高三数学:导数习题练习

合集下载

导数大题拔高练-高考数学重点专题冲刺演练(原卷版)

导数大题拔高练-高考数学重点专题冲刺演练(原卷版)

导数大题拔高练-新高考数学复习分层训练(新高考通用)1.(2023春·湖南长沙·高三长沙一中校考阶段练习)已知函数()1e ln ax f x x x-=+,a ∈R .(1)当1a =时,求函数()f x x -的最小值;(2)若函数()f x x 的最小值为a ,求a 的最大值.2.(2023春·浙江杭州·高三浙江省杭州第二中学校考开学考试)已知函数()(π)sin b f x a x x =--,[π,)x ∈+∞(1)1b =时,若()0f x ≤恒成立,求a 的取值范围;(2)12b =,()f x 在3π,π2⎡⎤⎢⎥⎣⎦上有极值点0x ,求证:00()πf x x +>.3.(2023秋·浙江宁波·高三期末)已知函数1()ln ,0f x x k x k x ⎛⎫=--> ⎪⎝⎭.(1)当3k =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若对()()0,1,0x f x ∀∈<恒成立,求k 的取值范围;(3)求证:对(0,1)x ∀∈,不等式22e 11ln x x x x x-<+恒成立.4.(2023秋·广东茂名·高三统考阶段练习)已知0a >,函数()e x f x x a =-,()ln g x x x a =-.(1)证明:函数()f x ,()g x 都恰有一个零点;(2)设函数()f x 的零点为1x ,()g x 的零点为2x ,证明12x x a =.5.(2023春·广东·高三统考开学考试)已知函数()()2ln 2R f x a x x a a x=+++∈.(1)证明函数()f x 有唯一极小值点;(2)若e 04a <<,求证:()e 2x f x x x +<+.6.(2023秋·江苏苏州·高三苏州中学校考阶段练习)已知函数()sin ()cos f x x x a x =-+(a 为常数),函数3211()32g x x ax =+.(1)证明:(i )当0x >时,sin x x >;(ii )当0x <时,sin x x <;(2)证明:当0a ≥时,曲线()y f x =与曲线()y g x =有且只有一个公共点.7.(2023·山西朔州·怀仁市第一中学校校考二模)已知函数()ln a f x x x=+.(1)讨论函数()f x 的单调性;(2)令()()()2ln ln g x f x x x x =+--,若0x 是函数()g x 的一个极值点,且()02g x =-,求实数a 的值.8.(2023·江苏·高三专题练习)已知函数()ln m x n f x x+=在()()1,1f 处的切线方程为1y =.(1)求实数m 和n 的值;(2)已知()(),A a f a ,()(),B b f b 是函数()f x 的图象上两点,且()()f a f b =,求证:()()ln ln 1a b ab +<+.9.(2023秋·吉林松原·高三前郭尔罗斯县第五中学校考期末)已知函数()21e 12ax f x ax x =---.(1)当1a ≥时,证明:对任意的0x ≥,都有()0f x ≥;(2)证明:()()**112ln 1ln 2,nk n n k n k =>+-∈∈∑N N .10.(2023春·黑龙江哈尔滨·高三哈尔滨市第五中学校校考开学考试)已知函数2()ln 2x f x x =-,()(1)g x k x =-+.(1)求函数()f x 的单调递减区间;(2)若存在01x >,当()01,x x ∈时,1()()2f xg x +>,求实数k 的取值范围.11.(2023·黑龙江·黑龙江实验中学校考一模)设函数()()()e 2,x f x ax x a =--∈R .(1)若曲线()y f x =在点()()22f ,处的切线斜率为2e ,求a 的值;(2)若()f x 存在两个极值点()1212,x x x x <,且对任意[]()20,,0x x f x ∈<恒成立,求实数a 的取值范围.12.(2023春·安徽·高三校联考开学考试)已知函数()()2e x f x x -=-.(1)求()f x 的单调区间;(2)若a ,b 为两个不相等的实数,且满足()e e 2e e b a b a a b -=-,求证:6a b +>.13.(2023春·安徽亳州·高三校考阶段练习)已知函数32()61()f x x ax x a =+-+∈R ,且(1)6f '=-.(1)求函数()f x 的图象在点(1,(1))f 处的切线方程;(2)若函数()()g x f x m =-在区间[2,4]-上有三个零点,求实数m 的取值范围.14.(2023·安徽安庆·统考二模)已知函数()21ln e x f x a x bx -=+,a ,b ∈R .e 2.71828≈ .(1)若曲线()y f x =在点()()22f ,处的切线方程是ln 2y x =+,求a 和b 的值;(2)若e a =,且()f x 的导函数()f x '恰有两个零点,求b 的取值范围.15.(2023·重庆沙坪坝·重庆南开中学校考一模)设21()sin 2f x x x x =-+.(1)当0x ≥时,求证:()0f x ≥;(2)证明:对一切正整数n ,都有2222111111sin1sin sin sin sin 23422(1)n n +++++>-+ .16.(2023春·重庆沙坪坝·高三重庆八中校考阶段练习)已知函数21()ln 2f x x kx x =-+(1)讨论函数()f x 的单调性;(2)若()f x 有两个极值点12,x x ,证明:212()()22k f x f x -<-17.(2023春·重庆渝中·高三重庆巴蜀中学校考阶段练习)已知函数()(0,1)x f x a a a =>≠在点()()11,A x f x 处的切线为1l :11y k x b =+,函数()log (0,1)a g x x a a =>≠在点()()22,B x g x 处的切线为2l :22y k x b =+.(1)若1l ,2l 均过原点,求这两条切线斜率之间的等量关系.(2)当e a =时,若12l l ∥,此时12b b -的最大值记为m ,证明:53ln 22m -<<.18.(2023·辽宁·校联考模拟预测)已知函数()e 3x f x x =+.(1)求()f x 在()3,-+∞上的极值;(2)若()()213,,32x ax x f x ∀∈-+∞≤-,求a 的最小值.19.(2023秋·江苏扬州·高三校考期末)已知函数()e 1ln x k f x x x+=+,其中0k ≥.(1)求函数()f x 的最小值;(2)证明:()11ln *,221n n n n ++>-∈≥+N .20.(2023·辽宁沈阳·统考一模)已知()()()2212ln 212f x x x x a x a x ⎛⎫=-+-+- ⎪⎝⎭,0a >.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的值.21.(2023·辽宁抚顺·统考模拟预测)已知函数2()()2ln f x x a x =++.(1)讨论函数()f x 的单调性;(2)若函数()f x 有两个极值点1x ,2x ,且12x x <,求证:()122x f x x <<.22.(2023秋·河北唐山·高三唐山市丰南区第一中学校考期末)已知函数()()2ln 0f x x x a x a =-->.(1)求()f x 的单调区间;(2)①若()0f x ≥,求实数a 的值;②设*n ∈N ,求证:()2111111ln 124n n n ⎛⎫⎛⎫++++++>+ ⎪⎝⎭⎝⎭ .23.(2023秋·河北衡水·高三河北衡水中学校考期末)已知函数()11e ln -=-+kx f x x kx x.(1)求证:()0f x ≥;(2)若()0,x ∀∈+∞,都()211e ≥+f x ,求k 满足的取值范围.24.(2023春·河北保定·高三校考阶段练习)已知函数()2ln f x ax x =-.(1)讨论()f x 的单调性;(2)设函数()2g x x =-,若对于任意31,e x ⎡⎤∈⎣⎦,都有()()f x g x ≥,求a 的取值范围.25.(2023秋·福建厦门·高三厦门外国语学校校考期末)已知函数()()2ex f x x x b =--(1)讨论函数()f x 的单调性(2)若()f x 有两个极值点1212,()x x x x >,且()()213,ef x f x ≥,求b 的取值范围26.(2023·山东枣庄·统考二模)已知函数()e sin x f x x x =-.(1)当π2x ≤时,求证:()0f x ≥;(2)当0x >时,函数()f x 的零点从小到大依次排列,记为{}()*n x n ∈N 证明:(i )1sin sin n n x x +>;(ii )212π2πn n x n x -+<<.27.(2023秋·湖北十堰·高三统考阶段练习)已知函数()()21e x f x x m x nx m=--+,且曲线()y f x =在0x =处的切线为=2y -.(1)求m ,n 的值和()f x 的单调区间;(2)若()()()()123123f x f x f x x x x ==<<,证明:120x x +>.28.(2023秋·湖北·高三湖北省云梦县第一中学校联考期末)已知函数()()ln 3(R)f x x a x x a a =--+-∈.(1)若0a =,求()f x 的极小值.(2)讨论函数()f x '的单调性;(3)当2a =时,证明:()f x 有且只有2个零点.29.(2023秋·湖南长沙·高三长沙一中校考阶段练习)已知函数()()e R x f x ax a =-∈,()πe cos 2x g x x =+.(1)若()0f x ≥,求a 的取值范围;(2)求函数()g x 在()0,∞+上的单调性;(3)求函数()()21e sinπ1x h x g x x -=--⎡⎤⎣⎦在()0,∞+上的零点个数.30.(2023·江苏泰州·泰州中学校考一模)已知函数e 1()e 1x x f x -=+(e 为自然对数的底数).(1)若不等式e 1()e 1f x ->+恒成立,求实数x 的取值范围;(2)若不等式1()ln 23f x ax a <+-在(ln 2,)x ∈+∞上恒成立,求实数a 的取值范围.。

高三数学利用导数求最值和极值试题答案及解析

高三数学利用导数求最值和极值试题答案及解析

高三数学利用导数求最值和极值试题答案及解析1.函数的极小值是 .【答案】.【解析】,令,解得,列表如下:极大值极小值故函数在处取得极小值,即.【考点】函数的极值2.已知a≤+lnx对任意的x∈[,2]恒成立,则a的最大值为________.【解析】令f(x)=+lnx,f′(x)=,当x∈[,1)时,f′(x)<0,当x∈(1,2]时,f′(x)>0,∴f(x)=f(1)=0,∴a≤0,故a最大值为0.min3.一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O 为圆心,在半圆上),设,木梁的体积为V(单位:m3),表面积为S(单位:m2).(1)求V关于θ的函数表达式;(2)求的值,使体积V最大;(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.【答案】(1);(2);(3)是.【解析】(1)本题求直四棱柱的体积,关键是求底面面积,我们要用底面半径1和表示出等腰梯形的上底和高,从图形中可知高为,而,因此面积易求,体积也可得出;(2)我们在(1)中求出,这里的最大值可利用导数知识求解,求出,解出方程在上的解,然后考察在解的两边的正负性,确定是最大值点,实质上对应用题来讲,导数值为0的那个唯一点就是要求的极值点);(3),上(2)我们可能把木梁的表面积用表示出来,,由于在体积中出现,因此我们可求的最大值,这里可不用导数来求,因为,可借助二次函数知识求得最大值,如果这里取最大值时的和取最大值的取值相同,则结论就是肯定的.试题解析:(1)梯形的面积=,. 2分体积. 3分(2).令,得,或(舍).∵,∴. 5分当时,,为增函数;当时,,为减函数. 7分∴当时,体积V最大. 8分(3)木梁的侧面积=,.=,. 10分设,.∵,∴当,即时,最大. 12分又由(2)知时,取得最大值,所以时,木梁的表面积S最大. 13分综上,当木梁的体积V最大时,其表面积S也最大. 14分【考点】(1)函数解析式;(2)用导数求最值;(3)四棱柱的表面积及其最值.4.已知常数a,b,c都是实数,f(x)=ax3+bx2+cx-34的导函数为f′ (x),f′(x)≤0的解集为{x|-2≤x≤3},若f(x)的极小值等于-115,则a的值是()A.-B.C.2D.5【答案】C【解析】依题意得f′(x)=3ax2+2bx+c≤0的解集是[-2,3],于是有3a>0,-2+3=-,-2×3=,解得b=-,c=-18a,函数f(x)在x=3处取得极小值,于是有f(3)=27a+9b+3c-34=-115,-a=-81,a=2,故选C.5.已知函数f(x)的导函数f′(x)=a(x+1)(x-a),若f(x)在x=a处取到极大值,则a的取值范围是________.【答案】(-1,0)【解析】根据函数极大值与导函数的关系,借助二次函数图象求解.因为f(x)在x=a处取到极大值,所以x=a为f′(x)的一个零点,且在x=a的左边f′(x)>0,右边f′(x)<0,所以导函数f′(x)的开口向下,且a>-1,即a的取值范围是(-1,0).6.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是().A.(0,2]B.(0,2)C.[,2)D.(,2)【答案】D【解析】由题意可知f′(x)=0的两个不同解都在区间(-1,1)内.因为f′(x)=3x2+2ax+1,所以根据导函数图象可得又a>0,解得<a<2,故选D.7.已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则().A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【答案】C【解析】当k=1时,f′(x)=e x·x-1,f′(1)≠0,∴f(1)不是极值,故A,B错;当k=2时,f′(x)=(x-1)(x e x+e x-2),显然f′(1)=0,且x在1的左侧附近f′(x)<0,x在1的右侧附近f′(x)>0,∴f(x)在x=1处取到极小值.故选C.8.设函数,则函数的各极小值之和为()A.B.C.D.【答案】D【解析】,令,则,令,则,所以当时,取极小值,其极小值为所以函数的各极小值之和,故选D.【考点】1.函数的极值求解;2.数列的求和.9.设函数,其中.(1)若在处取得极值,求常数的值;(2)设集合,,若元素中有唯一的整数,求的取值范围.【答案】(1);(2)【解析】(1)由在处取得极值,可得从而解得,此问注意结合极值定义检验所求值是否为极值点;(2)分,,和三种情况得出集合A,然后由元素中有唯一的整数,分析端点,从而求出的取值范围.试题解析:(1),又在处取得极值,故,解得.经检验知当时,为的极值点,故.(2),当时,,则该整数为2,结合数轴可知,当时,,则该整数为0,结合数轴可知当时,,不合条件.综上述,.【考点】1.利用导数处理函数的极值;2.集合元素的分析10.已知函数在处取得极值,则取值的集合为 .【答案】.【解析】,,依题意有,从而有,且有,即,解得或,当时,,此时,此时函数无极值,当时,,此时,此时函数有极值,故.【考点】函数的极值11.函数最小值是___________.【答案】【解析】函数求导得.当时,,即在上单调递减;当时,,即在上单调递增,因此函数在处取得最小值,即.【考点】利用导数求函数的最值.12.已知函数(,,且)的图象在处的切线与轴平行. (1)确定实数、的正、负号;(2)若函数在区间上有最大值为,求的值.【答案】(1),;(2).【解析】(1)先求导数,因为切线与轴平行,所以导数为0,列出等式,判断出的符号;(2)求导数,令导数为0,解出方程的根,利用导数的正负判断出函数的单调性,通过分类讨论的方法找到最大值,让最大值等于,解出的值.试题解析:(1) 1分由图象在处的切线与轴平行,知,∴. 2分又,故,. 3分(2) 令,得或. 4分∵,令,得或令,得.于是在区间内为增函数,在内为减函数,在内为增函数.∴是的极大值点,是极小值点. 5分令,得或. 6分分类:①当时,,∴ .由解得, 8分②当时,, 9分∴.由得 . 10分记,∵, 11分∴在上是增函数,又,∴, 12分∴在上无实数根. 13分综上,的值为. 14分【考点】1.用导数求切线的斜率;2.用导数求函数最值.13.设函数,(1)求函数的极大值;(2)记的导函数为,若时,恒有成立,试确定实数的取值范围.【答案】(1);(2) .【解析】(1)由导函数或求得函数的单调区间,再找极大值;(2) 的导函数是一元二次函数,转化为一元二次函数在上的最值,再满足条件即可.试题解析:(1)令,且当时,得;当时,得或∴的单调递增区间为;的单调递减区间为和,故当时,有极大值,其极大值为 6分(2)∵ 7分①当时,,∴在区间内单调递减∴,且∵恒有成立∵又,此时, 10分②当时,,得因为恒有成立,所以,即,又得, 14分综上可知,实数的取值范围 . 15分【考点】1.函数的极值;2.一元二次函数的最值.14.已知函数.(Ⅰ)若在上的最大值为,求实数的值;(Ⅱ)若对任意,都有恒成立,求实数的取值范围;(Ⅲ)在(Ⅰ)的条件下,设,对任意给定的正实数,曲线上是否存在两点,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由.【答案】(Ⅰ).(Ⅱ).(Ⅲ)对任意给定的正实数,曲线上总存在两点,,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上.【解析】(Ⅰ)由,得,令,得或.当变化时,及的变化如下表:由,,,即最大值为,. 4分(Ⅱ)由,得.,且等号不能同时取,,即恒成立,即. 6分令,求导得,,当时,,从而,在上为增函数,,. 8分(Ⅲ)由条件,,假设曲线上存在两点,满足题意,则,只能在轴两侧,不妨设,则,且.是以为直角顶点的直角三角形,,,是否存在,等价于方程在且时是否有解. 10分①若时,方程为,化简得,此方程无解;②若时,方程为,即,设,则,显然,当时,,即在上为增函数,的值域为,即,当时,方程总有解.对任意给定的正实数,曲线上总存在两点,,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上. 14分【考点】利用导数研究函数的单调性、最值。

高三数学:2024届高考数学导数大题精选30题(解析版)(共31页)

高三数学:2024届高考数学导数大题精选30题(解析版)(共31页)

