2013高考总复习数学(理)配套课时巩固与训练13章3课时训练
2013年高考数学总复习资料
2013数学总复习资料高三数学第三轮总复习分类讨论押题针对训练复习目标:1.掌握分类讨论必须遵循的原则 2.能够合理,正确地求解有关问题 命题分析:分类讨论是一种重要的逻辑方法,也是一种常用的数学方法,这可以培养学生思维的条理性和概括性,以及认识问题的全面性和深刻性,提高学生分析问题,解决问题的能力.因此分类讨论是历年数学高考的重点与热点.而且也是高考的一个难点.这次的一模考试中,尤其是西城与海淀都设置了解答题来考察学生对分类讨论问题的掌握情况.重点题型分析: 例1.解关于x 的不等式:)()(232R a x a a a x ∈+<+解:原不等式可分解因式为:(x-a)(x-a 2)<0 (下面按两个根的大小关系分类)(1)当a>a 2⇒a 2-a<0即 0<a<1时,不等式的解为 x ∈(a 2, a).(2)当a<a 2⇒a 2-a>0即a<0或a>1时,不等式的解为:x ∈(a, a 2)(3)当a=a 2⇒a 2-a=0 即 a=0或 a=1时,不等式为x 2<0或(x-1)2<0 不等式的解为 x ∈∅.综上,当 0<a<1时,x ∈(a 2, a)当a<0或a>1时,x ∈(a,a 2) 当a=0或a=1时,x ∈∅.评述:抓住分类的转折点,此题分解因式后,之所以不能马上写出解集,主要是不知两根谁大谁小,那么就按两个根之间的大小关系来分类.例2.解关于x 的不等式 ax 2+2ax+1>0(a ∈R) 解:此题应按a 是否为0来分类.(1)当a=0时,不等式为1>0, 解集为R. (2)a ≠0时分为a>0 与a<0两类①10)1(00440002>⇒⎩⎨⎧>->⇒⎪⎩⎪⎨⎧>->⇒⎩⎨⎧>>a a a a a a a a ∆时,方程ax 2+2ax+1=0有两根 aa a a aa a a a a a x )1(12442222,1-±-=-±-=-±-=.则原不等式的解为),)1(1())1(1,(+∞-+-----∞aa a a a a . ②101000440002<<⇒⎩⎨⎧<<>⇒⎪⎩⎪⎨⎧<->⇒⎩⎨⎧<>a a a a a a a ∆时, 方程ax 2+2ax+1=0没有实根,此时为开口向上的抛物线,则不等式的解为(-∞,+∞).③11000440002=⇒⎩⎨⎧==>⇒⎪⎩⎪⎨⎧=->⇒⎩⎨⎧=>a a a a a a a a 或∆时, 方程ax 2+2ax+1=0只有一根为x=-1,则原不等式的解为(-∞,-1)∪(-1,+∞).④01000440002<⇒⎩⎨⎧><<⇒⎪⎩⎪⎨⎧>-<⇒⎩⎨⎧><a a a a a a a a 或∆时,方程ax 2+2ax+1=0有两根,aa a a a a a x )1(12)1(22,1-±-=-±-=此时,抛物线的开口向下的抛物线,故原不等式的解为:))1(1,)1(1(a a a a a a ----+-. ⑤φ∈⇒⎩⎨⎧≤≤<⇒⎪⎩⎪⎨⎧≤-<⇒⎩⎨⎧≤<a a a a a a a 1000440002∆ 综上:当0≤a<1时,解集为(-∞,+∞).当a>1时,解集为),)1(1())1(1,(+∞-+-----∞aa a a a a . 当a=1时,解集为(-∞,-1)∪(-1,+∞). 当a<0时,解集为))1(1,)1(1(aa a a a a ----+-. 例3.解关于x 的不等式ax 2-2≥2x-ax(a ∈R)(西城2003’一模 理科) 解:原不等式可化为⇔ ax 2+(a-2)x-2≥0, (1)a=0时,x ≤-1,即x ∈(-∞,-1]. (2)a ≠0时,不等式即为(ax-2)(x+1)≥0. ① a>0时, 不等式化为0)1)(2(≥+-x ax , 当⎪⎩⎪⎨⎧->>120a a ,即a>0时,不等式解为),2[]1,(+∞--∞a .当⎪⎩⎪⎨⎧-≤>120aa ,此时a 不存在.②a<0时,不等式化为0)1)(2(≤+-x ax ,当⎪⎩⎪⎨⎧-<<120a a ,即-2<a<0时,不等式解为]1,2[-a当⎪⎩⎪⎨⎧-><120a a ,即a<-2时,不等式解为]2,1[a -.当⎪⎩⎪⎨⎧-=<120aa ,即a=-2时,不等式解为x=-1.综上:a=0时,x ∈(-∞,-1).a>0时,x ∈),2[]1,(+∞--∞a.-2<a<0时,x ∈]1,2[-a .a<-2时,x ∈]2,1[a-.a=-2时,x ∈{x|x=-1}.评述:通过上面三个例题的分析与解答,可以概括出分类讨论问题的基本原则为: 10:能不分则不分; 20:若不分则无法确定任何一个结果; 30:若分的话,则按谁碍事就分谁.例4.已知函数f(x)=cos 2x+asinx-a 2+2a+5.有最大值2,求实数a 的取值. 解:f(x)=1-sin 2x+asinx-a 2+2a+5.6243)2(sin 22++---=a a a x 令sinx=t, t ∈[-1,1]. 则6243)2()(22++---=a a a t t f (t ∈[-1,1]). (1)当12>a即a>2时,t=1,2533max =++-=a a y 解方程得:22132213-=+=a a 或(舍). (2)当121≤≤-a 时,即-2≤a ≤2时,2a t =,262432max =++-=a a y ,解方程为:34-=a 或a=4(舍).(3)当12-<a 即a<-2时, t=-1时,y max =-a 2+a+5=2即 a 2-a-3=0 ∴2131±=a , ∵ a<-2, ∴2131±-=a 全都舍去.综上,当342213-=+=a a 或时,能使函数f(x)的最大值为2. 例5.设{a n }是由正数组成的等比数列,S n 是其前n 项和,证明:15.025.05.0log 2log log ++>+n n n S S S .证明:(1)当q=1时,S n =na 1从而0)1()2(2121211212<-=+-+⋅=-⋅++a a n a n na S S S n n n(2)当q ≠1时,qq a S n n --=1)1(1, 从而.0)1()1()1)(1(2122121221212<-=-----=-⋅++++nn n n n n n q a q q a q q a S S S由(1)(2)得:212++<⋅n n n S S S . ∵ 函数xy 5.0log =为单调递减函数.∴15.025.05.0log 2log log ++>+n n n S S S .例6.设一双曲线的两条渐近线方程为2x-y+1=0, 2x+y-5=0,求此双曲线的离心率. 分析:由双曲线的渐近线方程,不能确定其焦点位置,所以应分两种情况求解.解:(1)当双曲线的焦点在直线y=3时,双曲线的方程可改为1)3()1(222=---b y a x ,一条渐近线的斜率为2=ab, ∴b=2.∴555222==+==a a a b a c e . (2)当双曲线的焦点在直线x=1时,仿(1)知双曲线的一条渐近线的斜率为2=ba,此时25=e . 综上(1)(2)可知,双曲线的离心率等于255或. 评述:例5,例6,的分类讨论是由公式的限制条件与图形的不确定性所引起的,而例1-4是对于含有参数的问题而对参数的允许值进行的全面讨论.例7.解关于x 的不等式 1512)1(<+--x x a .解:原不等式 012)1(55<⇔+--x x a0)]2()1)[(2(022)1(012)1(<----⇔<--+-⇔<+--⇔a x a x x a x a x x a⎪⎩⎪⎨⎧>----<-⎪⎩⎪⎨⎧<---->-⎩⎨⎧<--=-⇔0)12)(2(01)3(0)12)(2(01)2(0)21)(2(01)1(a ax x a a a x x a x a 或或 由(1)a=1时,x-2>0, 即 x ∈(2,+∞). 由(2)a<1时,012>--aa,下面分为三种情况. ①⎩⎨⎧<<⇒⎪⎩⎪⎨⎧>--<012121a a aa a 即a<1时,解为)12,2(a a --. ②0012121=⇒⎩⎨⎧=<⇒⎪⎩⎪⎨⎧=--<a a a a a a 时,解为∅.③⎪⎩⎪⎨⎧<--<2121aa a ⇒⎩⎨⎧><01a a 即0<a<1时,原不等式解为:)2,12(a a --. 由(3)a>1时,aa--12的符号不确定,也分为3种情况.①⎩⎨⎧≤>⇒⎪⎩⎪⎨⎧≥-->012121a a a a a ⇒a 不存在.②⇒⎩⎨⎧>>⇒⎪⎩⎪⎨⎧<-->012121a a aa a 当a>1时,原不等式的解为:),2()12,(+∞---∞ a a .综上:a=1时,x ∈(2,+∞). a<1时,x ∈)12,2(aa-- a=0时,x ∈∅.0<a<1时,x ∈)2,12(a a-- a>1时,x ∈),2()12,(+∞---∞ aa.评述:对于分类讨论的解题程序可大致分为以下几个步骤: 10:明确讨论的对象,确定对象的全体; 20:确定分类标准,正确分类,不重不漏; 30:逐步进行讨论,获得结段性结记; 40:归纳总结,综合结记. 课后练习:1.解不等式2)385(log 2>+-x x x2.解不等式1|)3(log ||log |3121≤-+x x3.已知关于x 的不等式052<--ax ax 的解集为M. (1)当a=4时,求集合M:(2)若3∈M ,求实数a 的取值范围.4.在x0y 平面上给定曲线y 2=2x, 设点A 坐标为(a,0), a ∈R ,求曲线上点到点A 距离的最小值d ,并写成d=f(a)的函数表达式.参考答案:1. ),(),(∞+235321 2.]4943[,3. (1) M 为),(),(2452 ∞- (2)),9()35,(+∞-∞∈ a 4. ⎪⎩⎪⎨⎧<≥-==时当时当1||112)(a a a a a f d .2006年高三数学第三轮总复习函数押题针对训练复习重点:函数问题专题,主要帮助学生整理函数基本知识,解决函数问题的基本方法体系,函数问题中的易错点,并提高学生灵活解决综合函数问题的能力。
2013高考总复习数学(理)配套课时巩固与训练4章5课时训练
1.函数y =|sin x |-2sin x 的值域是( )A .[-3,-1]B .[-1,3]C .[0,3]D .[-3,0] 解析:选B.当0≤sin x ≤1时,y =sin x -2sin x =-sin x ,此时y ∈[-1,0];当-1≤sin x <0时,y =-sin x -2sin x =-3sin x ,此时y ∈(0,3],求其并集得y ∈[-1,3].2.函数f (x )=tan ωx (ω>0)图象的相邻两支截直线y =π4所得线段长为π4,则f (π4)的值是( )A .0B .1C .-1 D.π4解析:选A.由题意知T =π4 ,由πω=π4得ω=4,∴f (x )=tan4x ,∴f (π4)=tanπ=0.3.(2009年高考重庆卷)下列关系式中正确的是( ) A .sin11°<cos10°<sin168° B .sin168°<sin11°<cos10° C .sin11°<sin168°<cos10° D .sin168°<cos10°<sin11° 解析:选C.∵sin168°=sin(180°-12°)=sin12°, cos10°=sin(90°-10°)=sin80°.又∵g (x )=sin x 在x ∈[0,π2]上是增函数, ∴sin11°<sin12°<sin80°,即sin11°<sin168°<cos10°.4.设点P 是函数f (x )=sin ωx 的图象C 的一个对称中心,若点P到图象C 的对称轴的距离的最小值是π8,则f (x )的最小正周期是( )A.π2 B .πC .2π D.π4解析:选A.依题意得T 4=π8,所以最小正周期为T =π2.5.已知函数y =2sin 2(x +π4)-cos2x ,则它的周期T 和图象的一条对称轴方程是( )A .T =2π,x =π8B .T =2π,x =3π8C .T =π,x =π8D .T =π,x =3π8解析:选 D.∵y =2sin 2(x +π4)-cos2x =1-cos(2x +π2)-cos2x =1+sin2x -cos2x =1+2sin(2x -π4),所以其周期T =π,对称轴方程的表达式可由2x -π4=k π+π2(k ∈Z )得x =k π2+3π8(k ∈Z ),故当k =0时的一条对称轴方程为x =3π8,故答案为D.6.(2008年高考天津卷)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上是增函数.令a =f (sin 2π7),b =f (cos 5π7),c =f (tan 5π7),则( )A .b <a <cB .c <b <aC .b <c <aD .a <b <c解析:选A.sin 27π=sin(π-57π)=sin 57π. 又π2<57π<34π.由三角函数线tan 57π<cos 57π<sin 57π且cos 57π<0,sin 57π>0.如图.∴⎪⎪⎪⎪⎪⎪cos 57π<⎪⎪⎪⎪⎪⎪sin 57π<⎪⎪⎪⎪⎪⎪tan 57π. 又f (x )在[0,+∞)上递增且为偶函数,∴f (⎪⎪⎪⎪⎪⎪cos 57π)<f (⎪⎪⎪⎪⎪⎪sin 57π)<f (⎪⎪⎪⎪⎪⎪tan 57π),即b <a <c ,故选A.7.函数y =lgsin x + cos x -12的定义域为________.解析:(1)要使函数有意义必须有⎩⎨⎧sin x >0cos x -12≥0,即⎩⎨⎧sin x >0cos x ≥12,解得⎩⎨⎧2k π<x <π+2k π-π3+2k π≤x ≤π3+2k π(k ∈Z ),∴2k π<x ≤π3+2k π,k ∈Z ,∴函数的定义域为{x |2k π<x ≤π3+2k π,k ∈Z }.答案:{x |2k π<x ≤π3+2k π,k ∈Z }8.已知函数f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最小值是-2,则ω的最小值等于________.解析:由题意知T 4≤π3,T =2πω,∴2ω≥3,ω≥32,∴ω的最小值等于32.答案:329.对于函数f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≤cos xcos x ,sin x >cos x ,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x =π+k π(k ∈Z )时,该函数取得最小值-1;③该函数的图象关于x =5π4+2k π(k ∈Z )对称;④当且仅当2k π<x <π2+2k π(k ∈Z )时,0<f (x )≤22.