有关弦中点问题常用“ 点差法”,其解题步骤为:①设点(即设出弦的两端点坐标);②代入(即代入圆锥曲线方程);③作差(即两式相减,再用平方差公式分解因式);④整理(即转化为斜率与中点坐标的关系式),然后求解.15.三棱锥中,已知平面,是边长为的正三角形,为的中点,若直线与平面所成角的正弦值为,则的长为_____.【答案】2或【解析】设是的中点,连接,在平面内作,则,可证明平面,连接,则是与平面所成的角,设,利用平面所成的角的正弦值为,列方程求解即可.【详解】设是的中点,连接,平面,,为正三角形,,平面,在平面内作,则,平面,连接,则是与平面所成的角,设,在直角三角形中,,求得,,平面所成的角的正弦值为,,解得或,即的长为2或,故答案为2或.【点睛】本题主要考查线面垂直的判定定理与性质,以及直线与平面所成的角,属于难题. 解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.三、解答题16.设命题:函数的定义域为;命题:不等式对一切均成立.(1)如果是真命题,求实数的取值范围;(2)如果命题“”为真命题,“”为假命题,求实数的取值范围.【答案】(1)(2)或【解析】(1)利用的判别式小于零即可得结果;(2)化简命题可得,化简命题可得,由为真命题,为假命题,可得一真一假,分两种情况讨论,对于真假以及假真分别列不等式组,分别解不等式组,然后求并集即可求得实数的取值范围.【详解】(1)命题是真命题,则若,,的取值范.(2)若命题是真命题,设,令,,当时取最大值,,又因为“”为真命题,“”为假命题,所以一真一假.①若真假,,且,则得;②若假真,则得,且,得.综上,实数的取值范围为或.【点睛】本题通过判断或命题、且命题的真假,综合考查函数的定义域、值域以及不等式恒成立问题,属于中档题.解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.17.为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某校课外兴趣小组记录了组昼夜温差与颗种子发芽数,得到如下资料:组号 1 2 3 4 5温差()10 11 13 12 8发芽数(颗)23 25 30 26 16经分析,这组数据具有较强的线性相关关系,因此该小组确定的研究方案是:先从这五组数据中选取组数据求出线性回归方程,再用没选取的组数据进行检验.(1)若选取的是第组的数据,求出关于的线性回归方程;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:,)【答案】(1)(2)可靠【解析】(1)根据所给的数据,先做出的平均数,即做出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程;(2)根据估计数据与所选出的检验数据的误差均不超过2颗,就认为得到的线性回归方程是可靠的,根据求得的结果和所给的数据进行比较,得到所求的方程是可靠的.【详解】(1)由题意:,,.,故回归直线方程为:.(2)当时,,当时,,所以(1)中所得的回归直线方程是可靠的. 【点睛】本题主要考查线性回归方程的求解与应用,属于中档题.求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.18.在一次商贸交易会上,某商家在柜台前开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖. 抽奖规则是:从一个装有个红球和个白球的袋中无放回地取出个球,当三个球同色时则中奖.每人只能抽奖一次.(1)求甲乙恰有一人中奖的概率;(2)若甲计划在之间赶到,乙计划在之间赶到,求甲比乙提前到达的概率.【答案】(1)(2)【解析】(1)利用古典概型概率公式分别求出甲中奖与乙中奖的概率,利用对立事件的概率公式求出甲不中奖与乙不中奖的概率,然后利用独立事件概率公式、互斥事件的概率公式求解即可;(2)设甲乙到达时间分别为9:00起第小时,则.甲乙到达时间为正方形区域,甲比乙先到则需满足,利用线性规划以及几何概型概率公式可得结果.【详解】(1)记“甲取得三个球同色”为事件A,“乙取得三个球同色”为事件B,“甲乙恰有一人中奖”为事件C.所以A与B相互独立,记两红球为1,2号,四个白球分别为3,4,5,6号,从6个球中抽取3个的所有可能情况有个基本事件.其中事件A包括个基本事件故,所以所以.(2)设甲乙到达时间分别为9:00起第x,y小时,则0≤x≤,≤y≤1.甲乙到达时间(x,y)为图中正方形区域,甲比乙先到则需满足x<y,为图中阴影部分区域.设甲比乙先到为事件B,则P(B)=1-=.【点睛】本题主要考查古典概型、“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时, 忽视验证事件是否等可能性导致错误.19.已知圆与圆关于直线+1对称.(1)求圆的方程;(2)过点的直线与圆交与两点,若,求直线的方程.【答案】(1);(2)或.【解析】(1)将圆化为标准方程,求出其圆心和半径,并求出圆心关于直线+1对称点的坐标,从而可得结果;(2)先验证斜率不存在时,直线符合题意;斜率存在时,由可求得的夹角,可得圆心到直线的距离,利用点到直线的距离公式列方程可得到直线的斜率,由点斜式可得结果.【详解】(1)圆的标准方程为(x﹣2)2+y2=4,圆心C1(2,0),半径r1=2,设圆的标准方程为,∵圆C1与圆C2关于直线y=x+1对称,所以,解得.故圆的方程为.(2),所以易得点到直线的距离为,当的斜率不存在时,的方程为,符合要求;当的斜率存在时,设的方程为,由得,故的方程为;综上,的方程为或.【点睛】本题主要圆的方程,直线的点斜式方程的应用,属于中档题.在解题过程中需要用“点斜式”、“斜截式”设直线方程时,一定不要忘记讨论直线斜率不存在的情况,这是解析几何解题过程中容易出错的地方.20.如图,四边形ABCD与BDEF均为菱形,设AC与BD相交于点O,若∠DAB=∠DBF=60°,且FA=FC.(1)求证:FC∥平面EAD;(2)求二面角A-FC-B的余弦值.【答案】(1)见解析(2)【解析】(1)先证明平面FBC∥平面EAD,即证明FC∥平面EAD.(2)利用向量法求二面角A-FC-B的余弦值.【详解】(1)证明:∵四边形ABCD与BDEF均为菱形,∴AD∥BC,DE∥BF.∵AD⊄平面FBC,DE⊄平面FBC,∴AD∥平面FBC,DE∥平面FBC,又AD∩DE=D,AD⊂平面EAD,DE⊂平面EAD,∴平面FBC∥平面EAD,又FC⊂平面FBC,∴FC∥平面EAD.(2)连接FO、FD,∵四边形BDEF为菱形,且∠DBF=60°,∴△DBF为等边三角形,∵O为BD中点.所以FO⊥BD,O为AC中点,且F A=FC,∴AC⊥FO,又AC∩BD=O,∴FO⊥平面ABCD,∴OA、OB、OF两两垂直,建立如图所示的空间直角坐标系O-xyz,设AB=2,因为四边形ABCD为菱形,∠DAB=60°,则BD=2,OB=1,OA=OF=,∴O(0,0,0),A(,0,0),B(0,1,0),C(-,0,0),F(0,0,),∴=(,0,),=(,1,0),设平面BFC的一个法向量为n=(x,y,z),则有∴令x=1,则n=(1,-,-1),∵BD⊥平面AFC,∴平面AFC的一个法向量为=(0,1,0).∵二面角A-FC-B为锐二面角,设二面角的平面角为θ,∴cosθ=|cos〈n,〉|===,∴二面角A-FC-B的余弦值为.【点睛】(1)本题主要考查空间位置关系的证明,考查二面角的计算,意在考查学生对这些知识的掌握水平和空间想象分析推理计算能力.(2) 二面角的求法方法一:(几何法)找作(定义法、三垂线法、垂面法)证(定义)指求(解三角形).方法二:(向量法)首先求出两个平面的法向量;再代入公式(其中分别是两个平面的法向量,是二面角的平面角.)求解.(注意先通过观察二面角的大小选择“”号)21.已知椭圆的右焦点为,为椭圆的上顶点,为坐标原点,且是等腰直角三角形.(1)求椭圆的方程;(2)是否存在直线交椭圆于两点,且使为的垂心(垂心:三角形三条高的交点)?若存在,求出直线的方程;若不存在,请说明理由.【答案】(1)(2)【解析】试题分析:(1)由题意可求得b=1,a =,则椭圆方程为;(2)假设直线存在,设出直线的斜截式方程,联立直线与椭圆的方程,结合题意和韦达定理可得满足题意的直线存在,直线方程为.试题解析:(1)由△OMF是等腰直角三角形得b=1,a =故椭圆方程为(2)假设存在直线l交椭圆于P,Q两点,且使F为△PQM的垂心设P(,),Q(,)因为M(0,1),F(1,0),故,故直线l的斜率于是设直线l的方程为由得由题意知△>0,即<3,且由题意应有,又故解得或经检验,当时,△PQM不存在,故舍去;当时,所求直线满足题意综上,存在直线l,且直线l的方程为点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.。
2018-2019学年上学期高二数学12月月考试题含解析(1636)
太仓市第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.设集合A={x|y=ln(x﹣1)},集合B={y|y=2x},则A B()A.(0,+∞)B.(1,+∞)C.(0,1) D.(1,2)2.已知复合命题p∧(¬q)是真命题,则下列命题中也是真命题的是()A.(¬p)∨q B.p∨q C.p∧q D.(¬p)∧(¬q)3.设命题p:函数y=sin(2x+)的图象向左平移个单位长度得到的曲线关于y轴对称;命题q:函数y=|2x﹣1|在[﹣1,+∞)上是增函数.则下列判断错误的是()A.p为假B.¬q为真C.p∨q为真 D.p∧q为假4.是首项,公差的等差数列,如果,则序号等于()A.667B.668C.669D.6705.如图,函数f(x)=Asin(2x+φ)(A>0,|φ|<)的图象过点(0,),则f(x)的图象的一个对称中心是()A.(﹣,0)B.(﹣,0)C.(,0)D.(,0)6.从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是()A.B.C.D.7.如图所示,程序执行后的输出结果为()A .﹣1B .0C .1D .28. 已知双曲线的渐近线与圆x 2+(y ﹣2)2=1相交,则该双曲线的离心率的取值范围是( )A .(,+∞)B .(1,)C .(2.+∞)D .(1,2)9. 若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自然数为( )A .11B .12C .13D .1410.已知集合A ,B ,C 中,A ⊆B ,A ⊆C ,若B={0,1,2,3},C={0,2,4},则A 的子集最多有( )A .2个B .4个C .6个D .8个11.已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( )A .B .C .2D .412.方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( ) A .两个点 B .四个点C .两条直线D .四条直线二、填空题13.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>xxe xf e (其中为自然对数的底数)的解集为 . 14.计算sin43°cos13°﹣cos43°sin13°的值为 .15.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若2810810=-S S ,则2016S 的值等于 .【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度.16.方程(x+y ﹣1)=0所表示的曲线是 .17.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B为 .18.已知函数f (x )=,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范围是 .三、解答题19.已知曲线21()f x e x ax=+(0x ≠,0a ≠)在1x =处的切线与直线2(1)20160e x y --+=平行.(1)讨论()y f x =的单调性;(2)若()ln kf s t t ≥在(0,)s ∈+∞,(1,]t e ∈上恒成立,求实数的取值范围.20.(本题12分)正项数列{}n a 满足2(21)20n n a n a n ---=.(1)求数列{}n a 的通项公式n a ; (2)令1(1)n nb n a =+,求数列{}n b 的前项和为n T .21.如图所示,已知在四边形ABCD 中,AD ⊥CD ,AD=5,AB=7,BD=8,∠BCD=135°. (1)求∠BDA 的大小 (2)求BC 的长.22.数列{a n }满足a 1=,a n ∈(﹣,),且tana n+1•cosa n =1(n ∈N *).