2024届新高考数学导数大题精选30题1(2024·安徽·二模)已知函数f (x )=x 2-10x +3f (1)ln x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)求f (x )的单调区间和极值.【答案】(1)y =4x -13;(2)递增区间为(0,2),(3,+∞),递减区间为2,3 ,极大值-16+12ln2,极小值-21+12ln3.【分析】(1)求出函数f (x )的导数,赋值求得f (1),再利用导数的几何意义求出切线方程.(2)由(1)的信息,求出函数f (x )的导数,利用导数求出单调区间及极值.【详解】(1)函数f (x )=x 2-10x +3f (1)ln x ,求导得f(x )=2x -10+3f (1)x,则f (1)=-8+3f (1),解得f (1)=4,于是f (x )=x 2-10x +12ln x ,f (1)=-9,所以所求切线方程为:y +9=4(x -1),即y =4x -13.(2)由(1)知,函数f (x )=x 2-10x +12ln x ,定义域为(0,+∞),求导得f (x )=2x -10+12x =2(x -2)(x -3)x,当0<x <2或x >3时,f (x )>0,当2<x <3时,f (x )<0,因此函数f (x )在(0,2),(3,+∞)上单调递增,在(2,3)上单调递减,当x =2时,f (x )取得极大值f (2)=-16+12ln2,当x =3时,f (x )取得极小值f (3)=-21+12ln3,所以函数f (x )的递增区间为(0,2),(3,+∞),递减区间为(2,3),极大值-16+12ln2,极小值-21+12ln3.2(2024·江苏南京·二模)已知函数f (x )=x 2-ax +ae x,其中a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[0,a ]上的最小值为1e,求a 的值.【答案】(1)x -ey =0(2)a =1【分析】(1)由a =0,分别求出f (1)及f (1),即可写出切线方程;(2)计算出f (x ),令f (x )=0,解得x =2或x =a ,分类讨论a 的范围,得出f (x )的单调性,由f (x )在区间[0,a ]上的最小值为1e,列出方程求解即可.【详解】(1)当a =0时,f (x )=x 2e x ,则f (1)=1e ,f (x )=2x -x 2ex,所以f (1)=1e ,所以曲线y =f (x )在(1,f (1))处的切线方程为:y -1e =1e(x -1),即x -ey =0.(2)f(x )=-x 2+(a +2)x -2a e x =-(x -2)(x -a )ex,令f (x )=0,解得x =2或x =a ,当0<a <2时,x ∈[0,a ]时,f (x )≤0,则f (x )在[0,a ]上单调递减,所以f (x )min =f (a )=a ea =1e ,则a =1,符合题意;当a >2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,x ∈(2,a ]时,f (x )>0,则f (x )在(2,a ]上单调递增,所以f (x )min =f (2)=4-a e2=1e ,则a =4-e <2,不合题意;当a =2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,所以f (x )min =f (2)==2e 2≠1e ,不合题意;综上,a =1.3(2024·浙江绍兴·模拟预测)已知f x =ae x -x ,g x =cos x . (1)讨论f x 的单调性.(2)若∃x 0使得f x 0 =g x 0 ,求参数a 的取值范围.【答案】(1)当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)-∞,1【分析】(1)对f x =ae x -x 求导数,然后分类讨论即可;(2)直接对a >1和a ≤1分类讨论,即可得到结果.【详解】(1)由f x =ae x -x ,知f x =ae x -1.当a ≤0时,有f x =ae x -1≤0-1=-1<0,所以f x 在-∞,+∞ 上单调递减;当a >0时,对x <-ln a 有f x =ae x -1<ae -ln a -1=1-1=0,对x >-ln a 有f x =ae x -1>ae -ln a -1=1-1=0,所以f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.综上,当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)当a >1时,由(1)的结论,知f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增,所以对任意的x 都有f x ≥f -ln a =ae -ln a +ln a =1+ln a >1+ln1=1≥cos x =g x ,故f x >g x 恒成立,这表明此时条件不满足;当a ≤1时,设h x =ae x -x -cos x ,由于h -a -1 =ae -a -1+a +1-cos -a -1 ≥ae-a -1+a ≥-a e-a -1+a =a 1-e-a -1≥a 1-e 0=0,h 0 =ae 0-0-cos0=a -1≤0,故由零点存在定理,知一定存在x 0∈-a -1,0 ,使得h x 0 =0,故f x 0 -g x 0 =ae x 0-x 0-cos x 0=h x 0 =0,从而f x 0 =g x 0 ,这表明此时条件满足.综上,a 的取值范围是-∞,1 .4(2024·福建漳州·一模)已知函数f x =a ln x -x +a ,a ∈R 且a ≠0.(1)证明:曲线y =f x 在点1,f 1 处的切线方程过坐标原点.(2)讨论函数f x 的单调性.【答案】(1)证明见解析(2)答案见解析【分析】(1)先利用导数的几何意义求得f x 在1,f 1 处的切线方程,从而得证;(2)分类讨论a <0与a >0,利用导数与函数的单调性即可得解.【详解】(1)因为f x =a ln x -x +a x >0 ,所以f (x )=a x -1=a -xx,则f (1)=a ln1-1+a =a -1,f (1)=a -1,所以f x 在1,f 1 处的切线方程为:y -(a -1)=(a -1)(x -1),当x =0时,y -(a -1)=(a -1)(0-1)=-(a -1),故y =0,所以曲线y =f (x )在点1,f 1 处切线的方程过坐标原点.(2)由(1)得f (x )=ax -1=a -xx,当a<0时,a-x<0,则f x <0,故f(x)单调递减;当a>0时,令f (x)=0则x=a,当0<x<a时,f (x)>0,f(x)单调递增;当x>a时,f (x)<0,f(x)单调递减;综上:当a<0时,f(x)在(0,+∞)上单调递减;当a>0时,f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.5(2024·山东·二模)已知函数f x =a2xe x-x-ln x.(1)当a=1e时,求f x 的单调区间;(2)当a>0时,f x ≥2-a,求a的取值范围.【答案】(1)f x 的减区间为0,1,增区间为1,+∞(2)a≥1【分析】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,求导得f x =x+1xxe x-1-1,令g x =xe x-1-1,求g x 确定g x 的单调性与取值,从而确定f x 的零点,得函数的单调区间;(2)求f x ,确定函数的单调性,从而确定函数f x 的最值,即可得a的取值范围.【详解】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,则f x =x+1e x-1-1-1x=x+1xxe x-1-1,设g x =xe x-1-1,则g x =x+1e x-1>0恒成立,又g1 =e0-1=0,所以当x∈0,1时,f x <0,f x 单调递减,当x∈1,+∞时,f x >0,f x 单调递增,所以f x 的减区间为0,1,增区间为1,+∞;(2)f x =a2x+1e x-1-1x=x+1xa2xe x-1,设h x =a2xe x-1,则h x =a2x+1e x>0,所以h x 在0,+∞上单调递增,又h0 =-1<0,h1a2=e1a2-1>0,所以存在x0∈0,1 a2,使得h x0 =0,即a2x0e x0-1=0,当x∈0,x0时,f x <0,f x 单调递减,当x∈x0,+∞时,f x >0,f x 单调递增,当x=x0时,f x 取得极小值,也是最小值,所以f x ≥f x0=a2x0e x0-x0-ln x0=1-ln x0e x0=1+2ln a,所以1+2ln a≥2-a,即a+2ln a-1≥0,设F a =a+2ln a-1,易知F a 单调递增,且F1 =0,所以F a ≥F1 ,解得a≥1,综上,a≥1.6(2024·山东·一模)已知函数f(x)=ln x+12a(x-1)2.(1)当a=-12时,求函数f(x)的单调区间;(2)若函数g(x)=f(x)-2x+1有两个极值点x1,x2,且g(x1)+g(x2)≥-1-32a,求a的取值范围.【答案】(1)增区间(0,2),减区间(2,+∞)(2)[1,+∞)【分析】(1)将a=-12代入求导,然后确定单调性即可;(2)求导,根据导函数有两个根写出韦达定理,代入g(x1)+g(x2)≥-1-32a,构造函数,求导,研究函数性质进而求出a的取值范围.【详解】(1)当a=-12时,f(x)=ln x-14(x-1)2,x>0,则f (x)=1x-12(x-1)=-(x-2)(x+1)2x,当x∈(0,2),f (x)>0,f(x)单调递增,当x∈(2,+∞),f (x)<0,f(x)单调递减,所以f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞);(2)g(x)=f(x)-2x+1=ln x+12a(x-1)2-2x+1,所以g (x)=1x+a(x-1)-2=ax2-(a+2)x+1x,设φ(x)=ax2-(a+2)x+1,令φ(x)=0,由于g(x)有两个极值点x1,x2,所以Δ=(a+2)2-4a=a2+4>0x1+x2=a+2a>0x1x2=1a>0,解得a>0.由x1+x2=a+2a,x1x2=1a,得g x1+g x2=ln x1+12a x1-12-2x1+1+ln x2+12a x2-12-2x2+1=ln x1x2+12a x1+x22-2x1x2-2x1+x2+2-2x1+x2+2=ln1a +12a a+2a2-2a-2⋅a+2a+2-2⋅a+2a+2=ln1a +a2-2a-1≥-1-32a,即ln a-12a-1a≤0,令m(a)=ln a-12a-1a,则m (a)=1a-12-12a2=-(a-1)22a2≤0,所以m(a)在(0,+∞)上单调递减,且m(1)=0,所以a≥1,故a的取值范围是[1,+∞).7(2024·湖北·二模)求解下列问题,(1)若kx-1≥ln x恒成立,求实数k的最小值;(2)已知a,b为正实数,x∈0,1,求函数g x =ax+1-xb-a x⋅b1-x的极值.【答案】(1)1(2)答案见解析【分析】(1)求导,然后分k≤0和k>0讨论,确定单调性,进而得最值;(2)先发现g0 =g1 =0,当a=b时,g x =0,当0<x<1,a≠b时,取ab=t,L x =tx+1-x-t x,求导,研究单调性,进而求出最值得答案.【详解】(1)记f x =kx-1-ln x x>0,则需使f x ≥0恒成立,∴f x =k-1xx>0,当k≤0时,f x <0恒成立,则f x 在(0,+∞)上单调递减,且在x>1时,f x <0,不符合题意,舍去;当k >0时.令f x =0,解得x =1k,则f x 在0,1k 上单调递减,在1k ,+∞ 上单调递增,所以f x min =f 1k =-ln 1k=ln k ,要使kx -1≥ln x 恒成立,只要ln k ≥0即可,解得k ≥1,所以k 的最小值为1;(2)g (x )=ax +(1-x )b -a x ⋅b 1-x ,x ∈[0,1],a >0,b >0,易知g 0 =g 1 =0,当a =b 时,g x =ax +a -ax -a =0,此时函数无极值;当0<x <1,a ≠b 时,g (x )=ax +(1-x )b -b ⋅a b x =b a b x +1-x -a b x,取ab=t ,t >0,t ≠1,L x =tx +1-x -t x ,t >0,t ≠1,x ∈0,1 ,则L x =t -1-t x ln t ,当t >1时,由L x ≥0得x ≤ln t -1ln tln t,由(1)知t -1≥ln t ,当t >1时,t -1ln t>1,因为x -1≥ln x ,所以1x -1≥ln 1x ,所以ln x ≥1-1x ,即x >0,当t >1时,ln t >1-1t,所以t >t -1ln t ,则ln t >ln t -1ln t >0,所以ln t -1ln tln t<1,即L x 在0,ln t -1ln t ln t 上单调递增,在ln t -1ln tln t,1单调递减.所以函数g x 极大=gln t -1lntln t,t =ab,a ≠b ,当0<t <1时,同理有ln t -1lntln t∈0,1 ,由Lx ≥0得x ≤ln t -1lntln t,即(x )在0,ln t -1lntln t上单调递增,在ln t -1lntln t,1上单调递减.所以函数g x 极大=gln t -1lntln t,t =a b,a ≠b ,综上可知,当a =b 时,函数g x 没有极值;当a ≠b 时,函数g x 有唯一的极大值g ln t -1lntln t,其中t =ab,没有极小值.【点睛】关键点点睛:取ab=t ,将两个参数的问题转化为一个参数的问题,进而求导解答问题.8(2024·湖北武汉·模拟预测)函数f (x )=tan x +sin x -92x ,-π2<x <π2,g (x )=sin n x -x n cos x ,x ∈0,π2,n ∈N +.(1)求函数f (x )的极值;(2)若g (x )>0恒成立,求n 的最大值.【答案】(1)极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2;(2)3.【分析】(1)判断函数f (x )为奇函数,利用导数求出f (x )在区间0,π2上的极值,利用奇偶性即可求得定义域上的极值.(2)利用导数证明当n =1时,g (x )>0恒成立,当n >1时,等价变形不等式并构造函数F (x )=x -sin x cos 1nx,0<x <π2,利用导数并按导数为负为正确定n 的取值范围,进而确定不等式恒成立与否得解.【详解】(1)函数f (x )=tan x +sin x -92x ,-π2<x <π2,f (-x )=tan (-x )+sin (-x )-92(-x )=-f (x ),即函数f (x )为奇函数,其图象关于原点对称,当0<x <π2时,f (x )=sin x cos x +sin x -92x ,求导得:f(x )=1cos 2x +cos x -92=2cos 3x -9cos 2x +22cos 2x =(2cos x -1)(cos x -2-6)(cos x -2+6)2cos 2x,由于cos x ∈(0,1),由f (x )>0,得0<cos x <12,解得π3<x <π2,由f (x )<0,得12<cos x <1,解得0<x <π3,即f (x )在0,π3 上单调递减,在π3,π2上单调递增,因此函数f (x )在0,π2 上有极小值f π3 =3(3-π)2,从而f (x )在-π2,π2 上的极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2.(2)当n =1时,g (x )>0恒成立,即sin x -x cos x >0恒成立,亦即tan x >x 恒成立,令h (x )=tan x -x ,x ∈0,π2 ,求导得h (x )=1cos 2x -1=1-cos 2x cos 2x=tan 2x >0,则函数h (x )在0,π2上为增函数,有h (x )>h (0)=0,因此tan x -x >0恒成立;当n >1时,g (x )>0恒成立,即不等式sin xn cos x>x 恒成立,令F (x )=x -sin x cos 1n x ,0<x <π2,求导得:F (x )=1-cos x ⋅cos 1nx -1n⋅cos1n-1x ⋅(-sin x )⋅sin xcos 2nx=1-cos1+n nx +1n⋅sin 2x ⋅cos1-n nxcos 2nx=1-cos 2x +1n ⋅sin 2xcos n +1nx =cosn +1nx -cos 2x -1n (1-cos 2x )cos n +1nx =cosn +1nx -1n -n -1ncos 2x cosn +1nx令G (x )=cos n +1nx -1n -n -1n cos 2x ,求导得则G (x )=n +1n cos 1nx ⋅(-sin x )-n -1n⋅2cos x ⋅(-sin x )=sin x n (2n -2)cos x -(n +1)cos 1n x =2n -2n ⋅sin x cos x -n +12n -2cos 1n x=2n -2n ⋅sin x ⋅cos 1n x cos n -1n x -n +12n -2,由n >1,x ∈0,π2 ,得2n -2n⋅sin x ⋅cos 1nx >0,当n +12n -2≥1时,即n ≤3时,G (x )<0,则函数G (x )在0,π2上单调递减,则有G (x )<G (0)=0,即F (x )<0,因此函数F (x )在0,π2 上单调递减,有F (x )<F (0)=0,即g (x )>0,当n +12n -2<1时,即n >3时,存在一个x 0∈0,π2 ,使得cos n -1n x 0=n +12n -2,且当x ∈(0,x 0)时,G (x )>0,即G (x )在(0,x 0)上单调递增,且G (x )>G (0)=0,则F (x )>0,于是F (x )在(0,x 0)上单调递增,因此F (x )>F (0)=0,即sin xn cos x<x ,与g (x )>0矛盾,所以n 的最大值为3.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:①通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;②利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.③根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.9(2024·湖北·模拟预测)已知函数f x =ax 2-x +ln x +1 ,a ∈R ,(1)若对定义域内任意非零实数x 1,x 2,均有f x 1 f x 2x 1x 2>0,求a ;(2)记t n =1+12+⋅⋅⋅+1n ,证明:t n -56<ln n +1 <t n .【答案】(1)a =12(2)证明见解析【分析】(1)求导可得f 0 =0,再分a ≤0与a >0两种情况分析原函数的单调性,当a >0时分析极值点的正负与原函数的正负区间,从而确定a 的值;(2)由(1)问的结论可知,1n -12n2<ln 1n +1 <1n ,再累加结合放缩方法证明即可.【详解】(1)f x 的定义域为-1,+∞ ,且f 0 =0;f x =2ax -1+1x +1=2ax -x x +1=x 2a -1x +1,因此f 0 =0;i.a ≤0时,2a -1x +1<0,则此时令f x >0有x ∈-1,0 ,令f x <0有x ∈0,+∞ ,则f x 在-1,0 上单调递增,0,+∞ 上单调递减,又f 0 =0,于是f x ≤0,此时令x 1x 2<0,有f x 1 f x 2x 1x 2<0,不符合题意;ii .a >0时,f x 有零点0和x 0=12a-1,若x 0<0,即a >12,此时令f x <0有x ∈x 0,0 ,f x 在x 0,0 上单调递减,又f 0 =0,则f x 0 >0,令x 1>0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0>0,即0<a <12,此时令f x <0有x ∈0,x 0 ,f x 在0,x 0 上单调递减,又f 0 =0,则f x 0 <0,令-1<x 1<0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0=0,即a =12,此时fx =x 2x +1>0,f x 在-1,+∞ 上单调递增,又f 0 =0,则x >0时f x >0,x <0时f x <0;则x ≠0时f x x >0,也即对x 1x 2≠0,f x 1 f x 2x 1x 2>0,综上,a =12(2)证:由(1)问的结论可知,a =0时,f x =-x +ln x +1 ≤0;且a =12时x >0,f x =12x 2-x +ln x +1 >0;则x>0时,x-12x2<ln x+1<x,令x=1n,有1n-12n2<ln1n+1<1n,即1n-12n2<ln n+1-ln n<1n,于是1n-1-12n-12<ln n-ln n-1<1n-11-12<ln2<1将上述n个式子相加,t n-121+122+⋅⋅⋅+1n2<ln n+1<t n;欲证t n-56<ln n+1<t n,只需证t n-56<t n-121+122+⋅⋅⋅+1n2,只需证1+122+⋅⋅⋅+1n2<53;因为1n2=44n2<44n2-1=212n-1-12n+1,所以1+122+⋅⋅⋅+1n2<1+213-15+15-17+⋅⋅⋅+12n-1-12n+1=53-22n+1<53,得证:于是得证t n-56<ln n+1<t n.【点睛】方法点睛:(1)此题考导数与函数的综合应用,找到合适的分类标准,设极值点,并确定函数正负区间是解此题的关键;(2)对累加结构的不等式证明,一般需要应用前问的结论,取特定参数值,得出不等式累加证明,遇到不能累加的数列结构,需要进行放缩证明.10(2024·湖南·一模)已知函数f x =sin x-ax⋅cos x,a∈R.(1)当a=1时,求函数f x 在x=π2处的切线方程;(2)x∈0,π2时;(ⅰ)若f x +sin2x>0,求a的取值范围;(ⅱ)证明:sin2x⋅tan x>x3.【答案】(1)πx-2y+2-π22=0.(2)(ⅰ)a≤3(ⅱ)证明见解析【分析】(1)令a=1时,利用导数的几何意义求出斜率,进行计算求出切线方程即可.(2)(ⅰ)设g(x)=2sin x+tan x-ax,x∈0,π2,由g x >0得a≤3,再证明此时满足g x >0.(ⅱ)根据(ⅰ)结论判断出F x =sin2x⋅tan x-x3在0,π2上单调递增,∴F(x)>F(0)=0,即sin2x tan x >x3.【详解】(1)当a=1时,f(x)=sin x-x⋅cos x,f (x)=cos x-(cos x-x⋅sin x)=x⋅sin x,fπ2=π2,fπ2=1.所以切线方程为:y-1=π2x-π2,即πx-2y+2-π22=0.(2)(ⅰ)f(x)+sin2x=sin x-ax⋅cos x+sin2x>0,即tan x-ax+2sin x>0,x∈0,π2,设g(x)=2sin x+tan x-ax,x∈0,π2,g (x )=2cos x +1cos 2x -a =1cos 2x(2cos 3x -a cos 2x +1).又∵g (0)=0,g (0)=3-a ,∴g (0)=3-a ≥0是g (x )>0的一个必要条件,即a ≤3.下证a ≤3时,满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,又g (x )≥1cos 2x(2cos 3x -3cos 2x +1),设(t )=2t 3-3t 2+1,t ∈(0,1),h (t )=6t 2-6t =6t (t -1)<0,h (t )在(0,1)上单调递减,所以h (t )>h (1)=0,又x ∈0,π2 ,cos x ∈(0,1),∴g (x )>0,即g (x )在0,π2 单调递增.∴x ∈0,π2时,g (x )>g (0)=0;下面证明a >3时不满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,,g (x )=2cos x +1cos 2x-a ,令h (x )=g (x )=2cos x +1cos 2x -a ,则h (x )=-2sin x +2sin x cos 3x =2sin x 1cos 3x-1,∵x ∈0,π2 ,∴sin x >0,1cos 3x-1>0,∴h (x )>0,∴h (x )=g (x )在0,π2为增函数,令x 0满足x 0∈0,π2,cos x 0=1a ,则g x 0 =2cos x 0+1cos 2x 0-a =2cos x 0+a -a >0,又g (0)=3-a <0,∴∃x 1∈0,x 0 ,使得g x 1 =0,当x ∈0,x 1 时,g (x )<g x 1 =0,∴此时g (x )在0,x 1 为减函数,∴当x ∈0,x 1 时,g (x )<g (0)=0,∴a >3时,不满足g (x )≥0恒成立.综上a ≤3.(ⅱ)设F (x )=sin 2x ⋅tan x -x 3,x ∈0,π2 ,F (x )=2sin x ⋅cos x ⋅tan x +sin 2x ⋅1cos 2x-3x 2=2sin 2x +tan 2x -3x 2=2(sin x -x )2+(tan x -x )2+2(2sin x +tan x )x -2x 2-x 2-3x 2.由(ⅰ)知2sin x +tan x >3x ,∴F (x )>0+0+2x ⋅3x -6x 2=0,,F x 在0,π2上单调递增,∴F (x )>F (0)=0,即sin 2x tan x >x 3.【点睛】关键点点睛:本题考查导数,解题关键是进行必要性探路,然后证明充分性,得到所要求的参数范围即可.11(2024·全国·模拟预测)已知函数f (x )=ln (1+x )-11+x.(1)求曲线y =f (x )在(0,f (0))处的切线方程;(2)若x ∈(-1,π),讨论曲线y =f (x )与曲线y =-2cos x 的交点个数.【答案】(1)y =32x -1;(2)2.【分析】(1)求导,即可根据点斜式求解方程,(2)求导,分类讨论求解函数的单调性,结合零点存在性定理,即可根据函数的单调性,结合最值求解.【详解】(1)依题意,f x =11+x +121+x 32,故f 0 =32,而f 0 =-1,故所求切线方程为y +1=32x ,即y =32x -1.(2)令ln 1+x -11+x =-2cos x ,故ln 1+x +2cos x -11+x=0,令g x =ln 1+x +2cos x -11+x ,g x =11+x -2sin x +121+x -32,令h x =g x =11+x -2sin x +121+x -32,hx =-11+x2-2cos x -341+x -52.①当x ∈-1,π2时,cos x ≥0,1+x 2>0,1+x-52>0,∴h x <0,∴h x 在-1,π2上为减函数,即gx 在-1,π2 上为减函数,又g 0 =1+12>0,g1 =12-2sin1+12⋅2-32<12-2⋅sin1+12<1-2×12=0,∴g x 在0,1 上有唯一的零点,设为x 0,即g x 0 =00<x 0<1 .∴g x 在-1,x 0 上为增函数,在x 0,π2上为减函数.又g 0 =2-1>0,g -π4 =ln 1-π4 +2cos -π4 -11-π4=ln 1-π4+2-11-π4<0,g π2=ln 1+π2 -11+π2>0,∴g x 在-1,x 0 上有且只有一个零点,在x 0,π2上无零点;②当x ∈π2,5π6 时,g x <11+x -1+121+x-32<0,g x 单调递减,又g π2 >0,g 5π6 =ln 1+5π6 -3-1+5π6-12<ln4-3<0,∴g x 在π2,5π6内恰有一零点;③当x ∈5π6,π 时,hx =-11+x2-2cos x -341+x -52为增函数,∴hx =h 5π6 =-11+5π62+1-34⋅1+5π6-52>0,∴g x 单调递增,又g π >0,g 5π6 <0,所以存在唯一x 0∈5π6,π ,g x 0 =0,当x ∈5π6,x 0 时,g x <0,g x 递减;当x ∈x 0,π 时,g x >0,g x 递增,g x ≤max g 5π6 ,g π <0,∴g x 在5π6,π内无零点.综上所述,曲线y =f x 与曲线y =-2cos x 的交点个数为2.【点睛】方法点睛:本题考查了导数的综合运用,求某点处的切线方程较为简单,利用导数求单调性时,如果求导后的正负不容易辨别,往往可以将导函数的一部分抽离出来,构造新的函数,利用导数研究其单调性,进而可判断原函数的单调性.在证明不等式时,常采用两种思路:求直接求最值和等价转化.无论是那种方式,都要敢于构造函数,构造有效的函数往往是解题的关键.12(2024·广东佛山·二模)已知f x =-12e 2x +4e x -ax -5.(1)当a =3时,求f x 的单调区间;(2)若f x 有两个极值点x 1,x 2,证明:f x 1 +f x 2 +x 1+x 2<0.【答案】(1)答案见解析(2)证明见解析【分析】(1)求导后,借助导数的正负即可得原函数的单调性;(2)借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,可得t 1、t 2是方程t 2-4t +a =0的两个正根,借助韦达定理可得t 1+t 2=4,t 1t 2=a ,即可用t 1、t 2表示f x 1 +f x 2 +x 1+x 2,进而用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.【详解】(1)当a =3时,f x =-12e 2x +4e x -3x -5,f x =-e 2x +4e x -3=-e x -1 e x -3 ,则当e x ∈0,1 ∪3,+∞ ,即x ∈-∞,0 ∪ln3,+∞ 时,f x <0,当e x ∈1,3 ,即x ∈0,ln3 时,f x >0,故f x 的单调递减区间为-∞,0 、ln3,+∞ ,单调递增区间为0,ln3 ;(2)f x =-e 2x +4e x -a ,令t =e x ,即f x =-t 2+4t -a ,令t 1=e x 1,t 2=e x 2,则t 1、t 2是方程t 2-4t +a =0的两个正根,则Δ=-4 2-4a =16-4a >0,即a <4,有t 1+t 2=4,t 1t 2=a >0,即0<a <4,则f x 1 +f x 2 +x 1+x 2=-12e 2x 1+4e x 1-ax 1-5-12e 2x2+4e x 2-ax 2-5+x 1+x 2=-12t 21+t 22 +4t 1+t 2 -a -1 ln t 1+ln t 2 -10=-12t 1+t 2 2-2t 1t 2 +4t 1+t 2 -a -1 ln t 1t 2-10=-1216-2a +16-a -1 ln a -10=a -a -1 ln a -2,要证f x 1 +f x 2 +x 1+x 2<0,即证a -a -1 ln a -2<00<a <4 ,令g x =x -x -1 ln x -20<x <4 ,则g x =1-ln x +x -1x =1x-ln x ,令h x =1x -ln x 0<x <4 ,则h x =-1x 2-1x <0,则g x 在0,4 上单调递减,又g 1 =11-ln1=1,g 2 =12-ln2<0,故存在x 0∈1,2 ,使g x 0 =1x 0-ln x 0=0,即1x 0=ln x 0,则当x ∈0,x 0 时,g x >0,当x ∈x 0,4 时,g x <0,故g x 在0,x 0 上单调递增,g x 在x 0,4 上单调递减,则g x ≤g x 0 =x 0-x 0-1 ln x 0-2=x 0-x 0-1 ×1x 0-2=x 0+1x 0-3,又x 0∈1,2 ,则x 0+1x 0∈2,52 ,故g x 0 =x 0+1x 0-3<0,即g x <0,即f x 1 +f x 2 +x 1+x 2<0.【点睛】关键点点睛:本题关键点在于借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,从而可结合韦达定理得t 1、t 2的关系,即可用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.13(2024·广东广州·模拟预测)已知函数f x =x e x -kx ,k ∈R .(1)当k =0时,求函数f x 的极值;(2)若函数f x 在0,+∞ 上仅有两个零点,求实数k 的取值范围.【答案】(1)极小值为-1e,无极大值(2)e ,+∞【分析】(1)求出导函数,然后列表求出函数的单调区间,根据极值定义即可求解;(2)把原函数有两个零点转化为g x =e x -kx 在0,+∞ 上仅有两个零点,分类讨论,利用导数研究函数的单调性,列不等式求解即可.【详解】(1)当k =0时,f x =xe x (x ∈R ),所以f x =1+x e x ,令f x =0,则x =-1,x -∞,-1-1-1,+∞f x -0+f x单调递减极小值单调递增所以f (x )min =f -1 =-e -1=-1e,所以f x 的极小值为-1e,无极大值.(2)函数f x =x e x -kx 在0,+∞ 上仅有两个零点,令g x =e x -kx ,则问题等价于g x 在0,+∞ 上仅有两个零点,易知g x =e x -k ,因为x ∈0,+∞ ,所以e x >1.①当k ∈-∞,1 时,g x >0在0,+∞ 上恒成立,所以g x 在0,+∞ 上单调递增,所以g x >g 0 =1,所以g x 在0,+∞ 上没有零点,不符合题意;②当k ∈1,+∞ 时,令g x =0,得x =ln k ,所以在0,ln k 上,g x <0,在ln k ,+∞ 上,g x >0,所以g x 在0,ln k 上单调递减,在(ln k ,+∞)上单调递增,所以g x 的最小值为g ln k =k -k ⋅ln k .因为g x 在0,+∞ 上有两个零点,所以g ln k =k -k ⋅ln k <0,所以k >e.因为g 0 =1>0,g ln k 2 =k 2-k ⋅ln k 2=k k -2ln k ,令h x =x -2ln x ,则h x =1-2x =x -2x,所以在0,2 上,h x <0,在2,+∞ 上,h x >0,所以h x 在0,2 上单调递减,在2,+∞ 上单调递增,所以h x ≥2-2ln2=ln e 2-ln4>0,所以g ln k 2 =k k -2ln k >0,所以当k >e 时,g x 在0,ln k 和(ln k ,+∞)内各有一个零点,即当k >e 时,g x 在0,+∞ 上仅有两个零点.综上,实数k 的取值范围是e ,+∞ .【点睛】方法点睛:求解函数单调区间的步骤:(1)确定f x 的定义域.(2)计算导数f x .(3)求出f x =0的根.(4)用f x =0的根将f x 的定义域分成若干个区间,判断这若干个区间内f x 的符号,进而确定f x 的单调区间.f x >0,则f x 在对应区间上单调递增,对应区间为增区间;f x <0,则f x 在对应区间上单调递减,对应区间为减区间.如果导函数含有参数,那么需要对参数进行分类讨论,分类讨论要做到不重不漏.14(2024·江苏南通·二模)已知函数f x =ln x -ax ,g x =2ax,a ≠0.(1)求函数f x 的单调区间;(2)若a >0且f x ≤g x 恒成立,求a 的最小值.【答案】(1)答案见解析(2)2e 3.【分析】(1)求导后,利用导数与函数单调性的关系,对a >0与a <0分类讨论即可得;(2)结合函数的单调性求出函数的最值,即可得解.【详解】(1)f x =1x -a =1-axx(a ≠0),当a <0时,由于x >0,所以f x >0恒成立,从而f x 在0,+∞ 上递增;当a >0时,0<x <1a ,f x >0;x >1a ,fx <0,从而f x 在0,1a 上递增,在1a,+∞ 递减;综上,当a <0时,f x 的单调递增区间为0,+∞ ,没有单调递减区间;当a >0时,f x 的单调递增区间为0,1a ,单调递减区间为1a ,+∞ .(2)令h x =f x -g x =ln x -ax -2ax,要使f x ≤g x 恒成立,只要使h x ≤0恒成立,也只要使h x max ≤0.h x =1x -a +2ax 2=-ax +1 ax -2 ax 2,由于a >0,x >0,所以ax +1>0恒成立,当0<x <2a 时,h x >0,当2a<x <+∞时,h x <0,所以h x max =h 2a =ln 2a -3≤0,解得:a ≥2e 3,所以a 的最小值为2e3.15(2024·山东济南·二模)已知函数f x =ax 2-ln x -1,g x =xe x -ax 2a ∈R .(1)讨论f x 的单调性;(2)证明:f x +g x ≥x .【答案】(1)答案见详解(2)证明见详解【分析】(1)求导可得fx =2ax 2-1x,分a ≤0和a >0两种情况,结合导函数的符号判断原函数单调性;(2)构建F x =f x +g x -x ,x >0,h x =e x -1x,x >0,根据单调性以及零点存在性定理分析h x 的零点和符号,进而可得F x 的单调性和最值,结合零点代换分析证明.【详解】(1)由题意可得:f x 的定义域为0,+∞ ,fx =2ax -1x =2ax 2-1x,当a ≤0时,则2ax 2-1<0在0,+∞ 上恒成立,可知f x 在0,+∞ 上单调递减;当a >0时,令f x >0,解得x >12a;令f x <0,解得0<x <12a;可知f x 在0,12a 上单调递减,在12a,+∞ 上单调递增;综上所述:当a ≤0时,f x 在0,+∞ 上单调递减;当a >0时,f x 在0,12a 上单调递减,在12a,+∞ 上单调递增.(2)构建F x =f x +g x -x =xe x -ln x -x -1,x >0,则F x =x +1 e x -1x -1=x +1 e x -1x,由x >0可知x +1>0,构建h x =e x -1x ,x >0,因为y =e x ,y =-1x在0,+∞ 上单调递增,则h x 在0,+∞ 上单调递增,且h 12=e -20,h 1 =e -1 0,可知h x 在0,+∞ 上存在唯一零点x 0∈12,1 ,当0<x <x 0,则h x <0,即Fx <0;当x >x 0,则h x >0,即F x >0;可知F x 在0,x 0 上单调递减,在x 0,+∞ 上单调递增,则F x ≥F x 0 =x 0e x 0-ln x 0-x 0-1,又因为e x 0-1x 0=0,则e x 0=1x 0,x 0=e -x 0,x 0∈12,1 ,可得F x 0 =x 0×1x 0-ln e -x-x 0-1=0,即F x ≥0,所以f x +g x ≥x .16(2024·福建·模拟预测)已知函数f (x )=a ln x -bx 在1,f 1 处的切线在y 轴上的截距为-2.(1)求a 的值;(2)若f x 有且仅有两个零点,求b 的取值范围.【答案】(1)2(2)b ∈0,2e 【分析】(1)借助导数的几何意义计算即可得;(2)借助函数与方程的关系,可将f x 有且仅有两个零点转化为方程b =2ln xx有两个根,构造对应函数并借助导数研究单调性及值域即可得.【详解】(1)f (x )=ax-b ,f 1 =a -b ,f (1)=a ×0-b =-b ,则函数f (x )=a ln x -bx 在1,f 1 处的切线为:y +b =a -b x -1 ,即y =a -b x -a ,令x =0,则有y =-a =-2,即a =2;(2)由a =2,即f (x )=2ln x -bx ,若f x 有且仅有两个零点,则方程2ln x-bx=0有两个根,即方程b=2ln xx有两个根,令g x =2ln xx,则gx =21-ln xx2,则当x∈0,e时,g x >0,则当x∈e,+∞时,g x <0,故g x 在0,e上单调递增,在e,+∞上单调递减,故g x ≤g e =2ln ee=2e,又x→0时,g x →-∞,x→+∞时,g x →0,故当b∈0,2 e时,方程b=2ln x x有两个根,即f x 有且仅有两个零点.17(2024·浙江杭州·二模)已知函数f x =a ln x+2-12x2a∈R.(1)讨论函数f x 的单调性;(2)若函数f x 有两个极值点,(ⅰ)求实数a的取值范围;(ⅱ)证明:函数f x 有且只有一个零点.【答案】(1)答案见解析;(2)(ⅰ)-1<a<0;(ⅱ)证明见解析【分析】(1)求出函数的导函数,再分a≤-1、-1<a<0、a≥0三种情况,分别求出函数的单调区间;(2)(ⅰ)由(1)直接解得;(ⅱ)结合函数的最值与零点存在性定理证明即可.【详解】(1)函数f x =a ln x+2-12x2a∈R的定义域为-2,+∞,且f x =ax+2-x=-x+12+a+1x+2,当a≤-1时,f x ≤0恒成立,所以f x 在-2,+∞单调递减;当-1<a<0时,令f x =0,即-x+12+a+1=0,解得x1=-a+1-1,x2=a+1-1,因为-1<a<0,所以0<a+1<1,则-2<-a+1-1<-1,所以当x∈-2,-a+1-1时f x <0,当x∈-a+1-1,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时,此时-a+1-1≤-2,所以x∈-2,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.综上可得:当a≤-1时f x 在-2,+∞单调递减;当-1<a<0时f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.(2)(ⅰ)由(1)可知-1<a<0.(ⅱ)由(1)f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减,所以f x 在x=a+1-1处取得极大值,在x=-a+1-1处取得极小值,又-1<a<0,所以0<a+1<1,则1<a+1+1<2,又f x极大值=f a+1-1=a ln a+1+1-12a+1-12<0,又f-a+1-1<f a+1-1<0,所以f x 在-a+1-1,+∞上没有零点,又-1<a<0,则4a<-4,则0<e4a<e-4,-2<e4a-2<e-4-2,则0<e 4a-22<4,所以f e 4a-2=4-12e4a-22>0,所以f x 在-2,-a+1-1上存在一个零点,综上可得函数f x 有且只有一个零点.18(2024·河北沧州·模拟预测)已知函数f(x)=ln x-ax+1,a∈R.(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.【答案】(1)答案见解析(2)-∞,2.【分析】(1)利用导数分类讨论判断函数f x 的单调性,即可求解;(2)先利用导数证明不等式e x≥x+1,分离变量可得a≤e2x-ln x+1x恒成立,进而e 2x-ln x+1x≥2x+ln x+1-(ln x+1)x=2,即可求解.【详解】(1)函数f x =ln x-ax+1,a∈R的定义域为0,+∞,且f (x)=1x-a.当a≤0时,∀x∈0,+∞,f (x)=1x-a≥0恒成立,此时f x 在区间0,+∞上单调递增;当a>0时,令f (x)=1x-a=1-axx=0,解得x=1a,当x∈0,1 a时,f x >0,f x 在区间0,1a上单调递增,当x∈1a,+∞时,f x <0,f x 在区间1a,+∞上单调递减.综上所述,当a≤0时,f x 在区间0,+∞上单调递增;当a>0时,f x 在区间0,1 a上单调递增,在区间1a,+∞上单调递减.(2)设g x =e x-x-1,则g x =e x-1,在区间(-∞,0)上,g x <0,g x 单调递减,在区间0,+∞上,g x >0,g x 单调递增,所以g x ≥g0 =e0-0-1=0,所以e x≥x+1(当且仅当x=0时等号成立).依题意,∀x>0,f x ≤xe2x-2ax恒成立,即a≤e2x-ln x+1x恒成立,而e2x-ln x+1x=xe2x-(ln x+1)x=e2x+ln x-(ln x+1)x≥2x+ln x+1-(ln x+1)x=2,当且仅当2x+ln x=0时等号成立.因为函数h x =2x+ln x在0,+∞上单调递增,h1e=2e-1<0,h(1)=2>0,所以存在x0∈1e,1,使得2x0+ln x0=0成立.所以a ≤e 2x -ln x +1xmin =2,即a 的取值范围是-∞,2 .【点睛】方法点睛:利用导数证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.19(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【答案】(1)f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)不存在,理由见解析【分析】(1)求出导函数,根据导函数的正负来确定函数的单调区间;(2)求出直线AB 的斜率,再求出f (x 0),从而得到x 1,x 2的等式,再进行换元和求导,即可解出答案.【详解】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4t +1 2=t -1 2t t +1 2>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.20(2024·广东深圳·二模)已知函数f x =ax +1 e x ,f x 是f x 的导函数,且f x -f x =2e x .(1)若曲线y =f x 在x =0处的切线为y =kx +b ,求k ,b 的值;(2)在(1)的条件下,证明:f x ≥kx +b .【答案】(1)k =3,b =1;(2)证明见解析.【分析】(1)根据题意,求导可得a 的值,再由导数意义可求切线,得到答案;(2)设函数g x =2x +1 e x -3x -1,利用导数研究函数g (x )的单调性从而求出最小值大于0,可得证.【详解】(1)因为f x =ax +1 e x ,所以f x =ax +a +1 e x ,因为f x -f x =2e x ,所以a =2.则曲线y =f (x )在点x =0处的切线斜率为f 0 =3.又因为f 0 =1,所以曲线y =f (x )在点x =0处的切线方程为y =3x +1,即得k =3,b =1.(2)设函数g x =2x +1 e x -3x -1,x ∈R ,则g x =2x +3 e x -3,设h x =g x ,则h x =e x 2x +5 ,所以,当x >-52时,h x >0,g x 单调递增.又因为g0 =0,所以,x >0时,g x >0,g x 单调递增;-52<x <0时,g x <0,g x 单调递减.又当x ≤-52时,g x =2x +3 e x -3<0,综上g x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所以当x =0时,g x 取得最小值g 0 =0,即2x +1 e x -3x -1≥0,所以,当x ∈R 时,f x ≥3x +1.21(2024·辽宁·二模)已知函数f x =ax 2-ax -ln x .(1)若曲线y =f x 在x =1处的切线方程为y =mx +2,求实数a ,m 的值;(2)若对于任意x ≥1,f x +ax ≥a 恒成立,求实数a 的取值范围.【答案】(1)a =-1,m =-2(2)12,+∞ 【分析】(1)根据导数几何意义和切线方程,可直接构造方程组求得结果;(2)构造函数g x =ax 2-ln x -a x ≥1 ,将问题转化为g x ≥0恒成立;求导后,分别在a ≤0、a ≥12和0<a <12的情况下,结合单调性和最值求得符合题意的范围.【详解】(1)∵f x =2ax -a -1x,∴f 1 =2a -a -1=a -1,∵y =f x 在x =1处的切线为y =mx +2,∴f 1 =a -1=mf 1 =0=m +2 ,解得:a =-1,m =-2.(2)由f x +ax ≥a 得:ax 2-ln x -a ≥0,令g x =ax 2-ln x -a x ≥1 ,则当x ≥1时,g x ≥0恒成立;。

