2018年高考数学复习演练第三章导数及其应用(含2014_2017年真题)
2018版高考数学理江苏专用一轮复习练习 第三章 导数及
第三章导数及其应用第1讲导数的概念及运算基础巩固题组(建议用时:40分钟)一、填空题1.设y=x2e x,则y′=________.解析y′=2x e x+x2e x=(2x+x2)e x.答案(2x+x2)e x2.已知函数f(x)的导函数为f′(x),且满足f(x)=2x·f′(1)+ln x,则f′(1)=________.解析由f(x)=2xf′(1)+ln x,得f′(x)=2f′(1)+1 x,∴f′(1)=2f′(1)+1,则f′(1)=-1.答案-13.曲线y=sin x+e x在点(0,1)处的切线方程是________.解析y′=cos x+e x,故切线斜率为k=2,切线方程为y=2x+1,即2x-y +1=0.答案2x-y+1=04.(2017·苏州调研)已知曲线y=ln x的切线过原点,则此切线的斜率为________.解析y=ln x的定义域为(0,+∞),且y′=1x,设切点为(x0,ln x0),则y′|x=x0=1x0,切线方程为y-ln x0=1x0(x-x0),因为切线过点(0,0),所以-ln x0=-1,解得x0=e,故此切线的斜率为1 e.答案1 e5.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________.解析因为y′=2ax-1x,所以y′|x=1=2a-1.因为曲线在点(1,a)处的切线平行于x 轴,故其斜率为0,故2a -1=0,解得a =12. 答案 126.(2017·南师附中月考)如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=________.解析 由图形可知:f (3)=1,f ′(3)=-13,∵g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3)=1-1=0. 答案 07.(2017·苏北四市模拟)设曲线y =1+cos x sin x 在点⎝ ⎛⎭⎪⎫π2,1处的切线与直线x -ay +1=0平行,则实数a =________. 解析 ∵y ′=-1-cos xsin 2 x ,∴由条件知1a =-1,∴a =-1. 答案 -18.(2016·全国Ⅱ卷)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x+1)的切线,则b =________.解析 y =ln x +2的切线为:y =1x 1·x +ln x 1+1(设切点横坐标为x 1).y =ln(x +1)的切线为:y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点横坐标为x 2). ∴⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x 2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2. 答案 1-ln 2 二、解答题9.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程; (2)切线l 的倾斜角α的取值范围. 解 (1)y ′=x 2-4x +3=(x -2)2-1≥-1, 所以当x =2时,y ′=-1,y =53,所以斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,斜率k =-1,所以切线方程为3x +3y -11=0. (2)由(1)得k ≥-1,所以tan α≥-1,所以α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 10.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限. (1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解 (1)由y =x 3+x -2,得y ′=3x 2+1, 由已知令3x 2+1=4,解之得x =±1. 当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4). (2)∵直线l ⊥l 1,l 1的斜率为4, ∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4), ∴直线l 的方程为y +4=-14(x +1), 即x +4y +17=0.能力提升题组(建议用时:20分钟)11.(2016·山东卷改编)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质,下列函数:①y=sin x;②y=ln x;③y=e x;④y=x3.其中具有T性质的是________(填序号).解析若y=f(x)的图象上存在两点(x1,f(x1)),(x2,f(x2)),使得函数图象在这两点处的切线互相垂直,则f′(x1)·f′(x2)=-1.对于①:y′=cos x,若有cos x1·cos x2=-1,则当x1=2kπ,x2=2kπ+π(k∈Z)时,结论成立;对于②:y′=1x,若有1x1·1x2=-1,即x1x2=-1,∵x1>0,x2>0,∴不存在x1,x2,使得x1x2=-1;对于③:y′=e x,若有e x1·e x2=-1,即e x1+x2=-1.显然不存在这样的x1,x2;对于④:y′=3x2,若有3x21·3x22=-1,即9x21x22=-1,显然不存在这样的x1,x2.答案①12.(2017·合肥模拟改编)点P是曲线x2-y-ln x=0上的任意一点,则点P到直线y=x-2的最小距离为________.解析点P是曲线y=x2-ln x上任意一点,当过点P的切线和直线y=x-2平行时,点P到直线y=x-2的距离最小,直线y=x-2的斜率为1,令y=x2-ln x,得y′=2x-1x=1,解得x=1或x=-12(舍去),故曲线y=x2-ln x上和直线y=x-2平行的切线经过的切点坐标为(1,1),点(1,1)到直线y=x-2的距离等于2,∴点P到直线y=x-2的最小距离为 2.答案 213.若函数f(x)=12x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是________.解析∵f(x)=12x2-ax+ln x,∴f′(x)=x-a+1x(x>0).∵f(x)存在垂直于y轴的切线,∴f′(x)存在零点,即x+1x-a=0有解,∴a=x+1x≥2(当且仅当x=1时取等号).答案[2,+∞)14.已知函数f(x)=x-2x,g(x)=a(2-ln x)(a>0).若曲线y=f(x)与曲线y=g(x)在x=1处的切线斜率相同,求a的值,并判断两条切线是否为同一条直线.解根据题意有f′(x)=1+2x2,g′(x)=-ax.曲线y=f(x)在x=1处的切线斜率为f′(1)=3,曲线y=g(x)在x=1处的切线斜率为g′(1)=-a,所以f′(1)=g′(1),即a=-3.曲线y=f(x)在x=1处的切线方程为y-f(1)=3(x-1).所以y+1=3(x-1),即切线方程为3x-y-4=0.曲线y=g(x)在x=1处的切线方程为y-g(1)=3(x-1),所以y+6=3(x-1),即切线方程为3x-y-9=0,所以,两条切线不是同一条直线.。
2018版高考数学(人教A版理科)一轮复习真题演练集训:第三章 导数及其应用3-3含答案
真题演练集训1.设函数f(x)=e x(2x-1)-ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是( )A.错误!B.错误!C.错误!D.错误!答案:D解析:∵f(0)=-1+a<0,∴x0=0。
又x0=0是唯一的整数,∴错误!即错误!解得a≥错误!.又a<1,∴错误!≤a<1,故选D.2.如图,某飞行器在4千米高空水平飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为()A.y=1125x3-错误!x B.y=错误!x3-错误!xC.y=错误!x3-x D.y=-错误!x3+错误!x答案:A解析:设所求函数解析式为y=f(x),由题意知f(5)=-2,f(-5)=2,且f′(±5)=0,代入验证易得y =错误!x3-错误!x符合题意,故选A。
3.当x∈时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是()A.B.错误!C.D.答案:C解析:当x=0时,ax3-x2+4x+3≥0变为3≥0恒成立,即a∈R。
当x∈(0,1]时,ax3≥x2-4x-3,a≥错误!,∴a≥错误!max.设φ(x)=错误!,φ′(x)=错误!=-错误!=-错误!>0,∴φ(x)在(0,1]上单调递增,φ(x)max=φ(1)=-6。
∴a≥-6.当x∈.4.已知函数f(x)=(x-2)e x+a(x-1)2有两个零点.(1)求a的取值范围;(2)设x1,x2是f(x)的两个零点,证明:x1+x2〈2.(1)解:f′(x)=(x-1)e x+2a(x-1)=(x-1)·(e x+2a).(ⅰ)设a=0,则f(x)=(x-2)e x,f(x)只有一个零点.(ⅱ)设a〉0,则当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0.所以f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f(1)=-e,f(2)=a,取b满足b<0且b<ln 错误!,则f(b)>错误!(b-2)+a(b-1)2=a错误!〉0,故f(x)存在两个零点.(ⅲ)设a〈0,由f′(x)=0得x=1或x=ln(-2a).若a≥-错误!,则ln(-2a)≤1,故当x∈(1,+∞)时,f′(x)>0,因此f(x)在(1,+∞)上单调递增.又当x≤1时,f(x)<0,所以f(x)不存在两个零点.若a<-错误!,则ln(-2a)〉1,故当x∈(1,ln(-2a))时,f′(x)〈0;当x∈(ln(-2a),+∞)时,f′(x)〉0.因此f(x)在(1,ln(-2a))上单调递减,在(ln(-2a),+∞)上单调递增.又当x≤1时f(x)〈0,所以f(x)不存在两个零点.综上,a的取值范围为(0,+∞).(2)证明:不妨设x1<x2。
2018版高考数学(理)一轮复习文档第三章导数及其应用3-3Word版含解析
1.定积分的概念在ʃb a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式.2.定积分的性质(1)ʃb a kf(x)d x=kʃb a f(x)d x(k为常数);(2)ʃb a[f1(x)±f2(x)]d x=ʃb a f1(x)d x±ʃb a f2(x)d x;(3)ʃb a f(x)d x=ʃc a f(x)d x+ʃb c f(x)d x(其中a<c<b).3.微积分基本定理一般地,如果f(x)是区间[a,b]上的连续函数,且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.为了方便,常把F(b)-F(a)记作F(x)|b a,即ʃb a f(x)d x=F(x)|b a=F(b)-F(a).【知识拓展】1.定积分应用的常用结论当曲边梯形位于x轴上方时,定积分的值为正;当曲边梯形位于x轴下方时,定积分的值为负;当位于x轴上方的曲边梯形与位于x轴下方的曲边梯形面积相等时,定积分的值为零.2.函数f(x)在闭区间[-a,a]上连续,则有(1)若f(x)为偶函数,则ʃa-a f(x)d x=2ʃa0f(x)d x.(2)若f(x)为奇函数,则ʃa-a f(x)d x=0.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)设函数y=f(x)在区间[a,b]上连续,则ʃb a f(x)d x=ʃb a f(t)d t.(√)(2)若函数y=f(x)在区间[a,b]上连续且恒正,则ʃb a f(x)d x>0.(√)(3)若ʃb a f (x )d x <0,那么由y =f (x ),x =a ,x =b 以及x 轴所围成的图形一定在x 轴下方.( × ) (4)微积分基本定理中的F (x )是唯一的.( × )(5)曲线y =x 2与y =x 所围成图形的面积是ʃ10(x 2-x )d x .( × )1.(2017·福州质检)ʃ10(e x +2x )d x 等于( )A .1B .e -1C .eD .e +1 答案 C解析 ʃ10(e x +2x )d x =(e x +x 2)|10=e +1-1=e.2.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2 D .4 答案 D解析 如图,y =4x 与y =x 3的交点为A (2,8),图中阴影部分即为所求图形面积.S 阴=ʃ20(4x -x 3)d x=(2x 2-14x 4)|20=8-14×24=4,故选D.3.(教材改编)汽车以v =(3t +2)m/s 作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的位移是( )A.132 m B .6 m C.152 m D .7 m 答案 A解析 s =ʃ21(3t +2)d t =(32t 2+2t )|21=32×4+4-(32+2) =10-72=132(m).4.若ʃT 0x 2d x =9,则常数T 的值为________.答案 3解析 ʃT 0x 2d x =13x 3|T 0=13T 3=9,∴T =3. 5.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e](e 为自然对数的底数),则ʃe 0f (x )d x 的值为________.答案 43解析 ʃe 0f (x )d x =ʃ10x 2d x +ʃe 11xd x =13x 3|10+ln x |e1=13+ln e =43.题型一 定积分的计算例1 (1)(2016·九江模拟)若ʃ10(2x +λ)d x =2(λ∈R ),则λ等于( ) A .0 B .1 C .2 D .-1(2)定积分ʃ2-2|x 2-2x |d x 等于( )A .5B .6C .7D .8 答案 (1)B (2)D解析 (1)ʃ10(2x +λ)d x =(x 2+λx )|10=1+λ=2,所以λ=1.(2)ʃ2-2|x 2-2x |d x=ʃ0-2(x 2-2x )d x +ʃ20(2x -x 2)d x=(x 33-x 2)|0-2+(x 2-x 33)|20 =83+4+4-83=8. 思维升华 运用微积分基本定理求定积分时要注意以下几点: (1)对被积函数要先化简,再求积分;(2)求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,先分段积分再求和; (3)对于含有绝对值符号的被积函数,要先去掉绝对值号再求积分.(1)若π20(sin cos )d 2x a x x ⎰-=,则实数a 的值为( )A .-1B .1C .- 3 D. 3(2)设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ∈(1,2],则ʃ20f (x )d x 等于( )A.34B.45C.56D.67 答案 (1)A (2)C 解析 ππ220(1)(sin cos )d (cos sin )|x a x x x a x ⎰-=--=0-a -(-1-0)=1-a =2, ∴a =-1.(2)ʃ20f (x )d x =ʃ10x 2d x +ʃ21(2-x )d x=13x 3|10+(2x -12x 2)|21 =13+(4-12×4)-(2-12) =56. 题型二 定积分的几何意义命题点1 利用定积分的几何意义计算定积分例2 (1)计算:ʃ313+2x -x 2d x =________.(2)若ʃm -2-x 2-2x d x =π4,则m =________. 答案 (1)π (2)-1解析 (1)由定积分的几何意义知,ʃ313+2x -x 2 d x 表示圆(x -1)2+y 2=4和x =1,x =3,y =0围成的图形的面积, ∴ʃ313+2x -x 2d x =14×π×4=π.(2)根据定积分的几何意义ʃm -2-x 2-2x d x 表示圆(x +1)2+y 2=1和直线x =-2,x =m 和y=0围成的图形的面积, 又ʃm -2-x 2-2x d x =π4为四分之一圆的面积,结合图形知m=-1.命题点2求平面图形的面积例3(2017·青岛月考)由曲线xy=1,直线y=x,y=3所围成的封闭平面图形的面积为______.答案4-ln 3解析 由xy =1,y =3可得交点坐标为(13,3).由xy =1,y =x 可得交点坐标为(1,1), 由y =x ,y =3得交点坐标为(3,3),由曲线xy =1,直线y =x ,y =3所围成图形的面积为1312311113311(3)d (3)d (3ln )|(3)|2x x x x x x x x -+-=-+-⎰⎰ =(3-1-ln 3)+(9-92-3+12)=4-ln 3.思维升华 (1)根据定积分的几何意义可计算定积分; (2)利用定积分求平面图形面积的四个步骤①画出草图,在直角坐标系中画出曲线或直线的大致图象; ②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; ③把曲边梯形的面积表示成若干个定积分的和; ④计算定积分,写出答案.(1)定积分ʃ309-x 2d x 的值为( )A .9πB .3π C.94π D.92π (2)由曲线y =2x 2,直线y =-4x -2,直线x =1围成的封闭图形的面积为________. 答案 (1)C (2)163解析 (1)由定积分的几何意义知ʃ309-x 2d x 是由曲线y =9-x 2,直线x =0,x =3,y =0围成的封闭图形的面积,故ʃ309-x 2d x =π·324=94π,故选C.(2)由⎩⎪⎨⎪⎧y =2x 2,y =-4x -2,解得x =-1,依题意可得,所求的封闭图形的面积为ʃ1-1(2x 2+4x +2)d x =(23x 3+2x 2+2x )|1-1=(23×13+2×12+2×1)-[23×(-1)3+2×(-1)2+2×(-1)]=163. 题型三 定积分在物理中的应用例4 一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t (t的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( ) A .1+25ln 5 B .8+25ln113C .4+25ln 5D .4+50ln 2答案 C解析 令v (t )=0,得t =4或t =-83(舍去),∴汽车行驶距离s =ʃ40(7-3t +251+t )d t =[7t -32t 2+25ln(1+t )]|40 =28-24+25ln 5=4+25ln 5.思维升华 定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =ʃb a v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =ʃb a F (x )d x .一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向作直线运动,则由x =1运动到x =2时,F (x )做的功为( ) A. 3 J B.233 J C.433 J D .2 3 J答案 C解析 ʃ21F (x )cos 30°d x =ʃ2132(5-x 2)d x =⎪⎪⎣⎡⎦⎤⎝⎛⎭⎫5x -13x 3×3221=433, ∴F (x )做的功为433 J.4.利用定积分求面积典例 由抛物线y =x 2-1,直线x =0,x =2及x 轴围成的图形面积为________. 错解展示解析 所求面积S =ʃ20(x 2-1)d x =(13x 3-x )|20=23. 答案 23现场纠错解析 如图所示,由y =x 2-1=0,得抛物线与x 轴的交点分别为(-1,0)和(1,0).所以S =ʃ20|x 2-1|d x =ʃ10(1-x 2)d x +ʃ21(x 2-1)d x=(x -x 33)|10+(x 33-x )|21=(1-13)+[83-2-(13-1)]=2.答案 2纠错心得 利用定积分求面积时要搞清楚定积分和面积的关系;定积分可正可负,而面积总为正.1.π220sin d 2xx等于( ) A .0 B.π4-12 C.π4-14D.π2-1答案 B 解析ππ222001cos sin d d 22x x x x -=⎰⎰π2011π1(sin )|.2242x x =-=- 2.ʃ101-x 2 d x 的值为( )A.14B.π4C.12D.π2 答案 B 解析 ʃ101-x 2 d x 的几何意义为以(0,0)为圆心,以1为半径的圆位于第一象限的部分,圆的面积为π, 所以ʃ101-x 2 d x =π4.3.(2016·南昌模拟)若ʃa 1(2x +1x )d x =3+ln 2(a >1),则a 的值是( ) A .2 B .3 C .4 D .6 答案 A解析 由题意知ʃa 1(2x +1x )d x =(x 2+ln x )|a 1=a 2+ln a -1=3+ln 2,解得a =2. 4.定积分ʃ20|x -1|d x 等于( ) A .1 B .-1 C .0 D .2 答案 A解析 ʃ20|x -1|d x =ʃ10|x -1|d x +ʃ21|x -1|d x =ʃ10(1-x )d x +ʃ21(x -1)d x=(x -x 22)|10+(x 22-x )|21=(1-12)+(222-2)-(12-1)=1.5.由曲线f (x )=x 与y 轴及直线y =m (m >0)围成的图形的面积为83,则m 的值为( )A .2B .3C .1D .8 答案 A解析 22333200228(()|,333m mS m x mx x m m ==-=-=⎰解得m =2.6.若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e xd x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 2<S 3<S 1 D .S 3<S 2<S 1答案 B解析 方法一 S 1=13x 3|21=83-13=73, S 2=ln x |21=ln 2<ln e =1,S 3=e x |21=e 2-e ≈2.72-2.7=4.59,所以S 2<S 1<S 3.方法二 S 1,S 2,S 3分别表示曲线y =x 2,y =1x ,y =e x 与直线x =1,x =2及x 轴围成的图形的面积,通过作图易知S 2<S 1<S 3.7.π)d 4x x +=________.答案 2解析 依题意得π)d 4x x +ππ220(sin cos )d (sin cos )|x x x x x =+=-⎰=(sin π2-cos π2)-(sin 0-cos 0)=2.8.由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为________.答案3解析 所求面积ππ33ππ33cos d sin |S x x x --==⎰=sin π3-(-sin π3)= 3.*9.(2016·湖北省重点中学高三阶段性统一考试)若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则ʃ20f (x )d x =________. 答案 -4解析 因为f (x )=x 3+x 2f ′(1), 所以f ′(x )=3x 2+2xf ′(1).所以f ′(1)=3+2f ′(1),解得f ′(1)=-3.所以f (x )=x 3-3x 2.故ʃ20f (x )d x =ʃ20(x 3-3x 2)d x =(x 44-x 3)|20=-4. 10.已知f (a )=ʃ10(2ax 2-a 2x )d x ,则函数f (a )的最大值为________.答案 29解析 f (a )=ʃ10(2ax 2-a 2x )d x =(23ax 3-12a 2x 2)|10=-12a 2+23a , 由二次函数的性质可得f (a )max =-(23)24×(-12)=29. 11.求曲线y =x ,y =2-x ,y =-13x 所围成图形的面积. 解 由⎩⎪⎨⎪⎧ y =x ,y =2-x得交点A (1,1); 由⎩⎪⎨⎪⎧y =2-x ,y =-13x 得交点B (3,-1).故所求面积S =ʃ10⎝⎛⎭⎫x +13x d x +ʃ31⎝⎛⎭⎫2-x +13x d x 32123201211()|(2)|363x x x x =++- =23+16+43=136. 12.(2016·武汉模拟)如图,矩形OABC 的四个顶点依次为O (0,0),A (π2,0),B (π2,1),C (0,1),记线段OC ,CB 以及y =sin x (0≤x ≤π2)的图象围成的区域(图中阴影部分)为Ω,若向矩形OABC 内任意投一点M ,求点M 落在区域Ω内的概率.解 阴影部分的面积为π20π(1sin )d 1,2x x -=-⎰ 矩形的面积是π2×1=π2, 所以点M 落在区域Ω内的概率为π2-1π2=1-2π. *13.已知函数y =F (x )的图象是折线段ABC ,其中A (0,0),B (12,5),C (1,0),求函数y =xF (x )(0≤x ≤1)的图象与x 轴围成的图形的面积.解 由题意,F (x )=⎩⎨⎧ 10x ,0≤x ≤12,-10x +10,12<x ≤1, 则xF (x )=⎩⎨⎧ 10x 2,0≤x ≤12,-10x 2+10x ,12<x ≤1,所以函数y =xF (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为11122323122101022101010d (1010)d |(5)|33x x x x x x x x +-+=+-⎰⎰ =103×18+(5-103)-(54-103×18)=54.。
2018版高考数学(理)(全国)一轮复习练习 第三章 导数及其应用 第3讲含答案
基础巩固题组(建议用时:40分钟)一、选择题1.(2017·西安调研)定积分错误!(2x+e x)d x的值为()A.e+2B.e+1 C。
e D。
e-1解析错误!(2x+e x)d x=(x2+e x)错误!)=1+e1-1=e。
故选C。
答案C2。
若错误!错误!d x=3+ln 2(a>1),则a的值是( )A.2 B。
3 C。
4 D.6解析错误!错误!d x=(x2+ln x)错误!=a2+ln a-1,∴a2+ln a-1=3+ln 2,则a=2。
答案A3.从空中自由下落的一物体,在第一秒末恰经过电视塔顶,在第二秒末物体落地,已知自由落体的运动速度为v=gt(g为常数),则电视塔高为()A。
错误!g B。
g C。
错误!g D.2g解析 电视塔高h =⎠⎜⎜⎛12gt d t =错误!错误!1=错误!g 。
答案 C4.如图所示,曲线y =x 2-1,x =2,x =0,y =0围成的阴影部分的面积为( )A.错误!|x 2-1|d xB.错误!C 。
错误!(x 2-1)d xD 。
错误!(x 2-1)d x +错误!(1-x 2)d x解析 由曲线y =|x 2-1|的对称性知,所求阴影部分的面积与如下图形的面积相等,即错误!|x 2-1|d x .答案 A5。
若S 1=错误!x 2d x ,S 2=错误!错误!d x ,S 3=错误!e x d x ,则S 1,S 2,S 3的大小关系为( )A 。
S 1〈S 2〈S 3B 。
S 2<S 1<S 3 C.S 2<S 3<S 1 D.S 3〈S 2<S 1解析S2=错误!错误!d x=ln 2,S3=错误!e x d x=e2-e,∵e2-e=e(e-1)>e>错误!>ln 2,∴S2<S1<S3。
答案B二、填空题6.已知t>0,若错误!(2x-2)d x=8,则t=________.解析由错误!(2x-2)d x=8得,(x2-2x)错误!=t2-2t =8,解得t=4或t=-2(舍去)。
高考数学总复习真题分类专题03 导数及其应用(选择题、填空题)
高考数学总复习真题分类专题03 导数及其应用(选择题、填空题)1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,xy a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D .【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.2.【2018年高考全国Ⅰ卷理数】设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =【答案】D【解析】因为函数f(x)是奇函数,所以a −1=0,解得a =1,所以f(x)=x 3+x ,f′(x)=3x 2+1, 所以f′(0)=1,f(0)=0,所以曲线y =f(x)在点(0,0)处的切线方程为y −f(0)=f′(0)x ,化简可得y =x . 故选D.【名师点睛】该题考查的是有关曲线y =f(x)在某个点(x 0,f(x 0))处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得f′(x),借助于导数的几何意义,结合直线方程的点斜式求得结果.3.【2017年高考全国Ⅱ卷理数】若2x =-是函数21()(1)ex f x x ax -=+-的极值点,则()f x 的极小值为A .1-B .32e -- C .35e - D .1【答案】A【解析】由题可得12121()(2)e(1)e [(2)1]e x x x f x x a x ax x a x a ---'=+++-=+++-,因为(2)0f '-=,所以1a =-,21()(1)e x f x x x -=--,故21()(2)e x f x x x -'=+-,令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞上单调递增,在(2,1)-上单调递减, 所以()f x 的极小值为11()(111)e 11f -=--=-.故选A .【名师点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同;(2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.4.【2017年高考浙江】函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是【答案】D【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数()f x '的正负,得出原函数()f x 的单调区间.5.【2018年高考全国Ⅱ卷理数】函数()2e e x xf x x --=的图像大致为【答案】B【解析】()()()2e e 0,,x xx f x f x f x x --≠-==-∴Q 为奇函数,舍去A ;()11e e 0f -=->Q ,∴舍去D ;()()()()()243e e e e 22e 2e ,xx x x x x x xx x f x xx---+---++=='Q 2x ∴>时,()0f x '>,()f x 单调递增,舍去C. 因此选B.【名师点睛】有关函数图象识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的周期性. 6.【2018年高考全国Ⅲ卷理数】函数422y x x =-++的图像大致为【答案】D【解析】函数图象过定点(0,2),排除A ,B ;令42()2y f x x x ==-++,则32()422(21)f x x x x x '=-+=--,由()0f x '>得22(21)0x x -<,得2x <-或02x <<,此时函数单调递增,由()0f x '<得22(21)0x x ->,得2x >或02x -<<,此时函数单调递减,排除C.故选D.【名师点睛】本题主要考查函数的图象的识别和判断,利用函数图象过的定点及由导数判断函数的单调性是解决本题的关键.7.【2019年高考天津理数】已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为 A .[]0,1 B .[]0,2 C .[]0,eD .[]1,e【答案】C【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤-= ⎪ ⎪ ⎪-⎝⎭⎝⎭, 当111x x-=-,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.当1x >时,()ln 0f x x a x =-≥,即ln xa x≤恒成立, 令()ln xh x x=,则2ln 1()(ln )x h x x -'=, 当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =, ∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e]. 故选C.【名师点睛】本题考查分段函数的最值问题,分别利用基本不等式和求导的方法研究函数的最值,然后解决恒成立问题.8.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x =b1−a , 则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2+ax ﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴b1−a <0且{−b >013(a +1)3−12(a +1)(a +1)2−b <0, 解得b <0,1﹣a >0,b >−16(a +1)3,则a >–1,b <0. 故选C .【名师点睛】本题考查函数与方程,导数的应用.当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.9.【2017年高考全国Ⅲ卷理数】已知函数211()2(ee )x xf x x x a --+=-++有唯一零点,则a =A .12- B .13C .12D .1【答案】C【解析】函数()f x 的零点满足()2112e e x x x x a --+-=-+, 设()11eex x g x --+=+,则()()21111111e 1eeee ex x x x x x g x ---+----'=-=-=, 当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -⨯=-,解得12a =.故选C. 【名师点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.10.【2019年高考全国Ⅰ卷理数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________.【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,xxxy x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e xy x x =+在点(0,0)处的切线方程为3y x =,即30x y -=.【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.11.【2018年高考全国Ⅱ卷理数】曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.【答案】y =2x 【解析】∵y ′=2x+1,∴在点(0,0)处切线的斜率为k =20+1=2,则所求的切线方程为y =2x .【名师点睛】求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知的曲线上,而在点P 处的切线,必以点P 为切点. 12.【2018年高考全国Ⅲ卷理数】曲线()1e xy ax =+在点()0,1处的切线的斜率为2-,则a =________.【答案】−3【解析】()e 1e xxy a ax =++',则0|12x y a ='=+=-,所以a =−3.【名师点睛】本题主要考查导数的计算和导数的几何意义,属于基础题. 13.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ . 【答案】4 【解析】由4(0)y x x x =+>,得241y x'=-, 设斜率为1-的直线与曲线4(0)y x x x =+>切于004(,)x x x +, 由20411x -=-得0x =0x =, ∴曲线4(0)y x x x=+>上,点P 到直线0x y +=4=.