其中正确命题的序号是________.(请将所有正确命题的序号都填上)解析:画出f(x)在一个周期[0,2π]上的图象.答案:③④10.已知函数f (x )=log 2[2sin(2x -π3)].(1)求函数的定义域;(2)求满足f (x )=0的x 的取值范围.解:(1)令2sin(2x -π3)>0⇒sin(2x -π3)>0⇒2k π<2x -π3<2k π+π,k ∈Z ⇒k π+π6<x <k π+23π,k ∈Z .故函数的定义域为(k π+π6,k π+23π),k ∈Z .(2)∵f (x )=0,∴sin(2x -π3)=22⇒2x -π3=2k π+π4或2k π+34π,k ∈Z⇒x =k π+724π或x =k π+1324π,k ∈Z ,故x 的取值范围是{x |x =k π+724π或x =k π+1324π,k ∈Z }.11.已知函数f (x )=sin 2ωx +3sin ωx sin(ωx +π2)(ω>0)的最小正周期为π.(1)求ω的值;(2)求函数f (x )在区间[0,2π3]上的取值范围.解:(1)f (x )=1-cos2ωx 2+32sin2ωx=32sin2ωx -12cos2ωx +12=sin(2ωx -π6)+12.因为函数f (x )的最小正周期为π,且ω>0,所以2π2ω=π,解得ω=1.(2)由(1)得f (x )=sin(2x -π6)+12.因为0≤x ≤2π3,所以-π6≤2x -π6≤7π6,所以-12≤sin(2x -π6)≤1,所以0≤sin(2x -π6)+12≤32,即f (x )的取值范围为[0,32].12.已知a >0,函数f (x )=-2a sin(2x +π6)+2a +b ,当x ∈[0,π2]时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f (x +π2)且lg g (x )>0,求g (x )的单调区间.解:(1)∵x ∈[0,π2],∴2x +π6∈[π6,7π6],∴sin(2x +π6)∈[-12,1],∴-2a sin(2x +π6)∈[-2a ,a ], ∴f (x )∈[b,3a +b ],又-5≤f (x )≤1. ∴⎩⎪⎨⎪⎧ b =-53a +b =1,解得⎩⎪⎨⎪⎧a =2b =-5. (2)f (x )=-4sin(2x +π6)-1,g (x )=f (x +π2)=-4sin(2x +7π6)-1=4sin(2x +π6)-1,又由lg g (x )>0,得g (x )>1,∴4sin(2x +π6)-1>1,∴sin(2x +π6)>12, ∴π6+2k π<2x +π6<56π+2k π,k ∈Z , 由π6+2k π<2x +π6≤2k π+π2,得k π<x ≤k π+π6,k ∈Z . 由π2+2k π≤2x +π6<56π+2k π得 π6+k π≤x <π3+k π,k ∈Z .∴函数g (x )的单调递增区间为(k π,π6+k π](k ∈Z ),单调递减区间为[π6+k π,π3+k π)(k ∈Z ).。
2013高考总复习数学(理)配套课时巩固与训练2章3课时巩固
1.(2010年皖南八校联考)设函数f (x )是定义在R 上的奇函数,且f (-3)=-2,则f (3)+f (0)=( )A .3B .-3C .2D .7解析:选C.由题意得f (3)+f (0)=-f (-3)+f (0)=2+0=2.故选C.2.(2009年高考福建卷)下列函数f (x )中,满足“对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)解析:选A.由题意知函数f (x )在(0,+∞)上是减函数,在A 中,由f ′(x )=-1x 2<0得f (x )在(-∞,0)和(0,+∞)上为减函数;在B 中,由f ′(x )=2(x -1)<0得x <1,所以f (x )在(-∞,1)上为减函数.在C 中,由f ′(x )=e x >0知f (x )在R 上为增函数.在D 中,由f ′(x )=1x +1且x +1>0知f ′(x )>0,所以f (x )在(-1,+∞)上为减函数.3.已知函数f (x )为R 上的减函数,则满足f (|1x |)<f (1)的实数x 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:选C.∵f (x )在R 上为减函数且f (|1x |)<f (1),∴|1x |>1,即|x |<1且x ≠0,得-1<x <0或0<x <1.4.(原创题)已知f (x )=x 2+x ,则f (a +1a )________f (1).(填“≤”“≥”).解析:∵a +1a ≥2或a +1a ≤-2,f (x )的对称轴为x =-12.∴f (x )在(-12,+∞)上为增函数,在(-∞,-12)上为减函数.又f (2)=22+2=6>2=f (1),f (-2)=(-2)2+(-2)=2=f (1),∴f (a +1a )≥f (1).答案:≥5.(2008年高考上海卷)若函数f (x )=(x +a )(bx +2a )(常数a 、b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________________.解析:由于f (x )的定义域为R ,值域为(-∞,4],可知b ≠0,∴f (x )为二次函数,f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2.∵f (x )为偶函数,∴其对称轴为x =0,∴-2a +ab 2b =0,∴2a +ab =0,∴a =0或b =-2.若a =0,则f (x )=bx 2与值域是(-∞,4]矛盾,∴a ≠0,若b =-2,又其最大值为4,∴4b ×2a 24b =4,∴2a 2=4,∴f (x )=-2x 2+4.答案:-2x 2+46.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在[12,2]上的值域是[12,2],求a 的值.解:(1)证明:设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0.∵f (x 2)-f (x 1)=(1a -1x 2)-(1a -1x 1)=1x 1-1x 2=x 2-x 1x 1x 2>0, ∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数.(2)∵f (x )在[12,2]上的值域是[12,2], 又f (x )在[12,2]上单调递增,∴f (12)=12,f (2)=2,代入可得a =25.。
2013高考总复习数学(理)配套课时巩固与训练15章3课时训练
1.用数学归纳法证明“当n为正奇数时,x n+y n能被x+y整除”,第二步归纳假设应写成()A.假设n=2k+1(k∈N*)正确,再推n=2k+3正确B.假设n=2k-1(k∈N*)正确,再推n=2k+1正确C.假设n=k(k∈N*)正确,再推n=k+1正确D.假设n=k(k≥1)正确,再推n=k+2正确解析:选B.首先要注意n为奇数,其次还要使n=2k-1能取到1,故选B.2.用数学归纳法证明等式1+3+5+…+(2n-1)=n2(n∈N*)的过程中,第二步假设n=k时等式成立,则当n=k+1时应得到() A.1+3+5+…+(2k+1)=k2B.1+3+5+…+(2k+1)=(k+1)2C.1+3+5+…+(2k+1)=(k+2)2D.1+3+5+…+(2k+1)=(k+3)2解析:选B.∵n=k+1时,等式左边=1+3+5+…+(2k-1)+(2k+1)=k2+(2k+1)=(k+1)2.故选B.3.用数学归纳法证明:“1+a+a2+…+a n+1=1-a n+21-a(a≠1)”在验证n=1时,左端计算所得的项为()A.1 B.1+aC.1+a+a2D.1+a+a2+a3解析:选C.当n=1时,左端=1+a+a2.4.下列代数式(其中k∈N*)能被9整除的是()A.6+6·7k B.2+7k-1C.2(2+7k+1) D.3(2+7k)解析:选D.(1)当k=1时,显然只有3(2+7k)能被9整除.(2)假设当k=n(n∈N*)时,命题成立,即3(2+7n)能被9整除,那么3(2+7n+1)=21(2+7n)-36.这就是说,k=n+1时命题也成立.5.已知1+2×3+3×32+4×33+…+n×3n-1=3n(na-b)+c对一切n∈N*都成立,则a、b、c的值为()A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14D .不存在这样的a 、b 、c解析:选A.∵等式对一切n ∈N *均成立,∴n =1,2,3时等式成立,即⎩⎪⎨⎪⎧ 1=3(a -b )+c 1+2×3=32(2a -b )+c 1+2×3+3×32=33(3a -b )+c整理得⎩⎪⎨⎪⎧ 3a -3b +c =118a -9b +c =781a -27b +c =34,解得a =12,b =c =14.6.在数列{a n } 中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( )A.1(n -1)(n +1)B.12n (2n +1)C.1(2n -1)(2n +1)D.1(2n +1)(2n +2)解析:选C.由a 1=13,S n =n (2n -1)a n ,得S 2=2(2×2-1)a 2,即a 1+a 2=6a 2,∴a 2=115=13×5,S 3=3(2×3-1)a 3, 即13+115+a 3=15a 3.∴a 3=135=15×7,a 4=17×9.故选C . 7.利用数学归纳法证明“(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是________.解析:当n =k (k ∈N *)时,左式为(k +1)(k +2)…(k +k );当n =k +1时,左式为(k +1+1)·(k +1+2)·…·(k +1+k -1)·(k +1+k ) ·(k +1+k +1),则左边应增乘的式子是(2k +1)(2k +2)k +1=2(2k +1).答案:2(2k +1)8.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________.解析:∵f (k )=12+22+…+(2k )2,∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2,∴f (k +1)=f (k )+(2k +1)2+(2k +2)2.答案:f (k +1)=f (k )+(2k +1)2+(2k +2)29.数列{a n }中,已知a 1=1,当n ≥2时,a n -a n -1=2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是________.解析:计算出a 1=1,a 2=4,a 3=9,a 4=16.可猜想a n =n 2.答案:n 210.对于n ∈N *,用数学归纳法证明:1·n +2·(n -1)+3·(n -2)+…+(n -1)·2+n ·1=16n (n +1)(n +2).证明:设f (n )=1·n +2·(n -1)+3·(n -2)+…+(n -1)·2+n ·1.(1)当n =1时,左边=1,右边=1,等式成立;(2)设当n =k 时等式成立,即1·k +2·(k -1)+3·(k -2)+…+(k -1)·2+k ·1=16k (k +1)(k +2),则当n =k +1时,f (k +1)=1·(k +1)+2[(k +1)-1]+3[(k +1)-2]+…+[(k +1)-2]·3+[(k +1)-1]·2+(k +1)·1=f (k )+1+2+3+…+k +(k +1)=16k (k +1)(k +2)+12(k +1)(k +1+1)=16(k +1)(k +2)(k +3).∴由(1)(2)可知当n ∈N *时等式都成立.11.已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=b n 1-4a n (n ∈N *)且点P 1的坐标为(1,-1).(1)求过点P 1,P 2的直线l 的方程;(2)试用数学归纳法证明:对于n ∈N *,点P n 都在(1)中的直线l 上. 解:(1)由P 1的坐标为(1,-1)知a 1=1,b 1=-1.∴b 2=b 11-4a 12=13. a 2=a 1·b 2=13.∴点P 2的坐标为(13,13)∴直线l 的方程为2x +y =1.(2)证明:①当n =1时,2a 1+b 1=2×1+(-1)=1成立.②假设n =k (k ∈N *,k ≥1)时,2a k +b k =1成立, 则当n =k +1时,2a k +1+b k +1=2a k ·b k +1+b k +1=b k 1-4a k 2(2a k+1) =b k 1-2a k =1-2a k 1-2a k=1, ∴当n =k +1时,命题也成立.由①②知,对n ∈N *,都有2a n +b n =1, 即点P n 在直线l 上.12.已知正项数列{a n }和{b n }中,a 1=a (0<a <1),b 1=1-a .当n ≥2时,a n =a n -1b n ,b n =b n -11-a 2n -1. (1)证明:对任意n ∈N *,有a n +b n =1;(2)求数列{a n }的通项公式.解:(1)证明:用数学归纳法证明. ①当n =1时,a 1+b 1=a +(1-a )=1,命题成立; ②假设n =k (k ≥1且k ∈N *)时命题成立,即a k +b k =1,则当n =k+1时,a k +1+b k +1=a k b k +1+b k +1=(a k +1)·b k +1=(a k +1)·b k 1-a k 2=b k 1-a k=b k b k=1. ∴当n =k +1时,命题也成立.由①、②可知,a n +b n =1对n ∈N *恒成立.(2)∵a n +1=a n b n +1=a n b n 1-a n 2=a n (1-a n )1-a n 2=a n 1+a n, ∴1a n +1=1+a n a n =1a n+1, 即1a n +1-1a n=1. 数列{1a n }是公差为1的等差数列,其首项为1a 1=1a , 1a n =1a +(n -1)×1,从而a n =a 1+(n -1)a .。
