2015年湖州市中考数学模拟卷17
2015浙江省湖州市中考数学试题(卷)与解析
2015年省市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2015•)﹣5的绝对值为()A.﹣5 B.5C.﹣D.2.(3分)(2015•)当x=1时,代数式4﹣3x的值是()A.1B.2C.3D.43.(3分)(2015•)4的算术平方根是()A.±2 B.2C.﹣2 D.4.(3分)(2015•)若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是()A.6cm B.9cm C.12cm D.18cm5.(3分)(2015•)已知一组数据的方差是3,则这组数据的标准差是()A.9B.3C.D.6.(3分)(2015•)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7C.5D.47.(3分)(2015•)一个布袋只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.B.C.D.8.(3分)(2015•)如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是()A.4B.2C.8D.49.(3分)(2015•)如图,AC是矩形ABCD的对角线,⊙O是△ABC的切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG.点F,G分别在边AD,BC上,连结OG,DG.若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是()A.C D+DF=4 B.C D﹣DF=2﹣3 C.B C+AB=2+4 D.B C﹣AB=210.(3分)(2015•)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y=(x<0)图象上一点,AO的延长线交函数y=(x>0,k是不等于0的常数)的图象于点C,点A关于y轴的对称点为A′,点C关于x轴的对称点为C′,交于x轴于点B,连结AB,AA′,A′C′.若△ABC的面积等于6,则由线段AC,CC′,C′A′,A′A所围成的图形的面积等于()A.8B.10 C.3D.4二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2015•)计算:23×()2=.12.(4分)(2015•)放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是千米/分钟.13.(4分)(2015•)在“争创美丽校园,争做文明学生”示校评比活动中,10位评委给某校的评分情况下表所示:评分(分)80 85 90 95评委人数 1 2 5 2则这10位评委评分的平均数是分.14.(4分)(2015•)如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于.15.(4分)(2015•)如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N 都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是和.16.(4分)(2015•)已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推….若A1C1=2,且点A,D2,D3,…,D10都在同一直线上,则正方形A9C9C10D10的边长是.三、解答题(本题有8个小题,共66分)17.(6分)(2015•)计算:.18.(6分)(2015•)解不等式组.19.(6分)(2015•)已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.20.(8分)(2015•)如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC的中点,连结DE.(1)若AD=DB,OC=5,求切线AC的长;(2)求证:ED是⊙O的切线.21.(8分)(2015•)为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):选择意向所占百分比文学鉴赏 a科学实验35%音乐舞蹈 b手工编织10%其他 c根据统计图表中的信息,解答下列问题:(1)求本次调查的学生总人数及a,b,c的值;(2)将条形统计图补充完整;(3)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数.22.(10分)(2015•)某工厂计划在规定时间生产24000个零件.若每天比原计划多生产30个零件,则在规定时间可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.23.(10分)(2015•)问题背景已知在△ABC中,AB边上的动点D由A向B运动(与A,B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),边结DE交AC于点F,点H是线段AF上一点.(1)初步尝试如图1,若△ABC是等边三角形,DH⊥AC,且点D,E的运动速度相等.求证:HF=AH+CF.小五同学发现可以由以下两种思路解决此问题:思路一:过点D作DG∥BC,交AC于点G,先证DH=AH,再证GF=CF,从而证得结论成立;思路二:过点E作EM⊥AC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立.请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分);(2)类比探究如图2,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,且D,E的运动速度之比是:1,求的值;(3)延伸拓展如图3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记=m,且点D,E运动速度相等,试用含m的代数式表示(直接写出结果,不必写解答过程).24.(12分)(2015•)已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣.①求点D的坐标及该抛物线的解析式;②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是4个,请直接写出a的取值围.2015年省市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2015•)﹣5的绝对值为()A.﹣5 B.5C.﹣D.考点:绝对值.分析:根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案.解答:解:﹣5的绝对值为5,故选:B.点评:此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2015•)当x=1时,代数式4﹣3x的值是()A.1B.2C.3D.4考点:代数式求值.专题:计算题.分析:把x的值代入原式计算即可得到结果.解答:解:当x=1时,原式=4﹣3=1,故选A.点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.(3分)(2015•)4的算术平方根是()A.±2 B.2C.﹣2 D.考点:算术平方根.分析:根据开方运算,可得一个数的算术平方根.解答:解:4的算术平方根是2,故选:B.点评:本题考查了算术平方根,注意一个正数只有一个算术平方根.4.(3分)(2015•)若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是()A.6cm B.9cm C.12cm D.18cm考点:圆锥的计算.分析:利用弧长公式可得圆锥的侧面展开图的弧长,除以2π即为圆锥的底面半径.解答:解:圆锥的弧长为:=24π,∴圆锥的底面半径为24π÷2π=12,故选C.点评:考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长;5.(3分)(2015•)已知一组数据的方差是3,则这组数据的标准差是()A.9B.3C.D.考点:标准差;方差.分析:根据标准差是方差的算术平方根,即可得出答案.解答:解:∵数据的方差是S2=3,∴这组数据的标准差是;故选D.点评:本题考查了标准差,关键是掌握标准差和方差的关系,标准差即方差的算术平方根;注意标准差和方差一样都是非负数.6.(3分)(2015•)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7C.5D.4考点:角平分线的性质.分析:作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.解答:解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=BC•EF=×5×2=5,故选C.点评:本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.7.(3分)(2015•)一个布袋只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.B.C.D.考点:列表法与树状图法.分析:列表将所有等可能的结果列举出来,利用概率公式求解即可.解答:解:列表得:黑白白黑(黑,黑)(黑,白)(黑,白)白(黑,白)(白,白)(白,白)白(黑,白)(白,白)(白,白)∵共9种等可能的结果,两次都是黑色的情况有1种,∴两次摸出的球都是黑球的概率为,故选D.点评:本题考查了列表法与树状图法的知识,解决本题时采用了两个独立事件同时发生的概率等于两个独立事件单独发生的概率的积,难度不大.8.(3分)(2015•)如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是()A.4B.2C.8D.4考点:切线的性质.分析:连接OC,利用切线的性质知OC⊥AB,由垂径定理得AB=2AC,因为tan∠OAB=,易得=,代入得结果.解答:解:连接OC,∵大圆的弦AB切小圆于点C,∴OC⊥AB,∴AB=2AC,∵OD=2,∴OC=2,∵tan∠OAB=,∴AC=4,∴AB=8,故选C.点评:本题主要考查了切线的性质和垂径定理,连接过切点的半径是解答此题的关键.9.(3分)(2015•)如图,AC是矩形ABCD的对角线,⊙O是△ABC的切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG.点F,G分别在边AD,BC上,连结OG,DG.若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是()A.C D+DF=4 B.C D﹣DF=2﹣3 C.B C+AB=2+4 D.B C﹣AB=2考点:三角形的切圆与心;翻折变换(折叠问题).分析:设⊙O与BC的切点为M,连接MO并延长MO交AD于点N,证明△OMG≌△GCD,得到OM=GC=1,CD=GM=BC﹣BM﹣GC=BC﹣2.设AB=a,BC=b,AC=c,⊙O的半径为r,⊙O是Rt△ABC的切圆可得r=(a+b﹣c),所以c=a+b﹣2.在Rt△ABC 中,利用勾股定理求得(舍去),从而求出a,b的值,所以BC+AB=2+4.再设DF=x,在Rt△ONF中,FN=,OF=x,ON=,由勾股定理可得,解得x=4,从而得到CD﹣DF=,CD+DF=.即可解答.解答:解:如图,设⊙O与BC的切点为M,连接MO并延长MO交AD于点N,∵将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,∴OG=DG,∵OG⊥DG,∴∠MGO+∠DGC=90°,∵∠MOG+∠MGO=90°,∴∠MOG=∠DGC,在△OMG和△GCD中,∴△OMG≌△GCD,∴OM=GC=1,CD=GM=BC﹣BM﹣GC=BC﹣2.∵AB=CD,∴BC﹣AB=2.设AB=a,BC=b,AC=c,⊙O的半径为r,⊙O是Rt△ABC的切圆可得r=(a+b﹣c),∴c=a+b﹣2.在Rt△ABC中,由勾股定理可得a2+b2=(a+b﹣2)2,整理得2ab﹣4a﹣4b+4=0,又∵BC﹣AB=2即b=2+a,代入可得2a(2+a)﹣4a﹣4(2+a)+4=0,解得(舍去),∴,∴BC+AB=2+4.再设DF=x,在Rt△ONF中,FN=,OF=x,ON=,由勾股定理可得,解得x=4,∴CD﹣DF=,CD+DF=.综上只有选项A错误,故选A.点评:本题考查了三角形的切圆和心,切线的性质,勾股定理,矩形的性质等知识点的综合应用,解决本题的关键是三角形切圆的性质.10.(3分)(2015•)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y=(x<0)图象上一点,AO的延长线交函数y=(x>0,k是不等于0的常数)的图象于点C,点A关于y轴的对称点为A′,点C关于x轴的对称点为C′,交于x轴于点B,连结AB,AA′,A′C′.若△ABC的面积等于6,则由线段AC,CC′,C′A′,A′A所围成的图形的面积等于()A.8B.10 C.3D.4考点:反比例函数综合题.分析:过A作AD⊥x轴于D,连接OA′,设A(a,),C(b,),由△OAD∽△BCO,得到==,根据反比例函数的系数k的几何意义得到S△ADO=,S△BOC=,求出k2=,得到k=﹣,根据S△ABC=S△AOB+S△BOC=(﹣)•b+=6,列出关于k的方程k2+k﹣12=0,求得k=3,由于点A关于y轴的对称点为A′,点C关于x轴的对称点为C′,得到OA′,OC′在同一条直线上,于是得到由线段AC,CC′,C′A′,A′A所围成的图形的面积=S△OBC+S△OBC′+S△OAA′=10.解答:解:过A作AD⊥x轴于D,连接OA′,∵点A是函数y=(x<0)图象上一点,∴设A(a,),∵点C在函数y=(x>0,k是不等于0的常数)的图象上,∴设C(b,),∵AD⊥BD,BC⊥BD,∴△OAD∽△BCO,∴==,∵S△ADO=,S△BOC=,∴k2=,∴k=﹣,∵S△ABC=S△AOB+S△BOC=(﹣)•b+=6,∴k2﹣=12,∴k2+k﹣12=0,解得:k=3,k=﹣4(不合题意舍去),∵点A关于y轴的对称点为A′,点C关于x轴的对称点为C′,∴∠1=∠2,∠3=∠4,∴∠1+∠4=∠2+∠3=90°,∴OA′,OC′在同一条直线上,∴S△OBC′=S△OBC==,∵S△OAA′=2S△OAD=1,∴由线段AC,CC′,C′A′,A′A所围成的图形的面积=S△OBC+S△OBC′+S△OAA′=10.故选B.点评:本题考查了反比例函数的图象的性质,系数k的几何意义,相似三角形的判定和性质,轴对称的性质,正确的理解轴对称图形的性质是解题的关键.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2015•)计算:23×()2=2.考点:有理数的乘方;有理数的乘法.分析:根据有理数的乘方,即可解答.解答:解:23×()2=8×=2,故答案为:2.点评:本题考查了有理数的乘方,解决本题的关键是熟记有理数乘方的定义.12.(4分)(2015•)放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是0.2千米/分钟.考点:函数的图象.分析:根据函数图象的纵坐标,可得路程,根据函数图象的横坐标,可得时间,根据路程与时间的关系,可得答案.解答:解:由纵坐标看出路程是2千米,由横坐标看出时间是10分钟,小明的骑车速度是2÷10=0.2(千米/分钟),故答案为:0.2.点评:本题考查了函数图象,观察函数图象的纵坐标得出路程,观察函数图象的横坐标得出时间,利用了路程与时间的关系.13.(4分)(2015•)在“争创美丽校园,争做文明学生”示校评比活动中,10位评委给某校的评分情况下表所示:评分(分)80 85 90 95评委人数 1 2 5 2则这10位评委评分的平均数是89分.考点:加权平均数.分析:平均数的计算方法是求出所有数据的和,然后除以数据的总个数.解答:解:这10位评委评分的平均数是:(80+85×2+90×5+95×2)÷10=89(分).故答案为89.点评:本题考查的是加权平均数的求法.本题易出现的错误是求80,85,90,95这四个数的平均数,对平均数的理解不正确.14.(4分)(2015•)如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于π.考点:扇形面积的计算.分析:图中阴影部分的面积=半圆的面积﹣圆心角是120°的扇形的面积,根据扇形面积的计算公式计算即可求解.解答:解:图中阴影部分的面积=π×22﹣=2π﹣π=π.答:图中阴影部分的面积等于π.故答案为:π.点评:考查了扇形面积的计算,求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.15.(4分)(2015•)如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N 都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是y=﹣x2+2x和y=x2+2x.考点:二次函数图象与几何变换.专题:新定义.分析:连接AB,根据姐妹抛物线的二次项的系数互为相反数,一次项系数相等且不等于零,常数项都是零,设抛物线C1的解析式为y=ax2+bx,根据四边形ANBM恰好是矩形可得△AOM是等边三角形,设OM=2,则点A的坐标是(1,),求出抛物线C1的解析式,从而求出抛物线C2的解析式.解答:解:连接AB,根据姐妹抛物线的定义,可得姐妹抛物线的二次项的系数互为相反数,一次项系数相等且不等于零,常数项都是零,设抛物线C1的解析式为y=ax2+bx,根据四边形ANBM恰好是矩形可得:OA=OM,∵OA=MA,∴△AOM是等边三角形,设OM=2,则点A的坐标是(1,),则,解得:则抛物线C1的解析式为y=﹣x2+2x,抛物线C2的解析式为y=x2+2x,故答案为:y=﹣x2+2x,y=x2+2x.点评:此题考查了二次函数的图象与几何变换,用到的知识点是姐妹抛物线的定义、二次函数的图象与性质、矩形的判定,关键是根据姐妹抛物线的定义得出姐妹抛物线的二次项的系数、一次项系数、常数项之间的关系.16.(4分)(2015•)已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推….若A1C1=2,且点A,D2,D3,…,D10都在同一直线上,则正方形A9C9C10D10的边长是.考点:相似三角形的判定与性质;正方形的性质.专题:规律型.分析:延长D4A和C1B交于O,根据正方形的性质和三角形相似的性质即可求得各个正方形的边长,从而得出规律,即可求得正方形A9C9C10D10的边长.解答:解:延长D4A和C1B交于O,∵AB∥A2C1,∴△AOB∽△D2OC2,∴=,∵AB=BC1=1,DC2=C1C2=2,∴==∴OC2=2OB,∴OB=BC2=3,∴OC2=6,设正方形A2C2C3D3的边长为x1,同理证得:△D2OC2∽△D3OC3,∴=,解得,x1=3,∴正方形A2C2C3D3的边长为3,设正方形A3C3C4D4的边长为x2,同理证得:△D3OC3∽△D4OC4,∴=,解得x2=,∴正方形A3C3C4D4的边长为;设正方形A4C4C5D5的边长为x3,同理证得:△D4OC4∽△D5OC5,∴=,解得x=,∴正方形A4C4C5D5的边长为;以此类推….正方形A n﹣1C n﹣1C n D n的边长为;∴正方形A9C9C10D10的边长为.故答案为.点评:本题考查了正方形的性质,相似三角形的判定和性质,求得前五个正方形的边长得出规律是解题的关键.三、解答题(本题有8个小题,共66分)17.(6分)(2015•)计算:.考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式===a+b.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.18.(6分)(2015•)解不等式组.考点:解一元一次不等式组.分析:先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.解答:解:∵解不等式①得:x<6,解不等式②得:x>1,∴不等式组的解集为1<x<6.点评:本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.19.(6分)(2015•)已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.考点:待定系数法求一次函数解析式.分析:一次函数解析式为y=kx+b,将x与y的两对值代入求出k与b的值,即可确定出一次函数解析式.解答:解:设一次函数解析式为y=kx+b,将x=3,y=1;x=﹣2,y=﹣4代入得:,解得:k=1,b=﹣2.则一次函数解析式为y=x﹣2.点评:此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.20.(8分)(2015•)如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC的中点,连结DE.(1)若AD=DB,OC=5,求切线AC的长;(2)求证:ED是⊙O的切线.考点:切线的判定与性质.分析:(1)连接CD,由直径所对的圆周角为直角可得:∠BDC=90°,即可得:CD⊥AB,然后根据AD=DB,进而可得CD是AB的垂直平分线,进而可得AC=BC=2OC=10;(2)连接OD,先由直角三角形中线的性质可得DE=EC,然后根据等边对等角可得∠1=∠2,由OD=OC,根据等边对等角可得∠3=∠4,然后根据切线的性质可得∠2+∠4=90°,进而可得:∠1+∠3=90°,进而可得:DE⊥OD,从而可得:ED是⊙O 的切线.解答:(1)解:连接CD,∵BC是⊙O的直径,∴∠BDC=90°,即CD⊥AB,∵AD=DB,OC=5,∴CD是AB的垂直平分线,∴AC=BC=2OC=10;(2)证明:连接OD,如图所示,∵∠ADC=90°,E为AC的中点,∴DE=EC=AC,∴∠1=∠2,∵OD=OC,∴∠3=∠4,∵AC切⊙O于点C,∴AC⊥OC,∴∠1+∠3=∠2+∠4=90°,即DE⊥OD,∴ED是⊙O的切线.点评:此题考查了切线的判定与性质,解题的关键是:熟记切线的判定定理与性质定理,经过半径的外端,并且垂直于这条半径的直线是圆的切线;圆的切线垂直于过切点的直径.21.(8分)(2015•)为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):选择意向所占百分比文学鉴赏 a科学实验35%音乐舞蹈 b手工编织10%其他 c根据统计图表中的信息,解答下列问题:(1)求本次调查的学生总人数及a,b,c的值;(2)将条形统计图补充完整;(3)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数.考点:条形统计图;用样本估计总体;统计表.分析:(1)先计算出本次调查的学生总人数,再分别计算出百分比,即可解答;(2)根据百分比,计算出文学鉴赏和手工编织的人数,即可补全条形统计图;(3)用总人数乘以“科学实验”社团的百分比,即可解答.解答:解:(1)本次调查的学生总人数是:70÷35%=200(人),b=40÷200=20%,c=10÷200=5%,a=1﹣(35%+20%+10%+5%)=30%.(2)文学鉴赏的人数:30%×200=60(人),手工编织的人数:10%×200=20(人),如图所示,(3)全校选择“科学实验”社团的学生人数:1200×35%=420(人).点评:本题考查条形统计图,解决本题的关键是读懂图形,获取相关信息.22.(10分)(2015•)某工厂计划在规定时间生产24000个零件.若每天比原计划多生产30个零件,则在规定时间可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.考点:分式方程的应用;一元一次方程的应用.分析:(1)可设原计划每天生产的零件x个,根据时间是一定的,列出方程求得原计划每天生产的零件个数,再根据工作时间=工作总量÷工作效率,即可求得规定的天数;(2)可设原计划安排的工人人数为y人,根据等量关系:恰好提前两天完成24000个零件的生产任务,列出方程求解即可.解答:解:(1)设原计划每天生产的零件x个,依题意有=,解得x=2400,经检验,x=2400是原方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产的零件2400个,规定的天数是10天;(2)设原计划安排的工人人数为y人,依题意有[5×20×(1+20%)×+2400]×(10﹣2)=24000,解得y=480,经检验,y=480是原方程的根,且符合题意.答:原计划安排的工人人数为480人.点评:考查了分式方程的应用,一元一次方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.23.(10分)(2015•)问题背景已知在△ABC中,AB边上的动点D由A向B运动(与A,B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),边结DE交AC于点F,点H是线段AF上一点.(1)初步尝试如图1,若△ABC是等边三角形,DH⊥AC,且点D,E的运动速度相等.求证:HF=AH+CF.小五同学发现可以由以下两种思路解决此问题:思路一:过点D作DG∥BC,交AC于点G,先证DH=AH,再证GF=CF,从而证得结论成立;思路二:过点E作EM⊥AC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立.请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分);(2)类比探究如图2,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,且D,E的运动速度之比是:1,求的值;(3)延伸拓展如图3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记=m,且点D,E运动速度相等,试用含m的代数式表示(直接写出结果,不必写解答过程).考点:相似形综合题.分析:(1)过点D作DG∥BC,交AC于点G,先证明△ADG是等边三角形,得出GD=AD=CE,再证明GH=AH,由ASA证明△GDF≌△CEF,得出GF=CF,即可得出结论;(2)过点D作DG∥BC,交AC于点G,先证出AH=GH=GD,AD=GD,由题意AD=CE,得出GD=CE,再证明△GDF≌△CEF,得出GF=CF,即可得出结论;(3)过点D作DG∥BC,交AC于点G,先证出DG=DH=AH,再证明△ADG∽△ABC,△ADG∽△DGH,△DGH∽△ABC,得出=m,=m,△DGH∽△ABC,得出=m,=m,证明△DFG∽△EFC,得出=m,=m,=,即可得出结果.解答:(1)证明(选择思路一):过点D作DG∥BC,交AC于点G,如图1所示:则∠ADG=∠B,∠AGD=∠ACB,∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°,∴∠ADG=∠AGD=∠A,∴△ADG是等边三角形,∴GD=AD=CE,∵DH⊥AC,∴GH=AH,∵DG∥BC,∴∠GDF=∠CEF,∠DGF=∠ECF,在△GDF和△CEF中,,∴△GDF≌△CEF(ASA),∴GF=CF,∴GH+GF=AH+CF,即HF=AH+CF;(2)解:过点D作DG∥BC,交AC于点G,如图2所示:则∠ADG=∠B=90°,∵∠BAC=∠ADH=30°,∴∠HGD=∠HDG=60°,∴AH=GH=GD,AD=GD,根据题意得:AD=CE,∴GD=CE,∵DG∥BC,∴∠GDF=∠CEF,∠DGF=∠ECF,在△GDF和△CEF中,,∴△GDF≌△CEF(ASA),∴GF=CF,∴GH+GF=AH+CF,即HF=AH+CF,∴=2;(3)解:,理由如下:过点D作DG∥BC,交AC于点G,如图3所示:则∠ADG=∠B,∠AGD=∠ACB,∵AB=AC,∠BAC=36°,∴∠ACB=∠B=∠ADG=∠AGD=72°,∵∠ADH=∠BAC=36°,∴AH=DH,∠DHG=72°=∠AGD,∴DG=DH=AH,△ADG∽△ABC,△ADG∽△DGH,∴=m,=m,∴△DGH∽△ABC,∴=m,∴=m,∵DG∥BC,∴△DFG∽△EFC,∴=m,∴=m,即=m,∴=,∴===.点评:本题是相似形综合题目,考查了等边三角形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质等知识;本题难度较大,综合性强,特别是(2)(3)中,需要通过作辅助线证明三角形全等或三角形相似才能得出结果.24.(12分)(2015•)已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣.①求点D的坐标及该抛物线的解析式;②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是4个,请直接写出a的取值围.考点:二次函数综合题.分析:(1)①过点D作DF⊥x轴于点F,先通过三角形全等求得D的坐标,把D的坐标和a=﹣,c=0代入y=ax2+bx+c即可求得抛物线的解析式;②先证得CD∥x轴,进而求得要使得∠POB与∠BCD互余,则必须∠POB=∠BAO,设P的坐标为(x,﹣x2+x),分两种情况讨论即可求得;(2)若符合条件的Q点的个数是4个,则当a<0时,抛物线交于y轴的负半轴,当a>0时,最小值得<﹣1,解不等式即可求得.解答:解:(1)①过点D作DF⊥x轴于点F,如图1,∵∠DBF+∠ABO=90°,∠BAO+∠ABO=90°,∴∠DBF=∠BAO,又∵∠AOB=∠BFD=90°,AB=BD,在△AOB和△BFD中,,∴△AOB≌△BFD(AAS)∴DF=BO=1,BF=AO=2,∴D的坐标是(3,1),根据题意,得a=﹣,c=0,且a×32+b×3+c=1,∴b=,∴该抛物线的解析式为y=﹣x2+x;②∵点A(0,2),B(1,0),点C为线段AB的中点,∴C(,1),∵C、D两点的纵坐标都为1,∴CD∥x轴,∴∠BCD=∠ABO,∴∠BAO与∠BCD互余,要使得∠POB与∠BCD互余,则必须∠POB=∠BAO,设P的坐标为(x,﹣x2+x),(Ⅰ)当P在x轴的上方时,过P作PG⊥x轴于点G,如图2,则tan∠POB=tan∠BAO,即=,∴=,解得x1=0(舍去),x2=,∴﹣x2+x=,∴P点的坐标为(,);(Ⅱ)当P在x轴的上方时,过P作PG⊥x轴于点G,如图3则tan∠POB=tan∠BAO,即=,∴=,解得x1=0(舍去),x2=,。
浙江省湖州市中考数学模拟试卷
长度的最大值为
;④若△PQC 与△ABC 相似,则 t= 秒.其中正确的是( )
A.①②④
B.②③④
C.①③④
第2页(共7页)
D.①②③
二、填空题(本题有 6 小题,每小题 4 分,共 24 分)
11.(4 分)分解因式:x2﹣16=
.