故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法,利用数形结合和转化与化归思想解题.14.【2018年高考全国Ⅰ卷理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【答案】−3√32【解析】f′(x)=2cosx +2cos2x =4cos 2x +2cosx −2=4(cosx +1)(cosx −12),所以当cosx <12时函数单调递减,当cosx >12时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z , 函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z , 所以当π2π,3x k k =-∈Z 时,函数f (x )取得最小值, 此时sinx =−√32,sin2x =−√32, 所以f (x )min =2×(−√32)−√32=−3√32, 故答案是−3√32. 【名师点睛】该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值.15.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ . 【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标. 设点()00,A x y ,则00ln y x =. 又1y x'=, 当0x x =时,01y x '=, 则曲线ln y x =在点A 处的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 将点()e,1--代入,得00e1ln 1x x ---=-,即00ln e x x =,考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()ln 1H x x '=+,当1x >时,()()0,H x H x '>单调递增, 注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =, 此时01y =,故点A 的坐标为()e,1.【名师点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.16.【2019年高考北京理数】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立, 又2e 0x >,则0a ≤,即实数a 的取值范围是(],0-∞.【名师点睛】本题考查函数的奇偶性、单调性、利用单调性确定参数的范围.解答过程中,需利用转化与化归思想,转化成恒成立问题.注重重点知识、基础知识、基本运算能力的考查.17.【2018年高考江苏】若函数f(x)=2x 3−ax 2+1(a ∈R)在(0,+∞)内有且只有一个零点,则f(x)在[−1,1]上的最大值与最小值的和为________.【答案】–3【解析】由()2620f x x ax =-='得0x =或3a x =, 因为函数()f x 在()0,+∞上有且仅有一个零点且()0=1f ,所以0,033a a f ⎛⎫>= ⎪⎝⎭, 因此32210,33a a a ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭解得3a =. 从而函数()f x 在[]1,0-上单调递增,在[]0,1上单调递减,所以()()max 0,f x f = ()()(){}()min min 1,11f x f f f =-=-,则()()max min f x f x +=()()0+114 3.f f -=-=-故答案为3-.【名师点睛】对于函数零点的个数问题,可利用函数的单调性、草图确定其中参数的取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.18.【2017年高考江苏】已知函数31()2e ex x f x x x =-+-,其中e 是自然对数的底数.若(1)f a -+2(2)0f a ≤,则实数a 的取值范围是 . 【答案】1[1,]2- 【解析】因为31()2e ()ex x f x x f x x -=-++-=-,所以函数()f x 是奇函数,因为22()32e e 320x x f 'x x x -=-++≥-+≥,所以函数()f x 在R 上单调递增, 又21)02()(f f a a +-≤,即2())2(1a a f f ≤-,所以221a a ≤-,即2120a a +-≤,解得112a -≤≤, 故实数a 的取值范围为1[1,]2-.【名师点睛】解函数不等式时,首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数()f x 的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在函数()f x 的定义域内.19.【2017年高考山东理数】若函数e ()x f x (e 2.71828=L 是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -=②()3x f x -= ③3()f x x = ④2()2f x x =+ 【答案】①④ 【解析】①e e ()e 2()2x x x x f x -=⋅=在R 上单调递增,故()2x f x -=具有性质; ②e e ()e 3()3x x x x f x -=⋅=在R 上单调递减,故()3xf x -=不具有性质;③3e ()e x x f x x =⋅,令3()e x g x x =⋅,则322()e 3e e (3)x x x g x x x x x '=⋅+⋅=+,当3x >-时,()0g x '>,当3x <-时,()0g x '<,3e ()e x x f x x =⋅在(,3)-∞-上单调递减,在(3,)-+∞上单调递增,故3()f x x =不具有性质;④2e ()e (2)x x f x x =+,令2()e (2)x g x x =+,则22()e (2)2e e [(1)1]0x x x g x x x x '=++=++>,则2e ()e (2)x x f x x =+在R 上单调递增,故2()2f x x =+具有性质.【名师点睛】本题考查新定义问题,属于创新题,符合新高考的动向,它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可.M M ∴∴M M。
2018版高考数学(理)(全国)一轮复习练习 第三章 导数及其应用 第2讲 第2课时含答案
基础巩固题组(建议用时:40分钟)一、选择题1.(2016·四川卷)已知a为函数f(x)=x3-12x的极小值点,则a=()A.-4 B。
-2 C.4 D.2解析f′(x)=3x2-12,∴x<-2时,f′(x)>0,-2<x 〈2时,f′(x)〈0,x〉2时,f′(x)>0,∴x=2是f(x)的极小值点.答案D2.函数f(x)=错误!x2-ln x的最小值为()A。
错误! B.1 C.0 D。
不存在解析f′(x)=x-错误!=错误!,且x〉0.令f′(x)>0,得x>1;令f′(x)〈0,得0<x<1。
∴f(x)在x=1处取得极小值也是最小值,且f(1)=错误!-ln 1=错误!.答案A3.(2017·合肥模拟)已知函数f(x)=x3+bx2+cx的图象如图所示,则x错误!+x错误!等于()A。
错误! B.错误!C.错误!D。
错误!解析由图象可知f(x)的图象过点(1,0)与(2,0),x1,x2是函数f(x)的极值点,因此1+b+c=0,8+4b+2c =0,解得b=-3,c=2,所以f(x)=x3-3x2+2x,所以f′(x)=3x2-6x+2。
x1,x2是方程f′(x)=3x2-6x+2=0的两根,因此x1+x2=2,x1x2=23,所以x错误!+x错误!=(x1+x2)2-2x1x2=4-错误!=错误!.答案C4.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为()A。
3 B。
4 C。
6 D.5解析设圆柱的底面半径为R,母线长为l,则V=πR2l =27π,∴l=错误!,要使用料最省,只须使圆柱的侧面积与下底面面积之和S最小。
由题意,S=πR2+2πRl=πR2+2π·错误!.∴S′=2πR-错误!,令S′=0,得R=3,则当R=3时,S最小.故选A。
答案A5。
(2017·东北四校联考)已知函数f(x)=x3+ax2+(a +6)x+1有极大值和极小值,则实数a的取值范围是()A.(-1,2) B。
2018版高考数学(理)一轮复习文档:第三章导数及其应用3.3含解析
1.定积分的概念在ʃ错误!f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)d x 叫做被积式.2.定积分的性质(1)ʃ错误!kf(x)d x=kʃ错误!f(x)d x(k为常数);(2)ʃ错误![f1(x)±f2(x)]d x=ʃ错误!f1(x)d x±ʃ错误!f2(x)d x;(3)ʃb,a f(x)d x=ʃ错误!f(x)d x+ʃ错误!f(x)d x(其中a<c〈b).3.微积分基本定理一般地,如果f(x)是区间[a,b]上的连续函数,且F′(x)=f(x),那么ʃ错误!f(x)d x=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.为了方便,常把F(b)-F(a)记作F(x)|错误!,即ʃ错误!f(x)d x=F(x)|错误!=F(b)-F(a).【知识拓展】1.定积分应用的常用结论当曲边梯形位于x轴上方时,定积分的值为正;当曲边梯形位于x轴下方时,定积分的值为负;当位于x轴上方的曲边梯形与位于x轴下方的曲边梯形面积相等时,定积分的值为零.2.函数f(x)在闭区间[-a,a]上连续,则有(1)若f(x)为偶函数,则ʃ错误!f(x)d x=2ʃ错误!f(x)d x。
(2)若f(x)为奇函数,则ʃ错误!f(x)d x=0.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)设函数y=f(x)在区间[a,b]上连续,则ʃ错误!f(x)d x=ʃ错误!f(t)d t。
( √)(2)若函数y=f(x)在区间[a,b]上连续且恒正,则ʃ错误!f(x)d x〉0。
( √)(3)若ʃ错误!f(x)d x〈0,那么由y=f(x),x=a,x=b以及x轴所围成的图形一定在x轴下方.( ×)(4)微积分基本定理中的F(x)是唯一的.( ×)(5)曲线y=x2与y=x所围成图形的面积是ʃ错误!(x2-x)d x。
第三章.导数及其应用测试卷(含详细答案)
单元综合测试三(第三章)时间:90分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.已知f (x )=(x +a )2,且f ′(12)=-3,则a 的值为( ) A .-1 B .-2 C .1D .2解析:f (x )=(x +a )2,∴f ′(x )=2(x +a ). 又f ′(12)=-3,∴1+2a =-3,解得a =-2. 答案:B2.函数y =sin x (cos x +1)的导数是( ) A .y ′=cos2x -cos x B .y ′=cos2x +sin x C .y ′=cos2x +cos xD .y ′=cos 2x +cos x解析:y ′=(sin x )′(cos x +1)+sin x (cos x +1)′=cos 2x +cos x -sin 2x =cos2x +cos x .答案:C3.函数y =3x -x 3的单调递增区间是( ) A .(0,+∞) B .(-∞,-1) C .(-1,1)D .(1,+∞)解析:f ′(x )=3-3x 2>0⇒x ∈(-1,1).答案:C4.某汽车启动阶段的路程函数为s (t )=2t 3-5t 2+2,则t =2秒时,汽车的加速度是( )A .14B .4C .10D .6解析:依题意v (t )=s ′(t )=6t 2-10t ,所以a (t )=v ′(t )=12t -10,故汽车在t =2秒时的加速度为a (2)=24-10=14.答案:A5.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 的值为( )A .-2B .-1C .1D .2解析:f ′(x )=x cos x +sin x ,f ′(π2)=1, ∴k =-a2=-1,a =2. 答案:D6.已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为( )A .1B .3C .-4D .-8解析:如图所示,由已知可设P (4,y 1),Q (-2,y 2), ∵点P ,Q 在抛物线x 2=2y 上,∴⎩⎨⎧42=2y 1, ①(-2)2=2y 2, ②∴⎩⎨⎧y 1=8,y 2=2,∴P (4,8),Q (-2,2).又∵抛物线可化为y =12x 2,∴y ′=x . ∴过点P 的切线斜率为y ′|x =4=4,∴过点P 的切线为y -8=4(x -4),即y =4x -8. 又∵过点Q 的切线斜率为y ′|x =-2=-2.∴过点Q 的切线为y -2=-2(x +2),即y =-2x -2.联立⎩⎨⎧y =4x -8,y =-2x -2,解得x =1,y =-4.∴点A的纵坐标为-4. 答案:C7.若函数y=a(x3-x)的递增区间是(-∞,-33),(33,+∞),则a的取值范围是()A.a>0 B.-1<a<0 C.a>1 D.0<a<1解析:依题意y′=a(3x2-1)>0的解集为(-∞,-33),(33,+∞),故a>0.答案:A8.对任意的x∈R,函数f(x)=x3+ax2+7ax不存在极值点的充要条件是()A.0≤a≤21 B.a=0或a=7C.a<0或a>21 D.a=0或a=21解析:f′(x)=3x2+2ax+7a,当Δ=4a2-84a≤0,即0≤a≤21时,f′(x)≥0恒成立,函数f(x)不存在极值点.故选A.答案:A9.已知函数f(x)=x3-3x,若对于区间[-3,2]上任意的x1,x2,都有|f(x1)-f(x2)|≤t,则实数t的最小值是()A.0 B.10C.18 D.20解析:f′(x)=3x2-3,令f′(x)=0,解得x=±1,所以1,-1为函数f(x)的极值点,因为f(-3)=-18,f(-1)=2,f(1)=-2,f(2)=2,所以在区间[-3,2]上,f(x)max=2,f(x)min=-18,所以对于区间[-3,2]上任意的x1,x2,|f(x1)-f(x2)|≤20,所以t≥20,从而t的最小值为20.答案:D10.设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是()A.∀x∈R,f(x)≤f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点解析:取函数f(x)=x3-x,则x=-33为f(x)的极大值点,但f(3)>f(-33),∴排除A.取函数f(x)=-(x-1)2,则x=1是f(x)的极大值点,f(-x)=-(x+1)2,-1不是f(-x)的极小值点,∴排除B;-f(x)=(x-1)2,-1不是-f(x)的极小值点,∴排除C.故选D.答案:D11.若函数y=f(x)满足xf′(x)>-f(x)在R上恒成立,且a>b,则()A.af(b)>bf(a) B.af(a)>bf(b)C.af(a)<bf(b) D.af(b)<bf(a)解析:设g(x)=xf(x),则g′(x)=xf′(x)+f(x)>0,∴g(x)在R上是增函数,又a>b,∴g(a)>g(b)即af(a)>bf(b).答案:B12.设函数f (x )满足x 2f ′(x )+2xf (x )=e x x ,f (2)=e 28,则x >0时,f (x )( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值解析:由题意知f ′(x )=e x x 3-2f (x )x =e x -2x 2f (x )x3.令g (x )=e x-2x 2f (x ),则g ′(x )=e x -2x 2f ′(x )-4xf (x )=e x -2(x 2f ′(x )+2xf (x ))=e x -2e xx =e x ⎝ ⎛⎭⎪⎫1-2x .由g ′(x )=0得x =2,当x =2时,g (x )min =e 2-2×22×e 28=0,即g (x )≥0,则当x >0时,f ′(x )=g (x )x 3≥0,故f (x )在(0,+∞)上单调递增,既无极大值也无极小值.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.若抛物线y =x 2-x +c 上一点P 的横坐标为-2,抛物线过点P 的切线恰好过坐标原点,则c 的值为________.解析:∵y ′=2x -1,∴y ′|x =-2=-5. 又P (-2,6+c ),∴6+c-2=-5.∴c =4. 答案:414.如果函数f (x )=x 3-6bx +3b 在区间(0,1)内存在与x 轴平行的切线,则实数b 的取值范围是________.解析:存在与x 轴平行的切线,即f ′(x )=3x 2-6b =0有解,∵x ∈(0,1),∴b =x 22∈(0,12).答案:{b |0<b <12}15.已知a ≤4x 3+4x 2+1对任意x ∈[-1,1]都成立,则实数a 的取值范围是________.解析:设f (x )=4x 3+4x 2+1,则f ′(x )=12x 2+8x =4x (3x +2),令f ′(x )=0,解得x 1=0,x 2=-23.又f (-1)=1, f (-23)=4327,f (0)=1,f (1)=9,故f (x )在[-1,1]上的最小值为1,故a ≤1.答案:(-∞,1]16.设二次函数f (x )=ax 2+bx +c (a ≠0)的导数为f ′(x ),f ′(0)>0,若∀x ∈R ,恒有f (x )≥0,则f (1)f ′(0)的最小值是________.解析:二次函数f (x )=ax 2+bx +c (a ≠0)的导数为f ′(x )=2ax +b ,由f ′(0)>0,得b >0,又对∀x ∈R ,恒有f (x )≥0,则a >0, 且Δ=b 2-4ac ≤0,故c >0,所以f (1)f ′(0)=a +b +c b =a b +c b +1≥2acb 2+1≥2ac4ac +1=2,所以f (1)f ′(0)的最小值为2.答案:2三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知函数f (x )=ln(2x +a )+x 2,且f ′(0)=23.(1)求f (x )的解析式;(2)求曲线f (x )在x =-1处的切线方程. 解:(1)∵f (x )=ln(2x +a )+x 2,∴f ′(x )=12x +a ·(2x +a )′+2x =22x +a +2x .又∵f ′(0)=23,∴2a =23,解得a =3. 故f (x )=ln(2x +3)+x 2.(2)由(1)知f ′(x )=22x +3+2x =4x 2+6x +22x +3,且f (-1)=ln(-2+3)+(-1)2=1, f ′(-1)=4×(-1)2+6×(-1)+22(-1)+3=0,因此曲线f (x )在(-1,1)处的切线方程是y -1=0(x +1),即y =1.18.(12分)已知函数f (x )=13x 3+ax +b (a ,b ∈R )在x =2处取得极小值-43.(1)求函数f (x )的增区间;(2)若f (x )≤m 2+m +103对x ∈[-4,3]恒成立,求实数m 的取值范围.解:(1)由已知得f (2)=-43,f ′(2)=0,又f ′(x )=x 2+a ,所以83+2a +b =-43,4+a =0,所以a =-4,b =4,则f (x )=13x 3-4x +4,令f ′(x )=x 2-4>0,得x <-2或x >2,所以增区间为(-∞,-2),(2,+∞).(2)f (-4)=-43,f (-2)=283,f (2)=-43,f (3)=1,则当x ∈[-4,3]时,f (x )的最大值为283,故要使f (x )≤m 2+m +103对∈[-4,3]恒成立,只要283≤m 2+m +103,所以实数m 的取值范围是m ≥2或m ≤-3.19.(12分)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. 解:(1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4,故b =4,a +b -4=4,所以a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x(x +2)-2x -4=4(x +2)(e x-12).令f ′(x )=0,得x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.当x =-2时,函数f (x )取得极大值, 极大值为f (-2)=4(1-e -2).20.(12分)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程. (2)求函数f (x )的极值.解:函数f (x )的定义域为(0,+∞),f ′(x )=1-ax . (1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),所以f (1)=1,f ′(1)=-1,所以y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0.(2)由f ′(x )=1-a x =x -ax ,x >0可知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a;因为x∈(0,a)时,f′(x)<0,x∈(a,+∞)时,f′(x)>0,所以f(x)在x=a处取得极小值,且极小值为f(a)=a-a ln a,无极大值.综上:当a≤0时,函数f(x)无极值,当a>0时,函数f(x)在x=a处取得极小值a-a ln a,无极大值.21.(12分)某地政府鉴于某种日常食品价格增长过快,欲将这种食品价格控制在适当范围内,决定给这种食品生产厂家提供政府补贴,设这种食品的市场价格为x 元/千克,政府补贴为t 元/千克,根据市场调查,当16≤x ≤24时,这种食品日供应量p 万千克,日需量q 万千克近似地满足关系:p =2(x +4t -14)(t >0),q =24+8ln 20x .当p =q 时的市场价格称为市场平衡价格.(1)将政府补贴表示为市场平衡价格的函数,并求出函数的值域;(2)为使市场平衡价格不高于20元/千克,政府补贴至少为多少元/千克?解:(1)由p =q 得2(x +4t -14) =24+8ln 20x (16≤x ≤24,t >0), 即t =132-14x +ln 20x (16≤x ≤24). ∵t ′=-14-1x <0,∴t 是x 的减函数. ∴t min =132-14×24+ln 2024=12+ln 2024=12+ln 56; t max =132-14×16+ln 2016=52+ln 54, ∴值域为⎣⎢⎡⎦⎥⎤12+ln 56,52+ln 54.(2)由(1)知t =132-14x +ln 20x (16≤x ≤24).而当x =20时,t =132-14×20+ln 2020=1.5(元/千克),∵t 是x 的减函数,∴欲使x ≤20,必须t ≥1.5(元/千克). 要使市场平衡价格不高于20元/千克,政府补贴至少为1.5元/千克.22.(12分)已知函数f (x )=ln x -12ax 2-2x .(1)若函数f (x )在x =2处取得极值,求实数a 的值. (2)若函数f (x )在定义域内单调递增,求实数a 的取值范围. (3)当a =-12时,关于x 的方程f (x )=-12x +b 在[1,4]上恰有两个不相等的实数根,求实数b 的取值范围.解:(1)由题意,得f ′(x )=-ax 2+2x -1x(x >0), 因为x =2时,函数f (x )取得极值,所以f ′(2)=0,解得a =-34,经检验,符合题意.(2)函数f (x )的定义域为(0,+∞),依题意,f ′(x )≥0在x >0时恒成立,即ax 2+2x -1≤0在x >0时恒成立,则a ≤1-2x x 2=⎝ ⎛⎭⎪⎫1x -12-1在x >0时恒成立,即a ≤⎝ ⎛⎭⎪⎫⎝⎛⎭⎪⎫1x -12-1min (x >0),当x =1时,⎝⎛⎭⎪⎫1x -12-1取最小值-1,所以a 的取值范围是(-∞,-1].(3)当a =-12时,f (x )=-12x +b , 即14x 2-32x +ln x -b =0.设g (x )=14x 2-32x +ln x -b (x >0), 则g ′(x )=(x -2)(x -1)2x, 当x 变化时,g ′(x ),g (x )的变化情况如下表:x (0,1) 1 (1,2) 2 (2,4) g ′(x ) + 0 - 0 + g (x )极大极小所以g (x )极小值=g (2)=ln2-b -2, g (x )极大值=g (1)=-b -54, 又g (4)=2ln2-b -2,因为方程g (x )=0在[1,4]上恰有两个不相等的实数根, 则⎩⎪⎨⎪⎧g (1)≥0,g (2)<0,g (4)≥0,解得ln2-2<b ≤-54,所以实数b 的取值范围是(ln2-2,-54).。
[精品]2018版高考数学人教A版理一轮复习真题集训第三章导数及其应用34和答案
真题演练集训1.定积分⎠⎜⎛01(2x +e x )d x 的值为( ) A .e +2 B .e +1 C .e D .e -1答案:C解析:⎠⎜⎛01(2x +e x )d x =(x 2+e x ) 10=(1+e)-(0+e 0)=e ,故选C. 2.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2 D .4答案:D解析:由4x =x 3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义可知,直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为⎠⎜⎛2(4x -x 3)d x =⎝ ⎛⎭⎪⎫2x 2-14x 420=4. 3.曲线y =x 2与直线y =x 所围成的封闭图形的面积为________. 答案:16解析:如图,阴影部分的面积即为所求.由⎩⎪⎨⎪⎧y =x 2,y =x ,得A (1,1).故所求面积为S =⎠⎜⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫12x 2-13x 3|10=16. 4.⎠⎜⎛2(x -1)d x =________.答案:0解析:⎠⎜⎛2(x -1)d x =⎝ ⎛⎭⎪⎫12x 2-x 20=(2-2)-0=0. 5.如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为________.答案:1.2解析:建立如图所示的平面直角坐标系.由抛物线过点(0,-2),(-5,0),(5,0),得抛物线的函数表达式为y =225x 2-2,抛物线与x 轴围成的面积S 1=⎠⎛5-5⎝⎛⎭⎪⎫2-225x 2d x =403,梯形面积S 2=+2=16.最大流量比为S 2∶S 1=1.2.课外拓展阅读 探究定积分与不等式交汇问题如图,矩形OABC 内的阴影部分是由曲线f (x )=sin x ;x ∈(0,π)及直线x =a ,a ∈(0,π)与x 轴围成,向矩形OABC 内随机投掷一点,若落在阴影部分的概率为14,则a 的值是( )A.7π12 B .2π3C.3π4D .5π6先运用定积分求出阴影部分的面积,再利用几何概型概率计算公式求出概率.由已知S 矩形OABC =a ×6a=6,而阴影部分的面积为S =⎠⎜⎛0asin x d x =(-cos x ) a 0=1-cos a , 依题意有SS 矩形OABC =14,即1-cos a 6=14,解得cos a =-12,又a ∈(0,π),所以a =2π3.故选B. B 方法点睛定积分还可与其他知识交汇,如与二项式定理、数列等知识交汇.。
2018版高考数学(文理通用)(浙江专用)一轮复习练习 第三章 导数及其应用 第2讲含答案
基础巩固题组(建议用时:40分钟)一、选择题1.函数f(x)=x ln x,则()A.在(0,+∞)上递增B.在(0,+∞)上递减C。
在错误!上递增D。
在错误!上递减解析f(x)的定义域为(0,+∞),f′(x)=ln x+1,令f′(x)>0得x>错误!,令f′(x)<0得0〈x〈错误!,故选D。
答案D2。
下面为函数y=x sin x+cos x的递增区间的是() A。
错误!B。
(π,2π)C。
错误!D。
(2π,3π)解析y′=(x sin x+cos x)′=sin x+x cos x-sin x=x cos x,当x∈错误!时,恒有x cos x〉0.答案C3.已知函数f(x)=错误!x3+ax+4,则“a>0”是“f(x)在R上单调递增”的( )A.充分不必要条件B。
必要不充分条件C.充要条件D。
既不充分也不必要条件解析f′(x)=32x2+a,当a≥0时,f′(x)≥0恒成立,故“a>0”是“f(x)在R上单调递增”的充分不必要条件.答案A4.已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是( )解析由y=f′(x)的图象知,y=f(x)在[-1,1]上为增函数,且在区间(-1,0)上增长速度越来越快,而在区间(0,1)上增长速度越来越慢。
答案 B5.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( )A.(1,2]B.[4,+∞)C.(-∞,2] D 。
(0,3] 解析 ∵f (x )=错误!x 2-9ln x ,∴f ′(x )=x -错误!(x 〉0),当x -9x≤0时,有0〈x ≤3, 即在(0,3]上原函数是减函数,则[a -1,a +1]⊆(0,3],∴a -1>0且a +1≤3,解得1<a ≤2.答案 A二、填空题6。
2018高考数学(理科)习题第三章导数及其应用312和答案
1.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为()点击观看解答视频A .2 2B .4 2C .2D .4答案 D 解析 由⎩⎨⎧y =4x ,y =x3得x =0或x =2或x =-2(舍).∴S =⎠⎛02(4x -x 3)d x =⎝ ⎛⎭⎪⎫2x 2-14x 4⎪⎪⎪⎪2=4.2.已知函数f(x)=sin (x -φ),且⎠⎜⎛02π3f (x )d x =0,则函数f(x)的图象的一条对称轴是( )A .x =5π6 B .x =7π12 C .x =π3D .x =π6答案 A解析由⎠⎜⎛02π3f(x)d x =⎠⎜⎛02π3sin (x -φ)d x =-cos (x -φ)⎪⎪⎪⎪2π30=-cos ⎝⎛⎭⎪⎫2π3-φ+cos φ=0,得32cos φ=32sin φ,从而有tan φ=3,则φ=n π+π3,n ∈Z ,从而有f (x )=sin ⎝⎛⎭⎪⎫x -n π-π3 =(-1)n·sin ⎝⎛⎭⎪⎫x -π3,n ∈Z .令x -π3=k π+π2,k ∈Z ,得x =k π+5π6,k ∈Z ,即f (x )的图象的对称轴是x =k π+5π6,k ∈Z ,故选A. 3.直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A.43 B .2 C.83 D.1623答案 C解析 直线l 的方程为y =1,其与抛物线的交点坐标分别为(-2,1)、(2,1),则该直线与抛物线C 所围成图形的面积S =⎠⎛-22⎝⎛⎭⎪⎫1-x 24d x =⎪⎪⎪⎝⎛⎭⎪⎫x -x 3122-2=83.4.⎠⎛01(2x -x 2-x)d x 等于( )点击观看解答视频A .π-24B .π-22C .π-12D .π-14答案 A解析 由定积分的几何意义得 ⎠⎛012x -x 2d x =π4,如图阴影部分,而⎪⎪⎪⎠⎛01x d x =12x 210=12. ∴⎠⎛01(2x -x 2-x)d x =⎠⎛012x -x 2d x -⎠⎛01x d x =π-24,选A .5.如图所示,曲线y =x 2-1,x =2,x =0,y =0围成的阴影部分的面积为( )A .⎠⎛02|x 2-1|d x B.⎪⎪⎪⎪⎪⎪⎠⎛02x 2-x C.⎠⎛02(x 2-1)d x D .⎠⎛01(x 2-1)d x +⎠⎛12(1-x 2)d x答案 A解析 由曲线y =|x 2-1|的对称性,所求阴影部分的面积与如右图形的面积相等,即⎠⎛02|x 2-1|d x ,选A. 6.若f (x )=⎩⎨⎧f x -,x >1,e x+⎠⎛121td t ,x ≤1,则f (2013)等于( ) A .0 B .ln 2 C .1+e 2 D .e +ln 2答案 D解析 f (2013)=f (503×4+1)=f (1)=e +⎪⎪⎪⎠⎛121t d t =e +ln t 21=e +ln 2.7.与定积分∫3π1-cos x d x 相等的是( ) A.2∫3π0sin x 2d x B.2∫3π0⎪⎪⎪⎪⎪⎪sin x 2d x C.⎪⎪⎪⎪⎪⎪2∫3πsin x 2d x D .以上结论都不对 答案 B解析 ∵1-cos x =2sin 2x2,∴∫3π1-cos x d x =∫3π2⎪⎪⎪⎪⎪⎪sin x 2d x=2∫3π0⎪⎪⎪⎪⎪⎪sin x 2d x . 8.⎠⎛1e1xd x +⎠⎛2-24-x 2d x =________. 答案 2π+1 解析 ⎠⎛1e 1x d x =ln x ⎪⎪⎪⎪e1=1-0=1,因⎠⎛-224-x 2d x 表示的是圆x 2+y 2=4的x 轴上方的面积,故⎠⎛-224-x 2d x =12π×22=2π,故答案为2π+1.9.执行如图所示的程序框图,输出的T 的值为________.答案116解析 开始n =1,T =1,因为1<3,所以T =1+⎠⎛01x 1d x =1+12x 2⎪⎪⎪⎪1=1+12×12=32,n =1+1=2;因为2<3,所以T =32+⎠⎛01x 2d x =32+13x 3⎪⎪⎪⎪1=32+13×13=116,n =2+1=3.因为3<3不成立,所以输出T ,即输出的T 的值为116.10.曲线y =x 2与直线y =x 所围成的封闭图形的面积为________. 答案16解析 由题意可得封闭图形的面积为 ⎠⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫12x 2-13x 3⎪⎪⎪⎪1=12-13=16.11.正方形的四个顶点A (-1,-1),B (1,-1),C (1,1),D (-1,1)分别在抛物线y =-x 2和y =x 2上,如图所示.若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影区域的概率是________.答案23解析 由对称性可知S 阴影=S 正方形ABCD -4⎠⎛01x 2d x =22-4×⎝⎛⎪⎪⎪⎭⎪⎫13x 310=83,所以所求概率为834=23.。
2018高考数学(文科)习题 第三章 导数及其应用3-2-3 Word版含答案