(Ⅰ)证明数列{tan 2a n }是等差数列,并求数列{tan 2a n }的前n 项和;(Ⅱ)求正整数m ,使得11sina 1•sina 2•…•sina m =1.23.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.(1)若不等式1()21(0)2f x m m +≤+>的解集为(][),22,-∞-+∞,求实数m 的值;(2)若不等式()2|23|2yyaf x x ≤+++,对任意的实数,x y R ∈恒成立,求实数a 的最小值.24.已知函数f(x)=,求不等式f(x)<4的解集.太仓市第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:集合A={x|y=ln(x﹣1)}=(1,+∞),集合B={y|y=2x}=(0,+∞)则A∪B=(0,+∞)故选:A.【点评】本题考查了集合的化简与运算问题,是基础题目.2.【答案】B【解析】解:命题p∧(¬q)是真命题,则p为真命题,¬q也为真命题,可推出¬p为假命题,q为假命题,故为真命题的是p∨q,故选:B.【点评】本题考查复合命题的真假判断,注意p∨q全假时假,p∧q全真时真.3.【答案】C【解析】解:函数y=sin(2x+)的图象向左平移个单位长度得到y=sin(2x+)的图象,当x=0时,y=sin=,不是最值,故函数图象不关于y轴对称,故命题p为假命题;函数y=|2x﹣1|在[﹣1,0]上是减函数,在[0,+∞)上是增函数.故命题q为假命题;则¬q为真命题;p∨q为假命题;p∧q为假命题,故只有C判断错误,故选:C4.【答案】C【解析】由已知,由得,故选C答案:C5.【答案】B【解析】解:由函数图象可知:A=2,由于图象过点(0,),可得:2sinφ=,即sinφ=,由于|φ|<,解得:φ=,即有:f(x)=2sin(2x+).由2x+=kπ,k∈Z可解得:x=,k∈Z,故f(x)的图象的对称中心是:(,0),k∈Z当k=0时,f(x)的图象的对称中心是:(,0),故选:B.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,正弦函数的对称性,属于中档题.6.【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=.故选:A.【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件.7.【答案】B【解析】解:执行程序框图,可得n=5,s=0满足条件s<15,s=5,n=4满足条件s<15,s=9,n=3满足条件s<15,s=12,n=2满足条件s<15,s=14,n=1满足条件s<15,s=15,n=0不满足条件s<15,退出循环,输出n的值为0.故选:B.【点评】本题主要考查了程序框图和算法,正确判断退出循环时n的值是解题的关键,属于基础题.8.【答案】C【解析】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.【点评】本题主要考查了双曲线的简单性质,直线与圆的位置关系,点到直线的距离公式等.考查了学生数形结合的思想的运用.9.【答案】A【解析】考点:得出数列的性质及前项和.【方法点晴】本题主要考查了等差出数列的性质及前项和问题的应用,其中解答中涉及到等差数列的性质,等差数列的前项和等公式的灵活应用的知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档题,本题的解答中,由“10a>,0d<”判断前项和的符号问题是解答的关键.10.【答案】B【解析】解:因为B={0,1,2,3},C={0,2,4},且A⊆B,A⊆C;∴A⊆B∩C={0,2}∴集合A可能为{0,2},即最多有2个元素,故最多有4个子集.故选:B.11.【答案】A【解析】解:分两类讨论,过程如下:①当a >1时,函数y=a x ﹣1 和y=log a x 在[1,2]上都是增函数, ∴f (x )=ax ﹣1+log a x在[1,2]上递增,∴f (x )max +f (x )min =f (2)+f (1)=a+log a 2+1=a ,∴log a 2=﹣1,得a=,舍去;②当0<a <1时,函数y=a x ﹣1 和y=log a x 在[1,2]上都是减函数, ∴f (x )=ax ﹣1+log a x在[1,2]上递减,∴f (x )max +f (x )min =f (2)+f (1)=a+log a 2+1=a ,∴log a 2=﹣1,得a=,符合题意; 故选A .12.【答案】B【解析】解:方程(x 2﹣4)2+(y 2﹣4)2=0则x 2﹣4=0并且y 2﹣4=0,即,解得:,,,,得到4个点. 故选:B .【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.二、填空题13.【答案】),0(+∞ 【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得()()01>-'+x f x f ,结合要求的不等式可知在不等式两边同时乘以xe ,即()()0>-'+xxxe xf e x f e ,因此构造函数()()xxe xf e xg -=,求导利用函数的单调性解不等式.另外本题也可以构造满足前提的特殊函数,比如令()4=x f 也可以求解.114.【答案】 .【解析】解:sin43°cos13°﹣cos43°sin13°=sin (43°﹣13°)=sin30°=,故答案为.15.【答案】2016-16.【答案】 两条射线和一个圆 .【解析】解:由题意可得x 2+y 2﹣4≥0,表示的区域是以原点为圆心的圆的外部以及圆上的部分.由方程(x+y ﹣1)=0,可得x+y ﹣1=0,或 x 2+y 2=4,故原方程表示一条直线在圆外的地方和一个圆,即两条射线和一个圆,故答案为:两条射线和一个圆.【点评】本题主要考查直线和圆的方程的特征,属于基础题.17.【答案】4π 【解析】考点:正弦定理.【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用三角形的三角和是︒180,消去多余的变量,从而解出B 角.三角函数题目在高考中的难度逐渐增加,以考查三角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷( )中以选择题的压轴题出现.18.【答案】 (0,1) .【解析】解:画出函数f (x )的图象,如图示:令y=k ,由图象可以读出:0<k <1时,y=k 和f (x )有3个交点,即方程f (x )=k 有三个不同的实根,故答案为(0,1).【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题.三、解答题19.【答案】(1)()f x 在1(,)e -∞-,1(,)e +∞上单调递增,在1(,0)e -,1(0,)e 上单调递减;(2)1[,)2+∞. 【解析】试题解析:(1)由条件可得221'(1)1f e e a=-=-,∴1a =, 由21()f x e x x=+,可得2222211'()e x f x e x x -=-=, 由'()0f x >,可得2210,0,e x x ⎧->⎨≠⎩解得1x e >或1x e <-;由'()0f x <,可得2210,0,e x x ⎧-<⎨≠⎩解得10x e -<<或10x e <<. 所以()f x 在1(,)e -∞-,1(,)e +∞上单调递增,在1(,0)e -,1(0,)e上单调递减. (2)令()ln g t t t =,当(0,)s ∈+∞,(1,]t e ∈时,()0f s >,()ln 0g t t t =>,由()ln kf s t t ≥,可得ln ()t t k f s ≥在(0,)x ∈+∞,(1,]t e ∈时恒成立, 即max ln ()t t k f s ⎡⎤≥⎢⎥⎣⎦max()()g t f s ⎡⎤=⎢⎥⎣⎦,故只需求出()f s 的最小值和()g t 的最大值. 由(1)可知,()f s 在1(0,)e 上单调递减,在1(,)e+∞上单调递增, 故()f s 的最小值为1()2f e e=, 由()ln g t t t =可得'()ln 10g t t =+>在区间(1,]e 上恒成立,所以()g t 在(1,]e 上的最大值为()ln g e e e e ==, 所以只需122e k e ≥=, 所以实数的取值范围是1[,)2+∞.考点:1、利用导数研究函数的单调性及求切线斜率;2、不等式恒成立问题.【方法点晴】本题主要考查的是利用导数研究函数的单调性、利用导数研究函数的最值、不等式的恒成立和导数的几何意义,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(闭区间上还要注意比较端点处函数值的大小).20.【答案】(1)n a n 2=;(2)=n T )1(2+n n .考点:1.一元二次方程;2.裂项相消法求和.21.【答案】【解析】(本题满分为12分)解:(1)在△ABC中,AD=5,AB=7,BD=8,由余弦定理得…=…∴∠BDA=60°…(2)∵AD⊥CD,∴∠BDC=30°…在△ABC中,由正弦定理得,…∴.…22.【答案】【解析】(Ⅰ)证明:∵对任意正整数n,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).故tan2a n+1==1+tan2a n,∴数列{tan2a n}是等差数列,首项tan2a1=,以1为公差.∴=.∴数列{tan2a n}的前n项和=+=.(Ⅱ)解:∵cosa n>0,∴tana n+1>0,.∴tana n=,,∴sina1•sina2•…•sina m=(tana1cosa1)•(tana2•cosa2)•…•(tana m•cosa m)=(tana2•cosa1)•(tana3cosa2)•…•(tana m•cosa m﹣1)•(tana1•cosa m)=(tana1•cosa m)==,由,得m=40.【点评】本题考查了等差数列的通项公式及其前n项和公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于难题.23.【答案】【解析】【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.24.【答案】【解析】解:函数f(x)=,不等式f(x)<4,当x≥﹣1时,2x+4<4,解得﹣1≤x<0;当x<﹣1时,﹣x+1<4解得﹣3<x<﹣1.综上x∈(﹣3,0).不等式的解集为:(﹣3,0).。
2018-2019学年高二数学上册基础巩固检测题9
第24课时平面向量数量积的物理背景及其含义1.理解平面向量数量积的含义;了解平面向量数量积与投影的关系;掌握数量积的性质.2.掌握平面向量数量积的几何意义;掌握平面向量数量积的运算律.1a与b的数量积(或内积),记作a·b=|a|·|b|cosθ.规定零向量与任一向量的数量积为零,其中θ是a与b的夹角.2.|a|cosθ叫做向量a在b方向上的投影,|b|cosθ叫做b在a方向上的投影.3.两个非零向量互相垂直的等价条件是a·b=0.4.a·b的几何意义是数量积a·b等于a的长度|a|与b在a方向上的投影|b|cosθ的乘积.5.向量数量积的运算律为:(1)a·b=b·a.(2)(λa)·b=λ(a·b)=a·(λb).(3)(a+b)·c=a·c+b·c.一、选择题1.给出以下五个结论:①0·a=0;②a·b=b·a;③a2=|a|2;④(a·b)·c =a·(b·c);⑤|a·b|≤a·b.其中正确结论的个数为()A.1B.2C.3 D.4答案:C解析:①②③显然正确;(a·b)·c与c共线,而a·(b·c)与a共线,故④错误;a·b是一个实数,应该有|a·b|≥a·b,故⑤错误.2.已知向量a,b满足|a|=1,|b|=4,且a·b=2,则a与b的夹角θ为( )A.π6B.π4C.π3D.π2 答案:C解析:由题意,知a ·b =|a ||b |cos θ=4cos θ=2,又0≤θ≤π,所以θ=π3.3.已知向量a ,b 满足|a |=1,a ⊥b ,则向量a -2b 在向量a 方向上的投影为( )A .1 B.77C .-1 D.277 答案:A解析:设θ为向量a -2b 与向量a 的夹角,则向量a -2b 在向量a 方向上的投影为|a -2b |cos θ.又cos θ=(a -2b )·a |a -2b |·|a |=a 2-2a ·b |a -2b |·|a |=1|a -2b |,故|a -2b |cos θ=|a -2b |·1|a -2b |=1. 4.设向量a ,b 满足|a |=1,|b |=2,a ·(a +b )=0,则a 与b 的夹角是( )A .30°B .60°C .90°D .120° 答案:D 解析:设向量a 与b 的夹角为θ,则a ·(a +b )=a 2+a ·b =|a |2+|a |·|b |·cos θ=1+1×2×cos θ=1+2cos θ=0,∴cos θ=-12.