2013高考总复习数学(文)配套课时巩固与训练7章1课时训练
1.已知a <b <|a |,则( )A.1a >1b B .ab <1C.a b >1 D .a 2>b 2解析:选D.若b =0,可排除A ,C ,无论b >0还是b <0,D 均成立.2.下列命题中的真命题是( )A .若a >b ,c >d ,则ac >bdB .若|a |>b ,则a 2>b 2C .若a >b ,则a 2>b 2D .若a >|b |,则a 2>b 2 解析:选D.∵a >|b |≥0,∴a 2>b 2,故选D.3.如果a ,b ,c 满足c <b <a 且ac <0,那么下列选项中不一定成立的是( )A .ab >acB .c (b -a )>0C .cb 2<ab 2D .ac (a -c )<0解析:选C.当b =0时,b 2=0,cb 2=ab 2,故选C.4.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系是( )A .a >b >-b >-aB .a >-b >-a >bC .a >-b >b >-aD .a >b >-a >-b解析:选C.法一:∵A 、B 、C 、D 四个选项中,每个选项都是唯一确定的答案,∴可用特殊值法.令a =2,b =-1,则有2>-(-1)>-1>-2,即a >-b >b >-a .法二:∵a +b >0,b <0,∴a >-b >0,-a <b <0,∴a >-b >0>b >-a ,即a >-b >b >-a .5.若x +y >0,a <0,ay >0,则x -y 的值为( )A .大于0B .等于0C .小于0D .符号不能确定解析:选A.法一:因为a <0,ay >0,所以y <0,又x +y >0,所以x >-y >0,所以x -y >0.应选A.法二:a <0,ay >0,取a =-2得:-2y >0,又x +y >0,两式相加得x -y >0.应选A.6.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则( )A .甲先到教室B .乙先到教室C .两人同时到教室D .谁先到教室不确定解析:选B.设步行速度与跑步速度分别为v 1,v 2,显然v 1<v 2,总路程为2s ,则甲用时间为s v 1+s v 2,乙用时间为4s v 1+v 2, 而s 1+s 2-4s v 1+v 2=s (v 1+v 2)2-4s v 1v 2v 1v 2(v 1+v 2) =s (v 1-v 2)2v 1v 2(v 1+v 2)>0, 故s v 1+s v 2>4s v 1+v 2,故乙先到教室. 7.设A =1+2x 4,B =2x 3+x 2,x ∈R ,则A ,B 的大小关系是________.解析:∵A -B =1+2x 4-2x 3-x 2=2x 3(x -1)-(x 2-1)=(x -1)(2x 3-x -1)=(x -1)2(2x 2+2x +1),∵(x -1)2≥0,2x 2+2x +1>0,∴A -B ≥0,即A ≥B .答案:A ≥B8.下列四个不等式:①a <0<b ;②b <a <0;③b <0<a ;④0<b <a ,其中能使1a <1b 成立的充分条件有________.解析:1a <1b ⇒b -a ab <0⇔b -a 与ab 异号,因此①②④能使b -a 与ab 异号.答案:①②④9.用锤子以均匀的力敲击铁钉钉入木板.随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子长度后一次为前一次的1k (k ∈N *).已知一个铁钉受击3次后全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的47,请从这件事实中提炼出一个不等式组是________.解析:依题意47+47k <1,且三次后全部进入,即47+47k +47k 2≥1,故不等式组为⎩⎪⎨⎪⎧ 47+47k <147+47k +47k 2≥1.k ∈N *答案:⎩⎪⎨⎪⎧ 47+47k <147+47k +47k 2≥1k ∈N *10.已知:a >b >0,c >d >0,求证:a d >b c .证明:∵c >d >0,∴1d >1c >0,又∵a >b >0,∴a d >b c >0.11.已知a >0,b >0,试比较a b +b a 与a +b 的大小. 解:(a b +b a)-(a +b ) =a a +b b -ab (a +b )ab=a a +b b -a b -b a ab=a (a -b )-b (a -b )ab =(a -b )(a -b )ab=(a +b )(a -b )2ab. ∵a >0,b >0.∴a +b >0,ab >0.又∵(a -b )2≥0(当且仅当a =b 时等号成立),∴(a +b )(a -b )2ab≥0. 即a b +b a≥a +b (当且仅当a =b 时等号成立). 12.2008年北京成功举办了第29届奥运会,中国取得了51金、21银、28铜的骄人成绩.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷赛前准备用12000元预订15张下表中球类比赛的门票:订上表中三种球类比赛门票,其中足球比赛门票数与乒乓球比赛门票数相同,且足球比赛门票的费用不超过男篮比赛门票的费用,求可以预订的男篮比赛门票数.解:设足球比赛门票数与乒乓球比赛门票数都预订n (n ∈N *)张,则男篮比赛门票预订(15-2n )张,得⎩⎪⎨⎪⎧ 800n +500n +1000(15-2n )≤12000800n ≤1000(15-2n ), 解得427≤n ≤5514.由n ∈N *,可得n =5,∴15-2n =5.∴可以预订男篮比赛门票5张.。
2013高考总复习数学(文)配套课时巩固与训练6章1课时训练
1.已知数列3,7,11,15,…,则53是数列的( )A .第18项B .第19项C .第17项D .第20项解析:选B.∵7-3=11-7=15-11=4,即a n 2-a n -12=4,∴a n 2=3+(n -1)×4=4n -1,令4n -1=75,则n =19.故选B. 2.已知数列的通项a n =⎩⎪⎨⎪⎧3n +1 (n 为奇数)2n -1 (n 为偶数),则a 2009-a 2010等于( )A .2007B .2008C .2009D .2010解析:选C.a 2009=3×2009+1=6028;a 2010=2×2010-1=4019.故a 2009-a 2010=6028-4019=2009.故应选C.3.下面有四个命题:①如果已知一个数列的递推公式及其首项,那么可以写出这个数列的任何一项;②数列23,34,45,56,…的通项公式是a n =n n +1; ③数列的图象是一群孤立的点;④数列1,-1,1,-1,…与数列-1,1,-1,1,…是同一数列. 其中正确命题的个数是( )A .1B .2C .3D .4解析:选A.①错误,如a n +2=a n +a n +1,a 1=1就无法写出a 2;②错误,a n =n +1n +2;③正确;④两数列是不同的有序数列.故应选A.4.在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则a 3a 5的值是( )A.1516B.158C.34D.38解析:选C.由已知得a 2=1+(-1)2=2, ∴a 3·a 2=a 2+(-1)3,∴a 3=12,∴12a 4=12+(-1)4,∴a 4=3,∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34. 5.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 等于( )A .9B .8C .7D .6 解析:选B.a n =⎩⎨⎧ S 1 (n =1),S n -S n -1(n ≥2), =⎩⎨⎧-8 (n =1),-10+2n (n ≥2). ∵n =1时适合a n =2n -10,∴a n =2n -10. ∵5<a k <8,∴5<2k -10<8,∴152<k <9,又∵k ∈N +,∴k =8,故选B.6.若数列{a n }满足a 1=1,a 2=2,a n =a n -1a n -2(n ≥3且n ∈N *),则a 17=( )A .1B .2C.12 D .2-987解析:选C.由已知得a 1=1,a 2=2,a 3=2,a 4=1,a 5=12,a 6=12,a 7=1,a 8=2,a 9=2,a 10=1,a 11=12,a 12=12,即a n 的值以6为周期重复出现,故a 17=12.7.已知数列{a n }的通项a n =na nb +c(a ,b ,c 均为正实数),则a n 与a n +1的大小关系是________.解析:∵a n =na nb +c =a b +c n,c n 是减函数, ∴a n =a b +c n是增函数,∴a n <a n +1.答案:a n <a n +18.设数列{a n }的前n 项和为S n ,S n =a 1(3n -1)2(对n ≥1恒成立)且a 4=54,则a 1=________.解析:法一:由S 4=S 3+a 4,得a 1(34-1)2=a 1(33-1)2+54, 即a 1(34-33)2=54,解得a 1=2. 法二:由S n -S n -1=a n (n ≥2)可得a n =a 1(3n -1)2-a 1(3n -1-1)2=a 1(3n -3n -1)2=a 1·3n -1, ∴a 4=a 1·33,∴a 1=5427=2.答案:29.已知数列{a n }的前n 项的乘积为T n =5n 2,n ∈N *,则数列{a n }的通项公式为________.解析:当n =1时,a 1=T 1=512=5;当n ≥2时,a n =T n T n -1=5n 25(n -1)2=52n -1(n ∈N *). 当n =1时,也适合上式,所以当n ∈N *时,a n =52n -1.答案:a n =52n -1(n ∈N *)10.已知数列{a n }中,a n ∈(0,12),a n =38+12a 2n -1,其中n ≥2,n ∈N +,求证:对一切正整数n 都有a n <a n +1成立.证明:a n +1-a n =38+12a n 2-a n=12(a n -1)2-18,∵0<a n <12,∴-1<a n -1<-12.∴18<12(a n -1)2<12.∴12(a n -1)2-18>0.∴a n +1-a n >0,即a n <a n +1对一切正整数n 都成立.11.(2010年邯郸模拟)已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n . (1)求数列{b n }的通项公式;(2)判断数列{c n }的增减性.解:(1)a 1=2,a n =S n -S n -1=2n -1(n ≥2).∴b n =⎩⎪⎨⎪⎧ 1n (n ≥2),23(n =1).(2)∴c n =b n +1+b n +2+…+b 2n +1=1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1<0,∴{c n}是递减数列.12.已知数列{a n}的前n项和为S n=n2+pn,数列{b n}的前n项和为T n=3n2-2n.(1)若a10=b10,求p的值.(2)取数列{b n}的第1项,第3项,第5项,…,构成一个新数列{c n},求数列{c n}的通项公式.解:(1)由已知,a n=S n-S n-1=(n2+pn)-[(n-1)2+p(n-1)]=2n-1+p(n≥2),b n=T n-T n-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5(n≥2).∴a10=19+p,b10=55.由a10=b10,得19+p=55,∴p=36.(2)b1=T1=1,满足b n=6n-5.∴数列{b n}的通项公式为b n=6n-5.取{b n}中的奇数项,所组成的数列的通项公式为b2k-1=6(2k-1)-5=12k-11.∴c n=12n-11.。
2013年高考数学(理)二轮复习 专题三 第二节 配套课时作业 (解析版)