1.设f (x )是定义在R 上的可导函数,当x ≠0时,f ′(x )+f xx>0,则关于x 的函数g (x )=f (x )+1x的零点个数为( )点击观看解答视频A .1B .2C .0D .0或2答案 C解析 由f ′(x )+f x x >0,得xf ′ x +f xx>0,当x >0时,xf ′(x )+f (x )>0,即′>0,函数xf (x )单调递增; 当x <0时,xf ′(x )+f (x )<0, 即′<0,函数xf (x )单调递减. ∴xf (x )>0f (0)=0, 又g (x )=f (x )+x -1=xf x +1x ,函数g (x )=xf x +1x的零点个数等价于函数y =xf (x )+1的零点个数.当x >0时,y =xf (x )+1>1,当x <0时,y =xf (x )+1>1,所以函数y =xf (x )+1无零点,所以函数g (x )=f (x )+x -1的零点个数为0.故选C.2.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2014)2f (x +2014)-4f (-2)>0的解集为________.答案 (-∞,-2016)解析 由2f (x )+xf ′(x )>x 2,x <0得2xf (x )+x 2f ′(x )<x 3,∴′<x 3<0.令F (x )=x 2f (x )(x <0),则F ′(x )<0(x <0),即F (x )在(-∞,0)上是减函数,因为F (x +2014)=(x+2014)2f (x +2014),F (-2)=4f (-2),所以不等式(x +2014)2f (x +2014)-4f (-2)>0即为F (x +2014)-F (-2)>0,即F (x +2014)>F (-2),又因为F (x )在(-∞,0)上是减函数,所以x +2014<-2,∴x <-2016.3.已知f (x )=ax -cos x ,x ∈⎣⎢⎡⎦⎥⎤π4,π3.若∀x 1∈⎣⎢⎡⎦⎥⎤π4,π3,∀x 2∈⎣⎢⎡⎦⎥⎤π4,π3,x 1≠x 2,f x 2 -f x 1x 2-x 1<0,则实数a 的取值范围为________.答案 a ≤-32解析 f ′(x )=a +sin x .依题意可知f (x )在⎣⎢⎡⎦⎥⎤π4,π3上为减函数,所以f ′(x )≤0对x ∈⎣⎢⎡⎦⎥⎤π4,π3恒成立,可得a ≤-sin x 对x ∈⎣⎢⎡⎦⎥⎤π4,π3恒成立.设g (x )=-sin x ,x ∈⎣⎢⎡⎦⎥⎤π4,π3.易知g (x )为减函数,故g (x )min =-32,所以a ≤-32. 4.已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)单调递增. 若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )<0.所以f (x )在⎝⎛⎭⎪⎫0,1a 单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a+a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1). 5.设a >1,函数f (x )=(1+x 2)e x-a . (1)求f (x )的单调区间;(2)证明:f (x )在(-∞,+∞)上仅有一个零点;(3)若曲线y =f (x )在点P 处的切线与x 轴平行,且在点M (m ,n )处的切线与直线OP 平行(O 是坐标原点),证明:m ≤3a -2e-1.解 (1)f ′(x )=2x e x+(1+x 2)e x=(x 2+2x +1)e x =(x +1)2e x≥0,故f (x )是R 上的单调递增函数,其单调增区间是(-∞,+∞),无单调减区间.(2)证明:因为f (0)=(1+02)e 0-a =1-a <0,且f (ln a )=(1+ln 2a )e ln a-a =(1+ln 2a )a -a =a ln 2 a >0,由零点存在性定理知,f (x )在(-∞,+∞)上至少有一个零点. 又由(1)知,函数f (x )是(-∞,+∞)上的单调递增函数, 故函数f (x )在(-∞,+∞)上仅有一个零点.(3)证明:设点P (x 0,y 0),由曲线y =f (x )在点P 处的切线与x 轴平行知,f ′(x 0)=0,即f ′(x 0)=(x 0+1)2e x 0=0,(x 0+1)2=0,x 0=-1,即P (-1,2e -1-a ).由点M (m ,n )处的切线与直线OP 平行知,f ′(m )=k OP , 即(1+m )2e m=2e -1-a -0-1-0=a -2e.由e m ≥1+m 知,(1+m )3≤(1+m )2e m=a -2e,即1+m ≤3a -2e ,即m ≤ 3a -2e-1.6.已知函数f (x )=ln x - x -122.(1)求函数f (x )的单调递增区间; (2)证明:当x >1时,f (x )<x -1;(3)确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1). 解 (1)f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞).由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0.解得0<x <1+52.故f (x )的单调递增区间是⎝⎛⎭⎪⎫0,1+52.(2)证明:令F (x )=f (x )-(x -1),x ∈(0,+∞). 则F ′(x )=1-x2x.当x ∈(1,+∞)时,F ′(x )<0, 所以F (x )在上仅有一个零点. 解 (1)由f (x )=x 22-k ln x (k >0),得f ′(x )=x -k x =x 2-kx.由f ′(x )=0,解得x =k .f (x )与f ′(x )在区间(0,+∞)上的情况如下:取得极小值f (k )=k 1-ln k2.(2)证明:由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k 1-ln k2.因为f (x )存在零点,所以k 1-ln k2≤0,从而k ≥e.当k =e 时,f (x )在区间(1,e]上单调递减,且f (e)=0, 所以x =e 是f (x )在区间(1,e]上的唯一零点. 当k >e 时,f (x )在区间(0,e)上单调递减, 且f (1)=12>0,f (e)=e -k2<0,所以f (x )在区间(1, e ]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1, e ]上仅有一个零点. 8.已知函数f (x )=ln x -12ax 2-2x (a <0).(1)若函数f (x )在定义域内单调递增,求a 的取值范围;(2)若a =-12且关于x 的方程f (x )=-12x +b 在上恰有两个不相等的实数根,求实数b的取值范围.解 (1)f ′(x )=-ax 2+2x -1x(x >0).依题意f ′(x )≥0在x >0时恒成立,即ax 2+2x -1≤0在x >0时恒成立. 则a ≤1-2x x2=⎝ ⎛⎭⎪⎫1x -12-1在x >0时恒成立,即a ≤⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1x-12-1min (x >0),当x =1时,⎝ ⎛⎭⎪⎫1x-12-1取最小值-1.∴a 的取值范围是(-∞,-1].(2)a =-12,f (x )=-12x +b ⇔14x 2-32x +ln x -b =0.设g (x )=14x 2-32x +ln x -b (x >0).则g ′(x )= x -2 x -12x .列表:∴g (x )极小值=g (2)=ln 2-b -2,g (x )极大值=g (1)=-b -4,又g (4)=2ln 2-b -2,∵方程g (x )=0在上恰有两个不相等的实数根,则⎩⎪⎨⎪⎧g 1 ≥0,g 2 <0,g 4 ≥0,得ln 2-2<b ≤-54.9. 如图,现要在边长为100 m 的正方形ABCD 内建一个交通“环岛”.以正方形的四个顶点为圆心在四个角分别建半径为x m(x 不小于9)的扇形花坛,以正方形的中心为圆心建一个半径为15x 2m 的圆形草地.为了保证道路畅通,岛口宽不小于60 m ,绕岛行驶的路宽均不小于10 m.(1)求x 的取值范围(运算中2取1.4);(2)若中间草地的造价为a 元/m 2,四个花坛的造价为433ax 元/m 2,其余区域的造价为12a 11元/m 2,当x 取何值时,可使“环岛”的整体造价最低?解 (1)由题意得,⎩⎪⎨⎪⎧x ≥9100-2x ≥601002-2x -2×15x 2≥2×10,解得⎩⎪⎨⎪⎧x ≥9x ≤20-20≤x ≤15,即9≤x ≤15.所以x 的取值范围是.(2)记“环岛”的整体造价为y 元,则由题意得y =a ×π×⎝ ⎛⎭⎪⎫15x 22+433ax ×πx 2+12a 11×⎣⎢⎡⎦⎥⎤104-π×⎝ ⎛⎭⎪⎫15x 22-πx 2=a 11⎣⎢⎡π⎝ ⎛ -125x 4+43x 3-12x 2 ] )+12×104, 令f (x )=-125x 4+43x 3-12x 2,则f ′(x )=-425x 3+4x 2-24x=-4x ⎝⎛⎭⎪⎫125x 2-x +6,由f ′(x )=0,解得x =10或x =15或x =0(舍), 列表如下:即当x =10时,可使“环岛”的整体造价最低.。
2018版高考数学(文)(全国)一轮复习练习 第三章 导数及其应用 3-2-1含答案
第2讲导数在研究函数中的应用第1课时导数与函数的单调性基础巩固题组(建议用时:40分钟)一、选择题1.函数f(x)=x-ln x的单调递减区间为( )A.(0,1)B.(0,+∞)C.(1,+∞) D.(-∞,0)∪(1,+∞)解析函数的定义域是(0,+∞),且f′(x)=1-错误!=错误!,令f′(x)<0,解得0<x<1,所以单调递减区间是(0,1).答案A2.(2015·陕西卷)设f(x)=x-sin x,则f(x)()A.既是奇函数又是减函数B.既是奇函数又是增函数C.是有零点的减函数D.是没有零点的奇函数解析因为f′(x)=1-cos x≥0,所以函数为增函数,排除选项A和C。
又因为f(0)=0-sin 0=0,所以函数存在零点,排除选项D,故选B。
答案B3。
已知定义在R上的函数f(x),其导函数f′(x)的大致图像如图所示,则下列叙述正确的是()A.f(b)>f(c)〉f(d)B.f(b)>f(a)〉f(e)C.f(c)>f(b)>f(a)D.f(c)〉f(e)〉f(d)解析依题意得,当x∈(-∞,c)时,f′(x)〉0,因此,函数f(x)在(-∞,c)上是增函数,由a〈b〈c,所以f(c)〉f(b)〉f(a).答案C4.若函数f(x)=2x3-3mx2+6x在区间(2,+∞)上为增函数,则实数m的取值范围为( ) A.(-∞,2)B.(-∞,2]C。
错误!D。
错误!解析∵f′(x)=6x2-6mx+6,当x∈(2,+∞)时,f′(x)≥0恒成立,即x2-mx+1≥0恒成立,∴m≤x+错误!恒成立.令g(x)=x+错误!,g′(x)=1-错误!,∴当x>2时,g′(x)>0,即g(x)在(2,+∞)上单调递增,∴m≤2+错误!=错误!.答案D5.(2017·上饶模拟)函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( )A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.(-∞,+∞)解析由f(x)〉2x+4,得f(x)-2x-4〉0,设F(x)=f(x)-2x-4,则F′(x)=f′(x)-2,因为f′(x)〉2,所以F′(x)〉0在R上恒成立,所以F(x)在R上单调递增.又F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4〉0等价于F(x)〉F(-1),所以x〉-1。
高中数学总复习第03章三年高考真题与高考等值卷(导数及其应用)(文科数学)(解析版)
三年高考真题与高考等值卷(导数及其应用)(文科数学)1.导数概念及其几何意义 (1)了解导数概念的实际背景. (2)理解导数的几何意义.2.导数的运算(1)能根据导数定义求函数y =C (C 为常数),y =x ,y =x 2,y =1x的导数. (2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax +b )的复合函数)的导数. •常见基本初等函数的导数公式: (C )'=0(C 为常数);(x n )'=nx n −1,n ∈N ; (sin x )'=cos x ;(cos x )'=−sin x ;(e x )'=e x ;(a x )'=a x ln a (a >0,且a ≠1);(ln x )'=1x ;(log a x )'=1x log a e (a >0,且a ≠1)•常用的导数运算法则: 法则1:[u (x )±v (x )]'=u '(x )±v '(x ). 法则2:[u (x )v (x )]'=u '(x )v (x )+u (x )v '(x ). 法则3:2()'()()()'()[]'(()0)()()u x u x v x u x v x v x v x v x −=≠ 3.导数在研究函数中的应用(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次). 4.生活中的优化问题会利用导数解决某些实际问题.1.【2019年新课标3文科07】已知曲线y =ae x +xlnx 在点(1,ae )处的切线方程为y =2x +b ,则( ) A .a =e ,b =﹣1B .a =e ,b =1C .a =e ﹣1,b =1D .a =e ﹣1,b =﹣1【解答】解:y=ae x+xlnx的导数为y′=ae x+lnx+1,由在点(1,ae)处的切线方程为y=2x+b,可得ae+1+0=2,解得a=e﹣1,又切点为(1,1),可得1=2+b,即b=﹣1,故选:D.2.【2019年新课标2文科10】曲线y=2sin x+cos x在点(π,﹣1)处的切线方程为()A.x﹣y﹣π﹣1=0 B.2x﹣y﹣2π﹣1=0C.2x+y﹣2π+1=0 D.x+y﹣π+1=0【解答】解:由y=2sin x+cos x,得y′=2cos x﹣sin x,∴y′|x=π=2cosπ﹣sinπ=﹣2,∴曲线y=2sin x+cos x在点(π,﹣1)处的切线方程为y+1=﹣2(x﹣π),即2x+y﹣2π+1=0.故选:C.3.【2019年新课标1文科05】函数f(x)在[﹣π,π]的图象大致为()A.B.C.D.【解答】解:∵f(x),x∈[﹣π,π],∴f(﹣x)f(x),∴f(x)为[﹣π,π]上的奇函数,因此排除A;又f(),因此排除B,C;故选:D.4.【2018年新课标2文科03】函数f(x)的图象大致为()A.B.C.D.【解答】解:函数f(﹣x)f(x),则函数f(x)为奇函数,图象关于原点对称,排除A,当x=1时,f(1)=e0,排除D.当x→+∞时,f(x)→+∞,排除C,故选:B.5.【2018年新课标1文科06】设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.6.【2018年新课标3文科09】函数y=﹣x4+x2+2的图象大致为()A.B.C.D.【解答】解:函数过定点(0,2),排除A,B.函数的导数f′(x)=﹣4x3+2x=﹣2x(2x2﹣1),由f′(x)>0得2x(2x2﹣1)<0,得x或0<x,此时函数单调递增,由f′(x)<0得2x(2x2﹣1)>0,得x或x<0,此时函数单调递减,排除C,也可以利用f(1)=﹣1+1+2=2>0,排除A,B,故选:D.7.【2017年新课标2文科08】函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)【解答】解:由x2﹣2x﹣8>0得:x∈(﹣∞,﹣2)∪(4,+∞),令t=x2﹣2x﹣8,则y=lnt,∵x∈(﹣∞,﹣2)时,t=x2﹣2x﹣8为减函数;x∈(4,+∞)时,t=x2﹣2x﹣8为增函数;y=lnt为增函数,故函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是(4,+∞),故选:D.8.【2017年新课标1文科08】函数y的部分图象大致为()A.B.C.D.【解答】解:函数y,可知函数是奇函数,排除选项B,当x时,f(),排除A,x=π时,f(π)=0,排除D.故选:C.9.【2017年新课标1文科09】已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称【解答】解:∵函数f(x)=lnx+ln(2﹣x),∴f(2﹣x)=ln(2﹣x)+lnx,即f(x)=f(2﹣x),即y=f(x)的图象关于直线x=1对称,故选:C.10.【2017年新课标3文科07】函数y=1+x的部分图象大致为()A.B.C.D.【解答】解:函数y=1+x,可知:f(x)=x是奇函数,所以函数的图象关于原点对称,则函数y=1+x的图象关于(0,1)对称,当x→0+,f(x)>0,排除A、C,当x=π时,y=1+π,排除B.故选:D.11.【2017年新课标3文科12】已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.B.C.D.1【解答】解:因为f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)=﹣1+(x﹣1)2+a(e x﹣1)=0,所以函数f(x)有唯一零点等价于方程1﹣(x﹣1)2=a(e x﹣1)有唯一解,等价于函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1)的图象只有一个交点.①当a=0时,f(x)=x2﹣2x≥﹣1,此时有两个零点,矛盾;②当a<0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(e x﹣1)在(﹣∞,1)上递增、在(1,+∞)上递减,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1)的图象的最高点为B(1,2a),由于2a<0<1,此时函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1)的图象有两个交点,矛盾;③当a>0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(e x﹣1)在(﹣∞,1)上递减、在(1,+∞)上递增,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1)的图象的最低点为B(1,2a),由题可知点A与点B重合时满足条件,即2a=1,即a,符合条件;综上所述,a,故选:C.12.【2019年天津文科11】曲线y=cos x在点(0,1)处的切线方程为.【解答】解:由题意,可知:y′=﹣sin x,∵y′|x=0=﹣sin0.曲线y=cos x在点(0,1)处的切线方程:y﹣1x,整理,得:x+2y﹣2=0.故答案为:x+2y﹣2=0.13.【2019年新课标1文科13】曲线y=3(x2+x)e x在点(0,0)处的切线方程为.【解答】解:∵y=3(x2+x)e x,∴y'=3e x(x2+3x+1),∴当x=0时,y'=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为:y=3x.14.【2018年新课标2文科13】曲线y=2lnx在点(1,0)处的切线方程为.【解答】解:∵y=2lnx,∴y′,当x=1时,y′=2∴曲线y=2lnx在点(1,0)处的切线方程为y=2x﹣2.故答案为:y=2x﹣2.15.【2018年天津文科10】已知函数f(x)=e x lnx,f′(x)为f(x)的导函数,则f′(1)的值为.【解答】解:函数f(x)=e x lnx,则f′(x)=e x lnx•e x;∴f′(1)=e•ln1+1•e=e.故答案为:e.16.【2017年新课标1文科14】曲线y=x2在点(1,2)处的切线方程为.【解答】解:曲线y=x2,可得y′=2x,切线的斜率为:k=2﹣1=1.切线方程为:y﹣2=x﹣1,即:x﹣y+1=0.故答案为:x﹣y+1=0.17.【2017年天津文科10】已知a∈R,设函数f(x)=ax﹣lnx的图象在点(1,f(1))处的切线为l,则l 在y轴上的截距为.【解答】解:函数f(x)=ax﹣lnx,可得f′(x)=a,切线的斜率为:k=f′(1)=a﹣1,切点坐标(1,a),切线方程l为:y﹣a=(a﹣1)(x﹣1),l在y轴上的截距为:a+(a﹣1)(﹣1)=1.故答案为:1.18.【2019年天津文科20】设函数f(x)=lnx﹣a(x﹣1)e x,其中a∈R.(Ⅰ)若a≤0,讨论f(x)的单调性;(Ⅱ)若0<a,(i)证明f(x)恰有两个零点;(i)设x0为f(x)的极值点,x1为f(x)的零点,且x1>x0,证明3x0﹣x1>2.【解答】(I)解:f′(x)[ae x+a(x﹣1)e x],x∈(0,+∞).a≤0时,f′(x)>0,∴函数f(x)在x∈(0,+∞)上单调递增.(II)证明:(i)由(I)可知:f′(x),x∈(0,+∞).令g(x)=1﹣ax2e x,∵0<a,可知:g(x)在x∈(0,+∞)上单调递减,又g(1)=1﹣ae>0.且g(ln)=1﹣a10,∴g(x)存在唯一解x0∈(1,ln).即函数f(x)在(0,x0)上单调递增,在(x0,+∞)单调递减.∴x0是函数f(x)的唯一极值点.令h(x)=lnx﹣x+1,(x>0),h′(x),可得h(x)≤h(1)=0,∴x>1时,lnx<x﹣1.f(ln)=ln(ln)﹣a(ln1)ln(ln)﹣(ln1)<0.∵f(x0)>f(1)=0.∴函数f(x)在(x0,+∞)上存在唯一零点1.因此函数f(x)恰有两个零点;(ii)由题意可得:f′(x0)=0,f(x1)=0,即a1,lnx1=a(x1﹣1),∴lnx1,即,∵x>1,可得lnx<x﹣1.又x1>x0>1,故,取对数可得:x1﹣x0<2lnx0<2(x0﹣1),化为:3x0﹣x1>2.19.【2019年新课标3文科20】已知函数f(x)=2x3﹣ax2+2.(1)讨论f(x)的单调性;(2)当0<a<3时,记f(x)在区间[0,1]的最大值为M,最小值为m,求M﹣m的取值范围.【解答】解:(1)f′(x)=6x2﹣2ax=2x(3x﹣a),令f′(x)=0,得x=0或x.若a>0,则当x∈(﹣∞,0)∪()时,f′(x)>0;当x∈(0,)时,f′(x)<0.故f(x)在(﹣∞,0),()上单调递增,在(0,)上单调递减;若a=0,f(x)在(﹣∞,+∞)上单调递增;若a<0,则当x∈(﹣∞,)∪(0,+∞)时,f′(x)>0;当x∈(,0)时,f′(x)<0.故f(x)在(﹣∞,),(0,+∞)上单调递增,在(,0)上单调递减;(2)当0<a<3时,由(1)知,f(x)在(0,)上单调递减,在(,1)上单调递增,∴f(x)在区间[0,1]的最小值为,最大值为f(0)=2或f(1)=4﹣a.于是,m,M.∴M﹣m.当0<a<2时,可知2﹣a单调递减,∴M﹣m的取值范围是();当2≤a<3时,单调递增,∴M﹣m的取值范围是[,1).综上,M﹣m的取值范围[,2).20.【2019年新课标2文科21】已知函数f(x)=(x﹣1)lnx﹣x﹣1.证明:(1)f(x)存在唯一的极值点;(2)f(x)=0有且仅有两个实根,且两个实根互为倒数.【解答】证明:(1)∵函数f(x)=(x﹣1)lnx﹣x﹣1.∴f(x)的定义域为(0,+∞),f′(x)lnx,∵y=lnx单调递增,y单调递减,∴f′(x)单调递增,又f′(1)=﹣1<0,f′(2)=ln20,∴存在唯一的x0∈(1,2),使得f′(x0)=0.当x<x0时,f′(x)<0,f(x)单调递减,当x>x0时,f′(x)>0,f(x)单调递增,∴f(x)存在唯一的极值点.(2)由(1)知f(x0)<f(1)=﹣2,又f(e2)=e2﹣3>0,∴f(x)=0在(x0,+∞)内存在唯一的根x=a,由a>x0>1,得,∵f()=()ln0,∴是f(x)=0在(0,x0)的唯一根,综上,f(x)=0有且仅有两个实根,且两个实根互为倒数.21.【2019年新课标1文科20】已知函数f(x)=2sin x﹣x cos x﹣x,f′(x)为f(x)的导数.(1)证明:f′(x)在区间(0,π)存在唯一零点;(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.【解答】解:(1)证明:∵f(x)=2sin x﹣x cos x﹣x,∴f′(x)=2cos x﹣cos x+x sin x﹣1=cos x+x sin x﹣1,令g(x)=cos x+x sin x﹣1,则g′(x)=﹣sin x+sin x+x cos x=x cos x,当x∈(0,)时,x cos x>0,当x时,x cos x<0,∴当x时,极大值为g()0,又g(0)=0,g(π)=﹣2,∴g(x)在(0,π)上有唯一零点,即f′(x)在(0,π)上有唯一零点;(2)由(1)知,f′(x)在(0,π)上有唯一零点x0,使得f′(x0)=0,且f′(x)在(0,x0)为正,在(x0,π)为负,∴f(x)在[0,x0]递增,在[x0,π]递减,结合f(0)=0,f(π)=0,可知f(x)在[0,π]上非负,令h(x)=ax,作出图示,∵f(x)≥h(x),a≤0,∴a的取值范围是(﹣∞,0].22.【2019年北京文科20】已知函数f(x)x3﹣x2+x.(Ⅰ)求曲线y=f(x)的斜率为l的切线方程;(Ⅱ)当x∈[﹣2,4]时,求证:x﹣6≤f(x)≤x;(Ⅲ)设F(x)=|f(x)﹣(x+a)|(a∈R),记F(x)在区间[﹣2,4]上的最大值为M(a).当M(a)最小时,求a的值.【解答】解:(Ⅰ)f′(x),由f′(x)=1得x(x)=0,得.又f(0)=0,f(),∴y=x和,即y=x和y=x;(Ⅱ)证明:欲证x﹣6≤f(x)≤x,只需证﹣6≤f(x)﹣x≤0,令g(x)=f(x)﹣x,x∈[﹣2,4],则g′(x),可知g′(x)在[﹣2,0]为正,在(0,)为负,在[]为正,∴g(x)在[﹣2,0]递增,在[0,]递减,在[]递增,又g(﹣2)=﹣6,g(0)=0,g()6,g(4)=0,∴﹣6≤g(x)≤0,∴x﹣6≤f(x)≤x;(Ⅲ)由(Ⅱ)可得,F(x)=|f(x)﹣(x+a)|=|f(x)﹣x﹣a|=|g(x)﹣a|∵在[﹣2,4]上,﹣6≤g(x)≤0,令t=g(x),h(t)=|t﹣a|,则问题转化为当t∈[﹣6,0]时,h(t)的最大值M(a)的问题了,①当a≤﹣3时,M(a)=h(0)=|a|=﹣a,此时﹣a≥3,当a=﹣3时,M(a)取得最小值3;②当a≥﹣3时,M(a)=h(﹣6)=|﹣6﹣a|=|6+a|,∵6+a≥3,∴M(a)=6+a,也是a=﹣3时,M(a)最小为3.综上,当M(a)取最小值时a的值为﹣3.23.【2018年新课标2文科21】已知函数f(x)x3﹣a(x2+x+1).(1)若a=3,求f(x)的单调区间;(2)证明:f(x)只有一个零点.【解答】解:(1)当a=3时,f(x)x3﹣3(x2+x+1),所以f′(x)=x2﹣6x﹣3时,令f′(x)=0解得x=3,当x∈(﹣∞,3﹣2),x∈(3+2,+∞)时,f′(x)>0,函数是增函数,当x∈(3﹣2时,f′(x)<0,函数是单调递减,综上,f(x)在(﹣∞,3﹣2),(3+2,+∞),上是增函数,在(3﹣2上递减.(2)证明:因为x2+x+1=(x)2,所以f(x)=0等价于,令,则,仅当x=0时,g′(x)=0,所以g(x)在R上是增函数;g(x)至多有一个零点,从而f(x)至多有一个零点.又因为f(3a﹣1)=﹣6a2+2a6(a)20,f(3a+1)0,故f(x)有一个零点,综上,f(x)只有一个零点.24.【2018年新课标1文科21】已知函数f(x)=ae x﹣lnx﹣1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a时,f(x)≥0.【解答】解:(1)∵函数f(x)=ae x﹣lnx﹣1.∴x>0,f′(x)=ae x,∵x=2是f(x)的极值点,∴f′(2)=ae20,解得a,∴f(x)e x﹣lnx﹣1,∴f′(x),当0<x<2时,f′(x)<0,当x>2时,f′(x)>0,∴f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明:当a时,f(x)lnx﹣1,设g(x)lnx﹣1,则,由0,得x=1,当0<x<1时,g′(x)<0,当x>1时,g′(x)>0,∴x=1是g(x)的最小值点,故当x>0时,g(x)≥g(1)=0,∴当a时,f(x)≥0.25.【2018年新课标3文科21】已知函数f(x).(1)求曲线y=f(x)在点(0,﹣1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.【解答】解:(1).∴f′(0)=2,即曲线y=f(x)在点(0,﹣1)处的切线斜率k=2,∴曲线y=f(x)在点(0,﹣1)处的切线方程方程为y﹣(﹣1)=2x.即2x﹣y﹣1=0为所求.(2)证明:函数f(x)的定义域为:R,可得.令f′(x)=0,可得,当x时,f′(x)<0,x时,f′(x)>0,x∈(2,+∞)时,f′(x)<0.∴f(x)在(),(2,+∞)递减,在(,2)递增,注意到a≥1时,函数g(x)=ax2+x﹣1在(2,+∞)单调递增,且g(2)=4a+1>0函数f(x)的图象如下:∵a≥1,∴,则e,∴f(x)e,∴当a≥1时,f(x)+e≥0.26.【2018年北京文科19】设函数f(x)=[ax2﹣(3a+1)x+3a+2]e x.(Ⅰ)若曲线y=f(x)在点(2,f(2))处的切线斜率为0,求a;(Ⅱ)若f(x)在x=1处取得极小值,求a的取值范围.【解答】解:(Ⅰ)函数f(x)=[ax2﹣(3a+1)x+3a+2]e x的导数为f′(x)=[ax2﹣(a+1)x+1]e x.曲线y=f(x)在点(2,f(2))处的切线斜率为0,可得(4a﹣2a﹣2+1)e2=0,解得a;(Ⅱ)f(x)的导数为f′(x)=[ax2﹣(a+1)x+1]e x=(x﹣1)(ax﹣1)e x,若a=0则x<1时,f′(x)>0,f(x)递增;x>1,f′(x)<0,f(x)递减.x=1处f(x)取得极大值,不符题意;若a>0,且a=1,则f′(x)=(x﹣1)2e x≥0,f(x)递增,无极值;若a>1,则1,f(x)在(,1)递减;在(1,+∞),(﹣∞,)递增,可得f(x)在x=1处取得极小值;若0<a<1,则1,f(x)在(1,)递减;在(,+∞),(﹣∞,1)递增,可得f(x)在x=1处取得极大值,不符题意;若a<0,则1,f(x)在(,1)递增;在(1,+∞),(﹣∞,)递减,可得f(x)在x=1处取得极大值,不符题意.综上可得,a的范围是(1,+∞).27.【2018年天津文科20】设函数f(x)=(x﹣t1)(x﹣t2)(x﹣t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(Ⅰ)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若d=3,求f(x)的极值;(Ⅲ)若曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,求d的取值范围.【解答】解:(Ⅰ)函数f(x)=(x﹣t1)(x﹣t2)(x﹣t3),t2=0,d=1时,f(x)=x(x+1)(x﹣1)=x3﹣x,∴f′(x)=3x2﹣1,f(0)=0,f′(0)=﹣1,∴y=f(x)在点(0,f(0))处的切线方程为y﹣0=﹣1×(x﹣0),即x+y=0;(Ⅱ)d=3时,f(x)=(x﹣t2+3)(x﹣t2)(x﹣t2﹣3)9(x﹣t2)=x3﹣3t2x2+(39)x9t2;∴f′(x)=3x2﹣6t2x +39,令f′(x)=0,解得x=t 2或x=t 2;当x变化时,f′(x),f(x)的变化情况如下表;22,22,∴f(x)的极大值为f(t2)9×()=6,极小值为f(t2)96;(Ⅲ)曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,等价于关于x的方程(x﹣t2+d)(x﹣t 2)(x﹣t2﹣d)+(x﹣t2)﹣60有三个互异的实数根,令u=x﹣t2,可得u3+(1﹣d2)u +60;设函数g(x)=x3+(1﹣d 2)x+6,则曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有3个互异的公共点,等价于函数y=g(x)有三个不同的零点;又g′(x)=3x2+(1﹣d2),当d2≤1时,g′(x)≥0恒成立,此时g(x)在R上单调递增,不合题意;当d2>1时,令g′(x)=0,解得x1,x2;∴g(x)在(﹣∞,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上也单调递增;∴g(x)的极大值为g(x1)=g()60;极小值为g(x2)=g()6;若g(x2)≥0,由g(x)的单调性可知,函数g(x)至多有两个零点,不合题意;若g(x2)<0,即27,解得|d|,此时|d|>x2,g(|d|)=|d|+60,且﹣2|d|<x1;g(﹣2|d|)=﹣6|d|3﹣2|d|+60,从而由g(x)的单调性可知,函数y=g(x)在区间(﹣2|d|,x1),(x1,x2),(x2,|d|)内各有一个零点,符合题意;∴d的取值范围是(﹣∞,)∪(,+∞).28.【2017年新课标2文科21】设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.【解答】解:(1)因为f(x)=(1﹣x2)e x,x∈R,所以f′(x)=(1﹣2x﹣x2)e x,令f′(x)=0可知x=﹣1±,当x<﹣1或x>﹣1时f′(x)<0,当﹣1x<﹣1时f′(x)>0,所以f(x)在(﹣∞,﹣1),(﹣1,+∞)上单调递减,在(﹣1,﹣1)上单调递增;(2)由题可知f(x)=(1﹣x)(1+x)e x.下面对a的范围进行讨论:①当a≥1时,设函数h(x)=(1﹣x)e x,则h′(x)=﹣xe x<0(x>0),因此h(x)在[0,+∞)上单调递减,又因为h(0)=1,所以h(x)≤1,所以f(x)=(1+x)h(x)≤x+1≤ax+1;②当0<a<1时,设函数g(x)=e x﹣x﹣1,则g′(x)=e x﹣1>0(x>0),所以g(x)在[0,+∞)上单调递增,又g(0)=1﹣0﹣1=0,所以e x≥x+1.因为当0<x<1时f(x)>(1﹣x)(1+x)2,所以(1﹣x)(1+x)2﹣ax﹣1=x(1﹣a﹣x﹣x2),取x0∈(0,1),则(1﹣x0)(1+x0)2﹣ax0﹣1=0,所以f(x0)>ax0+1,矛盾;③当a≤0时,取x0∈(0,1),则f(x0)>(1﹣x0)(1+x0)2=1≥ax0+1,矛盾;综上所述,a的取值范围是[1,+∞).29.【2017年新课标1文科21】已知函数f(x)=e x(e x﹣a)﹣a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.【解答】解:(1)f(x)=e x(e x﹣a)﹣a2x=e2x﹣e x a﹣a2x,∴f′(x)=2e2x﹣ae x﹣a2=(2e x+a)(e x﹣a),①当a=0时,f′(x)>0恒成立,∴f(x)在R上单调递增,②当a>0时,2e x+a>0,令f′(x)=0,解得x=lna,当x<lna时,f′(x)<0,函数f(x)单调递减,当x>lna时,f′(x)>0,函数f(x)单调递增,③当a<0时,e x﹣a>0,令f′(x)=0,解得x=ln(),当x<ln()时,f′(x)<0,函数f(x)单调递减,当x>ln()时,f′(x)>0,函数f(x)单调递增,综上所述,当a=0时,f(x)在R上单调递增,当a>0时,f(x)在(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,当a<0时,f(x)在(﹣∞,ln())上单调递减,在(ln(),+∞)上单调递增,(2)①当a=0时,f(x)=e2x>0恒成立,②当a>0时,由(1)可得f(x)min=f(lna)=﹣a2lna≥0,∴lna≤0,∴0<a≤1,③当a<0时,由(1)可得:f(x)min=f(ln())a2ln()≥0,∴ln(),∴﹣2a<0,综上所述a的取值范围为[﹣2,1]30.【2017年新课标3文科21】已知函数f(x)=lnx+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)2.【解答】(1)解:因为f(x)=lnx+ax2+(2a+1)x,求导f′(x)2ax+(2a+1),(x>0),①当a=0时,f′(x)1>0恒成立,此时y=f(x)在(0,+∞)上单调递增;②当a>0,由于x>0,所以(2ax+1)(x+1)>0恒成立,此时y=f(x)在(0,+∞)上单调递增;③当a<0时,令f′(x)=0,解得:x.因为当x∈(0,)f′(x)>0、当x∈(,+∞)f′(x)<0,所以y=f(x)在(0,)上单调递增、在(,+∞)上单调递减.综上可知:当a≥0时f(x)在(0,+∞)上单调递增,当a<0时,f(x)在(0,)上单调递增、在(,+∞)上单调递减;(2)证明:由(1)可知:当a<0时f(x)在(0,)上单调递增、在(,+∞)上单调递减,所以当x时函数y=f(x)取最大值f(x)max=f()=﹣1﹣ln2ln().从而要证f(x)2,即证f()2,即证﹣1﹣ln2ln()2,即证()+ln()≤﹣1+ln2.令t,则t>0,问题转化为证明:t+lnt≤﹣1+ln2.…(*)令g(t)t+lnt,则g′(t),令g′(t)=0可知t=2,则当0<t<2时g′(t)>0,当t>2时g′(t)<0,所以y=g(t)在(0,2)上单调递增、在(2,+∞)上单调递减,即g(t)≤g(2)2+ln2=﹣1+ln2,即(*)式成立,所以当a<0时,f(x)2成立.31.