2013年高考第二轮复习数学全国理科选修4—4 坐标系与参数方程

合集下载

2013年高考数学(陕西专版)二轮复习专题讲义:选修4-4 坐标系与参数方程 课件

2013年高考数学(陕西专版)二轮复习专题讲义:选修4-4 坐标系与参数方程 课件

栏目导引
2.(2012· 朝阳区综合练习)在平面直角坐标系中,已知直线 l 与曲线 C 的参数方程分别为
x=t+2, y=t2 x=1+s, l: y=1-s
(s 为参数)和 C:
(t 为参数),若 l 与 C 相交于 A、B 两点,则|AB|=
________.
工具
P π π 3 ,圆心为直线 ρsinθ- =- 2, 与极轴的交点,则圆 C 4 3 2
的极坐标方程为________.
工具
二轮新课标数学(陕西专版) 选修4-4
栏目导引
解析:如图,在 令 θ=0,得 ρ=1,
π ρsinθ-3=-
3 2中
所以圆 C 的圆心坐标为(1,0).
栏目导引
1.在极坐标系中,直线 弦长为________.
π ρsinθ+4=2
被圆 ρ=4 所截得的
工具
二轮新课标数学(陕西专版) 选修4-4
栏目导引
解析: 依题意,直线与圆的直角坐标方程分别是 x+y- 2 2=0、x2+y2=16, 2 2 则圆心(0,0)到直线 x+y-2 2=0 的距离等于 =2, 2 因此该直线被圆截得的弦长等于 2 16-22=4 3.
栏目导引
工具
二轮新课标数学(陕西专版) 选修4-4
栏目导引
解析: (1)由 ρ=2 5sin θ,得圆的直角坐标方程为 x2+(y - 5)2=5. (2)将 l 的参数方程代入圆 C 的直角坐标方程,得 t2-3 2t +4=0. 由 Δ=(3 2)2-4×4=2>0,故可设 t1,t2 是上述方程的两 根,
x=x +rcos θ, 0 y=y0+rsin θ
x2 y2 (θ 为参数, 0≤θ≤2π). ②椭圆a2+b2=1 的参 (θ 为参数).