[配套课时作业]1.数列{an}的通项公式是an =1n +n -1,若数列的前n 项和为45,则项数n 等于( )A .45B .44C .2 025D .2 012解析:选C 因为an =1n +n -1=n -n -1, 所以Sn =(1-0)+(2-1)+(3-2)+…+(n -n -1)=n ,由题意得Sn =n =45,解得n =2 025.2.(2011·安徽高考)若数列{an}的通项公式是an =(-1)n·(3n -2),则a1+a2+…+a10=( )A .15B .12C .-12D .-15 解析:选A a1+a2+…+a10=-1+4-7+10+…+(-1)10·(3×10-2)=(-1+4)+(-7+10)+…+[(-1)9·(3×9-2)+(-1)10·(3×10-2)]=3×5=15.3.下列关于五角星的图案构成一个数列,该数列的一个通项公式是( )★★ ★ ★★ ★ ★ ★ ★ ★ … ★ ★ ★ ★ ★ ★ ★ ★ ★ ★A .an =n2-n +1B .an =n n -1 2C .an =n n +1 2D .an =n n +2 2解析:选C 从图中观察五角星构成规律,n =1时,有1个;n =2时,有3个;n =3时,有6个;n =4时,有10个;…所以an =1+2+3+4+…+n =n n +1 2. 4.已知等差数列{an}的前n 项和为Sn ,且S2=10,S5=55,则过点P(n ,an)和Q(n +2,an +2)(n ∈N*)的直线的斜率是( )A .4B .3C .2D .1解析:选A 由S2=10,S5=55得a1=3,d =4,所以kPQ =an +2-an n +2 -n =2d 2=d =4. 5.(2012·济南模拟)在等差数列{an}中,a1=-2 012,其前n 项和为Sn ,若S1212-S1010=2,则S2 012的值等于( )A .-2 011B .-2 012C .-2 010D .-2 013解析:选B 根据等差数列的性质,得数列⎩⎨⎧⎭⎬⎫Sn n 也是等差数列,根据已知可得这个数列的首项S11=a1=-2 012,公差d =1,故S2 0122 0122 012+(2 012-1)×1=-1, 所以S2 012=-2 012.6.(2012·浙江高考)设Sn 是公差为d(d≠0)的无穷等差数列{an}的前n 项和,则下列命题错误的是( )A .若d <0,则数列{Sn}有最大项B .若数列{Sn}有最大项,则d <0C .若数列{Sn}是递增数列,则对任意n ∈N*,均有Sn >0D .若对任意n ∈N*,均有Sn >0,则数列{Sn}是递增数列解析:选C A 、B 、D 均正确,对于C ,若首项为-1,d =2时就不成立.7.函数y =x2(x>0)的图像在点(ak ,a2k )处的切线与x 轴的交点的横坐标为ak +1,其中k ∈N*,若a1=16,则a1+a3+a5=________. 解析:∵y′=2x ,∴k =y′|x =ak =2ak ,故切线方程为y -a2k =2ak(x -ak ),令y =0得x =12ak ,即ak +1=12ak. ∴{an}是以16为首项,12即an =16·⎝⎛⎭⎫12 n -1. ∴a1+a3+a5=16+4+1=21.答案:218.秋末冬初,流感盛行,特别是甲型H1N1流感.某医院近30天每天入院治疗甲流的人数依次构成数列{an},已知a1=1,a2=2,且an +2-an =1+(-1)n(n ∈N*),则该医院30天入院治疗甲流的人数共有________.解析:由于an +2-an =1+(-1)n ,所以a1=a3=…=a29=1,且a2,a4,…,a30构成公差为2的等差数列,所以a1+a2+…+a29+a30=15+15×2+15×142×2=255. 答案:2559.(2012·山西考前适应性训练)已知向量a =(2,-n),b =(Sn ,n +1),n ∈N*,其中Sn 是数列{an}的前n 项和,若a ⊥b ,则数列⎩⎨⎧⎭⎬⎫an an +1an +4的最大项的值为________. 解析:依题意得a·b =0,即2Sn =n(n +1),Sn =n n +1 2.当n≥2时,an =Sn -Sn -1=n n +1 2-n n -1 2=n ;又a1=S1=1× 1+1 2=1,因此an =n.所以an an +1an +4=n n +1 n +4 =n n2+5n +4=1n +4n+5≤19,当且仅当n =4n ,n ∈N*,即n =2时取等号,因此数列⎩⎨⎧⎭⎬⎫an an +1an +4的最大项的值是19. 答案:1910.已知x ,f x 2,3(x≥0)成等差数列.又数列{an}(an>0)中,a1=3,此数列的前n 项和为Sn ,对于所有大于1的正整数n 都有Sn =f(Sn -1). (1)求数列{an}的第n +1项; (2)若bn 是1an +1,1an的等比中项,且Tn 为{bn}的前n 项和,求Tn. 解:(1)因为x ,f x 2,3(x≥0)成等差数列, 所以2×f x 2=x +3,整理,得f(x)=(x +3)2. 因为Sn =f(Sn -1)(n≥2),所以Sn =( Sn -1+3)2,所以Sn = Sn -1+3,即Sn -Sn -1=3,所以{Sn}是以3为公差的等差数列. 因为a1=3,所以S1=a1=3, 所以Sn =S1+(n -1)3=3+3n -3= 3 n.所以Sn =3n2(n ∈N*).所以an +1=Sn +1-Sn =3(n +1)2-3n2=6n +3.(2)因为bn 是1an +1与1an的等比中项, 所以(bn)2=1an +1·1an, 所以bn =1an +1·1an =13 2n +1 ×3 2n -1=118×⎝⎛⎭⎫12n -1-12n +1, Tn =b1+b2+…+bn =118⎣⎡⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+ ⎦⎤⎝⎛⎭⎫12n -1-12n +1=118⎝⎛⎭⎫1-12n +1=n 18n +9. 11.(2012·湖北高考)已知等差数列{an}前三项的和为-3,前三项的积为8.(1)求等差数列{an}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|an|}的前n 项和.解:(1)设等差数列{an}的公差为d ,则a2=a1+d ,a3=a1+2d ,由题意得⎩⎪⎨⎪⎧ 3a1+3d =-3,a1 a 1+d a 1+2d =8. 解得⎩⎪⎨⎪⎧ a1=2,d =-3,或⎩⎪⎨⎪⎧a1=-4,d =3. 所以由等差数列通项公式可得an =2-3(n -1)=-3n +5或an =-4+3(n -1)=3n -7.故an =-3n +5或an =3n -7.(2)当an =-3n +5时,a2,a3,a1分别为-1,-4,2,不成等比数列;当an =3n -7时,a2,a3,a1分别为-1,2,-4,成等比数列,满足条件.故|an|=|3n -7|=⎩⎪⎨⎪⎧ -3n +7,n =1,2,3n -7,n≥3.记数列{|an|}的前n 项和为Sn.当n =1时,S1=|a1|=4;当n =2时,S2=|a1|+|a2|=5;当n≥3时,Sn =S2+|a3|+|a4|+…+|an|=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+n -2 [2+3n -7 ]2=32n2-112n +10,且当n =2时,满足此式. 综上,Sn =⎩⎪⎨⎪⎧ 4,n =1,32n2-112n +10,n >1. 12.(2012·东城模拟)定义:若数列{An}满足An +1=A2n ,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an ,an +1)在函数f(x)=2x2+2x 的图像上,其中n 为正整数.(1)证明:数列{2an +1}是“平方递推数列”,且数列{lg(2an +1)}为等比数列;(2)设(1)中“平方递推数列”的前n 项之积为Tn ,即Tn =(2a1+1)(2a2+1)…(2an +1),求数列{an}的通项公式及Tn 关于n 的表达式;(3)记bn =21log +n Tn a ,求数列{bn}的前n 项之和Sn ,并求使Sn>2 012成立的n 的最小值. 解:(1)证明:由题意得an +1=2a2n +2an ,得2an +1+1=4a2n +4an +1=(2an +1)2. 所以数列{2an +1}是“平方递推数列”.令cn =2an +1,所以lg cn +1=2lg cn.因为lg(2a1+1)=lg 5≠0,所以lg 2an +1+1 lg 2an +1=2. 所以数列{lg(2an +1)}为等比数列.(2)因为lg(2a1+1)=lg 5,所以lg(2an +1)=2n -1·lg 5,所以2an +1=52n -1,即an =12(52n -1-1). 因为lg Tn =lg(2a1+1)+lg(2a2+1)+…+lg(2an +1)=lg 5· 1-2n 1-2=(2n -1)lg 5. 所以Tn =52n -1.(3)因为bn =lg Tn lg 2an +1 =2n -1 l g 52n -1lg 5=2n -12n -1=2-⎝⎛⎭⎫12n -1,所以Sn =2n -⎣⎡⎦⎤1+12+⎝⎛⎭⎫122+…+⎝⎛⎭⎫12n -1=2n -1-⎝⎛⎭⎫12n 1-122n -2⎣⎡⎦⎤1-⎝⎛⎭⎫12n =2n -2+2·⎝⎛⎭⎫12n.由Sn>2 012得2n -2+2·⎝⎛⎭⎫12n>2 012, 即n +⎝⎛⎭⎫12n>1 007, 当n≤1 006时,n +⎝⎛⎭⎫12n<1 007,当n≥1 007时,n +⎝⎛⎭⎫12n>1 007, 所以n 的最小值为1 007.。
2013高考总复习数学(理)配套课时巩固与训练8章2课时训练
1.若三条直线2x +3y +8=0,x -y -1=0和x +ky +k +12=0相交于一点,则k =( )A .-2B .-12C .2 D.12解析:选 B.由⎩⎪⎨⎪⎧2x +3y +8=0x -y -1=0得交点为(-1,-2),代入x +ky +k +12=0,得k =-12.2.已知直线l 的倾斜角为34π,直线l 1经过点A (3,2)、B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( )A .-4B .-2C .0D .2解析:选B.l 的斜率为-1,则l 1的斜率为1,k AB =2-(-1)3-a=1,a =0. 由l 1∥l 2,-2b =1,得b =-2,所以a +b =-2.3.点P (-1,3)到直线l :y =k (x -2)的距离的最大值等于( )A .2B .3C .3 2D .2 3解析:选C.直线l :y =k (x -2)的方程化为kx -y -2k =0,所以点P (-1,3)到该直线的距离为d =3|k +1|k 2+1=3k 2+2k +1k 2+1=31+2k k 2+1,由于2k k 2+1≤1,所以d ≤32,即距离的最大值等于32,选C.4.点P 在直线3x +y -5=0上,且点P 到直线x -y -1=0的距离为2,则P 点坐标为( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-2,1)解析:选C.设P 点坐标为(a,5-3a ), 由题意知:|a -(5-3a )-1|2= 2. 解之得a =1或a =2,∴P 点坐标为(1,2)或(2,-1).故应选C.5.已知直线l :x -y -1=0,l 1:2x -y -2=0,若直线l 1与l 2关于l 对称,则l 2的方程是( )A .x -2y +1=0B .x -2y -1=0C .x +y -1=0D .x +2y -1=0解析:选B.在l 2上任取一点(x ,y ),关于l :x -y -1=0的对称点(x 0,y 0)在l 1上,根据点关于线的对称关系列方程组解出x 0,y 0,代入l 1即可得出方程x -2y -1=0.6.三条直线l 1:x -y =0,l 2:x +y -2=0,l 3:5x -ky -15=0构成一个三角形,则k 的取值范围是( )A .k ∈RB .k ∈R 且k ≠±1,k ≠0C .k ∈R 且k ≠±5,k ≠-10D .k ∈R 且k ≠±5,k ≠1 解析:选C.由l 1∥l 3得k =5,由l 2∥l 3得k =-5,由⎩⎪⎨⎪⎧ x -y =0x +y -2=0得⎩⎪⎨⎪⎧ x =1y =1,若(1,1)在l 3上,则k =-10. 故若l 1,l 2,l 3能构成一个三角形,则k ≠±5且k ≠-10.7.已知直线l 1:kx -y +1-k =0与l 2:ky -x -2k =0的交点在第一象限,则实数k 的取值范围为________.解析:解⎩⎪⎨⎪⎧ kx -y +1-k =0ky -x -2k =0,得⎩⎨⎧x =k k -1y =2k -1k -1, ∵交点在第一象限,∴⎩⎨⎧ k k -1>02k -1k -1>0,∴k >1或k <0. 答案:k <0或k >18.设直线l 经过点(-1,1),则当点(2,-1)与直线l 的距离最大时,直线l 的方程为______________.解析:设A (-1,1),B (2,-1),当AB ⊥l 时,点B 与l 距离最大,此时l 的方程为:y -1=-11+1-1-2(x +1), 即为:3x -2y +5=0.答案:3x -2y +5=09.已知平面上一点M (5,0),若直线上存在点P 使|PM |=4,则称该直线为“切割型直线”,下列直线中是“切割型直线”的是________(填上所有正确答案的序号).①y =x +1;②y =2;③y =43x解析:根据题意,看所给直线上的点到定点M 距离能否取4.可通过求各直线上的点到点M 的最小距离,即点M 到直线的距离来分析.①d =|5+1|12+(-1)2=32>4,故直线上不存在点到点M 距离等于4,不是“切割型直线”;②d =2<4,所以在直线上可以找到两个不同的点,使之到点M 距离等于4,是“切割型直线”;③d =|4×5-0|(-3)2+42=4,直线上存在一点,使之到点M 距离等于4,是“切割型直线”.答案:②③10.已知直线l 的方程为3x +4y -12=0,求满足下列条件的直线l ′的方程.(1)l ′与l 平行且过点(-1,3);(2)l ′与l 垂直且l ′与两坐标轴围成的三角形面积为4;(3)l ′是l 绕原点旋转180°而得到的直线.解:(1)直线l :3x +4y -12=0,k l =-34,又∵l ′∥l ,∴k l ′=k l =-34.∴直线l ′:y =-34(x +1)+3,即3x +4y -9=0.(2)∵l ′⊥l ,∴k l ′=43. 设l ′在x 轴上截距为b ,则l ′在y 轴上截距为-43b ,由题意可知,S =12|b |·|-43b |=4,∴b =±6.∴直线l ′:y =43x +6或y =43x - 6.(3)∵l ′是l 绕原点旋转180°而得到的直线,∴l ′与l 关于原点对称.在l 上任取点(x 0,y 0),则在l ′上对称点为(x ,y ).x =-x 0,y =-y 0,则-3x -4y -12=0.∴l ′为3x +4y +12=0.11.已知两直线l 1:ax -by +4=0,l 2:(a -1)x +y +b =0.求分别满足下列条件的a ,b 的值.(1)直线l 1过点(-3,-1),并且直线l 1与l 2垂直;(2)直线l 1与直线l 2平行,并且坐标原点到l 1,l 2的距离相等. 解:(1)∵l 1⊥l 2,∴a (a -1)+(-b )·1=0,即a 2-a -b =0①又点(-3,-1)在l 1上,∴-3a +b +4=0②由①②得a =2,b =2.(2)∵l 1∥l 2,∴a b =1-a ,∴b =a 1-a, 故l 1和l 2的方程可分别表示为:(a -1)x +y +4(a -1)a =0,(a -1)x +y +a 1-a=0, 又原点到l 1与l 2的距离相等.∴4|a -1a |=|a 1-a|,∴a =2或a =23, ∴a =2,b =-2或a =23,b =2.12.光线通过点A (-2,4),经直线2x -y -7=0反射,若反射线通过点B (5,8).求入射光线和反射光线所在直线的方程.解:如右图,已知直线l :2x -y -7=0,设光线AC 经l 上点C 反射为BC ,则∠1=∠2.再设A 关于l 的对称点为A ′(a ,b ),则∠1=∠3.∴∠2=∠3,则B ,C ,A ′三点共线.∵A ′A ⊥l 且AA ′中点在l 上,∴⎩⎨⎧2·a -22-b +42-7=0,b -4a +2·2=-1.解得a =10,b =-2,即A ′(10,-2).∴A ′B 的方程为y +2=8+25-10(x -10), 即2x +y -18=0.∴A ′B 与l 的交点为C (254,112).∴入射光线AC 的方程为y -4=4-112-2-254(x +2).即2x -11y +48=0.∴入射光线方程为2x -11y +48=0, 反射光线方程为2x +y -18=0.。