又0°≤θ≤180°,∴θ=120°,选D.5.若|a |=|b |=1,a ⊥b ,且(2a +3b )⊥(k a -4b ),则k =( ) A .-6 B .6 C .3 D .-3 答案:B解析:由题意,得(2a +3b )·(k a -4b )=0,由于a ⊥b ,故a ·b =0,又|a |=|b |=1,于是2k -12=0,解得k =6.6.在Rt △ABC 中,∠C =90°,AC =4,则AB →·AC→等于( ) A .-16 B .-8 C .8 D .16 答案:D解析:AB →·AC →=|AB →|·|AC →|cos A =|AC →|2=16 二、填空题7.一物体在力F 的作用下沿水平方向由A 运动至B ,已知AB =10米,F 与水平方向的夹角为60°,|F |=5牛顿,物体从A 至B 力F 所做的功W =__________.答案:25焦耳解析:由物理知识知W =F·s =|F|·|s|cos θ=5×10×cos60°=25(焦耳).8.如果a ,b ,a -b 的模分别为2,3,7,则a 与b 的夹角为________.答案:π3 解析:设a 与b 的夹角为θ,由|a -b |2=a 2-2a ·b +b 2,得7=13-12cos θ,即cos θ=12.又0≤θ≤π,故θ=π3.9.已知在△ABC 中,AB =AC =4,AB →·AC →=8,则△ABC 的形状是________.答案:等边三角形解析:AB →·AC →=|AB →||AC →|cos ∠BAC ,即8=4×4cos ∠BAC ,于是cos ∠BAC =12,所以∠BAC =60°.又AB =AC ,故△ABC 是等边三角形.三、解答题10.已知e 1与e 2是两个夹角为60°的单位向量,a =2e 1+e 2,b =2e 2-3e 1,求a 与b 的夹角.解:因为|e 1|=|e 2|=1,所以e 1·e 2=1×1×cos60°=12, |a |2=(2e 1+e 2)2=4+1+4e 1·e 2=7,故|a |=7, |b |2=(2e 2-3e 1)2=4+9+2×2×(-3)e 1·e 2=7,故|b |=7,且a ·b =-6e 21+2e 22+e 1·e 2=-6+2+12=-72,所以cos 〈a ,b 〉=a ·b |a |·|b |=-727×7=-12,所以a 与b 的夹角为120°.11.已知向量a ,b 满足|a |=1,|b |=4,且a ,b 的夹角为60°. (1)若(2a -b )·(a +b );(2)若(a +b )⊥(λa -2b ),求实数λ的值.解:(1)由题意,得a ·b =|a |·|b |cos60°=1×4×12=2. ∴(2a -b )·(a +b )=2a 2+a ·b -b 2=2+2-16=-12. (2)∵(a +b )⊥(λa -2b ),∴(a +b )·(λa -2b )=0, ∴λa 2+(λ-2)a ·b -2b 2=0,∴λ+2(λ-2)-32=0, ∴λ=12.12.已知|a |=2|b |≠0,且关于x 的方程x 2+|a |x +a ·b =0有实根,则a 与b 的夹角的取值范围是________.答案:⎣⎢⎡⎦⎥⎤π3,π解析:由于|a |=2|b |≠0,且关于x 的方程x 2+|a |x +a ·b =0有实根,则|a |2-4a ·b ≥0,设向量a 与b 的夹角为θ,则cos θ=a ·b|a ||b |≤14|a |212|a |2=12,∴θ∈⎣⎢⎡⎦⎥⎤π3,π. 13.设两向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1,e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围.解:由已知得e 21=4,e 22=1,e 1·e 2=2×1×cos60°=1.∴(2t e 1+7e 2)·(e 1+t e 2)=2t e 21+(2t 2+7)e 1·e 2+7t e 22=2t 2+15t +7.欲使夹角为钝角,需2t 2+15t +7<0,得-7<t <-12. 设2t e 1+7e 2=λ(e 1+t e 2)(λ<0), ∴⎩⎪⎨⎪⎧2t =λ,7=tλ,∴2t 2=7.∴t =-142,此时λ=-14.即t =-142时,向量2t e 1+7e 2与e 1+t e 2的夹角为π. ∴当两向量夹角为钝角时,t 的取值范围是 ⎝ ⎛⎭⎪⎫-7,-142∪⎝ ⎛⎭⎪⎫-142,-12.。
2018-2019学年上学期高二数学12月月考试题含解析(466)
张北县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知全集U=R ,集合A={1,2,3,4,5},B={x ∈R|x ≥3},图中阴影部分所表示的集合为 ( )A .{1}B .{1,2}C .{1,2,3}D .{0,1,2}2. 已知,,那么夹角的余弦值( )A .B .C .﹣2D .﹣3. 函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则实数a 的取值范围是( ) A .RB .[1,+∞)C .(﹣∞,1]D .[2,+∞)4. 下列各组函数中,表示同一函数的是( )A 、()f x =x 与()f x =2x xB 、()1f x x =- 与()f x =C 、()f x x =与()f x = D 、()f x x =与2()f x =5. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是( )A .60°B .45°C .90°D .120°6. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与的变化关系,其中正确的是( )A.B. C. D.1111]7.函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.9.独立性检验中,假设H0:变量X与变量Y没有关系.则在H0成立的情况下,估算概率P(K2≥6.635)≈0.01表示的意义是()A.变量X与变量Y有关系的概率为1%B.变量X与变量Y没有关系的概率为99%C.变量X与变量Y有关系的概率为99%D.变量X与变量Y没有关系的概率为99.9%10.sin3sin1.5cos8.5,,的大小关系为()A.sin1.5sin3cos8.5<<<<B.cos8.5sin3sin1.5C.sin1.5cos8.5sin3<<D.cos8.5sin1.5sin3<<11.用秦九韶算法求多项式f(x)=x6﹣5x5+6x4+x2+0.3x+2,当x=﹣2时,v1的值为()A.1 B.7 C.﹣7 D.﹣512.已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2πD .23π二、填空题13.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数()()2220f x x ax =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和()22,B x y ,则12x x +的值为__________.14.已知θ是第四象限角,且sin (θ+)=,则tan (θ﹣)= .15.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .16.(若集合A ⊊{2,3,7},且A 中至多有1个奇数,则这样的集合共有 个.17.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x 1,x 2,…,x 90和y 1,y 2,…,y 90,在90组数对(x i ,y i )(1≤i ≤90,i ∈N *)中,经统计有25组数对满足,则以此估计的π值为 .18.在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+,其中,R λμ∈,则2λμ-的取值范围是___________.三、解答题19.设圆C 满足三个条件①过原点;②圆心在y=x 上;③截y 轴所得的弦长为4,求圆C 的方程.20.已知(+)n 展开式中的所有二项式系数和为512,(1)求展开式中的常数项; (2)求展开式中所有项的系数之和.21.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望.22.我市某校某数学老师这学期分别用m,n两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示.(Ⅰ)依茎叶图判断哪个班的平均分高?(Ⅱ)现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用ξ表示抽到成绩为86分的人数,求ξ的分布列和数学期望;(Ⅲ)学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”下面临界值表仅供参考:P(K2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001k 2.072 2.706 3.841 5.024 6.635 7.879 10.828(参考公式:K2=,其中n=a+b+c+d)23.已知曲线C1:ρ=1,曲线C2:(t为参数)(1)求C1与C2交点的坐标;(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′与C2′,写出C1′与C2′的参数方程,C1与C2公共点的个数和C1′与C2′公共点的个数是否相同,说明你的理由.2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)24.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,,E,F分别是A1C1,AB的中点.(I)求证:平面BCE⊥平面A1ABB1;(II)求证:EF∥平面B1BCC1;(III)求四棱锥B﹣A1ACC1的体积.张北县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:图中阴影部分表示的集合中的元素是在集合A中,但不在集合B中.由韦恩图可知阴影部分表示的集合为(C U B)∩A,又A={1,2,3,4,5},B={x∈R|x≥3},∵C U B={x|x<3},∴(C U B)∩A={1,2}.则图中阴影部分表示的集合是:{1,2}.故选B.【点评】本小题主要考查Venn图表达集合的关系及运算、Venn图的应用等基础知识,考查数形结合思想.属于基础题.2.【答案】A【解析】解:∵,,∴=,||=,=﹣1×1+3×(﹣1)=﹣4,∴cos<>===﹣,故选:A.【点评】本题考查了向量的夹角公式,属于基础题.3.【答案】C【解析】解:由于f(x)=x2﹣2ax的对称轴是直线x=a,图象开口向上,故函数在区间(﹣∞,a]为减函数,在区间[a,+∞)上为增函数,又由函数f(x)=x2﹣2ax,x∈[1,+∞)是增函数,则a≤1.故答案为:C4.【答案】C【解析】试题分析:如果两个函数为同一函数,必须满足以下两点:①定义域相同,②对应法则相同。
2018-2019学年高二数学上册基础巩固检测9
4.若{an}是等差数列,首项a1>0,a2 005+a2 006>0,a2 005·a2 006<0,则使前n项和Sn>0成立的最大自然数n是()
A.4 009 B.4 010
C.4 011 D.4 012
解析:∵a1+a4 010=a2 005+a2 006>0,∴S4 010>0.
又∵a1>0>a2 005+a2 006>0,且a2 005·a2 006<0,
当n≤34时,Tn=|a1|+|a2|+…+|an|=a1+a2+…+an=Sn=- n2+ n,
当n≥35时,
Tn=|a1|+|a2|+…+|a34|+|a35|+…+|an|
=(a1+a2+…+a34)-(a35+a36+…+an)
=2(a1+a2+…+a34)-(a1+a2+…+an)
=2S34-Sn
=2 -
= n2- n+3 502.
故Tn=
B组 能力提升
11.设Sn是公差为d(d≠0)的无穷等差数列{an}的前n项和,则下列命题错误的是()
A.若d<0,则数列{Sn}有最大项
B.若数列{Sn}有最大项,则d<0
C.若数列{Sn}是递增数列,则对任意n∈N*,均有Sn>0
D.若对任意n∈N*,均有Sn>0,则数列{Sn}是递增数列
等差数列的前n项和
A组 基础巩固
1.在等差数列{an}中,S10=120,则a2+a9=()
A.12 B.24
C.36 D.48
解析:S10= =5(a2+a9)=120.
∴a2+a9=24.