高三数学导数试题答案及解析

高三数学导数试题答案及解析

高三数学导数试题答案及解析1.已知正四棱锥S—ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为()A.1B.C.2D.3【答案】C【解析】如图所示,设正四棱锥高为h,底面边长为a,则a=,即a2=2(12-h2),所以V=×a2×h=h(12-h2)=-(h3-12h),令f(h)=h3-12h,则f′(h)=3h2-12(h>0),令f′(h)=0,则h=2,此时f(h)有最小值,V有最大值.2.若函数在其定义域内的一个子区间内不是单调函数,则实数的取值范围是()A.B.C.D.【答案】B【解析】因为的定义域为,又,由,得.当时,,当时,据题意,,解得.故选B.【考点】应用导数研究函数的单调性3.设(Ⅰ)的图象关于原点对称,当时,的极小值为,求的解析式。

(Ⅱ)若,是上的单调函数,求的取值范围【答案】(Ⅰ) ;(Ⅱ) .【解析】(Ⅰ)由题意知,函数是奇函数,利用奇函数的定义可求出,由函数在处取得极小值为,可得,,进而求出在,一般地,多项式函数为奇函数,则偶次项系数为0,连续可导的函数在某点处取得极值,则该点处导数为0,但连续可导的函数在某点处导数为0,则该处不一定取得极值,所以用以上方法求出函数解析式后,还需进行验证;(Ⅱ)函数在某区间上是单调函数,则导函数在该区间上导数大于等于0恒成立,所以问题又转化为不等式恒成立问题,本题导函数是二次函数,其恒成立问题可用判别式判断,也可分离参数转化为最值问题.试题解析:(Ⅰ)因为的图象关于原点对称,所以有即, 1分所以,所以,所以 3分由,依题意,,,解之,得 6分经检验符合题意 7分故所求函数的解析式为.(Ⅱ)当时,,,因为是上的单调函数,所以恒成立,即恒成立 8分即成立,所以 12分【考点】奇函数、导数与单调性、极值.4.若函数在x=1处取极值,则m=【答案】3【解析】因为,由题意知,,即,.【考点】利用导数求函数的极值.5.已知函数在区间上是增函数,则实数的取值范围为 .【答案】【解析】由题意知在有定义,即在恒成立,即,又在增,故在恒成立,因为,故,综上可知,.【考点】利用导数研究函数单调性、函数最值.6.定义:符合的称为的一阶不动点,符合的称为的二阶不动点。

高三数学导数试题答案及解析

高三数学导数试题答案及解析

高三数学导数试题答案及解析1.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x)上单调递减D.若x0是f(x)的极值点,则f′(x)=0【答案】C【解析】若c=0,则有f(0)=0,所以A正确.由f(x)=x3+ax2+bx+c得f(x)-c=x3+ax2+bx,因为函数f(x)=x3+ax2+bx的对称中心为(0,0),所以f(x)=x3+ax2+bx+c的对称中心为(0,c),所以B正确.由三次函数的图象可知,若x是f(x)的极小值点,则极大值点在x0的左侧,所以函数在区间(-∞,x)单调递减是错误的,D正确.2.已知集合,以下命题正确的序号是.①如果函数,其中,那么的最大值为。

②数列满足首项,,当且最大时,数列有2048个。

③数列满足,,,如果数列中的每一项都是集合M的元素,则符合这些条件的不同数列一共有33个。

④已知直线,其中,而且,则一共可以得到不同的直线196条。

【答案】②③④【解析】①令,,则,所以,故不正确.②由条件知数列是首项为,公差为2的等差数列,则,则当时,,所以各有两种可能取值,因此满足条件的数列有个,故正确.③根据条件可知满足条件的数列可分为四类:(1),且,有9种;(2),且,有5种;(3),且,有10种;(4),且,有9种,共有9+5+10+9=33种.④满足的选法有,其中比值相同重复有14种,因此满足条件的直线共有210-14=196.【考点】1、导数的计数;2、等差数列;3、计数原理.3.已知集合,以下命题正确的序号是.①如果函数,其中,那么的最大值为.②数列满足首项,,当且最大时,数列有2048个.③数列满足,,,如果数列中的每一项都是集合M的元素,则符合这些条件的不同数列一共有33个.④已知直线,其中,而且,则一共可以得到不同的直线196条.【答案】②③④【解析】对①,将求导得:,所以.故错.对②,是一个等差数列,都是互为相反数的两个值,所以数列共有个.对③,由得.法一、由于,,故将加4个2,再减3个2即可.由于故不能连续加4次,也不能连续减3次,所以共有个.法二、因为,所以或,注意到数列中的每一项都是集合M的元素,依次下去可得.由于,所以.由此我们可得以下树图:,所以符合这些条件的不同数列一共有14+19=33个.法三、由于或,,故可以分以下四种情况分别求解:.,共有9个;,共有5个;,共有10个;,共有9个.所以总共有33个.对④,从中取3个不同的数作为,因为,所以共有种取法.再排除其中重复的直线.与相同的有,多3条;与相同的有,多2条;与相同的有,多1条;与相同的有,多1条;与相同的有,多2条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多2条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条(注意这种情况在前面已经考虑了);与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条.一共可以得到不同的直线条.【考点】1、导数;2、数列;3、直线的方程;4、计数原理.4.曲线在点(1,0)处的切线与坐标轴所围三角形的面积等于 .【答案】【解析】∵,∴,所以切线方程为:,∴三角形面积为.【考点】1.利用导数求切线方程;2.三角形的面积公式.5.设是定义在R上的奇函数,且,当时,有恒成立,则不等式的解集是()A.(-2,0) ∪(2,+∞)B.(-2,0) ∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)【答案】D【解析】根据和构造的函数在(0,+∞)上单调递减,又是定义在R上的奇函数,故是定义在R上单调递减.因为f(2)=0,所以在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0.又因为f(x)是定义在R上的奇函数,所以在(-∞,-2)内恒有f(x)>0;在(-2,0)内恒有f(x)<0.又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.所以答案为(-∞,-2)∪(0,2).【考点】1.导数在函数单调性中的应用;2.复合函数的导数.6.曲线处的切线与坐标轴围成的三角形面积为()A.B.C.D.【答案】A【解析】切线斜率,故切线方程为,即,其和坐标轴围成的三角形面积,选A.【考点】导数的几何意义、直线方程.7.已知函数在区间上是增函数,则实数的取值范围为 .【答案】【解析】由题意知在有定义,即在恒成立,即,又在增,故在恒成立,因为,故,综上可知,.【考点】利用导数研究函数单调性、函数最值.8.已知函数,.(Ⅰ)若,求函数在区间上的最值;(Ⅱ)若恒成立,求的取值范围. (注:是自然对数的底数)【答案】(Ⅰ) 最大值;(Ⅱ)的取值范围是.【解析】(Ⅰ) 讨论去掉绝对值,利用导数求得最值; (Ⅱ) 对分,讨论:当时,,恒成立,所以;当时,对讨论去掉绝对值,分离出通过求函数的最值求得的范围.试题解析:(1) 若,则.当时,,,所以函数在上单调递增;当时,,.所以函数在区间上单调递减,所以在区间[1,e]上有最小值,又因为,,而,所以在区间上有最大值.(2)函数的定义域为.由,得.(*)(ⅰ)当时,,,不等式(*)恒成立,所以;(ⅱ)当时,①当时,由得,即,现令,则,因为,所以,故在上单调递增,从而的最小值为,因为恒成立等价于,所以;②当时,的最小值为,而,显然不满足题意.综上可得,满足条件的的取值范围是.【考点】绝对值的计算、函数的最值求法、利用导数求函数单调性.9.定义在上的函数同时满足以下条件:①函数在上是减函数,在上是增函数;②是偶函数;③函数在处的切线与直线垂直.(Ⅰ)求函数的解析式;(Ⅱ)设,若存在使得,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)由三个条件可得三个等式,从而可求出三个未知数.(Ⅱ)一般地若存在使得,则;若存在使得,则.在本题中,由可得: .则大于的最小值.试题解析:(Ⅰ),由题设可得:所以(Ⅱ)由得: 即:令由题意得:所以在单调递增,在上单调递减又,所以的最小值为【考点】函数的性质,导数的求法及应用.10.设,曲线在点处的切线与直线垂直.(1)求的值;(2) 若,恒成立,求的范围.(3)求证:【答案】(1) 0. (2) .(3) 结合(2)时,成立.令得到,累加可得.【解析】(1)求导数,并由得到的值; (2)恒成立问题,往往转化成求函数的最值问题.本题中设,即转化成.利用导数研究函数的最值可得.(3) 结合(2)时,成立.令得到,累加可得.试题解析:(1) 2分由题设,,. 4分(2) ,,,即设,即.6分①若,,这与题设矛盾. 8分②若方程的判别式当,即时,.在上单调递减,,即不等式成立. 9分当时,方程,其根,,当,单调递增,,与题设矛盾.综上所述, . 10分(3) 由(2)知,当时, 时,成立.不妨令所以,11分12分累加可得14分【考点】导数的几何意义,利用导数研究函数的性质,利用导数证明不等式.11.设函数 (R),且该函数曲线在处的切线与轴平行.(Ⅰ)讨论函数的单调性;(Ⅱ)证明:当时,.【答案】(Ⅰ)在上单调递减,在上单调递增;(Ⅱ)见解析.【解析】(Ⅰ)先求出原函数的导函数,令导函数大于零得单调增区间,令导函数小于零得单调减区间;(Ⅱ)当时,,在上单调递增,求出在上的最大值为和最小值,用最大值减去最小值可得结论.试题解析:(Ⅰ),由条件知,故则 3分于是.故当时,;当时,。