12.(4 分)不等式组
的解集是
.
13.(4 分)一个小球由地面沿着坡度 1:2 的坡面向上前进了 10 米,此时小球距离地面的
(1)求 y 与 x 的函数关系式; (2)若在购买计划中,B 种树苗的数量不超过 35 棵,但不少于 A 种树苗的数量,请设计购
买方案,使总费用最低,并求出最低费用.
第4页(共7页)
23.(10 分)【问题提出】如图 1.△ABC 是等边三角形,点 D 在线段 AB 上.点 E 在直线 BC 上.且∠DEC=∠DCE.求证:BE=AD;
第7页(共7页)
从中任取一个球,取得的球是红球的概率是 ,则 x 的值为( )
A.5
B3 分)如图,在△ABC 中,AC=4,BC=2,点 D 是边 AB 上一点,CD 将△ABC 分成
△ACD 和△BCD,若△ACD 是以 AC 为底的等腰三角形,且△BCD 与△BAC 相似,则
CD 的长为( )
.
16.(4 分)如图,在矩形 ABCD 中,AB=3,BC=2,点 F 是 BC 的中点,点 E 是边 AB 上
一点,且 BE=2,连结 DE,EF,并以 DE,EF 为边作▱EFGD,连结 BG,分别交 EF
和 DC 于点 M,N,则 =
.
三、解答题(本题有 8 小题,共 66 分) 17.(6 分)计算:24÷(﹣2)3﹣3. 18.(6 分)解方程: = . 19.(6 分)如图,已知在△ABC 中,点 D,E,F 分别在 BC,AB,AC 边上. (1)当点 D,E,F 分别为 BC,AB,AC 边的中点时,求证:△BED≌△DFC; (2)若 DE∥AC,DF∥AB,且 AE=2,BE=3,求 的值.
初中数学浙江省湖州市中考模拟数学考试题及答案word版.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:实数π,,0,-1中,无理数是A. πB.C. 0D. -1 试题2:计算的结果是A. B. C. D.试题3:若正比例函数的图象经过点(1,2),则的值是A. B. -2 C. D. 2试题4:如图,已知直线,被直线所截,∥,∠1=60°,则∠2的度数为A. 30°B. 60°C. 120°D. 150°试题5:在开展“爱心捐助雅安灾区”的活动中,某团支部8名团员捐款的数额(单位:元)分别为:6,5,3,5,6,10,5,5,这组数据的中位数是A. 3元B. 5元C. 6元D. 10元试题6:在正三角形、等腰梯形、矩形、平行四边形中,既是轴对称图形又是中心对称图形的是A. 正三角形B. 等腰梯形C. 矩形D. 平行四边形试题7:在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型它的底面半径为1,高为,则这个圆锥的侧面积是A. 4π B. 3π C. π D. 2π试题8:一个布袋里装有6个只有颜色可以不同的球,其中2个红球,4个白球。
从布袋中任意摸出1个球,则摸出的球是红球的概率为A. B. C. D.试题9:如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连结DE,若DE:AC=3:5,则的值A. B. C. D.试题10:如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点。
若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”。
以O为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB的两个交点之间的距离为,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于轴的抛物线条数是A. 16B. 15C. 14D. 13试题11:计算:=__________试题12:把15°30′化成度的形式,则15°30′=__________度试题13:如图,已知在Rt△ABC中,∠C=90°,AB=13,AC=12,则cosB的值为________试题14:某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如下表,则这20户家庭这个月的平均用水量是__________吨用水量(吨) 4 5 6 8户数 3 8 4 5试题15:将连续的正整数按以下规律排列,则位于第7行、第7列的数是______试题16:如图,已知点A是第一象限内横坐标为的一个定点,AC⊥轴于点M,交直线于点N。
初中数学浙江湖州市中考模拟 数学考试题及答案解析(word版).docx
xx学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx 题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx 分)试题1:实数,,,中,无理数是()A. B. C. D.试题2:在平面直角坐标系中,点关于原点的对称点的坐标是()A. B. C. D.试题3:如图,已知在中,,,,则的值是()A. B. C. D.试题4:一元一次不等式组的解是()A. B. C. D.或试题5:数据,,,,,的中位数是()A. B. C. D.试题6:如图,已知在中,,,,点是的重心,则点到所在直线的距离等于()A. B. C. D.试题7:一个布袋里装有个只有颜色不同的球,其中个红球,个白球.从布袋里摸出个球,记下颜色后放回,搅匀,再摸出个球,则两次摸到的球都是红球的概率是(),A. B. C. D.试题8:如图是按的比例画出的一个几何体的三视图,则该几何体的侧面积是()A. B. C. D.试题9:七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是()试题10:在每个小正方形的边长为的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在的正方形网格图形中(如图1),从点经过一次跳马变换可以到达点,,,等处.现有的正方形网格图形(如图2),则从该正方形的顶点经过跳马变换到达与其相对的顶点,最少需要跳马变换的次数是()A. B. C. D.试题11:把多项式因式分解,正确的结果是.试题12:要使分式有意义,的取值应满足.试题13:已知一个多边形的每一个外角都等于,则这个多边形的边数是.试题14:如图,已知在中,.以为直径作半圆,交于点.若,则的度数是度.试题15:如图,已知,在射线上取点,以为圆心的圆与相切;在射线上取点,以为圆心,为半径的圆与相切;在射线上取点,以为圆心,为半径的圆与相切;;在射线上取点,以为圆心,为半径的圆与相切.若的半径为,则的半径长是.试题16:如图,在平面直角坐标系中,已知直线()分别交反比例函数和在第一象限的图象于点,,过点作轴于点,交的图象于点,连结.若是等腰三角形,则的值是.试题17:计算:.试题18:解方程:.试题19:对于任意实数,,定义关于“”的一种运算如下:.例如:,.(1)若,求的值;(2)若,求的取值范围.试题20:为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)第天,这一路口的行人交通违章次数是多少次?这天中,行人交通违章次的有多少天?(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章?21教育网试题21:如图,为的直角边上一点,以为半径的与斜边相切于点,交于点.已知,.(1)求的长;(2)求图中阴影部分的面积.试题22:已知正方形的对角线,相交于点.(1)如图1,,分别是,上的点,与的延长线相交于点.若,求证:;(2)如图2,是上的点,过点作,交线段于点,连结交于点,交于点.若,①求证:;②当时,求的长.试题23:湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养天的总成本为万元;放养天的总成本为万元(总成本=放养总费用+收购成本).21世纪教育网版权所有(1)设每天的放养费用是万元,收购成本为万元,求和的值;(2)设这批淡水鱼放养天后的质量为(),销售单价为元/.根据以往经验可知:与的函数关系为;与的函数关系如图所示.【来源:21·世纪·教育·网】①分别求出当和时,与的函数关系式;②设将这批淡水鱼放养天后一次性出售所得利润为元,求当为何值时,最大?并求出最大值.(利润=销售总额-总成本)21·世纪*教育网试题24:如图,在平面直角坐标系中,已知,两点的坐标分别为,,是线段上一点(与,点不重合),抛物线()经过点,,顶点为,抛物线()经过点,,顶点为,,的延长线相交于点.(1)若,,求抛物线,的解析式;(2)若,,求的值;(3)是否存在这样的实数(),无论取何值,直线与都不可能互相垂直?若存在,请直接写出的两个不同的值;若不存在,请说明理由.21·cn·jy·com试题1答案:B考点:无理数试题2答案:D【解析】试题分析:根据在平面直角坐标系中,关于原点对称的点的坐标特点是横纵坐标均变符号,可知P′的坐标为(-1,-2).www-2-1-cnjy-com故选:D考点:关于原点对称的点的坐标试题3答案:A【解析】21世纪教育网试题分析:根据根据余弦的意义cosB=,可得conB==.故选:A考点:余弦试题4答案:C考点:解不等式组试题5答案:B【解析】试题分析:先按从小到大排列这6个数为:-2,-1,0,1,2,4,中间两个的平均数为.故选:B.考点:中位数试题6答案:A考点:1、三角形的重心,2、等腰直角三角形,3、相似三角形的判定与性质21世纪教育网试题7答案:D【解析】试题分析:根据题意,可画树状图为:摸两次球出现的可能共有16种,其中两次都是红球的可能共有9种,所以P(两次都摸到红球)=. 故选:D考点:列树状图求概率试题8答案:D考点:1、三视图,2、圆柱的侧面积21世纪教育网试题9答案:C【解析】试题分析:根据勾股定理,可判断边长之间的关系,可知构不成C图案,能构成A、B、D图案.故选:C考点:勾股定理试题10答案:B考点:1、勾股定理,2、规律探索试题11答案:x(x-3)【解析】试题分析:根据因式分解的方法,先提公因式x可得x2-3x=x(x-3).考点:提公因式法分解因式试题12答案:x≠2考点:分式有意义的条件试题13答案:5【解析】试题分析:根据多边形的每个外角都等于72°,可知这是一个正多边形,然后根据正多边形的外角和为360°,可由360°÷72°=5,可知这个多边形的边数为五.故答案为:5.考点:多边形的外角和试题14答案:140【解析】试题分析:连接AD,根据直径所对的圆周角为直角,可知AD⊥BC,然后等腰三角形三线合一的性质,由AB=AC,可知AD 平分∠BAC,可得∠BAD=20°,然后可求得∠B=70°,因此根据同弧所对圆周角等于其所对圆心角的一半,可知∠AOD=140°,即的度数是140°.【版权所有:21教育】故答案为:140.考点:圆周角定理试题15答案:512(或29)考点:1、圆的切线,2、30°角的直角三角形试题16答案:或【解析】试题分析:令B点坐标为(a,)或(a,ka),则C点的坐标为(a,),令A点的坐标为(b,kb)或(b,),可知BC=,ka=,kb=,可知,,然后可知BA=,然后由等腰三角形的性质,可列式为=,解得k=或.考点:反比例函数与k的几何意义试题17答案:2考点:实数的运算试题18答案:x=2【解析】试题分析:根据分式方程的解法,先化分式方程为整式方程,然后解方程并检验,即可求解. 试题解析:方程两边同乘以(x-1),得2=1+x-1移项,合并同类项,得-x=-2解得x=2把x=2代入原方程检验:因为左边=右边,所以x=2是分式方程的根.考点:解分式方程试题19答案:(1)2017(2)x<4(2)根据题意,得2x-3<5解得x<4即x的取值范围是x<4.考点:1、阅读理解,2、解一元一次方程,3、解不等式试题20答案:(1)8,5(2)图像见解析(3)3次试题解析:(1)第7天,这一路口的行人交通违章次数是8次.这20天中,行人交通违章6次的有5天.(2)补全的频数直方图如图所示:(3)第一次调查,平均每天行人的交通违章次数为:=7(次)∵7-4=3(次)∴通过宣传教育后,这一路口平均每天还出现3次行人的交通违章.21世纪教育网考点:1、折线统计图,2、频数分布直方图试题21答案:(1)(2)试题解析:(1)在Rt△ABC中,AB===2∵BC⊥OC∴BC是⊙O的切线∵AB是⊙O的切线∴BD=BC=∴AD=AB-BD=(2)在Rt△ABC中,sinA=∴∠A=30°∵AB切⊙O于点D∴OD⊥AB∴∠AOD=90°-∠A=60°∵∴∴OD=1∴考点:1、切线的性质,2、勾股定理,3、解直角三角形,4、扇形的面积试题22答案:(1)证明见解析(2)①证明见解析②∴∠DOG=∠COE=90°∴∠OEC+∠OCE=90°∵DF⊥CE∴∠OEC+∠ODG=90°∴∠ODG=∠OCE∴△DOG≌△COE(ASA)∴OE=OG②解:设CH=x,∵四边形ABCD是正方形,AB=1 ∴BH=1-x∠DBC=∠BDC=∠ACB=45°∵EH⊥BC∴∠BEH=∠EBH=45°∴EH=BH=1-x∵∠ODG=∠OCE∴∠BDC-∠ODG=∠ACB-∠OCE∴∠HDC=∠ECH∵EH⊥BC∴∠EHC=∠HCD=90°∴△CHE∽△DCH∴∴HC2=EH·CD得x2+x-1=0解得,(舍去)∴HC=考点:1、正方形的性质,2、全等三角形的判定与性质,3、相似三角形的判定与性质,4、解一元二次方程试题23答案:(1)a的值为0.04,b的值为30(2)①y=t+15,y=t+30②当t为55天时,W最大,最大值为180250元2-1-c-n-j-y试题解析:(1)由题意得解得答:a的值为0.04,b的值为30.当50<t≤100时,设y与t的函数关系式为y=k2t+n2把点(50,25)和(100,20)的坐标分别代入y=k2t+n2,得解得∴y与t的函数关系式为y=t+30②由题意得,当0≤t≤50时,W=20000×(t+15)-(400t+300000)=3600t∵3600>0,∴当t=50时,W最大值=180000(元)当50<t≤100时,W=(100t+15000)(t+30)-(400t+300000)=-10t2+1100t+150000=-10(t-55)2+180250 ∵-10<0,∴当t=55时,W最大值=180250综上所述,当t为55天时,W最大,最大值为180250元.考点:1、解二元一次方程组,2、一次函数,3、二次函数试题24答案:(1)抛物线L1的解析式为y=,抛物线L2的解析式为y=(2)m=±2(3)存在(3)根据前面的解答,直接写出即可.试题解析:(1)由题意得解得所以抛物线L1的解析式为y=同理,解得∴所以抛物线L2的解析式为y=同理可得,抛物线L2的解析式为y=-x2+(m+4)x-4m EH=,BH=∵AF⊥BF,DG⊥x轴,EH⊥x轴∴∠AFB=∠AGD=∠EHB=90°∴∠ADG=∠ABF=90°-∠BAF∴△ADG∽△EBH考点:二次函数的综合。
2015年浙江省湖州市中考数学模拟试卷(2)
2015年浙江省湖州市中考数学模拟卷(2)一.仔细选一选(本题有10个小题,每小题3分,共30分)1.(3分)(2008•枣庄)小华五次跳远的成绩如下(单位:m):3.9,4.1,3.9,3.8,4.2.关于这组数据,下列说法错误的是()A.极差是0.4 B.众数是3.9 C.中位数是3.98 D.平均数是3.982.(3分)(2015•湖州模拟)不等式组(x为未知数)无解,则函数图象与x轴()A.相交于两点B.没有交点C.相交于一点D.相交于一点或没有交点3.(3分)(2015•湖州模拟)如图,△ABC中,BC=8,AD是中线,将△ADC沿AD折叠至△ADC′,发现CD与折痕的夹角是60°,则点B到C′的距离是()A.4B.C.D.34.(3分)(2015•湖州模拟)如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口A,B,C,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在()A.△ABC的三边高线的交点P处B.△ABC的三角平分线的交点P处C.△ABC的三边中线的交点P处D.△ABC的三边中垂线的交点P处5.(3分)(2008•江西)下列四个三角形中,与图中的三角形相似的是()A.B.C.D.6.(3分)(2011•兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于()A.20°B.30°C.40°D.50°7.(3分)(2015•湖州模拟)下列命题是真命题的是()A.任意抛掷一只一次性纸杯,杯口朝上的概率为B.在一次抽奖活动中,“中奖的概率是”表示抽奖100次就一定会中奖C.从1至9这九个自然数中任取一个,是2的倍数或是3的倍数的概率是D.一运动员投4次篮,有2次投中,则该运动员的投一次篮投中的概率一定是8.(3分)(2015•湖州模拟)在△ABC中,,∠C=45°,AB=8,以点B为圆心4为半径的⊙B与以点C为圆心的⊙C相离,则⊙C的半径不可能为()A.5B.6C.7D.159.(3分)(2015•湖州模拟)希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数.下列数中既是三角形数又是正方形数的是()A.289 B.1024 C.1225 D.13780.(3分)(2015•湖州模拟)给出下列命题:①反比例函数的图象经过一、三象限,且y随x的增大而减小;②对角线相等且有一个内角是直角的四边形是矩形;③我国古代三国时期的数学家赵爽,创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明(如图);④在同圆或等圆中,相等的弧所对的圆周角相等.其中正确的是()A.③④B.①②③C.②④D.①②③④二.认真填一填(本题有6个小题,每小题4分,共24分)11.(4分)(2015•湖州模拟)如图,有一个正三角形图片高为1米,A是三角形的一个顶点,现在A与数轴的原点O重合,工人将图片沿数轴正方向滚动一周,点A恰好与数轴上点A′重合,则点A′对应的实数是.12.(4分)(2015•湖州模拟)为了防控输入性甲型H1N1流感,某市医院成立隔离治疗发热流涕病人防控小组,决定从内科4位骨干医师中(含有甲)抽调2人组成,则甲一定抽调到防控小组的概率是.13.(4分)(2015•湖州模拟)如图,在由10个边长都为1的小正三角形的网格中,点P是网格的一个顶点,以点P为顶点作格点平行四边形(即顶点均在格点上的四边形),请你写出所有可能的平行四边形的对角线的长.14.(4分)(2015•湖州模拟)通用公司生产的09款科鲁兹家庭轿车的车轮直径560mm,当车轮转动120度时,车中的乘客水平方向平移了mm.15.(4分)(2015•湖州模拟)浙江省居民生活用电可申请峰谷电,峰谷电价如下表:高峰时间段用电价格表低谷时间段用电价格表高峰电价(单位:元/千瓦时)低谷月用电量(单位:千瓦时)低谷电价(单位:千瓦时)0.568 50及以下部分0.288超过50至200的部分0.318超过200的部分0.388小远家5月份的高峰时间用电量为200千瓦时,低谷时间段用电量为300千瓦时,则按这种计费方式该家庭本月应付的电费为元(精确到角).16.(4分)(2015•湖州模拟)如图,AB是半圆O的直径,C为半圆上一点,N是线段BC 上一点(不与B﹑C重合),过N作AB的垂线交AB于M,交AC的延长线于E,过C点作半圆O的切线交EM于F,若NC:CF=3:2,则sinB=.三.全面答一答(本题有8个小题,共66分)17.(6分)(2015•湖州模拟)有下面3个结论:①存在两个不同的无理数,它们的积是整数;②存在两个不同的无理数,它们的差是整数;③存在两个不同的非整数的有理数,它们的和与商都是整数.先判断这3个结论分别是正确还是错误的,如果正确,请举出符合结论的两个数.18.(6分)(2015•湖州模拟)小云出黑板报时遇到了一个难题,在版面设计过程中需要将一个半圆面三等分,请帮她设计一个合理的等分方案,要求尺规作图,保留作图痕迹.19.(6分)(2015•湖州模拟)如图,长方体的底面边长分别为1cm和3cm,高为6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达B(B为棱的中点),那么所用细线最短需要多长?如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要多长?20.(8分)(2004•金华)某班13位同学参加每周一次的卫生大扫除,按学校的卫生要求需要完成总面积为80m2的三个项目的任务,三个项目的面积比例和每人每分钟完成各项目的工作量如下图所示:(1)从上述统计图中可知:每人每分钟擦课桌椅m2;擦玻璃、擦课桌椅、扫地拖地的面积分别是m2,m2,m2;(2)如果x人每分钟擦玻璃的面积是ym2,那么y关于x的函数关系式是;(3)他们一起完成扫地和拖地的任务后,把这13人分成两组,一组去擦玻璃,一组去擦课桌椅.如果你是卫生委员,该如何分配这两组的人数,才能最快地完成任务.21.(8分)(2015•湖州模拟)如图,在平面直角坐标系中,反比例函数的图象经过点A(1,2),B(m,n)(m>1),过点B作y轴的垂线,垂足为C.(1)求该反比例函数解析式;(2)当△ABC面积为2时,求点B的坐标.22.(10分)(2009•桂林)在保护地球爱护家园活动中,校团委把一批树苗分给初三(1)班同学去栽种,如果每人分2棵,还剩42棵,如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵).(1)设初三(1)班有x名同学,则这批树苗有多少棵(用含x的代数式表示);(2)初三(1)班至少有多少名同学?最多有多少名同学?23.(10分)(2015•湖州模拟)如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是线段BC上一点,以AE为边在直线MN的上方作正方形AEFG(1)连接GD,求证△ADG≌△ABE;(2)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=1,BC=2,E是线段BC 上一动点(不含端点B,C ),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当E由B向C运动时,∠FCN的大小是否保持不变?若∠FCN的大小不变,求tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.24.(12分)(2015•湖州模拟)如图①,Rt△ABC中,∠B=90°∠CAB=30°,AC⊥x轴.它的顶点A的坐标为(10,0),顶点B的坐标为,点P从点A出发,沿A→B→C 的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P 到达点C时,两点同时停止运动,设运动的时间为t秒.(1)求∠BAO的度数.(直接写出结果)(2)当点P在AB上运动时,△OPQ的面积S与时间t(秒)之间的函数图象为抛物线的一部分(如图②),求点P的运动速度.(3)求题(2)中面积S与时间之间的函数关系式,及面积S取最大值时点P的坐标.(4)如果点P,Q保持题(2)中的速度不变,当t取何值时,PO=PQ,请说明理由.2015年浙江省湖州市中考数学模拟卷(19)参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)1.(3分)(2008•枣庄)小华五次跳远的成绩如下(单位:m):3.9,4.1,3.9,3.8,4.2.关于这组数据,下列说法错误的是()A.极差是0.4 B.众数是3.9 C.中位数是3.98 D.平均数是3.98考点:中位数.专题:应用题.分析:根据极差,中位数和众数的定义解答.解答:解:A、极差是4.2﹣3.8=0.4;B、3.9有2个,众数是3.9;C、从高到低排列后,为4.2,4.1,3.9,3.9,3.8.中位数是3.9;D、平均数为(3.9+4.1+3.9+3.8+4.2)÷5=3.98.故选C.点评:本题考查统计知识中的极差,中位数和众数和平均数的定义.2.(3分)(2015•湖州模拟)不等式组(x为未知数)无解,则函数图象与x轴()A.相交于两点B.没有交点C.相交于一点D.相交于一点或没有交点考点:抛物线与x轴的交点;解一元一次不等式组.分析:根据不等式组无解得出a的取值范围,进而得出b2﹣4ac=﹣2+a的符号,即可得出答案.解答:解:∵不等式组(x为未知数)无解,∴a+2>3a﹣2,解得:a<2,∵函数中:b2﹣4ac=﹣2+a,∵a<2,∴b2﹣4ac=﹣2+a<0,故函数图象与x轴无交点坐标.故选:B.点评:此题主要考查了不等式组解集确定方法以及二次函数与x轴交点个数确定方法,根据已知得出a的取值范围是解题关键.3.(3分)(2015•湖州模拟)如图,△ABC中,BC=8,AD是中线,将△ADC沿AD折叠至△ADC′,发现CD与折痕的夹角是60°,则点B到C′的距离是()A.4B.C.D.3考点:旋转的性质;等边三角形的判定与性质.分析:首先利用折叠的性质,得出∠C′DA=∠ADC=60°,DC=DC′,再利用等边三角形的判定方法,有一个角是60°的等腰三角形是等边三角形,得出△BDC′是等边三角形,进而得出答案.解答:解:∵△ABC中,BC=8,AD是中线,∴BD=DC=4,∵将△ADC沿AD折叠至△ADC′,发现CD与折痕的夹角是60°,∴∠C′DA=∠ADC=60°,DC=DC′,∴∠C′DB=60°,∴△BDC′是等边三角形,∴BC′=BD=DC′=4.故选A.