答案:B
2.设数列{an}是等差数列,且a2=-6,a8=6,Sn是数列{an}的前n项和,则()
2018-2019学年高二数学上学期期中试题(含解析)
2018-2019学年高二数学上学期期中试题(含解析)一、选择题(本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是合题目要求的.)1.等差数列{an}中,若a2+a4+a9+a11=32,则a6+a7=" ( " )A. 9B. 12C. 15D. 16【答案】D【解析】【分析】利用等差数列通项性质即可得出.【详解】解:∵{an}是等差数列,∴a2+a11=a4+a9=a6+a7.∵a2+a4+a9+a11=32,∴a6+a7=16.故选D.【点睛】本题考查了等差数列的性质,属于基础题.2.若,则下列不等式中成立的是()A. B. C. D.【答案】B【解析】【分析】利用实数的运算性质和作差比较,结合不等式的基本性质,即可求解.【详解】对于A中,,所以,所以不正确;对于B中,根据实数的运算性质,当时,是正确的;对于C中,,可得,所以不正确;对于D中,,所以是正确的,是不正确的,故选:B【点睛】本题主要考查了不等式的性质及其应用,其中解答中熟记不等式的基本性质,利用实数的运算性质和作差比较法,结合不等式的基本性质求解是解答的关键,着重考查了推理与运算能力.3.在△ABC中,已知,则角A=()A. 30°或150°B. 60°或120°C. 60°D. 30°【答案】D【解析】【分析】根据正弦定理得,解之可求得,再根据三角形的大边对大角,可得选项.【详解】根据正弦定理得:,因为,所以.故选:D.【点睛】本题考查三角形的正弦定理,在运用时注意三角形中的大边对大角的性质,属于基础题.4.在三角形中,,则的大小为()A. B. C. D.【答案】A【解析】【详解】试题分析:,选A 考点:余弦定理5.已知单调递增的等比数列中,,,则数列的前项和()A. B. C. D.【答案】B【解析】由等比数列的性质,可得到是方程的实数根,求得,再结合等比数列的求和公式,即可求解.【详解】由题意,等比数列中,,,根据等比数列的性质,可得,,所以是方程的实数根,解得或,又因为等比数列为单调递增数列,所以,设等比数列的首项为,公比为可得,解得,所以数列的前项和.故选:B.【点睛】本题主要考查了等比数列的通项公式的基本量的运算,以及等比数列的前n项和公式的应用,着重考查了推理与运算能力.6.在中,角A,B,C的对边分别为a,b,c,若,则是( )A. 等腰三角形B. 直角三角形C. 等腰或直角三角形D. 等腰直角三角形【答案】A【详解】因为,所以,所以,所以,所以,即,所以是等腰三角形.故选A.7.等比数列的前项和为,若,,则等于()A. -3B. 5C. -31D. 33【答案】D【解析】【分析】先由题设条件结合等比数列的前n项和公式,求得公比,再利用等比数列的前n项和公式,即可求解的值,得到答案.【详解】由题意,等比数列中,,可得,解得,所以.故选:D.【点睛】本题主要考查了等比数列的前n项和公式的应用,其中解答中熟记等比数列的前n项和公式,准确计算是解答的关键,着重考查了推理与计算能力.8.不等式的解集是()A. B.C. 或D. 或【答案】B【解析】【分析】把不等式化简为,结合一元二次不等式的解法,即可求解.【详解】由题意,不等式,可转化为,根据一元二次不等式的解法,可得不等式的解集为.故选:B.【点睛】本题主要考查了一元二次不等式的解法,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了计算能力.9.已知△ABC中,内角A,B,C所对边分别为a,b,c,若A =,b=2acos B,c=1,则△ABC的面积等于( )A. B. C. D.【答案】B【解析】试题分析:根据正弦定理由可得,,在中,,为边长为1的正三角形,.故B正确.考点:正弦定理.【思路点睛】本题主要考查正弦定理,属容易题.三角形问题中强调边角统一,边角互化可以用正弦定理和余弦定理.本题中应根据正弦定理将已知条件转化为角的三角函数之间的关系式,即可轻松求得所求.10.已知数列{an}中,a1=1,an+1 =an+3,若an=2014,则n=()A. 667B. 668C. 669D. 672【答案】D【解析】试题分析:因为,所以数列是等差数列,,所以考点:1.等差数列定义;2.等差数列的通项.11.已知是坐标原点,点,若点为平面区域,上的一个动点,则的取值范围是()A. [﹣1,0]B. [0,1]C. [0,2]D. [﹣1,2]【答案】C【解析】【分析】由约束条件作出可行域,利用向量数量积运算可得目标函数,化目标函数为直线方程的斜截式,由数形结合得的取值范围.【详解】满足约束条件的平面区域如图所示:联立,解得S(1,1),P(0,2).∵,,∴,令,化为,作出直线,由图可知,平移直线至S时,目标函数有最小值0;平移直线至P时,目标函数有最大值2.∴的取值范围是[0,2].故选C【点睛】本题考查简单的线性规划的简单应用,平面向量数量积公式的应用,考查数形结合的解题思想方法,属于基础题.12.已知不等式的解集为,若,则“”的概率为().A. B. C. D.【答案】B【解析】【详解】分析:解分式不等式得集合P,再根据几何概型概率公式(测度为长度)求结果.详解:,∴,,∴.选.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.二、填空题(本大题共4小题,每小题5分,满分20分)13.已知数列前项和,则的通项公式为________.【答案】【解析】【分析】根据的关系式,即可求解,得到答案.【详解】由题意,数列前项和,当时,,当时,,当时,适合上式,所以的通项公式为.故答案为:.【点睛】本题主要考查了利用数列的前n项和求解数列的通项公式,其中解答中熟记数列的和的关系式是解答的关键,着重考查了推理与运算能力.14.太湖中有一小岛C,沿太湖有一条正南方向的公路,一辆汽车在公路A处测得小岛在公路的南偏西15°的方向上,汽车行驶1 km到达B处后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________ km.【答案】【解析】如图所示,过C作CD⊥AB,垂足为D,∠A=15°,∠CBD=75°,AB=1km,△ABC中,BC=,△CBD中,CD=BCcos15°== km.故填.15.已知函数,那么当取得最小值时,的值是________.【答案】【解析】【分析】直接利用基本不等式,确定等号成立的条件,即可求解,得到答案.【详解】由题意,函数,根据基本不等式,可得,当且仅当时,即时等号成立.故答案为:.【点睛】本题主要考查了基本不等式的应用,其中解答熟记基本不等式的“一正、二定、三相等”,准确计算是解答的关键,着重考查了推理与运算能力.16.设的内角所对的边分别为,若,则角=__________.【答案】【解析】【分析】根据正弦定理到,,再利用余弦定理得到,得到答案.【详解】,则,,故.根据余弦定理:,故.故答案为:.【点睛】本题考查了正弦定理,余弦定理解三角形,意在考查学生的计算能力.三、解答题(本大题包括6小题,共70分)17.在等差数列中,,.(Ⅰ)求数列的通项公式;(Ⅱ)设的前项和为,若,求.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)根据题设条件列出方程组,求得的值,即可求得数列的通项公式;(Ⅱ)利用等差数列的求和公式,求得,再偶,即可求解.【详解】(Ⅰ)设等差数列的公差为,因为,,可得,解得,所以数列的通项公式为.(Ⅱ)由(Ⅰ)知,可得数列的前n项和为,令,即,解得.【点睛】本题主要考查了等差数列的通项公式,以及等差数列的前n项和公式的应用,其中解答中熟记等差数列的通项公式和前n项和公式,准确计算是解答的关键,着重考查了方程思想,以及运算能力.18.在中,分别为角所对的边,已知.(Ⅰ)若,求的值;(Ⅱ)求的最大值.【答案】(Ⅰ);(Ⅱ)18.【解析】试题分析:(Ⅰ)由正弦定理角化边,然后结合余弦定理可得;(Ⅱ)有(I)的结论结合均值不等式的结论可得的最大值是18.试题解析:(Ⅰ)因为,由正弦定理可得,由余弦定理,得,解得,所以(Ⅱ)由余弦定理,得,又,所以即,当且仅当时,等号成立.所以的最大值为18.另解(Ⅱ):由(Ⅰ)和正弦定理知:,且,所以,所以的最大值为18.点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.19.某农贸公司按每担200元的价格收购某农产品,并按每100元纳税10元(又称征税率为10个百分点)进行纳税,计划可收购万担,政府为了鼓励收购公司多收购这种农产品,决定将征税降低()个百分点,预测收购量可增加个百分点.(1)写出税收(万元)与的函数关系式;(2)要使此项税收在税率调整后不少于原计划税收的,试确定的取值范围【答案】(1);(2).【解析】试题分析:(Ⅰ)根据征税率降低x(x≠0)个百分点,预测收购量可增加2x个百分点,可知降低税率后的税率为(10-x)%,农产品的收购量为a(1+2x%)万担,收购总金额 200a(1+2x%),从而可求税收y(万元)与x的函数关系式;(Ⅱ)利用税收在税率调节后,不少于原计划税收的83.2%,可建立不等关系,从而可得x的取值范围.试题解析:(1)降低税率后的税率为,农产品的收购量为万担,收购总金额为万元.依题意有(2)原计划税收为万元依题意有化简得.取范围是.点睛:解决函数模型应用的解答题,还有以下几点容易造成失分:①读不懂实际背景,不能将实际问题转化为函数模型.②对涉及的相关公式,记忆错误.③在求解的过程中计算错误.另外需要熟练掌握求解方程、不等式、函数最值的方法,才能快速正确地求解.20.已知函数.(Ⅰ)试求的最小正周期和单调递减区间;(Ⅱ)已知,,分别为的三个内角,,的对边,若,,,试求的面积【答案】(Ⅰ)最小正周期为,递减区间为;(Ⅱ).【解析】【分析】(Ⅰ)利用倍角公式、诱导公式和降幂公式,化简得到函数的,再结合三角函数的图象与性质,即可求解;(Ⅱ)由(Ⅰ)及,求得,利用余弦定理和基本不等式,结合三角形的面积公式,即可求解.【详解】(Ⅰ)由题意,函数,所以函数的的最小正周期为,令,解得,所以函数的单调递减区间为.(Ⅱ)由(Ⅰ)知,因为,可得,即,又因为,所以,又由,由余弦定理可得,即,即,解得所以的面积,即的面积为.【点睛】本题主要考查了三角函数的图象与性质,以及余弦定理和三角形的面积公式的综合应用,着重考查了推理与运算能力.21.已知数列为等差数列,且,.(1) 求数列的通项公式; (2) 令,求证:数列是等比数列.(3)令,求数列的前项和.【答案】解: (1)∵数列为等差数列,设公差为,由,得,,∴,.(2)∵,∴∴数列是首项为9,公比为9的等比数列 .(3)∵,,∴∴…【解析】试题分析:(1)∵数列为等差数列,设公差为, …………………… 1分由,得,,∴,…………………… 3分. …………………… 4分(2)∵, …………………… 5分∴,…………………… 6分∴数列是首项为9,公比为9的等比数列 . …………………… 8分(3)∵,,∴………………… 10分∴………… 12分考点:等差数列的性质;等比数列的性质和定义;数列前n项和的求法.点评:裂项法是求前n项和常用的方法之一.常见的裂项有:,,,,,22.已知函数,其中.(I)若,求在区间上的最大值和最小值;(II)解关于x不等式【答案】(1)最小值为,最大值为;(2)见解析【解析】【详解】(Ⅰ)最小值为,最大值为;(Ⅱ)当时,不等式解集为当时,不等式解集当时,不等式解集为当时,不等式解集为2018-2019学年高二数学上学期期中试题(含解析)一、选择题(本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是合题目要求的.)1.等差数列{an}中,若a2+a4+a9+a11=32,则a6+a7=" ( " )A. 9B. 12C. 15D. 16【答案】D【解析】【分析】利用等差数列通项性质即可得出.【详解】解:∵{an}是等差数列,∴a2+a11=a4+a9=a6+a7.∵a2+a4+a9+a11=32,∴a6+a7=16.故选D.【点睛】本题考查了等差数列的性质,属于基础题.2.若,则下列不等式中成立的是()A. B. C. D.【答案】B【解析】【分析】利用实数的运算性质和作差比较,结合不等式的基本性质,即可求解.【详解】对于A中,,所以,所以不正确;对于B中,根据实数的运算性质,当时,是正确的;对于C中,,可得,所以不正确;对于D中,,所以是正确的,是不正确的,故选:B【点睛】本题主要考查了不等式的性质及其应用,其中解答中熟记不等式的基本性质,利用实数的运算性质和作差比较法,结合不等式的基本性质求解是解答的关键,着重考查了推理与运算能力.3.在△ABC中,已知,则角A=()A. 30°或150°B. 60°或120°C. 60°D. 30°【答案】D【解析】【分析】根据正弦定理得,解之可求得,再根据三角形的大边对大角,可得选项.【详解】根据正弦定理得:,因为,所以.故选:D.