【2017年北京文科20】已知函数f(x)=e x cos x﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【解答】解:(1)函数f(x)=e x cos x﹣x的导数为f′(x)=e x(cos x﹣sin x)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cos x﹣x的导数为f′(x)=e x(cos x﹣sin x)﹣1,令g(x)=e x(cos x﹣sin x)﹣1,则g(x)的导数为g′(x)=e x(cos x﹣sin x﹣sin x﹣cos x)=﹣2e x•sin x,当x∈[0,],可得g′(x)=﹣2e x•sin x≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()cos.32.【2017年天津文科19】设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f(x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.【解答】(Ⅰ)解:由f(x)=x3﹣6x2﹣3a(a﹣4)x+b,可得f'(x)=3x2﹣12x﹣3a(a﹣4)=3(x﹣a)(x ﹣(4﹣a)),令f'(x)=0,解得x=a,或x=4﹣a.由|a|≤1,得a<4﹣a.当x变化时,f'(x),f(x)的变化情况如下表:∴f(x)的单调递增区间为(﹣∞,a),(4﹣a,+∞),单调递减区间为(a,4﹣a);(Ⅱ)(i)证明:∵g'(x)=e x(f(x)+f'(x)),由题意知,∴,解得.∴f(x)在x=x0处的导数等于0;(ii)解:∵g(x)≤e x,x∈[x0﹣1,x0+1],由e x>0,可得f(x)≤1.又∵f (x 0)=1,f '(x 0)=0,故x 0为f (x )的极大值点,由(I )知x 0=a . 另一方面,由于|a |≤1,故a +1<4﹣a ,由(Ⅰ)知f (x )在(a ﹣1,a )内单调递增,在(a ,a +1)内单调递减,故当x 0=a 时,f (x )≤f (a )=1在[a ﹣1,a +1]上恒成立,从而g (x )≤e x 在[x 0﹣1,x 0+1]上恒成立. 由f (a )=a 3﹣6a 2﹣3a (a ﹣4)a +b =1,得b =2a 3﹣6a 2+1,﹣1≤a ≤1. 令t (x )=2x 3﹣6x 2+1,x ∈[﹣1,1], ∴t '(x )=6x 2﹣12x ,令t '(x )=0,解得x =2(舍去),或x =0.∵t (﹣1)=﹣7,t (1)=﹣3,t (0)=1,故t (x )的值域为[﹣7,1]. ∴b 的取值范围是[﹣7,1].考查函数的单调性、极值、最值,利用函数的性质求参数范围;与方程、不等式等知识相结合命题,强化函数与方程思想、转化与化归思想、分类讨论思想的应用意识;题型以解答题为主,一般难度较大.1.若曲线x y e =在0x =处的切线与ln y x b =+的切线相同,则b =( ) A .2 B .1 C .1−D .e【答案】A 【解析】函数xy e =的导数为y '=e x ,曲线xy e =在x =0处的切线斜率为k =0e =1, 则曲线x y e =在x =0处的切线方程为y ﹣1=x ; 函数ln y x b =+的导数为y '=1x ,设切点为(m ,n ),则1m=1,解得m =1,n =2, 即有2=ln1+b ,解得b =2. 故选:A .2.已知函数()f x 是定义在R 上的奇函数,当0x <时,()()1xf x ex =+,给出下列命题:①当0x >时,()()1x f x e x =−; ②函数()f x 有2 个零点;③()0f x >的解集为()()1,01,−⋃+∞; ④12,x x R ∀∈,都有()()122f x f x −<.其中真命题的序号是( ). A .①③ B .②③ C .②④ D .③④【答案】D 【解析】解:由题意可知0x >时,0x −<,()()()11xx f x ex e x −−−=−+=−−,因为奇函数,所以()()()1x f x f x e x −=−−=−,所以命题①不成立;0x <时,()()1xf x e x =+,此时()f x 有1个零点1x =−,当0x >,()()1x f x e x −=−,此时()f x 有1个零点1x =,又()f x 为R 上的奇函数,必有()00f =,即总共有3个零点,所以命题②错误; 当0x >时,()()10xf x ex −=−>,可求得解集为()1,+∞,当0x <时,()()10x f x e x =+>,可求得解集为()1,0−,所以命题③成立; 当0x <时,()()2xf x ex '=+,令()0f x '=,通过函数的单调性可求得此时()f x 的值域为21,0e ⎡⎫−⎪⎢⎣⎭,则当0x >时()f x 的值域为210,e ⎛⎤ ⎥⎝⎦,所以有()()12221f x f x e −≤<,所以命题④成立. 故选:D3.若函数()sin 2f x x =在区间()12,x x 内恰有两个极值点,且()()121f x f x +=,则12x x −的取值范围为( ) A .,2ππ⎛⎤⎥⎝⎦B .5,24ππ⎛⎤⎥⎝⎦C .3,4ππ⎛⎤⎥⎝⎦D .35,44ππ⎛⎤⎥⎝⎦【答案】D 【解析】作出函数()sin2f x x =图像如图所示,因为()()121f x f x +=,所以()()1200f x f x ≥≥,,由图得当1x 是A 的横坐标,2x 是B 的横坐标时,函数满足()()121f x f x +=,在4ππ(,)之间只有一个极值点,但是只要x 的范围向左右扩展一点,则有两个极值点,所以123||||=44x x πππ−>−. 当1x 是O 的横坐标,2x 是C 的横坐标时,函数满足()()121f x f x +=,在544ππ(,)之间有两个极值点,所以1255|||0|=44x x ππ−≤−. 所以1235||44x x ππ<−≤. 故选:D4.已知函数()4cos f x x x π=+,对于[]0,2x ∈,都有()13xf ax e −+…,则实数a 的取值范围是( )A .22111,22e e ⎡⎤−⎢⎥⎣⎦ B .211,22e e ⎡⎤−⎢⎥⎣⎦ C .21,2e e ⎡⎤⎢⎥⎣⎦D .[),e +∞【答案】B 【解析】由题得当[]0,2x ∈时,()4cos f x x x π=+, 所以()4sin 0f x x ππ'=−>, 所以函数f(x)在[0,2]上单调递增, 因为f(1)=4+cosπ=3,所以()1xf ax e −+…f(1),所以1x ax e −+≤1,因为1x ax e −+≤1且0≤1x ax e −+≤2所以0≤1x ax e −+≤1.当1x ax e −+≤1时,所以x ax e ≤,当x=0时,显然成立.当0<x≤2时,(),xe a g x x ≤=()()221x x x e x e x e g x x x ='−−=,所以g(x)在(1,2)单调递增,在(0,1)单调递减,所以()()min 1g x g e ==,所以a e ≤.当1x ax e −+≥0时,1x ax e ≥−,当x=0时,显然成立.当0<x≤2时,()()211,x x x e e x e a h x h x x x −−+≥=∴=',令()()1,10x x x k x e x e k x e x =−+∴=+>',所以k(x)在(0,2)单调递增,所以k(x)>k(0)=0,所以函数()0,h x '>所以函数h(x)在(0,2]上单调递增,所以h(x)最大值=h(2)=212e −. 所以212e a −≥. 综上得21e 2e a −≤≤.故选:B5.如图,在正方形OABC 内任取一点M ,则点M 恰好取自阴影部分内的概率为()A .14B .13C .25D .37【答案】B【解析】由图可知曲线与正方形在第一象限的交点坐标为(1,1),由定积分的定义可得:S 阴1=⎰(1dx =(x 3223x −)101|3=, 设“点M 恰好取自阴影部分内”为事件A ,由几何概型中的面积型可得: P (A )11313S S ===阴正方形, 故选:B .6.设函数是定义在上的函数,是函数的导函数,若为自然对数的底数,则不等式的解集是A .B .C .D .【答案】A【解析】令,因为, 则, 故递增, 而,故,即 即,故,即不等式的解集为,故选A .7.已知函数()f x 的定义域为,22ππ⎛⎫−⎪⎝⎭,其导函数为()f x '.若()tan [()]f x x f x x '=⋅+,且(0)0f =,则下列结论正确的是( )A .()f x 是增函数B .()f x 是减函数C .()f x 有极大值D .()f x 有极小值【答案】A【解析】 解:设函数()()cos g x f x x =•因为()()tan f x x f x x ⎡⎤=⋅+⎣'⎦化简可得sin ()[()]cos x f x f x x x'=+, 即为()cos sin ()sin f x x xf x x x '−=•, 故()sin g x x x '=•, 因为(,)x 22ππ∈−−所以()sin g x x x 0'=•≥恒成立, 所以()y g x =在(,)x 22ππ∈−−上单调递增,又因为(0)0f =,所以()()cos g 0f 000=•=,所以当(,0)2x π∈−时,()0<g x , 当(0,)2x π∈时,()0>g x ,()()cos ()sin ()[]cos cos 2g x g x x g x x f x x x '•+''==, 当(,0)2x π∈−时,()0<g x ,()0g x '>,cos 0x >,sin 0x <, 故()()cos ()sin ()[]cos cos 2g x g x x g x x f x 0x x'•+''==>恒成立; 当(0,)2x π∈时,()0>g x ,()0g x '>,cos 0x >,sin 0x >, 故()()cos ()sin ()[]cos cos 2g x g x x g x x f x 0x x '•+''==>恒成立; 所以()y f x 0''=≥在(,)x 22ππ∈−−上恒成立,故()y f x =在(,)x 22ππ∈−−上单调递增,故函数没有极值,不可能单调递减所以选A.8.已知函数23ln ,1(),46,1x x f x x x x −≤⎧=⎨−+>⎩若不等式()|2|f x x a ≥−对任意(0,)x ∈+∞上恒成立,则实数a 的取值范围为( )A .13,3e⎡⎤−⎢⎥⎣⎦ B .[3,3ln 5]+ C .[3,4ln 2]+ D .13,5e ⎡⎤−⎢⎥⎣⎦【答案】C【解析】解:由题意得:设g(x)=|2|x a −,易得a >0,可得2,2g(x)=2,2a x a x ax a x ⎧−≥⎪⎪⎨⎪−+⎪⎩<,g(x)与x 轴的交点为(,0)2a , ① 当2a x ≥,由不等式()|2|f x x a ≥−对任意(0,)x ∈+∞上恒成立,可得临界值时,()g()f x x 与相切,此时2()46,1f x x x x =−+>,()2,2a g x x a x =−≥, 可得'()24f x x =−,可得切线斜率为2,242x −=,3x =,可得切点坐标(3,3),可得切线方程:23y x =−,切线与x 轴的交点为3(,0)2,可得此时322a =,3a =, 综合函数图像可得3a ≥;② 同理,当2a x <,由()g()f x x 与相切, (1)当2()46,1f x x x x =−+>,()2,2a g x x a x =−+<,可得'()24f x x =−,可得切线斜率为-2,242x −=−,1x =,可得切点坐标(1,3),可得切线方程25y x =−+,可得5a =,综合函数图像可得5a ≤,(2)当()3ln ,1f x x x =−≤,()2,2a g x x a x =−+<,()g()f x x 与相切,可得'1()f x x=-, 此时可得可得切线斜率为-2,12x −=−,12x =,可得切点坐标1(,32)2In +, 可得切线方程:1(32)2()2y In x −+=−−,242y x In =−++可得切线与x 轴的交点为2(2,0)2In +,可得此时2222a In =+,42a In =+, 综合函数图像可得42a In ≤+,综上所述可得342a In ≤≤+,故选C.9.已知曲线处的切线方程为,则_____.【答案】3【解析】由,得,则,∴.得.∴,即.∴,则.∴.故答案为:3.10.已知函数处取得极小值,则________.【答案】1【解析】由题意得.因为函数在处取得极小值,所以,解得.当时,,所以当时,单调递减,当时,单调递增,所以当时,函数取得极小值.因此为所求.故答案为:1.11.已知曲线1ln x y x a =+在1x =处的切线l 与直线230x y +=垂直,则实数a 的值为__________. 【答案】25【解析】 '211y x ax =−+,当1x =时,导数为11a−+.由于切线l 与直线230x y +=垂直,故切线的斜率为32,即1312a −+=,解得25a =. 12.定义在R 上的奇函数的导函数满足,且,若,则不等式的解集为______. 【答案】【解析】的周期为定义在上的奇函数 ①时,令,则,即单调递减 又不等式的解集为 ②时,时,不等式成立 综上所述:本题正确结果:13.已知函数的图象是以点为中心的中心对称图形,,曲线在点处的切线与曲线在点处的切线互相垂直,则__________.【答案】【解析】由,得,解得,所以.又,所以.因为,由,得,即.故答案为:14.我们常用以下方法求形如函数的导数:先两边同取自然对数,再两边同时求导得,于是得到,运用此方法求得函数的单调递减区间是____________.【答案】【解析】因为,所以,两边同时求导得,因此, 由,得,即单调递减区间是.15.关于x 的方程ln 2x kx x −=在区间1,e e ⎡⎤⎢⎥⎣⎦上有两个实根,则实数k 的最小值是_________. 【答案】221e e + 【解析】 解:ln 2x kx x −= 可变形为:k =2ln 2x x x+, 设f (x )=2ln 2x x x +,x ∈1,e e ⎡⎤⎢⎥⎣⎦, f ′(x )=312ln 2x x x −− , 设g (x )=1﹣2lnx ﹣2x ,x ∈1,e e⎡⎤⎢⎥⎣⎦ g ′(x )=22x−− <0, 即y =g (x )为减函数,1230g e e ⎛⎫=−> ⎪⎝⎭ ,()120g e e =−−< ,所以01,x e e ⎡⎤∃∈⎢⎥⎣⎦,使()00g x = ; 即y =f (x )在01,x e ⎛⎫ ⎪⎝⎭为增函数,在()0,x e 为减函数, 又212f e e e ⎛⎫=−+ ⎪⎝⎭ ,()2121e f e f e e +⎛⎫=> ⎪⎝⎭; 关于x 的方程ln 2x kx x −= 在区间1,e e ⎡⎤⎢⎥⎣⎦ 上有两个实根,等价于y =f (x )的图象与直线y =k 的交点个数有两个,所以实数k 的最小值是221e e+ 。
2018全国各地高考数学模拟试题《导数及其应用》试题汇编(含答案解析)
2018全国各地高考数学模拟试题《导数及其应用》试题汇编(含答案解析)1.(2018•台州一模)已知函数f(x)=2x3﹣3(m+1)x2+6mx,m∈R.(Ⅰ)若m=2,写出函数f(x)的单调递增区间;(Ⅱ)若对于任意的x∈[﹣1,1],都有f(x)<4,求m的取值范围.2.(2018•濮阳三模)已知函数f(x)=a(x﹣)﹣lnx,其中a∈R.(Ⅰ)若a=1,求曲线y=f(x)在点P(1,f(1))处的切线方程;(Ⅱ)若对任意x≥1,都有f(x)≥0恒成立,求实数a的取值范围.3.(2018•葫芦岛二模)已知函数f(x)=(a,b∈R且a≠0,e为自然对数的底数).(1)若曲线f(x)在点(e,f(e))处的切线斜率为0,且f(x)有极小值,求实数a的取值范围;(2)当a=b=1时,证明:xf(x)+2<0.4.(2018•武邑县校级一模)已知函数f(x)=2e x+3x2﹣2x+1+b,x∈R的图象在x=0处的切线方程为y=ax+2.(1)求函数f(x)的单调区间与极值;(2)若存在实数x,使得f(x)﹣2x2﹣3x﹣2﹣2k≤0成立,求整数k的最小值.5.(2018•张掖模拟)已知函数(a为实数).(1)当f(x)与y=﹣3切于A(x0,f(x0)),求a,x0的值;(2)设F(x)=f'(x)•e x,如果F(x)>﹣1在(0,+∞)上恒成立,求a的范围.6.(2018•赣州二模)设函数f(x)=(x﹣1)2+alnx有两个极值点x1,x2,且x1<x2.(1)求实数a的取值范围;(2)若对任意的x∈(x1,+∞),都有f(x)>m成立,求实数m的取值范围.7.(2018•天心区校级模拟)已知函数f(x)=(2a+1)x2+(a2+a)x,(a 为常数).(1)若对任意m∈R,直线y=kx+m都不是曲线y=f(x)的切线,求k的取值范围;(2)若a>﹣1,求函数f(x)在区间[0,1]上的最大值.8.(2018•凌源市模拟)已知函数f(x)=xe x.(1)讨论函数g(x)=af(x)+e x的单调性;(2)若直线y=x+2与曲线y=f(x)的交点的横坐标为t,且t∈[m,m+1],求整数m所有可能的值.9.(2018•郑州二模)已知函数f(x)=e x﹣x2.(Ⅰ)求曲线f(x)在x=1处的切线方程;(Ⅱ)求证:当x>0时,.10.(2018•渭南二模)已知函数f(x)=x•(lnx+ax+1)﹣ax+1(Ⅰ)若f(x)在[1,+∞)上是减函数,求实数a的取值范围(Ⅱ)若f(x)的最大值为2,求实数a的值.11.(2018•信阳二模)已知函数f(x)=4x2+﹣a,g(x)=f(x)+b,其中a,b 为常数.(1)若x=1是函数y=xf(x)的一个极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)有2个零点,f(g(x))有6个零点,求a+b的取值范围.12.(2018•咸阳一模)已知f(x)=e x﹣alnx(a∈R).(1)求函数f(x)在点(1,f(1))处的切线方程;(2)当a=﹣1时,若不等式f(x)>e+m(x﹣1)对任意x∈(1,+∞)恒成立,求实数m的取值范围.13.(2018•河南一模)已知:f(x)=(2﹣x)e x+a(x﹣1)2(a∈R)(1)讨论函数f(x)的单调区间:(2)若对任意的x∈R,都有f(x)≤2e x,求a的取值范围.14.(2018•佛山二模)已知a∈R,函数f(x)=x(e x﹣2a)﹣ax2.(Ⅰ)若f(x)有极小值且极小值为0,求a的值.(Ⅱ)当x∈R时,f(2x)≥2f(x),求a的取值范围15.(2018•广元模拟)设函数f(x)=lnx+x2﹣ax(a∈R).(Ⅰ)已知函数在定义域内为增函数,求a的取值范围;(Ⅱ)设g(x)=f(x)+2ln,对于任意a∈(2,4),总存在x∈[],使g(x)>k(4﹣a2)成立,求实数k的取值范围.16.(2018•莆田二模)已知函数p(x)=,q(x)=x2﹣(1+2a)x.(1)讨论函数f(x)=q(x)+2ax•p(x)的单调性;(2)当a=0时,证明:xp(x)+q(x)<e x+x2﹣x﹣1.17.(2018•乐山三模)已知函数f(x)=x2﹣(a﹣2)x﹣alnx(a∈R).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)当a=1时,证明:对任意的x>0,f(x)+e x>x2+x+2.18.(2018•江苏模拟)已知f(x)=(2x+2f'(0))e x,,h (x)=f(x)+a(x2+4x)+4.(Ⅰ)求f(x);(Ⅱ)求g(x)单调区间;(Ⅲ)若不等式h(x)≥0在[0,+∞)上恒成立,求实数a的取值范围.19.(2018•郑州二模)设函数f(x)=ax2﹣(x+1)lnx,曲线y=f(x)在点(1,f(1))处的斜率为0.(Ⅰ)求a的值;(Ⅱ)求证:当0<x≤2时,.20.(2018•重庆模拟)已知函数f(x)=lnx﹣x+1,函数g(x)=ax•e x﹣4x,其中a为大于零的常数.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求证:g(x)﹣2f(x)≥2(lna﹣ln2).21.(2018•玉溪模拟)设M是满足下列条件的函数构成的集合:①方程f(x)﹣x=0有实数根;②函数f(x)的导数f'(x)满足0<f'(x)<1.(1)若函数f(x)为集合M中的任意一个元素,证明:方程f(x)﹣x=0只有一个实根;(2)判断函数是否是集合M中的元素,并说明理由;(3)设函数f(x)为集合M中的元素,对于定义域中任意α,β,当|α﹣2012|<1,|β﹣2012|<1时,证明:|f(α)﹣f(β)|<2.22.(2018•莆田二模)已知函数f(x)=x(e x﹣2)﹣ax2+1.(1)求f(x)图象在x=0处的切线方程;(2)当x≥0时,f(x)≥1﹣x.求a的取值范围.23.(2018•和平区校级一模)已知函数f(x)=ln(x+1)+,g(x)=|ln(x ﹣1)|.(Ⅰ)若x=1为f(x)的极值点,求a的值;(Ⅱ)若函数f(x)存在两个极值点,求a的取值范围;(Ⅲ)设m>n>1,且g()=g(n),g(m)=2g(),求证:4<m<5.24.(2018•宿州三模)设函数f(x)=x+axlnx(a∈R).(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若函数f(x)的极大值点为x=1,证明:f(x)≤e﹣x+x2.25.(2018•衡阳一模)已知函数f(x)=+alnx(x∈R).(1)若函数f(x)在(0,2)上递减,求实数a的取值范围;(2)设h(x)=f(x)+|(a﹣2)x|,x∈[1,+∞)求证:h(x)≥2.26.(2018•浙江模拟)已知函数.(1)求f(x)的导函数;(2)求f(x)的定义域及值域.27.(2018•淮北一模)已知函数f(x)=e x(x+a),g(x)=x2﹣bx且F(x)=f(x)+g(x)在点(0,F(0))处的切线方程为y=1+6x(Ⅰ)求a、b的值(Ⅱ)若x≤1时,f(x)<g(x)+t恒成立,求实数t的取值范围.28.(2018•柯桥区二模)已知函数f(x)=﹣e x+a(x+1).(1)讨论函数f(x)单调性;(Ⅱ)当f(x)有最大值且最大值大于﹣a2+a时,求a的取值范围.29.(2018•泸州模拟)设f(x)=ae x﹣cosx,其中a∈R.(1)求证:曲线y=f(x)在点(0,f(0))处的切线过定点;(2)若函数f(x)在(0,)上存在极值,求实数a的取值范围.30.(2018•潍坊二模)已知函数f(x)=(x﹣a)e x﹣.(x∈R)(1)若曲线y=f(x)在点(0,f(0))处的切线为l,l与x轴的交点坐标为(2,0),求a的值;(2)讨论f(x)的单调性.31.(2018•榆林三模)设函数f(x)=ax3+bx2﹣x(x∈R,a,b 是常数,a≠0),且当x=1和x=2时,函数f(x)取得极值.(1)求f(x)的解析式;(2)若曲线y=f(x)与g(x)=﹣3x﹣m(﹣2≤x≤0)有两个不同的交点,求实数m的取值范围.32.(2018•安阳一模)已知函数,g(x)=3elnx,其中e为自然对数的底数.(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)是否存在实数a,b,使f(x)≥ax+b≥g(x)对任意x∈(0,+∞)恒成立?若存在,试求出a,b的值;若不存在,请说明理由.33.(2018•江苏二模)已知函数f(x)=x(e x﹣2),g(x)=x﹣lnx+k,k∈R,其中e为自然对数的底数.记函数F(x)=f(x)+g(x).(1)求函数y=f(x)+2x的极小值;(2)若F(x)>0的解集为(0,+∞),求k的取值范围;(3)记F(x)的极值点为m,求证:函数G(x)=|F(x)|+lnx在区间(0,m)上单调递增.(极值点是指函数取极值时对应的自变量的值)34.(2018•徐州模拟)已知函数f(x)=lnx﹣ax+a,a∈R.(1)若a=1,解关于x的方程f(x)=0;(2)求函数f(x)在[1,e]上的最大值;(3)若存在m,对任意的x∈(1,m)恒有|f(x)|<(x﹣1)2,试确定a的所有可能值.35.(2018•三明二模)已知函数(a∈R).(1)若曲线y=f(x)在x=e处切线的斜率为﹣1,求此切线方程;(2)若f(x)有两个极值点x1,x2,求a的取值范围,并证明:x1x2>x1+x2.36.(2018•朝阳区校级模拟)已知函数f(x)=ln(ax+1)﹣x(a≠0),.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)设函数h(x)=f(x)+g(x).已知函数y=h(x)有两个极值点x1,x2(x1<x2),且h(x1)+h(x2)<2﹣2ln2,求实数a的取值范围.37.(2018•南京三模)已知函数f(x)=2x3﹣3ax2+3a﹣2(a>0),记f'(x)为f (x)的导函数.(1)若f(x)的极大值为0,求实数a的值;(2)若函数g(x)=f(x)+6x,求g(x)在[0,1]上取到最大值时x的值;(3)若关于x的不等式f(x)≥f'(x)在[,]上有解,求满足条件的正整数a的集合.38.(2018•榆林一模)已知函数f(x)=e x﹣a(x﹣1),其中a>0,e为自然对数底数.(1)求函数f(x)的单调区间;(2)已知b∈R,若函数f(x)≥b对任意x∈R都成立,求ab的最大值.39.(2018•河北区一模)已知函数f(x)=a2x3﹣3ax2+2,g(x)=﹣3ax+3,x∈R,其中a>0.(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数f(x)在区间(﹣1,1)上的极值;(Ⅲ)若∃x0∈(0,],使不等式f(x0)>g(x0)成立,求a的取值范围.40.(2018•重庆一模)设函数f(x)=e x﹣asinx.(1)当a=1时,证明:∀x∈(0,+∞),f(x)>1;(2)若∀x∈[0,+∞),f(x)≥0都成立,求实数a的取值范围.参考答案与试题解析1.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可;(Ⅱ)求出函数的导数,通过讨论m的范围,求出函数的最大值即可.【解答】解:(Ⅰ)若m=2,则f(x)=2x3﹣9x2+12x,∵f′(x)=6x2﹣18x+12=6(x2﹣3x+2)=6(x﹣1)(x﹣2),令f′(x)>0,则x<1或x>2,故函数f(x)的递增区间是(﹣∞,1),(2,+∞);(Ⅱ)f(x)=2x3﹣3(m+1)x2+6mx,f′(x)=6(x﹣1)(x﹣m),①当m≥1时,f(x)在(﹣1,1)递增,f(x)max=f(1)=3m﹣1<4,故m<,∴1≤m<;②当﹣1<m<1时,f(x)在(﹣1,m)递增,在(m,1)递减,f(x)max=f(m)=﹣m3+3m2<4,即m3﹣3m2+4>0,(m+1)(m﹣2)2>0恒成立,∴﹣1<m<1;③当m≤﹣1时,f(x)在(﹣1,1)递减,f(x)max=f(﹣1)=﹣9m﹣5<4,综上,m的范围是﹣1<m<.【点评】本题考查了函数的单调性问题,考查导数的应用以及求函数的最值问题以及求函数的最值问题,是一道中档题.2.【分析】(Ⅰ)当a=1时,求得f(x)的解析式,f(1)=0,以及导数,可得切线的斜率,即可得到所求切线方程;(Ⅱ)求得f(x)的导数,讨论a的符号,结合f(x)的单调性,以及二次方程的韦达定理,可得a的范围.【解答】解:(Ⅰ)当a=1时,f(x)=x﹣﹣lnx,f(1)=0,所以f′(x)=1+﹣,f′(1)=1,即曲线y=f(x)在点P(1,f(1))处的切线方程为y=x﹣1;(Ⅱ)f(x)=a(x﹣)﹣lnx的导数为f′(x)=,若a≤0,则当x>1时,x﹣>0,lnx>0,可得f(x)<0,不满足题意;若a>0,则当△=1﹣4a2≤0,即a≥时,f′(x)≥0恒成立,可得f(x)在[1,+∞)上单调递增,而f(1)=0,所以当x≥1,都有f(x)≥0,满足题意;当△>0,即0<a<时,f′(x)=0,有两个不等实根设为x1,x2,且x1<x2,则x1x2=1,x1+x2=>0,即有0<x1<1<x2,当1<x<x2时,f′(x)<0,故f(x)在(1,x2)上单调递减,而f(1)=0,当x∈(1,x2)时,f(x)<0,不满足题意.综上所述,a≥.【点评】本题考查导数的运用:求切线的方程和单调性,考查不等式恒成立问题解法,注意运用分类讨论思想和二次方程的韦达定理,考查化简整理的运算能力,属于中档题.3.【分析】(1)求导,由f′(e)=0,求得b=0,根据函数单调性与导数的关系,即可求得a的取值范围;(2)证法1:构造函数,求导,根据函数的单调性,求得g(x)最大值,由g (x)max<0,即可求得xf(x)+2<0.证法2:将原式化简xf(x)+2=lnx﹣(x﹣1)+[(x+1)﹣e x],根据经典不等式,即可求得xf(x)+2<0.【解答】解:(1)f(x)=,(x>0),求导f′(x)=,由f′(e)=0,则b=0,则f′(x)=,当a>0时,f′(x)在(0,e)内大于0,在(e,+∞)内小于0,∴f(x)在(0,e)内为增函数,在(e,+∞)为减函数,∴f(x)有极大值无极小值;当a<0时,f(x)在(0,e)为减函数,在(e,+∞)为增函数,∴f(x)有极小值无极大值;∴实数a的取值范围(﹣∞,0);(2)证明:证法1:当a=b=1时,设g(x)=xf(x)+2=lnx﹣e x+2,g′(x)=﹣e x,在(0,+∞)为减函数,由g′(1)=1﹣e<0,g′()=2﹣>0,∴存在实数x0∈(,1)使得g′(x0)=﹣=0,∴g(x)在区间(0,x0)内为增函数,在(x0,+∞)内为减函数,由g′(x0)=﹣=0,则x0=﹣lnx0,g(x)max=g(x0)=lnx0﹣+2=﹣x0﹣+2=﹣(x0+)+2,由x0∈(,1),﹣(x0+)<﹣2,∴g(x)max<0,∴xf(x)+2<0.证法2:当a=b=1时,设g(x)=xf(x)+2=lnx﹣e x+2=lnx﹣(x﹣1)+[(x+1)﹣e x],因为曲线y=lnx与直线y=x﹣1相切于点(1,0);直线y=x+1与曲线y=e x相切于点(0,1),……………………(8分)lnx≤x﹣1,x+1≤e x且“=”不同时成立,故x>1时,lnx﹣(x﹣1)+[(x+1)﹣e x]<0,即xf(x)+2<0.………………………………………(12分)【点评】本题考查导数与函数单调性及极值的判断,考查利用导数求函数的最值,经典不等式的应用及几何关系,考查转化思想,分类讨论思想,属于中档题.4.【分析】(1)求导,根据导数的几何意义,即可求得b的值,根据导数与函数单调性及极值的关系,即可求得f(x)的单调性及极值;(2)由题意,可知存在实数x,使得k≥e x+x2﹣x﹣1成立,构造函数,则k ≥h(x)min,根据函数的零点的判断及函数的最值,即可求得整数k的最小值.【解答】解:(1)f′(x)=2e x+6x﹣2,因为f′(0)=a,所以a=0,易得切点(0,2),所以b=﹣1.易知函数f′(x)在R上单调递增,且f′(0)=0.则当x<0时,f′(x)<0;当x>0时,f′(x)>0.所以函数f(x)的单调递减区间为(﹣∞,0);单调递增区间为(0,+∞).所以函数f(x)在x=0处取得极小值f(0)=2.无极大值.(2)由(1)得f(x)=2e x+3x2﹣2x,存在实数x,使得f(x)﹣2x2﹣3x﹣2﹣2k≤0成立⇔e x+x2﹣x﹣1﹣k≤0,则k≥e x+x2﹣x﹣1,令h(x)=e x+x2﹣x﹣1,若存在实数x,使得不等式成立,则k≥h(x)min,h′(x)=e x+x﹣,易知h′(x)在R上单调递增,又h′(0)=﹣<0,h′(1)=e﹣<0,h′()=﹣>﹣=﹣=﹣>2﹣>0,由e x>x+1,当且x=0时取等号,则h′(x)=e x+x﹣≥2x﹣>0,则x>,所以存在唯一的x0∈(,),使得h′(x0)=0,且当x∈(﹣∞,x0)时,h′(x0)<0;当x∈(x0,+∞)时,h′(x)>0.所以h(x)在(﹣∞,x0)上单调递减,在(x0,+∞)上单调递增,h(x)min=h(x0)=,又h′(x0)=0,即+x0﹣=0,所以=﹣x0,所以h(x0)=﹣x0+x02﹣x0﹣1=(x02﹣7x0+3),因为x0∈(,),所以h(x0)∈(﹣,﹣),则k≥h(x0),又k∈Z,所以k的最小值为0.【点评】本题导数的综合应用,导数的几何意义,函数的单调性及最值得关系,考查函数零点的判断,考查转换思想,属于中档题.5.【分析】(1)利用函数的导数,函数与y=﹣3切于A(x0,f(x0)),列出方程组,求解即可.(2)求出F(x)=(ax2+x﹣1)•e x,的导函数F'(x),利用F(0)=﹣1.通过①当a=0时,②当时,③当时,④当时,⑤当a>0时,判断函数的单调性,转化求解a的范围即可.【解答】解:(1)f'(x)=ax2+x﹣1,由f(x)与y=﹣3切于点A(x0,f(x0)),则解得,x0=4.(2)F(x)=(ax2+x﹣1)•e x,∴F'(x)=e x(ax2+(2a+1)x),且F(0)=﹣1.①当a=0时,F'(x)=xe x,可知F(x)在(0,+∞)递增,此时F(x)>﹣1成立;②当时,,可知F(x)在递增,在递减,此时,不符合条件;③当时,恒成立,可知F(x)在(0,+∞)递减,此时F(x)<﹣1成立,不符合条件;④当时,,可知F(x)在(0,+∞)递减,此时F(x)<﹣1成立,不符合条件;⑤当a>0时,,可知F(x)在(0,+∞)递增,此时F(x)>﹣1成立.综上所述,a≥0.【点评】本题考查函数的导数的综合应用,函数的单调性以及分类讨论思想的应用,考查计算能力.6.【分析】(1)先确定函数的定义域然后求导数f′(x),令g(x)=2x2﹣2x+a,由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,建立不等关系解之即可;(2)x2是方程g(x)=0的根,将a用x2表示,消去a得到关于x2的函数,研究函数的单调性求出函数的最大值,即可求m的取值范围.【解答】解:(1)因为f(x)=(x﹣1)2+alnx,∴即,令g(x)=2x2﹣2x+a,(x>0)则x1,x2,且x1<x2.是方程2x2﹣2x+a=0的两个正实根.则,得0,(2)∵0<x1<x2,x1+x2=1,∴<x2<1,a=2x2﹣2x22,∴f(x2)=x22﹣2x2+1+(2x2﹣2x22)lnx2,令g(t)=t2﹣2t+1+(2t﹣2t2)lnt,其中<t<1,则g′(t)=2(1﹣2t)lnt,当t∈(,1)时,g′(t)>0,∴g(t)在(,1)上是增函数,∴g(t)>g()=,∴g(t)<g(1)=0,∴f(x2)的取值范围是:(,0).若对任意的x∈(x1,+∞),都有f(x)>m成立⇔m<f(x2)min,即可∴m≤.【点评】本题主要考查了利用导数研究函数的单调性,以及利用导数研究函数的极值等有关知识,属于中档题.7.【分析】(1)将条件直线y=kx+m都不是曲线y=f(x)的切线,转化为k不在导函数值域范围内.(2)利用导数求f(x)在区间[0,1]上的最大值.【解答】解:(1)若∀m∈R,直线y=kx+m都不是曲线y=f(x)的切线,即k不在导函数值域范围内.﹣,只要f'(x)的最小值大于k即可,∴k的范围为k<﹣.(2)∵a>﹣1,∴a+1>0,当a≥1时,f'(x)≥0对x∈[0,1]成立,∴当x=1时,f(x)取得最大值f(1)=a2﹣;当0<a<1时,在x∈(0,a),f'(x)>0,f(x)单调递增,在x ∈(a ,1)时,f'(x )<0,f (x )单调递减,∴当x=a 时,f (x )取得最大值f (a )=;当a=0时,在x ∈(0,1),f'(x )<0,f (x )单调递减,∴当x=0时,f (x )取得最大值f (0)=0;当﹣1<a <0时,在x ∈(0,a +1),f'(x )<0,f (x )单调递减,在x ∈(a +1,1),f'(x )>0,f (x )单调递增,又f (0)=0,f (1)=a 2﹣;当﹣1<a <﹣时,f (x )在x=1取得最大值f (1)=a 2﹣; 当﹣时,f (x )在x=0取得最大值f (0)=0; 当a=﹣时,f (x )在x=0,x=1处都取得最大值0.综上所述,当a ≥1或﹣1时,f (x )在x=1取得最大值f (1)=a 2﹣;当0<a <1时,f (x )取得最大值f (a )=; 当a=﹣时,f (x )在x=0,x=1处都取得最大值0; 当﹣<a ≤0时,f (x )在x=0取得最大值f (0)=0.【点评】本题主要考查函数奇偶性的应用,以及利用导数研究函数的性质,要求熟练掌握导数在研究函数中的应用,综合性较强,运算量较大.8.