点评:此题主要考查了图形的折叠问题与等边三角形的判定等知识,得出∠C′DA=∠ADC=60°,DC=DC′,是解决问题的关键.4.(3分)(2015•湖州模拟)如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口A,B,C,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在()A.△ABC的三边高线的交点P处B.△ABC的三角平分线的交点P处C.△ABC的三边中线的交点P处D.△ABC的三边中垂线的交点P处考点:三角形的外接圆与外心.专题:应用题;压轴题.分析:根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.解答:解:三角形三边垂直平分线的交点到三个顶点的距离相等.故选D.点评:考查了三角形的外心的概念和性质.要熟知三角形三边垂直平分线的交点到三个顶点的距离相等.5.(3分)(2008•江西)下列四个三角形中,与图中的三角形相似的是()A.B.C.D.考点:相似三角形的判定.专题:网格型.分析:本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.解答:解:设单位正方形的边长为1,给出的三角形三边长分别为,2,.A、三角形三边2,,3,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边2,4,2,与给出的三角形的各边成正比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D 、三角形三边,4,,与给出的三角形的各边不成比例,故D选项错误.故选:B.点评:此题考查三边对应成比例,两三角形相似判定定理的应用.6.(3分)(2011•兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于()A.20°B.30°C.40°D.50°考点:切线的性质;圆周角定理.专题:计算题.分析:先连接BC,由于AB 是直径,可知∠BCA=90°,而∠A=25°,易求∠CBA,又DC是切线,利用弦切角定理可知∠DCB=∠A=25°,再利用三角形外角性质可求∠D.解答:解:如右图所示,连接BC,∵AB 是直径,∴∠BCA=90°,又∵∠A=25°,∴∠CBA=90°﹣25°=65°,∵DC是切线,∴∠BCD=∠A=25°,∴∠D=∠CBA﹣∠BCD=65°﹣25°=40°.故选C.点评:本题考查了直径所对的圆周角等于90°、弦切角定理、三角形外角性质.解题的关键是连接BC,构造直角三角形ABC.7.(3分)(2015•湖州模拟)下列命题是真命题的是()A.任意抛掷一只一次性纸杯,杯口朝上的概率为B.在一次抽奖活动中,“中奖的概率是”表示抽奖100次就一定会中奖C.从1至9这九个自然数中任取一个,是2的倍数或是3的倍数的概率是D.一运动员投4次篮,有2次投中,则该运动员的投一次篮投中的概率一定是考点:概率公式.专题:计算题.分析:A、由于纸杯杯口、杯底不同,故抛一次纸杯,杯口朝上的概率不为;B、中奖的概率是,表示中奖的可能性,并不表示抽奖100次就一定会中奖;C、1至9这九个自然数中,2的倍数是2,4,6,8;3的倍数是3,6,9;6出现了两次,既是3的倍数,又是2的倍数,故符合条件的数有2,4,6,8,3,9,利用概率公式解答即可;D、由于投篮次数太少,结果不具有代表性.解答:解:A、纸杯杯口、杯底不同,杯口朝上的概率不为,故本选项错误;B、中奖的概率是,表示中奖的可能性是,抽奖100次可能中奖,也可能不中奖,中奖是随机事件,故本选项错误;C、1至9中,2的倍数是2,4,6,8;3的倍数是3,6,9;6两种情况都符合,记为1次,故P(2的倍数或是3的倍数)=,故本选项正确;D、由于投篮次数太少,结果不具有代表性,因人而异,有人高些,如姚明,有人低些,如盲人,故本选项错误.故选C.点评:此题考查了概率公式和随机事件与必然事件,分析概率公式成立的条件以及应用列举法是解题的关键.8.(3分)(2015•湖州模拟)在△ABC中,,∠C=45°,AB=8,以点B为圆心4为半径的⊙B与以点C为圆心的⊙C相离,则⊙C的半径不可能为()A.5B.6C.7D.15考点:圆与圆的位置关系;特殊角的三角函数值.分析:由于⊙B、⊙C相离,那么存在外离、内含两种情况,可根据这两种情况分别求出⊙C 的半径取值范围,再进行判断.解答:解:过A作AD⊥BC于D.在Rt△ABD中,易知∠B=30°,则AD=4,BD=4;在Rt△ACD中,∠C=45°,则CD=AD=4;∴BC=BD+CD=4+4≈10.9;①当⊙B与⊙C外离时,(设⊙C的半径为r)则有:r+4<BC=10.9,即0<r<6.9;②当⊙B内含于⊙C时,则有:r﹣4>BC=10.9,即r>14.9;综合四个选项,只有C选项不在r的取值范围内,故选C.点评:此题主要考查了圆与圆的位置关系,需要注意的是两圆外离时需分类讨论,不要漏解.9.(3分)(2015•湖州模拟)希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数.下列数中既是三角形数又是正方形数的是()A.289 B.1024 C.1225 D.1378考点:规律型:图形的变化类;规律型:数字的变化类.分析:由题意可知:三角形数的第n个为1+2+3+4+…+n=n(n+1),正方形数的第n个为n2,由此逐一验证得出答案即可.解答:解:由于三角形数的第n个为1+2+3+4+…+n=n(n+1),正方形数的第n个为n2,A、n(n+1)=289无整数解,不合题意;B、n(n+1)=1024,不合题意;C、n(n+1)=1225,解得n=49,符合题意;D、n(n+1)=1378,无整数解,不合题意.故选:C.点评:此题考查图形的变化规律,找出图形之间的联系,利用数字之间的运算规律,解决问题.10.(3分)(2015•湖州模拟)给出下列命题:①反比例函数的图象经过一、三象限,且y随x的增大而减小;②对角线相等且有一个内角是直角的四边形是矩形;③我国古代三国时期的数学家赵爽,创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明(如图);④在同圆或等圆中,相等的弧所对的圆周角相等.其中正确的是()A.③④B.①②③C.②④D.①②③④考点:圆周角定理;反比例函数系数k的几何意义;勾股定理的证明;矩形的判定.专题:压轴题;推理填空题.分析:分别根据反比例函数的性质、矩形的性质及勾股定理、圆心角、弧、弦的关系对每小题进行逐一解答.解答:解:①反比例函数的图象的图象两个分支分别位于一、三象限,而不是经过一、三象限,故此小题错误;②对角线相等且有一个内角是直角的四边形有可能是梯形,故此小题错误;③符合勾股定理的历史,故此小题正确;④符合圆心角、弧、弦的关系,故此小题正确.所以③④正确.故选A.点评:本题考查的是反比例函数的性质、矩形的性质及勾股定理、圆心角、弧、弦的关系,是一道较为简单的题目.二.认真填一填(本题有6个小题,每小题4分,共24分)11.(4分)(2015•湖州模拟)如图,有一个正三角形图片高为1米,A是三角形的一个顶点,现在A与数轴的原点O重合,工人将图片沿数轴正方向滚动一周,点A恰好与数轴上点A′重合,则点A′对应的实数是.考点:等边三角形的性质;实数与数轴.分析:首先理解题意:求点A′对应的实数是正三角形的周长,已知此正三角形的高,利用三角函数的性质,求得边长即可.解答:解:∵△ABC是正三角形,∴∠B=60°,∵CD是高,∴∠CDB=90°,∴sin∠B=sin60°==,∵CD=1,∴BC=,∴△ABC的周长为2.∴点A′对应的实数是2.故答案为:2.点评:此题考查了正三角形的性质.注意三线合一与三角函数性质的应用.12.(4分)(2015•湖州模拟)为了防控输入性甲型H1N1流感,某市医院成立隔离治疗发热流涕病人防控小组,决定从内科4位骨干医师中(含有甲)抽调2人组成,则甲一定抽调到防控小组的概率是.考点:概率公式.专题:计算题.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:4位骨干医师中(含有甲)抽调2人组成,可设4人分别为甲乙丙丁,可能有甲乙、甲丙、甲丁、乙丙、乙丁、丙丁6种可能,甲一定抽调到防控小组的概率是=.故答案为:.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(4分)(2015•湖州模拟)如图,在由10个边长都为1的小正三角形的网格中,点P是网格的一个顶点,以点P为顶点作格点平行四边形(即顶点均在格点上的四边形),请你写出所有可能的平行四边形的对角线的长1或或或2或3.考点:平行四边形的判定与性质.专题:计算题;压轴题.分析:首先确定以P为顶点的平行四边形有哪几个,然后根据勾股定理即可求得对角线的长.解答:解:平行四边形有:PABD,PACE,PMNE,PMQE,APMD,APNE,PQGA.平行四四边形PABD,平行四边形PMNE对角线长是1和;平行四边形PACE和PMQE的对角线长是:和;平行四边形APNE的对角线长是:2和;平行四边形PQGA的对角线长是3和.故答案为:1或或或2或3.点评:本题主要考查了平行四边形的判定,正确找出以P为顶点的平行四边形有哪几个是解题关键.14.(4分)(2015•湖州模拟)通用公司生产的09款科鲁兹家庭轿车的车轮直径560mm,当车轮转动120度时,车中的乘客水平方向平移了mm.考点:弧长的计算.专题:计算题.分析:车中的乘客水平方向平移的距离为圆心角为120°,半径为280mm的弧长.解答:解:车中的乘客水平方向平移的距离为=mm,故答案为:.点评:考查弧长公式的应用;用到的知识点为:弧长=.15.(4分)(2015•湖州模拟)浙江省居民生活用电可申请峰谷电,峰谷电价如下表:高峰时间段用电价格表低谷时间段用电价格表高峰电价(单位:元/千瓦时)低谷月用电量(单位:千瓦时)低谷电价(单位:千瓦时)0.568 50及以下部分0.288超过50至200的部分0.318超过200的部分0.388小远家5月份的高峰时间用电量为200千瓦时,低谷时间段用电量为300千瓦时,则按这种计费方式该家庭本月应付的电费为214.5元(精确到角).考点:有理数的混合运算.专题:图表型.分析:本题需先根据题意列出求电费的式子,再计算出结果即可.解答:解:根据题意得:小远家5月份应付的电费为200×0.568+50×0.288+150×0.318+100×0.388=113.6+14.4+47.7+38.8=214.5(元)故填214.5点评:本题主要考查了有理数的混合运算,解题时要注意根据题意列出式子.16.(4分)(2015•湖州模拟)如图,AB是半圆O的直径,C为半圆上一点,N是线段BC 上一点(不与B﹑C重合),过N作AB的垂线交AB于M,交AC的延长线于E,过C点作半圆O的切线交EM于F,若NC:CF=3:2,则sinB=.考点:切线的性质;等腰三角形的判定与性质;圆周角定理;解直角三角形.专题:计算题;压轴题.分析:由NC:CF=3:2,设NC=3x,则CF=2x,根据AB为直径可证BC⊥AE,因为CF为⊙O的切线,故OC⊥CF,利用互余关系可证∠OCB=∠ECF,∠B=∠E,而OB=OC,则∠OCB=∠B,故∠ECF=∠E,EF=CF=2x,同理可证∠FCN=∠FNC,FN=CF=2x,利用∠B=∠E,在Rt△CEN中,求sinE即可.解答:解:依题意,NC:CF=3:2,设NC=3x,则CF=2x,∵AB为直径,∴BC⊥AE,∵CF为⊙O的切线,∴OC⊥CF,∵∠OCB+∠BCF=∠BCF+∠ECF=90°,∴∠OCB=∠ECF,同理可证∠B=∠E,∵OB=OC,∴∠OCB=∠B,∴∠ECF=∠E,则EF=CF=2x,同理可证∠FCN=∠FNC,则FN=CF=2x,∴在Rt△CEN中,sinE===,∴sinB=sinE=.故答案为.点评:本题综合考查了切线的性质,等腰三角形的判定与性质,圆周角定理及解直角三角形的知识.关键是判断等腰三角形,得出直角三角形中直角边与斜边的关系.三.全面答一答(本题有8个小题,共66分)17.(6分)(2015•湖州模拟)有下面3个结论:①存在两个不同的无理数,它们的积是整数;②存在两个不同的无理数,它们的差是整数;③存在两个不同的非整数的有理数,它们的和与商都是整数.先判断这3个结论分别是正确还是错误的,如果正确,请举出符合结论的两个数.考点:实数的运算.专题:计算题.分析:以上结论都正确,举例即可.解答:解:均正确,举例如下:①(+1)(﹣1)=2﹣1=1;②(+1)﹣(﹣1)=+1﹣+1=2;③+=1,÷=2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2015•湖州模拟)小云出黑板报时遇到了一个难题,在版面设计过程中需要将一个半圆面三等分,请帮她设计一个合理的等分方案,要求尺规作图,保留作图痕迹.考点:作图—应用与设计作图.分析:应先做线段AB的垂直平分线,得到半圆的圆心;三等分平角,那么平分而成的每个角是60°根据半径相等,可得到相邻两个半径的端点与圆心组成一个等边三角形.以A为圆心,半径长为半径画弧,就可得到一个另一半径的端点所在的位置,连接它与圆心,就得到一条三等分线,同法做到另一三等分线.解答:解:作法:(1)作AB的垂直平分线CD交AB于点O;(2)分别以A、B为圆心,以AO(或BO)的长为半径画弧,分别交半圆于点M、N;(3)连接OM、ON即可.点评:本题主要考查了应用设计与作图,用到的知识点为:弦的垂直平分线经过圆心;有一个角是60°的等腰三角形是等边三角形.19.(6分)(2015•湖州模拟)如图,长方体的底面边长分别为1cm和3cm,高为6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达B(B为棱的中点),那么所用细线最短需要多长?如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要多长?考点:平面展开-最短路径问题.专题:计算题.分析:要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.解答:解:将长方体展开,连接A、B,根据两点之间线段最短,AB==cm;如果从点A开始经过4个侧面缠绕n圈到达点B,相当于直角三角形的两条直角边分别是8n和3,根据勾股定理可知所用细线最短需要==.故用一根细线从点A开始经过4个侧面缠绕一圈到达B(B为棱的中点),那么所用细线最短需要cm,如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要.点评:本题考查了平面展开﹣最短路径问题,是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可.20.(8分)(2004•金华)某班13位同学参加每周一次的卫生大扫除,按学校的卫生要求需要完成总面积为80m2的三个项目的任务,三个项目的面积比例和每人每分钟完成各项目的工作量如下图所示:(1)从上述统计图中可知:每人每分钟擦课桌椅m2;擦玻璃、擦课桌椅、扫地拖地的面积分别是16m2,20m2,44m2;(2)如果x人每分钟擦玻璃的面积是ym2,那么y关于x的函数关系式是y=x;(3)他们一起完成扫地和拖地的任务后,把这13人分成两组,一组去擦玻璃,一组去擦课桌椅.如果你是卫生委员,该如何分配这两组的人数,才能最快地完成任务.考点:扇形统计图;分式方程的应用;一次函数的应用;条形统计图.专题:图表型.分析:(1)观察统计图,直接计算;(2)观察统计图,每人每分钟擦玻璃,x人每分钟擦玻璃的面积就是x;(3)把这13人分成两组,一组去擦玻璃,一组去擦课桌椅,设有x人擦玻璃,则有(13﹣x)人擦课桌椅,擦玻璃的面积是16m2,擦课桌椅的面积是20m2.解答:解:(1)每人每分钟擦课桌椅是m2,擦玻璃的面积是80×20%=16m2,擦课桌椅的面积是80×25%=20m2,扫地拖地的面积是80×55%=44m2;故答案为:;16;20;44.(2);故答案为:;(3)设有x人擦玻璃,则有(13﹣x)人擦课桌椅,由题意得:,解得x=8,经检验:x=8是方程的解∴13﹣x=13﹣8=5(人)所以派8人擦玻璃,5人擦课桌椅,能最快完成任务.点评:本题要求学生会看两种统计图,写简单的函数关系式,列方程求解,具有一定的综合性.21.(8分)(2015•湖州模拟)如图,在平面直角坐标系中,反比例函数的图象经过点A(1,2),B(m,n)(m>1),过点B作y轴的垂线,垂足为C.(1)求该反比例函数解析式;(2)当△ABC面积为2时,求点B的坐标.。
【2015中考真题】浙江省湖州市中考数学试题及解析
2015年浙江省湖州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2015•湖州)﹣5的绝对值为()A.﹣5 B.5C.﹣D.2.(3分)(2015•湖州)当x=1时,代数式4﹣3x的值是()A.1B.2C.3D.43.(3分)(2015•湖州)4的算术平方根是()A.±2 B.2C.﹣2 D.4.(3分)(2015•湖州)若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是()A.6cm B.9cm C.12cm D.18cm5.(3分)(2015•湖州)已知一组数据的方差是3,则这组数据的标准差是()A.9B.3C.D.6.(3分)(2015•湖州)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7C.5D.47.(3分)(2015•湖州)一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出A.B.C.D.8.(3分)(2015•湖州)如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是()A.4B.2C.8D.49.(3分)(2015•湖州)如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG.点F,G分别在边AD,BC上,连结OG,DG.若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是()A.C D+DF=4 B.C D﹣DF=2﹣3 C.B C+AB=2+4 D.B C﹣AB=210.(3分)(2015•湖州)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y=(x<0)图象上一点,AO的延长线交函数y=(x>0,k是不等于0的常数)的图象于点C,点A关于y轴的对称点为A′,点C关于x轴的对称点为C′,交于x轴于点B,连结AB,AA′,A′C′.若△ABC的面积等于6,则由线段AC,CC′,C′A′,A′A所围成的图形的面积等于()A.8B.10 C.3D.4二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2015•湖州)计算:23×()2=.12.(4分)(2015•湖州)放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是千米/分钟.13.(4分)(2015•湖州)在“争创美丽校园,争做文明学生”示范校评比活动中,10位评委给某校的评分情评分(分)80 85 90 95评委人数 1 2 5 214.(4分)(2015•湖州)如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于.15.(4分)(2015•湖州)如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是和.16.(4分)(2015•湖州)已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推….若A1C1=2,且点A,D2,D3,…,D10都在同一直线上,则正方形A9C9C10D10的边长是.三、解答题(本题有8个小题,共66分)17.(6分)(2015•湖州)计算:.18.(6分)(2015•湖州)解不等式组.19.(6分)(2015•湖州)已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.20.(8分)(2015•湖州)如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC 的中点,连结DE.(1)若AD=DB,OC=5,求切线AC的长;(2)求证:ED是⊙O的切线.21.(8分)(2015•湖州)为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了:选择意向所占百分比文学鉴赏 a科学实验35%音乐舞蹈 b手工编织10%其他 c(1)求本次调查的学生总人数及a,b,c的值;(2)将条形统计图补充完整;(3)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数.22.(10分)(2015•湖州)某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.23.(10分)(2015•湖州)问题背景已知在△ABC中,AB边上的动点D由A向B运动(与A,B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),边结DE交AC于点F,点H是线段AF上一点.(1)初步尝试如图1,若△ABC是等边三角形,DH⊥AC,且点D,E的运动速度相等.求证:HF=AH+CF.小五同学发现可以由以下两种思路解决此问题:思路一:过点D作DG∥BC,交AC于点G,先证DH=AH,再证GF=CF,从而证得结论成立;思路二:过点E作EM⊥AC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立.请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分);(2)类比探究如图2,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,且D,E的运动速度之比是:1,求的值;(3)延伸拓展如图3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记=m,且点D,E运动速度相等,试用含m 的代数式表示(直接写出结果,不必写解答过程).24.(12分)(2015•湖州)已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣.①求点D的坐标及该抛物线的解析式;②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD 互余.若符合条件的Q点的个数是4个,请直接写出a的取值范围.2015年浙江省湖州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)﹣4.(3分)(2015•湖州)若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底分析:利用弧长公式可得圆锥的侧面展开图的弧长,除以2π即为圆锥的底面半径.解答:解:圆锥的弧长为:=24π,;6.(3分)(2015•湖州)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()即可.∴S△BCE=BC•EF=×5×2=5,7.(3分)(2015•湖州)一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出C,8.(3分)(2015•湖州)如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是()分析:连接OC,利用切线的性质知OC⊥AB,由垂径定理得AB=2AC,因为tan∠OAB=,=,代入得结果.∵tan∠OAB=,9.(3分)(2015•湖州)如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG.点F,G分别在边AD,BC上,连结OG,DG.若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是()C+AB=2:三角形的内切圆与内心;翻折变换(折叠问题).半径为r,⊙O是Rt△ABC的内切圆可得r=(a+b﹣c),所以c=a+b﹣2.在Rt△ABC(舍去)+4,由勾股定理可得,CD+DF=.即可解答.⊙O是Rt△ABC的内切圆可得r=(a+b﹣c),(舍去)BC+AB=2,x=4,CD+DF=10.(3分)(2015•湖州)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y=(x<0)图象上一点,AO的延长线交函数y=(x>0,k是不等于0的常数)的图象于点C,点A关于y轴的对称点为A′,点C关于x轴的对称点为C′,交于x轴于点B,连结AB,AA′,A′C′.若△ABC的面积等于6,则由线段AC,CC′,C′A′,A′A所围成的图形的面积等于()))=,根据反比例函数的系数,,求出,根据(﹣)=6AC,CC′,C′A′,A′A所围成的图形的面积=S△OBC+S△OBC′+S△OAA′=10.∵点A是函数y=(x<0)图象上一点,)y=)=,,∴k=﹣,(﹣=6=12,二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2015•湖州)计算:23×()2=2.