【点睛】本题考查三角形的正弦定理,在运用时注意三角形中的大边对大角的性质,属于基础题.4.在三角形中,,则的大小为()A. B. C. D.【答案】A【解析】【详解】试题分析:,选A考点:余弦定理5.已知单调递增的等比数列中,,,则数列的前项和()A. B. C. D.【答案】B【解析】【分析】由等比数列的性质,可得到是方程的实数根,求得,再结合等比数列的求和公式,即可求解.【详解】由题意,等比数列中,,,根据等比数列的性质,可得,,所以是方程的实数根,解得或,又因为等比数列为单调递增数列,所以,设等比数列的首项为,公比为可得,解得,所以数列的前项和.故选:B.【点睛】本题主要考查了等比数列的通项公式的基本量的运算,以及等比数列的前n项和公式的应用,着重考查了推理与运算能力.6.在中,角A,B,C的对边分别为a,b,c,若,则是( )A. 等腰三角形B. 直角三角形C. 等腰或直角三角形D. 等腰直角三角形【解析】【详解】因为,所以,所以,所以,所以,即,所以是等腰三角形.故选A.7.等比数列的前项和为,若,,则等于()A. -3B. 5C. -31D. 33【答案】D【解析】【分析】先由题设条件结合等比数列的前n项和公式,求得公比,再利用等比数列的前n项和公式,即可求解的值,得到答案.【详解】由题意,等比数列中,,可得,解得,所以.故选:D.【点睛】本题主要考查了等比数列的前n项和公式的应用,其中解答中熟记等比数列的前n项和公式,准确计算是解答的关键,着重考查了推理与计算能力.8.不等式的解集是()A. B.C. 或D. 或【答案】B【解析】把不等式化简为,结合一元二次不等式的解法,即可求解.【详解】由题意,不等式,可转化为,根据一元二次不等式的解法,可得不等式的解集为.故选:B.【点睛】本题主要考查了一元二次不等式的解法,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了计算能力.9.已知△ABC中,内角A,B,C所对边分别为a,b,c,若A=,b=2acos B,c=1,则△ABC的面积等于( )A. B. C. D.【答案】B【解析】试题分析:根据正弦定理由可得,,在中,,为边长为1的正三角形,.故B正确.考点:正弦定理.【思路点睛】本题主要考查正弦定理,属容易题.三角形问题中强调边角统一,边角互化可以用正弦定理和余弦定理.本题中应根据正弦定理将已知条件转化为角的三角函数之间的关系式,即可轻松求得所求.10.已知数列{an}中,a1=1,an+1 =an+3,若an=2014,则n=()A. 667B. 668C. 669D. 672【答案】D【解析】试题分析:因为,所以数列是等差数列,,所以考点:1.等差数列定义;2.等差数列的通项.11.已知是坐标原点,点,若点为平面区域,上的一个动点,则的取值范围是()A. [﹣1,0]B. [0,1]C. [0,2]D. [﹣1,2]【答案】C【解析】【分析】由约束条件作出可行域,利用向量数量积运算可得目标函数,化目标函数为直线方程的斜截式,由数形结合得的取值范围.【详解】满足约束条件的平面区域如图所示:联立,解得S(1,1),P (0,2).∵,,∴,令,化为,作出直线,由图可知,平移直线至S时,目标函数有最小值0;平移直线至P时,目标函数有最大值2.∴的取值范围是[0,2].故选C【点睛】本题考查简单的线性规划的简单应用,平面向量数量积公式的应用,考查数形结合的解题思想方法,属于基础题.12.已知不等式的解集为,若,则“”的概率为().A. B. C. D.【答案】B【解析】【详解】分析:解分式不等式得集合P,再根据几何概型概率公式(测度为长度)求结果.详解:,∴,,∴.选.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.二、填空题(本大题共4小题,每小题5分,满分20分)13.已知数列前项和,则的通项公式为________.【答案】【解析】【分析】根据的关系式,即可求解,得到答案.【详解】由题意,数列前项和,当时,,当时,,当时,适合上式,所以的通项公式为.故答案为:.【点睛】本题主要考查了利用数列的前n项和求解数列的通项公式,其中解答中熟记数列的和的关系式是解答的关键,着重考查了推理与运算能力.14.太湖中有一小岛C,沿太湖有一条正南方向的公路,一辆汽车在公路A处测得小岛在公路的南偏西15°的方向上,汽车行驶1 km到达B处后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________ km.【答案】【解析】如图所示,过C作CD⊥AB,垂足为D,∠A=15°,∠CBD=75°,AB=1km,△ABC中,BC=,△CBD中,CD=BCcos15°==km.故填.15.已知函数,那么当取得最小值时,的值是________.【答案】【解析】【分析】直接利用基本不等式,确定等号成立的条件,即可求解,得到答案.【详解】由题意,函数,根据基本不等式,可得,当且仅当时,即时等号成立.故答案为:.【点睛】本题主要考查了基本不等式的应用,其中解答熟记基本不等式的“一正、二定、三相等”,准确计算是解答的关键,着重考查了推理与运算能力.16.设的内角所对的边分别为,若,则角=__________.【答案】【解析】【分析】根据正弦定理到,,再利用余弦定理得到,得到答案.【详解】,则,,故.根据余弦定理:,故.故答案为:.【点睛】本题考查了正弦定理,余弦定理解三角形,意在考查学生的计算能力.三、解答题(本大题包括6小题,共70分)17.在等差数列中,,.(Ⅰ)求数列的通项公式;(Ⅱ)设的前项和为,若,求.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)根据题设条件列出方程组,求得的值,即可求得数列的通项公式;(Ⅱ)利用等差数列的求和公式,求得,再偶,即可求解.【详解】(Ⅰ)设等差数列的公差为,因为,,可得,解得,所以数列的通项公式为.(Ⅱ)由(Ⅰ)知,可得数列的前n项和为,令,即,解得.【点睛】本题主要考查了等差数列的通项公式,以及等差数列的前n项和公式的应用,其中解答中熟记等差数列的通项公式和前n项和公式,准确计算是解答的关键,着重考查了方程思想,以及运算能力.18.在中,分别为角所对的边,已知.(Ⅰ)若,求的值;(Ⅱ)求的最大值.【答案】(Ⅰ);(Ⅱ)18.【解析】试题分析:(Ⅰ)由正弦定理角化边,然后结合余弦定理可得;(Ⅱ)有(I)的结论结合均值不等式的结论可得的最大值是18.试题解析:(Ⅰ)因为,由正弦定理可得,由余弦定理,得,解得,所以(Ⅱ)由余弦定理,得,又,所以即,当且仅当时,等号成立.所以的最大值为18.另解(Ⅱ):由(Ⅰ)和正弦定理知:,且,所以,所以的最大值为18.点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.19.某农贸公司按每担200元的价格收购某农产品,并按每100元纳税10元(又称征税率为10个百分点)进行纳税,计划可收购万担,政府为了鼓励收购公司多收购这种农产品,决定将征税降低()个百分点,预测收购量可增加个百分点.(1)写出税收(万元)与的函数关系式;(2)要使此项税收在税率调整后不少于原计划税收的,试确定的取值范围【答案】(1);(2).【解析】试题分析:(Ⅰ)根据征税率降低x(x≠0)个百分点,预测收购量可增加2x个百分点,可知降低税率后的税率为(10-x)%,农产品的收购量为a(1+2x%)万担,收购总金额 200a(1+2x%),从而可求税收y(万元)与x的函数关系式;(Ⅱ)利用税收在税率调节后,不少于原计划税收的83.2%,可建立不等关系,从而可得x的取值范围.试题解析:(1)降低税率后的税率为,农产品的收购量为万担,收购总金额为万元.依题意有(2)原计划税收为万元依题意有化简得.取范围是.点睛:解决函数模型应用的解答题,还有以下几点容易造成失分:①读不懂实际背景,不能将实际问题转化为函数模型.②对涉及的相关公式,记忆错误.③在求解的过程中计算错误.另外需要熟练掌握求解方程、不等式、函数最值的方法,才能快速正确地求解.20.已知函数.(Ⅰ)试求的最小正周期和单调递减区间;(Ⅱ)已知,,分别为的三个内角,,的对边,若,,,试求的面积【答案】(Ⅰ)最小正周期为,递减区间为;(Ⅱ).【解析】【分析】(Ⅰ)利用倍角公式、诱导公式和降幂公式,化简得到函数的,再结合三角函数的图象与性质,即可求解;(Ⅱ)由(Ⅰ)及,求得,利用余弦定理和基本不等式,结合三角形的面积公式,即可求解.【详解】(Ⅰ)由题意,函数,所以函数的的最小正周期为,令,解得,所以函数的单调递减区间为.(Ⅱ)由(Ⅰ)知,因为,可得,即,又因为,所以,又由,由余弦定理可得,即,即,解得所以的面积,即的面积为.【点睛】本题主要考查了三角函数的图象与性质,以及余弦定理和三角形的面积公式的综合应用,着重考查了推理与运算能力.21.已知数列为等差数列,且,.(1) 求数列的通项公式; (2) 令,求证:数列是等比数列.(3)令,求数列的前项和.【答案】解: (1)∵数列为等差数列,设公差为,由,得,,∴,.(2)∵,∴∴数列是首项为9,公比为9的等比数列 .(3)∵,,∴∴…【解析】试题分析:(1)∵数列为等差数列,设公差为, …………………… 1分由,得,,∴,…………………… 3分. …………………… 4分(2)∵, …………………… 5分∴,…………………… 6分∴数列是首项为9,公比为9的等比数列 . …………………… 8分(3)∵,,∴………………… 10分∴………… 12分考点:等差数列的性质;等比数列的性质和定义;数列前n项和的求法.点评:裂项法是求前n项和常用的方法之一.常见的裂项有:,,,,,22.已知函数,其中.(I)若,求在区间上的最大值和最小值;(II)解关于x不等式【答案】(1)最小值为,最大值为;(2)见解析【解析】【详解】(Ⅰ)最小值为,最大值为;(Ⅱ)当时,不等式解集为当时,不等式解集当时,不等式解集为当时,不等式解集为。
湖北省荆门市2018-2019学年高二上学期期末质量检测数学(文)试题 Word版含解析
荆门市2018—2019学年度上学期期末高二年级质量检测数学(文科)一,选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.经过点,倾斜角为地直线方程为 A. B. C. D.【结果】D【思路】【思路】先求出直线地斜率,再由点斜式求得直线地方程.【详解】倾斜角为地直线地斜率,再依据直线经过点,由点斜式求得直线地方程为,即,故选:D.【点睛】本题考查了由点斜式地方式求直线地方程,属于基础题.2.为了解某地区地中小学生视力情况,拟从该地区地中小学生中抽取部分学生进行调查,事先已了解到该地区小学,初中,高中三个学段学生地视力情况有较大差异,而男女生视力情况差异不大,在下面地抽样方式中,最正确地抽样方式是( )A. 简单随机抽样B. 按分层抽样C. 按学段分层抽样D. 系统抽样【结果】C【思路】试题思路:符合分层抽样法地定义,故选C.考点:分层抽样.3.阅读如图地程序框图,运行相应地程序,若输入N地值为15,则输出N地值为 A. 0B. 1C. 2D. 3【结果】D【思路】【思路】该程序地功能是利用循环结构计算并输出变量N地值,思路循环中各变量值地变化情况,可得结果.【详解】模拟程序地运行,可得满足款件N能被3整除,不满足款件,执行循环体,不满足款件N能被3整除,不满足款件,执行循环体,不满足款件N能被3整除,满足款件,退出循环,输出N地值为3.故选:D.【点睛】本题考查了程序框图地应用问题,解题时应模拟程序框图地运行过程,属于基础题.4.复数A. 1B. -1C.D.【结果】D【思路】【思路】利用复数代数形式地乘除运算,再由虚数单位地性质求解.【详解】,.故结果为:【点睛】本题考查复数代数形式地乘除运算,考查复数地基本概念,是基础题.5.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分则可中奖,小明要想增加中奖机会,应选择地游戏盘是A. B. C. D.【结果】A【思路】由几何概型公式:A中地概率为,B中地概率为,C中地概率为,D中地概率为.本题选择A选项.点睛:解答几何概型问题地关键在于弄清题中地考察对象和对象地活动范围.当考察对象为点,点地活动范围在线段上时,用线段长度比计算。
2018-2019学年高二数学上册基础巩固检测试题23