【分析】(1)根据题意,可得g (x )=af (x )+e x =axe x +e x ,求出其导数g′(x ),分情况讨论a 的值,分析导函数的符号,结合函数的导数与单调性的关系,即可得答案;(2)根据题意,分析可得原命题等价于方程xe x =x +2在x ∈[m ,m +1]上有解,进而可得原方程等价于,令,求出r (x )的导数,分析r (x )的单调性,进而可得直线y=x +2与曲线y=f (x )的交点仅有两个,即可得m 的值.【解答】解:(1)由题意,函数f (x )=xe x .则g (x )=af (x )+e x =axe x +e x ,∴g′(x)=(ax+a+1)e x.①若a=0时,g′(x)=e x,g′(x)>0在R上恒成立,所以函数g(x)在R上单调递增;②若a>0时,当时,g′(x)>0,函数g(x)单调递增,当时,g′(x)<0,函数g(x)单调递减;③若a<0时,当时,g′(x)<0,函数g(x)单调递减;当时,g′(x)>0,函数g(x)单调递增.综上,若a=0时,g(x)在R上单调递增;若a>0时,函数g(x)在内单调递减,在区间内单调递增;当a<0时,函数g(x)在区间内单调递增,在区间内单调递减.(2)由题可知,原命题等价于方程xe x=x+2在x∈[m,m+1]上有解,由于e x>0,所以x=0不是方程的解,所以原方程等价于,令,因为对于x∈(﹣∞,0)∪(0,+∞)恒成立,所以r(x)在(﹣∞,0)和(0,+∞)内单调递增.又r(1)=e﹣3<0,r(2)=e2﹣2>0,,,所以直线y=x+2与曲线y=f(x)的交点仅有两个,且两交点的横坐标分别在区间[1,2]和[﹣3,﹣2]内,所以整数m的所有值为﹣3,1.【点评】本题考查函数导数的性质以及应用,(2)中注意将原问题转化为方程xe x=x+2在x∈[m,m+1]上有解的问题.9.【分析】(Ⅰ)求出导数,可得可得切点坐标及切线的斜率,代入点斜式,可得曲线f(x)在x=1处的切线方程;(Ⅱ)猜测:当x>0,x≠1时,f(x)的图象恒在切线y=(e﹣2)x+1的上方,只证:当x>0时,f(x)≥(e﹣2)x+1,又x≥lnx+1,即,即可.【解答】解:(Ⅰ)f'(x)=e x﹣2x,由题设得f'(1)=e﹣2,f(1)=e﹣1,∴f(x)在x=1处的切线方程为y=(e﹣2)x+1.(Ⅱ)f'(x)=e x﹣2x,f''(x)=e x﹣2,∴f'(x)在(0,ln2)上单调递减,在(ln2,+∞)上单调递增,所以f'(x)≥f'(ln2)=2﹣2ln2>0,所以f(x)在[0,1]上单调递增,所以f(x)max=f(1)=e﹣1,x∈[0,1].f(x)过点(1,e﹣1),且y=f(x)在x=1处的切线方程为y=(e﹣2)x+1,故可猜测:当x>0,x≠1时,f(x)的图象恒在切线y=(e﹣2)x+1的上方.下证:当x>0时,f(x)≥(e﹣2)x+1,设g(x)=f(x)﹣(e﹣2)x﹣1,x>0,则g'(x)=e x﹣2x﹣(e﹣2),g''(x)=e x﹣2,g'(x)在(0,ln2)上单调递减,在(ln2,+∞)上单调递增,又g'(0)=3﹣e>0,g'(1)=0,0<ln2<1,∴g'(ln2)<0,所以,存在x0∈(0,1n2),使得g'(x0)=0,所以,当x∈(0,x0)∪(1,+∞)时,g'(x)>0;当x∈(x0,1)时,g'(x)<0,故g(x)在(0,x0)上单调递增,在(x0,1)上单调递减,在(1,+∞)上单调递增,又g(0)=g(1)=0,∴g(x)=e x﹣x2﹣(e﹣2)x﹣1≥0,当且仅当x=1时取等号,故.又x≥lnx+1,即,当x=1时,等号成立.【点评】本题考查了利用导数研究函数的单调性极值与最值、切线方程、等价转化方法,考查了推理能力与计算能力,属于难题.10.【分析】(Ⅰ)求出函数的导数,问题转化为a≤﹣,设g(x)=﹣,根据函数的单调性求出a的范围即可;(Ⅱ)求出f(x)的单调区间,得到f′(1)=0,求出a的值即可.【解答】解:(Ⅰ)若f(x)在[1,+∞)上是减函数,则f′(x)≤0在[1,+∞)恒成立,f′(x)=lnx+2ax+2﹣a≤0,∴a≤﹣,设g(x)=﹣,则g′(x)=,∵x≥1,∴g′(x)≥0,g(x)递增,又g(1)=﹣2,故a≤﹣2;(Ⅱ)由f(1)=2,要使f(x)max=2,故f(x)的递减区间是[1,+∞),递增区间是(0,1),∴f′(1)=0,即ln1+2a+2﹣a=0,∴a=﹣2.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.11.【分析】(1)求得函数y=xf(x)的导数,由极值的概念可得a=12,求出f(x)的导数,可得切线的斜率和切点,运用点斜式方程可得切线的方程;(2)求出f(x)的导数和单调区间,以及极值,由零点个数为2,可得a=3,作出y=f(x)的图象,令t=g(x),由题意可得t=﹣1或t=,即f(x)=﹣1﹣b或f(x)=﹣b都有3个实数解,由图象可得﹣1﹣b>0,且﹣b>0,即可得到所求a+b的范围.【解答】解:(1)函数f(x)=4x2+﹣a,则y=xf(x)=4x3+1﹣ax的导数为y′=12x2﹣a,由题意可得12﹣a=0,解得a=12,即有f(x)=4x2+﹣12,f′(x)=8x﹣,可得曲线在点(1,f(1))处的切线斜率为7,切点为(1,﹣7),即有曲线y=f(x)在点(1,f(1))处的切线方程为y+7=7(x﹣1),即为y=7x﹣14;(2)由f(x)=4x2+﹣a,导数f′(x)=8x﹣,当x>时,f′(x)>0,f(x)递增;当x<0或0<x<时,f′(x)<0,f(x)递减.可得x=处取得极小值,且为3﹣a,由f(x)有两个零点,可得3﹣a=0,即a=3,零点分别为﹣1,.令t=g(x),即有f(t)=0,可得t=﹣1或,则f(x)=﹣1﹣b或f(x)=﹣b,由题意可得f(x)=﹣1﹣b或f(x)=﹣b都有3个实数解,则﹣1﹣b>0,且﹣b>0,即b<﹣1且b<,可得b<﹣1,即有a+b<2.则a+b的范围是(﹣∞,2).【点评】本题考查导数的运用:求切线方程和单调区间、极值,考查函数零点问题的解法,注意运用换元法和数形结合的思想方法,考查运算能力,属于中档题.12.【分析】(1)求出函数的导数,求出切线的斜率,切点坐标,然后求解其切线方程.(2)由f(x)=e x﹣alnx,原不等式即为e x+lnx﹣e﹣m(x﹣1)>0,记F(x)=e x+lnx ﹣e﹣m(x﹣1),通过函数的导数判断函数的单调性,求解函数的最值,转化求解m的范围即可.【解答】解:(1)由f(x)=e x﹣alnx,则,切点为(1,e),所求切线方程为y﹣e=(e﹣a)(x﹣1),即(e﹣a)x﹣y+a=0.(2)由f(x)=e x﹣alnx,原不等式即为e x+lnx﹣e﹣m(x﹣1)>0,记F(x)=e x+lnx﹣e﹣m(x﹣1),F(1)=0,依题意有F(x)>0对任意x∈[1,+∞)恒成立,求导得,当x>1时,F''(x)>0,则F'(x)在(1,+∞)上单调递增,有F'(x)>F'(1)=e x+1﹣m,若m≤e+1,则F'(x)>0,若F(x)在(1,+∞)上单调递增,且F(x)>F (1)=0,适合题意;若m>e+1,则F'(1)<0,又,故存在x1∈(1,lnm)使F'(x)=0,当1<x<x1时,F'(x)<0,得F(x)在(1,x1)上单调递减,在F(x)<F(1)=0,舍去,综上,实数m的取值范围是m≤e+1.【点评】本题考查函数的导数的应用,切线方程以及函数的最值的求法,考查转化思想以及计算能力.13.【分析】(1)求导,分类讨论,根据导数与函数单调性的关系,即可求得函数f (x)的单调区间:(2)构造辅助函数,分类讨论,利用导数与函数单调性及最值的关系,即可求得g(x)的最值,根据函数恒成立即可求得a的取值范围.【解答】解:(1)f′(x)=(1﹣x)e x+2a(x﹣1)=(x﹣1)(2a﹣e x),当a≤0时,函数在(﹣∞,1)上递增,在(1,+∞)上递减;当时,函数在(﹣∞,ln2a),(1,+∞)上递减,在(ln2a,1)上递增;当时,函数在(﹣∞,1),(ln2a,+∞)上递减,在(1,ln2a)上递增;当时,函数在R上递减;(2)由对任意的x∈R,f(x)≤2e x,即(2﹣x)e x+a(x﹣1)2≤2e x,当x=1时,e x+a(x﹣1)2≤2e x,恒成立,当x≠1时,整理得:a≤,对任意x∈R恒成立,设g(x)=,求导g′(x)==,令g′(x)=0,解得:x=1±,当x=1+附近时,当x>1+,g′(x)>0,当1<x<1+,f′(x)<0,∴当x=1+时取极小值,极小值为,当x=1﹣附近时,当x>1﹣,g′(x)>0,当x<1﹣,g′(x)<0,当x=1﹣时取极小值,极小值为,由<,∴g(x)的最小值为,由题意对任意的x∈R,都有f(x)≤2e x,即a≤f(x),最小值∴a的取值范围(﹣∞,].【点评】本题考查导数的综合应用,导数与函数单调性及极值与最值的关系,考查函数恒成立问题,考查转化思想的应用,属于中档题.14.【分析】(I)讨论a的范围,判断f(x)的单调性,得出f(x)的极小值,从而列方程解出a的值;(II)分离参数可得a≤,根据函数性质求出a的范围.【解答】解:(I)f′(x)=(e x﹣2a)+xe x﹣2ax=(x+1)(e x﹣2a),x∈R.①若a≤0,由f′(x)=0解得x=﹣1.∴当x<﹣1时,f′(x)<0,当x>﹣1时,f′(x)>0,∴当x=﹣1时,f(x)取得极小值f(﹣1)=a﹣=0,解得a=(舍去);②若a>0,由f′(x)=0解得x=﹣1或x=ln(2a),(i)若ln(2a)<﹣1,即0<a<,∴当x<ln(2a)时,f′(x)>0,当ln(2a)<x<﹣1时,f′(x)<0,当x>﹣1时,f′(x)>0,∴当x=﹣1时,f(x)取得极小值f(﹣1)=a﹣=0,解得a=(舍去);(ii)若ln(2a)=﹣1,即a=时,f′(x)≥0,此时f(x)没有极小值;(iii)若ln(2a)>﹣1,即a>,∴当x≤﹣1时,f′(x)>0,当﹣1<x<ln(2a)时,f′(x)<0,当x>ln(2a)时,f′(x)>0,∴当x=ln(2a)时,f(x)取得极小值f(ln(2a))=﹣aln2(2a)=0,解得a=.综上,a=.(II)f(2x)﹣2f(x)=2x(e2x﹣2a)﹣4ax2﹣2x(e x﹣2a)+2ax2=2x(e2x﹣e x)﹣2ax2≥0,显然当x=0时,上式恒成立,当x≠0时,a≤.令g(x)==(x≠0),则当x<0时,e x﹣1<0,当x>0时,e x﹣1>0,∴g(x)>0,且当x→﹣∞时,g(x)→0,∴a≤0,即a的取值范围是(﹣∞,0].【点评】本题考查了函数单调性的判断,导数的应用,属于中档题.15.【分析】(Ⅰ)对f(x)进行求导,将其转化为在定义域上不等式g(x)>0恒成立,进而可得答案;(Ⅱ)求出函数的导数,通过讨论k的范围结合函数的单调性确定k的范围即可【解答】解:(Ⅰ)∵函数f(x)=lnx+x2﹣ax∴f′(x)=+2x﹣a …………1´∵函数在定义域内为增函数,∴f′(x)≥0在(0,+∞)上恒成立,即a≤+2x在(0,+∞)上恒成立,…………3´而x>0,+2x≥2,当且仅当x=时,“=”成立即+2x的最小值为2,∴a≤2…………6´(Ⅱ)∵g(x)=f(x)+2ln=2ln(ax+2)+x2﹣ax﹣2ln6∴…………7´∵a∈(2,4),∴=﹣>﹣,>0∴g´(x)>0,故g(x)在[]上单调递增∴当x=2时,g(x)取最大值2ln(2a+2)﹣2a+4﹣2ln62ln(2a+2)﹣2a+4﹣2ln6>k(4﹣a2)在(2,4)上恒成立.,…………8´令h(a)=2ln(2a+2)﹣2a+4﹣2ln6﹣k(4+a2),则h(2)=0,且h(a)>0在(2,4)内恒成立,h′(a)==当k≤0时,h′(a)<0,h(a)在(2,4)上单调递减h(a)<h(2)=0,不合题意当k>0时,由h´(a)=0得:a=①>2,即0<k<时,h(a)在(2,)内单调递减,存在h(a)<h(2)不合题意,②≤2,即k≥时,h(a)在(2,4)内单调递增,h(a)>h(2)=0满足题意.综上,实数k的取值范围为[ (12)【点评】此题主要考查利用导数研究函数的单调性,此题综合性比较强,这类题型是高考的热点问题,解的过程中我们用到了分类讨论和转化的思想,是一道中档题16.【分析】(1)令f′(x)=0,讨论f′(x)的零点的大小,得出f′(x)的符号,从而得出f(x)的单调性;(2)化简不等式为,e x﹣lnx﹣1>0,根据导数判断函数y=e x﹣lnx﹣1的单调性,求出最小值,从而得出结论.,【解答】解:(1)f(x)=x2﹣(1+2a)x+2alnx,定义域为(0,+∞),则f(x)=x﹣(1+2a)+=.①当a≤0时,x﹣2a>0,∴当0<x<1时,f′(x)<0,当x>1时,f′(x)>0,所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增.②当0<a<时,0<2a<1,∴当0<x<2a或x>1时,f′(x)>0,当2a<x<1时,f′(x)<0,所以f(x)在(0,2a)上单调递增,在(2a,1)上单调递减,在(1,+∞)上单调递增,③当a=时,f′(x)=≥0,故f(x)在(0,+∞)上单调递增.④当a>时,2a>1,∴当0<x<1或x>2a时,f′(x)>0,当1<x<2a时,f′(x)<0,所以,f(x)在(0,1)上单调递增,在(1,2a)上单调递减,在(2a,+∞)上单调递增.(2)证明:当a=0时,要证xp(x)+q(x)<e x+x2﹣x﹣1,即证lnx+x2﹣x<e x+x2﹣x﹣1,只需证明:e x﹣lnx﹣1>0,设g(x)=e x﹣lnx﹣1,则g′(x)=e x﹣,g″(x)=e x+>0,所以g′(x)在(0,+∞)上单调递增,又g′()=﹣2<0,g′(1)=e﹣1>0,所以存在唯一x0∈(,1)使得g′(x0)=0,即e=,∴﹣lnx0=x0.∴g(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,所以g(x)的最小值为g(x0)=e﹣lnx0﹣1=+x0﹣1≥2﹣1=1>0,所以e x﹣lnx﹣1>0,即原不等式得证.【点评】本小题主要考查函数的性质及导数的应用等基础知识,考查抽象概括能力、推理论证能力、运算求解能力,考查函数与方程思想、分类与整合思想、化归与转化思想等.17.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(Ⅱ)问题转化为证明e x﹣lnx﹣2>0,设g(x)=e x﹣lnx﹣2,求出函数的导数,根据函数的单调性证明即可.【解答】解:(Ⅰ)函数f(x)的定义域是(0,+∞),f′(x)=2x﹣(a﹣2)﹣=…(2分)当a≤0时,f′(x)>0对任意x∈(0,+∞)恒成立,所以,函数f(x)在区间(0,+∞)单调递增;…(4分)当a>0时,由f′(x)>0得x>,由f′(x)<0,得0<x<,所以,函数在区间(,+∞)上单调递增,在区间(0,)上单调递减;(Ⅱ)当a=1时,f(x)=x2+x﹣lnx,要证明f(x)+e x>x2+x+2,只需证明e x﹣lnx﹣2>0,设g(x)=e x﹣lnx﹣2,则问题转化为证明对任意的x>0,g(x)>0,令g′(x)=e x﹣=0,得e x=,容易知道该方程有唯一解,不妨设为x0,则x0满足e x0=,当x变化时,g′(x)和g(x)变化情况如下表g(x)min=g(x0)=e x0﹣lnx0﹣2=+x0﹣2,因为x0>0,且x0≠1,所以g(x)min>2﹣2=0,因此不等式得证.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.18.【分析】(Ⅰ)由已知可得f′(x)=(2x+2f′(0)+2)e x,取x=0,可得f′(0)=﹣2,从而求得f(x)=(2x﹣4)e x.(Ⅱ)由题意知,g'(x)=(2x﹣2)e x+a(x﹣1)=(x﹣1)(2e x+a),当a≥0时,由导函数的符号可得g(x)的单调区间;当a<﹣2e时,,由g'(x)>0和g'(x)<0分别解得g(x)的单调区间,当﹣2e<a<0时,,g'(x)>0和g'(x)<0分别解得g(x)的单调区间;(Ⅲ)h(x)=(2x﹣4)e x+a(x2+4x)+4,可得h'(x)=(2x﹣2)e x+2a(x+2),令m(x)=h'(x),由导数可得有m'(x)=2xe x+2a(x≥0),得到m(x)≥m(0)=4a﹣2,然后对4a﹣2与0的大小分类分析得答案.【解答】解:(Ⅰ)∵f′(x)=(2x+2f′(0)+2)e x,∴f′(0)=2f′(0)+2,得f′(0)=﹣2,∴f(x)=(2x﹣4)e x.(Ⅱ)由题意知,∴g'(x)=(2x﹣2)e x+a(x﹣1)=(x﹣1)(2e x+a),当a≥0时,令g'(x)>0,得x>1,令g'(x)<0,得x<1,∴g(x)在(1,+∞)上单调递增,在(﹣∞,1)上单调递减,当a<﹣2e时,,令g'(x)>0,得x<1或,令g'(x)<0,得,∴g(x)在(﹣∞,1),上单调递增,在上单调递减,当﹣2e<a<0时,,令g'(x)>0,得x>1或,令g'(x)<0,得,∴g(x)在,(1,+∞)上单调递增,在上单调递减,当a=﹣2e时,g'(x)>0在R上恒成立,综上所述,当a≥0时,g(x)在(1,+∞)上单调递增,在(﹣∞,1)上单调递减,当a<﹣2e时,g(x)在(﹣∞,1)和上单调递增,在上单调递减,当﹣2e<a<0时,g(x)在和(1,+∞)上单调递增,在上单调递减,当a=﹣2e时,g(x)在R上单调递增.(Ⅲ)h(x)=(2x﹣4)e x+a(x2+4x)+4,h'(x)=(2x﹣2)e x+2a(x+2),令m(x)=h'(x)=(2x﹣2)e x+2a(x+2),有m'(x)=2xe x+2a(x≥0),当2a≥0时,有m'(x)≥0,此时函数y=m(x)在[0,+∞)上单调递增,则m(x)≥m(0)=4a﹣2,(i)若4a﹣2≥0即时,y=h(x)在[0,+∞)上单调递增,则h(x)min=h(0)=0恒成立;(ii)若4a﹣2<0即时,则在[0,+∞)存在h'(x0)=0,此时函数y=h(x)在(0,x0)上单调递减,x∈(x0,+∞)上单调递增,且h (0)=4a﹣4,∴不等式不可能恒成立,故不符合题意;当2a<0时,有m'(0)=2a<0,则在[0,+∞)上存在g'(x1)=0,在x∈(0,x1)上单调递减,在(x1,+∞)上单调递增,∴y=h'(x)在[0,+∞)上先减后增,又h'(0)=﹣2+4a<0,则函数y=h(x)在[0,+∞)上先减后增,且h(0)=4a ﹣4,∴不等式不可能恒成立,故不符合题意.综上所述,实数a的取值范围为.【点评】本题考查利用导数研究函数的单调性,考查分类讨论的数学思想方法与数学转化思想方法,属难题.19.【分析】(Ⅰ)求出导函数,利用导函数值为0,即可求a的值;(Ⅱ)只需证:,令g(x)=x﹣lnx,利用函数的导数判断函数的单调性求解函数的最小值以及最大值,推出结果即可.【解答】解:(Ⅰ),由题意可得:f′(1)=2a﹣2=0∴a=1,(Ⅱ)证明:只需证:,令g(x)=x﹣lnx,,由解得:x=1,g(x)在(0,1)递减,在(1,2]上递增,故g(x)min=g(1)=1由可知:h(x)在(0,2]上递增,故,故h(x)<g(x)即:.【点评】本题考查函数的导数的应用,函数的单调性以及函数的最值的求法,考查计算能力以及转化思想的应用.20.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)令h(x)=g(x)﹣2f(x)﹣2(lna﹣ln2),根据函数的单调性证明即可.【解答】解:(Ⅰ)…………………………………(2分)x∈(0,1)时,f'(x)>0,y=f(x)单增;x∈(1,+∞)时,f'(x)<0,y=f(x)单减……………………….(4分)(Ⅱ)证明:令h(x)=axe x﹣4x﹣2lnx+2x﹣2=axe x﹣2x﹣2lnx﹣2(a>0,x>0)………………….(5分)故…………………………….(7分)令h'(x)=0即,两边求对数得:lna+x0=ln2﹣lnx0即lnx0+x0=ln2﹣lna……………….(9分)∴,∴h(x)≥2lna﹣2ln2……………………………(12分)【点评】本题考查了函数的单调性问题,考查导数的应用以及不等式的证明,考查转化思想,是一道中档题.21.【分析】(1)令h(x)=f(x)﹣x,则h′(x)=f′(x)﹣1<0,说明h(x)是单调递减函数,然后说明方程f(x)﹣x=0有且只有一个实数根.(2)令,利用F(x)在区间[e,e2]上连续,说明F(x)在[e,e2]上存在零点x0,推出g(x)∈M.(3)不妨设α<β,利用函数的单调性,令h(x)=f(x)﹣x,结合h′(x)=f′(x)﹣1<0,说明h(x)是单调递减函数,然后证明|f(α)﹣f(β)|<|α﹣β|≤|α﹣2012|+|β﹣2012|<2.【解答】解:(1)证明:令h(x)=f(x)﹣x,则h′(x)=f′(x)﹣1<0,故h (x)是单调递减函数,所以,方程h(x)=0,即f(x)﹣x=0至多有一解,又由题设①知方程f(x)﹣x=0有实数根,所以,方程f(x)﹣x=0有且只有一个实数根…..(4分)(2)易知,,满足条件②;令,则,…..(7分)又F(x)在区间[e,e2]上连续,所以F(x)在[e,e2]上存在零点x0,即方程g(x)﹣x=0有实数根,故g(x)满足条件①,综上可知,g(x)∈M…(9分)(3)证明:不妨设α<β,∵f′(x)>0,∴f(x)单调递增,∴f(α)<f(β),即f(β)﹣f(α)>0,令h(x)=f(x)﹣x,则h′(x)=f′(x)﹣1<0,故h(x)是单调递减函数,∴f(β)﹣β<f(α)﹣α,即f(β)﹣f(α)<β﹣α,∴0<f(β)﹣f(α)<β﹣α,则有|f(α)﹣f(β)|<|α﹣β|≤|α﹣2012|+|β﹣2012|<2.(14分)【点评】本题考查函数的导数的应用,函数的单调性的判断与应用,考查函数与方程的思想的应用.22.【分析】(1)根据题意,由函数的解析式求出导数,由导数的几何意义可得f(x)在x=0处的切线的斜率,由切点坐标计算可得答案;(2)根据题意,分析可得f(x)≥1﹣x⇔e x﹣ax﹣1≥0,令g(x)=e x﹣ax﹣1,求出g(x)的导数,分析可得存在x=lna,使得g(lna)<g(0)=0.据此分析可得答案.【解答】解:(1)根据题意,由f(x)=x(e x﹣2)﹣ax2+1,得f'(x)=(x+1)e x﹣2ax﹣2,即f(x)在x=0处的切线的斜率k=f'(0)=﹣1又f(0)=1,所以切点为(0,1)即切线方程:y﹣1=﹣x.所以f(x)图象在x=0处的切线方程为:x+y﹣1=0;(2)由f(x)≥1﹣x,得x(e x﹣2)﹣ax2+x≥0又x≥0,即e x﹣ax﹣1≥0令g(x)=e x﹣ax﹣1,即g(x)≥0在x∈[0,+∞)恒成立.又g'(x)=e x﹣a;①当a≤1时,g'(x)≥g'(0)=1﹣a≥0即g(x)在[0,+∞)上单调递增,故g(x)≥g(0)=0.所以当a≤1时,g(x)≥0在x∈[0,+∞)恒成立②当a>1时,令g'(x)=0,得x=lna;g(x),g'(x)的变化情况如下表:故存在x=lna,使得g(lna)<g(0)=0.所以当a>1时,g(x)≥0不成立,综上,a的取值范围为(﹣∞,1].【点评】本小题主要考查函数导数及其应用等基础知识,注意导数的几何意义,属于综合题.23.【分析】(Ⅰ)求出函数导数f′(x),由f′(1)=0,可得a.(Ⅱ)函数f(x)=ln(x+1)+的定义域为{x|x>﹣1,且x≠﹣a}.=,可得x2+a(a﹣2)=0在定义域内有两个不等实根x1=﹣,x2=,(0<a<2).只需讨论﹣与定义域得关系即可.(Ⅲ)由g()=g(n)可得m﹣1>n﹣1,(m﹣1)(n﹣1)=1.由g(m)=2g()⇒|ln(m﹣1)|=2|ln(+)|.可得m﹣1=[(]2,令m﹣1=t,⇒⇒t3﹣3t2﹣t﹣1=0.令h(t)=t3﹣3t2﹣t﹣1,则h′(t)=3t2﹣6t﹣1,可得3<t<4,4<m<5.【解答】解:(Ⅰ)=,∵x=1为f(x)的极值点,∴f′(1)=0,∴a=1.(Ⅱ)函数f(x)=ln(x+1)+的定义域为{x|x>﹣1,且x≠﹣a}.=,要使函数f(x)存在两个极值点,则方程x2+a(a﹣2)=0在定义域内有两个不等实根.∴a(a﹣2)<0,即0<a<0,由f′(x)=0,得x1=﹣,x2=.只需讨论﹣与定义域得关系即可.当1<a<2时,函数f(x)的定义域为(﹣1,+∞),此时﹣1.此时函数f(x)存在两个极值点x1=﹣,x2=.当a=1时,函数f(x)的定义域为(﹣1,+∞),此时﹣1=﹣,此时函数f(x)存在1个极值点x2=.当0<a<1时,函数f(x)的定义域为(﹣1,﹣a)∪(﹣a,+∞),此时﹣1<﹣a.此时函数f(x)存在两个极值点x1=﹣,x2=.综上,函数f(x)存在两个极值点,a的取值范围为(0,1)∪(1,2),(Ⅲ)证明:∵g()=g(n),∴|ln(m﹣1)|=|ln(n﹣1)|.又g(x)=|ln(x﹣1)|在(1,2)递减,在(2,+∞)递增.且m﹣1>n﹣1,(m﹣1)(n﹣1)=1.∴m﹣1>1,n﹣1<1,∴m>2.由g(m)=2g()⇒|ln(m﹣1)|=2|ln(+)|.∵=1,∴m﹣1=[(]2,令m﹣1=t,⇒⇒t3﹣3t2﹣t﹣1=0.令h(t)=t3﹣3t2﹣t﹣1,则h′(t)=3t2﹣6t﹣1,令h′(t)=0,可得t=,∴h(t)在(1,)递减,在(,+∞)递增.∵h(3)<0,h(4)>0,∴3<t<4,∴4<m<5.【点评】本题考查了导数与函数的极值、单调性,及利用导数通过单调性解方程,属于中档题.24.【分析】(Ⅰ)根据题意,由函数的解析式分析其定义域,进而求出其导数,按a的值分三种情况讨论,利用导数分析函数的单调性,综合三种情况即可得答案;(Ⅱ)根据题意,由函数的极值与导数的关系分析可得a的值,可以将原问题转化为证明x﹣xlnx≤e﹣x+x2,令(x>0),求出其导数,分析函数的单调性,可得其最小值,就可得证明.【解答】解:(Ⅰ)根据题意,f(x)=x+axlnx,必有x>0,则f(x)的定义域为(0,+∞),其导数f'(x)=1+alnx+a,当a=0时,f(x)=x,则函数f(x)在区间(0,+∞)单调递增;当a>0时,由f'(x)>0得,由f'(x)<0得.所以,f(x)在区间上单调递减,在区间上单调递增;当a<0时,由f'(x)>0得,由f'(x)<0得,所以,函数f(x)在区间上单调递增,在区间单调递减.综上所述,当a=0时,函数f(x)在区间(0,+∞)单调递增;当a>0时,函数f(x)在区间上单调递减,在区间上单调递增;。
2018版高考数学全国,人教B版理大一轮复习讲义:第三章
基础巩固题组 (建议用时:40分钟)一、选择题1.(2017·西安调研)定积分⎠⎛01(2x +e x )d x 的值为( )A.e +2B.e +1C.eD.e -1解析 ⎠⎛01(2x +e x)d x =(x 2+e x)⎪⎪⎪10)=1+e 1-1=e.故选C.答案 C2.若⎠⎛1a ⎝ ⎛⎭⎪⎫2x +1x d x =3+ln 2(a >1),则a 的值是( )A.2B.3C.4D.6解析 ⎠⎛1a ⎝⎛⎭⎪⎫2x +1x d x =(x 2+ln x )⎪⎪⎪a1=a 2+ln a -1,∴a 2+ln a -1=3+ln 2,则a =2. 答案 A3.从空中自由下落的一物体,在第一秒末恰经过电视塔顶,在第二秒末物体落地,已知自由落体的运动速度为v =gt (g 为常数),则电视塔高为( ) A.12gB.gC.32gD.2g解析 电视塔高h =⎠⎛12gt d t =⎪⎪⎪⎝ ⎛⎭⎪⎫12gt 221=32g .答案 C4.如图所示,曲线y =x 2-1,x =2,x =0,y =0围成的阴影部分的面积为( ) A.⎠⎛02|x 2-1|d xB.⎪⎪⎪⎪⎠⎛02(x 2-1)d x C.⎠⎛02(x 2-1)d x D.⎠⎛01(x 2-1)d x +⎠⎛12(1-x 2)d x 解析 由曲线y =|x 2-1|的对称性知,所求阴影部分的面积与如下图形的面积相等,即⎠⎛02|x 2-1|d x .答案 A5.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A.S 1<S 2<S 3B.S 2<S 1<S 3C.S 2<S 3<S 1D.S 3<S 2<S 1解析S 2=⎠⎛121x d x =ln 2,S 3=⎠⎛12e x d x =e 2-e ,∵e 2-e =e(e -1)>e >73>ln 2, ∴S 2<S 1<S 3. 答案 B 二、填空题6.已知t >0,若⎠⎛0t (2x -2)d x =8,则t =________.解析 由⎠⎛0t(2x -2)d x =8得,(x 2-2x ) ⎪⎪⎪t0=t 2-2t =8,解得t =4或t =-2(舍去).答案 47.已知二次函数y =f (x )的图象如图所示,则它与x 轴所围成的面积为________.解析 根据f (x )的图象可设f (x )=a (x +1)·(x -1)(a <0). 因为f (x )的图象过(0,1)点, 所以-a =1,即a =-1. 所以f (x )=-(x +1)(x -1)=1-x 2. 所以S =⎠⎛-11(1-x 2)d x =2⎠⎛01(1-x 2)d x=2⎝ ⎛⎭⎪⎫x -13x 3⎪⎪⎪10=2⎝ ⎛⎭⎪⎫1-13=43. 答案 438.(2017·济南模拟)设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.解析 封闭图形如图所示,则⎠⎛0a x d x ==23a 32-0=a 2,解得a =49.答案 49 三、解答题 9.计算下列定积分: (1)⎠⎛12⎝ ⎛⎭⎪⎫x -1x d x ;(2)⎠⎛02-x 2+2x d x ;(3)2sin ⎝⎛⎭⎪⎫x +π4d x ;(4)⎠⎛-11(x 2tan x +x 3+1)d x ; (5)⎠⎛-22|x 2-2x |d x . 解 (1)原式=⎝ ⎛⎭⎪⎫12x 2-ln x ⎪⎪⎪21=⎝ ⎛⎭⎪⎫12×22-ln 2-⎝ ⎛⎭⎪⎫12-ln 1=32-ln 2; (2)由定积分的几何意义知,所求定积分是由x =0,x =2,y =-x 2+2x ,以及x 轴围成的图象的面积,即圆(x -1)2+y 2=1的面积的一半,∴⎠⎛02-x 2+2x =π2;(3)原式=(sin x +cos x )d x =(-cos x +sin x )=⎝⎛⎭⎪⎫-cos π2+sin π2-(-cos 0+sin 0)=2;(4)原式=⎠⎛-11(x 2tan x +x 3)d x +⎠⎛-111d x =0+x ⎪⎪⎪1-1=2;(5)∵|x 2-2x |=⎩⎨⎧x 2-2x ,-2≤x <0,-x 2+2x ,0≤x ≤2,∴⎠⎛-22|x 2-2x |d x =⎠⎛-20(x 2-2x )d x +⎠⎛02(-x 2+2x )d x =⎝ ⎛⎭⎪⎫13x 3-x 2⎪⎪⎪0-2+⎝ ⎛⎭⎪⎫-13x 3+x 2⎪⎪⎪20=8.10.求曲线y =x 2,直线y =x ,y =3x 围成的图形的面积. 解 作出曲线y =x 2,直线y =x ,y =3x 的图象,所求面积为图中阴影部分的面积.解方程组⎩⎨⎧y =x 2,y =x ,得交点(1,1),解方程组⎩⎨⎧y =x 2,y =3x ,得交点(3,9),因此,所求图形的面积为 S =⎠⎛01(3x -x )d x +⎠⎛13(3x -x 2)d x =⎠⎛012x d x +⎠⎛13(3x -x 2)d x =x 2⎪⎪⎪1+⎝ ⎛⎭⎪⎫32x 2-13x 3⎪⎪⎪31=1+⎝ ⎛⎭⎪⎫32×32-13×33-⎝ ⎛⎭⎪⎫32×12-13×13=133.能力提升题组 (建议用时:20分钟)11.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A.-1B.-13C.13D.1解析 由题意知f (x )=x 2+2⎠⎛01f (x )d x ,设m =⎠⎛01f (x )d x ,∴f (x )=x 2+2m ,⎠⎛01f (x )d x =⎠⎛01(x 2+2m )d x =⎝ ⎛⎭⎪⎫13x 3+2mx ⎪⎪⎪10 =13+2m =m ,∴m =-13. 答案 B12.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( ) A.1+25ln 5B.8+25ln 113C.4+25ln 5D.4+50ln 2解析 令v (t )=0,得t =4或t =-83(舍去),∴汽车行驶距离s =⎠⎛04⎝⎛⎭⎪⎫7-3t +251+t d t =⎣⎢⎡⎦⎥⎤7t -32t 2+25ln (1+t )⎪⎪⎪40 =28-24+25ln 5=4+25ln 5(m). 答案 C13.(2017·郑州调研)⎠⎛-11(1-x 2+e x -1)d x =________.解析 ⎠⎛-11(1-x 2+e x -1)d x =⎠⎛-111-x 2d x +⎠⎛-11(e x -1)d x .因为⎠⎛-111-x 2d x 表示单位圆的上半部分的面积, 则⎠⎛-111-x 2d x =π2,又⎠⎛-11(e x -1)d x =(e x -x )|1-1 =(e 1-1)-(e -1+1)=e -1e -2,所以⎠⎛-11(1-x 2+e x -1)d x =π2+e -1e -2.答案 π2+e -1e -214.在区间0,1]上给定曲线y =x 2.试在此区间内确定点t 的值,使图中的阴影部分的面积S 1与S 2之和最小,并求最小值. 解 S 1面积等于边长分别为t 与t 2的矩形面积去掉曲线y =x 2与x 轴、直线x =t 所围成的面积,即S 1=t ·t 2-⎠⎛0t x 2d x =23t 3.S 2的面积等于曲线y =x 2与x 轴,x =t ,x =1围成的面积去掉矩形边长分别为t 2,1-t 的面积,即S 2=⎠⎛t 1x 2d x -t 2(1-t )=23t 3-t 2+13.所以阴影部分的面积S (t )=S 1+S 2=43t 3-t 2+13(0≤t ≤1). 令S ′(t )=4t 2-2t =4t ⎝ ⎛⎭⎪⎫t -12=0,得t =0或t =12.t =0时,S (t )=13;t =12时,S (t )=14;t =1时,S (t )=23.12时,S(t)最小,且最小值为1 4.所以当t=。
【数学】2014-2018年高考数学(理)五年真题分类第三章 导数及其应用