()×=212.(4分)(2015•湖州)放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是0.2千米/分钟.时间,利用了路程与时间的关系.13.(4分)(2015•湖州)在“争创美丽校园,争做文明学生”示范校评比活动中,10位评委给某校的评分情评分(分)80 85 90 95评委人数 1 2 5 2考点:加权平均数.分析:平均数的计算方法是求出所有数据的和,然后除以数据的总个数.解答:解:这10位评委评分的平均数是:(80+85×2+90×5+95×2)÷10=89(分).故答案为89.点评:本题考查的是加权平均数的求法.本题易出现的错误是求80,85,90,95这四个数的平均数,对平均数的理解不正确.14.(4分)(2015•湖州)如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于π.考点:扇形面积的计算.分析:图中阴影部分的面积=半圆的面积﹣圆心角是120°的扇形的面积,根据扇形面积的计算公式计算即可求解.解答:解:图中阴影部分的面积=π×22﹣=2π﹣π=π.答:图中阴影部分的面积等于π.故答案为:π.点评:考查了扇形面积的计算,求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.15.(4分)(2015•湖州)如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是y=﹣x2+2x和y=x2+2x.是(1,),求出抛物线C1的解析式,从而求出抛物线C2的解析式.)解得:x2xy=+2﹣x x x16.(4分)(2015•湖州)已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推….若A1C1=2,且点A,D2,D3,…,D10都在同一直线上,则正方形A9C9C10D10的边长是.2=C===,的边长为;=x=,的边长为;的边长为的边长为.故答案为.点评:本题考查了正方形的性质,相似三角形的判定和性质,求得前五个正方形的边长得出规律是解题的关键.三、解答题(本题有8个小题,共66分)17.(6分)(2015•湖州)计算:.考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式===a+b.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.18.(6分)(2015•湖州)解不等式组.考点:解一元一次不等式组.分析:先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.解答:解:∵解不等式①得:x<6,解不等式②得:x>1,∴不等式组的解集为1<x<6.点评:本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.19.(6分)(2015•湖州)已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.考点:待定系数法求一次函数解析式.分析:一次函数解析式为y=kx+b,将x与y的两对值代入求出k与b的值,即可确定出一次函数解析式.解答:解:设一次函数解析式为y=kx+b,将x=3,y=1;x=﹣2,y=﹣4代入得:,解得:k=1,b=﹣2.则一次函数解析式为y=x﹣2.点评:此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.20.(8分)(2015•湖州)如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC的中点,连结DE.(1)若AD=DB,OC=5,求切线AC的长;(2)求证:ED是⊙O的切线.AC21.(8分)(2015•湖州)为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了:(1)求本次调查的学生总人数及a,b,c的值;(2)将条形统计图补充完整;(3)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数.点评:本题考查条形统计图,解决本题的关键是读懂图形,获取相关信息.22.(10分)(2015•湖州)某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.考点:分式方程的应用;一元一次方程的应用.分析:(1)可设原计划每天生产的零件x个,根据时间是一定的,列出方程求得原计划每天生产的零件个数,再根据工作时间=工作总量÷工作效率,即可求得规定的天数;(2)可设原计划安排的工人人数为y人,根据等量关系:恰好提前两天完成24000个零件的生产任务,列出方程求解即可.解答:解:(1)设原计划每天生产的零件x个,依题意有=,解得x=2400,经检验,x=2400是原方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产的零件2400个,规定的天数是10天;(2)设原计划安排的工人人数为y人,依题意有[5×20×(1+20%)×+2400]×(10﹣2)=24000,解得y=480,经检验,y=480是原方程的根,且符合题意.答:原计划安排的工人人数为480人.点评:考查了分式方程的应用,一元一次方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.23.(10分)(2015•湖州)问题背景已知在△ABC中,AB边上的动点D由A向B运动(与A,B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),边结DE交AC于点F,点H是线段AF上一点.(1)初步尝试如图1,若△ABC是等边三角形,DH⊥AC,且点D,E的运动速度相等.求证:HF=AH+CF.小五同学发现可以由以下两种思路解决此问题:思路一:过点D作DG∥BC,交AC于点G,先证DH=AH,再证GF=CF,从而证得结论成立;思路二:过点E作EM⊥AC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立.请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分);(2)类比探究如图2,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,且D,E的运动速度之比是:1,求的值;(3)延伸拓展如图3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记=m,且点D,E运动速度相等,试用含m的代数式表示(直接写出结果,不必写解答过程).GD CE△ADG∽△DGH,△DGH∽△ABC,得出=m,=m,,得出=m,得出=m,=,即可得出结果.AD=AD=∴=2;)解:,∴=m,∴=m,=m∴=,===点评:本题是相似形综合题目,考查了等边三角形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质等知识;本题难度较大,综合性强,特别是(2)(3)中,需要通过作辅助线证明三角形全等或三角形相似才能得出结果.24.(12分)(2015•湖州)已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣.①求点D的坐标及该抛物线的解析式;②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD 互余.若符合条件的Q点的个数是4个,请直接写出a的取值范围.考点:二次函数综合题.分析:(1)①过点D作DF⊥x轴于点F,先通过三角形全等求得D的坐标,把D的坐标和a=﹣,c=0代入y=ax2+bx+c即可求得抛物线的解析式;②先证得CD∥x轴,进而求得要使得∠POB与∠BCD互余,则必须∠POB=∠BAO,设P的坐标为(x,﹣x2+x),分两种情况讨论即可求得;(2)若符合条件的Q点的个数是4个,则当a<0时,抛物线交于y轴的负半轴,当a>0时,最小值得<﹣1,解不等式即可求得.解答:解:(1)①过点D作DF⊥x轴于点F,如图1,∵∠DBF+∠ABO=90°,∠BAO+∠ABO=90°,∴∠DBF=∠BAO,又∵∠AOB=∠BFD=90°,AB=BD,﹣∴b=,x x(,x x,即=,=,x x=,∴P点的坐标为(,);则tan∠POB=tan∠BAO,即=,=,解得,∴﹣x2+x=﹣,点的坐标为(,﹣)综上,在抛物线上是否存在点P(,)或(,﹣),使得∠POB与∠BCD互余.,代入可得,解得;∴tan∠QOB=tan∠BAO==,此时直线OQ的斜率为﹣,则直线OQ的解析式为xx4a+)8a+>0,解得a>(a<舍去)<﹣或>。
浙江省湖州市2015年中考数学试卷含解析
浙江省湖州市2015年中考数学试卷一、选择题(本题有10个小题,每小题3分,共30分)1.−5的绝对值是( )A. −5B. 5C. −D.【答案】B.【考点】绝对值的意义.【解析】由绝对值的意义,负数的绝对值是它的相反数,故选B。
2.当x=1时,代数式4−3x的值是( )A. 1B. 2C. 3D. 4【答案】A.【考点】代数式求值【解析】把x=1代入:4−3x=4-3=1.故选A.3.4的算术平方根是( )A. ±2B. 2C. −2D.【答案】B.【考点】算术平方根的定义.【解析】4的平方根是±2,而4的算术平方根是2,注意区分,故选B.4.若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是( )A. 6cmB. 9cmC. 12cmD. 18cm【答案】C.【考点】弧长公式;圆锥底面圆的周长等于侧面展开扇形的弧长.【解析】设圆锥的底面半径为r,因为圆锥侧面展开图中扇形的弧长等于圆锥底面圆的周长,所以,有:24018=2180rππ⨯,解得:r=12,故选C。
5.已知一组数据的方差是3,则这组数据的标准差是( )A. 9B. 3C.D.【答案】D.【考点】标准差的定义。
,故选D.6.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A. 10B. 7C. 5D. 4【答案】C.【考点】角平分线的性质;三角形的面积公式.【解析】过E作EF⊥BC于F,因为BE为角平分线,CD为高,所以,有EF=ED=2,则△BCE的面积等于12BC EF⨯⨯=5,选C。
7.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A. B. C. D.【答案】D.【考点】用列表法求概率.【解析】列表如下9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是.故答案选D.8.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是( )A. 4B. 2C. 8D. 4【答案】C.【考点】切线的性质定理;锐角三角函数;垂径定理.【解析】连结OC,因为AB为切线,所以,OC⊥AB,由垂径定理,得AC=BC,又OD=OC=2,tan∠OAB=,所以,AC=4,所以,AB=2AC=8,选C。
2015年浙江省湖州市吴兴区中考一模数学试卷(解析版)
2015年浙江省湖州市吴兴区中考数学一模试卷一、选择题(每小题3分,共30分)1.(3分)二次函数y=﹣(x﹣1)2+2的顶点坐标是()A.(1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣1,﹣2)2.(3分)将抛物线y=2x2向下平移1个单位,得到的抛物线是()A.y=2(x+1)2B.y=2(x﹣1)2C.y=2x2+1D.y=2x2﹣1 3.(3分)有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字为偶数的概率是()A.B.C.D.4.(3分)若⊙O的面积为25π,在同一平面内有一个点P,且点P到圆心O的距离为4.9,则点P与⊙O的位置关系为()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定5.(3分)抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线()A.x=1B.x=﹣1C.x=﹣3D.x=36.(3分)下列命题中:①直径相等的两个圆是等圆;②优弧所对的弦总比劣弧所对的弦长;③三角形的外心到三角形三个顶点的距离相等;④过三个点能画一个圆;正确的命题有()A.1个B.2个C.3个D.4个7.(3分)若抛物线y=﹣x2﹣2x+c的图象经过点A(﹣2,y1)、B(1,y2),则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.无法判断8.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示:则下列结论:①abc >0;②b﹣2a=0;③a+b+c>0;④b2﹣4ac>0;正确的有()A.1个B.2个C.3个D.4个9.(3分)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是()A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x=3时,y>0D.方程ax2+bx+c=0的正根在2与3之间10.(3分)如图,O为坐标原点,边长为的正方形OABC的顶点A在x轴的正半轴上,将正方形OABC绕顶点O顺时针旋转75°,使点B落在某抛物线的图象上,则该抛物线的解析式为()A.y=x2B.y=﹣x2C.y=﹣x2D.y=﹣3x2二、填空题(每小题4分,共24分)11.(4分)二次函数y=x2+2x+2的最小值为.12.(4分)从♡10、♡J、♡Q、♡K四张扑克牌中任取2张,共有种不同的取法.13.(4分)抛物线y=x2﹣5x﹣6与x轴的两个交点坐标分别为.14.(4分)若抛物线y=mx2+2mx+1的顶点在x轴上,则m的值为.15.(4分)如图所示,抛物线y=﹣(x﹣1)2+4与x轴交于A、B两点,与y 轴交于C点,顶点为D.若抛物线上有一点P(点P不与点C重合),使得S△DCB =S△PCB,则这样的点P总共存在个.16.(4分)如图所示,抛物线y=ax2+bx(a<0)的图象与x轴交于A、O两点,顶点为B,将该抛物线的图象绕原点O旋转180°后,与x轴交于点C,顶点为D,若此时四边形ABCD恰好为矩形,则b的值为.三、解答题(共66分)17.(6分)小明家楼下有一圆形花坛,花坛的边缘有A、B、C三棵树,请你用直尺和圆规画出这个圆形的花坛.18.(6分)如图,灯塔A周围1000m水域内有暗礁,一般船由西向东航行,在O处测得灯塔A在北偏东60°方向上,这时OA=2100m,若不改变航向,此船有无触礁的危险?19.(6分)已知二次函数的图象经过(0,0),且它的顶点坐标是(1,﹣2).(1)求这个二次函数的关系式;(2)判断点P(3,5)是否在这条抛物线的图象上.20.(8分)有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、2的三个小球(除数字不同外,其余都相同).小亮转动一次转盘,停止后指针指向某一扇形,记下扇形所对应的数,小红任意摸出一个小球,记下小球上所对应的数,然后计算这两个数的乘积.(1)请你用画树状图或列表的方法,求这两个数的乘积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?21.(8分)一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系.(1)求抛物线的表达式;(2)一辆货车高4m,宽2m,能否从该隧道内通过,为什么?22.(10分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x的范围.23.(10分)在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由;(3)在(2)的情况下,求ED的长.24.(12分)如图所示,动点A、B同时从原点O出发,运动的速度都是每秒1个单位,动点A沿x轴正方向运动,动点B沿y轴正方向运动,以OA、OB 为邻边建立正方形OACB,抛物线y=﹣x2+bx+c经过B、C两点,假设A、B 两点运动的时间为t秒:(1)直接写出直线OC的解析式;(2)当t=3秒时,求此时抛物线的解析式;此时抛物线上是否存在一点D,使=6?若存在,求出点D的坐标;若不存在,说明理由;得S△BCD(3)在(2)的条件下,有一条平行于y轴的动直线l,交抛物线于点E,交直线OC于点F,若以O、B、E、F四个点构成的四边形是平行四边形,求点F 的坐标;(4)在动点A、B运动的过程中,若正方形OACB内部有一个点P,且满足OP =,CP=2,∠OP A=135°,直接写出此时AP的长度.2015年浙江省湖州市吴兴区中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)二次函数y=﹣(x﹣1)2+2的顶点坐标是()A.(1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣1,﹣2)【解答】解:二次函数y=﹣(x﹣1)2+2的顶点坐标是(1,2).故选:B.2.(3分)将抛物线y=2x2向下平移1个单位,得到的抛物线是()A.y=2(x+1)2B.y=2(x﹣1)2C.y=2x2+1D.y=2x2﹣1【解答】解:将抛物线y=2x2向下平移1个单位抛物线变为y=2x2﹣1.故选D.3.(3分)有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字为偶数的概率是()A.B.C.D.【解答】解:根据概率公式:P(出现向上一面的数字为偶数)=.故选C.4.(3分)若⊙O的面积为25π,在同一平面内有一个点P,且点P到圆心O的距离为4.9,则点P与⊙O的位置关系为()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定【解答】解:∵⊙O的面积为25π,∴⊙O的半径R=5,∵OP=4.9,OP<R,所以点P在⊙O内;故选:C.5.(3分)抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线()A.x=1B.x=﹣1C.x=﹣3D.x=3【解答】解:∵﹣1,3是方程a(x+1)(x﹣3)=0的两根,∴抛物线y=a(x+1)(x﹣3)与x轴交点横坐标是﹣1,3,∵这两个点关于对称轴对称,∴对称轴是x==1.故选:A.6.(3分)下列命题中:①直径相等的两个圆是等圆;②优弧所对的弦总比劣弧所对的弦长;③三角形的外心到三角形三个顶点的距离相等;④过三个点能画一个圆;正确的命题有()A.1个B.2个C.3个D.4个【解答】解:直径相等的两个圆是等圆,所以①正确;在同圆或等圆中,一条弦可对优弧和劣弧,所以②错误;三角形的外心到三角形三个顶点的距离相等,所以③正确;④过不共线的三个点能画一个圆,所以④错误.故选:B.7.(3分)若抛物线y=﹣x2﹣2x+c的图象经过点A(﹣2,y1)、B(1,y2),则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.无法判断【解答】解:∵A点关于直线x=﹣1的对称点C(0,y1)∵二次函数y=﹣x2﹣2x+c中a=﹣1<0,∴抛物线开口向下.在对称轴的右侧,y随x的增大而减小,又∵1>0>﹣1,∴y1>y2.故选:B.8.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示:则下列结论:①abc >0;②b﹣2a=0;③a+b+c>0;④b2﹣4ac>0;正确的有()A.1个B.2个C.3个D.4个【解答】解:①图象开口向下,与y轴交于正半轴,对称轴在y轴右侧,能得到:a<0,c>0,﹣<0,b<0,∴abc>0,故①正确;②∵对称轴x=﹣1,∴﹣=﹣1,∴b﹣2a=0,故②正确.③当x=1时,y<0,∴a+b+c<0,故③错误.④图象与x轴有2个不同的交点,依据根的判别式可知b2﹣4ac>0,故④正确;综上所述正确的个数为3个故选:C.9.(3分)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是()A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x=3时,y>0D.方程ax2+bx+c=0的正根在2与3之间【解答】解:∵由图表可以得出当x=0或2时,y=1,可以求出此函数的对称轴是x=1,顶点坐标为(1,3),∴二次函数解析式为:y=a(x﹣1)2+3,再将(0,1)点代入得:1=a(﹣1)2+3,解得:a=﹣2,∴y=﹣2(x﹣1)2+3,∵a<0∴A,抛物线开口向上错误,故A错误;∵y=﹣2(x﹣1)2+3=﹣2x2+4x+1,与y轴交点坐标为(0,1),故与y轴交于正半轴,故B错误;∵当x=3时,y=﹣5<0,故C错误;∵方程ax2+bx+c=0,△=16+4×2×1=22>0,此方程有两个不相等的实数根,由表正根在2和3之间;故选:D.10.(3分)如图,O为坐标原点,边长为的正方形OABC的顶点A在x轴的正半轴上,将正方形OABC绕顶点O顺时针旋转75°,使点B落在某抛物线的图象上,则该抛物线的解析式为()A.y=x2B.y=﹣x2C.y=﹣x2D.y=﹣3x2【解答】解:如图,作BE⊥x轴于点E,连接OB,∵正方形OABC绕顶点O顺时针旋转75°,∴∠AOE=75°,∵∠AOB=45°,∴∠BOE=30°,∵OA=,∴OB=2,∴BE=OB=1,∴OE==,∴点B坐标为(,﹣1),代入y=ax2(a<0)得a=﹣,∴y=﹣x2,故选:B.二、填空题(每小题4分,共24分)11.(4分)二次函数y=x2+2x+2的最小值为1.【解答】解:配方得:y=x2+2x+2=y=x2+2x+12+1=(x+1)2+1,当x=﹣1时,二次函数y=x2+2x+2取得最小值为1.故答案是:1.12.(4分)从♡10、♡J、♡Q、♡K四张扑克牌中任取2张,共有6种不同的取法.【解答】解:♡10、♡J、♡Q、♡K四张扑克牌中任取2张,不同的取法有:♡10、♡J;♡10、♡Q;♡10、♡K;♡J、♡Q;♡Q、♡K;♡J、♡K,共6种.故答案为:6.13.(4分)抛物线y=x2﹣5x﹣6与x轴的两个交点坐标分别为(﹣1,0),(6,0).【解答】解:∵y=x2﹣5x﹣6=(x+1)(x﹣6),∴抛物线y=x2﹣5x﹣6与x轴的两个交点坐标分别为(﹣1,0),(6,0).故答案是:(﹣1,0),(6,0).14.(4分)若抛物线y=mx2+2mx+1的顶点在x轴上,则m的值为1.【解答】解:∵抛物线y=mx2+2mx+1的顶点在x轴上,∴=0,解得m=1,m=0(舍去).故答案为:1.15.(4分)如图所示,抛物线y=﹣(x﹣1)2+4与x轴交于A、B两点,与y 轴交于C点,顶点为D.若抛物线上有一点P(点P不与点C重合),使得S△DCB =S△PCB,则这样的点P总共存在3个.【解答】解:∵S △DCB =S △PCB ,∴△DCB 与△PCB 是同底等高的两个三角形,∴点P 所在的直线与直线BC 平行,且点P 、D 到直线BC 的距离相等, 如图,满足条件的点P 有3个.故答案是:3.16.(4分)如图所示,抛物线y =ax 2+bx (a <0)的图象与x 轴交于A 、O 两点,顶点为B ,将该抛物线的图象绕原点O 旋转180°后,与x 轴交于点C ,顶点为D ,若此时四边形ABCD 恰好为矩形,则b 的值为 ﹣2 .【解答】解:如图,连接AB 、OB .过点B 作BE ⊥x 轴于点E .要使平行四边形ABCD 是矩形,必须满足AC =BD ,∴OA =OB .∵点B 是抛物线的顶点,∴AB =OB ,∴△ABO 是等边三角形,∠BAE=60°,AE=OA.∵y=ax2+bx=ax(x+)=0,y=ax2+bx=a(x+)2﹣∴A(﹣,0),B(﹣,﹣),∴tan60°===.解得b=﹣2.故答案是:﹣2.三、解答题(共66分)17.(6分)小明家楼下有一圆形花坛,花坛的边缘有A、B、C三棵树,请你用直尺和圆规画出这个圆形的花坛.【解答】解如图所示:18.(6分)如图,灯塔A周围1000m水域内有暗礁,一般船由西向东航行,在O处测得灯塔A在北偏东60°方向上,这时OA=2100m,若不改变航向,此船有无触礁的危险?【解答】解:此船无触礁的危险.过点A作AB⊥OB于点B,由题意可得:∠AOB=90°﹣60°=30°,OA=2100m,∴AB=OA=1050(m),∵1050>1000,∴此船无触礁的危险.19.(6分)已知二次函数的图象经过(0,0),且它的顶点坐标是(1,﹣2).(1)求这个二次函数的关系式;(2)判断点P(3,5)是否在这条抛物线的图象上.【解答】解:(1)设抛物线的顶点式为y=a(x﹣1)2﹣2,将点(0,0)代入得a﹣2=0,解得a=2,所以抛物线的解析式为y=2(x﹣1)2﹣2;(2)当x=3时,y=2(3﹣1)2﹣2=6,所以点P(3,5)不在这条抛物线的图象上.20.(8分)有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、2的三个小球(除数字不同外,其余都相同).