脱硫效率影响因素及运行控制措施
脱硫系统运行优化措施
脱硫系统运行优化措施引言脱硫系统是处理燃煤电厂烟气中二氧化硫(SO2)的关键设备,其运行效果直接影响到环境保护和发电效益。
为了提高脱硫系统的运行效率,减少二氧化硫的排放,需要采取一系列优化措施。
本文将介绍几种常见的脱硫系统运行优化措施,包括操作优化、设备维护和管理措施。
操作优化1. 确定合适的石灰石添加量在脱硫过程中,石灰石是常用的脱硫剂。
合适的石灰石添加量可以确保脱硫效果的最大化。
通过系统监测和实时调整,确定合适的石灰石添加量,使得脱硫剂的利用率达到最高。
2. 控制脱硫塔内循环液流量脱硫塔内的循环液对于脱硫效果至关重要。
适当控制循环液流量可以确保脱硫剂和污染物的充分接触,提高脱硫效率。
通过调整循环液泵的转速或阀门的开度,控制循环液流量,达到最佳的脱硫效果。
3. 优化反应器温度反应器温度是脱硫过程中影响反应速率的重要因素。
适当提高反应器温度可以加快脱硫反应速率,提高脱硫效果。
然而,过高的温度可能导致脱硫剂的降解和设备的损坏。
因此,需要根据煤质和脱硫塔的实际情况,确定合适的反应器温度。
设备维护1. 定期清洗除尘器脱硫系统中的除尘器起到了去除烟气中颗粒物的重要作用。
定期清洗除尘器可以确保其正常运行,避免堵塞和漏风的问题。
清洗除尘器时,应该使用合适的清洗剂,避免对设备造成腐蚀或损伤。
2. 维护喷嘴和搅拌器脱硫系统中的喷嘴和搅拌器对循环液的均匀分布和颗粒物的悬浮起着重要作用。
定期检查和维护喷嘴和搅拌器,确保其正常工作。
如果出现堵塞或损坏,应及时更换或修复。
3. 检查管道和阀门脱硫系统中的管道和阀门的正常运行对脱硫效果至关重要。
定期检查管道和阀门,发现问题及时修复或更换,避免漏气或漏液的情况发生。
管理措施1. 建立严格的操作规程对脱硫系统的操作者进行培训,并建立严格的操作规程。
操作人员应按照规程进行操作,保证系统的正常运行。
同时,应加强对操作人员的监督和管理,及时发现并纠正操作不当的问题。
2. 制定系统监测计划建立完善的系统监测计划,对脱硫系统的运行状况进行实时监测。
石灰石石膏湿法脱硫工艺脱硫效率影响因素
石灰石石膏湿法脱硫工艺脱硫效率影响因素石灰石石膏湿法脱硫工艺是目前应用较广泛的脱硫方法之一、它通过利用石灰石制备的石膏与废气中的二氧化硫进行反应,形成硫酸钙并固定在石膏床上,从而达到脱硫的效果。
在石灰石石膏湿法脱硫工艺中,影响脱硫效率的因素有以下几个方面:1.石灰石质量:石灰石的成分和性质对脱硫效果有直接影响。
石灰石中主要的成分是钙碳酸盐,其含量越高,脱硫效率就越高。
同时,石灰石的细度对脱硫效果也有一定的影响,细度越大,比表面积越大,与废气中的二氧化硫接触的面积也就越大,脱硫效果也会提高。
2.石膏反应和固结特性:石膏对二氧化硫的吸收和固结是实现脱硫的关键。
石膏床的形态和结构特性会影响废气中二氧化硫的吸收速率和脱硫效率。
石膏床的充实度、温度、湿度等因素都会对石膏反应和固结有一定影响,从而影响脱硫效率。
3.废气中的气体成分和浓度:废气中除了二氧化硫外,还可能含有其他酸性气体或氧化性气体。
这些气体的存在会对石灰石石膏湿法脱硫工艺的效果产生影响。
例如,废气中存在大量的氮氧化物时,会生成硝酸,从而影响脱硫的效果。
4.溶液浓度和温度:溶液的浓度和温度对脱硫效率也有重要影响。
溶液浓度的增加可以增大石膏床与二氧化硫的接触面积,从而提高脱硫效率。
此外,温度的升高也可以促进溶液中二氧化硫的溶解和反应速率,增加脱硫效果。
5.反应时间:脱硫反应的时间越长,二氧化硫与石膏的反应就越充分,脱硫效率也会提高。
因此,反应时间的控制对脱硫的效果非常重要。
需要注意的是,石灰石石膏湿法脱硫工艺并非完全可以达到100%的脱硫效果,还会有一部分二氧化硫未能被脱除。
因此,在实际应用中,还需要根据污染物排放标准和工艺要求进行合理的设计和操作,以达到所需的脱硫效果。
影响湿法烟气脱硫效率的因素及运行控制措施
影响湿法烟气脱硫效率的因素及运行控制措施三、影响石灰石一石膏烟气湿法脱硫效率的主要因素分析脱硫效率是指,脱硫系统脱除的二氧化硫含量与原烟气中二氧化硫含量的比值。
影响脱硫效率的主要因素有:1、通过脱硫系统的烟气量及原烟气中S02的含量。
在脱硫系统设备运行方式一定,运行工况稳定,无其它影响因素时,当处理烟气量及原烟气中S02的含量升高时, 脱硫效率将下降。
因为人口S02的增加,能很快的消耗循环浆液中可提供的碱量,造成浆液液滴吸收S02的能力减弱。
2、通过脱硫系统烟气的性质。
1)烟气中所含的灰尘。
因灰尘中带入的A13+与烟气气体中带入的F-形成的络化物到达一定浓度时,会吸附在CaC03 固体颗粒的表面,“封闭”了CaC03的活性,严重减缓了CaC03 的溶解速度,造成脱硫效率的降低。