第三章导数及其应用考点1 导数与积分1.(2018全国Ⅰ,5)设函数.若奇函数则曲线在点处的切线方程为( ) A.B.C.D.1.D 因为函数是奇函数,所以a−1=0,解得a=1,所以,,所,所以曲线在点(0,0)处的切线方程为,化简可得,故选D.2.(2017•浙江,7)函数y=f()的导函数y=f′()的图象如图所示,则函数y=f()的图象可能是()A. B. C. D.2. D 由当f′()<0时,函数f()单调递减,当f′()>0时,函数f()单调递增,则由导函数y=f′()的图象可知:f()先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在轴上的右侧,排除B,故选D.3.(2017•新课标Ⅱ,11)若=﹣2是函数f()=(2+a﹣1)e﹣1的极值点,则f()的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.13. A 函数f()=(2+a﹣1)e﹣1,可得f′()=(2+a)e﹣1+(2+a﹣1)e﹣1,=﹣2是函数f()=(2+a﹣1)e﹣1的极值点,可得:﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′()=(2﹣1)e﹣1+(2﹣﹣1)e﹣1=(2+﹣2)e﹣1,函数的极值点为:=﹣2,=1,当<﹣2或>1时,f′()>0函数是增函数,∈(﹣2,1)时,函数是减函数,=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选A.4.(2014·大纲全国,7)曲线y=e-1在点(1,1)处切线的斜率等于()A. 2eB.eC.2D.14.C[由题意可得y′=e-1+e-1,所以曲线在点(1,1)处切线的斜率等于2,故选C.]5.(2014·新课标全国Ⅱ,8)设曲线y=a-ln(+1)在点(0,0)处的切线方程为y=2,则a=()A.0B.1C.2D.35.D [y ′=a -1x +1,由题意得y ′|=0=2,即a -1=2,所以a =3.]6.(2014·陕西,3)定积分(2+e)d 的值为( ) A.e +2 B.e +1 C.e D.e -16.C [∫10(2+e)d =(2+e)|10=(1+e)-(0+e 0)=e ,因此选C.]7.(2014·江西,8)若f ()=2+2f ()d ,则∫1f ()d =( )A.-1B.-13C.13D.17.B [因为∫10f ()d 是常数,所以f ′()=2,所以可设f ()=2+c (c 为常数),所以2+c = 2+2(133+c )|10,解得c =-23,∫10f ()d =∫10(2+c )d =∫10(2-23)d =⎝⎛⎭⎫13x 3-23x |10=-13.]8.(2014·山东,6)直线y =4与曲线y =3在第一象限内围成的封闭图形的面积为( ) A.2 2 B.4 2 C.2 D.48.D [由4=3,解得=0或=2或=-2(舍去),根据定积分的几何意义可知,直线y =4与曲线y =3在第一象限内围成的封闭图形的面积为∫20(4-3)d =⎝⎛⎭⎫2x 2-14x 4|20=4.]9.(2014·湖南,9)已知函数f ()=sin(-φ),且2π30()d f x x ⎰=0,则函数f ()的图象的一条对称轴是( )A.=5π6B.=7π12C.=π3D.=π69.A [由定积分∫2π30sin(-φ)d =-cos(-φ)|2π30=12cos φ-32sin φ+cos φ=0,得tan φ=3,所以φ=π3+π(∈),所以f ()=sin(-π3-π)(∈),由正弦函数的性质知y =sin(-π3-π)与y =sin(-π3)的图象的对称轴相同,令-π3=π+π2,则=π+5π6(∈),所以函数f ()的图象的对称轴为=π+56π(∈),当=0,得=5π6,选A.]10.(2014·湖北,6)若函数f (),g ()满足11()()d f x g x x -⎰=0,则称f (),g ()为区间[-1,1]上的一组正交函数.给出三组函数:①f ()=sin 12,g ()=cos 12;②f ()=+1,g ()=-1;③f ()=,g ()=2.其中为区间[-1,1]上的正交函数的组数是( ) A.0 B.1 C.2 D.310.C [对于①,∫1-1sin 12cos 12d =∫1-112sin d =0,所以①是一组正交函数;对于②,∫1-1(+1)(-1)d =∫1-1(2-1)d≠0,所以②不是一组正交函数;对于③, ∫1-1·2d =∫1-13d =0,所以③是一组正交函数.选C.] 11.(2018全国Ⅱ,13)曲线在点(0, 0)处的切线方程为__________. 11.12(2018全国Ⅲ,1)曲线在处的切线的斜率为−2,则a =________. 12.,则所以a =−3.13.(2016·全国Ⅲ,15)已知f ()为偶函数,当<0时,f ()=ln(-)+3,则曲线y =f ()在点(1,-3)处的切线方程是________.13.2+y +1=0[设>0,则-<0,f (-)=ln -3,又f ()为偶函数,f ()=ln -3,f ′()=1x -3,f ′(1)=-2,切线方程为y =-2-1.]14.(2016·全国Ⅱ,16)若直线y =+b 是曲线y =ln +2的切线,也是曲线y =ln(+1)的切线,则b =________.14.1-ln 2 [y =ln +2的切线为:y =1x 1·+ln 1+1(设切点横坐标为1).y =ln(+1)的切线为:y =1x 2+1+ln(2+1)-x 2x 2+1,(设切点横坐标为2).∴⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x2x 2+1,解得1=12,2=-12,∴b =ln 1+1=1-ln 2.]15.(2015·陕西,15)设曲线y =e 在点(0,1)处的切线与曲线y =1x (>0)上点P 处的切线垂直,则P 的坐标为________.15.(1,1) [∵(e )′|=0=e 0=1,设P (0,y 0),有(x1)′|=0=-1x 20=-1,又0>0,∴0=1,故P (1,1).] 16.(2015·湖南,11)⎰2(-1)d =________.16.0 [∫20(-1)d =⎝⎛⎪⎪⎭⎫12x 2-x 20=12×22-2=0.]17.(2015·天津,11)曲线y =2与直线y =所围成的封闭图形的面积为________.17.16 [曲线y =2与直线y =所围成的封闭图形如图,由⎩⎪⎨⎪⎧y =x 2,y =x ,得A (1,1),面积S =∫10d -∫102d =122⎪⎪⎪⎪10-13x210=12-13=16.]18.(2015·陕西,16)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为________.18.1.2 [由题意可知最大流量的比即为横截面面积的比,建立以抛物线顶点为原点的直角坐标系,设抛物线方程为y =a 2,将点(5,2)代入抛物线方程得a =225,故抛物线方程为y =2252,抛物线的横截面面积为S 1=2⎰5(2-2522)d =2(2-7523)|50=403(m 2),而原梯形上底为10-2tan 45°×2=6(m),故原梯形面积为S 2=12(10+6)×2=16,S 2S 1=16403=1.2.]19.(2014·江西,13)若曲线y =e -上点P 处的切线平行于直线2+y +1=0,则点P 的坐标是________.19.(-ln 2,2) [由题意有y ′=-e -,设P (m ,n ),直线2+y +1=0的斜率为-2,则由题意得-e -m =-2,解得m =-ln 2,所以n =e -(-ln 2)=2.]20.(2018浙江,22)已知函数.Ⅰ)若f)在=1,2(1≠2)处导数相等,证明:f(1)+f(2)>8−8ln2;(Ⅱ)若a≤3−4ln2,证明:对于任意>0,直线y=+a 与曲线y=f()有唯一公共点. 20.(Ⅰ)函数f ()的导函数, 由,因,以.由基不式得.因为以.由意得.,所所以g()在[25,+∞)单调递增,故,()令m=,n=,则f(m)–m–a>|a|+––a≥0,f(n)–n–a<≤<0,所以,存在0∈(m,n)使f(0)=0+a,所以,对于任意的a∈R及∈(0,+∞),直线y=+a与曲线y=f()有公共点.由f()=+a得设h(=,则()=其g()=由Ⅰ)可知g()≥(16),又a≤34ln2,故–g()–1+a≤–g(16)–1+a=–3+4ln2+a≤0,所以h′()≤0,即函数h()在(0,+∞)上单调递减,因此方程f()––a=0至多1个实根.综上,当a≤3–4ln2时,对于任意>0,直线y=+a与曲线y=f()有唯一公共点.考点2 导数的应用1.(2015·福建,10)若定义在R上的函数f()满足f(0)=-1,其导函数f′()满足f′()>>1,则下列结论中一定错误的是()A.f(k 1)<1k B.f(k 1)>1k -1 C.f(11-k )<1k -1 D.f(11-k )>k k -11.C ∵导函数f ′()满足f ′()>>1,∴f ′()->0,-1>0,1k -1>0,可构造函数g ()=f ()-,可得g ′()>0,故g ()在R 上为增函数, ∵f (0)=-1,∴g (0)=-1,∴g(11-k )>g (0), ∴f(11-k )-k k -1>-1,∴f(11-k )>1k -1,∴选项C 错误,故选C.2.(2015·陕西,12)对二次函数f ()=a 2+b +c (a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( )A.-1是f ()的零点B.1是f ()的极值点C.3是f ()的极值D.点(2,8)在曲线y =f ()上 2.A [A 正确等价于a -b +c =0,① B 正确等价于b =-2a ,② C 正确等价于4ac -b 24a =3,③D 正确等价于4a +2b +c =8.④ 下面分情况验证,若A 错,由②、③、④组成的方程组的解为⎩⎪⎨⎪⎧a =5,b =-10,c =8.符合题意;若B 错,由①、③、④组成的方程组消元转化为关于a 的方程后无实数解; 若C 错,由①、②、④组成方程组,经验证a 无整数解; 若D 错,由①、②、③组成的方程组a 的解为-34也不是整数.综上,故选A.]3.(2015·新课标全国Ⅱ,12)设函数f ′()是奇函数f ()(∈R )的导函数,f (-1)=0,当>0时,f ′()-f ()<0,则使得f ()>0成立的的取值范围是( )A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)3.A [因为f ()(∈R )为奇函数,f (-1)=0,所以f (1)=-f (-1)=0.当≠0时,令g ()=f (x )x ,则g ()为偶函数,且g (1)=g (-1)=0.则当>0时,g ′()=(xx f )()′=xf ′(x )-f (x )x 2<0,故g ()在(0,+∞)上为减函数,在(-∞,0)上为增函数.所以在(0,+∞)上,当0<<1时,g ()>g (1)=0⇔f (x )x>0⇔f ()>0;在(-∞,0)上,当<-1时,g ()<g (-1)=0⇔f (x )x <0⇔f ()>0.综上,得使得f ()>0成立的的取值范围是(-∞,-1)∪(0,1),选A.]4.(2015·新课标全国Ⅰ,12)设函数f ()=e(2-1)-a +a ,其中a <1,若存在唯一的整数0使得f (0)<0,则a 的取值范围是( )A.⎣⎡⎭⎫-32e ,1B.⎣⎡⎭⎫-32e ,34C.⎣⎡⎭⎫32e ,34D.⎣⎡⎭⎫32e ,1 4.D [设g ()=e(2-1),y =a -a ,由题知存在唯一的整数0,使得g (0)在直线y =a -a 的下方, 因为g ′()=e(2+1),所以当<-12时,g ′()<0,当>-12时,g ′()>0,所以当=-12时,[g ()]min =-2e -12, 当=0时,g (0)=-1,g (1)=3e>0,直线y =a (-1)恒过(1,0)且斜率为a ,故-a >g (0)=-1, 且g (-1)=-3e -1≥-a -a ,解得32e≤a <1,故选D.]5.(2014·新课标全国Ⅱ,12)设函数f ()=3sin πx m .若存在f ()的极值点0满足20+[f (0)]2<m 2,则m 的取值范围是( )A.(-∞,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)5.C[由正弦型函数的图象可知:f ()的极值点0满足f (0)=±3,则πx 0m =π2+π(∈),从而得0=(+12)m (∈).所以不等式02+[f (0)]2<m 2即为(+12)2m 2+3<m 2,变形得m 2⎣⎡⎦⎤1-⎝⎛⎭⎫k +122>3,其中∈.由题意,存在整数使得不等式m 2⎣⎡⎦⎤1-⎝⎛⎭⎫k +122>3成立.当≠-1且≠0时,必有⎝⎛⎭⎫k +122>1,此时不等式显然不能成立,故=-1或=0,此时,不等式即为34m 2>3,解得m <-2或m >2.]6.(2014·辽宁,11)当∈[-2,1]时,不等式a 3-2+4+3≥0恒成立,则实数a 的取值范围是( )A.[-5,-3]B.[-6,-89] C.[-6,-2] D. [-4,-3] 6.C [当∈(0,1]时,得a ≥-3⎝⎛⎭⎫1x 3-4⎝⎛⎭⎫1x 2+1x ,令t =1x ,则t ∈[1,+∞),a ≥-3t 3-4t 2+t ,令g (t )=-3t 3-4t 2+t ,t ∈[1,+∞),则g ′(t )=-9t 2-8t +1=-(t +1)(9t -1),显然在[1,+∞)上,g ′(t )<0,g (t )单调递减,所以g (t )ma =g (1)=-6,因此a ≥-6;同理,当∈[-2,0)时,得a ≤-2.由以上两种情况得-6≤a ≤-2,显然当=0时也成立.故实数a 的取值范围为[-6,-2]. 7.(2018全国Ⅰ,21)已知函数. 1)讨论的调性(2)若存在两个极值点,明:.7.1)的定义域为,.(i )若,则,当且当a =2,时,所以在调递减. ii )若a >2,令得,或. 当时,; 当时,.所以在(0,a−√a 2−42),(a+√a 2−42,+∞)单调递减,在(a−√a 2−42,a+√a 2−42)单调递增.(2)由(1)知,存在两个极值点当且仅当a >2. 由于的两个极值点满,以,妨设,.由于 ,所以价于.设函,由1知,递减,又从而当时, 所以,即.8(218国Ⅱ1)已知函. 1)若,证:当时,;()若在有一个零点,求a 的值. 8(1)当a =1,等价于.函数,则 ,,以在调递减. 而,当时,,. (2)设函数(0,+∞)有一个零点当且仅当在(0,+∞)只有一个零点. (i )当a ≤0时,,没有零点; (ii )当a >0时,. 当,;当,所以在(0,2)单调递减,在(2,+∞)单调递增.故ℎ(2)=1−4a e 2是在[0,+∞)的最小值.①若ℎ(2)>0,即a <e 24,在(0,+∞)没有零点; ②若ℎ(2)=0,即a =e 24,在(0,+∞)只有一个零点;③若ℎ(2)<0,即a >e 24,由于ℎ(0)=1,所以在(0,2)有一个零点,由(1)知,当时,,所以.故在(2,4a)有一个零点,因此在(0,+∞)有两个零点. 综上,在(0,+∞)只有一个零点时,a =e 24.9.(2018全国Ⅲ,21)已知函数. 1)若,证明当时,;当时,; 2)若是的极大值点,求a . 9.(1)当a =0时,,.设函数, 时,;时,时,仅当时,从而且仅当时,. 所以在(−1,+∞)单调递增. 又f(0)=0,故当时,;当时,.(2)(i )若a ≥0,由(1)知,当时,,这是的极大值矛盾. (i )若a <0,设函数. 于当时,,符号相同又,是的极大点当且当是的极大值点. .如果,则当,时,,故不是的大值点 如果,则存根,故当时,所以不的极大值点. 如果,则.则当时,时,.所是的大点,从而是的大点 综上.10.(2018天津,20)已知函数()xf x a =, ()log a g x x =,其中a >1.(I )求函数()()ln h x f x x a =-的单调区间;(II )若曲线()y f x =在点()()11,x f x 处的切线与曲线()y g x =在点()()22,x g x 处的切线平行,证明()122lnln ln ax g x a+=-; (III )证明当1ea e ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线.10.(I )由已知, ()xh x a xlna =-,有()xh x a lna lna ='-.令()0h x '=,解得=0.由a >1,可知当变化时, ()h x ', ()h x 的变化情况如下表:所以函数()h x 的单调递减区间为(),0-∞,单调递增区间为()0,+∞.(II )由()xf x a lna '=,可得曲线()y f x =在点()()11,x f x 处的切线斜率为1xa lna .由()1g x xlna=',可得曲线()y g x =在点()()22,x g x 处的切线斜率为21x lna .因为这两条切线平行,故有121xa lna x lna=,即()1221x x a lna =. 两边取以a 为底的对数,得21220a log x x log lna ++=,所以()122lnlnax g x lna+=-. (III )曲线()y f x =在点()11,x x a 处的切线l 1: ()111xxy a a lna x x -=⋅-.曲线()y g x =在点()22,a x log x 处的切线l 2: ()2221a y log x x x x lna-=⋅-. 要证明当1ea e ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线, 只需证明当1ea e ≥时,存在()1,x ∈-∞+∞, ()20,x ∈+∞,使得l 1和l 2重合.即只需证明当1ea e ≥时,方程组1112121{1x x x a a lna x lnaa x a lna log x lna=-=-①②有解,由①得()1221x x a lna =,代入②,得1111120x x lnlna a x a lna x lna lna-+++=. ③ 因此,只需证明当1ea e ≥时,关于1的方程③存在实数解. 设函数()12x x lnlnau x a xa lna x lna lna=-+++, 即要证明当1ea e ≥时,函数()y u x =存在零点.()()21x u x lna xa '=-,可知(),0x ∈-∞时, ()0u x '>;()0,x ∈+∞时, ()u x '单调递减,又()010u '=>, ()()212110lna u a lna ⎡⎤=-<⎢⎥⎥'⎢⎣⎦, 故存在唯一的0,且0>0,使得()00u x '=,即()02010x lna x a-=.由此可得()u x 在()0,x -∞上单调递增,在()0,x +∞上单调递减.()u x 在0x x =处取得极大值()0u x .因为1ea e ≥,故()1ln lna ≥-, 所以()()000000201212220x x lnlna lnlna lnlna u x a x a lna x x lna lna lna lna x lna +=-+++=++≥≥. 下面证明存在实数t ,使得()0u t <.由(I )可得1xa xlna ≥+,当1x lna>时, 有()()()1211lnlnau x xlna xlna x lna lna≤+-+++()22121lnlna lna x x lna lna=-++++,所以存在实数t,使得()0u t<因此,当1ea e≥时,存在()1,x∈-∞+∞,使得()10u x=.所以,当1ea e≥时,存在直线l,使l是曲线()y f x=的切线,也是曲线()y g x=的切线.11.(2018江苏,19)记分别为函数的数.若存在,满足且,则为函数与一个“S点”.(1)证明:函数与不“S点;(2)若函数与存S点”,求实数a的值;(3)已知函数,.意a>0,判断否存在b>0,使函数与在区间(0,+∞)内存在“S点”,并说明理由.11.(1)函数f()=,g()=2+2-2,则f′()=1,g′()=2+2.由f()=g()且f′()= g′(),得,此程组解,因此f()与g()不存在“S”点.(2)函数,,.设为f()g()的“”点,由f(0)与g(0)且f′(0)与g′(0),得,即,()得,即,则.当时,满方程组(*),即为f()与g()的“S”点.因此,a的值为e2.(3)对任意a>0,设.为,且()的图象是不间断的,所以存在∈(0,1),使得,令,则b>0函数,.由(与)且f′()g′),得即()时,满足方程组(**,是函f()与)在区间(0,1的一“S点”.此,任意a>,存在b>0使函数f()与g()区间(0,+∞)存在“S点”.12(218北京,18)设函数=.(1)若曲线在点(1,f(1))处的切线与轴平行,求a;(2)若在处取得极小值,求a的取值范围.12.(Ⅰ)因为=,所以f ′()=[2a–(4a+1)]e+[a2–(4a+1)+4a+3]e(∈R)=[a 2–(2a +1)+2]e . f ′(1)=(1–a )e .由题设知f ′(1)=0,即(1–a )e=0,解得a =1. 此时f (1)=3e≠0. 所以a 的值为1.(Ⅱ)由(Ⅰ)得f ′()=[a 2–(2a +1)+2]e =(a –1)(–2)e . 若a >12,则当∈(1a ,2)时,f ′()<0; 当∈(2,+∞)时,f ′()>0. 所以f ()<0在=2处取得极小值.若a ≤12,则当∈(0,2)时,–2<0,a –1≤12–1<0,所以f ′()>0.所以2不是f ()的极小值点.综上可知,a 的取值范围是(12,+∞).13.(2017•浙江,20)已知函数f ()=(﹣ )e ﹣(≥).(Ⅰ)求f ()的导函数; (Ⅱ)求f ()在区间[,+∞)上的取值范围.13. (Ⅰ)函数f ()=(﹣)e ﹣(≥),导数f′()=(1﹣ • •2)e ﹣﹣(﹣)e ﹣=(1﹣+ )e ﹣=(1﹣)(1﹣)e ﹣;(Ⅱ)由f ()的导数f′()=(1﹣)(1﹣ )e ﹣,可得f′()=0时,=1或 ,当<<1时,f′()<0,f ()递减;当1<<时,f′()>0,f ()递增;当>时,f′()<0,f()递减,且≥ ⇔2≥2﹣1⇔(﹣1)2≥0,则f()≥0.由f()= e ,f(1)=0,f()= e ,即有f()的最大值为 e ,最小值为f(1)=0.则f()在区间[ ,+∞)上的取值范围是[0, e ].14.(2017•山东,20)已知函数f()=2+2cos,g()=e(cos﹣sin+2﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线y=f()在点(π,f(π))处的切线方程;(Ⅱ)令h()=g ()﹣a f()(a∈R),讨论h()的单调性并判断有无极值,有极值时求出极值.14.(Ⅰ)f(π)=π2﹣2.f′()=2﹣2sin,∴f′(π)=2π.∴曲线y=f()在点(π,f(π))处的切线方程为:y﹣(π2﹣2)=2π(﹣π).化为:2π﹣y﹣π2﹣2=0.(Ⅱ)h()=g ()﹣a f()=e(cos﹣sin+2﹣2)﹣a(2+2cos)h′()=e(cos﹣sin+2﹣2)+e(﹣sin﹣cos+2)﹣a(2﹣2sin)=2(﹣sin)(e﹣a)=2(﹣sin)(e﹣e lna).令u()=﹣sin,则u′()=1﹣cos≥0,∴函数u()在R上单调递增.∵u(0)=0,∴>0时,u()>0;<0时,u()<0.(i)a≤0时,e﹣a>0,∴>0时,h′()>0,函数h()在(0,+∞)单调递增;<0时,h′()<0,函数h()在(﹣∞,0)单调递减.∴=0时,函数h()取得极小值,h(0)=﹣1﹣2a.(ii)a>0时,令h′()=2(﹣sin)(e﹣e lna)=0.解得1=lna,2=0.①0<a<1时,∈(﹣∞,lna)时,e﹣e lna<0,h′()>0,函数h()单调递增;∈(lna,0)时,e﹣e lna>0,h′()<0,函数h()单调递减;∈(0,+∞)时,e﹣e lna>0,h′()>0,函数h()单调递增.∴当=0时,函数h()取得极小值,h(0)=﹣2a﹣1.当=lna时,函数h()取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].②当a=1时,lna=0,∈R时,h′()≥0,∴函数h()在R上单调递增.③1<a时,lna>0,∈(﹣∞,0)时,e﹣e lna<0,h′()>0,函数h()单调递增;∈(0,lna)时,e﹣e lna<0,h′()<0,函数h()单调递减;∈(lna,+∞)时,e﹣e lna>0,h′()>0,函数h()单调递增.∴当=0时,函数h()取得极大值,h(0)=﹣2a﹣1.当=lna时,函数h()取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].综上所述:a≤0时,函数h()在(0,+∞)单调递增;<0时,函数h()在(﹣∞,0)单调递减.=0时,函数h()取得极小值,h(0)=﹣1﹣2a.0<a<1时,函数h()在∈(﹣∞,lna)是单调递增;函数h()在∈(lna,0)上单调递减.当=0时,函数h()取得极小值,h(0)=﹣2a﹣1.当=lna时,函数h()取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数h()在R上单调递增.a>1时,函数h()在(﹣∞,0),(lna,+∞)上单调递增;函数h()在(0,lna)上单调递减.当=0时,函数h()取得极大值,h(0)=﹣2a﹣1.当=lna时,函数h()取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].15.(2017•北京,19)已知函数f()=ecos﹣.(13分)(1)求曲线y=f()在点(0,f(0))处的切线方程;(2)求函数f()在区间[0,]上的最大值和最小值.15.(1)函数f()=ecos﹣的导数为f′()=e(cos﹣sin)﹣1,可得曲线y=f()在点(0,f(0))处的切线斜率为=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f()在点(0,f(0))处的切线方程为y=1;(2)函数f()=ecos﹣的导数为f′()=e(cos﹣sin)﹣1,令g()=e(cos﹣sin)﹣1,则g()的导数为g′()=e(cos﹣sin﹣sin﹣cos)=﹣2e•sin,当∈[0,],可得g′()=﹣2e•sin≤0,即有g()在[0,]递减,可得g()≤g(0)=0,则f()在[0,]递减,即有函数f()在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=e cos ﹣=﹣.16.(2017·天津,20)设a∈,已知定义在R上的函数f()=24+33﹣32﹣6+a在区间(1,2)内有一个零点0,g()为f()的导函数.(Ⅰ)求g()的单调区间;(Ⅱ)设m∈[1,0)∪(0,2],函数h()=g()(m﹣0)﹣f(m),求证:h(m)h(0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,0)∪(0,2],满足| ﹣0|≥ .16.(Ⅰ)解:由f()=24+33﹣32﹣6+a,可得g()=f′()=83+92﹣6﹣6,进而可得g′()=242+18﹣6.令g′()=0,解得=﹣1,或= .当变化时,g′(),g()的变化情况如下表:(﹣1,)(,+∞)所以,g()的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣1,).(Ⅱ)证明:由h()=g()(m﹣0)﹣f(m),得h(m)=g(m)(m﹣0)﹣f(m),h(0)=g(0)(m﹣0)﹣f(m).令函数H1()=g()(﹣0)﹣f(),则H′1()=g′()(﹣0).由(Ⅰ)知,当∈[1,2]时,g′()>0,故当∈[1,0)时,H′1()<0,H1()单调递减;当∈(0,2]时,H′1()>0,H1()单调递增.因此,当∈[1,0)∪(0,2]时,H1()>H1(0)=﹣f(0)=0,可得H1(m)>0即h (m)>0,令函数H2()=g(0)(﹣0)﹣f(),则H′2()=g′(0)﹣g().由(Ⅰ)知,g()在[1,2]上单调递增,故当∈[1,0)时,H′2()>0,H2()单调递增;当∈(0,2]时,H′2()<0,H2()单调递减.因此,当∈[1,0)∪(0,2]时,H2()>H2(0)=0,可得得H2(m)<0即h(0)<0,.所以,h(m)h(0)<0.(Ⅲ)对于任意的正整数p,q,且,令m= ,函数h()=g()(m﹣0)﹣f(m).由(Ⅱ)知,当m∈[1,0)时,h()在区间(m,0)内有零点;当m∈(0,2]时,h()在区间(0,m)内有零点.所以h()在(1,2)内至少有一个零点,不妨设为1,则h(1)=g(1)(﹣0)﹣f()=0.由(Ⅰ)知g()在[1,2]上单调递增,故0<g(1)<g(1)<g(2),于是| ﹣0|= ≥ = .因为当∈[1,2]时,g()>0,故f()在[1,2]上单调递增,所以f()在区间[1,2]上除0外没有其他的零点,而≠0,故f()≠0.又因为p,q,a均为整数,所以|2p4+3p3q﹣3p2q2﹣6pq3+aq4|是正整数,从而|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.所以| ﹣0|≥ .所以,只要取A=g(2),就有| ﹣0|≥ .17.(2017•江苏,20)已知函数f()=3+a2+b+1(a>0,b∈R)有极值,且导函数f′()的极值点是f()的零点.(极值点是指函数取极值时对应的自变量的值)(Ⅰ)求b关于a的函数关系式,并写出定义域;(Ⅱ)证明:b2>3a;(Ⅲ)若f(),f′()这两个函数的所有极值之和不小于﹣,求a的取值范围.17.(Ⅰ)因为f()=3+a2+b+1,所以g()=f′()=32+2a+b,g′()=6+2a,令g′()=0,解得=﹣.由于当>﹣时g′()>0,g()=f′()单调递增;当<﹣时g′()<0,g()=f′()单调递减;所以f′()的极小值点为=﹣,由于导函数f′()的极值点是原函数f()的零点,所以f(﹣)=0,即﹣+ ﹣+1=0,所以b= + (a>0).因为f()=3+a2+b+1(a>0,b∈R)有极值,所以f′()=32+2a+b=0有两个不等的实根,所以4a2﹣12b>0,即a2﹣+ >0,解得a>3,所以b= + (a>3).(Ⅱ)由(I)可知h(a)=b2﹣3a= ﹣+ = (4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(Ⅲ)解:由(I)可知f′()的极小值为f′(﹣)=b﹣,设1,2是y=f()的两个极值点,则1+2= ,12= ,所以f(1)+f(2)= + +a(+ )+b(1+2)+2=(1+2)[(1+2)2﹣312]+a[(1+2)2﹣212]+b(1+2)+2= ﹣+2,又因为f(),f′()这两个函数的所有极值之和不小于﹣,所以b﹣+ ﹣+2= ﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].18.(2017•新课标Ⅰ,21)已知函数f()=ae2+(a﹣2)e﹣.(12分)(1)讨论f()的单调性;(2)若f()有两个零点,求a的取值范围.18.(1)由f()=ae2+(a﹣2)e﹣,求导f′()=2ae2+(a﹣2)e﹣1,当a=0时,f′()=2e﹣1<0,∴当∈R,f()单调递减,当a>0时,f′()=(2e+1)(ae﹣1)=2a(e+ )(e﹣),令f′()=0,解得:=ln ,当f′()>0,解得:>ln ,当f′()<0,解得:<ln ,∴∈(﹣∞,ln )时,f()单调递减,∈(ln ,+∞)单调递增;当a<0时,f′()=2a(e+ )(e﹣)<0,恒成立,∴当∈R,f()单调递减,综上可知:当a≤0时,f()在R单调减函数,当a>0时,f()在(﹣∞,ln )是减函数,在(ln ,+∞)是增函数;(2)由f()=ae2+(a﹣2)e﹣=0,有两个零点,由(1)可知:当a>0时,f()=0,有两个零点,则f()min=a +(a﹣2)﹣ln ,=a()+(a﹣2)× ﹣ln ,=1﹣﹣ln ,由f()min<0,则1﹣﹣ln <0,整理得:a﹣1+alna<0,设g(a)=alna+a﹣1,a>0,g′(a)=lna+1+1=lna+2,令g′(a)=0,解得:a=e﹣2,当a∈(0,e﹣2),g′(a)<0,g(a)单调递减,当a∈(e﹣2,+∞),g′(a)>0,g(a)单调递增,g(a)min=g(e﹣2)=e﹣2lne﹣2+e﹣2﹣1=﹣﹣1,由g(1)=1﹣1﹣ln1=0,∴0<a<1,a的取值范围(0,1).19.(2017•新课标Ⅱ,21)已知函数f()=a2﹣a﹣ln,且f()≥0.(Ⅰ)求a;(Ⅱ)证明:f()存在唯一的极大值点0,且e﹣2<f(0)<2﹣2.19.(Ⅰ)因为f()=a2﹣a﹣ln=(a﹣a﹣ln)(>0),则f()≥0等价于h()=a﹣a﹣ln≥0,因为h′()=a﹣,且当0<<时h′()<0、当>时h′()>0,所以h()min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(Ⅱ)由(I)可知f()=2﹣﹣ln,f′()=2﹣2﹣ln,令f′()=0,可得2﹣2﹣ln=0,记t()=2﹣2﹣ln,则t′()=2﹣,令t′()=0,解得:= ,所以t()在区间(0,)上单调递减,在(,+∞)上单调递增,所以t()min=t()=ln2﹣1<0,从而t()=0有解,即f′()=0存在两根0,2,且不妨设f′()在(0,0)上为正、在(0,2)上为负、在(2,+∞)上为正,所以f()必存在唯一极大值点0,且20﹣2﹣ln0=0,所以f(0)= ﹣0﹣0ln0= ﹣0+20﹣2 =0﹣,由0<可知f(0)<(0﹣)ma=﹣+ = ;由f′()<0可知0<<,所以f()在(0,0)上单调递增,在(0,)上单调递减,所以f(0)>f()=﹣+ = >;综上所述,f()存在唯一的极大值点0,且e﹣2<f(0)<2﹣2.20.(2017•新课标Ⅲ,21)已知函数f()=﹣1﹣aln.(Ⅰ)若f()≥0,求a的值;(Ⅱ)设m为整数,且对于任意正整数n,(1+ )(1+ )…(1+ )<m,求m的最小值.20.(Ⅰ)因为函数f()=﹣1﹣aln,>0,所以f′()=1﹣= ,且f(1)=0.所以当a≤0时f′()>0恒成立,此时y=f()在(0,+∞)上单调递增,所以在(0,1)上f()<0,这与f()≥0矛盾;当a>0时令f′()=0,解得=a,所以y=f ()在(0,a )上单调递减,在(a ,+∞)上单调递增,即f ()min =f (a ), 又因为f ()min =f (a )≥0, 所以a=1;(Ⅱ)由(Ⅰ)可知当a=1时f ()=﹣1﹣ln ≥0,即ln ≤﹣1, 所以ln (+1)≤当且仅当=0时取等号, 所以ln (1+ )<,∈N *,所以,∈N *. 一方面,因为 ++…+=1﹣<1, 所以,(1+)(1+ ) (1))<e ;另一方面,(1+ )(1+ ) (1))>(1+)(1+)(1+)=>2,同时当n ≥3时,(1+ )(1+ )…(1+ )∈(2,e ). 因为m 为整数,且对于任意正整数n (1+)(1+) (1))<m ,所以m 的最小值为3.21.(2016·全国Ⅱ,21)(1)讨论函数f ()=x -2x +2e 的单调性,并证明当>0时,(-2)e ++2>0;(2)证明:当a ∈[0,1)时,函数g ()=e x -ax -ax 2(>0)有最小值.设g ()的最小值为h (a ),求函数h (a )的值域.21.(1)解 f ()的定义域为(-∞,-2)∪(-2,+∞).f ′()=(x -1)(x +2)e x -(x -2)e x (x +2)2=x 2e x(x +2)2≥0,且仅当=0时,f ′()=0,所以f ()在(-∞,-2),(-2,+∞)单调递增. 因此当∈(0,+∞)时,f ()>f (0)=-1.所以(-2)e>-(+2),即(-2)e ++2>0. (2)证明 g ′()=(x -2)e x +a (x +2)x 3=x +2x3(f ()+a ).由(1)知,f ()+a 单调递增,对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0. 因此,存在唯一a ∈( 0,2],使得f (a )+a =0,即g ′(a )=0. 当0<<a 时,f ()+a <0,g ′()<0,g ()单调递减; 当>a 时,f ()+a >0,g ′()>0,g ()单调递增. 因此g ()在=a 处取得最小值,最小值为g (a )=e x a -a (x a +1)x 2a =e x a +f (x a )(x +1)x 2a =e x ax a +2.于是h (a )=e x a x a +2,由⎝⎛⎭⎫e x x +2′=(x +1)e x (x +2)2>0,e x x +2单调递增. 所以,由a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e 24.因为e x x +2单调递增,对任意λ∈⎝⎛⎦⎤12,e 24,存在唯一的a ∈(0,2],a =-f (a )∈[0,1),使得h (a )=λ.所以h (a )的值域是⎝⎛⎦⎤12,e 24.综上,当a ∈[0,1)时,g ()有最小值h (a ),h (a )的值域是⎝⎛⎦⎤12,e 24.22.(2016·全国Ⅲ,21)设函数f ()=a cos 2+(a -1)·(cos +1),其中a >0,记|f ()|的最大值为4. (1)求f ′(); (2)求A ; (3)证明|f ′()|≤2A .22.(1)解 f ′()=-2a sin 2-(a -1)sin .(2)解 当a ≥1时,|f ()|=|a cos 2+(a -1)(cos +1)|≤a +2(a -1)=3a -2.因此A =3a -2. 当0<a <1时,将f ()变形为f ()=2a cos 2+(a -1)·cos -1,令g (t )=2at 2+(a -1)t -1, 则A 是|g (t )|在[-1,1]上的最大值,g (-1)=a ,g (1)=3a -2,且当t =1-a 4a 时,g (t )取得极小值,极小值为g ⎝⎛⎭⎫1-a 4a =-(a -1)28a -1=-a 2+6a +18a . 令-1<1-a 4a <1,解得a <-13(舍去),a >15. (ⅰ)当0<a ≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=a ,|g (1)|=2-3a ,|g (-1)|<|g (1)|,所以A =2-3a .(ⅱ)当15<a <1时,由g (-1)-g (1)=2(1-a )>0,知g (-1)>g (1)>g ⎝⎛⎭⎫1-a 4a . 又⎪⎪⎪⎪g ⎝⎛⎭⎫1-a 4a -|g (-1)|=(1-a )(1+7a )8a >0,所以A =⎪⎪⎪⎪g ⎝⎛⎭⎫1-a 4a =a 2+6a +18a .综上,A =⎩⎨⎧2-3a ,0<a ≤15,a 2+6a +18a ,15<a <1,3a -2,a ≥1.(3)证明 由(1)得|f ′()|=|-2a sin 2-(a -1)sin |≤2a +|a -1|. 当0<a ≤15时,|f ′()|≤1+a ≤2-4a <2(2-3a )=2A .