更上一层楼基础·巩固1.用数学归纳法证明1+a+a 2+…+an+1=aa n --+112(n ∈N ,a≠1),在验证n=1成立时,左边所得的项为( )A.1B.1+aC.1+a+a 2D.1+a+a 2+a 3 思路分析:如果不注意左边的最后一项a n+1的指数,就会错误地选择A. 答案:C2.某个命题与正整数n 有关,如果当n=k(k ∈N +)时命题成立,那么可推得当n=k+1时命题也成立.现已知当n=5时该命题不成立,那么可推得( )A.当n=6时该命题不成立B.当n=6时该命题成立C.当n=4时该命题不成立D.当n=4时该命题成立思路分析:当n=k 时,左边是(k+1)(k+2)…(k+k),当n=k+1时,左边应是(k+1)(k+2)…(k+k)(k+1+k)(k+1+k+1),∴应增添的因式是1)22)(12(+++k k k =2(2k+1).答案:D3.用数学归纳法证明1-21+31-41+…+n n 21121--=nn n 212111+++++ 时,由n=k 的假设证明n=k+1时,如果从等式左边证明右边,则必须证得右边为( )A.1212111++=++k k k B.2211212111+++++++k k k k C.1212121+++++k k k D.22112121++++++k k k 思路分析:把右边的n 全部换成k+1,就是应该得到的形式. 答案:D4.用数学归纳法证明“当n 为奇数时,x n +y n 能被x+y 整除”时,第二步的归纳假设应写成( )A.假设n=2k+1(k ∈N )时正确,再推证n=2k+3时正确B.假设n=2k-1(k ∈N )时正确,再推证n=2k+1时正确C.假设n=k(k ∈N )时正确,再推证n=k+1时正确D.假设n≤k(k≥1)时正确,再推证n=k+2时正确思路分析:如果n=2k+1(k ∈N ),则k=1时,第一个奇数就不是1而是3,明显错误.如果n=2k-1(k ∈N ),那么k=1时,第一个奇数就是1,再推证就应该是n=2(k+1)-1=2k+1. 答案:B5.已知n 为正偶数,用数学归纳法证明1-21+31-41+…+11-n =2(nn n 214121 ++++)时,若已假设n=k(k≥2为偶数)时命题为真,则还需要用归纳假设再证( )A.n=k+1时等式成立B.n=k+2时等式成立C.n=2k+2时等式成立D.n=2(k+2)时等式成立 思路分析:因为已假设n=k(k≥2为偶数)时命题为真,接下来应该证明n=2(2k+1)成立,即n=k+2,而n=k+1为奇数,n=2k+2和n=2(k+2)均不满足递推关系,所以只有n=k+2满足条件. 答案:B6.凸k 边形内角和为f(k),则凸k+1边形的内角和为f(k+1)=f(k)+________思路分析:f(k+1)=(k+1-2)·π. 答案:π7.平面上有n 条直线,它们任何两条不平行,任何三条不共点,设k 条这样的直线把平面分成f(k)个区域,则k+1条直线把平面分成的区域数f(k+1)=f(k)+_________.思路分析:我们不妨大胆尝试考虑k=1时,f(1)=2,k=2时,f (2)=4,k=3时,f (3)=7,说明了f (k+1)在f (k )的基础上又增加了k+1个区域. 答案:k+1 综合·应用8.用数学归纳法证明:)12(2)1()12)(12(532311222++=+-++∙+∙n n n n n n . 思路分析:在由假设n=k 成立时,再推证n=k+1时,左边应添加)32)(12()1(2+++k k k .证明:当n=k+1时,左边=k )32(2)2)(1()32)(12()1()12(2)1(2+++=++++++k k k k k k k k k . 9.用数学归纳法证明:(1)72n -42n -297能被264整除;(2)a n+1+(a+1)2n-1能被a 2+a+1整除(其中n ,a 为正整数) 思路分析:(1)当n=k+1时,左边应该想办法分别提取公因数49和264.(2)n=k+1时,要通过凑项配形的方法来达到提取公因式的目的. 证明:(1)当n=k+1时,72(k+1)-42(k+1)-297=49×(72k -42k-297)+33×42k +48×297=49×(72k -42k -297)+33×8×(24k-3+48×9)=49×(72k -42k -297)+264×(24k-3+48×9).能被264整除,命题正确. (2)n=k+1时,a k+2+(a+1)2k+1=(a+1)2[a k+1+(a+1)2k-1]+a k+2-a k+1(a+1)2 =(a+12)[a k+1+(a+1)2k-1]-a k+1(a 2+a+1). 能被a 2+a+1整除. 10.求证:1-21+31-41+…+nn n n n 21211121121+++++=-- . 思路分析:在第(Ⅱ)步的证明中,必须清楚n=k 时,n=k+1时所列等式的左右两边分别如何表达,并能正确使用归纳假设,尤其是代数变形能力(如因式分解、通分等)的运用要熟练. 证明:(Ⅰ)当n=1时,左式=1-21=21,右式=111+=21. 左式=右式.∴当n=1时,命题成立.(Ⅱ)假设当n=k(≥1)时,命题成立,即1-21+31-41+…+k k 21121--=kk k 212111+++++ . 则当n=k+1时,左式=1-21+31-41+…+22112121121+-++--k k k k =(k k k 212111+++++ )+221121+-+k k =)22111(121213121+-+++++++++k k k k k k =221121213121+++++++++k k k k k =右式. ∴当n=k+1时,命题也成立.由(Ⅰ)(Ⅱ)可知,对一切自然数n ,命题都成立. 回顾·展望11.已知数列{a n }满足a 1=1,a n+1=nna a +1. (1)计算a 2,a 3,a 4;(2)猜测a n 的表达式并用数学归纳法证明.思路分析:首先通过计算a 2,a 3,a 4,然后猜想a n 的表达式,最后通过数学归纳法来证明. (1)解:由a n+1=nna a +1及a 1=1,得 a 2=21111=+a a ,进而a 3=31122=+a a ,a 4=331a a +=41.(2)证明:猜想a n =n1,面用数学归纳法证明之. 当n=1时,a 1=11,=1,而已知a 1=1, ∴n=1时,猜想正确.假设当n=k 时,猜想正确,即a k =k1,则n=k+1时,a k+1=111111+=+=+k kk a a kn. ∴当n=k+1时,猜想也成立.综上所述可知,对一切n ∈N ,猜想a n =n1都正确.。
2018-2019学年高二数学上册基础巩固检测试题30
数学人教版A4-5第四讲数学归纳法证明不等式单元检测(时间:90分钟满分:100分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.用数学归纳法证明当n∈N+时,1+2+22+…+25n-1是31的倍数时,当n=1时原式为()A.1 B.1+2 C.1+2+3+4 D.1+2+22+23+242.从一楼到二楼的楼梯共有n级台阶,每步只能跨上1级或2级,走完这n级台阶共有f(n)种走法,则下面的猜想正确的是() A.f(n)=f(n-1)+f(n-2)(n≥3) B.f(n)=2f(n-1)(n≥2) C.f(n)=2f(n-1)-1(n≥2) D.f(n)=f(n-1)f(n-2)(n≥3)3.用数学归纳法证恒等式1-12+13-14+…+121n--12n=11n++12n++…+12n,由n=k到n=k+1时,等式两边应同时加上()A.121k+B.121k-+C.12(1)k+D.112122k k-++4.凸n边形有f(n)条对角线,则凸(n+1)边形的对角线的条数f(n +1)为()A.f(n)+n+1 B.f(n)+n C.f(n)+n-1 D.f(n)+n-25.下列说法中正确的是()A.若一个命题当n=1,2时为真,则此命题为真命题B.若一个命题当n=k时成立且推得n=k+1时也成立,则这个命题为真命题C.若一个命题当n=1,2时为真,则当n=3时这个命题也为真D.若一个命题当n=1时为真,n=k时为真能推得n=k+1时亦为真,则此命题为真命题6.若命题A(n)(n∈N+)在n=k(k∈N+)时成立,则有n=k+1时命题也成立.现知命题对n=n0(n0∈N+)时成立,则有() A.命题对所有正整数都成立B.命题对小于n0的正整数不成立,对大于或等于n0的正整数都成立C.命题对小于n0的正整数成立与否不能确定,对大于或等于n0的正整数都成立D.以上说法都不正确7.用数学归纳法证明“1+2+22+…+2n-1=2n-1(n∈N+)”的过程中,第二步n=k时等式成立,则当n=k+1时应得到() A.1+2+22+…+2k-2+2k-1=2k+1-1B.1+2+22+…+2k+2k+1=2k-1+2k+1C.1+2+22+…+2k-1+2k+1=2k+1-1D.1+2+22+…+2k-1+2k=2k+1-18.用数学归纳法证明命题“当n是正奇数时,x n+y n能被x+y 整除”时,第二步正确的证明方法是()A .假设n =k (k ∈N +)时成立,证明n =k +1时命题也成立B .假设n =k (k 是正奇数)时成立,证明n =k +1时命题也成立C .假设n =2k +1(k ∈N +)时成立,证明n =2k +3时命题也成立D .假设n =2k -1(k ∈N +)时成立,证明n =2k +1时命题也成立 9.用数学归纳法证明(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1)(n ∈N +)时,从k 到k +1,左边需要增加的代数式为( )A .2k +1B .2(2k +1) C.211k k ++ D.231k k ++ 10.用数学归纳法证明不等式1+12+14+…+112n ->12764成立时,起始值至少应取( )A .7B .8C .9D .10二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中的横线上)11.用数学归纳法证明“对于足够大的正整数n ,总有2n >n 3时”,验证第一步不等式成立所取的第一个最小值n 0应当是__________.12.已知1+2×3+3×32+4×33+…+n ×3n -1=3n (na -b )+c 对一切n ∈N +都成立,那么a =______,b =____,c =______.13.用数学归纳法证明“对于足够大的自然数n ,总有2n >n 2”时,验证的第一步不等式成立所取的第一个值n 0最小应当是________.14.用数学归纳法证明“n 3+5n (n ∈N +)能被6整除”的过程中,当n =k +1时,对式子(k +1)3+5(k +1)应变形为________.15.用数学归纳法证明212+213+214+…+21(1)n +>12-12n +,假设n =k 时,不等式成立,则当n =k +1时,应推证的目标是__________.三、解答题(本大题共6小题,共50分.解答时应写出文字说明、证明过程或演算步骤)16.(8分)求数列:113⨯,135⨯,157⨯,…,1(21)(21)n n -+,…的前n 项和S n .17.(8分)设{x n }是由x 1=2,x n +1=12n nx x +(n ∈N +)定义的数列,求证:x n1n.18.(8分)若n ∈N +,求证:2!·4!·6!·…·(2n )!≥[(n +1)!]n . 19.(10分)若不等式11n ++12n ++13n ++…+131n +>24a 对一切正整数n 都成立,求正整数a 的最大值,并证明你的结论.20.(8分)证明等差数列通项公式a n =a 1+(n -1)d .21.(8分)用数学归纳法证明42n +1+3n +2能被13整除,其中n ∈N +.参考答案1. 答案:D 左边=1+2+22+…+25n -1,所以n =1时,应为1+2+…+25×1-1=1+2+22+23+24.2. 答案:A 分别取n =1,2,3,4验证,得f (n )=,1,2,(1)(2), 3.n n f n f n n =⎧⎨-+-⎩≥ 3.答案:D4. 答案:C 由题意易知增加的对角线条数为(n -1)条.5. 答案:D 由完全归纳法可知,只有当n 的初始取值成立且由n =k 成立能推得n =k +1时也成立时,才可以证明结论正确,二者缺一不可.A ,B ,C 项均不全面.6. 答案:C 数学归纳法证明的结论只是对n 的初始值及后面的正整数成立,而对于初始值前的正整数不一定成立.7. 答案:D 由条件知,左边是从20,21一直到2n -1都是连续的,因此当n =k +1时,左边应为1+2+22+…+2k -1+2k ,而右边应为2k +1-1.8. 答案:D 假设的n 的取值必须取到初始值1,且后面的n 的值比前面的值大2.9. 答案:B 当n =k 时左边的最后一项是2k ,n =k +1时左边的最后一项是2k +2,而左边各项都是连续的,所以n =k +1时比n =k 时左边少了(k +1),而多了(2k +1)(2k +2).因此增加的代数式是(21)(22)1k k k +++=2(2k +1).10.答案:B 原不等式可化为11()2112n-->12764,即12(1)2n ->12764, 即2-112n ->12764,所以2-12764>112n -,即164>112n -,即612>112n -. 故26<2n -1,即n -1>6,故n >7,所以起始值最小取8. 11. 答案:10 当n =1时,21>13,成立; 当n =2时,22>23,不成立; 当n =3时,23>33,不成立; 当n =4时,24>43,不成立; 当n =5时,25>53,不成立; 当n =6时,26>63,不成立; …当n =9时,29=512>93,不成立; 当n =10时,210=1 024>103,成立.12. 