2)烟气中的HC1。
当烟气通过脱硫吸收塔时,烟气中的HC1几乎全部溶于吸收浆液中,因C1-比S042-的活性高(盐酸比硫酸酸性更强),更易与CaC03发生反应,生成溶于水的CaC12,从而使浆液中Ca2+的浓度增大,由于同离子效应,其将抑制CaC03的溶解速度,会造成脱硫效率的降低。
同时,由于离子强度和溶液黏度的增大,浆液中离子的扩散速度变慢,致使浆液液滴中有较高的S032-,从而降低了S02向循环浆液中的传质速度,也会造成脱硫效率的降低。
3、循环浆液的pH值。
脱硫系统中,循环浆液的pH值是运行人员控制的主要参数之一,浆液的P H值对脱硫效率的影响最明显。
提高浆液的pH 值就是增加循环浆液中未溶解的石灰石的总量,当循环浆液液滴在吸收塔内下落过程中吸收S02碱度降低后, 液滴中有较多的吸收剂可供溶解,保证循环浆液能够随时具有吸收S02的能力。
同时,提高浆液的pH值就意味着增加了可溶性碱物质的浓度,提高了浆液中和吸收S02的后产生的H+的作用。
因此,提高pH值就可直接提高脱硫系统的脱硫效率。
但是,浆液的pH值也不是越高越好,虽然脱硫效率随pH 值的升高而升高,但当pH值到达一定数值后,再提高pH 值对脱硫效率的影响并不大,因为过高的pH值会使浆液中石灰石的溶解速率急剧下降,同时过高的pH值会造成石灰石量的浪费,并且使石膏含CaC03的量增大,严重降低了石膏的品质。
脱硫效率影响因素和措施一览
1.结合大小修,对浆液循环泵 进行定检,检查叶轮的磨损情 况,检修后进行出力试验,保 证检修质量。 2.停机后对破损的浆液循环泵 入口滤网进行修复 3.定期进行循泵的反冲洗
氧化风 机
出力
氧化风不足,将造成浆液氧化 1、滤网没有备品,清洁度 不够,亚硫酸钙升高,不利于 欠佳;2、氧化风设计出力 脱硫 偏小 原烟气流量高于设计值,流速 快,气液接触反应等效时间缩 短,脱硫效率降低 进入吸收塔的烟气温度越低, SO2越易于溶于浆液,效率越 旁路挡板密封不严,漏烟气, 造成混合烟气SO2偏高,效率 降低
1.拟多调查几家石灰石矿点, 找到质量好,供货稳定的单 位; 2.严格执行石灰石入厂检查和 采制化制度 1.严格执行石灰石入厂检查和 采制化制度 1.筛余量降低到5%以下
PH值
实际控制在5.5~5.9,高硫 根据设备实际情况,燃烧符合 煤时甚至接近于6.0,稍偏 设计要求的煤种,控制浆液PH 高。其原因主要是为了提高 值在5.5~5.7的范围 效率所致
浆液循 环泵 出力
2
设备方面
1.除#1C泵外,均还未进行 过解体检修,泵的叶轮可能 因磨损等原因造成出力不同 程度下降(#1C浆液循环泵 浆液循环泵出力下降,脱硫效 电流较以前降低5~6A,# 率将大大降低 2C泵出力也有所下降) 2.浆液循环泵入口滤网破损 严重,其碎片可能造行方面
1.CaCO3含量过高,PH值将升 高,有利于提高效率,但溶解 度降低,造成浪费,且易结垢 碳酸钙 CaCO3<3% 基本正常 、堵塞; 2.含量过低,与SO2反应的脱 硫剂减少,效率下降。 Cl-含量偏高,易与Ca2+反应, 氯离子 Cl <0.01% 不利于SO2吸收,脱硫效率下 基本正常 降
脱硫效率影响因素和措施一览表
影响脱硫效率因素范文
影响脱硫效率因素引言随着环境保护意识的提高,脱硫技术在燃煤电厂等工业领域中得到了广泛的应用。
脱硫技术通过去除燃烧过程中产生的二氧化硫,减少大气污染物的排放,对保护环境和改善空气质量起到了重要的作用。
然而,脱硫效率的高低直接影响着脱硫设备的运行效果和降低排放浓度的能力。
本文将探讨影响脱硫效率的因素,并分析其原因和对策。
1. 煤质煤质是影响脱硫效率的重要因素之一。
不同种类的煤炭在硫分含量和硫化物形态上存在差异,因此脱硫效率也会受到不同程度的影响。
以下是与煤质相关的几个关键因素:1.1 硫分含量硫分含量是影响脱硫效率的关键指标之一。
煤炭中的硫分主要以有机硫和无机硫的形式存在,其中有机硫含量较低,较容易脱除,而无机硫含量较高,难以脱除。
因此,煤炭硫分含量越高,脱硫效率越低。
1.2 硫化物形态煤炭中的硫化物形态也会对脱硫效率产生影响。
硫化物主要以有机硫和无机硫的形式存在,有机硫主要为有机硫酸盐和有机硫醇等形式,而无机硫主要为硫酸盐和硫化物的形式。
研究表明,有机硫酸盐相对于硫化物来说更容易被脱除,因此,煤炭中有机硫的含量越高,脱硫效率也就越高。
2. 脱硫剂脱硫剂是脱硫设备中的关键因素之一,不同的脱硫剂对脱硫效率会有不同的影响。
以下是几种常见的脱硫剂及其特点:2.1 石灰石石灰石是一种常用的脱硫剂,其主要成分是氧化钙。
石灰石脱硫工艺是利用氧化钙与二氧化硫进行反应,生成硫酸钙,从而达到脱硫的目的。