高三数学精选导数及其应用多选题同步练习试题

高三数学精选导数及其应用多选题同步练习试题

高三数学精选导数及其应用多选题同步练习试题一、导数及其应用多选题1.对于定义城为R 的函数()f x ,若满足:①(0)0f =;②当x ∈R ,且0x ≠时,都有()0xf x '>;③当120x x <<且12||||x x <时,都有12()()f x f x <,则称()f x 为“偏对称函数”.下列函数是“偏对称函数”的是( ) A .()321f x x x =-+B .()21xf x e x =--C .()3ln 1,0()2,0x x f x x x ⎧-+≤=⎨>⎩D .4()sin f x x x =【答案】BC 【分析】运用新定义,分别讨论四个函数是否满足三个条件,结合奇偶性和单调性,以及对称性,即可得到所求结论. 【详解】解:经验证,1()f x ,2()f x ,3()f x ,4()f x 都满足条件①;0()0()0x xf x f x >⎧'>⇔⎨'>⎩,或0()0x f x <⎧⎨'<⎩;当120x x <<且12||||x x <时,等价于21120x x x x -<<<-<,即条件②等价于函数()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增; A 中,()321f x x x =-+,()2132f x x x '=-+,则当0x ≠时,由()()321232230x x x x f x x =-+=-≤',得23x ≥,不符合条件②,故1()f x 不是“偏对称函数”;B 中,()21xf x e x =--,()21xf x e '=-,当0x >时,e 1x >,()20f x '>,当0x <时,01x e <<,()20f x '<,则当0x ≠时,都有()20xf x '>,符合条件②, ∴函数()21xf x e x =--在(),0-∞上单调递减,在()0,∞+上单调递增,由2()f x 的单调性知,当21120x x x x -<<<-<时,()2122()f x f x <-, ∴22212222222()()()()2x x f x f x f x f x e e x --<--=-++,令()2x x F x e e x -=-++,0x >,()220x x F x e e -'=--+≤-=, 当且仅当x x e e -=即0x =时,“=”成立,∴()F x 在[0,)+∞上是减函数,∴2()(0)0F x F <=,即2122()()f x f x <,符合条件③, 故2()f x 是“偏对称函数”; C 中,由函数()3ln 1,0()2,x x f x x x ⎧-+≤=⎨>⎩,当0x <时,31()01f x x =<-',当0x >时,3()20f x '=>,符合条件②,∴函数3()f x 在(),0-∞上单调递减,在()0,∞+上单调递增, 有单调性知,当21120x x x x -<<<-<时,()3132()f x f x <-, 设()ln(1)2F x x x =+-,0x >,则1()201F x x '=-<+, ()F x 在(0,)+∞上是减函数,可得()(0)0F x F <=,∴1222()()()()f x f x f x f x -<--()()222ln 1()0F x x f x =+-=<, 即12()()f x f x <,符合条件③,故3()f x 是“偏对称函数”;D 中,4()sin f x x x =,则()44()sin ()f x x x f x -=--=,则4()f x 是偶函数,而4()sin cos f x x x x '=+ ()x ϕ=+(tan x ϕ=),则根据三角函数的性质可知,当0x >时,4()f x '的符号有正有负,不符合条件②,故4()f x 不是“偏对称函数”; 故选:BC . 【点睛】本题主要考查在新定义下利用导数研究函数的单调性与最值,考查计算能力,考查转化与划归思想,属于难题.2.经研究发现:任意一个三次多项式函数32()(0)f x ax bx cx d a =+++≠的图象都只有一个对称中心点()()00,x f x ,其中0x 是()0f x ''=的根,()'f x 是()f x 的导数,()f x ''是()'f x 的导数.若函数32()f x x ax x b =+++图象的对称点为(1,2)-,且不等式(ln 1)x e e mx x -+32()3ef x x x e x ⎡⎤≥--+⎣⎦对任意(1,)x ∈+∞恒成立,则( )A .3a =B .1b =C .m 的值可能是e -D .m 的值可能是1e-【答案】ABC 【分析】求导得()62f x x a ''=+,故由题意得()1620f a ''=-+=-,()1112f a b -=-+-+=,即3,1a b ==,故()3231f x x x x =+++.进而将问题转化为()1ln 1e x x e x e m x --++<+,由于1x e x >+,故ln ln 1ee x x x x e e x e x --+=≥-+,进而得()1ln ln 1ln 1e x x e x e e x ee x x --++--≥=-++,即m e ≤-,进而得ABC 满足条件.【详解】由题意可得()1112f a b -=-+-+=,因为()2321x ax f x =++',所以()62f x x a ''=+,所以()1620f a ''=-+=-,解得3,1a b ==,故()3231f x x x x =+++.因为1x >,所以()()32ln []13xeee mx xf x x x e x -+≥--+等价于()1ln 1e x x e x e m x --++≤+. 设()()10xg x e x x =-->,则()10xg x e '=->,从而()g x 在()0,∞+上单调递增.因为()00g =,所以()0g x >,即1x e x >+, 则ln ln 1ee x xxx e e x e x --+=≥-+(当且仅当x e =时,等号成立),从而()1ln ln 1ln 1e x x e x e e x e e x x --++--≥=-++,故m e ≤-.故选:ABC. 【点睛】本题解题的关键在于根据题意得()3231f x x x x =+++,进而将不等式恒成立问题转化为()1ln 1e x x e x e m x --++≤+恒成立问题,再结合1x e x >+得ln ln 1ee x xxx e e x e x --+=≥-+,进而得m e ≤-.考查运算求解能力与化归转化思想,是难题.3.已知函数()()2214sin 2x xe xf x e -=+,则下列说法正确的是( ) A .函数()y f x =是偶函数,且在(),-∞+∞上不单调 B .函数()y f x '=是奇函数,且在(),-∞+∞上不单调递增 C .函数()y f x =在π,02⎛⎫-⎪⎝⎭上单调递增 D .对任意m ∈R ,都有()()f m f m =,且()0f m ≥【答案】AD 【分析】由函数的奇偶性以及函数的单调性即可判断A 、B 、C 、D. 【详解】 解:对A ,()()222114sin =2cos 2x x xx e x e f x x e e-+=+-,定义域为R ,关于原点对称,()2211=2cos()2cos()()x x x xe ef x x x f x e e--++---=-=, ()y f x ∴=是偶函数,其图像关于y 轴对称,()f x ∴在(),-∞+∞上不单调,故A 正确;对B ,1()2sin xx f x e x e'=-+, 11()2sin()=(2sin )()x xx x f x e x e x f x e e--''-=-+---+=-, ()f x '∴是奇函数,令1()2sin xx g x e x e=-+, 则1()+2cos 2+2cos 0x x g x e x x e'=+≥≥, ()f x '∴在(),-∞+∞上单调递增,故B 错误;对C ,1()2sin x x f x e x e'=-+,且()'f x 在(),-∞+∞上单调递增, 又(0)0f '=,π,02x ⎛⎫∴∈- ⎪⎝⎭时,()0f x '<,()y f x ∴=在π,02⎛⎫- ⎪⎝⎭上单调递减,故C 错误;对D ,()y f x =是偶函数,且在(0,)+∞上单调递增,()()f m f m ∴=,且()(0)0f m f ≥=,故D 正确.故选:AD. 【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式;(3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用.4.已知函数()f x 的定义域为()0,∞+,其导函数()f x '满足()1f x x'<,且()11f =,则下列结论正确的是( ) A .()2f e > B .10f e ⎛⎫> ⎪⎝⎭C .()1,x e ∀∈,()2f x <D .1,1x e ⎛⎫∀∈ ⎪⎝⎭, ()120x f x f ⎛⎫+> ⎪⎝⎭- 【答案】BCD 【分析】令()()ln F x f x x =-,求导得:'1()()0F x f x x'=-<,可得函数的单调性,再结合(1)1f =,可得(1)1F =,对选项进行一一判断,即可得答案;【详解】令()()ln F x f x x =-,∴'1()()0F x f x x'=-<, ()F x ∴在(0,)+∞单调递减, (1)1f =,(1)(1)1F f ∴==,对A ,()(1)()11()2F e F f e f e <⇒-<⇒<,故A 错误; 以B ,111(1)()110eF F f f e e ⎛⎫⎛⎫>⇒+>⇒> ⎪ ⎪⎝⎭⎝⎭,故B 正确; 对C ,(1,)()(1)()ln 1x e F x F f x x ∈∴<⇒-<,()1ln f x x ∴<+,(1.),ln (0,1)x e x ∈∈, 1ln (1,2)x ∴+∈,()2f x ∴<,故C 正确;对D ,111,1,,()x x F x F e x x ⎛⎫⎛⎫∈>> ⎪ ⎪⎝⎭⎝⎭()1ln ln f x x f x x ⎛⎫⇒->+ ⎪⎝⎭1()2ln f x f x x ⎛⎫⇒-> ⎪⎝⎭,1,1,ln (1,0)x x e ⎛⎫∈∴∈- ⎪⎝⎭,1()2f x f x ⎛⎫∴->- ⎪⎝⎭1()20f x f x ⎛⎫⇒-+> ⎪⎝⎭,故D 正确; 故选:BCD. 【点睛】根据条件构造函数,再利用导数的工具性研究函数的性质,是求解此类抽象函数问题的关键.5.已知函数()()()221x f x x e a x =-+-有两个零点,则a 的可能取值是( ) A .1- B .0 C .1 D .2【答案】CD 【分析】求出()f x 的导数,讨论a 的范围,结合函数的单调性和零点存在性定理可判断求出. 【详解】解:∵函数()()()221x f x x e a x =-+-,∴()()()()()12112xxf x x e a x x e a '=-+-=-+,①若0a =,那么()()0202xf x x e x =⇔-=⇔=,函数()f x 只有唯一的零点2,不合题意; ②若0a >,那么20x e a +>恒成立, 当1x <时,()0f x '<,此时函数为减函数; 当1x >时,()0f x '>,此时函数为增函数; 此时当1x =时,函数()f x 取极小值e -,由()20f a =>,可得:函数()f x 在1x >存在一个零点; 当1x <时,x e e <,210x -<-<,∴()()()()()222121x f x x e a x x e a x =-+->-+-()()211a x e x e =-+--,令()()2110a x e x e -+--=的两根为1t ,2t ,且12t t <, 则当1x t <,或2x t >时,()()()2110f x a x e x e >-+-->, 故函数()f x 在1x <存在一个零点;即函数()f x 在R 上存在两个零点,满足题意; ③若02ea -<<,则()ln 2ln 1a e -<=, 当()ln 2x a <-时,()1ln 21ln 10x a e -<--<-=,()ln 2220a x e a e a -+<+=,即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,当()ln 21a x -<<时,10x -<,()ln 2220a x e a e a -+>+=,即()()()120xf x x e a '=-+<恒成立,故()f x 单调递减,当1x >时,10x ->,()ln 2220a x e a e a -+>+=, 即()()(1)20xf x x e a '=-+>恒成立,故()f x 单调递增,故当()ln 2x a =-时,函数取极大值,由()()()()()2ln 2ln 222ln 21f a a a a a ⎡⎤⎡⎤-=---+--⎣⎦⎣⎦(){}2ln 2210a a ⎡⎤⎣⎦=--+<得:函数()f x 在R 上至多存在一个零点,不合题意;④若2ea =-,则()ln 21a -=, 当()1ln 2x a <=-时,10x -<,()ln 2220a x e a e a -+<+=, 即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,当1x >时,10x ->,()ln 2220a x e a e a -+>+=, 即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,故函数()f x 在R 上单调递增,函数()f x 在R 上至多存在一个零点,不合题意;⑤若2ea <-,则()ln 2ln 1a e ->=, 当1x <时,10x -<,()ln 2220a x e a e a -+<+=, 即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,当()1ln 2x a <<-时,10x ->,()ln 2220a x e a e a -+<+=, 即()()()120xf x x e a '=-+<恒成立,故()f x 单调递减,当()ln 2x a >-时,10x ->,()ln 2220a x e a e a -+>+=, 即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,故当1x =时,函数取极大值,由()10f e =-<得:函数()f x 在R 上至多存在一个零点,不合题意; 综上所述,a 的取值范围为()0,∞+, 故选:CD. 【点睛】本题考查利用导数研究函数的零点问题,属于较难题.6.函数()ln f x x x =、()()f x g x x'=,下列命题中正确的是( ).A .不等式()0g x >的解集为1,e ⎛⎫+∞ ⎪⎝⎭B .函数()f x 在()0,e 上单调递增,在(,)e +∞上单调递减C .若函数()()2F x f x ax =-有两个极值点,则()0,1a ∈D .若120x x >>时,总有()()()2212122m x x f x f x ->-恒成立,则m 1≥ 【答案】AD 【分析】对A ,根据()ln f x x x =,得到()()ln 1f x xg x x x'+==,然后用导数画出其图象判断;对B ,()1ln f x x '=+,当x e >时,()0f x '>,当0x e <<时,()0f x '<判断;对C ,将函数()()2F x f x ax =-有两个极值点,()ln 120x a x+=+∞在,有两根判断;对D ,将问题转化为22111222ln ln 22m m x x x x x x ->-恒成立,再构造函数()2ln 2m g x x x x =-,用导数研究单调性. 【详解】对A ,因为()()()ln 1ln f x x f x x x g x x x'+===、, ()2ln xg x x-'=, 令()0g x '>,得()0,1x ∈,故()g x 在该区间上单调递增;令()0g x '<,得()1x ∈+∞,,故()g x 在该区间上单调递减. 又当1x >时,()0g x >,()10,11g g e ⎛⎫== ⎪⎝⎭, 故()g x 的图象如下所示:数形结合可知,()0g x >的解集为1,e ⎛⎫+∞ ⎪⎝⎭,故正确;对B ,()1ln f x x '=+,当x e >时,()0f x '>,当0x e <<时,()0f x '<,所以函数()f x 在()0,e 上单调递减,在(,)e +∞上单调递增,错误;对C ,若函数()()2F x f x ax =-有两个极值点,即()2ln F x x x ax =-有两个极值点,又()ln 21F x x ax '=-+,要满足题意,则需()ln 2100x ax -+=+∞在,有两根, 也即()ln 120x a x+=+∞在,有两根,也即直线()2y a y g x ==与的图象有两个交点. 数形结合则021a <<,解得102a <<. 故要满足题意,则102a <<,故错误; 对D ,若120x x >>时,总有()()()2212122m x x f x f x ->-恒成立, 即22111222ln ln 22m m x x x x x x ->-恒成立, 构造函数()2ln 2m g x x x x =-,()()12g x g x >,对任意的120x x >>恒成立, 故()g x ()0+∞,单调递增,则()ln 10g x mx x '=--≥()0+∞, 恒成立, 也即ln 1x m x+≤,在区间()0,∞+恒成立,则()max 1g x m =≤,故正确. 故选:AD. 【点睛】本题主要考查导数在函数图象和性质中的综合应用,还考查了数形结合的思想、转化化归思想和运算求解的能力,属于较难题.7.对于函数2ln ()xf x x =,下列说法正确的是( ) A.函数在x =12eB .函数的值域为1,2e ⎛⎤-∞ ⎥⎝⎦C .()f x 有两个不同的零点 D.(2)f f f <<【答案】ABD 【分析】求导,利用导数研究函数的单调区间,进而研究函数的极值可判断A 选项,作出函数()f x 的抽象图像可以判断BCD 选项. 【详解】函数的定义域为()0,∞+,求导2431ln 212ln ()x x xx x f x x x ⋅-⋅-'==, 令()0f x '=,解得:x =x()0,ee(),e +∞ ()'f x+-()f x极大值所以当x e =时,函数有极大值()2fe e=,故A 正确; 对于BCD ,令()0f x =,得ln 0x =,即1x =,当x →+∞时,ln 0x >,20x >,则()0f x >作出函数()f x 的抽象图像,如图所示:由图可知函数的值域为1,2e ⎛⎤-∞ ⎥⎝⎦,故B 正确;函数只有一个零点,故C 错误;又函数()f x 在),e +∞32e π<<<,则(2)3)f f f π<<,故D正确; 故选:ABD 【点睛】方法点睛:本题考查利用导数研究函数单调性,函数的极值,函数的值域,及求函数零点个数,求函数零点个数常用的方法:(1)方程法:令()0f x =,如果能求出解,有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要求函数在区间[],a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图像与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图像的交点个数问题.先画出两个函数的图像,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.8.设函数()ln xf x x=,()ln g x x x =,下列命题,正确的是( ) A .函数()f x 在()0,e 上单调递增,在(),e +∞单调递减 B .不等关系33e e ππππ<<<成立C .若120x x <<时,总有()()()22212122a x x g x g x ->-恒成立,则1a ≥ D .若函数()()2h x g x mx =-有两个极值点,则实数()0,1m ∈ 【答案】AC【分析】利用函数的单调性与导数的关系可判断A 选项的正误;由函数()f x 在区间(),e +∞上的单调性比较3π、e π的大小关系,可判断B 选项的正误;分析得出函数()()22s x g x ax =-在()0,∞+上为减函数,利用导数与函数单调性的关系求出a 的取值范围,可判断C 选项的正误;分析出方程1ln 2x m x +=在()0,∞+上有两个根,数形结合求出m 的取值范围,可判断D 选项的正误.【详解】对于A 选项,函数()ln x f x x =的定义域为()0,∞+,则()21ln x f x x -'=. 由()0f x '>,可得0x e <<,由()0f x '>,可得x e >.所以,函数()f x 在()0,e 上单调递增,在(),e +∞单调递减,A 选项正确;对于B 选项,由于函数()ln x f x x =在区间(),e +∞上单调递减,且4e π>>, 所以,()()4ff π>,即ln ln 44ππ>,又ln 41ln 213ln 22043236--=-=>, 所以,ln ln 4143ππ>>,整理可得3e ππ>,B 选项错误; 对于C 选项,若120x x <<时,总有()()()22212122a x x g x g x ->-恒成立, 可得()()22112222g x ax g x ax ->-,构造函数()()2222ln s x g x ax x x ax =-=-, 则()()12s x s x >,即函数()s x 为()0,∞+上的减函数,()()21ln 20s x x ax '=+-≤对任意的()0,x ∈+∞恒成立, 即1ln x a x+≥对任意的()0,x ∈+∞恒成立, 令()1ln x t x x +=,其中0x >,()2ln x t x x'=-. 当01x <<时,()0t x '>,此时函数()t x 单调递增;当1x >时,()0t x '<,此时函数()t x 单调递减. 所以,()()max 11t x t ==,1a ∴≥,C 选项正确;对于D 选项,()()22ln h x g x mx x x mx =-=-,则()1ln 2h x x mx '=+-,由于函数()h x 有两个极值点,令()0h x '=,可得1ln 2x m x+=, 则函数2y m =与函数()t x 在区间()0,∞+上的图象有两个交点,当1x e>时,()0t x >,如下图所示:当021m <<时,即当102m <<时,函数2y m =与函数()t x 在区间()0,∞+上的图象有两个交点.所以,实数m 的取值范围是10,2⎛⎫ ⎪⎝⎭,D 选项错误.故选:AC.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.。

直击2024年高考——高三数学导数题型专练(全国版)

直击2024年高考——高三数学导数题型专练(全国版)