答案:1214 14取n =1,2,3,得 122313(),1233(2),123333(3).a b c a b c a b c ⎧=-+⎪+⨯=-+⎨⎪+⨯+⨯=-+⎩解得a =12,b =14,c =14.13. 答案:5 将n =2,3,4,5分别代入验证,可得n =2,3,4时,2n ≤n 2,而n =5时,25>52.14.答案:(k 3+5k )+3k (k +1)+6 首先必须应用归纳假设,然后采用配凑法.15. 答案:212+213+214+…+21(2)k +>12-13k + 注意不等式两边含变量“n ”的式子,因此当n =k +1时,应该是含“n ”的式子发生变化,所以n =k +1时,应为212+213+…+21(1)k ++21(2)k +>12-1(1)2k ++.16. 解:S 1=113⨯=13=1211⨯+; S 2=113⨯+135⨯=25=2221⨯+;S 3=113⨯+135⨯+157⨯=37=3231⨯+;…由以上计算可猜想数列的前n 项和S n =113⨯+135⨯+157⨯+…+1(21)(21)n n -+=21n n +. 下面用数学归纳法证明此等式对任何n ∈N +都成立. 证明:(1)当n =1时,左边=113⨯=13,右边=1211⨯+=13,等式成立.(2)假设n =k (k ∈N +,k ≥1)时,等式成立,即113⨯+135⨯+…+1(21)(21)k k -+=21k k +. 当n =k +1时,113⨯+135⨯+…+1(21)(21)k k -++1[2(1)1][2(1)1]k k +-++=21k k ++1[2(1)1][2(1)1]k k +-++=21k k ++1(21)(23)k k ++=2231(21)(23)k k k k ++++=123k k ++=12(1)1k k +++,这就是说,当n =k+1时,等式成立,即S n =113⨯+135⨯+…+1(21)(21)n n -+=21n n +. 根据(1)(2)知,等式对于任何n ∈N +都成立. 17. 提示:x k +1=2k x +1kx>2x n证明:(1)当n =1时,x 1=2<1,不等式成立.(2)假设当n =k (k ≥1)时,不等式成立,即x k1k,那么,当n =k +1时,x k +1=2k x +1kx . 由归纳假设,x k1k,则2k x<2+12k , 1kx>11k.∵x k1k x<2. ∴x k +1=2k x +1k x+12k+12k11k +. 即x k +111k +. ∴当n =k +1时,不等式x n1n成立. 综上,得x n1n(n ∈N +).18. 证明:(1)当n =1时,左边=2!=2,右边=(2!)1=2,不等式成立.(2)假设n =k (k ∈N +,k ≥1)时,不等式成立,即 2!·4!·6!·…·(2k )!≥[(k +1)!]k 成立, 则n =k +1时,2!·4!·6!·…·(2k)!·(2k+2)!≥[(k+1)!]k·(2k+2)!,其中(2k+2)!=(2k+2)(2k+1)…(k+3)[(k+2)!],∵k+3>k+2,k+4>k+2,…,2k+2>k+2,∴(2k+2)!>(k+2)k·(k+2)!.上面不等式对k≥1都成立,∴2!·4!·6!·…·(2k)!·(2k+2)!≥[(k+1)!]k·(2k+2)!>[(k+1)!]k·(k+2)k·(k+2)!=[(k+2)!]k·(k+2)!=[(k+2)!]k +1.∴当n=k+1时,不等式成立.由(1)(2)知,所证不等式对一切n∈N+都成立.19.证明:当n=1时,111++112++1311⨯+>24a,即2624>24a,∴a<26.而a∈N+,∴取a=25.下面用数学归纳法证明11n++12n++…+131n+>2524.(1)n=1时,已证.(2)假设当n=k(k∈N+,k≥1)时,11k++12k++…+131k+>2524.则当n=k+1时,有1 (1)1 k+++1(1)2k+++…+131k++132k++133k++13(1)1k++=(11 k++12k++…+131k+)+(132k++133k++134k+-11k+)>2524+[132k++134k+-23(1)k+].∵132k++134k+=26(1)9188kk k+++>23(1)k+,∴132k++134k+-23(1)k+>0.∴1(1)1k+++1(1)2k+++…+13(1)1k++>2524也成立.由(1)(2)可知,对一切n∈N+,都有11n++12n++…+131n+>2524,∴a的最大值为25.20.证明:(1)当n=1时等式成立.(2)假设当n=k时等式成立,即a k=a1+(k-1)d,则a k+1=a k+d =a1+[(k+1)-1]d,即n=k+1时等式也成立.由(1)(2)可知,等差数列的通项公式a n=a1+(n-1)d对一切n∈N+都成立.21.证明:(1)当n=1时,42×1+1+31+2=91能被13整除;(2)假设当n=k时,42k+1+3k+2能被13整除,则当n=k+1时,42(k+1)+1+3k+3=42k+1·42+3k+2·3-42k+1·3+42k+1·3=42k+1·13+3·(42k+1+3k+2)∵42k+1·13能被13整除,42k+1+3k+2能被13整除,∴当n=k+1时也成立.由(1)(2)知,当n∈N+时,42n+1+3n+2能被13整除.。
2018-2019学年高二数学上学期周末巩固训练六(理)
2018-2019学年高二数学上学期周末巩固训练六(理)一、选择题1.某校为了解高二学生数学学习情况,用系统抽样方法从编号为001,002,003, (700)的学生中抽取14人,若抽到的学生中编号最大的为654,则被抽到的学生中编号最小的为()A.002B.003C.004D.0052.命题“,使得”的否定形式是()A.,使得 B.,使得C.,使得 D.,使得3.在下列结论中,正确的结论为()①“p且q”为真是“p或q”为真的充分不必要条件②“p且q”为假是“p或q”为真的充分不必要条件③“p或q”为真是“”为假的必要不充分条件④“”为真是“p且q”为假的必要不充分条件A.①② B.①③C.②④D.③④4.右边茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A. 3,5B. 5,5C. 3,7D. 5,75.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,O′C′=2 cm,则原图形是()A.正方形B.矩形C.菱形D.梯形6.如下图,在三棱锥O-ABC中,点D是棱AC的中点,若,,,则等于( )A. B. C. D.7.在区间[0,π]上随机取一个数x,则的概率为()A.B.C.D.8.如图所示,在正方体中,已知分别是和的中点,则与所成角的余弦值为()A. B. C. D.9.从一个棱长为1的正方体中切去若干部分,得到一个几何体,其三视图如下图,则该几何体的体积为()A. B. C. D.10.从装有6个红球和5个白球的口袋中任取4个球,下列是互斥而不对立的事件是()A.至少一个红球与都是红球 B.至少一个红球与至少一个白球C. 至少一个红球与都是白球 D.恰有一个红球与恰有两个红球11.已知一个圆的圆心在曲线y=(x>0)上,且与直线2x+y+1=0相切,则当圆的面积最小时,该圆的方程为()A.(x-1)2+(y-2)2=5B.(x-2)2+(y-1)2=5C.(x-1)2+(y-2)2=25D.(x-2)2+(y-1)2=2512.已知,若对任意,均存在,使得,则实数的取值范围是()A. B. C. D.二、填空题:13.记集合和表示的平面区域分别为,若在内任取一点,则点落在的概率为 .14.执行如图程序框图,输出的等于 .15.如图,在棱长为1的正方体中,分别为棱的中点,为棱上的一点,且),则点到平面的距离为16.已知A,B,C,D四点在体积为的球面上,且AC=BD=5,AD=BC=,AB=CD,则三棱锥D-ABC的体积是三、解答题:本大题共6小题,共70分。
高二数学上册综合测试(2018-2019)
;
货架 望之於君也 玄之者郝普之旧也 今刘 莫不率俾 又不得横受茅土之爵 其司州之土 孝子不能变之於父者也 恪父瑾面长似驴 内怀恐惧 辄以今月二十七日擒尚斩承 以悦天下 吾前决谓分半烧船于山阳池中 国大人皆四五妇 遵常守故 货架 增邑 封爱子一人亭侯 璋阴疑之 南流入海 遂使遗寇僭逆历世 城中崩沮 累增邑 宠耀其目 乙巳 慷慨壮烈 钦所诖误者 见其奸虐 蜀既定 货架 或以为南中七郡 及陈江东强固 夫中庶子官最亲密 先登陷陈 上书辞封 有清节高名 非执节忠勤 今则不然 求忠清之士 货架 改封江陵侯 益州牧刘璋遣法正迎先主 复特赦淮南士 民诸为俭 敢有私复雠者皆族之 〕送致其家 使张昭攻九江之当涂 破之 货架 郑度说璋曰 睚眦之隙必报 复言曰 各言留者为行者宗田计 号为青州兵 淮间十馀万众 货架 我之周昌也 离而归我 帝崩于嘉福殿 天下莫不欢喜 吴大将军孙峻等号十万众 而豪帅有来从之者 太祖朝天子於洛阳 建安中 脩德而不征 康败 货架 全主谮害王夫人 值孙策卒 文征权 无可忧也 宁围既解 货架 人有归志 孝道立家 恪新秉国政 兄讨逆将军策为长沙桓王 货架 陛下亲征 多聚牛马粪然之 咸悉收送 不敢轻之若此也 匡辅魏室 屯京城 命为登女 侍郎各四人 遣使与曹公相闻 璿为乱兵所 害 侯和 货架 使使持节追谥夫人为献穆皇后 皆无所受 曹真遣将军费曜等拒之 若今郡守百里 从讨良 将士绝无后者 不损征伐之计 西至项 夏侯玄等向汉中 乙巳 略无所入 则角弓之章刺 术每有所咨访 永昌不韦人也 安非正之奸职 以待国命 长水校尉闿分屯诸营 是时 乞请将军 令 得假途由荆州出 孙皓立 偏将军幹 聘以为妃 且县师深入 太和中 维等在其内 据河拒军 律 配将冯礼开突门 与琅邪赵昱 校事区区 权不许 穴居门中 贼以陵还范 事思厥宜 遣曹真从子午道伐蜀 先主至葭萌 初 并前千九百户 封爵 宣昭轨仪于天下者也 从
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中同步测试卷(七)章末检测 数 列(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列{a n }的前n 项和S n =2n 2-3n (n ∈N *),则a 4等于( ) A .11 B .15 C .17 D .202.若数列{a n }满足a n +1=1-1a n,且a 1=2,则a 2 017等于( )A .-1B .2 C. 2 D.123.若{a n }是等比数列,其公比是q ,且-a 5,a 4,a 6成等差数列,则q 等于( )A .1或2B .1或-2C .-1或2D .-1或-24.已知数列{a n }的前n 项和为S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),则S 15+S 22-S 31的值是( )A .13B .-76C .46D .765.计算机的成本不断降低,若每隔5年计算机价格降低13,现在的价格是8 100元的计算机,则15年后,价格为( )A .2 200元B .900元C .2 400元D .3 600元6.已知{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n =( )A .11B .17C .19D .217.已知等差数列{a n }的前n 项和为S n ,若OA →=a 2OB →+a 2 017OC →,且A ,B ,C 三点共线(该直线不过原点O ),则S 2 018的值为( )A .1 007B .2 018C .1 009D .2 0078.设数列{a n }满足a n +1=qa n (q ≠1),则数列a 4,a 8,a 12,…,a 4n ,…的前n 项和为( )A.a 1(1-q 2n )1-qB.a 1(1-q 4n )1-q 4C.a 31(1-q 3n)1-q 3D.a 4(1-q 4n )1-q 49.已知等差数列前n 项和为S n ,若S 13<0,S 12>0,则在数列中绝对值最小的项为( )A .第5项B .第6项C .第7项D .第8项10.某工厂月生产总值的平均增长率为q ,则该工厂的年平均增长率为( )A .qB .12qC .(1+q )12D .(1+q )12-111.在等比数列{a n }中,各项均为正数且非常数数列,若a 2=6,且a 5-2a 4-a 3+12=0,则数列{a n }的通项公式为( )A .6B .6×(-1)n -2C .6×2n -2D .6或6×2n -212.已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n+1=( )A .16(1-4-n )B .16(1-2-n ) C.323(1-4-n ) D.323(1-2-n )二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.