小亮转动一次转盘,停止后指针指向某一扇形,记下扇形所对应的数,小红任意摸出一个小球,记下小球上所对应的数,然后计算这两个数的乘积.(1)请你用画树状图或列表的方法,求这两个数的乘积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?【解答】解:(1)画树状图得:∵共有12种等可能的结果,这两个数的乘积为0的有4种情况,∴P(乘积为0)==;(2)游戏不公平.∵这两个数的积为奇数的有2种情况,不为奇数的有10种情况,∴P(小亮赢)==,P(小红赢)==,∴P(小亮赢)≠P(小红赢),∴游戏不公平.21.(8分)一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系.(1)求抛物线的表达式;(2)一辆货车高4m,宽2m,能否从该隧道内通过,为什么?【解答】解:(1)由题意可知抛物线的顶点坐标(4,6),设抛物线的方程为y=a(x﹣4)2+6,又因为点A(0,2)在抛物线上,所以有2=a(0﹣4)2+6.所以a=﹣.因此有:y=﹣(x﹣4)2+6.(2)令y=4,则有4=﹣(x﹣4)2+6,解得x1=4+2,x2=4﹣2,|x1﹣x2|=4>2,∴货车可以通过.22.(10分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x的范围.【解答】解:(1)根据题意得解得k=﹣1,b=120.所求一次函数的表达式为y=﹣x+120.(2)W=(x﹣60)•(﹣x+120)=﹣x2+180x﹣7200=﹣(x﹣90)2+900,∵抛物线的开口向下,∴当x<90时,W随x的增大而增大,而销售单价不低于成本单价,且获利不得高于45%,即60≤x≤60×(1+45%),∴60≤x≤87,∴当x=87时,W=﹣(87﹣90)2+900=891.∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元.(3)由W≥500,得500≤﹣x2+180x﹣7200,整理得,x2﹣180x+7700≤0,而方程x2﹣180x+7700=0的解为x1=70,x2=110.即x1=70,x2=110时利润为500元,而函数y=﹣x2+180x﹣7200的开口向下,所以要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而60元/件≤x≤87元/件,所以,销售单价x的范围是70元/件≤x≤87元/件.23.(10分)在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由;(3)在(2)的情况下,求ED的长.【解答】解:(1)EA1=FC.证明:(证法一)∵AB=BC,∴∠A=∠C.由旋转可知,AB=BC1,∠A=∠C1,∠ABE=∠C1BF,∴△ABE≌△C1BF.∴BE=BF,又∵BA1=BC,∴BA1﹣BE=BC﹣BF.即EA1=FC.(证法二)∵AB=BC,∴∠A=∠C.由旋转可知,∠A1=∠C,A1B=CB,而∠EBC=∠FBA1,∴△A1BF≌△CBE.∴BE=BF,∴BA1﹣BE=BC﹣BF,即EA1=FC.(2)四边形BC1DA是菱形.证明:∵∠A1=∠ABA1=30°,∴A1C1∥AB,同理AC∥BC1.∴四边形BC1DA是平行四边形.又∵AB=BC1,∴四边形BC1DA是菱形.(3)(解法一)过点E作EG⊥AB于点G,则AG=BG=1.在Rt△AEG中,AE=.由(2)知四边形BC1DA是菱形,∴AD=AB=2,∴ED=AD﹣AE=2﹣.(解法二)∵∠ABC=120°,∠ABE=30°,∴∠EBC=90°.在Rt△EBC中,BE=BC•tan C=2×tan30°=.∴EA1=BA1﹣BE=2﹣.∵A1C1∥AB,∴∠A1DE=∠A.∴∠A1DE=∠A1.∴ED=EA1=2﹣.24.(12分)如图所示,动点A、B同时从原点O出发,运动的速度都是每秒1个单位,动点A沿x轴正方向运动,动点B沿y轴正方向运动,以OA、OB 为邻边建立正方形OACB,抛物线y=﹣x2+bx+c经过B、C两点,假设A、B 两点运动的时间为t秒:(1)直接写出直线OC的解析式;(2)当t=3秒时,求此时抛物线的解析式;此时抛物线上是否存在一点D,使=6?若存在,求出点D的坐标;若不存在,说明理由;得S△BCD(3)在(2)的条件下,有一条平行于y轴的动直线l,交抛物线于点E,交直线OC于点F,若以O、B、E、F四个点构成的四边形是平行四边形,求点F 的坐标;(4)在动点A、B运动的过程中,若正方形OACB内部有一个点P,且满足OP =,CP=2,∠OP A=135°,直接写出此时AP的长度.【解答】解:(1)∵四边形OABC是正方形,∴∠AOC=45°,∴直线OC的解析式为y=x;(2)∵t=3秒,∴OA=OB=3,∴点B(0,3),C(3,3),将点B、C代入抛物线得,,解得,∴抛物线解析式为y=﹣x2+3x+3,设BC边上的高为h,∵BC=OA=3,S=6,△BCD∴h=4,∴点D的纵坐标为3﹣4=﹣1,令y=﹣1,则﹣x2+3x+3=﹣1,整理得,x2﹣3x﹣4=0,解得x1=﹣1,x2=4,所以,D1(﹣1,﹣1),D2(4,﹣1);(3)∵OB=3,∴EF=3,设E(m,﹣m2+3m+3),F(m,m),若E在F上方,则,﹣m2+3m+3﹣m=3,整理得,m2﹣2m=0,解得m1=0(舍去),m2=2,∴F1(2,2),若F在E上方,则,m﹣(﹣m2+3m+3)=3,整理m2﹣2m﹣6=0,解得m1=1﹣,m2=1+,∴F2(1﹣,1﹣),F3(1+,1+);(4)如图,将△AOP绕点A逆时针旋转90°得到△AP′C,由旋转的性质得,AP′=AP,P′C=OP=,∠AP′C=∠OP A=135°,∵△APP′是等腰直角三角形,∴∠AP′P=45°,∴∠PP′C=135°﹣45°=90°,由勾股定理得,PP′===,所以,AP=PP′=×=1.。
浙江省湖州市2015年中考数学试卷及答案(Word版)
浙江省湖州市2015年中考数学试卷一、选择题(本题有10个小题,每小题3分,共30分)1.−5的绝对值是( )A. −5B. 5C. −D.【答案】B.考点:绝对值的意义.2.当x=1时,代数式4−3x的值是( )A. 1B. 2C. 3D. 4【答案】A.【解析】试题分析:把x=1代入代数式4−3x即可得原式=4-3=1.故答案选A.考点:代数式求值.的算术平方根是( )A. ±2B. 2C. −2D.【答案】B.【解析】试题分析:因,根据算术平方根的定义即可得4的算术平方根是2.故答案选B.考点:算术平方根的定义.4.若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是( )A. 6cmB. 9cmC. 12cmD. 18cm【答案】C.考点:弧长公式;圆锥底面圆的周长等于侧面展开扇形的弧长.5.已知一组数据的方差是3,则这组数据的标准差是( )A. 9B. 3C.D.【答案】D.【解析】试题分析:根据标准差的平方就是方差可得这组数据的标准差是.故答案选D.考点:标准差的定义.6.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A. 10B. 7C. 5D. 4【答案】C.考点:角平分线的性质;三角形的面积公式.7.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A. B. C. D.【答案】D.【解析】试题分析:列表如下黑白1 白2黑(黑,黑)(白1,黑)(白2,黑)白1 (黑,白1)(白1,白1)(白2,白1)白2 (黑,白2)(白1,白2)(白2,白2)由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是.故答案选D.考点:用列表法求概率.8.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是( )A. 4B. 2C. 8D. 4【答案】C.考点:切线的性质定理;锐角三角函数;垂径定理.9.如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,点F,G分别在AD,BC上,连结OG,DG,若OG⊥DG,且☉O的半径长为1,则下列结论不成立的是( )A. CD+DF=4B. CD−DF=2−3C. BC+AB=2+4D. BC−AB=2【答案】A.【解析】试题分析:如图,设⊙O与BC的切点为M,连接MO并延长MO交AD于点N,利用“AAS”易证△OMG≌△GCD,所以OM=GC=1, CD=GM=BC-BM-GC=BC-2.又因AB=CD,所以可得BC−AB=2.设AB=a,BC=b,AC=c, ⊙O的半径为r,⊙O是Rt△ABC的内切圆可得r=(a+b-c),所以c=a+b-2.在Rt△ABC中,由勾股定理可得,整理得2ab-4a-4b+4=0,又因BC−AB=2即b=2+a,代入可得2a(2+a)-4a-4(2+a)+4=0,解得,所以,即可得BC+AB=2+4. 再设DF=x,在Rt△ONF中,FN=,OF=x,ON=,由勾股定理可得,解得,所以CD−DF=,CD+DF=.综上只有选项A错误,故答案选A.考点:矩形的性质;直角三角形内切圆的半径与三边的关系;折叠的性质;勾股定理;10.如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y=(x<0)图象上一点,AO的延长线交函数y=(x>0,k是不等于0的常数)的图象于点C,点A关于y轴的对称点为A′,点C 关于x轴的对称点为C′,连接CC′,交x轴于点B,连结AB,AA′,A′C′,若△ABC的面积等于6,则由线段AC,CC′,C′A′,A′A所围成的图形的面积等于( )A. 8B. 10C. 3D. 4【答案】B.【解析】试题分析:如图,连接O A′,由点A和点A′关于y轴的对称可得∠AOM=∠A′OM,又因∠AOM+∠BOC=90°, ∠A′OM +∠A′OB=90°,根据等角的余角相等可得∠BOC= A′OB;又因点C与点C′关于x轴的对称,所以点A、A′、C′三点在同一直线上.设点A的坐标为(m,),直线AC 经过点A,可求的直线AC的表达式为.直线AC与函数y=一个交点为点C,则可求得点C的坐标当k<0时为(mk,),当k>0时为(-mk,),根据△ABC的面积等于6可得,解得.或,解得,所以y=.根据反比例函数比例系数k的几何意义和轴对称的性质可得△AO A′的面积为1,△CO C′的面积为9,所以线段AC,CC′,C′A′,A′A所围成的图形的面积等于△AO A′的面积+△CO C′的面积,即线段AC,CC′,C′A′,A′A所围成的图形的面积等于10,故答案选B.考点:反比例函数与一次函数的综合题;反比例函数与一次函数的交点坐标;反比例函数比例系数k的几何意义和轴对称的性质.二、填空题(本题有6小题,每小题4分,共24分)11.计算:23×()2=_______________________________【答案】2.考点:有理数的运算.12.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是_________________________千米/分钟.【答案】千米/分钟.【解析】试题分析:由图象可得,小明10分钟走了2千米路程,根据速度等于路程除以时间即可计算出小明的骑车速度.考点:函数图象.12.在“争创美丽校园,争做文明学生”示范校评比活动中,10位评委给某校的评分情况如下表所示:评分(分) 80 85 90 95评委人数 1 2 5 2则这10位评委评分的平均数是_________________________分【答案】89.考点:平均数的计算方法.14.如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于_____________________.【答案】.【解析】试题分析:由题意可知,∠AOC+∠BOD=180°—120°=60°,图中阴影部分的面积等于.考点:扇形的面积公式.15.如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一个交点分别为M、N,如果点A与点B,点M与点N都关于原点O成中心对称,则抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是_______________________和_________________________【答案】,(答案不唯一,只要符合条件即可).【解析】试题分析:因点A与点B,点M与点N都关于原点O成中心对称,所以把抛物线C2看成抛物线C1以点O为旋转中心旋转180°得到的,由此即可知a1,a2互为相反数,抛物线C1和C2的对称轴直线关于y轴对称,由此可得出b1=b2. 抛物线C1和C2都经过原点,可得c1=c2,设点A(m,n),由题意可知B(-m,-n),由勾股定理可得.由图象可知MN=︱4m︱,又因四边形ANBM是矩形,所以AB=MN,即,解得,设抛物线的表达式为,任意确定m的一个值,根据确定n的值,抛物线过原点代入即可求得表达式,然后在确定另一个表达式即可.l例如,当m=1时,n=,抛物线的表达式为,把x=0,y=0代入解得a=,即,所以另一条抛物线的表达式为.考点:旋转、矩形、二次函数综合题.16.已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推…,若A1C1=2,且点A,D2,D3,…,D10都在同一直线上,则正方形A9C9C10D10的边长是__________________________【答案】.考点:正方形的性质;相似三角形的判定及性质;规律探究题.三、简答题(本题有8小题,共66分)17.(6分)计算:【答案】a+b.考点:分式的运算.18. (6分)解不等式组【答案】.【解析】试题分析:分别求出这两个不等式的解集,这两个不等式的解集的公共部分即为不等式组的解集.试题解析:解不等式(1)得,x<6,解不等式(2)得,x>1∴不等式组的解集是.考点:一元一次不等式组的解法.19. (6分)已知y是x的一次函数,当x=3时,y=1;当x=−2时,y=−4,求这个一次函数的解析式. 【答案】y=x—2.考点:用待定系数法求函数解析式.20.(8分)如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC的中点,连结DE.(1)若AD=DB,OC=5,求切线AC的长.(2)求证:ED是⊙O的切线.【答案】(1)AC=10;(2)详见解析.试题解析:(1)连接CD,∵BC是⊙O的直径,∴∠BDC=90°,即CD⊥AB,∵AD=DB∴AC=BC=2OC=10.(2)连接OD,∵∠ADC=90°,E为AC的中点,∴DE=EC=AC, ∴∠1=∠2,∵OD=OC, ∠3=∠4,∵AC切⊙O于点C,∴AC⊥OC.∴∠1+∠3=∠2+∠4,即DE⊥OD,∴DE是⊙O的切线.考点:圆周角定理的推论;切线的性质定理;切线的判定定理.21.(8分)为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团,为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):某校被调查学生选择社团意向统计表选择意向文学鉴赏科学实验音乐舞蹈手工编织其他所占百分比 a 35% b 10% c 根据统计图表中的信息,解答下列问题:(1)求本次调查的学生总人数及a,b,c的值.(2)将条形统计图补充完整(温馨提示:请画在答题卷相对应的图上).(3)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数.【答案】(1)200人,a=30%,b=20%,c=5%;(2)图见解析;(3)420人.(2)补全统计图如图所示;(3)全校选择“科学实验”社团的学生人数约为1200×35%=420(人).考点:条形统计图;用样本估计总体.22.(10分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.【答案】(1) 原计划每天生产零件2400个,规定的天数是10天;(2)原计划安排的工人人数为480人.【解析】试题分析:(1)设原计划每天生产零件x个,根据相等关系“原计划生产24000个零件所用时间=实际生产(24000+300)个零件所用的时间”可列方程,解出x即为原计划每天生产的零件个数,再代入即可求得规定天数;(2)设原计划安排的工人人数为y人,根据“(5组机器人生产流水线每天生产的零件个数+原计划每天生产的零件个数)×(规定天数-2)=零件总数24000个”可列方程[5×20×(1+20%)×+2400] ×(10-2)=24000,解得y的值即为原计划安排的工人人数.试题解析:(1)解:设原计划每天生产零件x个,由题意得,,解得x=2400,经检验,x=2400是原方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产零件2400个,规定的天数是10天.考点:分式方程的应用.23 (10分)问题背景:已知在△ABC中,AB边上的动点D由A向B运动(与A,B不重合),点E 与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),连结DE交AC于点F,点H 是线段AF上一点(1)初步尝试:如图1,若△ABC是等边三角形,DH⊥AC,且点D,E的运动速度相等,求证:HF=AH+CF小王同学发现可以由以下两种思路解决此问题:思路一:过点D作DG∥BC,交AC于点G,先证GH=AH,再证GF=CF,从而证得结论成立. 思路二:过点E作EM⊥AC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立.请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分) (2)类比探究:如图2,若在△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且点D,E的运动速度之比是:1,求的值.(3)延伸拓展:如图3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记=m,且点D、E 的运动速度相等,试用含m的代数式表示(直接写出结果,不必写解答过程).【答案】(1)详见解析;(2)=2 ;(3) .【解析】试题分析:(1)(选择思路一):过点D作DG∥BC,交AC于点G,如图1,易证△ADG是等边三角形,根据等边三角形的性质可得GD=AD=CE,GH=AH,再由平行线的性质可得∠GDF=∠CEF, ∠DGF=∠ECF,又因GD=AD=CE,根据“ASA”可证△GDF≌△CEF,由全等三角形的对应边相等可得GF=CF,所以GH+GF=AH+CF,即HF=AH+CF. (选择思路二):过点E作EM⊥AC,交AC的延长线于点M,如图1,先证△ADH≌△CEM,由全等三角形的对应边相等可得AH=CM,DH=EM, 又因∠DHF=∠EMF=90°, ∠DFH=∠EFM,所以△DFH≌△EFM,即可得HF=MF=CM+CF=AH+CF.(2))过点D作DG∥BC,交AC于点G,如图2, 可证AD=GD, 由题意可知,AD=CE,所以GD=CE,再证△GDF≌△CEF,由全等三角形的对应边相等可得GF=CF,所以GH+GF=AH+CF,即HF=AH+CF,即可得=2.(3)过点D作DG∥BC,交AC于点G,如图3,可得AD=AG,DH=DG,AD=EC,所以,又因DG∥BC,可得,所以由比例的性质可得,即,所以.试题解析:(1)证明:方法一(选择思路一),过点D作DG∥BC,交AC于点G,如图1,∵△ABC是等边三角形,∴∠ADG=∠B=60°, ∠A=60°,∴△ADG是等边三角形,∴GD=AD=CE,∵DH⊥AC,GH=AH,∵DG∥BC, ∴∠GDF=∠CEF, ∠DGF=∠ECF,∴△GDF≌△CEF, ∴GF=CF,∴GH+GF=AH+CF,即HF=AH+CF.(2)过点D作DG∥BC,交AC于点G,如图2,则∠ADG=∠B=90°,∵∠BAC=∠ADH=30°,∴∠HGD=∠HDG=60°,∴AH=GH=GD,AD=GD,由题意可知,AD=CE,∴GD=CE,∵DG∥BC, ∴∠GDF=∠CEF,∠DGF=∠ECF,∴△GDF≌△CEF, ∴GF=CF,∴GH+GF=AH+CF,即HF=AH+CF,∴=2.(3) .考点:等边三角形的判定及性质;全等三角形的判定及性质;平行线的性质;比例的性质.24.面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.(1)如图1,若该抛物线经过原点O,且a=.①求点D的坐标及该抛物线的解析式.②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由.(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD 互余,若符合条件的Q点的个数是4个,请直接写出a的取值范围.【答案】(1) ①D(3,1),;②在抛物线上存在点,使得∠POB与∠BCD互余.(2)a的取值范围是.【解析】试题分析:(1) ①过点D作DF⊥x轴于点F,可证△AOB≌△BFD,即可求得D点的坐标,把a=,点D的坐标代入抛物线即可求抛物线的解析式. ②由C、D两点的纵坐标都为1可知CD∥x轴,所以∠BCD=∠ABO,又因∠BAO与∠BCD互余,若要使得∠POB与∠BCD互余,则需满足∠POB=∠BAO, 设点P的坐标为(x,).分两种情况:第一种情况,当点P在x轴上方时,过点P作PG⊥x轴于点G,由tan∠POB=tan∠BAO=可得,解得x的值后代入求得的值即可得点P的坐标. 第一种情况,当点P在x轴下方时,利用同样的方法可求点P的坐标.(2)抛物线y=ax2+bx+c过点E、D,代入可得,解得,所以,分两种情况:①当抛物线y=ax2+bx+c开口向下时,满足∠QOB与∠BCD互余且符合条件的Q点的个数是4个,点Q在x轴的上、下方各有两个,点Q在x轴的上方时,直线OQ与抛物线y=ax2+bx+c有两个交点,抛物线y=ax2+bx+c与x轴的交点必须在x轴的正半轴上,与y轴的交点在y轴的负半轴,所以3a+1<0,解得a<,当a<符合条件的点Q有两个, 点Q在x轴的上方时,直线OQ与抛物线y=ax2+bx+c有两个交点,符合条件的点Q有两个.所以当a<,抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余,若符合条件的Q点的个数是4个;②当抛物线y=ax2+bx+c开口向上时,满足∠QOB与∠BCD互余且符合条件的Q点的个数是4个,点Q在x轴的上、下方各有两个,当点Q在x轴的上方时,直线OQ与抛物线y=ax2+bx+c 有两个交点,符合条件的点Q有两个. 当点Q在x轴的下方时,直线OQ必须与抛物线y=ax2+bx+c有两个交点,符合条件的点Q才有两个.由题意可求的直线OQ的解析式为,直线OQ 与抛物线y=ax2+bx+c由两个交点,所以,方程有两个不相等的实数根所以△=,即,画出二次函数图象并观察可得的解集为或(不合题意舍去),所以当,在x轴的下方符合条件的点Q有两个.所以当,抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余,若符合条件的Q点的个数是4个.综上,当a<或时,抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余,符合条件的Q点的个数是4个.试题解析:解:(1) ①过点D作DF⊥x轴于点F,如图所示.∵∠DBF+∠ABO=90°,∠BAO+∠ABO=90°,∴∠DBF=∠BAO,又∵∠AOB=∠BFD=90°,AB=BD,∴△AOB≌△BFD,∴DF=BO=1,BF=AO=2,∴D点的坐标是(3,1),根据题意得,,∴,∴该抛物线的解析式为.(Ⅰ)当点P在x轴的上方时,过点P作PG⊥x轴于点G, 则tan∠POB=tan∠BAO,即,∴,解得,∴,∴点P的坐标是.(2)a的取值范围是.考点:二次函数综合题.。
浙江省湖州市中考数学一模试卷(含解析)