导数题型专练【利用公式和四则运算求导】 【例1】下列求导运算正确的是( ) A.⎝⎛⎭⎫1ln x ′=-1x ln 2x B .(x 2e x )′=2x +e x C.⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-sin ⎝⎛⎭⎫2x -π3 D.⎝⎛⎭⎫x -1x ′=1+1x 2 【答案】 AD【解析】 ⎝⎛⎭⎫1ln x ′=-1ln 2x ·(ln x )′=-1x ln 2x , 故A 正确;(x 2e x )′=(x 2+2x )e x ,故B 错误;⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-2sin ⎝⎛⎭⎫2x -π3,故C 错误;⎝⎛⎭⎫x -1x ′=1+1x 2,故D 正确.【复合函数求导】 【例2】设函数,若,则.【答案】 1; 【解析】 函数, , ,,解得, 故答案为:.【根据导数构造抽象函数】 【例3】已知可导函数的导函数为,若对任意的,都有,且为奇函数,则不等式的解集为( ).A.B.C.D.【答案】 A; 【解析】 设,由,得:,故函数在递减,由为奇函数,得, ∴,即,∵不等式,∴,即, 结合函数的单调性得:, 故不等式的解集是.故选.【求在某点处的切线方程】【例4】曲线y =2x -1x +2在点(-1,-3)处的切线方程为__________.【答案】 5x -y +2=0【解析】 y ′=⎝ ⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.【求过某点处的切线方程】【例5】y =2x 2+8过点P(1,2)的切线方程是( ). A. y =−4x +6B. y =12x −10C. y =−4x +6或y =12x −10D. y =4x +6或y =12x −10【答案】 C;【解析】 设切点坐标为(x 0 ,2x 02+8),y ′=4x ,∴切线斜率k =4x 0,则2x 02+8−2x 0−1=4x 0,解得x 0=−1或3,∴所求切线方程为y =−4x +6或y =12x −10.【根据切线求参数问题】【例6】直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2),则2a +b 等于( ) A .4 B .3C .2D .1【答案】 A【解析】 ∵直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2), 将P (1,2)代入y =kx +1, 可得k +1=2,解得k =1, ∵ f (x )=a ln x +b ,∴ f ′(x )=ax , 由f ′(1)=a1=1,解得a =1,可得f (x )=ln x +b , ∵P (1,2)在曲线f (x )=ln x +b 上, ∴f (1)=ln 1+b =2,解得b =2,故2a +b =2+2=4.【例7】过定点P (1,e)作曲线y =a e x (a >0)的切线,恰有2条,则实数a 的取值范围是________. 【答案】 (1,+∞)【解析】 由y ′=a e x ,若切点为(x 0,0e x a ), 则切线方程的斜率k =0'|x x y ==0e x a >0,∴切线方程为y =0e x a (x -x 0+1), 又P (1,e)在切线上, ∴0e x a (2-x 0)=e ,即ea =0e x (2-x 0)有两个不同的解,令φ(x )=e x (2-x ), ∴φ′(x )=(1-x )e x ,当x ∈(-∞,1)时,φ′(x )>0; 当x ∈(1,+∞)时,φ′(x )<0,∴φ(x )在(-∞,1)上单调递增,在(1,+∞)上单调递减, ∴φ(x )max =φ(1)=e , 又x →-∞时,φ(x )→0; x →+∞时,φ(x )→-∞, ∴0<ea <e ,解得a >1,即实数a 的取值范围是(1,+∞).【两曲线的公切线】【例8】已知函数f (x )=x ln x ,g (x )=x 2+ax (a ∈R ),直线l 与f (x )的图象相切于点A (1,0),若直线l 与g (x )的图象也相切,则a 等于( ) A .0 B .-1 C .3 D .-1或3【答案】 D【解析】 由f (x )=x ln x 求导得f ′(x )=1+ln x ,则f ′(1)=1+ln 1=1,于是得函数f (x )在点A (1,0)处的切线l 的方程为y =x -1,因为直线l 与g (x )的图象也相切,则方程组⎩⎪⎨⎪⎧y =x -1,g x =x 2+ax ,有唯一解,即关于x 的一元二次方程x 2+(a -1)x +1=0有两个相等的实数根, 因此Δ=(a -1)2-4=0,解得a =-1或a =3, 所以a =-1或a =3.【利用导数确定函数图象】 【例9】已知函数,则的图象大致为( ).A. B.C. D.【答案】A;【解析】令,则,由,得,即函数在上单调递增,由得,即函数在上单调递减,所以当时,函数有最小值,,于是对任意的,有,故排除、,因为函数在上单调递减,则函数在上单调递增,故排除.故选.【利用导数求具体函数的单调性】【例10】函数f(x)=x2-2ln x的单调递减区间是()A.(0,1) B.(1,+∞)C.(-∞,1) D.(-1,1)【答案】A【解析】∵f′(x)=2x-2 x=2(x+1)(x-1)x(x>0),令f′(x)=0,得x=1,∴当x∈(0,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增.【例11】若函数f(x)=ln x+1e x,则函数f(x)的单调递减区间为________.【答案】(1,+∞)【解析】f(x)的定义域为(0,+∞),f′(x)=1x-ln x-1e x,令φ(x)=1x-ln x-1(x>0),φ′(x)=-1x2-1x<0,φ(x)在(0,+∞)上单调递减,且φ(1)=0,∴当x∈(0,1)时,φ(x)>0,当x∈(1,+∞)时,φ(x)<0,∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.【利用导数求含参函数的单调性】【例12】已知函数.讨论的单调性.【答案】当时,增区间为,无减区间;当时,增区间为,减区间为.【解析】函数的定义域为:,,①当时,恒成立,在上单调递增,无减区间;②当时,令,解得,∴增区间为,减区间为综上:当时,增区间为,无减区间;当时,增区间为,减区间为.【例13】已知函数是自然对数的底数).讨论的单调性.【答案】 当时,在上单调递减; 当时,在上单调递减,在上单调递增. 【解析】,当时,,在上单调递减; 当时,由得,所以在上单调递减;由得,所以在上单调递增.综上,当时,在上单调递减;当时,在上单调递减,在上单调递增.【导数解决单调性的应用-比较大小】【例14】已知函数f (x )=x sin x ,x ∈R ,则f ⎝⎛⎭⎫π5,f (1),f ⎝⎛⎭⎫-π3的大小关系为( ) A .f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5 B .f (1)>f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5 C .f ⎝⎛⎭⎫π5>f (1)>f ⎝⎛⎭⎫-π3 D .f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5>f (1) 【答案】 A【解析】 因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数,所以f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3.又当x ∈⎝⎛⎭⎫0,π2时,f ′(x )=sin x +x cos x >0,所以函数f (x )在⎝⎛⎭⎫0,π2上单调递增,所以f ⎝⎛⎭⎫π5<f (1)<f ⎝⎛⎭⎫π3,即f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5.【导数解决单调性的应用-解不等式】【例15】已知函数f (x )=e x -e -x -2x +1,则不等式f (2x -3)>1的解集为________.【答案】 ⎝⎛⎭⎫32,+∞【解析】 f (x )=e x -e -x -2x +1,定义域为R , f ′(x )=e x +e -x -2≥2e x ·e -x -2=0,当且仅当x =0时取“=”, ∴f (x )在R 上单调递增, 又f (0)=1,∴原不等式可化为f (2x -3)>f (0), 即2x -3>0,解得x >32, ∴原不等式的解集为⎝⎛⎭⎫32,+∞.【导数解决单调性的应用-求参数范围】【例16】已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎡⎦⎤13,2上单调递增,则实数a 的取值范围为________. 【答案】 ⎣⎡⎭⎫43,+∞ 【解析】 由题意知f ′(x )=x +2a -1x ≥0在⎣⎡⎦⎤13,2上恒成立, 即2a ≥-x +1x 在⎣⎡⎦⎤13,2上恒成立, ∵⎝⎛⎭⎫-x +1x max =83, ∴2a ≥83,即a ≥43.【根据函数图象判断极值】【例17】设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(x -1)f ′(x )的图象如图所示,则下列结论中正确的是( )A.函数f(x)有极大值f(-3)和f(3)B.函数f(x)有极小值f(-3)和f(3) C.函数f(x)有极小值f(3)和极大值f(-3)D.函数f(x)有极小值f(-3)和极大值f(3)【答案】D【解析】由题图知,当x∈(-∞,-3)时,y>0,x-1<0⇒f′(x)<0,f(x)单调递减;当x∈(-3,1)时,y<0,x-1<0⇒f′(x)>0,f(x)单调递增;当x∈(1,3)时,y>0,x-1>0⇒f′(x)>0,f(x)单调递增;当x∈(3,+∞)时,y<0,x-1>0⇒f′(x)<0,f(x)单调递减.所以函数有极小值f(-3)和极大值f(3).【利用导数求函数的极值】【例18】已知函数,其中.求函数的极值.【答案】当时,在单调递减,无极值,当时,在单调递增,上单调递减.∴有极大值.【解析】,,令得,,当时,在单调递减,无极值,当时,在单调递增,上单调递减.∴有极大值.【例19】已知函数.判断函数的极值点的个数,并说明理由.【答案】当时,函数有一个极值点;当或时,函数有两个极值点,当时,函数无极值点.【解析】因为,所以.()当时,有,令,得.当变化时,和的变化情况如下:所以当时,函数只有一个极值点.()当时,令,得,.①当时,.当变化时,和的变化情况如下:所以当时,函数有两个极值点.②当时,恒成立,所以在上单调递增,所以当时,函数无极值点.③当时,,当变化时,和的变化情况如下:所以当时,函数有两个极值点,综上,当时,函数有一个极值点;当或时,函数有两个极值点,当时,函数无极值点.【已知极值(点)求参数】【例20】函数f (x )=x 3+ax 2+bx +a 2在x =1处取得极值10,则a +b 等于()A .-7B .0C .-7或0D .-15或6【答案】 A【解析】 由题意知,函数f (x )=x 3+ax 2+bx +a 2,可得f ′(x )=3x 2+2ax +b ,因为f (x )在x =1处取得极值10,可得⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10,解得⎩⎪⎨⎪⎧ a =4,b =-11,或⎩⎪⎨⎪⎧a =-3,b =3,检验知,当a =-3,b =3时,可得f ′(x )=3x 2-6x +3=3(x -1)2≥0,此时函数f (x )单调递增,函数无极值点,不符合题意;当a =4,b =-11时,可得f ′(x )=3x 2+8x -11=(3x +11)(x -1),当x <-113或x >1时,f ′(x )>0,f (x )单调递增;当-113<x <1时,f ′(x )<0,f (x )单调递减,当x =1时,函数f (x )取得极小值,符合题意.所以a +b =-7.【利用导数求函数的最值】【例21】函数的最小值为 . 【答案】 ; 【解析】 当时,,,此时单调递减,此时.当时,,, 当时,,单调递减, 时,,单调递增, ∴此时,∵,∴的最小值为. 【例22】已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ).(1)若a =1,求g (x )在区间[1,e]上的最大值;(2)求g (x )在区间[1,e]上的最小值h (a ).【答案】(1) e 2-3e +1;(2) h (a )=⎩⎪⎨⎪⎧ -a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e )a +e 2-2e ,a ≥2e.【解析】 (1)∵a =1,∴g (x )=ln x +x 2-3x ,∴g ′(x )=1x +2x -3=(2x -1)(x -1)x, ∵x ∈[1,e],∴g ′(x )≥0,∴g (x )在[1,e]上单调递增,∴g (x )max =g (e)=e 2-3e +1.(2)g (x )的定义域为(0,+∞),g ′(x )=a x +2x -(a +2)=2x 2-(a +2)x +a x=(2x -a )(x -1)x. ①当a 2≤1,即a ≤2时,g (x )在[1,e]上单调递增,h (a )=g (1)=-a -1;②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上单调递减,在⎝⎛⎦⎤a 2,e 上单调递增,h (a )=g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ;③当a 2≥e ,即a ≥2e 时,g (x )在[1,e]上单调递减,h (a )=g (e)=(1-e)a +e 2-2e.综上,h (a )=⎩⎪⎨⎪⎧ -a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e )a +e 2-2e ,a ≥2e.【数形结合法研究函数零点】【例23】已知函数f (x )=e x -a (x +2).(1)当a =1时,讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.【解析】 (1)当a =1时,f (x )=e x -(x +2),f ′(x )=e x -1,令f ′(x )<0,解得x <0,令f ′(x )>0,解得x >0,所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)令f (x )=0,得e x =a (x +2),即1a =x +2e x ,所以函数y =1a 的图象与函数φ(x )=x +2e x 的图象有两个交点,φ′(x )=-x -1e x ,当x ∈(-∞,-1)时,φ′(x )>0;当x ∈(-1,+∞)时,φ′(x )<0,所以φ(x )在(-∞,-1)上单调递增,在(-1,+∞)上单调递减,所以φ(x )max =φ(-1)=e ,且x →-∞时,φ(x )→-∞;x →+∞时,φ(x )→0,所以0<1a <e ,解得a >1e .所以a 的取值范围是⎝⎛⎭⎫1e ,+∞.【利用函数性质研究函数零点】【例24】已知函数f (x )=x -a ln x (a >0).(1)求函数f (x )的单调区间;(2)求函数g (x )=12x 2-ax -f (x )的零点个数.【解析】 (1)函数f (x )的定义域为(0,+∞),由f (x )=x -a ln x 可得f ′(x )=1-a x =x -a x ,由f ′(x )>0可得x >a ;由f ′(x )<0可得0<x <a ,所以f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).(2)由g (x )=12x 2-ax -x +a ln x=12x 2-(a +1)x +a ln x ,可得g ′(x )=x -(a +1)+a x令g ′(x )=0可得x =1或x =a ,因为g (1)=12-a -1=-a -12<0,g (2a +3)=12(2a +3)2-(a +1)(2a +3)+a ln(2a +3)=a +a ln(2a +3)+32>0,当a >1时,g (x )在(1,a )上单调递减,所以g (1)>g (a ),所以g (a )<0,所以g (x )有一个零点,当a =1时,g (x )在(0,+∞)上单调递增,所以g (x )有一个零点,当0<a <1时,g (x )在(0,a )上单调递增,在(a ,1)上单调递减,在(1,+∞)上单调递增,此时g (a )=12a 2-(a +1)a +a ln a=-12a 2-a +a ln a <0,g (x )只有一个零点,综上所述,g (x )在(0,+∞)上只有一个零点.【导数构造问题】【例25】已知定义在R 上的函数f (x ),其导函数为f ′(x ),当x >0时,f ′(x )-f (x )x >0,若a=2f (1),b =f (2),c =4f ⎝⎛⎭⎫12,则a ,b ,c 的大小关系是( )A .c <b <aB .c <a <bC .b <a <cD .a <b <c 【答案】 B【解析】 构造函数g (x )=f (x )x (x >0),得g ′(x )=xf ′(x )-f (x )x 2=1x ⎣⎡⎦⎤f ′(x )-f (x )x , 由题知当x >0时,f ′(x )-f (x )x >0,所以g ′(x )>0,故g (x )在(0,+∞)上单调递增,所以f (2)2>f (1)1>f ⎝⎛⎭⎫1212,即f (2)>2f (1)>4f ⎝⎛⎭⎫12,即b >a >c .【例26】(多选)已知f (x )是定义在(-∞,+∞)上的函数,导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)<e 2f (0)B .f (2)>e 2f (0)C .e 2f (-1)>f (1)D .e 2f (-1)<f (1)【答案】 AC【解析】 构造F (x )=f (x )e x ,则F ′(x )=e x f ′(x )-e x f (x )e 2x =f ′(x )-f (x )e x,导函数f ′(x )满足f ′(x )<f (x ),则F ′(x )<0,F (x )在R 上单调递减,根据单调性可知A ,C 选项正确.【例27】(多选)定义在⎝⎛⎭⎫0,π2上的函数f (x ),已知f ′(x )是它的导函数,且恒有cos x ·f ′(x )+sin x ·f (x )<0成立,则有( )A .f ⎝⎛⎭⎫π6>2f ⎝⎛⎭⎫π4 B.3f ⎝⎛⎭⎫π6>f ⎝⎛⎭⎫π3 C .f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π3 D.2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4 【答案】 CD【解析】 构造函数g (x )=f (x )cos x ⎝⎛⎭⎫0<x <π2. 则g ′(x )=f ′(x )cos x +f (x )sin x (cos x )2<0,即函数g (x )在⎝⎛⎭⎫0,π2上单调递减, 所以g ⎝⎛⎭⎫π6>g ⎝⎛⎭⎫π3,所以f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π3, 同理g ⎝⎛⎭⎫π6>g ⎝⎛⎭⎫π4, 即2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4.【同构法导数构造】【例28】若存在x ,y ∈(0,+∞)使得x ln(2ax )+y =x ln y ,则实数a 的最大值为( ) A.1eB.12eC.13eD.2e【答案】 B【解析】 由x ln(2ax )+y =x ln y ,得ln(2a )=ln y x -y x ,令t =y x >0,g (t )=ln t -t ,则g ′(t )=1t -1=1-t t ,当0<t <1时,g ′(t )>0,当t >1时,g ′(t )<0,所以g (t )在(0,1)上单调递增,在(1,+∞)上单调递减,所以当t =1时,g (t )取得极大值即最大值g (1)=-1,因为当t →0时,g (t )→-∞,所以g (t )∈(-∞,-1],所以ln 2a ≤-1,所以0<a ≤12e ,所以实数a 的最大值为12e .【分参法解决恒成立问题】【例29】已知函数f (x )=(x -2)e x -12ax 2+ax (a ∈R ).(1)当a =0时,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)当x ≥2时,f (x )≥0恒成立,求a 的取值范围.【解析】(1)当a =0时,f (x )=(x -2)e x ,f (0)=(0-2)e 0=-2,f ′(x )=(x -1)e x ,k =f ′(0)=(0-1)e 0=-1,所以切线方程为y +2=-(x -0),即x +y +2=0.(2)方法一 当x ≥2时,f (x )≥0恒成立,等价于当x ≥2时,(x -2)e x -12ax 2+ax ≥0恒成立.即⎝⎛⎭⎫12x 2-x a ≤(x -2)e x 在[2,+∞)上恒成立.当x =2时,0·a ≤0,所以a ∈R .当x >2时,12x 2-x >0,所以a ≤(x -2)e x 12x 2-x=2e x x 恒成立. 设g (x )=2e x x ,则g ′(x )=2(x -1)e x x 2, 因为x >2,所以g ′(x )>0,所以g (x )在区间(2,+∞)上单调递增.所以g (x )>g (2)=e 2,所以a ≤e 2.综上所述,a 的取值范围是(-∞,e 2].【整体法解决恒成立问题】【例30】已知函数f (x )=e x -1-ax +ln x (a ∈R ). (1)若函数f (x )在x =1处的切线与直线3x -y =0平行,求a 的值;(2)若不等式f (x )≥ln x -a +1对一切x ∈[1,+∞)恒成立,求实数a 的取值范围.【解析】(1)f ′(x )=e x -1-a +1x ,∴f ′(1)=2-a =3,∴a =-1,经检验a =-1满足题意,∴a =-1,(2)f (x )≥ln x -a +1可化为e x -1-ax +a -1≥0,x >0,令φ(x )=e x -1-ax +a -1,则当x ∈[1,+∞)时,φ(x )min ≥0,∵φ′(x )=e x -1-a ,①当a ≤1e 时,φ′(x )>0,∴φ(x )在[1,+∞)上单调递增,∴φ(x )min =φ(1)=1-a +a -1=0≥0恒成立,∴a ≤1e 符合题意.②当a >1e 时,令φ′(x )=0,得x =ln a +1.当x ∈(0,ln a +1)时,φ′(x )<0,当x ∈(ln a +1,+∞)时,φ′(x )>0,∴φ(x )在(0,ln a +1)上单调递减,在(ln a +1,+∞)上单调递增.当ln a +1≤1,即1e <a ≤1时,φ(x )在[1,+∞)上单调递增,φ(x )min =φ(1)=0≥0恒成立,∴1e <a ≤1符合题意.当ln a +1>1,即a >1时,φ(x )在[1,ln a +1)上单调递减,在(ln a +1,+∞)上单调递增, ∴φ(x )min =φ(ln a +1)<φ(1)=0与φ(x )≥0矛盾.故a >1不符合题意.综上,实数a 的取值范围为(-∞,1].【双变量的恒(能)成立问题】【例31】设f (x )=a x +x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ;(2)如果对于任意的s ,t ∈⎣⎡⎦⎤12,2,都有f (s )≥g (t )成立,求实数a 的取值范围. 解 (1)存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M 成立. g ′(x )=3x 2-2x =x (3x -2),令g ′(x )=0,得x =0或x =23,∵g ⎝⎛⎭⎫23=-8527, 又g (0)=-3,g (2)=1, ∴当x ∈[0,2]时,g (x )max =g (2)=1,g (x )min =g ⎝⎛⎭⎫23=-8527, ∴M ≤1-⎝⎛⎭⎫-8527=11227, ∴满足条件的最大整数M 为4.(2)对任意的s ,t ∈⎣⎡⎦⎤12,2有f (s )≥g (t ),则f (x )min ≥g (x )max .由(1)知当x ∈⎣⎡⎦⎤12,2时,g (x )max =g (2)=1, ∴当x ∈⎣⎡⎦⎤12,2时,f (x )=a x +x ln x ≥1恒成立, 即a ≥x -x 2ln x 恒成立.令h (x )=x -x 2ln x ,x ∈⎣⎡⎦⎤12,2,∴h ′(x )=1-2x ln x -x , 令φ(x )=1-2x ln x -x , ∴φ′(x )=-3-2ln x <0,h ′(x )在⎣⎡⎦⎤12,2上单调递减,又h ′(1)=0,∴当x ∈⎣⎡⎦⎤12,1时,h ′(x )≥0, 当x ∈[1,2]时,h ′(x )≤0,∴h (x )在⎣⎡⎦⎤12,1上单调递增,在[1,2]上单调递减,∴h (x )max =h (1)=1,故a ≥1.∴实数a 的取值范围是[1,+∞).【利用导数证明不等式】【例32】已知函数g (x )=x 3+ax 2.(1)若函数g (x )在[1,3]上为单调函数,求a 的取值范围;(2)已知a >-1,x >0,求证:g (x )>x 2ln x .(1)解 由题意知,函数g (x )=x 3+ax 2,则g ′(x )=3x 2+2ax ,若g (x )在[1,3]上单调递增,则g ′(x )=3x 2+2ax ≥0在[1,3]上恒成立,则a ≥-32;若g (x )在[1,3]上单调递减,则g ′(x )=3x 2+2ax ≤0在[1,3]上恒成立,则a ≤-92.所以a 的取值范围是⎝⎛⎦⎤-∞,-92∪⎣⎡⎭⎫-32,+∞. (2)证明 由题意得,要证g (x )>x 2ln x ,x >0,即证x 3+ax 2>x 2ln x ,即证x +a >ln x ,令u (x )=x +a -ln x ,x >0,可得u ′(x )=1-1x =x -1x ,x >0,当0<x <1时,u ′(x )<0,函数u (x )单调递减;当x >1时,u ′(x )>0,函数u (x )单调递增.所以u (x )≥u (1)=1+a ,因为a >-1,所以u (x )>0,故当a >-1时,对于任意x >0,g (x )>x 2ln x .【例33】已知函数f (x )=a ln x +x .(1)讨论f (x )的单调性;(2)当a =1时,证明:xf (x )<e x .(1)解 f (x )的定义域为(0,+∞),f ′(x )=a x +1=x +a x .当a ≥0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增.当a <0时,若x ∈(-a ,+∞),则f ′(x )>0;若x ∈(0,-a ),则f ′(x )<0.所以f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减.综上所述,当a ≥0时,f (x )在(0,+∞)上单调递增;当a <0时,f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减.(2)证明 当a =1时,要证xf (x )<e x ,即证x 2+x ln x <e x ,即证1+ln x x <e x x 2.令函数g (x )=1+ln x x ,则g ′(x )=1-ln x x 2.令g ′(x )>0,得x ∈(0,e);令g ′(x )<0,得x ∈(e ,+∞).所以g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,所以g (x )max =g (e)=1+1e ,令函数h (x )=e x x 2,则h ′(x )=e x (x -2)x 3.当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0.所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增,所以h (x )min =h (2)=e 24.因为e 24-⎝⎛⎭⎫1+1e >0,所以h (x )min >g (x )max ,即1+ln x x <e x x 2,从而xf (x )<e x 得证.【例34】已知函数f (x )=e x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)当x >-2时,求证:f (x )>ln(x +2).(1)解 由f (x )=e x ,得f (0)=1,f ′(x )=e x ,则f ′(0)=1,即曲线y =f (x )在点(0,f (0))处的切线方程为y -1=x -0,所以所求切线方程为x -y +1=0.(2)证明 设g (x )=f (x )-(x +1)=e x -x -1(x >-2),则g ′(x )=e x -1,当-2<x <0时,g ′(x )<0;当x >0时,g ′(x )>0,即g (x )在(-2,0)上单调递减,在(0,+∞)上单调递增,于是当x =0时,g (x )min =g (0)=0,因此f (x )≥x +1(当且仅当x =0时取等号),令h (x )=x +1-ln(x +2)(x >-2),则h ′(x )=1-1x +2=x +1x +2, 则当-2<x <-1时,h ′(x )<0,当x >-1时,h ′(x )>0,即有h (x )在(-2,-1)上单调递减,在(-1,+∞)上单调递增,于是当x =-1时,h (x )min =h (-1)=0,因此x +1≥ln(x +2)(当且仅当x =-1时取等号),所以当x >-2时,f (x )>ln(x +2).【隐零点问题】【例35】已知函数f (x )=ln x -ax (a ∈R ).(1)讨论函数f (x )的单调性;(2)证明不等式e x -2-ax >f (x )恒成立. 【解析】 (1) f ′(x )=1x -a =1-ax x (x >0),当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增;当a >0时,令f ′(x )=0,得x =1a ,所以当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0,f (x )单调递增; 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增, 在⎝⎛⎭⎫1a ,+∞上单调递减.(2)设函数φ(x )=e x -2-ln x (x >0),则φ′(x )=e x -2-1x ,可知φ′(x )在(0,+∞)上单调递增.又由φ′(1)<0,φ′(2)>0知,φ′(x )=0在(0,+∞)上有唯一实数根x 0,且1<x 0<2, 则φ′(x 0)=02ex −-1x 0=0, 即02e x −=1x 0. 当x ∈(0,x 0)时,φ′(x )<0,φ(x )单调递减;当x ∈(x 0,+∞)时,φ′(x )>0,φ(x )单调递增,所以φ(x )≥φ(x 0)=02ex −-ln x 0, 结合02e x −=1x 0, 知x 0-2=-ln x 0,所以φ(x )≥φ(x 0)=1x 0+x 0-2=x 20-2x 0+1x 0=(x 0-1)2x 0>0, 则φ(x )=e x -2-ln x >0,即不等式e x -2-ax >f (x )恒成立.【极值点偏移问题】【例36】已知函数f (x )=a e x -x ,a ∈R .若f (x )有两个不同的零点x 1,x 2.证明:x 1+x 2>2.【解析】由f (x )=a e x -x =0,得x e x -a =0,令g (x )=x e x -a ,则g ′(x )=1-x e x ,由g ′(x )=1-x e x >0,得x <1;由g ′(x )=1-x e x <0,得x >1.所以g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减,由于x 1,x 2是方程g (x )=0的实根,不妨设x 1<1<x 2,方法一 (对称化构造函数法)要证x 1+x 2>2, 只要证x 2>2-x 1>1.由于g (x )在(1,+∞)上单调递减,故只要证g (x 2)<g (2-x 1), 由于g (x 1)=g (x 2)=0,故只要证g (x 1)<g (2-x 1),令H (x )=g (x )-g (2-x )=x e x -2-x e 2-x (x <1), 则H ′(x )=1-x e x -1-x e 2-x =(e 2-x -e x )(1-x )e 2, 因为x <1,所以1-x >0,2-x >x ,所以e 2-x >e x ,即e 2-x -e x >0,所以H ′(x )>0,所以H (x )在(-∞,1)上单调递增. 所以H (x 1)<H (1)=0,即有g (x 1)<g (2-x 1)成立,所以x 1+x 2>2.方法二 (比值代换法)设0<x 1<1<x 2,由g (x 1)=g (x 2),得1212e e x x x x −−=,等式两边取对数得ln x 1-x 1=ln x 2-x 2.令t =x 2x 1>1,则x 2=tx 1,代入上式得ln x 1-x 1=ln t +ln x 1-tx 1,得x 1=ln t t -1,x 2=t ln t t -1. 所以x 1+x 2=(t +1)ln t t -1>2⇔ln t -2(t -1)t +1>0, 设g (t )=ln t -2(t -1)t +1(t >1),所以g ′(t )=1t -2(t +1)-2(t -1)(t +1)2=(t -1)2t (t +1)2>0, 所以当t >1时,g (t )单调递增, 所以g (t )>g (1)=0,所以ln t -2(t -1)t +1>0,故x 1+x 2>2.。

高中数学高三导数大题精选(附详细解答)

高中数学高三导数大题精选(附详细解答)