2013高考总复习数学(理)配套课时巩固与训练3章3课时巩固
2.(原创题)用S 表示图中阴影部分的面积,则S 的值是( )A .⎠⎛a c f (x )d xB .|⎠⎛acf (x )d x | C .⎠⎛a b f (x )d x +⎠⎛b c f (x )d x D .⎠⎛b c f (x )d x -⎠⎛a bf (x )d x 解析:选D.由定积分的几何意义知选项D 正确.3.设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则⎠⎛12f (-x )d x 的值等于( ) A.56 B.12C.23D.16解析:选A.由于f (x )=x m +ax 的导函数为f ′(x )=2x +1,所以f (x )=x 2+x ,于是⎠⎛12f (-x )d x =⎠⎛12 (x 2-x )d x =⎪⎪⎪⎝ ⎛⎭⎪⎫13x 3-12x 221=56. 4.若等比数列{a n }的首项为23,且a 4=⎠⎛14 (1+2x )d x ,则公比等于________.解析:本题考查定积分运算及等比数列基本量的求解.由已知得a 4=(x +x 2)|41=18,故q 3=1823=27⇒q =3. 答案:35.已知函数f (x )=3x 2+2x +1,若⎠⎛-11f (x )d x =2f (a )成立,则a =________.解析:⎠⎛-11(3x 2+2x +1)d x =(x 3+x 2+x )| 1-1=4,所以2(3a 2+2a +1)=4,即3a 2+2a -1=0,解得a =-1或a =13.答案:-1或136.设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x -2.(1)求y =f (x )的表达式;(2)求y =f (x )的图象与两坐标轴所围成图形的面积.解:(1)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b .又f ′(x )=2x -2,所以a =1,b =-2,即f (x )=x 2-2x +c .又方程f (x )=0有两个相等实根,所以Δ=4-4c =0,即c =1.故f (x )=x 2-2x +1.(2)依题意,所求面积为S =⎠⎛01(x 2-2x +1)d x =(13x 3-x 2+x )|10=13.。
2013高考总复习数学(理)配套课时巩固与训练12章3课时训练
1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X ,则X 所有可能取值的个数是( )A .5B .9C .10D .25解析:选B.号码之和可能为2,3,4,5,6,7,8,9,10,共9种.2.已知随机变量X 的分布列为P (X =k )=12k ,k =1,2,…,则P (2<X ≤4)等于( )A.316B.14C.116D.516解析:选A.P (2<X ≤4)=P (X =3)+P (X =4)=123+124=316.3.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0 B.12C.13D.23解析:选C.设X即“X =0”p ,则成功率为2p .由p +2p =1,得p =13.4.随机变量X 的概率分布规律为P (X =n )=a n (n +1)(n =1,2,3,4),其中a 是常数,则P (12<X <52)的值为( )A.23B.34C.45D.56解析:选D.∵P (X =n )=a n (n +1)(n =1,2,3,4), ∴a 2+a 6+a 12+a 20=1,∴a =54,∵P (12<X <52)=P (X =1)+P (X =2)=54×12+54×16=56.故选D.5.若P (X ≤n )=1-a ,P (X ≥m )=1-b ,其中m <n ,则P (m ≤X ≤n )等于( )A .(1-a )(1-b )B .1-a (1-b )C .1-(a +b )D .1-b (1-a )解析:选C.P (m ≤X ≤n )=P (X ≤n )+P (X ≥m )-1=1-(a +b ).6.甲、乙两名篮球运动员轮流投篮直至某人投中为止,计每次投篮甲投中的概率为0.4,乙投中的概率为0.6,而且不受其他投篮结果的影响.设甲投篮的次数为ξ,若甲先投,则P (ξ=k )等于( )A .0.6k -1×0.4B .0.24k -1×0.76C .0.4k -1×0.6D .0.76k -1×0.24答案:B7若η=2ξ-3解析:由η=2ξ-3可计算出相应的η的取值,概率不变. 答案:8.P (X ≤4)=__________.解析:P (X ≤4)=P (X =2)+P (X =3)+P (X =4).相应的基本事件空间有36个基本事件,X =2对应(1,1),X =3对应(1,2),(2,1),X =4对应(1,3),(3,1),(2,2),故P (X =2)=136,P (X =3)=236=118,P (X =4)=336=112,所以P (X ≤4)=136+118+112=16.答案:169.设随机变量X 只能取5,6,7,…,16这12个值,且取每一个值的概率均相等,则P (X >8)=________.若P (X <x )=112,则x 的范围是________.解析:∵X 取每一个值的概率都相等.∴P (X >8)=P (X =9)+P (X =10)+P (X =11)+P (X =12)+…+P (X=16)=812=23.(或P (X >8)=1-P (X ≤8)=1-P (X =8)-P (X =7)-P (X =6)-P (X =5)=23)若P (X <x )=112,则P (X <x )=P (X =5).∴x ∈(5,6]答案:23 (5,6]10.甲、乙两名射手各打了10发子弹,其中甲击中环数与次数如下表:解:由0.2+0.3+p +0.1=1,得p =0.4.设甲、乙击中的环数分别为X 1、X 2,则X 1+X 2=18,P (X 1=8)=110=0.1,P (X 1=9)=210=0.2,P (X 1=10)=410=0.4.P (X 2=10)=0.1,P (X 2=9)=0.4,P (X 2=8)=0.3.甲、乙各射击一次所得环数之和为18的概率为0.1×0.1+0.2×0.4+0.4×0.3=0.21.11.山东水浒书业在2009年8月举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如下表所示:版本人教A版人教B版苏教版北师大版人数2015510(1)率;(2)若随机选出2名使用人教版的教师发言,设使用人教A版的教师人数为ξ,求随机变量ξ的分布列.∴ξ的分布列为ξ01 2P 317601193811912.2008分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子福娃名称贝贝晶晶欢欢迎迎妮妮数量1231 1(1)求选取的5只恰好组成完整“奥运吉祥物”的概率;(2)若完整地选取奥运会吉祥物记100分;若选出的5只中仅差一种记80分;差两种记60分;以此类推,设X表示所得的分数,求X 的分布列.解:(1)选取的5只恰好组成完整“奥运会吉祥物”的概率P=C21·C31C85=656=328.(2)X的取值为100,80,60,40.X的分布列为。
2013高考总复习数学(理)配套课时巩固与训练6章5课时训练
1.已知a ,b ∈(0,+∞),A 为a ,b 的等差中项,正数G 为a ,b 的等比中项,则ab 与AG 的大小关系是( )A .ab =AGB .ab ≥AGC .ab ≤AGD .不能确定解析:选C.依题意A =a +b 2,G =ab ,∴AG -ab =a +b 2·ab -ab =ab (a +b 2-ab ) =ab ·(a -b )22≥0,∴AG ≥ab .2.在直角坐标系中,O 是坐标原点,P 1(x 1,y 1),P 2(x 2,y 2)是第一象限的两个点,若1,x 1,x 2,4依次成等差数列,而1,y 1,y 2,8依次成等比数列,则△OP 1P 2的面积是( )A .1B .2C .3D .4解析:选A.根据等差、等比数列的性质,可知x 1=2,x 2=3,y 1=2,y 2=4.∴P 1(2,2),P 2(3,4).∴S △OP 1P 2=1.3.已知等差数列{a n }的前n 项和为S n ,且S 2=10,S 5=55,则过点P (n ,a n )和Q (n +2,a n +2)(n ∈N *)的直线的一个方向向量的坐标可以是( )A .(2,4)B .(-13,-43)C .(-12,-1)D .(-1,-1)解析:选B.由S 2=10,S 5=55,得2a 1+d =10,5a 1+10d =55,解得a 1=3,d =4,可知直线PQ 的一个方向向量是(1,4),只有(-13,-43)与(1,4)平行.故选B.4.一群羊中,每只羊的重量数均为整千克数,其总重量为65千克,已知最轻的一只羊重7千克,除去一只10千克的羊外,其余各只羊的千克数恰能构成一等差数列,则这群羊共有( )A .6只B .5只C .8只D .7只错误!解析:选A.依题意除去一只羊外,其余n -1只羊的重量从小到大依次排列构成等差数列,设a 1=7,d >0,S n -1=65-10=55.∴有(n -1)a 1+(n -1)(n -2)2d =55. 即7(n -1)+(n -1)(n -2)d 2=55, (n -1)[7+(n -2)d 2]=55,∵55=11×5且(n -1)∈Z ,[7+(n -2)d 2]∈Z .∴⎩⎨⎧ n -1=5,7+n -22d =11.∴n =6.5.2008年春,我国南方部分地区遭受了罕见的特大冻灾.大雪无情人有情,柳州某中学组织学生在学校开展募捐活动,第一天只有10人捐款,人均捐款10元,之后通过积极宣传,从第二天起,每天的捐款人数是前一天的2倍,且当天人均捐款数比前一天多5元,则截止第5天(包括第5天)捐款总数将达到( )A .4800元B .8000元C .9600元D .11200元解析:选B.由题意知,5天共捐款10×10+(10×2)×(10+5)+(10×4)×(15+5)+(10×8)×(20+5)+(10×16)×(25+5)=8000(元).6.已知{a n }是递增数列,且对任意n ∈N *都有a n =n 2+λn 恒成立,则实数λ的取值范围是( )A .(-72,+∞)B .(0,+∞)C .[-2,+∞)D .(-3,+∞)解析:选 D.∵{a n }是递增数列,∴a n +1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,∴λ>-2n -1对于n ∈N *恒成立.而-2n -1在n =1时取得最大值-3,∴λ>-3,故选D.7.凸多边形的各内角度数成等差数列,最小角为120°,公差为5°,则边数n 等于________.解析:由条件得,(n -2)×180°=120°×n +n (n -1)2×5°,∴n =9或n =16,∵a 16=120°+(16-1)×5°=195°>180°,∴n =16(舍去),而a 9=160°<180°,∴n =9.答案:98.已知函数f (x )=a ·b x 的图象过点A (2,12),B (3,1),若记a n =log 2f (n )(n ∈N *),S n 是数列{a n }的前n 项和,则S n 的最小值是________.解析:将A 、B 两点坐标代入f (x )得⎩⎨⎧ 12=ab 21=ab 3,解得⎩⎨⎧a =18,b =2 ∴f (x )=18·2x ,∴f (n )=18·2n =2n -3,∴a n =log 2f (n )=n -3.令a n ≤0,即n -3≤0,n ≤3.∴数列前3项小于或等于零,故S 3或S 2最小.S 3=a 1+a 2+a 3=-2+(-1)+0=-3.答案:-39.某纺织厂的一个车间有n (n >7,n ∈N *)台织布机,编号分别为1,2,3,…,n ,该车间有技术工人n 名,编号分别为1,2,3,…,n .定义记号a ij ,如果第i 名工人操作了第j 号织布机,此时规定a ij =1,否则a ij =0.若第7号织布机有且仅有一人操作,则a 17+a 27+a 37+a 47+…+a n 7=________;若a 31+a 32+a 33+a 34+…+a 3n =2,说明________________________.解析:依题意,第7台织布机有且仅有一人操作,说明a 17,a 27,a 37,…,a n 7中有且仅有一个值为1,其余值为0,∴a 17+a 27+a 37+…+a n 7=1.同理,由a 31+a 32+a 33+…+a 3n =2.说明a 31,a 32,a 33,…,a 3n 中有且仅有2个值为1,其余值为0, 即第3号工人操作了2台织布机.答案:1 a 31,a 32,a 33,…,a 3n 中有且仅有2个值为1,其余值为0,即第3号工人操作了2台织布机10.为保护我国的稀土资源,国家限定某矿区的出口总量不能超过80吨,该矿区计划从2010年开始出口,当年出口a 吨,以后每年出口量均比上一年减少10%.(1)以2010年为第一年,设第n 年出口量为a n 吨,试求a n 的表达式;(2)因稀土资源不能再生,国家计划10年后终止该矿区的出口,问2010年最多出口多少吨?(保留一位小数)参考数据:0.910≈0.35.解:(1)由题意知每年的出口量构成等比数列,且首项a 1=a ,公比q =1-10%=0.9,∴a n =a ·0.9n -1.