石灰石脱硫剂具有脱硫效率高、工艺简单等优点,但其脱硫效率受到反应温度、氧化钙含量、反应时间等因素的影响。
2.2 石膏石膏是石灰石脱硫后产生的副产物,也是一种常使用的脱硫剂。
石膏主要由硫酸钙组成,可以用于生产建材、化肥等。
然而,石膏脱硫效率较低,其主要原因是石膏颗粒较大,不易与二氧化硫进行充分接触,从而影响脱硫效果。
2.3 活性炭活性炭是一种具有良好吸附性能的脱硫剂。
由于活性炭具有大孔径、高比表面积等特点,能够有效地吸附二氧化硫,并将其转化为硫酸盐。
影响脱硫效率的因素(2020年整理).doc
浅析影响脱硫效率的因素近年来,大气质量变差,随着人们对良好环境的渴望,国家对环保的要求越来越严格。
许多火电厂已建和正建脱硫装置(FGD),进一步净化烟气,使其达到排放标准。
国内大部分采用了石灰石-石膏湿法脱硫。
对2×50MW机组烟气脱硫(FGD)装置脱硫效率的几项参数进行研究分析,查找出影响土力学的几个主要因素,并提出解决措施,使之达到最优的脱硫效率。
石灰石-石膏湿法脱硫的基本原理:烟气经过电除尘后由增压风机送入吸收塔内。
烟气中的SO2与吸收塔喷淋层喷下的石灰石浆液发生反应生成HSO3-,反应如下:SO2+H2O→H2SO3,H2SO3→H++HSO3-。
其中部分HSO3-在喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化,反应如下:HSO3- +1O2→HSO4-,HSO4-→H++SO42-。
吸收塔内浆液被2引入吸收塔内中和氢离子,使浆液保持一定的PH值。
中和后的浆液在吸收塔内循环。
反应如下:Ca2++CO32-+2H++SO42-+H2O→CaSO4·2H2O+CO2↑,2H++CO32-→H2O+CO2↑。
脱硫后的烟气经吸收塔顶部的除雾器去除水分后,被净化的烟气经烟囱排向大气中,生成的石膏副产品留作他用。
从此可以看出,浆液的PH值、烟气的性质、吸收剂的质量、液气比、等是影响脱硫效率的主要因素。
○1吸收塔浆液的PH值。
PH值是影响脱硫效率、脱硫产物成分的关键参数。
PH值太高,说明脱硫剂用量大于反应所需量,造成脱硫剂的利用率降低。
当PH值>6时,虽然SO2的吸收好,但是Ca2+浓度减小,影响Ca2+析出,同时也容易使设备堵塞和结垢。
而PH值太低,则影响脱硫效率,不能使烟气中SO2的含量达到预期的效果。
当PH值<4时,几乎就不吸收SO2。
所以必须在运行中监测好PH值,及时加减脱硫剂,保证脱硫效率的同时,也提高脱硫剂的利用率和脱硫产物的品质。
一般PH值控制在5~6之间。
影响脱硫效率和石膏品质的因素
影响脱硫效率和石膏品质的因素北海诚德钢厂132m2烧结机烟气脱硫系统已运行一个多月,根据目前运行的效果,结合现场实际情况,作如下分析:1、石膏浆液中烟尘及杂质含量石膏浆液中的杂质主要包括烟气中飞灰和石灰中的杂质,这些杂质不参与吸收反应.通过废水排放到系统之外。
烟气中的烟粉尘经电除尘设备后进入浆液系统,其粒径较小会包裹在石灰颗粒的表面并对石灰的溶解造成影响,由此导致浆液中石灰量增多,浆液密度增大,石膏脱水效率降低。
烟气中的烟尘质量浓度必须控制在50 mg/m3以内,否则会影响脱水系统功能,也会降低石膏品质。
此外,杂质含量长期过高,会使脱硫系统严重堵塞,也会对设备造成磨损。
特别对于水力旋流器,杂质的磨损会造成旋流子口径变大,使得旋流效果达不到原设计效果,对于后续的石膏脱水过程更是影响严重。
2、石膏浆液中氯离子石膏浆液中氯离子主要来源于烟气中的HCl和工艺水,特别是HCl来源于煤的燃烧,氯离子会随烟气进入脱硫塔浆液中。
石膏浆液中的晶体在结晶过程中,氯离子会被晶体包裹,留在晶体内部或晶体之间,而溶液中存在一定量的钙离子会与之反应,生成性质稳定的六水氯化钙,锁定在石膏晶体内部的水分子,会造成石膏含水率上升。
此外,氯化钙还可以存在于石膏晶体之间,阻碍结晶水在晶体之间的通行,对石膏脱水造成影响。
为避免过量氯离子对石膏脱水造成影响,一般建议定期排放废水。
3、石膏膏体厚度正常情况石膏浆液通过水力旋流器后,会经给料系统落放到压滤机皮带上,其膏体厚度是通过变频器进行控制,与皮带的转速成反比。
当石膏膏体厚度过大,其含水量必然偏高,但膏体厚度偏低又有可能造成石膏膏体在滤布上分布不均,出现局部真空泄漏,这样同样影响脱水效果。
石膏膏体控制在20~25mm,可以获得较好的脱水效果。
为了确保此脱硫系统经济有效安全的运行,建议降低原烟气入口粉尘含量(目前正常在200mg/Nm3,需降低至50 mg/Nm3以下),同时必须增加废水排放的次数,确保除雾器的冲洗次数(每班两次),PH值控制在5.0——6.0之间,石灰石浆液的浓度在20%左右为宜。
脱硫效率低的原因及处理