2017年浙江省湖州四中教育集团中考数学一模试卷一、选择题(本题有10小题,每小题3分,共30分)1.﹣5的相反数是()A.﹣5 B.5 C.﹣ D.2.下面几个几何体,主视图是圆的是()A.B.C.D.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10104.如图是二次函数y=ax2+bx+c的图象,下列结论错误的是()A.二次函数y=ax2+bx+c的最大值为4B.常数项c为3C.一元二次方程ax2+bx+c=0的两根之和为﹣2D.使y≤3成立的x的取值范围是x≥05.在Rt△ABC中,∠C=90°,sinA=,BC=6,则AB=()A.4 B.6 C.8 D.106.如图,河堤横断面迎水坡AB的坡比是1:,堤高BC=10m,则坡面AB的长度是(A.15m B.20m C.20m D.10m7.为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如表:则这30名同学每天使用的零花钱的众数和中位数分别是()A.4,3 B.4,3.5 C.3.5,3.5 D.3.5,48.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100°B.80° C.60° D.50°9.在平面直角坐标系中,点O为坐标原点,点A、B、C的坐标分别为A(,0)、B(3,0)、C(0,5),点D在第一象限内,且∠ADB=60°,则线段CD的长的最小值是()A.2﹣2 B.2C.2D.210.在数学活动课上,老师出示两张等腰三角形纸片,如图所示.图1的三角形边长分别为4,4,2;图2的三角形的腰长也为4,底角等于图1中三角形的顶角;某学习小组将这两张纸片在同一平面内拼成如图3的四边形OABC,连结AC.该学习小组经探究得到以下四个结论,其中错误的是()A.∠OCB=2∠ACB B.∠OAB+∠OAC=90°C.AC=2 D.BC=4二、填空题(本大题有6小题,每小题4分,共24分)11.若分式有意义,则x的取值范围为.12.已知α是锐角,tanα=2cos30°,那么α= 度.13.为了考察甲、乙两种小麦的长势,分别从中抽出20株测得其高度,并求得它们的方差分别为S甲2=3.6,S乙2=15.8,则种小麦的长势比较整齐.14.如图,点G是△ABC的重心,联结AG并延长交BC于点D,GE∥AB交BC与E,若AB=6,那么GE= .15.如图,在平面直角坐标系中,点C(0,4),射线CE∥x轴,直线y=﹣x+b交线段OC 于点B,交x轴于点A,D是射线CE上一点.若存在点D,使得△ABD恰为等腰直角三角形,则b的值为.16.阅读下面材料:如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2=交于A(1,3)和B(﹣3,﹣1)两点.观察图象可知:当x=﹣3或1时,y1=y2.(1)通过观察函数的图象,可以得到不等式ax+b>的解集.(2)参考观察函数的图象方法,解决问题:关于x的不等式x2+a﹣<0(a>0)只有一个整数解,则a的取值范围.三、解答题(本大题共8小题,共66分.)17.计算:(π﹣2016)0+|1﹣|+2﹣1﹣2sin45°.18.解方程:.19.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.20.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.21.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.22.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.23.如图,在平面直角坐标系中,直线y=kx+b经过点A(2,0),B(0,1),动点P是x轴正半轴上的动点,过点P作PC⊥x轴,交直线AB于点C,以OA,AC为边构造▱OACD,设点P 的横坐标为m.(1)求直线AB的函数表达式;(2)若四边形OACD恰是菱形,请求出m的值;(3)在(2)的条件下,y轴的正半轴上是否存在点Q,连结CQ,使得∠OQC+∠ODC=180°.若存在,直接写出所有符合条件的点Q的坐标,若不存在,则说明理由.24.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k的值;若不存在,请说明理由.2017年浙江省湖州四中教育集团中考数学一模试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.﹣5的相反数是()A.﹣5 B.5 C.﹣ D.【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣5的相反数是5.故选:B.2.下面几个几何体,主视图是圆的是()A.B.C.D.【考点】简单几何体的三视图.【分析】分别判断A,B,C,D的主视图,即可解答.【解答】解:A、主视图为正方形,故错误;B、主视图为圆,正确;C、主视图为三角形,故错误;D、主视图为长方形,故错误;故选:B.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 400 000 000=4.4×109,故选:B.4.如图是二次函数y=ax2+bx+c的图象,下列结论错误的是()A.二次函数y=ax2+bx+c的最大值为4B.常数项c为3C.一元二次方程ax2+bx+c=0的两根之和为﹣2D.使y≤3成立的x的取值范围是x≥0【考点】二次函数的性质;二次函数的最值.【分析】利用二次函数的性质结合二次函数的图象确定符合条件的选项即可;【解答】解:A、观察图象知最高点为(﹣1,4),故最大值为4正确,不符合题意;B、与y轴的交点为(0,3),故常数项为3,正确,不符合题意;C、一元二次方程ax2+bx+c=0的两根之和为﹣3+1=﹣2,正确,不符合题意;D、使y≤3成立的x的取值范围是x≤﹣2或y≥0,故错误,符合题意;故选D.5.在Rt△ABC中,∠C=90°,sinA=,BC=6,则AB=()A.4 B.6 C.8 D.10【考点】解直角三角形.【分析】在直角三角形ABC中,利用锐角三角函数定义表示出sinA,将sinA的值与BC的长代入求出AB的长即可.【解答】解:在Rt△ABC中,∠C=90°,sinA==,BC=6,∴AB===10,故选D6.如图,河堤横断面迎水坡AB的坡比是1:,堤高BC=10m,则坡面AB的长度是(A.15m B.20m C.20m D.10m【考点】解直角三角形的应用﹣坡度坡角问题.【分析】在Rt△ABC中,已知了坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.【解答】解:在Rt△ABC中,∵BC=10m,tanA=1:,∴AC=BC÷tanA=10m,∴AB==20(m).故选:C.7.为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如表:则这30名同学每天使用的零花钱的众数和中位数分别是()A.4,3 B.4,3.5 C.3.5,3.5 D.3.5,4【考点】众数;中位数.【分析】利用众数的定义可以确定众数在第三组,由于张华随机调查了20名同学,根据表格数据可以知道中位数是按从小到大排序,第15个与第16个数的平均数.【解答】解:∵4出现了9次,它的次数最多,∴众数为4.∵张华随机调查了30名同学,∴根据表格数据可以知道中位数=(3+4)÷2=3.5,即中位数为3.5.故选B.8.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100°B.80° C.60° D.50°【考点】翻折变换(折叠问题).【分析】先求出∠A'=100,再利用圆内接四边形的性质即可.【解答】解:如图,翻折△ACD,点A落在A'处,∴∠A'=∠A=100°,∵四边形A'CBD是⊙O的内接四边形,∴∠A'+∠B=180°,∴∠B=80°,故选B.9.在平面直角坐标系中,点O为坐标原点,点A、B、C的坐标分别为A(,0)、B(3,0)、C(0,5),点D在第一象限内,且∠ADB=60°,则线段CD的长的最小值是()A.2﹣2 B.2C.2D.2【考点】点与圆的位置关系;坐标与图形性质;圆周角定理.【分析】作圆,求出半径和PC的长度,判出点D只有在CP上时CD最短,CD=CP﹣DP求解.【解答】解:作圆,使∠ADB=60°,设圆心为P,连结PA、PB、PC,PE⊥AB于E,如图所示:∵A(,0)、B(3,0),∴E(2,0)又∠ADB=60°,∴∠APB=120°,∴PE=1,PA=2PE=2,∴P(2,1),∵C(0,5),∴PC==2,又∵PD=PA=2,∴只有点D在线段PC上时,CD最短(点D在别的位置时构成△CDP)∴CD最小值为:2﹣2.故选:C.10.在数学活动课上,老师出示两张等腰三角形纸片,如图所示.图1的三角形边长分别为4,4,2;图2的三角形的腰长也为4,底角等于图1中三角形的顶角;某学习小组将这两张纸片在同一平面内拼成如图3的四边形OABC,连结AC.该学习小组经探究得到以下四个结论,其中错误的是()A.∠OCB=2∠ACB B.∠OAB+∠OAC=90°C.AC=2 D.BC=4【考点】解直角三角形;等腰三角形的性质.【分析】A、根据∠OBC=∠AOB即可得出OA∥BC,由平行线的性质即可得出∠OAC=∠ACB,再由等腰三角形的性质即可得出∠OAC=∠OCA,替换后即可得出∠OCB=2∠ACB,结论A正确;B、根据等腰三角形的性质结合三角形内角和定理即可得出∠OAB+∠AOB=90°,结合结论A即可得出∠OAB+∠OAC=90°,结论B正确;C、过点O作OE⊥AB于点E,过点O作OF⊥AC于点F,则△AOE≌△OAE,利用勾股定理即可AF=OE==,从而得出AC=2AF=2,结论C正确;D、过点B作BM⊥OA于点M,过点O作ON⊥BC于点N,则△AOE ∽△ABM,根据相似三角形的性质即可得出AM=,OM=AO﹣AM=,由BC∥AO、BM⊥AO、ON ⊥BC即可得出四边形MBNO为矩形,再根据矩形的性质以及等腰三角形的性质即可得出BC=2BN=2OM=7,结论D错误.综上即可得出结论.【解答】解:A、∵∠OBC=∠AOB,∴OA∥BC,∴∠OAC=∠ACB.∵OA=OC,∴∠OAC=∠OCA,∴∠OCA=∠ACB,∴∠OCB=2∠ACB,结论A正确;B、∵OA=OB,∴∠OAB+∠AOB+∠OBA=180°.∵∠OAC=∠OCB=∠AOB,∠OAB=∠OBA,∴∠OAB+∠AOB=90°,即∠OAB+∠OAC=90°,结论B正确;C、过点O作OE⊥AB于点E,过点O作OF⊥AC于点F,如图4所示.∵OA=OB,∴∠AOE=∠AOB=∠OAE.在△AOE和△OAE中,,∴△AOE≌△OAE(AAS),∴AF=OE==,∴AC=2AF=2,结论C正确;D、过点B作BM⊥OA于点M,过点O作ON⊥BC于点N,如图5所示.∵∠OAB+∠AOE=90°,∠MAB+∠ABM=90°,∴∠AOE=∠ABM.∵∠AEO=∠AMB=90°,∴△AOE∽△ABM,∴,∴AM=,OM=AO﹣AM=.∵BC∥AO,BM⊥AO,ON⊥BC,∴四边形MBNO为矩形,∴BN=OM=.∵OB=OC,ON⊥BC,∴BC=2BN=7,结论D错误.故选D.二、填空题(本大题有6小题,每小题4分,共24分)11.若分式有意义,则x的取值范围为x≠2 .【考点】分式有意义的条件.【分析】根据分母不为零分式有意义,可得答案.【解答】解:由题意,得x﹣2≠0.解得x≠2,故答案为:x≠2.12.已知α是锐角,tanα=2cos30°,那么α= 60 度.【考点】特殊角的三角函数值.【分析】根据30°角的余弦值等于,正切值是的锐角为60°解答即可.【解答】解:∵tanα=2cos30°=2×=,∴α=60°.故答案为:60.13.为了考察甲、乙两种小麦的长势,分别从中抽出20株测得其高度,并求得它们的方差分别为S甲2=3.6,S乙2=15.8,则甲种小麦的长势比较整齐.【考点】方差.【分析】根据方差的定义判断.方差越小小麦的长势越整齐.【解答】解:因为S甲2=3.6<S乙2=15.8,方差小的为甲,所以长势比较整齐的小麦是甲.故填甲.14.如图,点G是△ABC的重心,联结AG并延长交BC于点D,GE∥AB交BC与E,若AB=6,那么GE= 2 .【考点】三角形的重心;平行线分线段成比例.【分析】先根据点G是△ABC的重心,得出DG:DA=1:3,再根据平行线分线段成比例定理,得出=,即=,进而得出GE的长.【解答】解:∵点G是△ABC的重心,∴DG:AG=1:2,∴DG:DA=1:3,∵GE∥AB,∴=,即=,∴EG=2,故答案为:2.15.如图,在平面直角坐标系中,点C(0,4),射线CE∥x轴,直线y=﹣x+b交线段OC 于点B,交x轴于点A,D是射线CE上一点.若存在点D,使得△ABD恰为等腰直角三角形,则b的值为或或2 .【考点】一次函数图象上点的坐标特征;等腰直角三角形.【分析】分三种情况讨论:①当∠ABD=90°时,证得△DBC≌△BAO,得出BC=OA,即4﹣b=2b,求得b=;②当∠ADB=90°时,作AF⊥CE于F,同理证得△BDC≌△DAF,得出BC=DF,即2b﹣4=4﹣b,求得b=;③当∠DAB=90°时,作DF⊥OA于F,同理证得△AOB≌△DFA,得出OA=DF,即2b=4,解得b=2.【解答】解:①当∠ABD=90°时,如图1,则∠DBC+∠ABO=90°,∴∠DBC=∠BAO,由直线y=﹣x+b交线段OC于点B,交x轴于点A可知OB=b,OA=2b,∵点C(0,4),∴OC=4,∴BC=4﹣b,在△DBC和△BAO中,∴△DBC≌△BAO(AAS),∴BC=OA,即4﹣b=2b,∴b=;②当∠ADB=90°时,如图2,作AF⊥CE于F,同理证得△BDC≌△DAF,∴CD=AF=4,BC=DF,∵OB=b,OA=2b,∴BC=DF=2b﹣4,∵BC=4﹣b,∴2b﹣4=4﹣b,∴b=;③当∠DAB=90°时,如图3,作DF⊥OA于F,同理证得△AOB≌△DFA,∴OA=DF,∴2b=4,∴b=2;综上,b的值为或或2.故答案为或或2.16.阅读下面材料:如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2=交于A(1,3)和B(﹣3,﹣1)两点.观察图象可知:当x=﹣3或1时,y1=y2.(1)通过观察函数的图象,可以得到不等式ax+b>的解集x>1或﹣3<x<0 .(2)参考观察函数的图象方法,解决问题:关于x的不等式x2+a﹣<0(a>0)只有一个整数解,则a的取值范围0<a<3 .【考点】反比例函数与一次函数的交点问题.【分析】(1)根据图象中两个交点的坐标可以得出不等式的解集;(2)根据不等式确定两个函数:y=和y=x2+a,画图象观察得出结论.【解答】解:(1)由图象得:不等式ax+b>的解集为:x>1或﹣3<x<0;(2)x2+a﹣<0,x2+a<,画函数y=和y=x2的图象,∵关于x的不等式x2+a﹣<0(a>0)只有一个整数解,∴整数解为x=1,当x=1时,x2+a﹣=0,a=3,∴0<a<3,故答案为:0<a<3.三、解答题(本大题共8小题,共66分.)17.计算:(π﹣2016)0+|1﹣|+2﹣1﹣2sin45°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及零指数幂、绝对值、负整数指数幂、二次根式化简、特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(π﹣2016)0+|1﹣|+2﹣1﹣2sin45°=1+﹣1+﹣2×=1+﹣1+﹣=.18.解方程:.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2+2x﹣x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解.19.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.【考点】全等三角形的判定与性质;三角形的外角性质.【分析】①利用SAS即可得证;②由全等三角形对应角相等得到∠AEB=∠CDB,利用外角的性质求出∠AEB的度数,即可确定出∠BDC的度数.【解答】①证明:在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);②解:∵在△ABC中,AB=CB,∠ABC=90°,∴∠BAC=∠ACB=45°,由①得:△ABE≌△CBD,∴∠AEB=∠BDC,∵∠AEB为△AEC的外角,∴∠AEB=∠ACB+∠CAE=30°+45°=75°,则∠BDC=75°.20.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是30 ;扇形统计图中的圆心角α等于144°;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.【考点】列表法与树状图法;扇形统计图;利用频率估计概率.【分析】(1)根据题意列式求值,根据相应数据画图即可;(2)根据题意列表,然后根据表中数据求出概率即可.【解答】解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为:30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,记小红和小花抽在相邻两道这个事件为A,∴.21.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)解:在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD===4,∴S△OCD===8,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S阴影=S△COD﹣S扇形OBC∴S阴影=8﹣,∴阴影部分的面积为8﹣.22.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.【考点】二次函数的应用;一次函数的应用.【分析】(1)利用待定系数法将图中点的坐标求出一次函数解析式即可;(2)根据利润=(售价﹣成本)×销售量列出函数关系式;(3)令函数关系式Q≥600,解得x的范围,利用“获利不得高于40%”求得x的最大值,得出销售单价x的范围.【解答】解:(1)设y=kx+b,根据题意得:解得:k=﹣1,b=120.所求一次函数的表达式为y=﹣x+120.(2)利润Q与销售单价x之间的函数关系式为:Q=(x﹣50)(﹣x+120)=﹣x2+170x﹣6000;Q=﹣x2+170x﹣6000=﹣(x﹣85)2+1225;∵成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.∴50≤x≤70,∴当试销单价定为70元时,该商店可获最大利润,最大利润是1000元.(3)依题意得:﹣x2+170x﹣6000≥600,解得:60≤x≤110,∵获利不得高于40%,∴最高价格为50(1+40%)=70,故60≤x≤70的整数.23.如图,在平面直角坐标系中,直线y=kx+b经过点A(2,0),B(0,1),动点P是x轴正半轴上的动点,过点P作PC⊥x轴,交直线AB于点C,以OA,AC为边构造▱OACD,设点P 的横坐标为m.(1)求直线AB的函数表达式;(2)若四边形OACD恰是菱形,请求出m的值;(3)在(2)的条件下,y轴的正半轴上是否存在点Q,连结CQ,使得∠OQC+∠ODC=180°.若存在,直接写出所有符合条件的点Q的坐标,若不存在,则说明理由.【考点】一次函数综合题.【分析】(1)把点A(2,0),B(0,1)代入直线y=kx+b解方程可得;(2)根据菱形的性质得到AC=2,由点C(m,﹣m+1)得到AP=|2﹣m|,CP=﹣m+1,利用勾股定理列方程可得;(3)由四边形OACD是菱形,得到对角相等,∠D=∠OAC,由于点Q在y轴上,所以四边形ACQO的对角互补,得到CQ⊥AC,求得直线CQ的解析式,求出Q点的坐标.【解答】解:(1)把A(2,0),B(O,1)代入y=kx+b,可得,解得,∴直线AB的函数表达式为y=﹣x+1;(2)∵▱OACD是菱形,∴AC=OA=2,∵PC⊥x轴,交直线AB于点C,∴C(m,﹣m+1),∴(2﹣m)2+(﹣m+1)2=22,解得m1=,m2=;(3)由(2)求得m1=,m2=,且C点在直线AB上,∴C点坐标为(,﹣)或(,),∵▱OACD是菱形,∴∠D=∠OAC,要使∠OQC+∠ODC=180°,即;∠OQC+∠OAC=180°,∴四边形QOAC的对角互补,∴∠QOA+∠QCA=180°,∵∠QOA=90°,∴∠QCA=90°,∴QC⊥AB,设Q(0,n),∴直线QC的解析式为y=2x+n,把C点坐标分别代入y=2x+n,可得﹣=2×+n或=2×+n,解得n=﹣4+2或n=﹣4﹣2,∴点Q的坐标为(0,﹣4﹣2)或(0,﹣4+2),综上可知存在满足条件的点Q,其坐标为(0,﹣4﹣2)或(0,﹣4+2).24.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】方法一:(1)当k=1时,联立抛物线与直线的解析式,解方程求得点A、B的坐标;(2)如答图2,作辅助线,求出△ABP面积的表达式,然后利用二次函数的性质求出最大值及点P的坐标;(3)“存在唯一一点Q,使得∠OQC=90°”的含义是,以OC为直径的圆与直线AB相切于点Q,由圆周角定理可知,此时∠OQC=90°且点Q为唯一.以此为基础,构造相似三角形,利用比例式列出方程,求得k的值.需要另外注意一点是考虑直线AB是否与抛物线交于C 点,此时亦存在唯一一点Q,使得∠OQC=90°.方法二:(1)联立直线与抛物线方程求出点A,B坐标.(2)利用面积公式求出P点坐标.(3)列出定点O坐标,用参数表示C,Q点坐标,利用黄金法则二求出k的值.【解答】方法一:解:(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1.联立两个解析式,得:x2﹣1=x+1,解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3,∴A(﹣1,0),B(2,3).(2)设P(x,x2﹣1).如答图2所示,过点P作PF∥y轴,交直线AB于点F,则F(x,x+1).∴PF=y F﹣y P=(x+1)﹣(x2﹣1)=﹣x2+x+2.S△ABP=S△PFA+S△PFB=PF(x F﹣x A)+PF(x B﹣x F)=PF(x B﹣x A)=PF∴S△ABP=(﹣x2+x+2)=﹣(x﹣)2+当x=时,y P=x2﹣1=﹣.∴△ABP面积最大值为,此时点P坐标为(,﹣).(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,则E(﹣,0),F(0,1),OE=,OF=1.在Rt△EOF中,由勾股定理得:EF==.令y=x2+(k﹣1)x﹣k=0,即(x+k)(x﹣1)=0,解得:x=﹣k或x=1.∴C(﹣k,0),OC=k.Ⅰ、假设存在唯一一点Q,使得∠OQC=90°,如答图3所示,则以OC为直径的圆与直线AB相切于点Q,根据圆周角定理,此时∠OQC=90°.设点N为OC中点,连接NQ,则NQ⊥EF,NQ=CN=ON=.∴EN=OE﹣ON=﹣.∵∠NEQ=∠FEO,∠EQN=∠EOF=90°,∴△EQN∽△EOF,∴,即:,解得:k=±,∵k>0,∴k=.∴存在唯一一点Q,使得∠OQC=90°,此时k=.Ⅱ、若直线AB过点C时,此时直线与圆的交点只有另一点Q点,故亦存在唯一一点Q,使得∠OQC=90°,将C(﹣k,0)代入y=kx+1中,可得k=1,k=﹣1(舍去),故存在唯一一点Q,使得∠OQC=90°,此时k=1.综上所述,k=或1时,存在唯一一点Q,使得∠O QC=90°.方法二:(1)略.(2)过点P作x轴垂线,叫直线AB于F,设P(t,t2﹣1),则F(t,t+1)∴S△ABP=(F Y﹣P Y)(B X﹣A X),∴S△ABP=(t+1﹣t2+1)(2+1),∴S△ABP=﹣t2+t+3,当t=时,S△ABP有最大值,∴S△ABP=.(3)∵y=x2+(k﹣1)x﹣k,∴y=(x+k)(x﹣1),当y=0时,x1=﹣k,x2=1,∴C(﹣k,0),D(1,0),点Q在y=kx+1上,设Q(t,kt+1),O(0,0),∵∠OQC=90°,∴CQ⊥OQ,∴K CQ×K OQ=﹣1,∴<∴(k2+1)t2+3kt+1=0有唯一解,∴△=(3k)2﹣4(k2+1)=0,∴k1=,k2=﹣(k>0故舍去),∴k=.。
2015年浙江省湖州市中考数学试题及解析