(2)10年出口总量S 10=a (1-0.910)1-0.9=10a (1-0.910).∵S 10≤80,∴10a (1-0.910)≤80,即a ≤81-0.910,∴a ≤12.3.故2010年最多出口12.3吨.11.已知数列{a n }中,a 1=12,点(n,2a n +1-a n )在直线y =x 上,其中n =1,2,3,….(1)令b n =a n +1-a n -1,求证数列{b n }是等比数列;(2)求数列{a n }的通项.解:(1)证明:a 1=12,2a n +1=a n +n ,∵a 2=34,a 2-a 1-1=34-12-1=-34,又b n =a n +1-a n -1,b n +1=a n +2-a n +1-1,∴b n +1b n =a n +2-a n +1-1a n +1-a n -1=a n +1+(n +1)2-a n +n 2-1a n +1-a n -1=a n +1-a n -12a n +1-a n -1=12.b n =-34×(12)n -1=-32×12n ,∴{b n }是以-34为首项,以12为公比的等比数列.(2)∵a n +1-a n -1=-32×12n ,∴a 2-a 1-1=-32×12,a 3-a 2-1=-32×122,…∴a n -a n -1-1=-32×12n -1, 将以上各式相加得:∴a n -a 1-(n -1)=-32(12+122+…+12n -1), ∴a n =a 1+n -1-32×12(1-12n -1)1-12=12+(n -1)-32(1-12n -1)=32n +n -2. ∴a n =32n +n -2.12.在等比数列{a n }中,a n >0(n ∈N *),公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25,又a 3与a 5的等比中项为2.(1)求数列{a n }的通项公式;(2)设b n =log 2a n ,数列{b n }的前n 项和为S n ,求数列{S n }的通项公式;(3)是否存在k ∈N *,使得S 11+S 22+…+S n n <k 对任意n ∈N *恒成立,若存在,求出k 的最小值,若不存在,请说明理由.解:(1)∵a 1a 5+2a 3a 5+a 2a 8=25,∴a 32+2a 3a 5+a 52=25,∴(a 3+a 5)2=25,又a n >0,∴a 3+a 5=5,又a 3与a 5的等比中项为2,∴a 3a 5=4.而q ∈(0,1),∴a 3>a 5,∴a 3=4,a 5=1,∴q =12,a 1=16,∴a n =16×(12)n -1=25-n .(2)∵b n =log 2a n =5-n ,∴b n +1-b n =-1, b 1=log 2a 1=log 216=log 224=4,∴{b n }是以b 1=4为首项,-1为公差的等差数列,∴S n =n (9-n )2.(3)由(2)知S n =n (9-n )2,∴S n n =9-n 2.当n ≤8时,S n n >0;当n =9时,S n n =0;当n >9时,S n n <0.∴当n =8或9时,S 11+S 22+S 33+…+S n n =18最大.故存在k ∈N *,使得S 11+S 22+…+S n n <k 对任意n ∈N *恒成立,k 的最小值为19.。
2013高考总复习数学(文)配套课时巩固与训练11章2课时训练
1.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是( )A.15B.14C.45D.110解析:选C.从盒中的10个铁钉中任取一个铁钉包含的基本事件总数为10,其中抽到合格铁钉(记为事件A )包含8个基本事件,所以所求的概率为P (A )=810=45.故选C.2.从标有1号到100号的100张卡片中任意抽取1张,取出的卡片号是7的倍数的概率是( )A.320B.325C.750D.13100解析:选C.根据等差数列的性质1≤7+7(m -1)≤100,得所求事件的基本事件数为m =14,故取出的卡片号是7的倍数的概率为P =14100=750.3.(2008年高考辽宁卷)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A.13B.12C.23D.34解析:选C.从4张卡片中任取两张的方法数为1,2;1,3;1,4;2,3;2,4;3,4,共6种.其中和为奇数的情况有1,2;1,4;2,3;3,4,共4种.∴所求概率P =46=23.4.有一对酷爱运动的年轻夫妇给他们12个月大的婴儿3块分别写有“20”,“08”和“北京”的字块,如果婴儿能够排成“2008北京”或者“北京2008”,则他们就给婴儿奖励.假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是( )A.16B.14C.13D.12解析:选C.“20”,“08”,“北京”三字块的排法共有“2008北京”、“20北京08”、“0820北京”、“08北京20”、“北京2008”、“北京0820”6种情况,而得到奖励的情况有2种,故婴儿能得到奖励的概率为26=13.5.如图所示,a ,b ,c ,d 是四处处于断开状态的开关,任意将其中两个闭合,则电路被接通的概率为( )A .1 B.12C.14 D .0解析:选B.四个开关任意闭合2个,有ab 、ac 、ad 、bc 、bd 、cd 共6种方案,电路被接通的条件是:①开关d 必须闭合;②开关a ,b ,c 中有一个闭合.即电路被接通有ad 、bd 和cd 共3种方案,所以所求的概率是36=12.故选B.6.某同学同时掷两颗骰子,得到点数分别为a ,b ,则椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e >32的概率是( ) A.118 B.536 C.16 D.13解析:选C.e = 1-b 2a 2>32?b a <12?a >2b ,符合a >2b 的情况有:当b =1时,有a =3,4,5,6四种情况;当b =2时,有a =5,6两种情况,总共有6种情况.则概率为636=16.7.以连续掷两次骰子分别得到的点数m 、n 作为P 点的坐标,则点P 落在圆x 2+y 2=16内的概率是________.解析:基本事件的总数为36个,记事件A ={(m ,n )落在圆x 2+y 2=16内},则A 所包含的基本事件有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共8个.∴P (A )=836=29.答案:298.集合A ={2,4,6,8,10},B ={1,3,5,7,9},在A 中任取一元素m 和在B 中任取一元素n ,则所取两数m >n 的概率是________.解析:基本事件总数为25个.m =2时,n =1;m =4时,n =1,3;m =6时,n =1,3,5;m =8时,n =1,3,5,7;m =10时,n =1,3,5,7,9;共15个.故P =1525=0.6.答案:0.69.任取一个三位正整数n ,则对数log 2n 是一个正整数的概率是________.解析:∵26=64,27=128,28=256,29=512,210=1024,∴满足条件的正整数只有27,28,29三个,∴所求的概率P =3900=1300.答案:130010.从1、2、3、…、7中任取一个数.(1)事件A 为“取出的数大于2”,事件B 为“取出的数小于7”.求P (A ∪B );(2)事件A 为“取出的数大于3”,事件B 为“取出的数小于1”.求P (A ∪B );(3)事件A 为“取出的数是偶数”,事件B 为“取出的数为2”,求P (A ∪B ).解:基本事件总数为7,记i ={取出的数字为i },(1)A ={3,4,5,6,7},B ={1,2,3,4,5,6},A ∪B ={1,2,3,4,5,6,7},所以P (A ∪B )=1.(2)A ={4,5,6,7},B =?,所以P (A ∪B )=P (A )=47.(3)A ={2,4,6},B ={2},所以P (A ∪B )=P (A )=37.11.已知集合P ={x |x (x 2+10x +24)=0},Q ={y |y =2n -1,1≤n ≤2,n ∈N *},M =P ∪Q ,在平面直角坐标系中,点A (x ′,y ′)的坐标x ′∈M ,y ′∈M ,计算:(1)点A 正好在第三象限的概率;(2)点A 不在y 轴上的概率;(3)点A 正好落在圆面x 2+y 2≤10上的概率.解:由集合P ={x |x (x 2+10x +24)=0}可得P ={-6,-4,0},由Q ={y |y =2n -1,1≤n ≤2,n ∈N *}可得Q ={1,3},M =P ∪Q ={-6,-4,0,1,3}.因为点A (x ′,y ′)的坐标x ′∈M ,y ′∈M ,由列举法可得满足条件的A 点共有25个.(1)正好在第三象限的点有(-6,-6),(-4,-6),(-6,-4),(-4,-4) 4个点.故点A 正好在第三象限的概率P 1=425.(2)在y 轴上的点有(0,-6),(0,-4),(0,0),(0,1),(0,3) 5个点.故点A 不在y 轴上的概率P 2=1-525=45.(3)正好落在圆面x 2+y 2≤10上的点A 有(0,0),(1,0),(1,1),(0,1),(3,1),(1,3) 6个点.故点A 落在圆面x 2+y 2≤10上的概率为P 3=625.12.在甲、乙两个盒子中分别装有标号为1,2,3,4的四个小球,现从甲、乙两个盒子中各取出一个小球,每个小球被取出的可能性相等.(1)求取出的两个小球上的标号为相邻整数的概率;(2)求取出的两个小球上的标号之和能被3整除的概率;(3)求取出的两个小球上的标号之和大于5的概率.解:由题意可知,从甲、乙两个盒子中各取1个小球的基本事件总数为16.(1)记“取出的两个小球的标号为相邻整数”为事件A ,则事件A 的基本事件有:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6个.∴P (A )=616=38.(2)记“取出的两个小球上的标号之和能被3整除”为事件B ,则事件B包含:(1,2),(2,1),(2,4),(4,2),(3,3)共5个基本事件.∴P(B)=5 16,(3)记“取出的两个小球上的标号之和为6”为事件C,则事件C包含:(2,4),(4,2),(3,3)共3个基本事件.∴P(C)=316,记“取出的两个小球上的标号之和为7”为事件D,则事件D包含:(3,4),(4,3)共2个基本事件.∴P(D)=216=18,记“取出的两个小球上的标号之和为8”为事件E,则事件E包含(4,4)共1个基本事件.∴P(E)=1 16,∴取出的两个小球上的标号之和大于5的概率为:P(C)+P(D)+P(E)=3 8.。
2013届高考一轮数学复习理科课时同步3-3
课时作业(十五)1.函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则( )A .a -2b =0B .2a -b =0C .2a +b =0D .a +2b =0答案 D解析 y ′=3ax 2+2bx ,据题意,0、13是方程3ax 2+2bx =0的两根,∴-2b 3a =13,∴a +2b =0.2.(2012·江南十校)当函数y =x ·2x 取极小值时,x =( ) A.1ln2 B .-1ln2 C .-ln2 D .ln2答案 B解析 由y =x ·2x 得y ′=2x +x ·2x ·ln2, 令y ′=0得2x (1+x ·ln2)=0, ∵2x>0,∴x =-1ln2.3.函数f (x )=x 3-3bx +3b 在(0,1)内有极小值,则( ) A .0<b <1 B .b <1 C .b >0 D .b <12答案 A解析 f (x )在(0,1)内有极小值,则f ′(x )=3x 2-3b 在(0,1)上先负后正,∴f ′(0)=-3b <0,∴b >0,f ′(1)=3-3b >0,∴b <1 综上,b 的范围为0<b <14.连续函数f (x )的导函数为f ′(x ),若(x +1)·f ′(x )>0,则下列结论中正确的是( )A .x =-1一定是函数f (x )的极大值点B .x =-1一定是函数f (x )的极小值点C .x =-1不是函数f (x )的极值点D .x =-1不一定是函数f (x )的极值点 答案 B解析 x >-1时,f ′(x )>0,x <-1时,f ′(x )<0. ∴连续函数f (x )在(-∞,-1)单减,在(-1,+∞)单增, ∴x =-1为极小值点.5.(2012·潍坊调研)已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( )A .m ≥32B .m >32C .m ≤32 D .m <32答案 A解析 因为函数f (x )=12x 4-2x 3+3m ,所以f ′(x )=2x 3-6x 2, 令f ′(x )=0,得x =0或x =3, 经检验知x =3是函数的最小值点, 所以函数的最小值为f (3)=3m -272, 不等式f (x )+9≥0恒成立, 即f (x )≥-9恒成立,所以3m -272≥-9,解得m ≥32.6.函数f (x )的导函数f ′(x )的图像,如下图所示,则( )A .x =1是最小值点B .x =0是极小值点C .x =2是极小值点D .函数f (x )在(1,2)上单增 答案 C解析 由导数图像可知,x =0,x =2为两极值点,x =0为极大值点,x =2为极小值点,选C.7.已知函数f (x )=12x 3-x 2-72x ,则f (-a 2)与f (-1)的大小关系为( )A .f (-a 2)≤f (-1)B .f (-a 2)<f (-1)C .f (-a 2)≥f (-1)D .f (-a 2)与f (-1)的大小关系不确定 答案 A解析 由题意可得f ′(x )=32x 2-2x -72.由f ′(x )=12(3x -7)(x +1)=0,得x =-1或x =73.当x <-1时,f (x )为增函数;当-1<x <73时,f (x )为减函数.所以f (-1)是函数f (x )在(-∞,0]上的最大值,又因为-a 2≤0,故f (-a 2)≤f (-1).8.函数f (x )=e -x ·x ,则( ) A .