当15<a <1时,A =a 8+18a +34≥1,所以|f ′()|≤1+a <2A . 当a ≥1时,|f ′()|≤3a -1≤6a -4=2A .所以|f ′()|≤2A .23.(2016·全国Ⅰ,21)已知函数f ()=(-2)e +a (-1)2有两个零点. (1)求a 的取值范围;(2)设1,2是f ()的两个零点,证明:1+2<2. 23.解(1)f ′()=(-1)e +2a (-1)=(-1)(e +2a ). ①设a =0,则f ()=(-2)e,f ()只有一个零点.②设a >0,则当∈(-∞,1)时,f ′()<0;当∈(1,+∞)时,f ′()>0,所以f ()在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f (1)=-e,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a2(b -2)+a (b -1)2=a ⎝⎛⎭⎫b 2-32b >0,故f ()存在两个零点.③设a <0,由f ′()=0得=1或=ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当∈(1,+∞)时,f ′()>0,因此f ()在(1,+∞)上单调递增.又当≤1时,f ()<0,所以f ()不存在两个零点. 若a <-e2,则ln(-2a )>1,故当∈(1,ln(-2a ))时,f ′()<0;当∈(ln(-2a ),+∞)时,f ′()>0,因此f ()在(1,ln(-2a ))上单调递减,在(ln(-2a ),+∞)上单调递增. 又当≤1时,f ()<0,所以f ()不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)不妨设1<2.由(1)知,1∈(-∞,1),2∈(1,+∞),2-2∈(-∞,1),f ()在(-∞,1)上单调递减,所以1+2<2等价于f (1)>f (2-2),即f (2-2)<0.由于f (2-2)=-2e 2-2+a (2-1)2,而f (2)=(2-2)e 2+a (2-1)2=0, 所以f (2-2)=-2e 2-2-(2-2)e 2.设g ()=-e 2--(-2)e,则g ′()=(-1)(e 2--e),所以当>1时,g ′()<0,而g (1)=0, 故当>1时,g ()<0,从而g (2)=f (2-2)<0,故1+2<2.24.(2016·北京,18)设函数f ()=e a -+b ,曲线y =f ()在点(2,f (2))处的切线方程为y =(e-1)+4. (1)求a ,b 的值;(2)求f ()的单调区间. 24. (1)f ()的定义域为R . ∵f ′()=e a --e a -+b =(1-)e a -+b .依题设,⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f ()=e 2-+e,由f ′()=e 2-(1-+e -1)及e 2->0知,f ′()与1-+e -1同号.令g ()=1-+e -1,则g ′()=-1+e -1.所以,当∈(-∞,1)时,g ′()<0,g ()在区间(-∞,1)上单调递减; 当∈(1,+∞)时,g ′()>0,g ()在区间(1,+∞)上单调递增. 故g (1)=1是g ()在区间(-∞,+∞)上的最小值, 从而g ()>0,∈(-∞,+∞), 综上可知,f ′()>0,∈(-∞,+∞). 故f ()的单调递增区间为(-∞,+∞).25.(2016·四川,21)设函数f ()=a 2-a -ln ,其中a ∈R . (1)讨论f ()的单调性;(2)确定a 的所有可能取值,使得f ()>1x -e 1-在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).25.解 (1)f ′()=2a -1x =2ax 2-1x (>0).当a ≤0时,f ′()<0,f ()在(0,+∞)内单调递减. 当a >0时,由f ′()=0,有=12a.此时,当∈⎝⎛⎭⎫0,12a 时,f ′()<0,f ()单调递减;当∈⎝⎛⎭⎫12a ,+∞时,f ′()>0,f ()单调递增. (2)令g ()=1x -1e x -1,s ()=e -1-.则s ′()=e -1-1.而当>1时,s ′()>0,所以s ()在区间(1,+∞)内单调递增. 又由s (1)=0,有s ()>0,从而当>1时,g ()>0. 当a ≤0,>1时,f ()=a (2-1)-ln <0.故当f ()>g ()在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a >1.由(1)有f ⎝⎛⎭⎫12a <f (1)=0,而g ⎝⎛⎭⎫12a >0, 所以此时f ()>g ()在区间(1,+∞)内不恒成立.当a ≥12时,令h ()=f ()-g ()(≥1).当>1时,h ′()=2a -1x +1x 2-e 1->-1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0. 因此,h ()在区间(1,+∞)单调递增.又因为h (1)=0,所以当>1时,h ()=f ()-g ()>0,即f ()>g ()恒成立. 综上,a ∈⎣⎡⎭⎫12,+∞.26.(2016·山东,20)已知f ()=a (-ln )+2x -1x 2,a ∈R .(1)讨论f ()的单调性;(2)当a =1时,证明f ()>f ′()+32对于任意的∈[1,2]成立.26.(1)解 f ()的定义域为(0,+∞),f ′()=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0时,∈(0,1)时,f ′()>0,f ()单调递增,∈(1,+∞)时,f ′()<0,f ()单调递减. 当a >0时,f ′()=a (x -1)x 3⎝⎛⎭⎫x -2a ⎝⎛⎭⎫x +2a . ①0<a <2时,2a>1, 当∈(0,1)或∈⎝⎛⎭⎫2a ,+∞时,f ′()>0,f ()单调递增, 当∈⎝⎛⎭⎫1,2a 时,f ′()<0,f ()单调递减. ②a =2时,2a=1,在∈(0,+∞)内,f ′()≥0,f ()单调递增. ③a >2时,0<2a <1,当∈⎝⎛⎭⎫0,2a 或∈(1,+∞)时,f ′()>0,f ()单调递增, 当∈⎝⎛⎭⎫2a ,1时,f ′()<0,f ()单调递减. 综上所述,当a ≤0时,f ()在(0,1)内单调递增,在(1,+∞)内单调递减; 当0<a <2时,f ()在(0,1)内单调递增,在⎝⎛⎭⎫1,2a 内单调递减,在 ⎝⎛⎭⎫2a ,+∞内单调递增; 当a =2时,f ()在(0,+∞)内单调递增; 当a >2时,f ()在⎝⎛⎭⎫0,2a 内单调递增,在⎝⎛⎭⎫2a ,1内单调递减,在(1,+∞)内单调递增.(2)证明 由(1)知,a =1时,f ()-f ′()=-ln +2x -1x 2-⎝⎛⎭⎫1-1x -2x 2+2x 3=-ln +3x +1x 2-2x 3-1,∈[1,2]. 设g ()=-ln ,h ()=3x +1x 2-2x 3-1,∈[1,2],则f ()-f ′()=g ()+h ().由g ′()=x -1x ≥0,可得g ()≥g (1)=1,当且仅当=1时取得等号.又h ′()=-3x 2-2x +6x 4.设φ()=-32-2+6,则φ()在∈[1,2]单调递减.因为φ(1)=1,φ(2)=-10,所以∃0∈(1,2),使得∈(1,0)时,φ()>0,∈(0,2)时,φ()<0. 所以h ()在(1,0)内单调递增,在(0,2)内单调递减. 由h (1)=1,h (2)=12,可得h ()≥h (2)=12,当且仅当=2时取得等号.所以f ()-f ′()>g (1)+h (2)=32.即f ()>f ′()+32对于任意的∈[1,2]成立.27.(2015·新课标全国Ⅱ,21)设函数f ()=e m +2-m . (1)证明:f ()在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意1,2∈[-1,1],都有|f (1)-f (2)|≤e -1,求m 的取值范围. 27.(1)证明 f ′()=m (e m -1)+2.若m ≥0,则当∈(-∞,0)时,e m -1≤0,f ′()<0;当∈(0,+∞)时,e m -1≥0,f ′()>0. 若m <0,则当∈(-∞,0)时,e m -1>0,f ′()<0;当∈(0,+∞)时,e m -1<0,f ′()>0. 所以,f ()在(-∞,0)单调递减, 在(0,+∞)上单调递增.(2)解 由(1)知,对任意的m ,f ()在[-1,0]上单调递减,在[0,1]上单调递增,故f ()在=0处取得最小值.所以对于任意1,2∈[-1,1],|f (1)-f (2)|≤e -1的充要条件是⎩⎪⎨⎪⎧f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1,即⎩⎪⎨⎪⎧e m -m ≤e -1,e -m +m ≤e -1.①设函数g (t )=e t -t -e +1,则g ′(t )=e t -1.当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)上单调递减,在(0,+∞)上单调递增. 又g (1)=0,g (-1)=e -1+2-e <0,故当t ∈[-1,1]时,g (t )≤0. 当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立; 当m >1时,由g (t )的单调性,g (m )>0,即e m -m >e -1; 当m <-1时,g (-m )>0,即e -m +m >e -1. 综上,m 的取值范围是[-1,1].28.(2015·北京,18)已知函数f ()=ln1+x1-x. (1)求曲线y =f ()在点(0,f (0))处的切线方程; (2)求证:当∈(0,1)时,f ()>2⎝⎛⎭⎫x +x 33;(3)设实数使得f ()>⎝⎛⎭⎫x +x33对∈(0,1)恒成立,求的最大值. 28.(1)解 因为f ()=ln(1+)-ln(1-),所以f ′()=11+x +11-x,f ′(0)=2. 又因为f (0)=0,所以曲线y =f ()在点(0,f (0))处的切线方程为y =2. (2)证明 令g ()=f ()-2⎝⎛⎭⎫x +x 33,则g ′()=f ′()-2(1+2)=2x 41-x 2. 因为g ′()>0(0<<1),所以g ()在区间(0,1)上单调递增. 所以g ()>g (0)=0,∈(0,1),即当∈(0,1)时,f ()>2⎝⎛⎭⎫x +x33. (3)解 由(2)知,当≤2时,f ()>⎝⎛⎭⎫x +x33对∈(0,1)恒成立. 当>2时,令h ()=f ()-⎝⎛⎭⎫x +x 33,则h ′()=f ′()-(1+2)=kx 4-(k -2)1-x 2. 所以当0<<4k -2k 时,h ′()<0,因此h ()在区间⎝ ⎛⎭⎪⎫0,4k -2k 上单调递减.当0<<4k -2k 时,h ()<h (0)=0,即f ()<⎝⎛⎭⎫x +x 33. 所以当>2时,f ()>⎝⎛⎭⎫x +x33并非对∈(0,1)恒成立. 综上可知,的最大值为2.29.(2015·四川,21)已知函数f ()=-2(+a )ln +2-2a -2a 2+a ,其中a >0. (1)设g ()是f ()的导函数,讨论g ()的单调性;(2)证明:存在a ∈(0,1),使得f ()≥0在区间(1,+∞)内恒成立,且f ()=0在区间(1,+∞)内有唯一解.29.(1)解 由已知,函数f ()的定义域为(0,+∞),g ()=f ′()=2(-a )-2ln -2⎝⎛⎭⎫1+ax , 所以g ′()=2-2x +2ax2=2⎝⎛⎭⎫x -122+2⎝⎛⎭⎫a -14x 2,当0<a <14时,g ()在区间⎝ ⎛⎭⎪⎫0,1-1-4a 2,⎝ ⎛⎭⎪⎫1+1-4a 2,+∞上单调递增, 在区间⎝⎛⎭⎪⎫1-1-4a 2,1+1-4a 2上单调递减;当a ≥14时,g ()在区间(0,+∞)上单调递增.(2)证明 由f ′()=2(-a )-2ln -2⎝⎛⎭⎫1+a x =0,解得a =x -1-ln x 1+x -1, 令φ()=-2⎝ ⎛⎭⎪⎫x +x -1-ln x 1+x -1ln +2-2⎝ ⎛⎭⎪⎫x -1-ln x 1+x -1-2⎝ ⎛⎭⎪⎫x -1-ln x 1+x -12+x -1-ln x 1+x -1, 则φ(1)=1>0,φ(e)=-e (e -2)1+e -1-2⎝ ⎛⎭⎪⎫e -21+e -12<0, 故存在0∈(1,e),使得φ(0)=0,令a 0=x 0-1-ln x 01+x -10,u ()=-1-ln (≥1), 由u ′()=1-1x ≥0知,函数u ()在区间(1,+∞)上单调递增,所以0=u (1)1+1<u (x 0)1+x -10=a 0<u (e )1+e -1=e -21+e -1<1,即a 0∈(0,1),当a =a 0时,有f ′(0)=0,f (0)=φ(0)=0, 由(1)知,f ′()在区间(1,+∞)上单调递增, 故当∈(1,0)时,f ′()<0,从而f ()>f (0)=0;当∈(0,+∞)时,f ′()>0,从而f ()>f (0)=0,所以,当∈(1,+∞)时,f ()≥0,综上所述,存在a ∈(0,1),使得f ()≥0在区间(1,+∞)内恒成立,且f ()=0在区间(1,+∞)内有唯一解.30.(2015·天津,20)已知函数f ()=n -n ,∈R ,其中n ∈N *,n ≥2. (1)讨论f ()的单调性;(2)设曲线y =f ()与轴正半轴的交点为P ,曲线在点P 处的切线方程为y =g (),求证:对于任意的正实数,都有f ()≤g ();(3)若关于的方程f ()=a (a 为实数)有两个正实根1,2,求证:|2-1|<a1-n+2. 30.(1)解 由f ()=n -n ,可得f ′()=n -n n -1=n (1-n -1). 其中n ∈N *,且n ≥2,下面分两种情况讨论: ①当n 为奇数时.令f ′()=0,解得=1,或=-1. 当变化时,f ′(),f ()的变化情况如下表:所以,f ()在(②当n 为偶数时.当f ′()>0,即<1时,函数f ()单调递增; 当f ′()<0,即>1时,函数f ()单调递减;所以,f ()在(-∞,1)上单调递增,在(1,+∞)上单调递减. (2)证明 设点P 的坐标为(0,0),则0=n 1n -1,f ′(0)=n -n 2.曲线y =f ()在点P 处的切线方程为y =f ′(0)(-0),即g ()=f ′(0)(-0). 令F ()=f ()-g (),即F ()=f ()-f ′(0)(-0),则F ′()=f ′()-f ′(0). 由于f ′()=-n n -1+n 在(0,+∞)上单调递减,故F ′()在(0,+∞)上单调递减,又因为F ′(0)=0,所以当∈(0,0)时,F ′()>0, 当∈(0,+∞)时,F ′()<0,所以F ()在(0,0)内单调递增, 在(0,+∞)上单调递减,所以对于任意的正实数, 都有F ()≤F (0)=0,即对于任意的正实数,都有f ()≤g (). (3)证明 不妨设1≤2.由(2)知g ()=(n -n 2)(-0), 设方程g ()=a 的根为2′,可得2′=an -n 2+0. 当n ≥2时,g ()在(-∞,+∞)上单调递减, 又由(2)知g (2)≥f (2)=a =g (2′),可得2≤2′.类似地,设曲线y =f ()在原点处的切线方程为y =h (),可得h ()=n . 当∈(0,+∞),f ()-h ()=-n <0,即对于任意的∈(0,+∞),f ()<h (). 设方程h ()=a 的根为1′,可得1′=an.因为h ()=n 在(-∞,+∞)上单调递增,且h (1′)=a =f (1)<h (1),因此1′<1. 由此可得2-1<2′-1′=a1-n +0. 因为n ≥2,所以2n -1=(1+1)n -1≥1+C 1n -1=1+n -1=n , 故2≥n 1n -1=0.所以,|2-1|<a 1-n +2.31.(2015·江苏,19)已知函数f ()=3+a 2+b (a ,b ∈R ). (1)试讨论f ()的单调性;(2)若b =c -a (实数c 是与a 无关的常数),当函数f ()有三个不同的零点时,a 的取值范围恰好是。
2018版高考数学(人教A版文科)一轮复习真题演练集训:第三章 导数及其应用3-1含解析
真题演练集训1.[2014·大纲全国卷]曲线y=x e x-1在点(1,1)处切线的斜率等于( )A.2e B.eC.2 D.1答案:C解析:由题意可得y′=e x-1+x e x-1,所以曲线在点(1,1)处切线的斜率等于2,故选C。
2.[2014·新课标全国卷Ⅱ]设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0 B.1C.2 D.3答案:D解析:y′=a-错误!,由题意得y′|x=0=2,即a-1=2,所以a =3.3.[2016·新课标全国卷Ⅲ]已知f(x)为偶函数,当x≤0时,f(x)=e-x-1-x,则曲线y=f(x)在点(1,2)处的切线方程是________.答案:y=2x解析:当x〉0时,-x〈0,则f(-x)=e x-1+x.又f(x)为偶函数,所以f(x)=f(-x)=错误!+x,所以当x>0时,f′(x)=e x-1+1,则曲线y=f(x)在点(1,2)处的切线的斜率为f′(1)=2,所以切线方程为y-2=2(x-1),即y=2x.4.[2016·新课标全国卷Ⅱ]若直线y=kx+b是曲线y=ln x+2的切线,也是曲线y=ln(x+1)的切线,则b=________。
答案:1-ln 2解析:设y=kx+b与y=ln x+2和y=ln(x+1)的切点分别为(x1,ln x1+2)和(x2,ln(x2+1)).则切线分别为y-ln x1-2=错误!(x-x1),y-ln(x2+1)=错误!(x-x2),化简得y=错误!x+ln x1+1,y=错误!x-错误!+ln(x2+1),依题意,错误!解得x1=错误!,从而b=ln x1+1=1-ln 2。
2018版高考数学(人教A版理科)一轮复习真题演练集训:第三章 导数及其应用3-2含答案
真题演练集训1.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x〉0时,xf′(x)-f(x)<0,则使得f (x)>0成立的x的取值范围是( )A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)答案:A解析:设y=g(x)=错误!(x≠0),则g′(x)=错误!,当x〉0时,xf′(x)-f(x)<0,∴g′(x)〈0,∴g(x)在(0,+∞)上为减函数,且g(1)=f(1)=-f(-1)=0.∵f(x)为奇函数,∴g(x)为偶函数,∴g(x)的图象的示意图如图所示.当x>0,g(x)>0时,f(x)>0,0<x<1;当x<0,g(x)<0时,f(x)〉0,x<-1.∴使得f(x)>0成立的x的取值范围是(-∞,-1)∪(0,1),故选A。
2.若定义在R上的函数f(x)满足f(0)=-1,其导函数f′(x)满足f′(x)〉k〉1,则下列结论中一定错误的是( )A.f错误!〈错误!B.f错误!〉错误!C.f错误!<错误!D.f错误!>错误!答案:C解析:令g(x)=f(x)-kx+1,则g(0)=f(0)+1=0,g错误!=f错误!-k·错误!+1=f错误!-错误!。
∵ g ′(x )=f ′(x )-k 〉0,∴ g (x )在已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0〉0,则a 的取值范围是( ) A .(2,+∞) B .(-∞,-2)C .(1,+∞)D .(-∞,-1)答案:B解析:f ′(x ) =3ax 2-6x ,当a =3时,f ′(x )=9x 2-6x =3x (3x -2),则当x ∈(-∞,0)时,f ′(x )〉0;当x ∈错误!时,f ′(x )<0;当x ∈错误!时,f ′(x )〉0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章导数及其应用考点1 导数与积分1.(2017•浙江,7)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A. B. C. D.1. D 由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选D.2.(2017•新课标Ⅱ,11)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.12. A 函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1 =(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选A.3.(2014·大纲全国,7)曲线y=x e x-1在点(1,1)处切线的斜率等于( )A. 2eB.eC.2D.13.C[由题意可得y′=e x-1+x e x-1,所以曲线在点(1,1)处切线的斜率等于2,故选C.]4.(2014·新课标全国Ⅱ,8)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=( )A.0B.1C.2D.34.D [y′=a-1x+1,由题意得y′|x=0=2,即a-1=2,所以a=3.]5.(2014·陕西,3)定积分(2x+e x)d x的值为( )A.e +2B.e +1C.eD.e -15.C [∫10(2x +e x )d x =(x 2+e x )|10=(1+e)-(0+e 0)=e ,因此选C.]6.(2014·江西,8)若f (x )=x 2+2f (x )d x ,则f (x )d x =( )A.-1B.-13C.13D.16.B [因为∫10f (x )d x 是常数,所以f ′(x )=2x ,所以可设f (x )=x 2+c (c 为常数),所以x 2+c =x 2+2(13x 3+cx )|10,解得c =-23,∫10f (x )d x =∫10(x 2+c )d x =∫10(x 2-23)d x =⎝ ⎛⎭⎪⎫13x 3-23x |10=-13.]7.(2014·山东,6)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A.2 2 B.4 2 C.2 D.47.D [由4x =x 3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义可知,直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为∫20(4x -x 3)d x =⎝⎛⎭⎪⎫2x 2-14x 4|20=4.]8.(2014·湖南,9)已知函数f (x )=sin(x -φ),且2π30()d f x x ⎰=0,则函数f (x )的图象的一条对称轴是( )A.x =5π6B.x =7π12C.x =π3D.x =π68.A [由定积分∫2π30sin(x -φ)d x =-cos(x -φ)|2π30=12cos φ-32sin φ+cos φ=0,得tan φ=3,所以φ=π3+k π(k ∈Z ),所以f (x )=sin(x -π3-k π)(k ∈Z ),由正弦函数的性质知y =sin(x -π3-k π)与y =sin(x -π3)的图象的对称轴相同,令x -π3=k π+π2,则x =k π+5π6(k ∈Z ),所以函数f (x )的图象的对称轴为x =k π+56π(k ∈Z ),当k =0,得x =5π6,选A.]9.(2014·湖北,6)若函数f (x ),g (x )满足11()()d f x g x x -⎰=0,则称f (x ),g (x )为区间[-1,1]上的一组正交函数.给出三组函数:①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1;③f (x )=x ,g (x )=x 2.其中为区间[-1,1]上的正交函数的组数是( ) A.0 B.1 C.2 D.39.C [对于①,∫1-1sin 12x cos 12x d x =∫1-112sin x d x =0,所以①是一组正交函数;对于②,∫1-1(x +1)(x -1)d x =∫1-1(x 2-1)d x ≠0,所以②不是一组正交函数;对于③, ∫1-1x ·x 2d x =∫1-1x 3d x =0,所以③是一组正交函数.选C.]10.(2016·全国Ⅲ,15)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.10.2x +y +1=0[设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x ,f ′(x )=1x-3,f ′(1)=-2,切线方程为y =-2x -1.]11.(2016·全国Ⅱ,16)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.11.1-ln 2 [y =ln x +2的切线为:y =1x 1·x +ln x 1+1(设切点横坐标为x 1).y =ln(x +1)的切线为:y =1x 2+1x +ln(x 2+1)-x 2x 2+1,(设切点横坐标为x 2). ∴⎩⎪⎨⎪⎧1x1=1x 2+1,ln x 1+1=ln (x 2+1)-x2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.]12.(2015·陕西,15)设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.12.(1,1) [∵(e x)′|x=0=e 0=1,设P (x 0,y 0),有(x1)′|x=x0=-1x 20=-1,又x 0>0,∴x 0=1,故P(1,1).]13.(2015·湖南,11)⎰2(x -1)d x =________. 13.0 [∫20(x -1)d x =⎝⎛⎪⎪⎪⎭⎪⎫12x 2-x 20=12×22-2=0.] 14.(2015·天津,11)曲线y =x 2与直线y =x 所围成的封闭图形的面积为________.14.16 [曲线y =x 2与直线y =x 所围成的封闭图形如图,由⎩⎪⎨⎪⎧y =x 2,y =x ,得A (1,1),面积S =∫1x d x -∫10x 2d x =12x 2⎪⎪⎪⎪⎪⎪10-13x 210=12-13=16.]15.(2015·陕西,16)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为________.15.1.2 [由题意可知最大流量的比即为横截面面积的比,建立以抛物线顶点为原点的直角坐标系,设抛物线方程为y =ax 2,将点(5,2)代入抛物线方程得a =225,故抛物线方程为y =225x 2,抛物线的横截面面积为S 1=2⎰5(2-252x 2)d x =2(2x-752x 3)|50=403(m 2),而原梯形上底为10-2tan 45°×2=6(m),故原梯形面积为S 2=12(10+6)×2=16,S 2S 1=16403=1.2.]16.(2014·江西,13)若曲线y =e -x上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.16.(-ln 2,2) [由题意有y ′=-e -x,设P (m ,n ),直线2x +y +1=0的斜率为-2,则由题意得-e -m=-2,解得m =-ln 2,所以n =e -(-ln 2)=2.]考点2 导数的应用1.(2015·福建,10)若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A.f(k 1)<1k B.f(k 1)>1k -1 C.f(11-k )<1k -1 D.f(11-k )>k k -11.C [∵导函数f ′(x )满足f ′(x )>k >1,∴f ′(x )-k >0,k -1>0,1k -1>0, 可构造函数g (x )=f (x )-kx ,可得g ′(x )>0,故g (x )在R 上为增函数, ∵f (0)=-1,∴g (0)=-1,∴g(11-k )>g (0), ∴f(11-k )-k k -1>-1,∴f(11-k )>1k -1,∴选项C 错误,故选C.]2.(2015·陕西,12)对二次函数f (x )=ax 2+bx +c (a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( )A.-1是f (x )的零点B.1是f (x )的极值点C.3是f (x )的极值D.点(2,8)在曲线y =f (x )上 2.A [A 正确等价于a -b +c =0,① B 正确等价于b =-2a ,② C 正确等价于4ac -b24a =3,③D 正确等价于4a +2b +c =8.④ 下面分情况验证,若A 错,由②、③、④组成的方程组的解为⎩⎪⎨⎪⎧a =5,b =-10,c =8.符合题意;若B 错,由①、③、④组成的方程组消元转化为关于a 的方程后无实数解; 若C 错,由①、②、④组成方程组,经验证a 无整数解; 若D 错,由①、②、③组成的方程组a 的解为-34也不是整数.综上,故选A.]3.(2015·新课标全国Ⅱ,12)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)3.A [因为f (x )(x ∈R )为奇函数,f (-1)=0,所以f (1)=-f (-1)=0.当x ≠0时,令g (x )=f (x )x ,则g (x )为偶函数,且g (1)=g (-1)=0.则当x >0时,g ′(x )=(xx f )()′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上为减函数,在(-∞,0)上为增函数.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0⇔f (x )x>0⇔f (x )>0; 在(-∞,0)上,当x <-1时,g (x )<g (-1)=0⇔f (x )x<0⇔f (x )>0.综上,得使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),选A.]4.(2015·新课标全国Ⅰ,12)设函数f (x )=e x(2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32e ,1B.⎣⎢⎡⎭⎪⎫-32e ,34C.⎣⎢⎡⎭⎪⎫32e ,34D.⎣⎢⎡⎭⎪⎫32e ,1 4.D [设g (x )=e x(2x -1),y =ax -a ,由题知存在唯一的整数x 0,使得g (x 0)在直线y =ax -a 的下方,因为g ′(x )=e x(2x +1),所以当x <-12时,g ′(x )<0,当x >-12时,g ′(x )>0,所以当x =-12时,[g (x )]min =-2e -12,当x =0时,g (0)=-1,g (1)=3e>0,直线y =a (x -1)恒过(1,0)且斜率为a ,故-a >g (0)=-1, 且g (-1)=-3e -1≥-a -a ,解得32e≤a <1,故选D.]5.(2014·新课标全国Ⅱ,12)设函数f (x )=3sin πx m.若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( )A.(-∞,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)5.C[由正弦型函数的图象可知:f (x )的极值点x 0满足f (x 0)=±3,则πx 0m =π2+k π(k ∈Z ),从而得x 0=(k +12)m (k ∈Z ).所以不等式x 02+[f (x 0)]2<m 2即为(k +12)2m 2+3<m 2,变形得m 2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3,其中k ∈Z .由题意,存在整数k 使得不等式m 2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3成立.当k ≠-1且k ≠0时,必有⎝ ⎛⎭⎪⎫k +122>1,此时不等式显然不能成立,故k =-1或k =0,此时,不等式即为34m 2>3,解得m <-2或m >2.] 6.(2014·辽宁,11)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A.[-5,-3]B.[-6,-89] C.[-6,-2] D. [-4,-3] 6.C [当x ∈(0,1]时,得a ≥-3⎝ ⎛⎭⎪⎫1x 3-4⎝ ⎛⎭⎪⎫1x 2+1x,令t =1x ,则t ∈[1,+∞),a ≥-3t 3-4t 2+t ,令g (t )=-3t 3-4t 2+t ,t ∈[1,+∞),则g ′(t )=-9t 2-8t +1=-(t +1)(9t -1),显然在[1,+∞)上,g ′(t )<0,g (t )单调递减,所以g (t )max =g (1)=-6,因此a ≥-6;同理,当x ∈[-2,0)时,得a ≤-2.由以上两种情况得-6≤a ≤-2,显然当x =0时也成立.故实数a 的取值范围为[-6,-2].]7.(2017•浙江,20)已知函数f (x )=(x ﹣ )e ﹣x(x≥ ).(Ⅰ)求f (x )的导函数;(Ⅱ)求f (x )在区间[ ,+∞)上的取值范围.7. (Ⅰ)函数f (x )=(x ﹣)e ﹣x(x≥ ),导数f′(x )=(1﹣ • •2)e ﹣x﹣(x ﹣)e ﹣x=(1﹣x+ )e ﹣x=(1﹣x )(1﹣)e ﹣x;(Ⅱ)由f (x )的导数f′(x )=(1﹣x )(1﹣ )e ﹣x,可得f′(x )=0时,x=1或 ,当 <x <1时,f′(x )<0,f (x )递减;当1<x < 时,f′(x )>0,f (x )递增;当x > 时,f′(x )<0,f (x )递减, 且x≥⇔x 2≥2x﹣1⇔(x ﹣1)2≥0,则f (x )≥0.由f()= e ,f(1)=0,f()= e ,即有f(x)的最大值为 e ,最小值为f(1)=0.则f(x)在区间[ ,+∞)上的取值范围是[0, e ].8.(2017•山东,20)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.8.(Ⅰ)f(π)=π2﹣2.f′(x)=2x﹣2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣(π2﹣2)=2π(x﹣π).化为:2πx﹣y﹣π2﹣2=0.(Ⅱ)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx)h′(x)=e x(cosx﹣sinx+2x﹣2)+e x(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(i)a≤0时,e x﹣a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(﹣∞,0)单调递减.∴x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.(ii)a>0时,令h′(x)=2(x﹣sinx)(e x﹣e lna)=0.解得x1=lna,x2=0.①0<a<1时,x∈(﹣∞,lna)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(lna,0)时,e x﹣e lna>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].②当a=1时,lna=0,x∈R时,h′(x)≥0,∴函数h(x)在R上单调递增.③1<a时,lna>0,x∈(﹣∞,0)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(0,lna)时,e x﹣e lna<0,h′(x)<0,函数h(x)单调递减;x∈(lna,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].综上所述:a≤0时,函数h(x)在(0,+∞)单调递增;x<0时,函数h(x)在(﹣∞,0)单调递减.x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.0<a<1时,函数h(x)在x∈(﹣∞,lna)是单调递增;函数h(x)在x∈(lna,0)上单调递减.