脱硫效率低的原因及处理
脱硫效率低的原因可能有以下几点:
硫化物浓度低:当烟气中的硫化物浓度很低时,脱硫剂与硫化物的接触机会就会减少,从而影响脱硫效率。
烟气湿度高:当烟气的湿度很高时,会导致脱硫剂的液态浓度降低,从而影响它与硫化物反应的速度。
烟气中的灰分和粉尘等杂质:当烟气中含有大量的灰分和粉尘时,会与脱硫剂产生竞争反应,降低脱硫效率。
操作不当:可能是脱硫反应器参数设置不合适,或脱硫剂添加量不足等因素,都会导致脱硫效率低。
提高脱硫效率的处理方法:
优化脱硫工艺,合理调整反应器参数,确保其正常运转。
提高脱硫剂浓度,增加与污染物接触的机会。
控制烟气湿度,降低其对脱硫效率的影响。
减少烟气中的灰分和粉尘等杂质的含量,提高脱硫剂与污染物的接触率。
合理加大脱硫剂的投加量,确保脱硫剂在反应器中充分溶解,提高反应有效性。
影响脱硫效率的因素
浅析影响脱硫效率的因素近年来,大气质量变差,随着人们对良好环境的渴望,国家对环保的要求越来越严格。
许多火电厂已建和正建脱硫装置(FGD),进一步净化烟气,使其达到排放标准。
国内大部分采用了石灰石-石膏湿法脱硫。
对2×50MW机组烟气脱硫(FGD)装置脱硫效率的几项参数进行研究分析,查找出影响土力学的几个主要因素,并提出解决措施,使之达到最优的脱硫效率。
石灰石-石膏湿法脱硫的基本原理:烟气经过电除尘后由增压风机送入吸收塔内。
烟气中的SO2与吸收塔喷淋层喷下的石灰石浆液发生反应生成HSO3-,反应如下:SO2+H2O→H2SO3,H2SO3→H++HSO3-。
其中部分HSO3-在喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化,反应如下:HSO3- +1O2→HSO4-,HSO4-→H++SO42-。
吸收塔内浆液被2引入吸收塔内中和氢离子,使浆液保持一定的PH值。
中和后的浆液在吸收塔内循环。
反应如下:Ca2++CO32-+2H++SO42-+H2O→CaSO4·2H2O+CO2↑,2H++CO32-→H2O+CO2↑。
脱硫后的烟气经吸收塔顶部的除雾器去除水分后,被净化的烟气经烟囱排向大气中,生成的石膏副产品留作他用。
从此可以看出,浆液的PH值、烟气的性质、吸收剂的质量、液气比、等是影响脱硫效率的主要因素。
○1吸收塔浆液的PH值。
PH值是影响脱硫效率、脱硫产物成分的关键参数。
PH值太高,说明脱硫剂用量大于反应所需量,造成脱硫剂的利用率降低。
当PH值>6时,虽然SO2的吸收好,但是Ca2+浓度减小,影响Ca2+析出,同时也容易使设备堵塞和结垢。
而PH值太低,则影响脱硫效率,不能使烟气中SO2的含量达到预期的效果。
当PH值<4时,几乎就不吸收SO2。
所以必须在运行中监测好PH值,及时加减脱硫剂,保证脱硫效率的同时,也提高脱硫剂的利用率和脱硫产物的品质。
一般PH值控制在5~6之间。
脱硫效率低的原因及措施
一.改进FGD系统脱硫效率的一些原则措施1)优化设计。
合理确定脱硫装置的设计和运行参数2)做好机组和除尘设备的运行,保证进人脱硫装置的烟气参数在设计范围内3)选择高品位、活性好的石灰石作为吸收剂4)保证FGD工艺水水质5)严格控制脱硫装置的运行参数6)做好FGD系统的运行维护、检修、化验等管理工作二影响石灰石—石膏湿法烟气脱硫效率的主要因素(1)烟气温度的影响进入吸收塔烟气温度越低,越利于SO2气体溶于浆液,形成HSO-3,即:低温有利于吸收,高温有利于解吸。
(2)烟气中SO2浓度的影响在钙硫摩尔比一定时,当烟气中SO2浓度很低时,由于吸收塔出口SO2浓度不会低于其平衡浓度,所以不可能获得很高的脱硫效率。
一般情况下,随着烟气中SO2浓度的增加,脱硫效率随之提高,但当烟气中SO2浓度高于某一极限值时,脱硫效率会随着烟气中SO2浓度的增加而下降。
(3)烟气中氧浓度的影响O2参与烟气脱硫的化学过程,使HSO-3氧化为SO2-4,随着烟气中O2含量的增加,CaSO4·2H2O的形成加快,脱硫效率也呈上升趋势。
(4)烟气含尘浓度的影响原烟气中的飞灰在一定程度上阻碍了SO2与脱硫剂的接触,降低了石灰石中Ca2+的溶解速率,同时飞灰中不断溶出的一些重金属会抑制Ca2+与HSO-3的反应,降低脱硫效率。
一般要求FGD入口粉尘含量小于200mg/Nm3(5)石灰石粒度及纯度的影响石灰石颗粒越细,其表面积越大,反应越充分,吸收速率越快,石灰石的利用率越高,一般要求小于44μm的物料过筛率达90%以上。
石灰石中的杂质对石灰石颗粒的消溶起阻碍作用,降低脱硫效率,一般要求石灰石中CaCO3的含量大于90%。
(6)浆液pH值的影响(7)液气比L/G的影响液气比增大,代表气液接触机率增加,脱硫效率提高,但二氧化硫与吸收液有一个气液平衡状态,液气比超过一定值后,脱硫效率增加幅度减小。