仅有极小值12eB .仅有极大值12eC .有极小值0,极大值12eD .以上皆不正确答案 B解析 f ′(x )=-e -x·x +12x ·e -x =e -x(-x +12x )=e -x·1-2x2x.令f ′(x )=0,得x =12. 当x >12时,f ′(x )<0;当x <12时,f ′(x )>0.∴x =12时取极大值,f (12)=1e ·12=12e.9.(2011·西城区)若y =a ln x +bx 2+x 在x =1和x =2处有极值,则a =________,b =________.答案 -23 -16 解析 y ′=ax +2bx +1.由已知⎩⎪⎨⎪⎧a +2b +1=0a2+4b +1=0,解得⎩⎪⎨⎪⎧a =-23b =-16.10.已知函数f (x )=13x 3-bx 2+c (b ,c 为常数).当x =2时,函数f (x )取得极值,若函数f (x )只有三个零点,则实数c 的取值范围为________.答案 0<c <43解析 ∵f (x )=13x 3-bx 2+c ,∴f ′(x )=x 2-2bx ,∵x =2时,f (x )取得极值,∴22-2b ×2=0,解得b =1.∴当x ∈(0,2)时,f (x )单调递减,当x ∈(-∞,0) 或x ∈(2,+∞)时,f (x )单调递增.若f (x )=0有3个实根,则⎩⎪⎨⎪⎧f (0)=c >0f (2)=13×23-22+c <0,,解得0<c <4311.设m ∈R ,若函数y =e x +2mx (x ∈R )有大于零的极值点,则m的取值范围是________.答案 m <-12解析 因为函数y =e x +2mx (x ∈R )有大于零的极值点,所以y ′=e x +2m =0有大于0的实根.令y 1=e x ,y 2=-2m ,则两曲线的交点必在第一象限.由图像可得-2m >1,即m <-12.12.已知函数f (x )=x 3-px 2-qx 的图像与x 轴相切于(1,0),则极小值为________.答案 0解析 f ′(x )=3x 2-2px -q , 由题知f ′(1)=3-2p -q =0. 又f (1)=1-p -q =0,联立方程组,解得p =2,q =-1. ∴f (x )=x 3-2x 2+x ,f ′(x )=3x 2-4x +1. 由f ′(x )=3x 2-4x +1=0, 解得x =1或x =13,经检验知x =1是函数的极小值点,∴f (x )极小值=f (1)=0. 三、解答题13.(2010·安徽)设函数f (x )=sin x -cos x +x +1,0<x <2π,求函数f (x )的单调区间与极值.解析 由f (x )=sin x -cos x +x +1,0<x <2π, 知f ′(x )=cos x +sin x +1, 于是f ′(x )=1+2sin(x +π4).令f ′(x )=0,从而sin(x +π4)=-22,得x =π,或x =3π2. 当x 变化时,f ′(x ),f (x )的变化情况如下表:因此,由上表知f (x )的单调递增区间是(0,π)与(3π2,2π),单调递减区间是(π,3π2),极小值为f (3π2)=3π2,极大值为f (π)=π+2.14.已知函数f (x )=x 2-1-2a ln x (a ≠0).求函数f (x )的极值. 解析 因为f (x )=x 2-1-2a ln x (x >0),所以f ′(x )=2x -2a x =2(x 2-a )x ,当a <0时,因为x >0,且x 2-a >0,所以f ′(x )>0对x >0恒成立,所以f (x )在(0,+∞)上单调递增,f (x )无极值;当a >0时,令f ′(x )=0,解得x 1=a ,x 2=-a (舍去), 所以当x >0时,f ′(x ),f (x )的变化情况如下表:所以当x =a 时,f (x )取得极小值,且f (a )=(a )2-1-2a ln a =a -1-a ln a .综上,当a <0时,函数f (x )在(0,+∞)上无极值. 当a >0时,函数f (x )在x =a 处取得极小值a -1-a ln a . 15.(2012·沧州七校联考)已知函数f (x )=-x 2+ax +1-ln x . (1)若f (x )在(0,12)上是减函数,求a 的取值范围;(2)函数f (x )是否既有极大值又有极小值?若存在,求出a 的取值范围;若不存在,请说明理由.解析 (1)f ′(x )=-2x +a -1x ,∵f (x )在(0,12)上为减函数,∴x ∈(0,12)时-2x +a -1x <0恒成立,即a <2x +1x 恒成立.设g (x )=2x +1x ,则g ′(x )=2-1x 2.∵x ∈(0,12)时1x 2>4,∴g ′(x )<0,∴g (x )在(0,12)上单调递减,g (x )>g (12)=3,∴a ≤3.(2)若f (x )既有极大值又有极小值,则f ′(x )=0必须有两个不等的正实数根x 1,x 2,即2x 2-ax +1=0有两个不等的正实数根.故a 应满足⎩⎨⎧Δ>0a2>0⇒⎩⎪⎨⎪⎧a 2-8>0a >0⇒a >22,∴当a >22时, f ′(x )=0有两个不等的实数根, 不妨设x 1<x 2,由f ′(x )=-1x (2x 2-ax +1)=-2x (x -x 1)(x -x 2)知,0<x <x 1时f ′(x )<0,x 1<x <x 2时f ′(x )>0,x >x 2时f ′(x )<0,∴当a >22时f (x )既有极大值f (x 2)又有极小值f (x 1).1.函数y =x 3-2ax +a 在(0,1)内有极小值,则实数a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫0,32解析 令y ′=3x 2-2a =0,得x =±2a3(a >0,否则函数y 为单调增函数).若函数y =x 3-2ax +a 在(0,1)内有极小值,则2a3<1,∴0<a <32.2.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为________.答案 -37解析 ∵f ′(x )=6x 2-12x =6x (x -2),∴f (x )在(-2,0)上为增函数,在(0,2)上为减函数, ∴当x =0时,f (x )=m 最大.∴m =3,从而f (-2)=-37,f (2)=-5.∴最小值为-37.3. 已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax (a >12),当x ∈(-2,0)时,f (x )的最小值为 1,则a 的值等于________.答案 1解析 ∵f (x )是奇函数,∴f (x )在(0,2)上的最大值为-1,当x ∈(0,2)时,f ′(x )=1x -a ,令f ′(x )=0得x =1a ,又a >12,∴0<1a <2. 令f ′(x )>0,则x <1a ,∴f (x )在(0,1a )上递增; 令f ′(x )<0,则x >1a ,∴f (x )在(1a ,2)上递减, ∴f (x )max =f (1a )=ln 1a -a ·1a =-1,∴ln 1a =0,得a =1.4.设函数f (x )=2x 3+3ax 2+3bx +8c 在x =1及x =2时取得极值.(1)求a 、b 的值;(2)若对任意的x ∈[0,3],都有f (x )<c 2成立,求c 的取值范围. 解析 (1)f ′(x )=6x 2+6ax +3b ,因为函数f (x )在x =1及x =2时取得极值, 则有f ′(1)=0,f ′(2)=0,即⎩⎨⎧6+6a +3b =0,24+12a +3b =0.解得a =-3,b =4.(2)由(1)可知,f (x )=2x 3-9x 2+12x +8c , f ′(x )=6x 2-18x +12=6(x -1)(x -2).当x ∈(0,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0; 当x ∈(2,3)时,f ′(x )>0.所以,当x =1时,f (x )取得极大值f (1)=5+8c . 又f (0)=8c ,f (3)=9+8c ,则当x ∈[0,3]时,f (x )的最大值为f (3)=9+8c . 因为对于任意的x ∈[0,3],有f (x )<c 2恒成立, 所以9+8c <c 2,解得c <-1或c >9.因此c 的取值范围为(-∞,-1)∪(9,+∞). 5.(2010·全国卷Ⅱ)已知函数f (x )=x 3-3ax 2+3x +1. (1)设a =2,求f (x )的单调区间;(2)设f (x )在区间(2,3)中至少有一个极值点,求a 的取值范围.解析 (1)当a =2时,f (x )=x 3-6x 2+3x +1,f ′(x )=3(x -2+3)(x -2-3).当x ∈(-∞,2-3)时f ′(x )>0,f (x )在(-∞,2-3)上单调增加; 当x ∈(2-3,2+3)时f ′(x )<0,f (x )在(2-3,2+3)上单调减少;当x ∈(2+3,+∞)时f ′(x )>0,f (x )在(2+3,+∞)上单调增加. 综上,f (x )的单调增区间是(-∞,2-3)和(2+3,+∞),f (x )的单调减区间是(2-3,2+3).(2)f ′(x )=3[(x -a )2+1-a 2].当1-a 2≥0时,f ′(x )≥0,f (x )为增函数,故f (x )无极值点; 当1-a 2<0时,f ′(x )=0有两个根, x 1=a -a 2-1,x 2=a +a 2-1.由题意知,2<a -a 2-1<3, ①或2<a +a 2-1<3. ②①式无解.②式的解为54<a <53. 因此a 的取值范围是(54,53).1.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是( )A .-173B .-103C .-4D .-643答案 A解析 f ′(x )=x 2+2x -3,f ′(x )=0,x ∈[0,2]只有x =1. 比较f (0)=-4,f (1)=-173,f (2)=-103. 可知最小值为-173.2.已知某质点的运动方程为s (t )=t 3+bt 2+ct +d ,如图所示是其运动轨迹的一部分,若t ∈[12,4]时,s (t )<3d 2恒成立,则d 的取值范围为________.答案 d >43或d <-1解析 ∵质点的运动方程为s (t )=t 3+bt 2+ct +d , ∴s ′(t )=3t 2+2bt +c .由图可知,s (t )在t =1和t =3处取得极值,则s ′(1)=0,s ′(3)=0,即⎩⎨⎧3+2b +c =0,27+6b +c =0,∴⎩⎨⎧b =-6,c =9.∴s ′(t )=3t 2-12t +9=3(t -1)(t -3). ∴s (t )在(-∞,1),(3,+∞)上单增, ∴t ∈[12,4]时,S (t )max =max{(s (1),s (4)}, ∴S (t )max =14+d ,∴3d 2>d +14.解之得d >43或d <-1.3.函数f (x )=x 3+2ax 2+3[(a +2)x +1]有极大值又有极小值,则a 的取值范围是________.答案 a >2或a <-1解析 ∵f (x )=x 3+3ax 2+3[(a +2)x +1], ∴f ′(x )=3x 2+6ax +3(a +2).令3x 2+6ax +3(a +2)=0,即x 2+2ax +a +2=0. ∵函数f (x )有极大值和极小值,∴方程x 2+2ax +a +2=0有两个不相等的实根. 即Δ=4a 2-4a -8>0,∴a >2或a <-1.4.已知a 是实数,求函数f (x )=x 2(x -a )在区间[0,2]上的最大值. 解析 令f ′(x )=0,解得x 1=0,x 2=2a3.当2a3≤0,即a ≤0时,f (x )在[0,2]上单调递增,从而f (x )max =f (2)=8-4a .当2a3≥2,即a ≥3时,f (x )在[0,2]上单调递减,从而 f (x )max =f (0)=0.当0<2a 3<2,即0<a <3时,f (x )在[0,2a 3]上单调递减,在[2a3,2]上单调递增,从而f (x )max =⎩⎨⎧8-4a ,0<a ≤20,2<a <3综上所述,f (x )max =⎩⎨⎧8-4a ,a ≤20,a >25.(2011·合肥质检)“我们称使f (x )=0的x 为函数y =f (x )的零点.若函数y =f (x )在区间[a ,b ]上是连续的、单调的函数,且满足f (a )·f (b )<0,则函数y =f (x )在区间[a ,b ]上有唯一的零点”.对于函数f (x )=6ln(x +1)-x 2+2x -1,(1)讨论函数f (x )在其定义域内的单调性,并求出函数极值. (2)证明连续函数f (x )在[2,+∞)内只有一个零点.解析 (1)解:f (x )=6ln(x +1)-x 2+2x -1定义域为(-1,+∞),且f ′(x )=6x +1-2x +2=8-2x 2x +1,f ′(x )=0⇒x =2(-2舍去).由表可知,f(x)值在区间(-1,2]上单调递增,在[2,+∞)上单调递减.∴当x=2时,f(x)的极大值为f(2)=6ln3-1.(2)证明:由(1)知f(2)=6ln3-1>0,f(x)在[2,7]上单调递减,又f(7)=6ln8-36=18(ln2-2)<0,∴f(2)·f(7)<0.∴f(x)在[2,7]上有唯一零点.当x∈[7,+∞)时,f(x)≤f(7)<0,故x∈[7,+∞)时,f(x)不为零.∴y=f(x)在[7,+∞)上无零点.∴函数f(x)=6ln(x+1)-x2+2x-1在定义域内只有一个零点.6.已知函数f(x)=-x3+3x2+9x+a.(1)求f(x)的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.思路本题考查多项式的导数公式及运用导数求函数的单调区间和函数的最值,题目中需注意应先比较f(2)和f(-2)的大小,然后判定哪个是最大值从而求出a.解析 (1)f ′(x )=-3x 2+6x +9. 令f ′(x )<0,解得x <-1,或x >3,∴函数f (x )的单调递减区间为(-∞,-1),(3,+∞). (2)∵f (-2)=8+12-18+a =2+a , f (2)=-8+12+18+a =22+a , ∴f (2)>f (-2).