高中数学高三导数大题精选一、选择题1.函数的单调递增区间是()A.(0,+∞)B.(-3,1)C.(1,+∞)D.(0,1)2.如图是定义在(a,b)上的函数f(x)的导函数的图象,则函数f(x)的极值点的个数为A.2B.3C.4D.53.曲线在点(0,2))处的切线方程为().A.y=2B.y=x+2C.y=2x+2D.y=-2x+24.函数在处有极值10,则点(a ,b)为()A.(3,-3)B.(-4,11)C.(3,-3)或(-4,11)D.不存在5.函数f(x)=x(ex-1)+ln x的图象在点(1,f(1))处的切线方程是( ) A.y=2ex-e-1B.y=2ex-e+1C.y=2ex+e-1D.y=2ex+e+16.已知函数f(x)的导函数f′(x)的图象如图所示,那么函数f(x)的图象最有可能的是()A. B.C. D.7.已知x=2 是函数的极小值点,那么函数f(x)的极大值为()A.15B.16C.17D.188.已知函数y=f(x)是R上的可导函数,当x≠0时,有,则函数的零点个数是()A. 0B. 1C. 2D. 39.若函数f(x)=在(0,2)内单调递减,则实数a的取值范围为A.a=3 B.a≤3C.a≥3 D.0<a<310.函数的导数是A. B.C. D.二、填空题11.已知函数,则过点可以作出________条图象的切线三、解答题12.设函数,.(1)当时,函数取得极值,求的值;(2)当时,求函数在区间[1,2]上的最大值;(3)当时,关于的方程有唯一实数解,求实数的值.13.已知函数(1)若x=2为的极值点,求实数a的值;(2)若在上为增函数,求实数a的取值范围;(3)当时,方程有实根,求实数b的最大14.求下列函数的导数(1)(2)(3)15.已知函数.若函数在处有极值-4.(1)求的单调递减区间;(2)求函数在上的最大值和最小值.参考答案一、选择题1、【答案】D解:函数的定义域为,且,解不等式,即,由于,解得.因此,函数的单调递增区间为,故选:D.2、【答案】B3、【答案】C4、【答案】B解:,则,解得或,当时,,此时在定义域上为增函数,无极值,舍去.当,,为极小值点.5、【答案】A解:f(1)=e-1,f′(x)=ex(1+x)+-1,f′(1)=2e,∴在点(1,f(1))处的切线方程为y-(e-1)=2e(x-1),即为y=2ex-e-1.6、【答案】A7、【答案】D8、【答案】B9、【答案】C10、【答案】B二、填空题11、【答案】2解:设切点的坐标为:,,因此切线方程为:,把的坐标代入切线方程中,化简得:或,所以过点可以作出二条的切线.故答案为:2三、解答题12、13、【答案】(1)解:因为x= 2为f(x)的极值点,所以即,解得:a=0又当a = 0时,,从而x=2为f(x)的极值点成立.(2)解:∵f(x)在区间[3,+∞)上为增函数,∴在区间[3,+∞)上恒成立.①当a = 0时,在[3,+∞)上恒成立,所以f (x)在[3,+∞)上为增函数,故a = 0符合题意.②当a≠0时,由函数f (x)的定义域可知,必须有2ax + 1 > 0对x≥3恒成立,故只能a > 0,所以在区间[3,+∞)上恒成立令,其对称轴为∵a > 0,∴,从而g (x)≥0在[3,+∞)上恒成立,只要g (3)≥0即可,由,解得:∵a > 0,∴.综上所述,a的取值范围为[0,](3)解:时,方程可化为,.问题转化为在(0,+∞)上有解令,则当0 < x < 1时,,∴h (x)在(0,1)上为增函数当x > 1时,,∴h (x)在(1,+∞)上为减函数故h (x)≤h (1) = 0,而x > 0,故即实数b的最大值是0.14、15、解:(1)∵,∴,依题意有即,解得∴,由,得,∴函数单调递减区间由知∴,令,解得.当变化时,的变化情况如下表:由上表知,函数在上单调递减,在上单调递增.故可得又.∴综上可得函数在上的最大值和最小值分别为和.。

高三数学导数题试卷答案

高三数学导数题试卷答案

一、选择题1. 函数f(x) = x^3 - 3x在x=0处的导数是()A. 0B. 3C. -3D. 不存在答案:A解析:f'(x) = 3x^2 - 3,代入x=0,得f'(0) = 30^2 - 3 = -3,因此选项A正确。

2. 函数f(x) = e^x - x在x=1处的导数是()A. eB. e-1C. 1D. 0答案:A解析:f'(x) = e^x - 1,代入x=1,得f'(1) = e^1 - 1 = e - 1,因此选项A正确。

3. 函数f(x) = ln(x+1)在x=0处的导数是()A. 1B. 0C. -1D. 不存在答案:B解析:f'(x) = 1/(x+1),代入x=0,得f'(0) = 1/(0+1) = 1,因此选项B正确。

4. 函数f(x) = x^2 - 4x + 4的导数是()A. 2x - 4B. 2xC. 2x - 8D. 2x + 4答案:A解析:f'(x) = 2x - 4,因此选项A正确。

5. 函数f(x) = 2x^3 + 3x^2 - 5x + 1的导数是()A. 6x^2 + 6x - 5B. 6x^2 + 6xC. 6x^2 + 6x + 5D. 6x^2 + 6x - 6答案:A解析:f'(x) = 6x^2 + 6x - 5,因此选项A正确。

二、填空题6. 函数f(x) = 3x^2 + 2x - 1的导数f'(x) = _______答案:6x + 2解析:f'(x) = 6x + 2。

7. 函数f(x) = e^x的导数f'(x) = _______答案:e^x解析:f'(x) = e^x。

8. 函数f(x) = ln(x)的导数f'(x) = _______答案:1/x解析:f'(x) = 1/x。

9. 函数f(x) = 1/x^2的导数f'(x) = _______答案:-2/x^3解析:f'(x) = -2/x^3。

专题 函数与导数(练习)

专题 函数与导数(练习)

(新高考地区)2023届高三数学一轮复习 同步练习函数与导数____班____号 姓名_________一、选择题(1-6单选,7-8多选)1. 已知函数()f x 的导数为()f x ‘,且()()220sin f x x f x x '=++,则()'0f =A .-2B .-1C .1D .22.函数f (x )=2|sinx |+cos2x 在[-π2,π2]上的单调递增区间为 A .[-π2,-π6]和[0,π6] B .[-π6,0]和[π6,π2] C .[-π2,-π6]和[π6,π2] D .[-π6,π6] 3. 设函数()219ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是A .(]1,2B .[)4,+∞C .(],2-∞D .(]0,34. 已知过点(),0A a 作曲线()1e x y x =-的切线有且仅有1条,则=aA .3-B .3C .3-或1D .3或15. 已知函数()e ,0ln ,0x x f x x x ⎧≤⎪=⎨>⎪⎩,(e 为自然对数的底数),则函数()()()211e =--⎡⎤⎣⎦F x f f x f x 的零点个数为A .8B .7C .6D .46. 设a ,b 都为正数,e 为自然对数的底数,若1a ae b ++ln b b <,则A .ab e >B .1a b e >+C .ab e <D .1a b e <+7.已知定义在上的函数的导函数为,且,,则下列判断中正确的是 A . B . C . D . 8. 已知()f x 是定义在R 上的奇函数,当0x >时,121,02()1(2),22x x f x f x x -⎧-<≤⎪=⎨->⎪⎩,下列结论中正确的有A.函数()f x 在()6,5--上单调递增0,2π⎡⎫⎪⎢⎣⎭()f x ()f x '()00f =()cos ()sin 0f x x f x x '+<64f f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ln 03f π⎛⎫> ⎪⎝⎭63f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B.函数()f x 的图象与直线y x =有且仅有2个不同的交点C.若关于x 的方程2[()](1)()0()f x a f x a a -++=∈R 恰有4个不相等的实数根,则这4个实数根之和为8D.记函数()f x 在[]()*21,2k k k -∈N 上的最大值为k a ,则数列{}n a 的前7项和为12764. 二、填空题9. 若函数f (x )=x 3+ax 2+bx +a 2在x =1处取得极值10,则a =________,b =________.10. 已知函数()ln 2f x x ax =--在区间(1,2)上不单调,则实数a 的取值范围为___________.11.已知不等式e (3)20(1)+--<<x a x x a 恰有2个整数解,则a 的取值范围为___________.12.已知函数()()ln 1f x x x a x a =+-+,.a Z ∈若存在01x >,使得()00f x <,则实数a 的最小值为________.三、解答题13. 已知函数2()(1)ln 1f x a x ax =+++.(1)当2a =时,求曲线()y f x =在()1,(1)f 处的切线方程;(2)设2a ≤-,证明:对任意1x ,2(0,)x ∈+∞,1212|()()|4||f x f x x x -≥-.14. 已知函数()()x f x e ln x m =-+.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m 时,证明:()0f x >.15.已知函数()()2ln 21f x x ax a x =++++,其中a ∈R .(1)求函数()f x 的单调区间;(2)设Z a ∈,若对任意的0x >,()0f x ≤恒成立,求a 的最大值.1ln22n++<17. 已知函数()()ln 1f x x =+,2()1g x x bx =++(b 为常数),()()()h x f x g x =-.(1)若存在过原点的直线与函数()f x 、()g x 的图象相切,求实数b 的值;(2)当2b =-时,[]12,0,1x x ∃∈使得()()12h x h x M -≥成立,求M 的最大值;(3)若函数()h x 的图象与x 轴有两个不同的交点()1,0A x 、()2,0B x ,且120x x <<,求证:12'02x x h +⎛⎫< ⎪⎝⎭.。

高三数学导数与积分2024练习题及答案

高三数学导数与积分2024练习题及答案

高三数学导数与积分2024练习题及答案(正文开始)一、导数练习题1. 求函数f(x) = 2x^3 - 5x^2 + 3x - 7的导数f'(x)。

解答:对于f(x) = 2x^3 - 5x^2 + 3x - 7,使用幂函数的求导法则,得到其导数f'(x)为:f'(x) = 6x^2 - 10x + 3。

2. 已知函数g(x) = sin(x) + cos(x),求g'(x)。

解答:对于函数g(x) = sin(x) + cos(x),使用三角函数的求导法则,得到其导数g'(x)为:g'(x) = cos(x) - sin(x)。

3. 若函数h(x) = ln(x^2 + 1),求h'(x)。

解答:根据对数函数的求导法则,针对函数h(x) = ln(x^2 + 1)进行求导,得到其导数h'(x)为:h'(x) = (2x) / (x^2 + 1)。

二、积分练习题1. 计算函数f(x) = 2x^2 + 3x - 1的不定积分∫f(x)dx。

解答:对于函数f(x) = 2x^2 + 3x - 1,使用基本积分法则,得到其不定积分∫f(x)dx为:∫f(x)dx = (2/3)x^3 + (3/2)x^2 - x + C,其中C为积分常数。

2. 已知函数g(x) = 3e^x + 2sin(x),求∫g(x)dx。

解答:对于函数g(x) = 3e^x + 2sin(x),根据指数函数和三角函数的积分法则,得到其不定积分∫g(x)dx为:∫g(x)dx = 3e^x - 2cos(x) + C,其中C为积分常数。

3. 若函数h(x) = 1 / (x^2 + 1),计算定积分∫[0, 1]h(x)dx。

解答:针对函数h(x) = 1 / (x^2 + 1),计算其在区间[0, 1]上的定积分,得到结果为:∫[0, 1]h(x)dx = arctan(1) - arctan(0) = π/4。

高三数学导数训练题(导数)

高三数学导数训练题(导数)

高三数学导数训练题班级______________学号_________姓名____________一、选择题:(每小题5分,共50分)1.若曲线x xx f ln 2)(+=在1=x 处的切线方程是…………………………………( ) A.01=+-y x B. 03=-+y x C. 02=+-y x D. 04=-+y x2.]2,2[)(62)(23-+-=在是常数已知a a x x x f 上有最大值3,那么在]2,2[-上)(x f 的 最小值是 ……………………………………………………………………………( )A. 5-B.11-C. 37-D. 29-3. 函数x x x f ln 2)(2-=在[]e e,1-上的最大值与最小值分别为 ……………( ) A. 1,22--eB.1,22-+-e C .1,22-e D.1,22+-e 4.若曲线x ex f 24)(=在点)4,1(2e 处的切线与两个坐标围成的三角形面积为…( ) A. 221e B. 2e C. 22e D. 24e 5.已知点P 在曲线41x y e =+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围 是……………………………………………………………………………………( )A. [0,4π)B. [,)42ππ C. 3(,]24ππ D. 3[,)4ππ 6.已知函数mx x x x f -+-=2)32ln()(在定义域内是增函数,则实数m 的取值范围是 ………………………………………………………………………………………( ) A.223+≤m B.223+≥m C.5≤m D.5≥m7.已知16)1(32)(223+--+=x a x a a ax x f 在x a =处取得极大值,则a 的范围是( )A.(,1)-∞-B.(1,0)-C.(0,1)D.(0,)+∞ 8. )(x f 是定义在R 上的奇函数,当0<x 时,0)(')(<⋅+x f x x f ,且0)4(=-f ,则 不等式0)(>x xf 的解集是………………………………………………………( )A.()()+∞⋃-,40,4B.()()4,00,4⋃-C.()()+∞⋃-∞-,44,D.()()4,04,⋃-∞-9.若21()l n (2)2f x x b x =-++在(1,)-+∞上是减函数,则b 的范围是:…………( ) A. [1,)-+∞ B. (1,)-+∞ C. (,1)-∞-D. (,1]-∞- 10.以下四图,都是同一坐标系中三次函数及其导函数的图像,其中一定不正确的序号是 ………………………………………………………………………………………( )A .①、②B .2①、③C .③、④D .①、④二、填空题:(每小题4分,共28分) 11.3()128f x x x =-+在[3,3]x ∈-上的最大值与最小值分别为M 、m ,则M -m =________.12.函数x x y cos 23+=区间[]π,0上的单调递增区间为__________.13.函数12ln )(-+=x x x x f 的值域是_________________.14. ()y f x =的图象在点(1,(1))M f 处的切线方程是y =12,2x +则'(1)(1)f f +=________. 15.设函数)12ln()(2+-=x ax x f 在定义域内单调递减,则实数a 的取值范围是___________.16.设1221)(23---=x x x x f ,当[]2,1-∈x 时,m x f <)(恒成立,则实数m 的取值 范围是___________.17.函数m x x x f +-=32)(3在[]2,1-有零点, 则实数m 的取值范围是 . 三、解答题:(72分)18.已知f (x )=3231()2ax x x R -+∈,其中0>a . (1)若1=a ,求)(x f y =在点 (2,)2(f )处的切线方程;(2)若在区间11,22⎡⎤-⎢⎥⎣⎦上,0)(>x f 恒成立,求a 的范围.19.已知为常数)a R a a x x x f ,())(1()(2∈-+=.(1)若)(x f 在[)∞+,a 单调递增, 求实数a 的范围;(2)若函数)(x f 在[]1,1-上的最大值为4, 求实数a 的值.20.已知函数x x x f )1ln()(+=.(1)确定函数)(x f 在),0(+∞上的单调性;(2)设函数 391)()(ax x x xf x g +-=在)2,0(上有极值,求实数a 的取值范围.21.已知函数)cos 2(sin )(x x e x f ax +=.(1)当2=a 时,求函数()f x 在[]π,0上的单调区间;(2)若函数()f x 在[]π,0上单调递减, 求实数a 的取值范围.22. 设函数()1x f x e -=-.(1)证明:当x >-1时,()1x f x x ≥+; (2)设当0x ≥时,()1x f x ax ≤+,求a 的取值范围.答案1—10 BCCBD ABCDC 11. 32 12. ⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,32,3,0 13. [)∞+---,13e 14. 3 15.[]0,8- 16. ()+∞,1 17. []2,10- 18.(1)096=--y x ;(2).50<<a19. (1)1-≥a ;(2),21-或2.20.(1))(x f 在()+∞,0上是减函数;(2)21>a 21.(1)↓⎥⎦⎤⎢⎣⎡↑⎥⎦⎤⎢⎣⎡πππ,2,2,0;(2)21-=a 22. (1)略 (2)⎥⎦⎤⎢⎣⎡21,0。

高三文科数学基础题(导数、切线方程)

高三文科数学基础题(导数、切线方程)

文科导数、切线方程练习一、选择题1.函数()22)(x x f π=的导数是( ) A.x x f π4)(=' B.x x f 24)(π=' C. x x f 28)(π=' D. x x f π16)(=' 2.曲线2313-=x y 在点)37,1(--处的切线的倾斜角为( ) A . 30o B . 45o C . 135o D . -45o3. 已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为( )A.1B.2C.-1D. 0 4.曲线3()2f x x x 在0p 处的切线平行于直线41y x ,则0p 点的坐标为( )A. (1,0)B. (2,8)C. (1,0)和(1,4)--D. (2,8)和(1,4)--5.曲线223y x x =-+在点(1,2)处的切线方程为( )A .31y x =-B .35y x =-+C .35y x =+D .2y x =6.曲线x y e =在点A (0,1)处的切线斜率为( )A .1B .2C .eD .1e 7.曲线2y 21x x =-+在点(1,0)处的切线方程为( )A .1y x =-B .1y x =-+C .22y x =-D .22y x =-+8.若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则A .1,1a b ==B . 1,1a b =-=C .1,1a b ==-D . 1,1a b =-=-9.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=10.曲线x y e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为( ) A.294e B.22e C.2e D.22e 二、填空题 11.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________.12.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________13.若()sin cos f x x α=-,则'()f α等于_______________14.若23ln 4x y x =-的一条切线垂直于直线20x y m +-=,则切点坐标为 三、解答题:13.已知a ∈R,函数f(x)=2x 3-3(a +1)x 2+6a x 若a =1,求曲线y=f(x)在点(2,f(2))处的切线方程;14.已知函数1()ln 1()a f x x ax a R x-=-+-∈)当1a =-时,求曲线()y f x =在点(2,(2))f 处的切线方程;15.已知函数f (x )=3231()2ax x x R -+∈,其中a >0. 若a =1,求曲线y=f (x )在 点(2,f (2))处的切线方程;16. 已知函数f (x )=3213x x ax b -++的图像在点P (0,f(0))处的切线方程为y=3x-2. 求实数a , b 的值;17. 已知函数32()23 3.f x x x =-+求曲线()y f x =在点2x =处的切线方程;18.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程。

高三数学导数试题

高三数学导数试题

高三数学导数试题1.已知函数f(x)=x2 mlnx(1)若函数f(x)在(,+∞)上是递增的,求实数m的取值范围;(2)当m=2时,求函数f(x)在[1,e]上的最大值和最小值【答案】(1);(2);【解析】(1)主要利用函数在区间上的单调递增转化为导数在该区间上恒大于零,然后再把恒成立问题转化为最值来求;(2)利用导数分析函数在区间上的单调性,然后求对应的最值试题解析:(1)若函数f(x)在(,+∞)上是增函数,则f′(x)≥0在(,+∞)上恒成立 2分而f′(x)=x ,即m≤x2在(,+∞)上恒成立,即m≤ 8分(2)当m=2时,f′(x)=x =,令f′(x)=0得x=±, 10分当x∈[1,)时,f′(x)<0,当x∈(,e)时,f′(x)>0,=f()=1 ln2,故x=是函数f(x)在[1,e]上唯一的极小值点,故f(x)min= 14分又f(1)=,f(e)=e2 2=>,故f(x)max【考点】导数、函数单调性,函数的最值2.已知函数,,.(1)求证:函数在上单调递增;(2)若函数有四个零点,求的取值范围.【答案】(1)详见解析;(2)实数的取值范围是.【解析】(1)直接利用导数证明函数在上单调递增,在证明过程中注意导函数的单调性;(2)将函数的零点个数问题转化为函数图象的交点个数问题处理,但需注意将式子中的绝对值符号去掉,并借助函数的最值出发,构造有关参数的不等式组,再求解参数的取值范围.试题解析:(1),,,,,所以,且函数在上单调递增,故函数在上单调递增,,即,故函数在上单调递增;(2),,,当时,,则,所以且,,故函数在上单调递减,由(1)知,函数在上单调递增,故函数在处取得极小值,亦即最小值,即,令,则有,则有或,即方程与方程的实根数之和为四,则有,解得或,综上所述,实数的取值范围是.【考点】1.函数的单调性;2.函数的零点个数3.设,曲线在点处的切线与直线垂直.(1)求的值;(2) 若,恒成立,求的范围.(3)求证:【答案】(1) 0. (2) .(3) 结合(2)时,成立.令得到,累加可得.【解析】(1)求导数,并由得到的值; (2)恒成立问题,往往转化成求函数的最值问题.本题中设,即转化成.利用导数研究函数的最值可得.(3) 结合(2)时,成立.令得到,累加可得.试题解析:(1) 2分由题设,,. 4分(2) ,,,即设,即.6分①若,,这与题设矛盾. 8分②若方程的判别式当,即时,.在上单调递减,,即不等式成立. 9分当时,方程,其根,,当,单调递增,,与题设矛盾.综上所述, . 10分(3) 由(2)知,当时, 时,成立.不妨令所以,11分12分累加可得14分【考点】导数的几何意义,利用导数研究函数的性质,利用导数证明不等式.4.设曲线在点处的切线与轴的交点横坐标为,则的值为()A.B.C.D.【答案】B【解析】函数的导数, 所以切线为:与轴的交点为 ,即 ,即: .【考点】求函数导数,应用导数求切线方程,对数计算.5.函数的单调递增区是()A.B.C.和D.【答案】【解析】,, 所以函数的递增区间为: .【考点】导数的运算及应用.6.已函数是定义在上的奇函数,在上.(1)求函数的解析式;并判断在上的单调性(不要求证明);(2)解不等式.【答案】(1) ;(2).【解析】{设,则}是求函数解析式问题的重要方法,即求那个区间的解析式设自变量在那个区间,然后运用奇函数的性质进行转化;注意运用{在相同定义域内,增增增; 减减减}判断函数的单调性.(2)利用函数的单调性解不等式,同时注意函数的定义域.试题解析:(1)设,则又是奇函数,所以,= 3分4分是[-1,1]上增函数 .6分(2)是[-1,1]上增函数,由已知得: .7分等价于 ...10分不等式的解集为 12分【考点】求函数解析式,函数的单调性,函数的奇偶性,解不等式.7.已知函数在点处的切线方程是x+ y-l=0,其中e为自然对数的底数,函数g(x)=1nx- cx+ 1+ c(c>0),对一切x∈(0,+)均有恒成立.(Ⅰ)求a,b,c的值;(Ⅱ)求证:.【答案】(Ⅰ),,;(Ⅱ)详见解析.【解析】(Ⅰ)利用导数的几何意义求、,利用导数导数法判断单调性,用函数的最值积恒成立求;(Ⅱ)构造新函数,利用导数法求的最小值,利用结合(Ⅰ)中的结论进行证明.试题解析:(Ⅰ),,,,. (2分),由于,所以当时,是增函数,当时,是减函数,,由恒成立,,即恒成立,①(4分)令,则,在上是增函数,上是减函数,,即,当且仅当时等号成立 .,由①②可知,,所以. (6分)(Ⅱ)证法一:所求证不等式即为.设,,当时,是减函数,当时,是减函数,,即. (8分)由(Ⅰ)中结论②可知,,,当时,,从而 (10分).(或者也可)即,原不等式成立. (12分)【考点】导数法判断函数的单调性,恒成立,不等式的证明.8.已知函数的图象过原点,且在原点处的切线斜率是,则不等式组所确定的平面区域在内的面积为 .【答案】【解析】由函数的图像过原点得:,又函数在原点处的切线的斜率是,,,其对应的平面区域如图所示:不等式组所确定的平面区域在圆内的面积为,故选C.【考点】考查导数的几何意义,简单的线性规划问题.9.设函数及其导函数都是定义在R上的函数,则“”是“”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】根据题意,由于”则说明函数在定义域内递增函数,且在任意两点的斜率的绝对值小于1,那么结论是“”表示的为任意点处的切线的斜率的绝对值小于1,则可知条件不可推出结论,反之能成立,故为必要而不充分条件,选B.【考点】导数的运用点评:主要是考查了导数来判定函数单调性的运用,属于基础题。