新鲜的石灰石浆液喷淋下来后与烟气接触后,SO2等气体与石灰石的反应并不完全,需要不断地循环反应,增加浆液的循环量,也就加大了CaCO3与SO2的接触反应机会,从而提高了脱硫效率。
脱硫常见问题及解决方案汇总
脱硫常见问题及解决方案汇总脱硫常见问题及解决方案汇总如下:一、脱硫效率低1.脱硫效率低的原因分析:(1)设计因素设计是基础,包括L/G、烟气流速、浆液停留时间、氧化空气量、喷淋层设计等。
应该说,目前国内脱硫设计已经非常成熟,而且都是程序化,各家脱硫公司设计大同小异。
(2)烟气因素其次考虑烟气方面,包括烟气量、入口SO2浓度、入口烟尘含量、烟气含氧量、烟气中的其他成分等。
是否超出设计值。
(3)脱硫吸收剂石灰石的纯度、活性等,石灰石中的其他成分,包括SiO2、镁、铝、铁等。
特别是白云石等惰性物质。
(4)运行控制因素运行中吸收塔浆液的控制,起到关键因素。
包括吸收塔PH值控制、吸收塔浆液浓度、吸收塔浆液过饱和度、循环浆液量、Ca/S、氧化风量、废水排放量、杂质等。
(5)水水的因素相对较小,主要是水的来源以及成分。
(7)其他因素包括旁路状态、GGH泄露等。
2.改进措施及运行控制要点从上面的分析看出,影响FGD系统脱硫率的因素很多,这些因素叉相互关联,以下提出了改进FGD系统脱硫效率的一些原则措施,供参考。
(1)FGD系统的设计是关键。
根据具体工程来选定合适的设计和运行参数是每个FGD系统供应商在工程系统设计初期所必须面对的重要课题。
特别是设计煤种的问题。
太高造价大,低了风险大。
特别是目前国内煤炭品质不一,供需矛盾突出,造成很多电厂燃烧煤种严重超出设计值,脱硫系统无法长期稳定运行,同时对脱硫系统造成严重的危害。
(2)控制好锅炉的燃烧和电除尘器的运行,使进入FGD系统的烟气参数在设计范围内。
必须从脱硫的源头着手,方能解决问题。
(3)选择高品位、活性好的石灰石作为吸收剂。
(4)保证FGD工艺水水质。
(5)合理使用添加剂。
(6)根据具体情况,调整好FGD各系统的运行控制参数。
特别是PH值、浆液浓度、CL/Mg离子等。
(7)做好FGD系统的运行维护、检修、管理等工作。
二、除雾器结垢堵塞1.除雾器结垢堵塞的原因分析经过脱硫后的净烟气中含有大量的固体物质,在经过除雾器时多数以浆液的形式被捕捉下来,粘结在除雾器表面上,如果得不到及时的冲洗,会迅速沉积下来,逐渐失去水分而成为石膏垢。
影响脱硫效率的因素
影响脱硫效率的因素包括以下几个方面:(1)出口干湿球温距。
它反映了出口烟气温度与绝热饱和温度的接近程度。
温距越小,说明浆液含水量大。
一方面由于迅速蒸发而减小了传热推动力;另一方面提高烟气的相对湿度,使浆滴完全蒸发所需时间延长,增加了气液之间的有效反应时间,使脱硫效率提高。
(2)钙硫比。
钙硫比的增加实际上意味着浆液中悬浮颗粒浓度的增加,这有利于减少液膜的扩散阻力和悬浮颗粒的溶解阻力,从而使反应速率提高。
但随着反应的进行,反应产物逐渐沉积在颗粒表面,出现“封口”现象。
因此,脱硫效率的增幅随钙硫比的提高而逐渐减少。
(3)液滴雾化质量体现在液滴粒径上。
液滴粒径增大可延长蒸发时间,有利于反应,同时粒径增大又使液滴总表面积减少,不利于反应。
两者共同的效果是随气液比减少,即粒径增加,脱硫效果略呈增加趋势。
但应以保证完全蒸发为前提,以免发生湿壁结垢现象。
(4)进口SO2的浓度。
脱硫效率随进口SO2浓度的增加而略有下降。
这是因为增大SO2气相分压,将使液相的溶解分率减少,因而降低反应速率。
(5)烟气入口温度。
提高烟气入口温度可增加脱硫效率。
因为较高的烟气入口允许喷入更多的浆液,这就增加了反应的总表面积,同时又提高了SO2的气相扩散系数。
二者都有利于脱硫反应速率的提高。
(6)烟气停留时间。
通常条件下,浆液的恒速干燥期不超过25s,而蒸发过程在前3s已完成。
增加烟气停留时间不会使脱硫效率显著提高,因此,只要能保证浆液的完全蒸发即可。
通过对实验结果进行数学模拟的结果显示,影响脱硫效率的最显著的因素是出口干球温度、液滴悬浮颗粒的大小和SO2初始浓度,它们分别决定了蒸发时间、液相阻力和溶解分率。
在反应的初始阶段,传质由气膜扩散、液膜扩散和固体溶解3个过程共同控制;在反应后半期,气膜扩散是主要的控制因素。
影响脱硫效率的因素
(3)影响脱硫效率的因素① 吸收剂石灰石浆液的实际供给量取决于CaCO3的理论供给量和石灰石的品质。
最终影响到石灰石浆液实际供给量的是石灰石的浓度和石灰石的品质,其中影响石灰石品质的主要因素是石灰石的纯度,石灰石是天然矿石,在其形成和开采的过程中难免会含有杂质,石灰石矿中CaCO3的含量从50%~90%分布不均。