∵在(-1,3)上f ′(x )>0, ∴f (x )在(-1,2]上单调递增.又由于f (x )在[-2,-1)上单调递减, ∴f (-1)是f (x )的极小值,且f (-1)=a -5.∴f (2)和f (-1)分别是f (x )在区间[-2,2]上的最大值和最小值,于是有22+a =20,解得a =-2.∴f (x )=-x 3+3x 2+9x -2. ∴f (-1)=a -5=-7,即函数f (x )在区间[-2,2]上的最小值为-7.7.已知函数g (x )=ax 3+bx 2+cx (a ∈R 且a ≠0),g (-1)=0,且g (x )的导函数f (x )满足f (0)f (1)≤0.设x 1、x 2为方程f (x )=0的两根.(1)求ba 的取值范围;(2)若当|x 1-x 2|最小时,g (x )的极大值比极小值大43,求g (x )的解析式.解析 (1)∵g (x )=ax 3+bx 2+cx ,∴g (-1)=-a +b -c =0,即c =b -a .又f (x )=g ′(x )=3ax 2+2bx +c ,由f (0)f (1)≤0,得c (3a +2b +c )≤0,即(b -a )(3b +2a )≤0.∵a ≠0,∴(b a -1)(3·b a +2)≤0,解得-23≤ba ≤1. 又∵方程f (x )=3ax 2+2bx +c =0(a ≠0)有两根,∴Δ≥0.而Δ=(2b )2-4×3a ×c =4b 2-12a (b -a )=4(b -32a )2+3a 2>0恒成立,于是,b a 的取值范围是[-23,1].(2)∵x 1、x 2是方程f (x )=0的两根,即3ax 2+2bx +c =0的两根为x 1、x 2,∴x 1+x 2=-2b 3a ,x 1x 2=c 3a =b -a 3a =b 3a -13.∴|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=(-2b 3a )2-4(b 3a -13)=49·(b a )2-43·b a +43=49(b a -32)2+13.∵-23≤b a ≤1,∴当且仅当ba =1,即a =b 时,|x 1-x 2|2取最小值,即|x 1-x 2|取最小值.此时,g (x )=ax 3+ax 2,f (x )=3ax 2+2ax =ax (3x +2). 令f (x )=0,得x 1=-23,x 2=0.若a >0,当x 变化时,f (x )、g (x )的变化情况如下表:由上表可知,g (x )的极大值为g (-23)=427a ,极小值为g (0)=0. 由题设,知427a -0=43,解得a =9,此时g (x )=9x 3+9x 2; 若a <0,当x 变化时,f (x )、g (x )的变化情况如下表:由上表可知,g (x )的极大值为g (0)=0,极小值为g (-23)=427a .由题设知0-427a =43,解得a =-9,此时g (x )=-9x 3-9x 2. 点评 本题的难点是第(2)问,有两处值得思考:①|x 1-x 2|取得最小值时,会有怎样的结论?②怎样求出g (x )的极大值、极小值?在问题的求解过程中,由根与系数的关系建立|x 1-x 2|2关于ba 的函数关系式,由第(1)问中b a ∈[-23,1]求得|x 1-x 2|2取最小值,即|x 1-x 2|取得最小值时的条件是a =b .然后在求g (x )的极大值、极小值时,需要对a 分a >0、a <0进行讨论,得到相应的极大值、极小值.。
2013年高考数学二轮复习阶段一专题一第三节配套课时作业理
log 2x x ,
已知函数 f ( x) = - x2- 4x x
则此函数的“友好点对”有 ( ) ,
A.0 对
B.1 对
C.2 对
D.3 对
解析:选 C 不妨设函数 y=log 2x 的图像上的点 P( x, log 2x) , x>0,则其关于坐标原点 对称的点的坐标为 ( - x,- log 2x) ,如果该点在函数 y=- x2-4x 的图像上,则- log 2x=- x2
(2) 由 (1) 知 f ( x) 在 [0,2 m] 上至多有两个零点,当 m>1 时, f ( m) = 1- m<0. ∵f (0) = e-m>0,f (0) · f ( m)<0 ,∴ f ( x) 在 (0 ,m) 上有一个零点. 又 f (2 m) = em- 2m,令 g( m) = em- 2m,∵当 m>1 时,g′(m) = em- 2>0,∴ g( m) 在 (1 ,+∞)
足 f ( x2- 2x- 1) = f ( x+ 1) 的所有 x 之和为 (
)
A.1
B.2
C.3
D.4
解析:选 D 依题意得,方程 f ( x2- 2x-1) = f ( x+1) 等价于方程 x2- 2x- 1= x+ 1 或 x2
- 2x-1=- x-1,即 x2-3x- 2= 0 或 x2- x= 0,因此所有解之和为 3+ 1=4.
5. 某厂有许多形状为直角梯形的铁皮边角料,如图.为降低消
耗,开源节流, 现要从这些边角料上截取矩形铁片 ( 如图中阴影部分 )
备用,当截取的矩形面积最大时,矩形两边长
x、 y 应为 ( )
A.x= 15,y= 12
2013高考总复习数学(文)配套课时巩固与训练11章2课时训练
2013高考总复习数学(文)配套课时巩固与训练11章2课时训练D(3)A={2,4,6},B={2},所以P(A∪B)=P(A)=3 7.11.已知集合P={x|x(x2+10x+24)=0},Q={y|y=2n-1,1≤n≤2,n∈N*},M=P∪Q,在平面直角坐标系中,点A(x′,y′)的坐标x′∈M,y′∈M,计算:(1)点A正好在第三象限的概率;(2)点A不在y轴上的概率;(3)点A正好落在圆面x2+y2≤10上的概率.解:由集合P={x|x(x2+10x+24)=0}可得P={-6,-4,0},由Q={y|y=2n-1,1≤n≤2,n∈N*}可得Q={1,3},M=P∪Q={-6,-4,0,1,3}.因为点A(x′,y′)的坐标x′∈M,y′∈M,由列举法可得满足条件的A点共有25个.(1)正好在第三象限的点有(-6,-6),(-4,-6),(-6,-4),(-4,-4) 4个点.故点A正好在第三象限的概率P1=425.(2)在y轴上的点有(0,-6),(0,-4),(0,0),(0,1),(0,3) 5个点.故点A不在y轴上的概率P2=1-525=45.(3)正好落在圆面x2+y2≤10上的点A有(0,0),(1,0),(1,1),(0,1),(3,1),(1,3) 6个点.故点A落在圆面x2+y2≤10上的概率为P3=6 25.12.在甲、乙两个盒子中分别装有标号为1,2,3,4的四个小球,现从甲、乙两个盒子中各取出一个小球,每个小球被取出的可能性相等.(1)求取出的两个小球上的标号为相邻整数的概率;(2)求取出的两个小球上的标号之和能被3整除的概率;(3)求取出的两个小球上的标号之和大于5的概率.解:由题意可知,从甲、乙两个盒子中各取1个小球的基本事件总数为16.(1)记“取出的两个小球的标号为相邻整数”为事件A,则事件A 的基本事件有:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6个.∴P(A)=616=3 8.(2)记“取出的两个小球上的标号之和能被3整除”为事件B,则事件B包含:(1,2),(2,1),(2,4),(4,2),(3,3)共5个基本事件.∴P(B)=516,(3)记“取出的两个小球上的标号之和为6”为事件C,则事件C包含:(2,4),(4,2),(3,3)共3个基本事件.∴P(C)=316,记“取出的两个小球上的标号之和为7”为事件D,则事件D包含:(3,4),(4,3)共2个基本事件.∴P(D)=216=18,记“取出的两个小球上的标号之和为8”为事件E,则事件E包含(4,4)共1个基本事件.∴P(E)=116,∴取出的两个小球上的标号之和大于5的概率为:P(C)+P(D)+P(E)=38.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.下列关系属于线性负相关的是( )
A .父母的身高与子女身高的关系
B .球的体积与半径之间的关系
C .汽车的重量与汽车每消耗1 L 汽油所行驶的平均路程
D .一个家庭的收入与支出
解析:选C.A 、D 中的两个变量属于线性正相关,B 中两个变量是函数关系.
2.下列有关回归直线方程y ^=bx +a 的叙述正确的是( ) ①反映y ^与x 之间的函数关系;
②反映y 与x 之间的函数关系;
③表示y ^与x 之间的不确定关系;
④表示最接近y 与x 之间真实关系的一条直线.
A .①②
B .②③
C .③④
D .①④
解析:选D.y ^=bx +a 表示y ^与x 之间的函数关系,而不是y 与x 之间的函数关系;但它反映的关系最接近y 与x 之间的真实关系,故选D.
3.设有一个回归方程y ^=3-5x ,变量x 增加一个单位时( )
A .y 平均增加3个单位
B .y 平均减少5个单位
C .y 平均增加5个单位
D .y 平均减少3个单位
解析:选B.∵-5是斜率的估计值,说明x 每增加一个单位,y 平均减少5个单位.
4.如果有95%的把握说事件A 和B 有关系,那么具体计算出的数据( )
A .K 2>3.841
B .K 2<3.841
C .K 2>6.635
D .K 2<6.635
解析:选A.比较K 2的值和临界值的大小,95%的把握则K 2>3.841,K 2>6.635就约有99%的把握.
5.对两个变量y 和x 进行回归分析,得到一组样本数据:(x 1,y 1),
(x 2,y 2),…,(x n ,y n ),则下列说法中不.
正确的是( ) A .由样本数据得到的回归方程y ^=b ^x +a ^
必过样本中心(x ,y )
B .残差平方和越小的模型,拟合的效果越好
C .用相关指数R 2来刻画回归效果,R 2越小,说明模型的拟合效果越好
D .若变量y 和x 之间的相关系数为r =-0.9362,则变量y 和x 之间具有线性相关关系
解析:选C.C 中应为R 2越大拟合效果越好.
6.已知回归方程y ^=2x +1,而试验得到一组数据是(2,4.9),(3,7.1),(4,9.1),则残差平方和是( )
A .0.01
B .0.02
C .0.03
D .0.04
解析:选C.当x =2时,y ^=5,
当x =3时,y ^=7,
当x =4时,y ^=9.
∴e ^1=4.9-5=-0.1,e ^2=7.1-7=0.1,
e ^3=9.1-9=0.1.
∴ i =13e ^i 2=(-0.1)2+(0.1)2+(0.1)2=0.03.
7.如图所示,有5组(x ,y )数据,去掉________组数据后,剩下的4组数据的线性相关性最大.
解析:因为A 、B 、C 、E 四点分布在一条直线附近且贴近某一直
线,D 点离得远.
答案:D
8.下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②回归方程y ^
=bx +a 必过点(x ,y );
③曲线上的点与该点的坐标之间具有相关关系;
④在一个2×2列联表中,由计算得K 2=13.079,则其两个变量间有关系的可能性是 90%.
其中错误的是________.
解析:①正确.由回归方程的定义及最小二乘法思想,知②正确.③④不正确.
答案:③④
9.在2009年十一国庆8天黄金周期间,某市物价部门,对本市五个商场销售的某商品的一天销售量及其价格进行调查,五个商场的售价x
销售量y 对商品的价格x 的回归直线方程为________.
解析:由数据表可得x =10,y =8,离差x -x :-1,-0.5,0,0.5,1;离差y -y :3,2,0,-2,-3.
∴b ^=-1×3-0.5×2-0.5×2-1×31+0.25+0+0.25+1=-3.2, a ^=y -b ^
x =40,
∴回归直线方程为y ^=-3.2x +40.
答案:y ^=-3.2x +40
10.在某地区的12~30岁居民中随机抽取了10个人的身高和体
相关关系.
解:以x 轴表示身高,y 轴表示体重,可得到相应的散点图如图所示:
由散点图可知,两者之间具有相关关系,且为正相关.
11.(2009年高考辽宁卷)某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:甲厂:
乙厂:
(1)试分别估计两个分厂生产的零件的优质品率;
(2)由以上统计数据填下面2×2列联表,并问是否有99%的把握
附K2=
,
(a+b)(c+d)(a+c)(b+d)
解:(1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件
的优质品率估计为360500=72%;
乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质
品率估计为320500=64%.
(2)
k =1000×500×500×680×320
≈7.35>6.635, 所以有99%的把握认为“两个分厂生产的零件的质量有差异”.
12.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资
下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的2组数据,请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^
;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
解:(1)设抽到不相邻2组数据为事件A ,因为从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,其中抽到相邻
2组数据的情况有4种,所以P (A )=1-410=35.
(2)由数据求得,x =12,y =27,由公式求得. b ^=52,a ^=y -b ^x =-3.
所以y 关于x 的线性回归方程为y ^=52x -3.
(3)当x =10时,y ^=52×10-3=22,|22-23|<2;
当x =8时,y ^=52×8-3=17,|17-16|<2.
所以该研究所得到的线性回归方程是可靠的.。