高三数学导数计算试题答案及解析

高三数学导数计算试题答案及解析

高三数学导数计算试题答案及解析1. [2014·山东济宁]已知f(x)=x2+2xf′(2014)+2014lnx,则f′(2014)=()A.2015B.-2015C.2014D.-2014【答案】B【解析】f′(x)=x+2f′(2014)+,所以f′(2014)=2014+2f′(2014)+,即f′(2014)=-(2014+1)=-2015.2.(2012•广东)曲线y=x3﹣x+3在点(1,3)处的切线方程为_________.【答案】2x﹣y+1=0【解析】y′=3x2﹣1令x=1得切线斜率2所以切线方程为y﹣3=2(x﹣1)即2x﹣y+1=0故答案为:2x﹣y+1=03.已知函数(,).(Ⅰ)当时,求曲线在点处切线的方程;(Ⅱ)求函数的单调区间;(Ⅲ)当时,恒成立,求的取值范围.【答案】(Ⅰ),(Ⅱ)时,函数的单调增区间为;单调减区间为,.时, 函数的单调增区间为,;单调减区间为.(Ⅲ)【解析】(Ⅰ))利用导数的几何意义,在处切线的斜率为即为因为,所以当时,.,又,则曲线在处切线的方程为. (Ⅱ)利用导数求函数单调区间,需明确定义域,再导数值的符号确定单调区间. (1)若,当,即时,函数为增函数;当,即和时,函数为减函数. 若,当,即和时,函数为增函数;当,即时,函数为减函数.(Ⅲ)不等式恒成立问题,一般利用变量分离转化为最值问题. 当时,要使恒成立,即使在时恒成立. 设,易得,从而.(Ⅰ),.当时,.依题意,即在处切线的斜率为.把代入中,得.则曲线在处切线的方程为. .4分(Ⅱ)函数的定义域为..(1)若,当,即时,函数为增函数;当,即和时,函数为减函数.(2)若,当,即和时,函数为增函数;当,即时,函数为减函数.综上所述,时,函数的单调增区间为;单调减区间为,.时, 函数的单调增区间为,;单调减区间为. .9分(Ⅲ)当时,要使恒成立,即使在时恒成立. 设,则.可知在时,,为增函数;时,,为减函数.则.从而.另解:(1)当时,,所以不恒成立.(2)当且时,由(Ⅰ)知,函数的单调增区间为,单调减区间为.所以函数的最小值为,依题意,解得.综上所述,. .13分【考点】利用导数求切线,利用导数求单调区间,利用导数求最值4.如果f(x)为偶函数,且f(x)导数存在,则f′(0)的值为()A.2B.1C.0D.﹣1【答案】C【解析】因为f(x)为偶函数,所以f(x)=f(﹣x),此时两边对x求导得:f′(x)=﹣f′(﹣x),又因为f′(0)存在,把x=0代入得:f′(0)=﹣f′(0),解得f′(0)=0.故选C5.已知函数f(x)=,要得到f′(x)的图象,只需将f(x)的图象()个单位.A.向右平移B.向左平移C.向右平移D.向左平移【答案】D【解析】∵f′(x)=2cos(2x+),∴f′(x)=cos(2x+),∴将f(x)=sin(2x+)向左平移个单位可得:g(x)=f(x+)=sin[2(x+)+)]=sin[(2x+)+]=cos(2x+)=f′(x),故选D.6.若直线是曲线的切线,则实数的值为.【答案】-e【解析】设切点为,则有因此【考点】利用导数求切线7.已知函数,.(1)当时,求的单调区间;(2)已知点和函数图象上动点,对任意,直线倾斜角都是钝角,求的取值范围.【答案】(1)单调递增区间为,单调递减区间为;(2)【解析】(1)先求导,再令导数等于0,解导数大于0得函数的增区间,解导数小于0得函数的减区间。

高三数学 导数及其应用多选题练习题及答案

高三数学 导数及其应用多选题练习题及答案

高三数学 导数及其应用多选题练习题及答案一、导数及其应用多选题1.已知函数()sin sin f x ax a x =-,[]0,2x π∈,其中ln 1a a ->,则下列说法中正确的是( )A .若()f x 只有一个零点,则10,2a ⎛⎫∈ ⎪⎝⎭B .若()f x 只有一个零点,则()0f x ≥恒成立C .若()f x 只有两个零点,则31,2a ⎛⎫∈ ⎪⎝⎭D .若()f x 有且只有一个极值点0x ,则()01312a a f x π+--<⋅恒成立【答案】ABD 【分析】利用()00f =以及零点存在定理推导出当1a >时,函数()f x 在[]0,2π上至少有两个零点,结合图象可知当01a <<时,函数()f x 在()0,2π上有且只有一个极值点,利用导数分析函数()f x 在()0,2π上的单调性,可判断A 选项的正误;利用A 选项中的结论可判断B 选项的正误;取12a =,解方程()0f x =可判断C 选项的正误;分析出当()f x 在()0,2π上只有一个极值点时,01a <<,分13a =、103a <<、113a <<三种情况讨论,结合sin x x <可判断D 选项的正误. 【详解】构造函数()ln 1g x x x =--,其中0x >,则()111x g x x x-'=-=. 当01x <<时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,此时,函数()g x 单调递增. 所以,()()min 10g x g ==.ln 1a a ->,0a ∴>且1a ≠.()sin sin f x ax a x =-,则()00f =.当1a >时,sin sin sin 02222a a f a a ππππ⎛⎫=-=-<⎪⎝⎭,3333sin sin sin 02222a a f a a ππππ⎛⎫=-=+> ⎪⎝⎭,由零点存在定理可知,函数()f x 在3,22ππ⎛⎫⎪⎝⎭内至少有一个零点, 所以,当1a >时,函数()f x 在区间[]0,2π上至少有两个零点, 所以,当函数()f x 在区间[]0,2π上只有一个零点时,01a <<.对于A 选项,当01a <<时,()()cos cos cos cos f x a ax a x a ax x '=-=-.01a <<,则022a ππ<<,022a ππ<<, cos 022a f a ππ⎛⎫'=> ⎪⎝⎭,()()()2cos2cos2cos210f a a a a ππππ'=-=-<, 由零点存在定理可知,函数()f x 在区间,22ππ⎛⎫⎪⎝⎭上至少有一个极值点, 令()0f x '=,可得cos cos ax x =,当()0,2x π∈时,02ax x π<<<,由()cos cos cos 2ax x x π==-,可得2ax x π=-,解得21x a π=+, 所以,函数()f x 在区间()0,2π上有且只有一个极值点21x a π=+. 作出函数1cos y ax =与函数2cos y x =在区间[]0,2π上的图象如下图所示:由图象可知,函数1cos y ax =与函数2cos y x =在区间()0,2π上的图象有且只有一个交点,记该交点的横坐标为0x ,当00x x <<时,cos cos ax x >,此时()0f x '>; 当02x x π<<时,cos cos ax x <,此时()0f x '<.所以,函数()f x 在区间()00,x 上单调递增,在区间()0,2x π上单调递减. 所以,()()()0max 00f x f x f =>=,又()2sin 2f a ππ=.若函数()f x 在区间[]0,2π上有且只有一个零点,则()2sin 20f a ππ=>.01a <<,则022a ππ<<,所以,02a ππ<<,解得102a <<,A 选项正确;对于B 选项,若函数()f x 在区间[]0,2π上有且只有一个零点时,由A 选项可知,函数()f x 在区间()00,x 上单调递增,在区间()0,2x π上单调递减.()00f =,()2sin 20f a ππ=>,所以,对任意的[]0,2x π∈,()0f x ≥,B 选项正确;对于C 选项,取12a =,则()1sin sin sin sin cos sin 1cos 2222222x x x x x x f x x ⎛⎫=-=-=- ⎪⎝⎭,02x π≤≤,则02x π≤≤,令()0f x =,可得sin 02x =或cos 12x=,可得02x =或2xπ=, 解得0x =或2x π=. 所以,当12a =时,函数()f x 有两个零点,C 选项错误; 对于D 选项,当1a >时,若02x π<<,则02ax a π<<,且22a ππ>,当()0,2x π∈时,令()0f x '=,可得出()()cos cos cos 2ax x k x k Z π==±∈,至少可得出2ax x π=-或2ax x π=+,即函数()f x 在区间()0,2π上至少有两个极值点,不合乎题意,所以,01a <<. 下面证明:当02x π<<时,sin x x <,构造函数()sin h x x x =-,其中02x π<<,则()1cos 0h x x '=->,所以,函数()sin h x x x =-在区间0,2π⎛⎫⎪⎝⎭上为增函数,所以,()()00h x h >=,即sin x x <.分以下三种情况来证明()01312a a f x π+--<⋅恒成立.()()000cos cos 0f x a ax x '=-=,可得00cos cos ax x =,0002ax x π<<<,由00cos cos ax x =可得出002ax x π=-,所以,021x a π=+. 则()000sin sin 2sin ax x x π=-=-. ①当13a =时,032x π=,则()1sin sin 33x f x x =-,31342sin sin 223233f ππππ⎛⎫=-=< ⎪⎝⎭,即()01312a a f x π+--<⋅成立;②当103a <<时,023,212x a πππ⎛⎫=∈ ⎪+⎝⎭, 则()()()0000002sin sin sin sin 1sin 1sin1f x ax a x x a x a x a a π=-=--=-+=-++ ()()()()22221sin 1sin 21sin 121111a a a a a a a a a a a ππππππ⎛⎫⎛⎫=+-=+-=+<+⋅= ⎪ ⎪++++⎝⎭⎝⎭ 1312a a π+--=⋅;③当113a <<时,023,12x a πππ⎛⎫=∈ ⎪+⎝⎭, ()()()()0000000sin sin sin sin 1sin 1sin f x ax a x x a x a x a x =-=--=-+=+-()()()()()()()01121sin 1sin 1sin 1111a a a x a a a a a a πππππ--⎛⎫=+-=+-=+<+⋅ ⎪+++⎝⎭()13112a a a ππ+--=-=.综上所述,当函数()f x 只有一个极值点0x 时,()01312a a f x π+--<恒成立. 故选:ABD. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.2.已知函数()xf x e =,()1ln22x g x =+的图象与直线y m =分别交于A 、B 两点,则( )A .AB 的最小值为2ln2+B .m ∃使得曲线()f x 在A 处的切线平行于曲线()g x 在B 处的切线C .函数()()f x g x m -+至少存在一个零点D .m ∃使得曲线()f x 在点A 处的切线也是曲线()g x 的切线【答案】ABD 【分析】求出A 、B 两点的坐标,得出AB 关于m 的函数表达式,利用导数求出AB 的最小值,即可判断出A 选项的正误;解方程()12ln 2m f m g e -⎛⎫''= ⎪⎝⎭,可判断出B 选项的正误;利用导数判断函数()()y f x g x m =-+的单调性,结合极值的符号可判断出C 选项的正误;设切线与曲线()y g x =相切于点()(),C n g n ,求出两切线的方程,得出方程组,判断方程组是否有公共解,即可判断出D 选项的正误.进而得出结论. 【详解】令()xf x e m ==,得ln x m =,令()1ln22x g x m =+=,得122m x e -=, 则点()ln ,A m m 、122,m B e m -⎛⎫ ⎪⎝⎭,如下图所示:由图象可知,122ln m AB e m -=-,其中0m >,令()122ln m h m em -=-,则()1212m h m em-'=-,则函数()y h m '=单调递增,且102h ⎛⎫'= ⎪⎝⎭,当102m <<时,0h m,当12m >时,0h m.所以,函数()122ln m h m e m-=-在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, 所以,min 112ln 2ln 222AB h ⎛⎫==-=+⎪⎝⎭,A 选项正确; ()x f x e =,()1ln 22x g x =+,则()x f x e '=,()1g x x'=,曲线()y f x =在点A 处的切线斜率为()ln f m m '=,曲线()y g x =在点B 处的切线斜率为1212122m m g e e --⎛⎫'= ⎪⎝⎭, 令()12ln 2m f m g e -⎛⎫''= ⎪⎝⎭,即1212m m e-=,即1221m me -=, 则12m =满足方程1221m me -=,所以,m ∃使得曲线()y f x =在A 处的切线平行于曲线()y g x =在B 处的切线,B 选项正确;构造函数()()()1ln22xx F x f x g x m e m =-+=-+-,可得()1x F x e x'=-, 函数()1xF x e x '=-在()0,∞+上为增函数,由于120F e ⎛⎫'=< ⎪⎝⎭,()110F e -'=>,则存在1,12t ⎛⎫∈⎪⎝⎭,使得()10t F t e t '=-=,可得ln t t =-,当0x t <<时,()0F x '<;当x t >时,()0F x '>.()()min 1111ln ln ln 2ln 22222t t t F x F t e m e t m t m t ∴==-+-=-++-=+++-13ln 2ln 2022m m >+-=++>,所以,函数()()()F x f x g x m =-+没有零点,C 选项错误;设曲线()y f x =在点A 处的切线与曲线()y g x =相切于点()(),C n g n , 则曲线()y f x =在点A 处的切线方程为()ln ln my m ex m -=-,即()1ln y mx m m =+-,同理可得曲线()y g x =在点C 处的切线方程为11ln 22n y x n =+-, 所以,()111ln ln 22m nn m m ⎧=⎪⎪⎨⎪-=-⎪⎩,消去n 得()11ln ln 202m m m --++=,令()()11ln ln 22G x x x x =--++,则()111ln ln x G x x x x x-'=--=-, 函数()y G x '=在()0,∞+上为减函数,()110G '=>,()12ln 202G '=-<,则存在()1,2s ∈,使得()1ln 0G s s s'=-=,且1s s e =.当0x s <<时,()0G x '>,当x s >时,()0G x '<.所以,函数()y G x =在()2,+∞上为减函数,()5202G =>,()17820ln 202G =-<, 由零点存在定理知,函数()y G x =在()2,+∞上有零点, 即方程()11ln ln 202m m m --++=有解. 所以,m ∃使得曲线()y f x =在点A 处的切线也是曲线()y g x =的切线. 故选:ABD. 【点睛】本题考查导数的综合应用,涉及函数的最值、零点以及切线问题,计算量较大,属于难题.3.设函数()ln f x x x =,()212g x x =,给定下列命题,其中正确的是( ) A .若方程()f x k =有两个不同的实数根,则1,0k e⎛⎫∈- ⎪⎝⎭; B .若方程()2kf x x =恰好只有一个实数根,则0k <;C .若120x x >>,总有()()()()1212m g x g x f x f x ->-⎡⎤⎣⎦恒成立,则m 1≥;D .若函数()()()2F x f x ag x =-有两个极值点,则实数10,2a ⎛⎫∈ ⎪⎝⎭.【答案】ACD 【分析】利用导数研究函数的单调性和极值,且将题意转化为()y f x =与y k =有两个不同的交点,即可判断A 选项;易知1x =不是该方程的根,当1x ≠时,将条件等价于y k =和ln xy x=只有一个交点,利用导数研究函数的单调性和极值,从而可推出结果,即可判断B 选项;当120x x >>时,将条件等价于1122()()()()mg x f x mg x f x ->-恒成立,即函数()()y mg x f x =-在(0,)+∞上为增函数,通过构造新函数以及利用导数求出单调区间,即可求出m 的范围,即可判断C 选项;2()ln (0)F x x x ax x =->有两个不同极值点,根据导数的符号列出不等式并求解,即可判断D 选项. 【详解】解:对于A ,()f x 的定义域(0,)+∞,()ln 1f x x '=+, 令()0f x '>,有ln 1x >-,即1x e>,可知()f x 在1(0,)e 单调递减,在1+e∞(,)单调递增,所以极小值等于最小值, min 11()()f x f e e∴==-,且当0x →时()0f x →,又(1)0f =,从而要使得方程()f x k =有两个不同的实根,即()y f x =与y k =有两个不同的交点,所以1(,0)k e∈-,故A 正确; 对于B ,易知1x =不是该方程的根,当1x ≠时,()0f x ≠,方程2()kf x x =有且只有一个实数根,等价于y k =和ln xy x=只有一个交点, 2ln 1(ln )-'=x y x ,又0x >且1x ≠, 令0y '>,即ln 1x >,有x e >, 知ln xy x=在0,1()和1e (,)单减,在+e ∞(,)上单增, 1x =是一条渐近线,极小值为e ,由ln xy x=大致图像可知0k <或=k e ,故B 错误;对于C ,当120x x >>时,[]1212()()()()m g x g x f x f x ->-恒成立, 等价于1122()()()()mg x f x mg x f x ->-恒成立, 即函数()()y mg x f x =-在(0,)+∞上为增函数, 即()()ln 10y mg x f x mx x =-''--'=≥恒成立,即ln 1+≥x m x在(0,)+∞上恒成立, 令ln 1()x r x x +=,则2ln ()xr x x -'=,令()0r x '>得ln 0x <,有01x <<,从而()r x 在(0,1)上单调递增,在(1,)+∞上单调递减, 则max ()(1)1r x r ==,于是m 1≥,故C 正确;对于D ,2()ln (0)F x x x ax x =->有两个不同极值点, 等价于()ln 120F x x ax +-'==有两个不同的正根, 即方程ln 12x a x+=有两个不同的正根, 由C 可知,021a <<,即102a <<,则D 正确. 故选:ACD.【点睛】关键点点睛:本题考查导数的应用,利用导数研究函数的单调性和极值,以及利用导数解决函数的零点问题和恒成立问题从而求参数范围,解题的关键在于将零点问题转化成两个函数的交点问题,解题时注意利用数形结合,考查转化思想和运算能力.4.定义在(0,)+∞上的函数()f x 的导函数为()'f x ,且()()f x f x x'<,则对任意1x 、2(0,)x ∈+∞,其中12x x ≠,则下列不等式中一定成立的有( )A .()()()1212f x x f x f x +<+B .()()()()21121212x xf x f x f x f x x x +<+ C .()1122(1)x x f f <D .()()()1212f x x f x f x <【答案】ABC 【分析】构造()()f x g x x=,由()()f x f x x '<有()0g x '<,即()g x 在(0,)+∞上单调递减,根据各选项的不等式,结合()g x 的单调性即可判断正误.【详解】 由()()f x f x x '<知:()()0xf x f x x'-<, 令()()f x g x x =,则()()()20xf x f x g x x'-='<, ∴()g x 在(0,)+∞上单调递减,即122112121212()()()()0()g x g x x f x x f x x x x x x x --=<-- 当120x x ->时,2112()()x f x x f x <;当120x x -<时,2112()()x f x x f x >; A :121()()g x x g x +<,122()()g x x g x +<有112112()()x f x x f x x x +<+,212212()()x f x x f x x x +<+,所以()()()1212f x x f x f x +<+; B:由上得21121212()()()()x f x x x x f x x x -<-成立,整理有()()()()21121212x xf x f x f x f x x x +<+; C :由121x >,所以111(2)(1)(2)(1)21x x x f f g g =<=,整理得()1122(1)x x f f <; D :令121=x x 且121x x >>时,211x x =,12111()()()()g x g x f x f x =,12()(1)(1)g x x g f ==,有121()()g x x g x >,122()()g x x g x <,所以无法确定1212(),()()g x x g x g x 的大小. 故选:ABC 【点睛】思路点睛:由()()f x f x x '<形式得到()()0xf x f x x'-<, 1、构造函数:()()f x g x x =,即()()()xf x f x g x x'-'=. 2、确定单调性:由已知()0g x '<,即可知()g x 在(0,)+∞上单调递减.3、结合()g x 单调性,转化变形选项中的函数不等式,证明是否成立.5.已知函数()1ln f x x x x=-+,给出下列四个结论,其中正确的是( ) A .曲线()y f x =在1x =-处的切线方程为10x y ++= B .()f x 恰有2个零点C .()f x 既有最大值,又有最小值D .若120x x >且()()120f x f x +=,则121=x x 【答案】BD 【分析】本题首先可根据()10f -=以及13f判断出A 错误,然后根据当0x >时的函数单调性、当0x <时的函数单调性、()10f -=以及()10f =判断出B 正确和C 错误,最后根据()()120f x f x +=得出()121f x f x ⎛⎫= ⎪⎝⎭,根据函数单调性即可证得121=x x ,D 正确.【详解】函数()1ln f x x x x=-+的定义域为()(),00,-∞⋃+∞, 当0x >时,()1ln f x x x x=-+,()2221111x x f x x x x -+-'=--=; 当0x <时,1ln f x x x x,()2221111x x f x x x x -+-'=--=,A 项:1ln 1110f ,22111131f,则曲线()y f x =在1x =-处的切线方程为031y x ,即33y x =--,A 错误;B 项:当0x >时,222215124x x x f xx x ,函数()f x 是减函数,当0x <时,222215124x x x f xx x ,函数()f x 是减函数,因为()10f -=,()10f =,所以函数()f x 恰有2个零点,B 正确; C 项:由函数()f x 的单调性易知,C 错误; D 项:当1>0x 、20x >时, 因为()()120f x f x +=, 所以1222222221111ln lnf x f x x x x fx x x x , 因为()f x 在()0,∞+上为减函数,所以121x x =,120x x >, 同理可证得当10x <、20x <时命题也成立,D 正确, 故选:BD. 【点睛】本题考查函数在某点处的切线求法以及函数单调性的应用,考查根据导函数求函数在某点处的切线以及函数单调性,导函数值即切线斜率,若导函数值大于0,则函数是增函数,若导函数值小于0,则函数是减函数,考查函数方程思想,考查运算能力,是难题.6.对于定义在1D 上的函数()f x 和定义在2D 上的函数()g x ,若直线y kx b =+(),k b R ∈同时满足:①1x D ∀∈,()f x kx b ≤+,②2x D ∀∈,()g x kx b ≥+,则称直线y kx b =+为()f x 与()g x 的“隔离直线”.若()ln xf x x=,()1x g x e -=,则下列为()f x 与()g x 的隔离直线的是( )A .y x =B .12y x =-C .3ex y =D .1122y x =- 【答案】AB 【分析】根据隔离直线的定义,函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方,并且可以有公共点,结合函数的图象和函数的单调性,以及直线的特征,逐项判定,即可求解. 【详解】根据隔离直线的定义,函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方,并且可以有公共点, 由函数()ln x f x x =,可得()21ln xf x x-'=, 所以函数()f x 在()0,e 上单调递增,在(),e +∞上单调递减,因为()10f =,()11f '=,此时函数()f x 的点(1,0)处的切线方程为1y x =-, 且函数()f x 的图象在直线1y x =-的下方; 又由函数()1x g x e-=,可得()1e0x g x -'=>,()g x 单调递增,因为()()111g g '==,所以函数()g x 在点(1,1)处的切线方程为11y x -=-,即y x =, 此时函数()g x 的图象在直线y x =的上方,根据上述特征可以画出()y f x =和()y g x =的大致图象,如图所示,直线1y x =-和y x =分别是两条曲线的切线,这两条切线以及它们之间与直线y x =平行的直线都满足隔离直线的条件,所以A ,B 都符合; 设过原点的直线与函数()y f x =相切于点00(,)P x y , 根据导数的几何意义,可得切线的斜率为021ln x k x -=, 又由斜002000ln 0y x k x x -==-,可得002100ln 1ln x x x x -=,解得0x =,所以12k e ==,可得切线方程为2x y e =,又由直线3xy e=与曲()y f x =相交,故C 不符合; 由直线1122y x =-过点()1,0,斜率为12,曲线()y f x =在点()1,0处的切线斜率为1,明显不满足,排除D. 故选:AB.【点睛】对于函数的新定义试题:(1)认真审题,正确理解函数的新定义,合理转化;(2)根据隔离直线的定义,转化为函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方.7.对于函数2ln ()xf x x =,下列说法正确的是( ) A .()f x 在x e =12eB .()f x 有两个不同的零点C .(23fff π<<D .若()21f x k x <-在()0,∞+上恒成立,则2e k >【答案】ACD 【分析】求得函数的导数312ln ()-'=xf x x ,根据导数的符号,求得函数的单调区间和极值,可判定A 正确;根据函数的单调性和()10f =,且x e >()0f x >,可判定B 不正确;由函数的单调性,得到3))f f π>,再结合作差比较,得到)2)f f π>,可判定C 正确;分离参数得到()221ln 1x k f x x x+>+=在()0,∞+上恒成立,令()2ln 1x g x x+=,利用导数求得函数()g x 的单调性与最值,可判定D 正确. 【详解】由题意,函数2ln ()x f x x =,可得312ln ()(0)xf x x x -'=>, 令()0f x '=,即312ln 0xx -=,解得x e = 当0x e <<()0f x '>,函数()f x 在)e 上单调递增;当x >()0f x '<,函数()f x 在)+∞上单调递减,所以当x =()f x 取得极大值,极大值为12f e=,所以A 正确; 由当1x =时,()10f =,因为()f x 在上单调递增,所以函数()f x 在上只有一个零点,当x >()0f x >,所以函数在)+∞上没有零点,综上可得函数在(0,)+∞只有一个零点,所以B 不正确;由函数()f x 在)+∞上单调递减,可得f f >,由于ln ln 2ln ,242f f πππ====,则2ln ln 2ln ln 22444f f ππππππ-=-=-,因为22ππ>,所以0f f ->,即f f >,所以ff f <<,所以C 正确;由()21f x k x<-在()0,∞+上恒成立,即()221ln 1x k f x x x +>+=在()0,∞+上恒成立, 设()2ln 1x g x x +=,则()32ln 1x g x x --'=, 令()0g x '=,即32ln 10x x --=,解得x =所以当0x<<()0g x '>,函数()g x 在上单调递增; 当x>()0g x '<,函数()g x 在)+∞上单调递减, 所以当x=()g x 取得最大值,最大值为22e eg e =-=, 所以2ek >,所以D 正确. 故选:ACD. 【点睛】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.8.已知函数()()()221x f x x e a x =-+-有两个零点,则a 的可能取值是( ) A .1- B .0 C .1 D .2【答案】CD 【分析】求出()f x 的导数,讨论a 的范围,结合函数的单调性和零点存在性定理可判断求出. 【详解】解:∵函数()()()221x f x x e a x =-+-, ∴()()()()()12112xx f x x e a x x e a '=-+-=-+,①若0a =,那么()()0202xf x x e x =⇔-=⇔=,函数()f x 只有唯一的零点2,不合题意; ②若0a >,那么20x e a +>恒成立, 当1x <时,()0f x '<,此时函数为减函数; 当1x >时,()0f x '>,此时函数为增函数; 此时当1x =时,函数()f x 取极小值e -,由()20f a =>,可得:函数()f x 在1x >存在一个零点; 当1x <时,x e e <,210x -<-<,∴()()()()()222121x f x x e a x x e a x =-+->-+-()()211a x e x e =-+--,令()()2110a x e x e -+--=的两根为1t ,2t ,且12t t <, 则当1x t <,或2x t >时,()()()2110f x a x e x e >-+-->, 故函数()f x 在1x <存在一个零点;即函数()f x 在R 上存在两个零点,满足题意; ③若02ea -<<,则()ln 2ln 1a e -<=, 当()ln 2x a <-时,()1ln 21ln 10x a e -<--<-=,()ln 2220a x e a e a -+<+=,即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,当()ln 21a x -<<时,10x -<,()ln 2220a x e a e a -+>+=, 即()()()120xf x x e a '=-+<恒成立,故()f x 单调递减,当1x >时,10x ->,()ln 2220a x e a e a -+>+=,即()()(1)20xf x x e a '=-+>恒成立,故()f x 单调递增,故当()ln 2x a =-时,函数取极大值,由()()()()()2ln 2ln 222ln 21f a a a a a ⎡⎤⎡⎤-=---+--⎣⎦⎣⎦(){}2ln 2210a a ⎡⎤⎣⎦=--+<得:函数()f x 在R 上至多存在一个零点,不合题意; ④若2ea =-,则()ln 21a -=, 当()1ln 2x a <=-时,10x -<,()ln 2220a x e a e a -+<+=, 即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,当1x >时,10x ->,()ln 2220a x e a e a -+>+=, 即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,故函数()f x 在R 上单调递增,函数()f x 在R 上至多存在一个零点,不合题意;⑤若2ea <-,则()ln 2ln 1a e ->=, 当1x <时,10x -<,()ln 2220a x e a e a -+<+=, 即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,当()1ln 2x a <<-时,10x ->,()ln 2220a x e a e a -+<+=,即()()()120xf x x e a '=-+<恒成立,故()f x 单调递减,当()ln 2x a >-时,10x ->,()ln 2220a x e a e a -+>+=,即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,故当1x =时,函数取极大值,由()10f e =-<得:函数()f x 在R 上至多存在一个零点,不合题意; 综上所述,a 的取值范围为()0,∞+, 故选:CD. 【点睛】本题考查利用导数研究函数的零点问题,属于较难题.。