2015年浙江省湖州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)4.(3分)(2015•湖州)若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,6.(3分)(2015•湖州)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()7.(3分)(2015•湖州)一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是B8.(3分)(2015•湖州)如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA 交小圆于点D,若OD=2,tan∠OAB=,则AB的长是()9.(3分)(2015•湖州)如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG.点F,G分别在边AD,BC上,连结OG,DG.若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是()C+AB=210.(3分)(2015•湖州)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y=(x<0)图象上一点,AO的延长线交函数y=(x>0,k是不等于0的常数)的图象于点C,点A关于y轴的对称点为A′,点C关于x轴的对称点为C′,交于x轴于点B,连结AB,AA′,A′C′.若△ABC的面积等于6,则由线段AC,CC′,C′A′,A′A所围成的图形的面积等于()二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2015•湖州)计算:23×()2=.12.(4分)(2015•湖州)放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是千米/分钟.13.(4分)(2015•湖州)在“争创美丽校园,争做文明学生”示范校评比活动中,10位评委位评委评分的平均数是分.14.(4分)(2015•湖州)如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于.15.(4分)(2015•湖州)如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是和.16.(4分)(2015•湖州)已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推….若A1C1=2,且点A,D2,D3,…,D10都在同一直线上,则正方形A9C9C10D10的边长是.三、解答题(本题有8个小题,共66分)17.(6分)(2015•湖州)计算:.18.(6分)(2015•湖州)解不等式组.19.(6分)(2015•湖州)已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.20.(8分)(2015•湖州)如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC的中点,连结DE.(1)若AD=DB,OC=5,求切线AC的长;(2)求证:ED是⊙O的切线.21.(8分)(2015•湖州)为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下根据统计图表中的信息,解答下列问题:(1)求本次调查的学生总人数及a,b,c的值;(2)将条形统计图补充完整;(3)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数.22.(10分)(2015•湖州)某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.23.(10分)(2015•湖州)问题背景已知在△ABC中,AB边上的动点D由A向B运动(与A,B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),边结DE交AC于点F,点H是线段AF上一点.(1)初步尝试如图1,若△ABC是等边三角形,DH⊥AC,且点D,E的运动速度相等.求证:HF=AH+CF.小五同学发现可以由以下两种思路解决此问题:思路一:过点D作DG∥BC,交AC于点G,先证DH=AH,再证GF=CF,从而证得结论成立;思路二:过点E作EM⊥AC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立.请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分);(2)类比探究如图2,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,且D,E的运动速度之比是:1,求的值;(3)延伸拓展如图3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记=m,且点D,E运动速度相等,试用含m的代数式表示(直接写出结果,不必写解答过程).24.(12分)(2015•湖州)已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣.①求点D的坐标及该抛物线的解析式;②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是4个,请直接写出a的取值范围.2015年浙江省湖州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)4.(3分)(2015•湖州)若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,解:圆锥的弧长为:=24;6.(3分)(2015•湖州)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()BC EF=7.(3分)(2015•湖州)一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是B,8.(3分)(2015•湖州)如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA 交小圆于点D,若OD=2,tan∠OAB=,则AB的长是()OAB==,代入得结果.OAB=,9.(3分)(2015•湖州)如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG.点F,G分别在边AD,BC上,连结OG,DG.若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是()C+AB=2r=((舍去)+4,由勾股定理可得r=(舍去)BC+AB=2,x=4,CD+DF=10.(3分)(2015•湖州)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y=(x<0)图象上一点,AO的延长线交函数y=(x>0,k是不等于0的常数)的图象于点C,点A关于y轴的对称点为A′,点C关于x轴的对称点为C′,交于x轴于点B,连结AB,AA′,A′C′.若△ABC的面积等于6,则由线段AC,CC′,C′A′,A′A所围成的图形的面积等于()))=,根据反比例函数的系数,求出,根据(﹣=6()y=)=,﹣(﹣)b+=12=,二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2015•湖州)计算:23×()2=2.(×=212.(4分)(2015•湖州)放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是0.2千米/分钟.13.(4分)(2015•湖州)在“争创美丽校园,争做文明学生”示范校评比活动中,10位评委位评委评分的平均数是89分.14.(4分)(2015•湖州)如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于π.=﹣π答:图中阴影部分的面积等于π故答案为:π15.(4分)(2015•湖州)如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是y=﹣x2+2x和y=x2+2x.,)xy=+2﹣x x x16.(4分)(2015•湖州)已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推….若A1C1=2,且点A,D2,D3,…,D10都在同一直线上,则正方形A9C9C10D10的边长是.=C===,的边长为;=x=的边长为;的边长为的边长为.故答案为三、解答题(本题有8个小题,共66分)17.(6分)(2015•湖州)计算:.=a+b18.(6分)(2015•湖州)解不等式组.19.(6分)(2015•湖州)已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.代入得:20.(8分)(2015•湖州)如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC的中点,连结DE.(1)若AD=DB,OC=5,求切线AC的长;(2)求证:ED是⊙O的切线.AC21.(8分)(2015•湖州)为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下(1)求本次调查的学生总人数及a,b,c的值;(2)将条形统计图补充完整;(3)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数.22.(10分)(2015•湖州)某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.=×+240023.(10分)(2015•湖州)问题背景已知在△ABC中,AB边上的动点D由A向B运动(与A,B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),边结DE交AC于点F,点H是线段AF上一点.(1)初步尝试如图1,若△ABC是等边三角形,DH⊥AC,且点D,E的运动速度相等.求证:HF=AH+CF.小五同学发现可以由以下两种思路解决此问题:思路一:过点D作DG∥BC,交AC于点G,先证DH=AH,再证GF=CF,从而证得结论成立;思路二:过点E作EM⊥AC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立.请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分);(2)类比探究如图2,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,且D,E的运动速度之比是:1,求的值;(3)延伸拓展如图3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记=m,且点D,E运动速度相等,试用含m的代数式表示(直接写出结果,不必写解答过程).GDCE,得出,得出=m,得出,,即可得出结果.AD=AD==2)解:=m =m=m=m===.24.(12分)(2015•湖州)已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣.①求点D的坐标及该抛物线的解析式;②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是4个,请直接写出a的取值范围.,x x,﹣,﹣+(x x,即==x x=,点的坐标为(,,即==,x x=,点的坐标为(,﹣)(,(﹣,代入可得,解得;BAO==,则直线xx4a+8a+<<﹣或。
浙江省湖州市中考数学一模试卷(含解析)
2017年浙江省湖州四中教育集团中考数学一模试卷一、选择题(本题有10小题,每小题3分,共30分)1.﹣5的相反数是()A.﹣5 B.5 C.﹣ D.2.下面几个几何体,主视图是圆的是()A.B.C.D.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10104.如图是二次函数y=ax2+bx+c的图象,下列结论错误的是()A.二次函数y=ax2+bx+c的最大值为4B.常数项c为3C.一元二次方程ax2+bx+c=0的两根之和为﹣2D.使y≤3成立的x的取值范围是x≥05.在Rt△ABC中,∠C=90°,sinA=,BC=6,则AB=()A.4 B.6 C.8 D.106.如图,河堤横断面迎水坡AB的坡比是1:,堤高BC=10m,则坡面AB的长度是(A.15m B.20m C.20m D.10m7.为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如表:则这30名同学每天使用的零花钱的众数和中位数分别是()A.4,3 B.4,3.5 C.3.5,3.5 D.3.5,48.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100°B.80° C.60° D.50°9.在平面直角坐标系中,点O为坐标原点,点A、B、C的坐标分别为A(,0)、B(3,0)、C(0,5),点D在第一象限内,且∠ADB=60°,则线段CD的长的最小值是()A.2﹣2 B.2C.2D.210.在数学活动课上,老师出示两张等腰三角形纸片,如图所示.图1的三角形边长分别为4,4,2;图2的三角形的腰长也为4,底角等于图1中三角形的顶角;某学习小组将这两张纸片在同一平面内拼成如图3的四边形OABC,连结AC.该学习小组经探究得到以下四个结论,其中错误的是()A.∠OCB=2∠ACB B.∠OAB+∠OAC=90°C.AC=2 D.BC=4二、填空题(本大题有6小题,每小题4分,共24分)11.若分式有意义,则x的取值范围为.12.已知α是锐角,tanα=2cos30°,那么α= 度.13.为了考察甲、乙两种小麦的长势,分别从中抽出20株测得其高度,并求得它们的方差分别为S甲2=3.6,S乙2=15.8,则种小麦的长势比较整齐.14.如图,点G是△ABC的重心,联结AG并延长交BC于点D,GE∥AB交BC与E,若AB=6,那么GE= .15.如图,在平面直角坐标系中,点C(0,4),射线CE∥x轴,直线y=﹣x+b交线段OC 于点B,交x轴于点A,D是射线CE上一点.若存在点D,使得△ABD恰为等腰直角三角形,则b的值为.16.阅读下面材料:如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2=交于A(1,3)和B(﹣3,﹣1)两点.观察图象可知:当x=﹣3或1时,y1=y2.(1)通过观察函数的图象,可以得到不等式ax+b>的解集.(2)参考观察函数的图象方法,解决问题:关于x的不等式x2+a﹣<0(a>0)只有一个整数解,则a的取值范围.三、解答题(本大题共8小题,共66分.)17.计算:(π﹣2016)0+|1﹣|+2﹣1﹣2sin45°.18.解方程:.19.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.20.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.21.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.22.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.23.如图,在平面直角坐标系中,直线y=kx+b经过点A(2,0),B(0,1),动点P是x轴正半轴上的动点,过点P作PC⊥x轴,交直线AB于点C,以OA,AC为边构造▱OACD,设点P 的横坐标为m.(1)求直线AB的函数表达式;(2)若四边形OACD恰是菱形,请求出m的值;(3)在(2)的条件下,y轴的正半轴上是否存在点Q,连结CQ,使得∠OQC+∠ODC=180°.若存在,直接写出所有符合条件的点Q的坐标,若不存在,则说明理由.24.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k的值;若不存在,请说明理由.2017年浙江省湖州四中教育集团中考数学一模试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.﹣5的相反数是()A.﹣5 B.5 C.﹣ D.【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣5的相反数是5.故选:B.2.下面几个几何体,主视图是圆的是()A.B.C.D.【考点】简单几何体的三视图.【分析】分别判断A,B,C,D的主视图,即可解答.【解答】解:A、主视图为正方形,故错误;B、主视图为圆,正确;C、主视图为三角形,故错误;D、主视图为长方形,故错误;故选:B.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 400 000 000=4.4×109,故选:B.4.如图是二次函数y=ax2+bx+c的图象,下列结论错误的是()A.二次函数y=ax2+bx+c的最大值为4B.常数项c为3C.一元二次方程ax2+bx+c=0的两根之和为﹣2D.使y≤3成立的x的取值范围是x≥0【考点】二次函数的性质;二次函数的最值.【分析】利用二次函数的性质结合二次函数的图象确定符合条件的选项即可;【解答】解:A、观察图象知最高点为(﹣1,4),故最大值为4正确,不符合题意;B、与y轴的交点为(0,3),故常数项为3,正确,不符合题意;C、一元二次方程ax2+bx+c=0的两根之和为﹣3+1=﹣2,正确,不符合题意;D、使y≤3成立的x的取值范围是x≤﹣2或y≥0,故错误,符合题意;故选D.5.在Rt△ABC中,∠C=90°,sinA=,BC=6,则AB=()A.4 B.6 C.8 D.10【考点】解直角三角形.【分析】在直角三角形ABC中,利用锐角三角函数定义表示出sinA,将sinA的值与BC的长代入求出AB的长即可.【解答】解:在Rt△ABC中,∠C=90°,sinA==,BC=6,∴AB===10,故选D6.如图,河堤横断面迎水坡AB的坡比是1:,堤高BC=10m,则坡面AB的长度是(A.15m B.20m C.20m D.10m【考点】解直角三角形的应用﹣坡度坡角问题.【分析】在Rt△ABC中,已知了坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.【解答】解:在Rt△ABC中,∵BC=10m,tanA=1:,∴AC=BC÷tanA=10m,∴AB==20(m).故选:C.7.为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如表:则这30名同学每天使用的零花钱的众数和中位数分别是()A.4,3 B.4,3.5 C.3.5,3.5 D.3.5,4【考点】众数;中位数.【分析】利用众数的定义可以确定众数在第三组,由于张华随机调查了20名同学,根据表格数据可以知道中位数是按从小到大排序,第15个与第16个数的平均数.【解答】解:∵4出现了9次,它的次数最多,∴众数为4.∵张华随机调查了30名同学,∴根据表格数据可以知道中位数=(3+4)÷2=3.5,即中位数为3.5.故选B.8.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100°B.80° C.60° D.50°【考点】翻折变换(折叠问题).【分析】先求出∠A'=100,再利用圆内接四边形的性质即可.【解答】解:如图,翻折△ACD,点A落在A'处,∴∠A'=∠A=100°,∵四边形A'CBD是⊙O的内接四边形,∴∠A'+∠B=180°,∴∠B=80°,故选B.9.在平面直角坐标系中,点O为坐标原点,点A、B、C的坐标分别为A(,0)、B(3,0)、C(0,5),点D在第一象限内,且∠ADB=60°,则线段CD的长的最小值是()A.2﹣2 B.2C.2D.2【考点】点与圆的位置关系;坐标与图形性质;圆周角定理.【分析】作圆,求出半径和PC的长度,判出点D只有在CP上时CD最短,CD=CP﹣DP求解.【解答】解:作圆,使∠ADB=60°,设圆心为P,连结PA、PB、PC,PE⊥AB于E,如图所示:∵A(,0)、B(3,0),∴E(2,0)又∠ADB=60°,∴∠APB=120°,∴PE=1,PA=2PE=2,∴P(2,1),∵C(0,5),∴PC==2,又∵PD=PA=2,∴只有点D在线段PC上时,CD最短(点D在别的位置时构成△CDP)∴CD最小值为:2﹣2.故选:C.10.在数学活动课上,老师出示两张等腰三角形纸片,如图所示.图1的三角形边长分别为4,4,2;图2的三角形的腰长也为4,底角等于图1中三角形的顶角;某学习小组将这两张纸片在同一平面内拼成如图3的四边形OABC,连结AC.该学习小组经探究得到以下四个结论,其中错误的是()A.∠OCB=2∠ACB B.∠OAB+∠OAC=90°C.AC=2 D.BC=4【考点】解直角三角形;等腰三角形的性质.【分析】A、根据∠OBC=∠AOB即可得出OA∥BC,由平行线的性质即可得出∠OAC=∠ACB,再由等腰三角形的性质即可得出∠OAC=∠OCA,替换后即可得出∠OCB=2∠ACB,结论A正确;B、根据等腰三角形的性质结合三角形内角和定理即可得出∠OAB+∠AOB=90°,结合结论A即可得出∠OAB+∠OAC=90°,结论B正确;C、过点O作OE⊥AB于点E,过点O作OF⊥AC于点F,则△AOE≌△OAE,利用勾股定理即可AF=OE==,从而得出AC=2AF=2,结论C正确;D、过点B作BM⊥OA于点M,过点O作ON⊥BC于点N,则△AOE ∽△ABM,根据相似三角形的性质即可得出AM=,OM=AO﹣AM=,由BC∥AO、BM⊥AO、ON ⊥BC即可得出四边形MBNO为矩形,再根据矩形的性质以及等腰三角形的性质即可得出BC=2BN=2OM=7,结论D错误.综上即可得出结论.【解答】解:A、∵∠OBC=∠AOB,∴OA∥BC,∴∠OAC=∠ACB.∵OA=OC,∴∠OAC=∠OCA,∴∠OCA=∠ACB,∴∠OCB=2∠ACB,结论A正确;B、∵OA=OB,∴∠OAB+∠AOB+∠OBA=180°.∵∠OAC=∠OCB=∠AOB,∠OAB=∠OBA,∴∠OAB+∠AOB=90°,即∠OAB+∠OAC=90°,结论B正确;C、过点O作OE⊥AB于点E,过点O作OF⊥AC于点F,如图4所示.∵OA=OB,∴∠AOE=∠AOB=∠OAE.在△AOE和△OAE中,,∴△AOE≌△OAE(AAS),∴AF=OE==,∴AC=2AF=2,结论C正确;D、过点B作BM⊥OA于点M,过点O作ON⊥BC于点N,如图5所示.∵∠OAB+∠AOE=90°,∠MAB+∠ABM=90°,∴∠AOE=∠ABM.∵∠AEO=∠AMB=90°,∴△AOE∽△ABM,∴,∴AM=,OM=AO﹣AM=.∵BC∥AO,BM⊥AO,ON⊥BC,∴四边形MBNO为矩形,∴BN=OM=.∵OB=OC,ON⊥BC,∴BC=2BN=7,结论D错误.故选D.二、填空题(本大题有6小题,每小题4分,共24分)11.若分式有意义,则x的取值范围为x≠2 .【考点】分式有意义的条件.【分析】根据分母不为零分式有意义,可得答案.【解答】解:由题意,得x﹣2≠0.解得x≠2,故答案为:x≠2.12.已知α是锐角,tanα=2cos30°,那么α= 60 度.【考点】特殊角的三角函数值.【分析】根据30°角的余弦值等于,正切值是的锐角为60°解答即可.【解答】解:∵tanα=2cos30°=2×=,∴α=60°.故答案为:60.13.为了考察甲、乙两种小麦的长势,分别从中抽出20株测得其高度,并求得它们的方差分别为S甲2=3.6,S乙2=15.8,则甲种小麦的长势比较整齐.【考点】方差.【分析】根据方差的定义判断.方差越小小麦的长势越整齐.【解答】解:因为S甲2=3.6<S乙2=15.8,方差小的为甲,所以长势比较整齐的小麦是甲.故填甲.14.如图,点G是△ABC的重心,联结AG并延长交BC于点D,GE∥AB交BC与E,若AB=6,那么GE= 2 .【考点】三角形的重心;平行线分线段成比例.【分析】先根据点G是△ABC的重心,得出DG:DA=1:3,再根据平行线分线段成比例定理,得出=,即=,进而得出GE的长.【解答】解:∵点G是△ABC的重心,∴DG:AG=1:2,∴DG:DA=1:3,∵GE∥AB,∴=,即=,∴EG=2,故答案为:2.15.如图,在平面直角坐标系中,点C(0,4),射线CE∥x轴,直线y=﹣x+b交线段OC 于点B,交x轴于点A,D是射线CE上一点.若存在点D,使得△ABD恰为等腰直角三角形,则b的值为或或2 .【考点】一次函数图象上点的坐标特征;等腰直角三角形.【分析】分三种情况讨论:①当∠ABD=90°时,证得△DBC≌△BAO,得出BC=OA,即4﹣b=2b,求得b=;②当∠ADB=90°时,作AF⊥CE于F,同理证得△BDC≌△DAF,得出BC=DF,即2b﹣4=4﹣b,求得b=;③当∠DAB=90°时,作DF⊥OA于F,同理证得△AOB≌△DFA,得出OA=DF,即2b=4,解得b=2.【解答】解:①当∠ABD=90°时,如图1,则∠DBC+∠ABO=90°,∴∠DBC=∠BAO,由直线y=﹣x+b交线段OC于点B,交x轴于点A可知OB=b,OA=2b,∵点C(0,4),∴OC=4,∴BC=4﹣b,在△DBC和△BAO中,∴△DBC≌△BAO(AAS),∴BC=OA,即4﹣b=2b,∴b=;②当∠ADB=90°时,如图2,作AF⊥CE于F,同理证得△BDC≌△DAF,∴CD=AF=4,BC=DF,∵OB=b,OA=2b,∴BC=DF=2b﹣4,∵BC=4﹣b,∴2b﹣4=4﹣b,∴b=;③当∠DAB=90°时,如图3,作DF⊥OA于F,同理证得△AOB≌△DFA,∴OA=DF,∴2b=4,∴b=2;综上,b的值为或或2.故答案为或或2.16.阅读下面材料:如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2=交于A(1,3)和B(﹣3,﹣1)两点.观察图象可知:当x=﹣3或1时,y1=y2.(1)通过观察函数的图象,可以得到不等式ax+b>的解集x>1或﹣3<x<0 .(2)参考观察函数的图象方法,解决问题:关于x的不等式x2+a﹣<0(a>0)只有一个整数解,则a的取值范围0<a<3 .【考点】反比例函数与一次函数的交点问题.【分析】(1)根据图象中两个交点的坐标可以得出不等式的解集;(2)根据不等式确定两个函数:y=和y=x2+a,画图象观察得出结论.【解答】解:(1)由图象得:不等式ax+b>的解集为:x>1或﹣3<x<0;(2)x2+a﹣<0,x2+a<,画函数y=和y=x2的图象,∵关于x的不等式x2+a﹣<0(a>0)只有一个整数解,∴整数解为x=1,当x=1时,x2+a﹣=0,a=3,∴0<a<3,故答案为:0<a<3.三、解答题(本大题共8小题,共66分.)17.计算:(π﹣2016)0+|1﹣|+2﹣1﹣2sin45°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及零指数幂、绝对值、负整数指数幂、二次根式化简、特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(π﹣2016)0+|1﹣|+2﹣1﹣2sin45°=1+﹣1+﹣2×=1+﹣1+﹣=.18.