送入同量的石灰石浆液,纯度低的石灰石浆液难以维持吸收塔罐中的pH值,使脱硫效率降低,为了维持pH值必须送入较多的石灰石浆液,此时会增加罐中的杂质含量,容易造成石膏晶体的沉积结垢,影响到系统的安全性。
运行中应尽量采用纯度高的石灰石,易于控制灰浆的pH值,保证系统的脱硫效率和运行安全稳定性。
现在的湿法脱硫工艺的脱硫率至少要达到95%,工艺上一般掌握石灰石浆液浓度在20%左右。
为了尽可能提高浆液的化学反应活性,增大石灰石颗粒的比表面积是必要的,因此,在湿式石灰石-石膏法中使用的石灰石粉,其颗粒度大都在40~60μm之间。
②液气比液气比(L/G)是一个重要的WFGD操作参数。
是指洗涤每立方米烟气所用的洗涤液量,单位是L/m3。
脱硫效率随L/G的增加而增加,特别是在L/G较低的时候,其影响更显著。
增大L/G比,气相和液相的传质系数提高,从而有利于SO2的吸收,但是停留时间随L/G比的增大而减小,削减了传质速率提高对SO2吸收有利的强度。
在实际应用中,对于反应活性较弱的石灰石,可适当提高L/G比来克服其不利的影响。
一般适当的L/G比操作范围为15~25。
③pH值浆液的pH值WFGD装置运行中需要重点检测和控制的化学参数之一,它是影响脱硫率、氧化率、吸收剂利用率及系统结垢的主要因素之一。
脱硫效率随pH 值的升高而提高。
低pH值有利于石灰石的溶解、HSO3-的氧化和石膏的结晶,但是高pH值有利于SO2的吸收。
pH对WFGD的影响是非常复杂和重要的。
工业WFGD运行结果表明较低的pH值可降低堵塞和结垢的风险。
影响石灰石脱硫效率的几个主要因素
影响石灰石脱硫效率的几个主要因素1、石灰石品质通常,石灰石中碳酸钙的重量百分含量应高于85%,含量太低则会由于杂质较多给运行带来一些问题,造成吸收剂耗量和运输费用增加,石膏纯度下降。
石灰石品质由CaO含量来确定,石灰石纯度越高,脱硫效率越好。
作为工艺设计人员在进行配料设计时,既要计算其化学成份,也要了解它的物理性能。
石灰石一级品的氧化钙含量为48%~54%;石灰石不一定要求CaO含量越高越好。
CaO>54%的石灰岩,其纯度较高而大理石化,不易粉磨,化学稳定性也强,就不适合作为脱硫剂来用。
2、石灰石粒径(细度)石灰石粉的细度是影响脱硫效率的一个重要因素,反应接触面积很大程度上决定了化学反应速度,石灰石粉的颗粒越细,质量比表面积就越大,单位质量的化学反应的接触面积也越大。
由于石灰石的消溶反应是固—液两相反应,其反应速率与石灰石颗粒比表面积成正比,因此,较细的石灰石颗粒的消溶性能好,各种相关反应速率较高,能够以更快的速度与浆液中的HSO3-反应,从而更快地吸收SO2气体,脱硫效率及石灰石利用率较高。
但石灰石的粒度愈小,破碎的能耗愈高。
要研磨较细的石灰石粉,需要有较大的磨机,消耗较高的电能,增加投资,这需要权衡利弊,综合考虑。
通常要求的石灰石粉通过250目筛或325目筛的过筛率达到90%。
同时石灰石粉的粒度与石灰石的品质有关。
为保证脱硫效率和石灰石利用率达到一定水平,当石灰石中杂质含量较高时,石灰石应当磨制得更细一些。
3、石灰石的反应活性对脱硫系统性能的影响石灰石作为吸收剂的特性不仅包括其化学成分,主要也包括其反应活性,脱硫系统的碱量是通过石灰石粉的溶解来提供,吸收剂的活性影响到吸收剂的溶解度和溶解速度,是表示一种在酸性环境中的转化特性。
吸收剂的活性包含吸收剂种类、物化特性和与其反应的酸性环境。
吸收剂的物化特性包括:纯度、晶体结构、杂质含量、粒度分布、包括内表面(即孔隙率)在内的单位总表面积和颗粒密度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
影响湿法烟气脱硫效率的因素及运行控制措施前言目前我厂两台600MW及两台1000MW燃煤发电机组所采用的石灰石——石膏湿法烟气脱硫系统运行情况良好,基本能够保持系统安全稳定运行,并且脱硫效率在95%以上。
但是,有两套脱硫系统也出现了几次烟气脱硫效率大幅波动的现象,脱脱效率由95%逐渐降到72%。
经过对吸收系统的调节,脱硫效率又逐步提高到95%。
脱硫效率的不稳定,会造成我厂烟气SO2排放量增加,不能达到节能环保要求。
本文将从脱硫系统烟气SO2的吸收反应原理出发,找出影响脱硫效率的主要因素,并制定运行控制措施,以保证我厂烟气脱硫系统的稳定、高效运行。
一、脱硫系统整体概述邹县发电厂三、四期工程两台600MW及两台1000MW燃煤发电机组,其烟气脱硫系统共设置四套石灰石——石膏湿法烟气脱硫装置,采用一炉一塔,每套脱硫装置的烟气处理能力为每台锅炉100%BMCR工况时的烟气量,其脱硫效率按不小于95%设计。