高三数学导数试题答案及解析

高三数学导数试题答案及解析

高三数学导数试题答案及解析1.若函数在其定义域内的一个子区间内不是单调函数,则实数的取值范围是()A.B.C.D.【答案】B【解析】因为的定义域为,又,由,得.当时,,当时,据题意,,解得.故选B.【考点】应用导数研究函数的单调性2.曲线处的切线与坐标轴围成的三角形面积为()A.B.C.D.【答案】A【解析】切线斜率,故切线方程为,即,其和坐标轴围成的三角形面积,选A.【考点】导数的几何意义、直线方程.3.已知函数在区间上是增函数,则实数的取值范围为 .【答案】【解析】由题意知在有定义,即在恒成立,即,又在增,故在恒成立,因为,故,综上可知,.【考点】利用导数研究函数单调性、函数最值.4.定义在上的函数同时满足以下条件:①函数在上是减函数,在上是增函数;②是偶函数;③函数在处的切线与直线垂直. (Ⅰ)求函数的解析式;(Ⅱ)设,若存在使得,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)由三个条件可得三个等式,从而可求出三个未知数.(Ⅱ)一般地若存在使得,则;若存在使得,则.在本题中,由可得: .则大于的最小值.试题解析:(Ⅰ),由题设可得:所以(Ⅱ)由得: 即:令由题意得:所以在单调递增,在上单调递减又,所以的最小值为【考点】函数的性质,导数的求法及应用.5.设函数 (R),且该函数曲线在处的切线与轴平行.(Ⅰ)讨论函数的单调性;(Ⅱ)证明:当时,.【答案】(Ⅰ)在上单调递减,在上单调递增;(Ⅱ)见解析.【解析】(Ⅰ)先求出原函数的导函数,令导函数大于零得单调增区间,令导函数小于零得单调减区间;(Ⅱ)当时,,在上单调递增,求出在上的最大值为和最小值,用最大值减去最小值可得结论.试题解析:(Ⅰ),由条件知,故则 3分于是.故当时,;当时,。

从而在上单调递减,在上单调递增. 6分(Ⅱ)由(Ⅰ)知在上单调递增,故在上的最大值为最小值为 10分从而对任意有,而当时,,从而12分【考点】1.利用导数研究函数的单调性;2.利用导数求函数的最值;3.正余弦函数的取值范围.6.曲线在点处的切线方程为 .【答案】【解析】∵,∴,∴,∴切线方程为,即.【考点】用导数求切线方程.7.过坐标原点与曲线相切的直线方程为 .【答案】【解析】设切点坐标为,∵,∴,∴,∴切线方程为,又∵在切线上,∴即,又∵在曲线上,∴,∴,∴切线方程为即.【考点】过点求切线.8.已知函数,则函数的图象在点处的切线方程是 .【答案】【解析】,由得,切线斜率为,所以切线方程为,即.【考点】1.直线方程;2.导数的几何意义.9.已知函数在点处的切线方程是x+ y-l=0,其中e为自然对数的底数,函数g(x)=1nx- cx+ 1+ c(c>0),对一切x∈(0,+)均有恒成立.(Ⅰ)求a,b,c的值;(Ⅱ)求证:.【答案】(Ⅰ),,;(Ⅱ)详见解析.【解析】(Ⅰ)利用导数的几何意义求、,利用导数导数法判断单调性,用函数的最值积恒成立求;(Ⅱ)构造新函数,利用导数法求的最小值,利用结合(Ⅰ)中的结论进行证明.试题解析:(Ⅰ),,,,. (2分),由于,所以当时,是增函数,当时,是减函数,,由恒成立,,即恒成立,①(4分)令,则,在上是增函数,上是减函数,,即,当且仅当时等号成立 .,由①②可知,,所以. (6分)(Ⅱ)证法一:所求证不等式即为.设,,当时,是减函数,当时,是减函数,,即. (8分)由(Ⅰ)中结论②可知,,,当时,,从而 (10分).(或者也可)即,原不等式成立. (12分)【考点】导数法判断函数的单调性,恒成立,不等式的证明.10.曲线C:在x=0处的切线方程为________.【答案】【解析】因为,,所以,,曲线在点处的切线的斜率为,曲线在点处的切线的方程为,故答案为.【考点】导数的几何意义11.已知,根据函数的性质、积分的性质和积分的几何意义计算的值为()A.B.C.D.【答案】B【解析】因为是奇函数,由定积分的性质【考点】考查定积分的简单计算.12.已知函数的导函数为(其中为自然对数的底数,为实数),且在上不是单调函数,则实数的取值范围是()A.B.C.D.【答案】D【解析】当时,,,在上恒成立,此时函数在上是单调递增函数,与题设条件矛盾,排除A、B选项,由于,故,函数的导函数,令,解不等式得,解不等式得,故函数在区间上单调递减,在上单调递增,故函数在处取得极小值,亦即最小值,由于函数在上不是单调函数,故函数存在变号零点,,由于,解得.【考点】函数的单调性与导数13.已知函数(为自然对数的底数)(Ⅰ)若曲线在点处的切线平行于轴,求的值;(Ⅱ)求函数的极值;(Ⅲ)当时,若直线与曲线没有公共点,求的最大值.【答案】(Ⅰ)(Ⅱ)当时,函数无极小值;当,在处取得极小值,无极大值(Ⅲ)的最大值为【解析】(Ⅰ)由,得.又曲线在点处的切线平行于轴,得,即,解得.(Ⅱ),①当时,,为上的增函数,所以函数无极值.②当时,令,得,.,;,.所以在上单调递减,在上单调递增,故在处取得极小值,且极小值为,无极大值.综上,当时,函数无极小值;当,在处取得极小值,无极大值.(Ⅲ)当时,令,则直线:与曲线没有公共点,等价于方程在上没有实数解.假设,此时,,又函数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没有实数解”矛盾,故.又时,,知方程在上没有实数解.所以的最大值为.解法二:(Ⅰ)(Ⅱ)同解法一.(Ⅲ)当时,.直线:与曲线没有公共点,等价于关于的方程在上没有实数解,即关于的方程:(*)在上没有实数解.①当时,方程(*)可化为,在上没有实数解.②当时,方程(*)化为.令,则有.令,得,当变化时,的变化情况如下表:当时,,同时当趋于时,趋于,从而的取值范围为.所以当时,方程(*)无实数解,解得的取值范围是.综上,得的最大值为.此题的一二问考查的是最基本的函数切线问题及对极值含参情况的讨论,所以导数公式必需牢记,对于参数的讨论找到一个合理的分类标准做到不重不漏即可,可这往往又是学生最容易出现问题的地方.而第三问对于曲线是否无交点要懂得转化成函数零点或方程根的个数问题处理,这也是常规处理含参就比较麻烦,平时要多加练习.【考点】本小题主要考查函数与导数,两数的单调性、极值、零点等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想、分类与整合思想、化归与转化思想.属综合要求比较高的难题.14.设,则的值为( )A.B.C.D.【答案】C【解析】根据题意,由于,那么可知,故选C.【考点】定积分的运算点评:主要是考查了分段函数的解析式以及定积分的计算,属于基础题。

高三数学导数的实际应用试题答案及解析

高三数学导数的实际应用试题答案及解析

高三数学导数的实际应用试题答案及解析1.已知函数,.(Ⅰ)若曲线在点处的切线与直线垂直,求的值;(Ⅱ)求函数的单调区间;(Ⅲ)设,当时,都有成立,求实数的取值范围.【答案】(Ⅰ),(Ⅱ)当时,的单调增区间为;当时,的单调增区间是,的单调减区间是.(Ⅲ).【解析】(Ⅰ)利用导数的几何意义,曲线在点处的切线斜率为在点处的导数值. 由已知得.所以.,(Ⅱ)利用导数求函数单调区间,需明确定义域,再导数值的符号确定单调区间. 当时,,所以的单调增区间为.当时,令,得,所以的单调增区间是;令,得,所以的单调减区间是.(Ⅲ)不等式恒成立问题,一般利用变量分离转化为最值问题. “当时,恒成立”等价于“当时,恒成立.”设,只要“当时,成立.”易得函数在处取得最小值,所以实数的取值范围.(Ⅰ)由已知得.因为曲线在点处的切线与直线垂直,所以.所以.所以. 3分(Ⅱ)函数的定义域是,.(1)当时,成立,所以的单调增区间为.(2)当时,令,得,所以的单调增区间是;令,得,所以的单调减区间是.综上所述,当时,的单调增区间为;当时,的单调增区间是,的单调减区间是. 8分(Ⅲ)当时,成立,.“当时,恒成立”等价于“当时,恒成立.”设,只要“当时,成立.”.令得,且,又因为,所以函数在上为减函数;令得,,又因为,所以函数在上为增函数.所以函数在处取得最小值,且.所以.又因为,所以实数的取值范围. 13分(Ⅲ)另解:(1)当时,由(Ⅱ)可知,在上单调递增,所以.所以当时,有成立.(2)当时,可得.由(Ⅱ)可知当时,的单调增区间是,所以在上单调递增,又,所以总有成立.(3)当时,可得.由(Ⅱ)可知,函数在上为减函数,在为增函数,所以函数在处取最小值,且.当时,要使成立,只需,解得.所以.综上所述,实数的取值范围.【考点】利用导数求切线,利用导数求单调区间,利用导数求最值2.已知y=f(x)与y=g(x)都为R上的可导函数,且f′(x)>g′(x),则下面不等式正确的是()A.f(2)+g(1)>f(1)+g(2)B.f(1)+f(2)>g(1)+g(2)C.f(1)﹣f(2)>g(1)﹣g(2)D.f(2)﹣g(1)>f(1)﹣g(2)【答案】A【解析】∵f'(x)>g'(x),∴f'(x)﹣g'(x)>0,∴[f(x)﹣g(x)]′>0,∴函数f(x)﹣g(x)在R上为增函数.∵1<2,∴f(1)﹣g(1)<f(2)﹣g(2),移向即得f(2)+g(1)>f(1)+g(2)故选A3.某公司生产一种产品,固定成本为20000元,每生产一单位的产品,成本增加100元,若总收入R与年产量x的关系是,则当总利润最大时,每年生产产品的单位数是()A.150B.200C.250D.300【答案】D【解析】∵总利润由P′(x)=0,得x=300,故选D.4.一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O为圆心,在半圆上),设,木梁的体积为V(单位:m3),表面积为S(单位:m2).(1)求V关于θ的函数表达式;(2)求的值,使体积V最大;(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.【答案】(1);(2);(3)是.【解析】(1)本题求直四棱柱的体积,关键是求底面面积,我们要用底面半径1和表示出等腰梯形的上底和高,从图形中可知高为,而,因此面积易求,体积也可得出;(2)我们在(1)中求出,这里的最大值可利用导数知识求解,求出,解出方程在上的解,然后考察在解的两边的正负性,确定是最大值点,实质上对应用题来讲,导数值为0的那个唯一点就是要求的极值点);(3),上(2)我们可能把木梁的表面积用表示出来,,由于在体积中出现,因此我们可求的最大值,这里可不用导数来求,因为,可借助二次函数知识求得最大值,如果这里取最大值时的和取最大值的取值相同,则结论就是肯定的.试题解析:(1)梯形的面积=,. 2分体积. 3分(2).令,得,或(舍).∵,∴. 5分当时,,为增函数;当时,,为减函数. 7分∴当时,体积V最大. 8分(3)木梁的侧面积=,.=,. 10分设,.∵,∴当,即时,最大. 12分又由(2)知时,取得最大值,所以时,木梁的表面积S最大. 13分综上,当木梁的体积V最大时,其表面积S也最大. 14分【考点】(1)函数解析式;(2)用导数求最值;(3)四棱柱的表面积及其最值.5.一火车锅炉每小时煤的消耗费用与火车行驶速度的立方成正比,已知当速度为20 km/h时,每小时消耗的煤价值40元,其他费用每小时需400元,火车的最高速度为100 km/h,火车以何速度行驶才能使从甲城开往乙城的总费用最少?【答案】速度为20 km/h时,总费用最少【解析】设火车的速度为x km/h,甲、乙两城距离为a km.由题意,令40=k·203,∴k=,则总费用f(x)=(kx3+400)·=a.∴f(x)=a (0<x≤100).由f′(x)==0,得x=20.当0<x<20时,f′(x)<0;当20<x<100时,f′(x)>0.∴当x=20时,f(x)取最小值,即速度为20 km/h时,总费用最少.6.已知函数(Ⅰ)若对任意,使得恒成立,求实数的取值范围;(Ⅱ)证明:对,不等式成立.【答案】(Ⅰ)(Ⅱ)详见解析.【解析】(Ⅰ) 利用导数分析单调性,进而求最值;(Ⅱ)利用不等式的放缩和数列的裂项求和试题解析:(I)化为易知,,设,设,,,上是增函数,(Ⅱ)由(I)知:恒成立,令,取相加得:即证明完毕【考点】查导数,函数的单调性,数列求和,不等式证明7.设等差数列{an }的前n项和为Sn,已知(a5-1)3+2 011·(a5-1)=1,(a2 007-1)3+2 011(a2 007-1)=-1,则下列结论正确的是()A.S2 011=2 011,a2 007<a5B.S2 011=2 011,a2 007>a5C.S2 011=-2 011,a2 007≤a5D.S2 011=-2 011,a2 007≥a5【答案】A 【解析】令,在R上单调递增且连续的函数所以函数只有唯一的零点,从而可得,同理∵(a5-1)3+2 011·(a5-1)=1,(a2 007-1)3+2 011(a2 007-1)=-1两式相加整理可得,由,可得>0,由等差数列的性质可得【考点】函数性质与等差数列及性质点评:本题的入手点在于通过已知条件的两数列关系式构造两函数,借助于函数单调性得到数列中某些特定项的范围,再结合等差数列中的相关性质即可求解,本题难度很大8.已知定义在上的函数满足,且,,若数列的前项和等于,则=A.7B.6C.5D.4【答案】B【解析】由得,即为R上的减函数,所以,由,得,即,解得或,又,所以,故,数列即,其前项和为,整理得,解得,故选B.【考点】本题考查了导数与数列的综合运用点评:此类问题常常利用导数法研究函数的单调性,然后再利用数列的知识求解9.已知f(x)=x-(a>0),g(x)=2lnx+bx且直线y=2x-2与曲线y=g(x)相切.(1)若对[1,+)内的一切实数x,小等式f(x)≥g(x)恒成立,求实数a的取值范围;(2)当a=l时,求最大的正整数k,使得对[e,3](e=2.71828是自然对数的底数)内的任意k个实数x1,x2,,xk都有成立;(3)求证:.【答案】(1);(2)的最大值为.(3)当时,根据(1)的推导有,时,,即.令,得,化简得,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(II)函数 f (x) x3 x2 x a (x 1)2 (x 1) a 1
由此可知,取足够大的正数时,有 f (x) >0,取足够小的负数时有 f (x) <0,所以曲线 y = f (x) 与 x 轴至少有一
个交点
结合 f (x) 的单调性可知:
当 f (x) 的极大值 5 a <0,即 a (, 5 ) 时,它的极小值也小于 0,因此曲线 y = f (x) 与 x 轴仅有一个交
当 a ≥0 时, x1 <-1, x2 0, f (x) 在 x1, x2 上为减函数,在 (x2 ,) 上为增函数
而当 x 0 时 f (x) = x(x 2a)e x 0 ,当 x=0 时, f (x) 0
所以当 x a 1 a2 1 时, f (x) 取得最小值
(II)当 a ≥0 时, f (x) 在 1,1上为单调函数的充要条件是 x2 1
解得 x1 a 1 a2 1, x2 a 1 a2 1 当 x 变化时, f (x) 、 f '(x) 的变化如下表
x
(, x1)
x1
f (x)
+
0
(x1, x2 )
x2

0
(x2 ,)
+
f (x) 递增
极大值
递减
极小值
递增
∴ f (x) 在 x = x1 处取得极大值,在 x = x2 处取得极小值。
2. (北京卷)过原点作曲线 y=ex 的切线,则切点的坐标为 (1, e); ,切线的斜率为 e .
3.(全国卷Ⅱ文)设 a 为实数,函数 f (x) x3 x 2 x a. (Ⅰ)求 f (x) 的极值.
(Ⅱ)当 a 在什幺范围内取值时,曲线 y f (x)与x 轴仅有一个交点.
解:(I) f '(x) =3 x2 -2 x -1
27
27
点,它在(1,+∞)上。
当 f (x) 的极小值 a -1>0 即 a (1,+∞)时,它的极大值也大于 0,因此曲线 y = f (x) 与 x 轴仅有一个交点,它
在(-∞,- 1 )上。 3
∴当 a (, 5 ) ∪(1,+∞)时,曲线 y = f (x) 与 x 轴仅有一个交点。 27
解析: f ' x 3x2 6x 0 0 x 2。答案选 D
2.(全国卷Ⅰ)函数 f (x) x3 ax2 3x 9,已知 f (x) 在 x 3 时取得极值,则 a =()
(A)2 (B)3
(C)4
(D)5
解析 f '(3) 0a 5 选 D
3. (全国卷Ⅱ理)已知 a≥ 0 ,函数 f(x) = ( x 2 -2ax ) e x
(1) 当 X 为何值时,f(x)取得最小值?证明你的结论; (2)设 f(x)在[ -1,1]上是单调函数,求 a 的取值范围.
解:(I)对函数 f (x) 求导数得 f (x) (x2 2x 2ax 2a)e x 令 f (x) 0, 得[ x2 +2(1- a ) x -2 a ] ex =0 从而 x2 +2(1- a ) x -2 a =0
重点、难点
两个函数的和、差、积的求导法则
考点及考试要求
教学内容
导数习题讲解: 一.导数在函数中的考查: 利用导数可以判断函数的单调性,求函数的单调区间,求极值和最值等等。这也是高考对这一部分的考查重点。
1、(广东卷)函数 f (x) x3 3x2 1是减函数的区间为 ( )
(A) (2, ) (B) (, 2) (C) (, 0) (D) (0, 2)
评析:本题主要考察导函数的概念和计算。第一问考察导函数解决函数问题的工具性作用。第二问在第一问的
基础上进一步设计,考察学生应用导函数研究函数性质的方法及推理运算能力。需要对于函数性质有较深的理解。
三.有关导数的应用题:
1.用长为 90cm,宽为 48cm 的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转
XXXX 教育学科教师辅导讲义
讲义编号____________________
学员编号: 学员姓名:
年 级:高三 辅导科目:数学
学科组长/带头人签名及日 期
课题
导数的应用
课时数及课时进度: 学科教师:
授课时间:2011.1.25
备课时间:
教学目标
掌握导数基本概念,几何定义,计算法则,会求函数的导数 会应用导数来求单调性和证明不等式
即 a 1 a2 1 1,解得 a 3 4
于是 f (x) 在[-1,1]上为单调函数的充要条件是 a 3 4
即 a 的取值范围是[ 3 , ) 4
二.导数在曲线中的考查:
利用导数来求曲线在某一点处的切线,或者确定曲线的最高点和最低点也是高考考查的一个重点。
x 1. ( 全国卷 III)曲线 y 2x 3 在点(1,1)处的切线方程为 x+y-2=0
解决别的问题,也是高考对这一部分考查的重点。
1.设函数 f(x)2x33(a1)x26ax8,其中 aR。
(1) 若 f(x)在 x3 处取得极值,求常数 a 的值;
10<x<36 时,V′<0,
x>36 时,V′>0,
所以,当 x=10,V 有极大值 V(10)=1960
又 V(0)=0,V(24)=0,
所以当 x=10,V 有最大值 V(10)=1960
四.有关逆向思维的题目:
若已知函数解析式中含有字母,通过极值和单调区间与导数的关系,找方程(组)来求字母,然后利用导数再
若 f '(x) =0,则 x ==- 1 , x =1 3
当 x 变化时, f '(x) , f (x) 变化情况如下表:
x
(-∞,- 1 ) - 1
3
3
f '(x)
+
0
(- 1 ,1) 3

1
(1,+∞)
0
ห้องสมุดไป่ตู้
+
f (x)
极大值
极小值
∴ f (x) 的极大值是 f ( 1) 5 a ,极小值是 f (1) a 1 3 27
90°角,再焊接而成(如图),问该容器的高为
多少时,容器的容积最大?
最大容积是多少?
解:设容器的高为 x,容器的体积为 V,
则 V=(90-2x)(48-2x)x,(0<V<24)
=4x3-276x2+4320x
∵V′=12 x2-552x+4320
由 V′=12 x2-552x+4320=0 得 x1=10,x2=36 ∵x<10 时,V′>0,
相关文档
最新文档