当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h (x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数h(x)在R上单调递增.a>1时,函数h(x)在(﹣∞,0),(lna,+∞)上单调递增;函数h(x)在(0,lna)上单调递减.当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h (x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].9.(2017•北京,19)已知函数f(x)=e x cosx﹣x.(13分)(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.9.(1)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=e cos ﹣=﹣.10.(2017·天津,20)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0, g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0, 2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足| ﹣x0|≥ .10.(Ⅰ)解:由f(x)=2x4+3x3﹣3x2﹣6x+a,可得g(x)=f′(x)=8x3+9x2﹣6x﹣6,进而可得g′(x)=24x2+18x﹣6.令g′(x)=0,解得x=﹣1,或x= .当x变化时,g′(x),g(x)的变化情况如下表:,+∞)所以,g(x)的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣1,).(Ⅱ)证明:由h(x)=g(x)(m﹣x0)﹣f(m),得h(m)=g(m)(m﹣x0)﹣f(m),h(x0)=g(x0)(m﹣x0)﹣f(m).令函数H1(x)=g(x)(x﹣x0)﹣f(x),则H′1(x)=g′(x)(x﹣x0).由(Ⅰ)知,当x∈[1,2]时,g′(x)>0,故当x∈[1,x0)时,H′1(x)<0,H1(x)单调递减;当x∈(x0, 2]时,H′1(x)>0,H1(x)单调递增.因此,当x∈[1,x0)∪(x0, 2]时,H1(x)>H1(x0)=﹣f(x0)=0,可得H1(m)>0即h(m)>0,令函数H2(x)=g(x0)(x﹣x0)﹣f(x),则H′2(x)=g′(x0)﹣g(x).由(Ⅰ)知,g (x)在[1,2]上单调递增,故当x∈[1,x0)时,H′2(x)>0,H2(x)单调递增;当x∈(x0, 2]时,H′2(x)<0,H2(x)单调递减.因此,当x∈[1,x0)∪(x0, 2]时,H2(x)>H2(x0)=0,可得得H2(m)<0即h(x0)<0,.所以,h(m)h(x0)<0.(Ⅲ)对于任意的正整数p,q,且,令m= ,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[1,x0)时,h(x)在区间(m,x0)内有零点;当m∈(x0, 2]时,h(x)在区间(x0, m)内有零点.所以h(x)在(1,2)内至少有一个零点,不妨设为x1,则h(x1)=g(x1)(﹣x0)﹣f()=0.由(Ⅰ)知g(x)在[1,2]上单调递增,故0<g(1)<g(x1)<g(2),于是| ﹣x0|= ≥ = .因为当x∈[1,2]时,g(x)>0,故f(x)在[1,2]上单调递增,所以f(x)在区间[1,2]上除x0外没有其他的零点,而≠x0,故f()≠0.又因为p,q,a均为整数,所以|2p4+3p3q﹣3p2q2﹣6pq3+aq4|是正整数,从而|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.所以| ﹣x0|≥ .所以,只要取A=g(2),就有| ﹣x0|≥ .11.(2017•江苏,20)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(Ⅰ)求b关于a的函数关系式,并写出定义域;(Ⅱ)证明:b2>3a;(Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.11.(Ⅰ)因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+ ﹣+1=0,所以b= + (a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0,即a2﹣+ >0,解得a>3,所以b= + (a>3).(Ⅱ)由(I)可知h(a)=b2﹣3a= ﹣+ = (4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(Ⅲ)解:由(I)可知f′(x)的极小值为f′(﹣)=b﹣,设x1, x2是y=f(x)的两个极值点,则x1+x2= ,x1x2= ,所以f(x1)+f(x2)= + +a(+ )+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2= ﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+ ﹣+2= ﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].12.(2017•新课标Ⅰ,21)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(12分)(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.12.(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+ )(e x﹣),令f′(x)=0,解得:x=ln ,当f′(x)>0,解得:x>ln ,当f′(x)<0,解得:x<ln ,∴x∈(﹣∞,ln )时,f(x)单调递减,x∈(ln ,+∞)单调递增;当a<0时,f′(x)=2a(e x+ )(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln )是减函数,在(ln ,+∞)是增函数;(2)由f(x)=ae2x+(a﹣2)e x﹣x=0,有两个零点,由(1)可知:当a>0时,f(x)=0,有两个零点,则f(x)min=a +(a﹣2)﹣ln ,=a()+(a﹣2)× ﹣ln ,=1﹣﹣ln ,由f(x)min<0,则1﹣﹣ln <0,整理得:a﹣1+alna<0,设g(a)=alna+a﹣1,a>0,g′(a)=lna+1+1=lna+2,令g′(a)=0,解得:a=e﹣2,当a∈(0,e﹣2),g′(a)<0,g(a)单调递减,当a∈(e﹣2,+∞),g′(a)>0,g(a)单调递增,g(a)min=g(e﹣2)=e﹣2lne﹣2+e﹣2﹣1=﹣﹣1,由g(1)=1﹣1﹣ln1=0,∴0<a<1,a的取值范围(0,1).13.(2017•新课标Ⅱ,21)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(Ⅰ)求a;(Ⅱ)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.13.(Ⅰ)因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,因为h′(x)=a﹣,且当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(Ⅱ)由(I)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x= ,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0, x2,且不妨设f′(x)在(0,x0)上为正、在(x0, x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)= ﹣x0﹣x0lnx0= ﹣x0+2x0﹣2 =x0﹣,由x0<可知f(x0)<(x0﹣)max=﹣+ = ;由f′()<0可知x0<<,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=﹣+ = >;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.14.(2017•新课标Ⅲ,21)已知函数f(x)=x﹣1﹣alnx.(Ⅰ)若 f(x)≥0,求a的值;(Ⅱ)设m为整数,且对于任意正整数n,(1+ )(1+ )…(1+ )<m,求m的最小值.14.(Ⅰ)因为函数f(x)=x﹣1﹣alnx,x>0,所以f′(x)=1﹣= ,且f(1)=0.所以当a≤0时f′(x)>0恒成立,此时y=f(x)在(0,+∞)上单调递增,所以在(0,1)上f(x)<0,这与f(x)≥0矛盾;当a>0时令f′(x)=0,解得x=a,所以y=f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,即f(x)min=f(a),又因为f(x)min=f(a)≥0,所以a=1;(Ⅱ)由(Ⅰ)可知当a=1时f (x )=x ﹣1﹣lnx≥0,即lnx≤x﹣1, 所以ln (x+1)≤x 当且仅当x=0时取等号,所以ln (1+ )<,k ∈N *,所以,k ∈N *.一方面,因为 + +…+=1﹣<1,所以,(1+ )(1+)…(1+ )<e ;另一方面,(1+ )(1+ ) (1))>(1+ )(1+)(1+)=>2,同时当n≥3时,(1+ )(1+ ) (1))∈(2,e ).因为m 为整数,且对于任意正整数n (1+ )(1+ ) (1))<m , 所以m 的最小值为3. 15.(2016·全国Ⅱ,21)(1)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x+x +2>0;(2)证明:当a ∈[0,1)时,函数g (x )=e x-ax -ax2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.15.(1)解 f (x )的定义域为(-∞,-2)∪(-2,+∞). f ′(x )=(x -1)(x +2)e x-(x -2)e x(x +2)2=x 2e x(x +2)2≥0,且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)单调递增.因此当x ∈(0,+∞)时,f (x )>f (0)=-1.所以(x -2)e x>-(x +2),即(x -2)e x+x +2>0. (2)证明 g ′(x )=(x -2)e x+a (x +2)x 3=x +2x3(f (x )+a ). 由(1)知,f (x )+a 单调递增,对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0. 因此,存在唯一x a ∈( 0,2],使得f (x a )+a =0,即g ′(x a )=0. 当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减; 当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增. 因此g (x )在x =x a 处取得最小值,最小值为g (x a )=e xa -a (x a +1)x 2a =e xa +f (x a )(x +1)x 2a=e xa x a +2.于是h (a )=e x a x a +2,由⎝ ⎛⎭⎪⎫e xx +2′=(x +1)e x (x +2)2>0,e xx +2单调递增.所以,由x a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e24.因为e xx +2单调递增,对任意λ∈⎝ ⎛⎦⎥⎤12,e 24,存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ.所以h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.16.(2016·全国Ⅲ,21)设函数f (x )=a cos 2x +(a -1)·(cos x +1),其中a >0,记|f (x )|的最大值为4. (1)求f ′(x ); (2)求A ;(3)证明|f ′(x )|≤2A .16.(1)解 f ′(x )=-2a sin 2x -(a -1)sin x .(2)解 当a ≥1时,|f (x )|=|a cos 2x +(a -1)(cos x +1)|≤a +2(a -1)=3a -2.因此A =3a -2.当0<a <1时,将f (x )变形为f (x )=2a cos 2x +(a -1)·cos x -1,令g (t )=2at 2+(a -1)t -1,则A 是|g (t )|在[-1,1]上的最大值,g (-1)=a ,g (1)=3a -2,且当t =1-a 4a 时,g (t )取得极小值,极小值为g ⎝ ⎛⎭⎪⎫1-a 4a =-(a -1)28a -1=-a 2+6a +18a. 令-1<1-a 4a <1,解得a <-13(舍去),a >15.(ⅰ)当0<a ≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=a ,|g (1)|=2-3a ,|g (-1)|<|g (1)|,所以A =2-3a .(ⅱ)当15<a <1时,由g (-1)-g (1)=2(1-a )>0,知g (-1)>g (1)>g ⎝ ⎛⎭⎪⎫1-a 4a . 又⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫1-a 4a -|g (-1)|=(1-a )(1+7a )8a >0,所以A =⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫1-a 4a =a 2+6a +18a .综上,A =⎩⎪⎨⎪⎧2-3a ,0<a ≤15,a 2+6a +18a ,15<a <1,3a -2,a ≥1.(3)证明 由(1)得|f ′(x )|=|-2a sin 2x -(a -1)sin x |≤2a +|a -1|. 当0<a ≤15时,|f ′(x )|≤1+a ≤2-4a <2(2-3a )=2A .当15<a <1时,A =a 8+18a +34≥1,所以|f ′(x )|≤1+a <2A . 当a ≥1时,|f ′(x )|≤3a -1≤6a -4=2A .所以|f ′(x )|≤2A .17.(2016·全国Ⅰ,21)已知函数f (x )=(x -2)e x+a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.17.解(1)f ′(x )=(x -1)e x+2a (x -1)=(x -1)(e x +2a ). ①设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点.②设a >0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f (1)=-e,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a 2(b -2)+a (b -1)2=a ⎝⎛⎭⎪⎫b 2-32b >0,故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)上单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0,因此f (x )在(1,ln(-2a ))上单调递减,在(ln(-2a ),+∞)上单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)不妨设x 1<x 2.由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),f (x )在(-∞,1)上单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0. 由于f (2-x 2)=-x 2e2-x2+a (x 2-1)2,而f (x 2)=(x 2-2)e x 2+a (x 2-1)2=0,所以f (2-x 2)=-x 2e 2-x2-(x 2-2)e x2.设g (x )=-x e 2-x-(x -2)e x,则g ′(x )=(x -1)(e 2-x-e x),所以当x >1时,g ′(x )<0,而g (1)=0,故当x >1时,g (x )<0,从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.18.(2016·北京,18)设函数f (x )=x e a -x+bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e-1)x +4. (1)求a ,b 的值; (2)求f (x )的单调区间. 18. (1)f (x )的定义域为R . ∵f ′(x )=ea -x-x ea -x+b =(1-x )ea -x+b .依题设,⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f (x )=x e2-x+e x ,由f ′(x )=e2-x(1-x +ex -1)及e2-x>0知,f ′(x )与1-x +ex-1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+ex -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞), 综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).19.(2016·四川,21)设函数f (x )=ax 2-a -ln x ,其中a ∈R . (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x-e 1-x在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).19.解 (1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0,有x =12a.此时,当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增.(2)令g (x )=1x -1e x -1,s (x )=e x -1-x .则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内单调递增.又由s (1)=0,有s (x )>0,从而当x >1时,g (x )>0. 当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a >1.由(1)有f ⎝⎛⎭⎪⎫12a <f (1)=0,而g ⎝ ⎛⎭⎪⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立. 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x2-e1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x2>0. 因此,h (x )在区间(1,+∞)单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立.综上,a ∈⎣⎢⎡⎭⎪⎫12,+∞.20.(2016·山东,20)已知f (x )=a (x -ln x )+2x -1x2,a ∈R .(1)讨论f (x )的单调性;(2)当a =1时,证明f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.20.(1)解 f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0时,x ∈(0,1)时,f ′(x )>0,f (x )单调递增,x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减. 当a >0时,f ′(x )=a (x -1)x 3⎝⎛⎭⎪⎫x -2a ⎝⎛⎭⎪⎫x +2a .①0<a <2时,2a>1,当x ∈(0,1)或x ∈⎝⎛⎭⎪⎫2a,+∞时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎪⎫1,2a 时,f ′(x )<0,f (x )单调递减.②a =2时,2a=1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增. ③a >2时,0<2a<1,当x ∈⎝⎛⎭⎪⎫0,2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎪⎫2a,1时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)内单调递增,在(1,+∞)内单调递减; 当0<a <2时,f (x )在(0,1)内单调递增,在⎝⎛⎭⎪⎫1,2a 内单调递减,在⎝⎛⎭⎪⎫2a,+∞内单调递增;当a =2时,f (x )在(0,+∞)内单调递增; 当a >2时,f (x )在⎝⎛⎭⎪⎫0,2a 内单调递增,在⎝⎛⎭⎪⎫2a,1内单调递减,在(1,+∞)内单调递增.(2)证明 由(1)知,a =1时,f (x )-f ′(x )=x -ln x +2x -1x2-⎝⎛⎭⎪⎫1-1x -2x2+2x 3=x -ln x +3x +1x 2-2x3-1,x ∈[1,2]. 设g (x )=x -ln x ,h (x )=3x +1x 2-2x3-1,x ∈[1,2],则f (x )-f ′(x )=g (x )+h (x ).由g ′(x )=x -1x≥0, 可得g (x )≥g (1)=1,当且仅当x =1时取得等号.又h ′(x )=-3x 2-2x +6x4. 设φ(x )=-3x 2-2x +6,则φ(x )在x ∈[1,2]单调递减.因为φ(1)=1,φ(2)=-10,所以∃x 0∈(1,2),使得x ∈(1,x 0)时,φ(x )>0,x ∈(x 0,2)时,φ(x )<0.所以h (x )在(1,x 0)内单调递增,在(x 0,2)内单调递减. 由h (1)=1,h (2)=12,可得h (x )≥h (2)=12,当且仅当x =2时取得等号.所以f (x )-f ′(x )>g (1)+h (2)=32.即f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.21.(2015·新课标全国Ⅱ,21)设函数f (x )=e mx+x 2-mx . (1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e-1,求m 的取值范围.21.(1)证明 f ′(x )=m (e mx-1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx-1≤0,f ′(x )<0;当x ∈(0,+∞)时,e mx-1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx-1>0,f ′(x )<0;当x ∈(0,+∞)时,e mx-1<0,f ′(x )>0.所以,f (x )在(-∞,0)单调递减, 在(0,+∞)上单调递增.(2)解 由(1)知,对任意的m ,f (x )在[-1,0]上单调递减,在[0,1]上单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e -1的充要条件是⎩⎪⎨⎪⎧f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1,即⎩⎪⎨⎪⎧e m-m ≤e -1,e -m +m ≤e -1.①设函数g (t )=e t -t -e +1,则g ′(t )=e t-1.当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)上单调递减,在(0,+∞)上单调递增.又g (1)=0,g (-1)=e -1+2-e <0,故当t ∈[-1,1]时,g (t )≤0. 当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立; 当m >1时,由g (t )的单调性,g (m )>0,即e m-m >e -1; 当m <-1时,g (-m )>0,即e -m+m >e -1. 综上,m 的取值范围是[-1,1].22.(2015·北京,18)已知函数f (x )=ln 1+x1-x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求证:当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33;(3)设实数k 使得f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立,求k 的最大值. 22.(1)解 因为f (x )=ln(1+x )-ln(1-x ),所以f ′(x )=11+x +11-x ,f ′(0)=2.又因为f (0)=0,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =2x . (2)证明 令g (x )=f (x )-2⎝ ⎛⎭⎪⎫x +x 33,则g ′(x )=f ′(x )-2(1+x 2)=2x 41-x 2.因为g ′(x )>0(0<x <1),所以g (x )在区间(0,1)上单调递增.所以g (x )>g (0)=0,x ∈(0,1),即当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33.(3)解 由(2)知,当k ≤2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立. 当k >2时,令h (x )=f (x )-k ⎝ ⎛⎭⎪⎫x +x 33,则h ′(x )=f ′(x )-k (1+x 2)=kx 4-(k -2)1-x 2. 所以当0<x <4k -2k时,h ′(x )<0,因此h (x )在区间⎝ ⎛⎭⎪⎫0,4k -2k 上单调递减.当0<x <4k -2k 时,h (x )<h (0)=0,即f (x )<k ⎝ ⎛⎭⎪⎫x +x 33.所以当k >2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33并非对x ∈(0,1)恒成立.综上可知,k 的最大值为2.23.(2015·四川,21)已知函数f (x )=-2(x +a )ln x +x 2-2ax -2a 2+a ,其中a >0. (1)设g (x )是f (x )的导函数,讨论g (x )的单调性;(2)证明:存在a ∈(0,1),使得f (x )≥0在区间(1,+∞)内恒成立,且f (x )=0在区间(1,+∞)内有唯一解.23.(1)解 由已知,函数f (x )的定义域为(0,+∞),g (x )=f ′(x )=2(x -a )-2ln x -2⎝⎛⎭⎪⎫1+a x,所以g ′(x )=2-2x+2a x 2=2⎝ ⎛⎭⎪⎫x -122+2⎝ ⎛⎭⎪⎫a -14x 2,当0<a <14时,g (x )在区间⎝ ⎛⎭⎪⎫0,1-1-4a 2,⎝ ⎛⎭⎪⎫1+1-4a 2,+∞上单调递增,在区间⎝⎛⎭⎪⎫1-1-4a 2,1+1-4a 2上单调递减; 当a ≥14时,g (x )在区间(0,+∞)上单调递增.(2)证明 由f ′(x )=2(x -a )-2ln x -2⎝⎛⎭⎪⎫1+a x=0,解得a =x -1-ln x1+x-1, 令φ(x )=-2⎝ ⎛⎭⎪⎫x +x -1-ln x 1+x -1ln x +x 2-2⎝ ⎛⎭⎪⎫x -1-ln x 1+x -1x -2⎝ ⎛⎭⎪⎫x -1-ln x 1+x -12+x -1-ln x 1+x -1, 则φ(1)=1>0,φ(e)=-e (e -2)1+e -2⎝ ⎛⎭⎪⎫e -21+e -12<0,故存在x 0∈(1,e),使得φ(x 0)=0, 令a 0=x 0-1-ln x 01+x 0,u (x )=x -1-ln x (x ≥1), 由u ′(x )=1-1x≥0知,函数u (x )在区间(1,+∞)上单调递增, 所以0=u (1)1+1<u (x 0)1+x -10=a 0<u (e )1+e -1=e -21+e-1<1,即a 0∈(0,1), 当a =a 0时,有f ′(x 0)=0,f (x 0)=φ(x 0)=0, 由(1)知,f ′(x )在区间(1,+∞)上单调递增, 故当x ∈(1,x 0)时,f ′(x )<0,从而f (x )>f (x 0)=0;当x ∈(x 0,+∞)时,f ′(x )>0,从而f (x )>f (x 0)=0,所以,当x ∈(1,+∞)时,f (x )≥0, 综上所述,存在a ∈(0,1),使得f (x )≥0在区间(1,+∞)内恒成立,且f (x )=0在区间(1,+∞)内有唯一解.24.(2015·天津,20)已知函数f (x )=nx -x n ,x ∈R ,其中n ∈N *,n ≥2. (1)讨论f (x )的单调性;(2)设曲线y =f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y =g (x ),求证:对于任意的正实数x ,都有f (x )≤g (x );(3)若关于x 的方程f (x )=a (a 为实数)有两个正实根x 1,x 2,求证:|x 2-x 1|<a1-n+2.24.(1)解 由f (x )=nx -x n ,可得f ′(x )=n -nx n -1=n (1-xn -1).其中n ∈N *,且n ≥2,下面分两种情况讨论:①当n 为奇数时.令f ′(x )=0,解得x =1,或x =-1. 当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,f (x )②当n 为偶数时.当f ′(x )>0,即x <1时,函数f (x )单调递增; 当f ′(x )<0,即x >1时,函数f (x )单调递减;所以,f (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减. (2)证明 设点P 的坐标为(x 0,0),则x 0=n1n -1,f ′(x 0)=n -n 2. 曲线y =f (x )在点P 处的切线方程为y =f ′(x 0)(x -x 0),即g (x )=f ′(x 0)(x -x 0).令F (x )=f (x )-g (x ),即F (x )=f (x )-f ′(x 0)(x -x 0),则F ′(x )=f ′(x )-f ′(x 0). 由于f ′(x )=-nxn -1+n 在(0,+∞)上单调递减,故F ′(x )在(0,+∞)上单调递减,又因为F ′(x 0)=0,所以当x ∈(0,x 0)时,F ′(x )>0, 当x ∈(x 0,+∞)时,F ′(x )<0,所以F (x )在(0,x 0)内单调递增, 在(x 0,+∞)上单调递减,所以对于任意的正实数x ,都有F (x )≤F (x 0)=0,即对于任意的正实数x ,都有f (x )≤g (x ). (3)证明 不妨设x 1≤x 2.由(2)知g (x )=(n -n 2)(x -x 0), 设方程g (x )=a 的根为x 2′,可得x 2′=an -n 2+x 0.当n ≥2时,g (x )在(-∞,+∞)上单调递减, 又由(2)知g (x 2)≥f (x 2)=a =g (x 2′),可得x 2≤x 2′.类似地,设曲线y =f (x )在原点处的切线方程为y =h (x ),可得h (x )=nx . 当x ∈(0,+∞),f (x )-h (x )=-x n<0,即对于任意的x ∈(0,+∞),f (x )<h (x ). 设方程h (x )=a 的根为x 1′,可得x 1′=a n.因为h (x )=nx 在(-∞,+∞)上单调递增,且h (x 1′)=a =f (x 1)<h (x 1),因此x 1′<x 1. 由此可得x 2-x 1<x 2′-x 1′=a1-n+x 0. 因为n ≥2,所以2n -1=(1+1)n -1≥1+C 1n -1=1+n -1=n ,故2≥n 1n -1=x 0.所以,|x 2-x 1|<a 1-n+2.25.(2015·江苏,19)已知函数f (x )=x 3+ax 2+b (a ,b ∈R ). (1)试讨论f (x )的单调性;(2)若b =c -a (实数c 是与a 无关的常数),当函数f (x )有三个不同的零点时,a 的取值范围恰好是(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞,求c 的值.25.解 (1)f ′(x )=3x 2+2ax ,令f ′(x )=0,解得x 1=0,x 2=-2a 3.当a =0时,因为f ′(x )=3x 2>0(x ≠0),所以函数f (x )在(-∞,+∞)上单调递增; 当a >0时,x ∈⎝ ⎛⎭⎪⎫-∞,-2a 3∪(0,+∞)时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫-2a 3,0时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2a 3,0上单调递减;当a <0时,x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫-2a 3,+∞时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫0,-2a 3时,f ′(x )<0,所以函数f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝⎛⎭⎪⎫0,-2a 3上单调递减. (2)由(1)知,函数f (x )的两个极值为f (0)=b ,f ⎝ ⎛⎭⎪⎫-2a 3=427a 3+b ,则函数f (x )有三个零点等价于f (0)·f ⎝ ⎛⎭⎪⎫-2a 3=b ⎝ ⎛⎭⎪⎫427a 3+b <0,从而⎩⎪⎨⎪⎧a >0,-427a 3<b <0或⎩⎪⎨⎪⎧a <0,0<b <-427a 3.又b =c -a ,所以当a > 0时,427a 3-a +c >0或当a <0时,427a 3-a +c <0.设g (a )=427a 3-a +c ,因为函数f (x )有三个零点时,a 的取值范围恰好是(-∞,-3)∪⎝⎛⎭⎪⎫1,32∪⎝⎛⎭⎪⎫32,+∞,则在(-∞,-3)上g (a )<0,且在⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞上g (a )>0均恒成立. 从而g (-3)=c -1≤0,且g ⎝ ⎛⎭⎪⎫32=c -1≥0,因此c =1. 此时,f (x )=x 3+ax 2+1-a =(x +1)[x 2+(a -1)x +1-a ],因函数有三个零点,则x 2+(a -1)x +1-a =0有两个异于-1的不等实根, 所以Δ=(a -1)2-4(1-a )=a 2+2a -3>0, 且(-1)2-(a -1)+1-a ≠0,解得a ∈(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞.综上c =1.26.(2015·重庆,20)设函数f (x )=3x 2+axex(a ∈R ). (1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求a 的取值范围.26.解 (1)对f (x )求导得f ′(x )=(6x +a )e x -(3x 2+ax )e x (e x )2=-3x 2+(6-a )x +ae x, 因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x,故f (1)=3e ,f ′(1)=3e ,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e (x -1),化简得3x -e y =0.(2)由(1)知f ′(x )=-3x 2+(6-a )x +aex.。