石灰石——石膏湿法烟气脱硫,脱硫剂为石灰石与水配置的悬浮浆液,在吸收塔内烟气中的SO2与石灰石反应后生成亚硫酸钙,并就地强制氧化为石膏,石膏经二级脱水处理作为副产品外售。
烟气系统流程:烟气从锅炉烟道引出,温度约126℃,由增压风机升压后,送至烟气换热器与吸收塔出口的净烟气换热,原烟气温度降至约90℃,随即进入吸收塔,与来自脱硫吸收塔上部喷淋层(三期3层、四期4层)的石灰石浆液逆流接触,进行脱硫吸收反应,在此,烟气被冷却、饱和,烟气中的SO2被吸收。
脱硫后的净烟气经吸收塔顶部的两级除雾器除去携带的液滴后至烟气换热器进行加热,温度由43℃上升至约80℃后,通过烟囱排放至大气。
二、脱硫吸收塔内SO2的吸收过程烟气中SO2在吸收塔内的吸收反应过程可分为三个区域,即吸收区、氧化区、中和区。
1、吸收区内的反应过程:烟气从吸收塔下侧进入与喷淋浆液逆流接触,由于吸收塔内充分的气/液接触,在气-液界面上发生了传质过程,烟气中气态的SO2、SO3等溶解并转变为相应的酸性化合物:SO2 + H2O H2SO3SO3 + H2O H2SO4烟气中的SO2溶入吸收浆液的过程几乎全部发生在吸收区内,在该区域内仅有部分HSO3-被烟气中的O2氧化成H2SO4。
由于浆液和烟气在吸收区的接触时间非常短(仅有数秒),浆液中的CaCO3仅能中和部分已氧化的H2SO4和 H2SO3。
在此区域内,浆液中的CaCO3只有很少部分参与了化学反应,因此液滴的pH值随着下落急剧下降,其吸收能力也随之减弱。
由于在吸收区域内上部pH较高,浆液中HSO3-浓度低,易产生CaSO3·1/2H2O,随着浆液的下落,接触的SO2溶浓度越来越高,使浆液pH值下降较快,此时CaSO3·1/2H2O可转化成Ca(HSO)2。
2、氧化区内的反应过程:氧化区是指从吸收塔液面至氧化风管道下方约200mm至300mm处,该区域内的主要反应是:H+ + HSO3- +1/2O2 2H+ + SO42-CaCO3+2H+ Ca2++ H2O+CO2Ca2+ + SO42-+2H2O CaSO4·2H2O过量氧化空气均匀地喷入氧化区的下部,将在吸收区形成的未被氧化的HSO3-几乎全部氧化成H+和SO42-,此氧化反应的最佳pH值约为4至4.5,氧化反应产生的H2SO4是强酸,能迅速中和浆液中剩余的CaCO3,生成溶解状态的CaSO4,随着CaSO4的不断生成,当Ca2+、SO42-浓度达到一定的过饱和度时,结晶析出CaSO4·2H2O即石膏。
当吸收塔内浆液缓慢通过氧化区时,浆液中过剩的CaCO3含量也逐渐减少,当浆液到达氧化区底部时,浆液中剩余的CaCO3浓度降到最低值,从此处取浆液送去脱水系统,可获得品质较高的石膏副产品。
3、中和区的反应过程在吸收塔氧化区下部被视为中和区,进入中和区的浆液中仍有未中和的H+,向中和区加入新鲜的石灰石浆液,中和剩余的H+,提高浆液的pH值和浆液的活性,使浆液在进入下一循环过程中,能重新吸收SO2,该区域发生的主要化学反应是:CaCO3+2H+ Ca2++ H2O+CO2Ca2+ + SO42-+2H2O CaSO4·2H2O三、影响石灰石—石膏烟气湿法脱硫效率的主要因素分析脱硫效率是指,脱硫系统脱除的二氧化硫含量与原烟气中二氧化硫含量的比值。
影响脱硫效率的主要因素有:1、通过脱硫系统的烟气量及原烟气中SO2的含量。
在脱硫系统设备运行方式一定,运行工况稳定,无其它影响因素时,当处理烟气量及原烟气中SO2的含量升高时,脱硫效率将下降。
因为入口SO2的增加,能很快的消耗循环浆液中可提供的碱量,造成浆液液滴吸收SO2的能力减弱。
2、通过脱硫系统烟气的性质。
1)烟气中所含的灰尘。
因灰尘中带入的Al3+与烟气气体中带入的F-形成的络化物达到一定浓度时,会吸附在CaCO3固体颗粒的表面,“封闭”了CaCO3的活性,严重减缓了CaCO3的溶解速度,造成脱硫效率的降低。
2)烟气中的HCl。
当烟气通过脱硫吸收塔时,烟气中的HCl几乎全部溶于吸收浆液中,因Cl-比SO42-的活性高(盐酸比硫酸酸性更强),更易与CaCO3发生反应,生成溶于水的CaCl2,从而使浆液中Ca2+的浓度增大,由于同离子效应,其将抑制CaCO3的溶解速度,会造成脱硫效率的降低。
同时,由于离子强度和溶液黏度的增大,浆液中离子的扩散速度变慢,致使浆液液滴中有较高的SO32-,从而降低了SO2向循环浆液中的传质速度,也会造成脱硫效率的降低。
3、循环浆液的pH值。
脱硫系统中,循环浆液的pH值是运行人员控制的主要参数之一,浆液的pH值对脱硫效率的影响最明显。
提高浆液的pH值就是增加循环浆液中未溶解的石灰石的总量,当循环浆液液滴在吸收塔内下落过程中吸收SO2碱度降低后,液滴中有较多的吸收剂可供溶解,保证循环浆液能够随时具有吸收SO2的能力。