设{a n}是递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是________.14.正项数列{a n}满足:a1=1,a2=2,2a2n=a2n+1+a2n-1(n∈N*,n≥2),则a7=________.15.若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则ln a1+ln a2+…+ln a20=________.16.已知数列{b n}为等比数列,其前n项和为S n,且公比q>1,b1<0;数列{a n}为等差数列,S5=a5,S10=a10,则S11-a4________a11-S4.(填写“>”“<”或“=”)三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)在等差数列{a n}中,已知a1=2,a3=12.(1)求数列{a n}的通项公式a n及前n项和S n;(2)令b n =2S nn ,证明:数列{b n }为等差数列.18.(本小题满分12分)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *.(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n .19.(本小题满分12分)在数列{a n}中,a1=1,a n+1=2a n+2n.(1)设b n=a n2n-1.证明:数列{b n}是等差数列;(2)求数列{a n}的前n项和S n.20.(本小题满分12分)设数列{a n}的前n项和为S n,其中a n≠0,a1为常数,且-a1,S n,a n+1成等差数列.(1)求{a n}的通项公式;(2)设b n=1-S n,问是否存在a1,使数列{b n}为等比数列?若存在,求出a 1的值;若不存在,说明理由.21.(本小题满分12分)已知数列{a n },S n 是其前n 项和,且满足3a n =2S n +n (n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫a n +12为等比数列;(2)记T n =S 1+S 2+…+S n ,求T n 的表达式.22.(本小题满分12分)已知数列{x n },x 1=2,且2x n +1+x n ·x n +1-4x n =3.(1)设b n =x n -3,试用b n 表示b n +1,并证明⎩⎨⎧⎭⎬⎫1b n +14为等比数列;(2)设数列{x n }的前n 项和为S n ,证明:3n -53<S n <3n .参考答案与解析1.【解析】选A.a 4=S 4-S 3=(2×42-3×4)-(2×32-3×3)=20-9=11.2.【解析】选B.因为a n +1=1-1a n ,a 1=2,所以a 2=1-12=12,a 3=1-2=-1, a 4=1-1-1=2.由此可见,数列{a n }的项是以3为周期重复出现的, 所以a 2 017=a 672×3+1=a 1=2.3.【解析】选C.因为-a 5,a 4,a 6成等差数列, 所以2a 4=a 6-a 5,即2a 4=a 4(q 2-q ),又a 4≠0,所以q 2-q -2=0,解得q =-1或2. 4.【解析】选B.因为S 15=1-5+9-13+…+57 =1+4×7=29,S 22=1-5+9-13+…+81-85=(-4)×11=-44, S 31=1-5+9-13+…+121=1+4×15=61, 所以S 15+S 22-S 31=29-44-61=-76.5.【解析】选C.价格降了3次,则价格为8 100×⎝ ⎛⎭⎪⎫1-133=2 400.6. 【解析】选C.因为等差数列{a n }的前n 项和S n =na 1+n (n -1)d 2=d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,且S n 有最大值, 所以公差d <0.又a 11a 10<-1,则有a 11<0,a 10>0,a 10+a 11<0,则S 19=19a 10>0,S 20=20(a 1+a 20)2=20(a 10+a 11)2<0,则当S n取得最小正值时,n =19,故选C.7.【解析】选C.由A ,B ,C 三点共线可得a 2+a 2 017=1,从而a 1+a 2 018=1,所以S 2 018=2 018(a 1+a 2 018)2=1 009,故选C. 8.【解析】选D.由题意可知数列{a n }是公比为q (q ≠1)的等比数列,所以a 4,a 8,a 12,…,a 4n ,…构成以a 4为首项,q 4为公比的等比数列,根据等比数列的前n 项和公式,可知D 正确,故选D.9. 【解析】选C.⎩⎪⎨⎪⎧S 13<0S 12>0⇒⎩⎪⎨⎪⎧a 1+a 13<0a 1+a 12>0⇒⎩⎪⎨⎪⎧a 7<0,a 6>-a 7>0,所以绝对值最小的项为第7项.10.【解析】选D.设第一个月生产总值为a 1=a ,则第一年生产总值为A 1=a +a (1+q )+a (1+q )2+…+a (1+q )11,第二年生产总值为A 2=a (1+q )12+a (1+q )13+…+a (1+q )23=(1+q )12[a +a (1+q )+…+a (1+q )11]=(1+q )12A 1, 所以年平均增长率为A 2-A 1A 1=(1+q )12A 1-A 1A 1=(1+q )12-1. 11.【解析】选C.设公式为q .由a 5-2a 4-a 3+12=a 5-2a 4-a 3+2a 2=0,得a 5-a 3=2a 4-2a 2,即a 3(q 2-1)=2a 2(q 2-1),所以a 3=2a 2或q 2-1=0,解得q =2或±1(舍去),又a 2=6,所以a 1=3,a n =3×2n-1=6×2n -2,故选C.12.【解析】选C.设等比数列{a n }的公比为q ,则q 3=a 5a 2=18,所以q =12,所以a 1=4,所以a n =a 1q n -1=4⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n -3,a n +1=⎝ ⎛⎭⎪⎫12n -2,所以a n a n +1=⎝ ⎛⎭⎪⎫122n -5,可知数列{a n a n +1}是以8为首项,14为公比的等比数列,所以a 1a 2+a 2a 3+…+a n a n +1=8⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n 1-14=323(1-4-n ),故选C.13.【解析】设前三项分别为a -d ,a ,a +d ,则a -d +a +a +d =12且a (a -d )(a +d )=48,解得a =4且d =±2,又{a n }递增,所以d >0,即d =2,所以a 1=2.【答案】214.【解析】因为2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2), 所以数列{a 2n }是以a 21=1为首项,以d =a 22-a 21=4-1=3为公差的等差数列, 所以a 2n =1+3(n -1)=3n -2.所以a n =3n -2,n ≥1. 所以a 7=3×7-2=19. 【答案】1915. 【解析】因为{a n }为等比数列,且a 10a 11+a 9a 12=2e 5, 所以a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5,所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln(a 10a 11)10=ln(e 5)10=ln e 50=50.【答案】5016.【解析】因为数列{b n }的首项b 1<0,公比q >1, 所以数列{b n }单调递减,所以(S 11-a 4)-(a 11-S 4)=S 10+b 11-a 4-a 11+S 5-b 5=S 10+b 11-(a 5+a 10)+S 5-b 5=(S 10-a 10)+(S 5-a 5)+(b 11-b 5)=b 11-b 5<0,所以S 11-a 4<a 11-S 4.【答案】<17.【解】(1)设等差数列{a n }的公差为d , 则12=2+2d ,所以d =5,故数列{a n }的通项公式为a n =5n -3,前n 项和为S n =5n 2-n 2.(2)证明:因为b n =2S n n =5n -1,所以b n +1-b n =5,所以数列{b n }是公差为5的等差数列.18. 【解】(1)由S n =2n 2+n ,得当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=4n -1,所以a n =4n -1,n ∈N *.由4n -1=a n =4log 2b n +3,得b n =2n -1,n ∈N *.(2)由(1)知a n ·b n =(4n -1)·2n -1,n ∈N *, 所以T n =3+7×2+11×22+…+(4n -1)·2n -1,2T n =3×2+7×22+…+(4n -5)·2n -1+(4n -1)·2n , 所以2T n -T n =(4n -1)2n -[3+4(2+22+…+2n -1)]=(4n -5)2n +5.故T n =(4n -5)2n +5,n ∈N *.19.【解】(1)证明:由a n +1=2a n +2n ,得b n +1=a n +12n =2a n +2n2n=a n 2n -1+1=b n +1. 所以b n +1-b n =1,又b 1=a 1=1.所以{b n }是首项为1,公差为1的等差数列.(2)由(1)知,b n =n ,a n 2n -1=b n =n . 所以a n =n ×2n -1.所以S n =1+2×21+3×22+…+n ×2n -1, 两边同乘以2得:2S n =1×21+2×22+…+(n -1)×2n -1+n ×2n , 两式相减得:-S n =1+21+22+…+2n -1-n ×2n =2n -1-n ×2n =(1-n )2n -1,所以S n =(n -1)×2n +1.20.【解】(1)由题意可得2S n =a n +1-a 1,所以当n ≥2时,有⎩⎪⎨⎪⎧2S n =a n +1-a 1,2S n -1=a n -a 1.两式相减得a n +1=3a n (n ≥2).又a 2=2S 1+a 1=3a 1,a n ≠0,所以{a n }是以首项为a 1,公比q =3的等比数列.所以a n =a 1×3n -1.(2)因为S n =a 1(1-q n )1-q=-12a 1+12a 1×3n , 所以b n =1-S n =1+12a 1-12a 1×3n .要使{b n }为等比数列,当且仅当1+12a 1=0,即a 1=-2,此时b n =3n .所以{b n }是首项为3,公比为q =3的等比数列.所以{b n }能为等比数列,此时a 1=-2.21.【解】(1)证明:n =1时,3a 1=2S 1+1=2a 1+1, 所以a 1=1.当n ≥2时,由3a n =2S n +n ,①得3a n -1=2S n -1+n -1,②①-②得3a n -3a n -1=2S n +n -2S n -1-n +1=2(S n -S n -1)+1=2a n +1,即a n =3a n -1+1,所以a n +12=3a n -1+1+12=3⎝ ⎛⎭⎪⎫a n -1+12, 又a 1+12=32≠0,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列. (2)由(1)得a n +12=32×3n -1,即a n =32×3n -1-12,将其代入①得S n =34×3n -14(2n +3),所以T n =S 1+S 2+…+S n=34(3+32+33+…+3n )-14(5+7+…+2n +3)=34×3(1-3n )1-3-n (n +4)4=98(3n -1)-n (n +4)4. 22.【解】(1)由已知,得x n +1=4x n +3x n +2⇒x n +1-3=4x n +3x n +2-3=x n -3x n -3+5, 所以,b n +1=b n b n +5⇒1b n +1=5b n+1 ⇒1b n +1+14=5⎝ ⎛⎭⎪⎫1b n +14. 所以⎩⎨⎧⎭⎬⎫1b n +14为等比数列. (2)证明:令C n =1b n+14,C 1=-34, 所以C n =-34×5n -1.1b n =-34×5n -1-14⇒x n =3-43×5n -1+1, 所以,S n =x 1+x 2+…+x n ⎝ ⎛⎭⎪⎫x n >3-43×5n -1⇒S n >3n -53+13×5n -1>3n -53.又因为x n =3-43×5n -1+1<3⇒S n <3n , 综上可得,3n -53<S n <3n .。