解方程:.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2+2x﹣x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解.19.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.【考点】全等三角形的判定与性质;三角形的外角性质.【分析】①利用SAS即可得证;②由全等三角形对应角相等得到∠AEB=∠CDB,利用外角的性质求出∠AEB的度数,即可确定出∠BDC的度数.【解答】①证明:在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);②解:∵在△ABC中,AB=CB,∠ABC=90°,∴∠BAC=∠ACB=45°,由①得:△ABE≌△CBD,∴∠AEB=∠BDC,∵∠AEB为△AEC的外角,∴∠AEB=∠ACB+∠CAE=30°+45°=75°,则∠BDC=75°.20.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是30 ;扇形统计图中的圆心角α等于144°;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.【考点】列表法与树状图法;扇形统计图;利用频率估计概率.【分析】(1)根据题意列式求值,根据相应数据画图即可;(2)根据题意列表,然后根据表中数据求出概率即可.【解答】解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为:30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,记小红和小花抽在相邻两道这个事件为A,∴.21.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)解:在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD===4,∴S△OCD===8,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S阴影=S△COD﹣S扇形OBC∴S阴影=8﹣,∴阴影部分的面积为8﹣.22.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.【考点】二次函数的应用;一次函数的应用.【分析】(1)利用待定系数法将图中点的坐标求出一次函数解析式即可;(2)根据利润=(售价﹣成本)×销售量列出函数关系式;(3)令函数关系式Q≥600,解得x的范围,利用“获利不得高于40%”求得x的最大值,得出销售单价x的范围.【解答】解:(1)设y=kx+b,根据题意得:解得:k=﹣1,b=120.所求一次函数的表达式为y=﹣x+120.(2)利润Q与销售单价x之间的函数关系式为:Q=(x﹣50)(﹣x+120)=﹣x2+170x﹣6000;Q=﹣x2+170x﹣6000=﹣(x﹣85)2+1225;∵成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.∴50≤x≤70,∴当试销单价定为70元时,该商店可获最大利润,最大利润是1000元.(3)依题意得:﹣x2+170x﹣6000≥600,解得:60≤x≤110,∵获利不得高于40%,∴最高价格为50(1+40%)=70,故60≤x≤70的整数.23.如图,在平面直角坐标系中,直线y=kx+b经过点A(2,0),B(0,1),动点P是x轴正半轴上的动点,过点P作PC⊥x轴,交直线AB于点C,以OA,AC为边构造▱OACD,设点P 的横坐标为m.(1)求直线AB的函数表达式;(2)若四边形OACD恰是菱形,请求出m的值;(3)在(2)的条件下,y轴的正半轴上是否存在点Q,连结CQ,使得∠OQC+∠ODC=180°.若存在,直接写出所有符合条件的点Q的坐标,若不存在,则说明理由.【考点】一次函数综合题.【分析】(1)把点A(2,0),B(0,1)代入直线y=kx+b解方程可得;(2)根据菱形的性质得到AC=2,由点C(m,﹣m+1)得到AP=|2﹣m|,CP=﹣m+1,利用勾股定理列方程可得;(3)由四边形OACD是菱形,得到对角相等,∠D=∠OAC,由于点Q在y轴上,所以四边形ACQO的对角互补,得到CQ⊥AC,求得直线CQ的解析式,求出Q点的坐标.【解答】解:(1)把A(2,0),B(O,1)代入y=kx+b,可得,解得,∴直线AB的函数表达式为y=﹣x+1;(2)∵▱OACD是菱形,∴AC=OA=2,∵PC⊥x轴,交直线AB于点C,∴C(m,﹣m+1),∴(2﹣m)2+(﹣m+1)2=22,解得m1=,m2=;(3)由(2)求得m1=,m2=,且C点在直线AB上,∴C点坐标为(,﹣)或(,),∵▱OACD是菱形,∴∠D=∠OAC,要使∠OQC+∠ODC=180°,即;∠OQC+∠OAC=180°,∴四边形QOAC的对角互补,∴∠QOA+∠QCA=180°,∵∠QOA=90°,∴∠QCA=90°,∴QC⊥AB,设Q(0,n),∴直线QC的解析式为y=2x+n,把C点坐标分别代入y=2x+n,可得﹣=2×+n或=2×+n,解得n=﹣4+2或n=﹣4﹣2,∴点Q的坐标为(0,﹣4﹣2)或(0,﹣4+2),综上可知存在满足条件的点Q,其坐标为(0,﹣4﹣2)或(0,﹣4+2).24.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】方法一:(1)当k=1时,联立抛物线与直线的解析式,解方程求得点A、B的坐标;(2)如答图2,作辅助线,求出△ABP面积的表达式,然后利用二次函数的性质求出最大值及点P的坐标;(3)“存在唯一一点Q,使得∠OQC=90°”的含义是,以OC为直径的圆与直线AB相切于点Q,由圆周角定理可知,此时∠OQC=90°且点Q为唯一.以此为基础,构造相似三角形,利用比例式列出方程,求得k的值.需要另外注意一点是考虑直线AB是否与抛物线交于C 点,此时亦存在唯一一点Q,使得∠OQC=90°.方法二:(1)联立直线与抛物线方程求出点A,B坐标.(2)利用面积公式求出P点坐标.(3)列出定点O坐标,用参数表示C,Q点坐标,利用黄金法则二求出k的值.【解答】方法一:解:(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1.联立两个解析式,得:x2﹣1=x+1,解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3,∴A(﹣1,0),B(2,3).(2)设P(x,x2﹣1).如答图2所示,过点P作PF∥y轴,交直线AB于点F,则F(x,x+1).∴PF=y F﹣y P=(x+1)﹣(x2﹣1)=﹣x2+x+2.S△ABP=S△PFA+S△PFB=PF(x F﹣x A)+PF(x B﹣x F)=PF(x B﹣x A)=PF∴S△ABP=(﹣x2+x+2)=﹣(x﹣)2+当x=时,y P=x2﹣1=﹣.∴△ABP面积最大值为,此时点P坐标为(,﹣).(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,则E(﹣,0),F(0,1),OE=,OF=1.在Rt△EOF中,由勾股定理得:EF==.令y=x2+(k﹣1)x﹣k=0,即(x+k)(x﹣1)=0,解得:x=﹣k或x=1.∴C(﹣k,0),OC=k.Ⅰ、假设存在唯一一点Q,使得∠OQC=90°,如答图3所示,则以OC为直径的圆与直线AB相切于点Q,根据圆周角定理,此时∠OQC=90°.设点N为OC中点,连接NQ,则NQ⊥EF,NQ=CN=ON=.∴EN=OE﹣ON=﹣.∵∠NEQ=∠FEO,∠EQN=∠EOF=90°,∴△EQN∽△EOF,∴,即:,解得:k=±,∵k>0,∴k=.∴存在唯一一点Q,使得∠OQC=90°,此时k=.Ⅱ、若直线AB过点C时,此时直线与圆的交点只有另一点Q点,故亦存在唯一一点Q,使得∠OQC=90°,将C(﹣k,0)代入y=kx+1中,可得k=1,k=﹣1(舍去),故存在唯一一点Q,使得∠OQC=90°,此时k=1.综上所述,k=或1时,存在唯一一点Q,使得∠OQC=90°.方法二:(1)略.(2)过点P作x轴垂线,叫直线AB于F,31 设P (t ,t 2﹣1),则F (t ,t+1)∴S △ABP =(F Y ﹣P Y )(B X ﹣A X ),∴S △ABP =(t+1﹣t 2+1)(2+1),∴S △ABP =﹣t 2+t+3,当t=时,S △ABP 有最大值,∴S △ABP =.(3)∵y=x 2+(k ﹣1)x ﹣k ,∴y=(x+k )(x ﹣1),当y=0时,x 1=﹣k ,x 2=1,∴C (﹣k ,0),D (1,0),点Q 在y=kx+1上,设Q (t ,kt+1),O (0,0), ∵∠OQC=90°,∴CQ ⊥OQ ,∴K CQ ×K OQ =﹣1, ∴<∴(k 2+1)t 2+3kt+1=0有唯一解,∴△=(3k )2﹣4(k 2+1)=0,∴k 1=,k 2=﹣(k >0故舍去),∴k=.。
浙江省湖州市数学中考模拟试卷
浙江省湖州市数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列一元二次方程中常数项是0的是()A .B .C .D .2. (2分)把抛物线y=6(x+1)2平移后得到抛物线y=6x2 ,平移的方法可以是()A . 沿y轴向上平移1个单位B . 沿y轴向下平移1个单位C . 沿x轴向左平移1个单位D . 沿x轴向右平移1个单位3. (2分)(2017·阜宁模拟) 下列事件中是必然事件的是()A . 明天太阳从西边升起B . 篮球队员在罚球线上投篮一次,未投中C . 实心铁球投入水中会沉入水底D . 抛出一枚硬币,落地后正面朝上4. (2分)(2018·泸县模拟) 在下列的银行行徽中,是中心对称图形的是()A .B .C .D .5. (2分)(2020·衢州) 某厂家2020年1~5月份的口罩产量统计如图所示。
设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A . 180(1-x)2=461B . 180(1+x)²=461C . 368(1-x)2=442D . 368(1+x)²=4426. (2分)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()A .B .C .D .7. (2分)(2018·惠山模拟) 下列说法中,正确的是()A . 为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B . 两名同学连续五次数学测试的平均分相同,方差较大的同学数学成绩更稳定C . 抛掷一个正方体骰子,点数为奇数的概率是D . “打开电视,正在播放广告”是必然事件8. (2分)如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A . 30B . 60C . 90D . 120°9. (2分)由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c的图象过点(1,0)…求证:这个二次函数的图象关于直线x=2对称.根据现有信息,题中的二次函数不一定具有的性质是()A . 过点(3,0)B . 顶点是(﹣2,﹣2)C . 在x轴上截得的线段的长度是2D . c=3a10. (2分)如图,在矩形ABCD中,AB=2,BC=3,点E、F、G、H分别在矩形ABCD的各边上,EF∥AC∥HG ,EH∥BD∥FG ,则四边形EFGH的周长是().A .B .C . 2D . 2二、填空题 (共6题;共6分)11. (1分) (2016九上·平定期末) 方程3(x-5)2=2(x-5)的根是________12. (1分) (2019九上·海珠期末) 点A(﹣6,3)与A′关于原点对称,则点A′的坐标是________.13. (1分)(2017·瑞安模拟) 如图,在矩形OABC中,点A在x轴的正半轴,点C在y轴的正半轴.抛物线y= x2﹣ x+4经过点B,C,连接OB,D是OB上的动点,过D作DE∥OA交抛物线于点E(在对称轴右侧),过E作EF⊥OB于F,以ED,EF为邻边构造▱DEFG,则▱DEFG周长的最大值为________.14. (1分)(2019·温州模拟) 已知一扇形的半径长是4,圆心角为60°,则这个扇形的面积为________.15. (1分) (2015九上·莱阳期末) 已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:x…﹣101234…y…1052125…若A(m,y1),B(m﹣2,y2)两点都在该函数的图象上,当m=________时,y1=y2 .16. (1分) (2019九下·南关月考) 如图,二次函数y=a(x﹣2)2+k(a>0)的图象过原点,与x轴正半轴交于点A,矩形OABC的顶点C的坐标为(0,﹣2),点P为x轴上任意一点,连结PB、PC.则△PBC的面积为________.三、解答题 (共8题;共75分)17. (5分) (2019九上·镇江期末) 解方程:(1) x2﹣3x=0(2) 2x2﹣4x﹣5=0(3) x(x﹣1)=0(4)(x﹣1)2=3x﹣318. (5分)△ABC中,AB=AC,, AB的中垂线交AB于D,交CA延长线于E,求证:DE=BC.19. (5分)如图某超市举行“翻牌”抽奖活动,在一张木板上共有6个相同的牌,其分别对应价值为2元、5元、8元、10元、20元和50元的奖品.(1)小雷在该抽奖活动中随机翻一张牌,求抽中10元奖品的概率;(2)如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,求两次抽中的奖品的总价值大于14元的概率.20. (10分)△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积.21. (10分)(2017·江北模拟) 如图①,在△ABC中,∠ACB=90°,AC=BC= ,D、E是AB边上的两个动点,满足∠DCE=45°.(1)如图②,把△ADC绕着点C顺时针旋转90°,得到△BKC,连结EK.①求证:△DCE≌△KCE.②求证:DE2=AD2+BE2.③思考与探究:当点D从点A向AB的中点运动的过程中,请尝试写出DE长度的变化趋势;并直接写出DE长度的最大值或最小值(标明最大值或最小值).(2)如图③,若△CDE的外接圆⊙O分别交AC,BC于点F、G,求证:CF:CG=BE:AD.22. (15分) (2016九上·宾县期中) 有一座抛物线形拱桥,校下面在正常水位时AB宽20米,水位上升3米就达到警戒线CD,这时水面宽度为10米.(1)在如图的坐标系中,求抛物线的表达式;(2)若洪水到来是水位以0.2米/时的速度上升,从正常水位开始,再过几小时能到达桥面?23. (10分) (2017八下·东台期中) 在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.24. (15分)(2017·凉州模拟) 如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求△PAC为直角三角形时点P的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共75分)17-1、17-2、17-3、17-4、18-1、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年湖州市中考数学模拟卷17考试时间120分钟,满分120分。
姓名一.仔细选一选(本题有10个小题,每小题3分,共30分) 1.下列运算正确的是( ) A .523x x x=+ B .x x x =-23 C .623x x x =⋅ D .x x x =÷23 2.在函数21-=x y 中,自变量x 的取值范围是( ) A .2-≠x B .2≠x C .x ≤2 D .x ≥23.今年我市初中毕业生约有25000人,该数据用科学记数法表示为( )A .31025⨯ B .61025.0⨯ C .4105.2⨯ D .41025.0⨯ 4.我市去年6月上旬日最高气温如下表所示:日 期12345678910最高气温(℃) 30 28 30 32 34 32 26 30 33 35 那么这10天的日最高气温的平均数和众数分别是( ) A.32,30B.31,30 C.32,32 D.30,305. 如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A=75o,∠C=45o, 那么sin ∠AEB 的值为( ) A.21B. 33C.22D. 23 6.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是( )A .3B .4C .5D .6主视图 左视图 俯视图7.下列命题,正确的是( )A .如果|a |=|b |,那么a =bB .C .顺次连结四边形各边中点所得到的四边形是平行四边形D .相等的圆周角所对的弧相等8.若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )A .a >-1B .a ≥-1C .a ≤1D .a <19.如图,点A ,B ,C 的坐标分别为(0,1),(0,2),(3,0)-.从下面四个点(3,3)M ,(3,3)N -,(3,0)P -,(3,1)Q -中选择一个点,以A ,B ,C 与该点为顶点的四边形不是中心对称图形,则该点是( ) A .MB .NC .PD .Q10.如图,ABC ∆中,BC AB ⊥,4==BC AB ,D 为BC 的中点,在AC边上存在一点E ,连结EB ED ,,则BDE ∆周长的最小值为( ) A .52B .32C .252+D .232+二. 认真填一填(本题有6个小题,每小题4分,共24分)yAC O xBMNPQ11 ABCDE11.因式分解23xy x-= .12.如图,⊙O 的半径为2,C 1是函数y =12x 2的图象,C 2是函数221x y -=的图象,则阴影部分的面积是 .13.豆豆沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个坡面的坡度为 .14. “五·一”节,某超市开展“有奖促销”活动,凡购物不少于30元的顾客均有一次转动转盘的机会(如图,转盘被分为8个全等的小扇形),当指针最终指向数字8时,该顾客获一等奖;当指针最终指向3或5时,该顾客获二等奖(若指针指向分界线则重转). 经统计,当天发放一、二等奖奖品共600份,那么据此估计参与此次活动的顾客为 人次.15.如图,菱形ABCD 的对角线AC 、BD 交于点O ,其中AC =8,BD =6,以OC 、OB 为边作矩形OBEC ,矩形OBEC 的对角线OE 、BC 交于点F ,再以CF 、FE 为边作第一个菱形CFEG ,菱形CFEG 的对角线FG 、CE 交于点H ,如此继续,得到第n 个菱形的周长等于 .16. 如图,在矩形ABCD 中,AD =5,AB =4,点E 、G 、H 、F 分别在AB 、BC 、CD 、AD 上,且AF =CG =2,BE =DH =1,点P 是直线EF 、GH 之间任意一点,连结PE 、PF 、PG 、PH ,则△PEF 和△PGH 的面积和等于 . 三. 全面答一答(本题有8个小题,共66分) 17.(1)计算:1122323tan 30--+--; (2)方程0652=--x x.18. (本题6分)请把下面的直角进行三等分.(要求用尺规作图,不写作法,但要保留作图痕迹.)19.(本题6分)如图,直线b kx y +=与反比例函数k y x=(x <0)的图象相交于点A 、B ,与x 轴交于点C ,其中A 点坐标为(-2,4),点B 的横坐标为-4. (1)试确定反比例函数解析式 (2)求△AOC 的面积KP NMLKJHGF EOBDAC(第16题图)12 34 567 8 第14题20.(本题8分)典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了 名居民的年龄,扇形统计图中a = ,b = ;(2)补全条形统计图; (3)若该辖区在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.21.(本题8分)如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . (1)求证:△ABC ≌△DCB ;(2)过点C 作CN ∥BD ,过点B 作BN ∥AC ,CN 与BN 交于点N ,试判断线段BN 与CN 的数量关系,并证明你的结论.22.(本题10分)阅读材料并解答问题:与正三角形各边都相切的圆叫做正三角形的内切圆,与正四边形各边都相切的圆叫做正四边形的内切圆,,与正n 边形各边都相切的圆叫做正n 边形的内切圆,设正(3)n n ≥边形的面积为边形正n S ,其内切圆的半径为r ,试探索正n 边形的面积.(结果可用三角函数表示) 如图①,当3n =时,设AB 切圆O 于点C ,连结OC OA OB ,,, OC AB ⊥∴,OA OB =∴,12AOC AOB ∠=∴,2AB BC =∴.在Rt AOC △中,60336021=⋅=∠AOC ,OC r =, ,, 60tan 260tan ⋅=⋅=∴r AB r AC, 60tan 60tan 2212r r r S OAB =⋅⋅=∴∆ 60tan 332⋅==∴∆r S S O AB 正三角形.ba46%22%0~14岁641~5915~40200 50250 15010300 0~14 15~41~60岁以上 年龄6023010人数B CA DMNO BACr图①(1) 如图②,当4n =时,仿照(1)中的方法和过程可求得:=正四边形S ;(2)如图③,当5n =时,仿照(1)中的方法和过程求.正五边形S ; (3)如图④,根据以上探索过程,请直接写出=边形正n S .23. (本题10分)某校原有600张旧课桌急需维修,经过A 、B 、C 三个工程队的竞标得知,A 、B 的工作效率相同,且都为C 队的2倍,若由一个工程队单独完成,C 队比A 队要多用10天.学校决定由三个工程队一齐施工,要求至多6天完成维修任务.三个工程队都按原来的工作效率施工2天时,学校又清理出需要维修的课桌360张,为了不超过6天时限,工程队决定从第3天开始,各自都提高工作效率,A 、B 队提高的工作效率仍然都是C 队提高的2倍.这样他们至少还需要3天才能完成整个维修任务.⑴求工程队A 原来平均每天维修课桌的张数;⑵求工程队A 提高工作效率后平均每天多维修课桌张数的取值范围.24.(12分)在平面直角坐标中,边长为1的正方形OABC 的两顶点A 、C 分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线y x =上时停止旋转.旋转过程中,AB 边交直线y x =于点M ,BC 边交x 轴于点N (如图1). (1)求边AB 在旋转过程中所扫过的面积;(2)设△MBN 的周长为p ,在旋转正方形OABC 的过程中,p 值是否有变化?请证明你的结论;(3)设MN=m ,当m 为何值时△OMN 的面积最小,最小值是多少?并直接写出此时△BMN 内切圆的半径.OBAC r图②OBA Cr 图③OBAC r 图④图1y=xxyOCBA【参考答案】解:(1)如图,OABOAA OBB OAA S SS SS '''=+--阴扇形扇形=224545(2)13603608OBB OAA S S πππ''-=-⨯=扇形扇形-------------4分 (2)p 值无变化----------------------------5分证明:延长BA 交y 轴于E 点, 在OCN OAE ∆∆与中,9090AOE CON AON OAE OCN OA OC ∠=∠=︒-∠⎧⎪∠=∠=︒⎨⎪=⎩所以,OCN OAE ∆≅∆所以,OE=ON ,AE=CN--------------------------6分 在OMN OME ∆∆与中45OE ON MOE MON OM OM =⎧⎪∠=∠=︒⎨⎪=⎩所以,OMN OME ∆≅∆所以,MN==ME=AM+AE=AM+CN------------------------7分所以,P=MN+BN+BM=AM+CN+BN+BM=AB+BC=2--------------------8分 (3)设,1,,1AM n BM n CN m n BN m n ==-=-=-+则, 因为,OMN OME ∆≅∆, 所以,1122MONMOESSOA EM m ==⨯=-----------------------9分 在BMN Rt ∆中,222BM BN MN +=所以,2222(1)(1)20n m n m n mn m -+-+=⇒-+-=所以, ()0242≥--=∆m m 解得:232232--≤-≥m m 或---------------10分所以,当232m =-时,OMN ∆的面积最小-------------------11分BMN Rt ∆的内切圆半径为3232BM BN MN+-=-----------------12分。