同时,提高浆液的pH值就意味着增加了可溶性碱物质的浓度,提高了浆液中和吸收SO2的后产生的H+的作用。
因此,提高pH值就可直接提高脱硫系统的脱硫效率。
但是,浆液的pH值也不是越高越好,虽然脱硫效率随pH值的升高而升高,但当pH值达到一定数值后,再提高pH值对脱硫效率的影响并不大,因为过高的pH值会使浆液中石灰石的溶解速率急剧下降,同时过高的pH值会造成石灰石量的浪费,并且使石膏含CaCO3的量增大,严重降低了石膏的品质。
因此pH值应控制在一个合理的范围内,目前我厂脱硫系统中循环浆液pH值控制在4.8——5.2之间,即可得到品质良好的石膏,又能保证脱硫效率不低于95%。
4、氧化空气量。
我厂脱硫系统采取强制氧化方式运行,若浆液池内氧化空气供量不足,或氧化空气进行吸收塔的位置距液面没有足够的深度,浆液中的亚硫酸盐含量将增加,即HSO3-浓度增大,当其相对饱和度较高时,会发生亚硫酸盐严重抑制作用(反应封闭)。
发生此种情况的现象是运行浆液的pH值下降,而加入石灰石浆液时,pH值也没有明显提高,脱硫效率下降,浆液中未反应的石灰石浓度增加。
因此运行中必须保证进入脱硫吸收塔的氧化空气量能够满足系统需求。
5、吸收系统的钙硫摩尔比(Ca/S)。
钙硫摩尔比是指每脱除1摩尔SO2所需加入系统的CaCO3摩尔数。
从理论上讲,钙硫摩尔比为1。
但是在实际运行为,保证脱硫系统运行的效率和稳定性,要保持钙硫摩尔比大于1。
因为Ca/S过低不能满足运行要求,使系统脱硫效率降低。
但是Ca/S过高,又使石膏的品质降低,浪费石灰石粉。
目前我厂脱硫系统钙硫比保持在1.03左右。
6、吸收剂石灰石的性质。
石灰石中CaCO3的含量,石灰石中CaCO3的含量若过低,含其它杂质过多,给运行带来一些问题,造成吸收剂耗量的增加,同时也使石膏的纯度下降。
吸收剂的特性不仅包括其化学成分,也包括其反应活性。
吸收剂的活性影响到吸收剂量的溶解速度和溶解度。
其活性越好,吸收SO2的能力就越强,对提高脱硫效率越有利。
石灰石粉细度的影响。
石灰石粉越细,就相对增加了石灰石溶解的表面积,其直接影响到循环浆液的运行pH值,因此,石灰石越细,对脱硫效率的提高就越有利。
另外,影响烟气脱硫效率的因素还有烟气流速,烟气流速越快,提高了浆液液滴下降时的扰动,能够促进烟气中SO2与浆液的反应速度,对提高脱硫效率越有利;循环浆液的密度对脱硫效率也有一定影响,当循环浆液的密度过高时,浆液中所含Ca2+也相对较高,影响了CaCO3的离解,同时也减小了烟气中SO2与浆液液体的接触面积。
因此循环浆液的浓度过高对提高烟气脱硫效率是无益的,在运行中,应加强对循环浆液浓度的控制。
当然,烟气通过脱硫吸收塔时,所发生的化学反应和物理传质过程是复杂的、紊乱的,其反应现象和反应过程并不局限于此,并且三个区域之内的反应也不是单一的。
四、烟气脱硫系统运行中主要控制措施1、加强对烟气含尘量的控制。
经前面分析,烟气中含尘浓度高时,会因烟气中各种惰性物质的存在造成石灰石颗粒反应闭塞,将严重制成脱硫效率的下降。
此外,烟气含尘浓度高时,还会加大循环浆液对设备和管道的磨损。
因此,在运行中,应确保烟气脱硫系统上一级设备——静电除尘器的高效运行,保证除尘效率大于99.5%,脱硫系统入口烟尘含量小于300mg/Nm3。
2、对吸收系统水质的控制。
因烟气通过脱硫吸收塔时,烟气中的HCl溶于吸收浆液中,造成浆液中Cl-含量高,造成脱硫效率的降低。
因此,应降低浆液中Cl-的含量。
Cl-主要以CaCl、MgCl、NaCl、KCl以及其它金属氯化物的形式存在。
要除去循环浆液中的Cl-,就要加强对脱硫系统废水处理的运行维护,保证循环浆液中氯离子的有效去除和排出。
3、对循环浆液pH值的控制。
循环浆液的pH值是运行人员控制烟气脱硫效率的主要参数,提高循环浆液的pH值可直接提高脱硫系统的脱硫效率。
pH值过低,能提高石膏的品质,但不能保证脱硫效率;而pH值过高,会造成石灰石粉的浪费,降低了石膏的品质,增加了循环浆液的密度,加大了对设备的磨损。
并且当循环浆液pH值大于5.7后,再提高pH值对提高脱硫效率影响并不大,一般运行控制pH值不大于6。
目前我厂脱硫系统循环浆液pH值控制在4.8~5.2之间。
4、提高液气比。
液气比是指吸收塔洗涤单位体积的烟气需要的循环浆液量。
在其它条件不变的情况下,增加吸收塔循环浆液量即增大液气比,脱硫效率随之升高。
在运行中,为保证脱硫效率,应适时增加浆液循环泵的运行台数。
5、保持吸收系统的钙硫摩尔比稳定(Ca/S)。
保证脱硫系统运行的效率和稳定性, Ca/S过低不能满足运行要求,使系统脱硫效率降低。
但是Ca/S过高,又使石膏的品质降低。
目前我厂脱硫系统钙硫比保持在1.03左右。
6、吸收剂石灰石的性质。