(完整版)选修4-4坐标系与参数方程-高考题及答案

(完整版)选修4-4坐标系与参数方程-高考题及答案

x t 3,1、已知在直角坐标系xOy中,直线I的参数方程为_ (t为参数),在极坐标系(与y v3t直角坐标系xOy取相同的长度单位,且以原点0为极点,以x轴正半轴为极轴)中,曲线C 的极坐标方程为2 4 cos 3 0.①求直线I普通方程和曲线C的直角坐标方程;②设点P是曲线C上的一个动点,求它到直线I的距离的取值范围.x = 2cos 0 , 一2、已知曲线C的参数方程是(0为参数),以坐标原点为极点,x轴的正半轴y = 3sin 0 ,为极轴建立极坐标系,曲线C2的极坐标方程是p = 2,正方形ABCD勺顶点都在C2上,且AnB C、D依逆时针次序排列,点A的极坐标为(2 ,—).3(I )求点A B C、D的直角坐标;(n )设P为C上任意一点,求|PA2+ |PB2+ |PC2+ |PD2的取值范围.. . 2 2 . - 2 23、在直角坐标系xOy中,圆C :x + y = 4,圆C2:(x—2) + y = 4.(I )在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C i, C2的极坐标方程, 并求出圆C,C2的交点坐标(用极坐标表示);(n)求圆C与C2的公共弦的参数方程.4、在直角坐标系xOy中,直线I的方程为x —y + 4 = 0,曲线C的参数方程为x= :::]3cos a ,(a为参数).y= sin a(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以xn轴正半轴为极轴)中,点P的极坐标为(4 ,―),判断点P与直线I的位置关系;(2)设点Q是曲线C上的一个动点,求它到直线I的距离的最小值.X = 2C0S a ,5、在直角坐标系xOy 中,曲线G 的参数方程为( a 为参数).M 是C i 上的y = 2+ 2sin a .动点,P 点满足0F= 20M P 点的轨迹为曲线 C 2.(1)求C 2的方程;(2)在以0为极点,x 轴的正半轴为极轴的极坐标系中,射线 交点为A ,与C 2的异于极点的交点为 B,求|AE |.x = cos e6、已知P 为半圆C:( e 为参数,o w e wn )上的点,点 A 的坐标为(1,0) , Oy = sin en 为坐标原点,点 M 在射线OP 上,线段OM 与C 的弧AP 的长度均为—.(1) 以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点 M 的极坐标;(2) 求直线AM 的参数方程.ne =g 与C 的异于极点的n n .* j 3 7、在极坐标系中,已知圆C经过点P .2,~4,圆心为直线P sin 9—3 =一与极轴的交点,求圆C的极坐标方程.8、在平面直角坐标系中,以坐标原点0为极点,x轴的正半轴为极轴建立极坐标系.已知直线I上两点M, N的极坐标分别为(2,0), 穿,-2,圆C的参数方程为x= 2+ 2cos 9 ,厂(9为参数).y=—3+ 2sin 9(1) 设P为线段MN的中点,求直线OP的平面直角坐标方程;(2) 判断直线l与圆C的位置关系.1、【答案】①直线I 的普通方程为:,3x y 3、、3 0. n n n n nn_nnA (2cos —, 2sin —), B (2cos(-3 + R , 2sin( — + —)) , q2cos( — +n ), 2sin( — +n 3 n n 3 nn )) , D (2cos( — + 〒),2sin( — + 亍)),即 A (1 , 3) , B ( — 3 , 1), Q — 1, — 3) , D ( 3 , — 1). (n )设 P (2cos 0 , 3sin 0 ),令 S =|PA 2+ |PB 2+ |PC 2+ |PD 2 ,则2 2S = 16cos 0 + 36sin 0 + 162=32 + 20sin 0 .因为0W sin 20W 1,所以S 的取值范围是[32 , 52].3、解:(I )圆C 的极坐标方程为p = 2 , 圆G 的极坐标方程p = 4cos 0 .2 解卩,得卩=2, 0=±石,p _ 4cos 03从而p_占.n(1)把极坐标系的点P (4 ,-)化为直角坐标,得 R0,4),满足直线l 的方程x — y + 4_ 0,所以点P 在直线l 上. 故可设点Q 的坐标为曲线C 的直角坐标方程为:x 2y 2②曲线C 的标准方程为(x 2)2 y 2•••圆心C(2,0)到直线I 的距离为:d所以点P 到直线I 的距离的取值范围是2、解:(I )由已知可得2 24x 3 0【或(x 2)2 y 21]1,圆心C(2,0),半径为1;|2、一 3 0 3.3| 5,32 2故圆C 与圆C 2交点的坐标为(2 ,,(2,—勺.注:极坐标系下点的表示不唯一.x _ p cos 0 ,得圆 y _ p sin 0 (n )法一:由故圆C 与G 的公共弦的参数方程为x_ t 1,-3w t w 3.x _ 1(或参数方程写成 , —..3 < y w 3)法二:将x = 1代入 cos 0得 p sin 0p cos 0 = 1,于是圆 C 与G 的公共弦的参数方程为x _ 1 y _ tan 0 '4、因为点P 的直角坐标(0,4)⑵因为点Q 在曲线C 上,(.3cos a , sin a ),C 与C 2交点的直角坐标分别为从而点Q 到直线I 的距离=;'2cos( a+ -Q )+ 2 2nl由此得,当cos( a + —) =— 1时,d 取得最小值,且最小值为:2.x y5、⑴设Rx , y ),则由条件知 M ^ 2 .由于M 点在C 上,x=2cos a , 2X = 4cos a ,所以即yy = 4+ 4sin a .2= 2+ 2sin a ,X = 4cos a ,从而C 2的参数方程为(a 为参数)y = 4 + 4sin a .(2)曲线C 的极坐标方程为 p = 4sin 0,曲线C 2的极坐标方程为 p = 8sin 0 .n n射线0 =三与C 的交点A 的极径为 p 1= 4sin —,3 3nn射线0 = y 与G 的交点B 的极径为p 2= 8sin —. 所以 | AB = | p 2— p 1| = 2 '3.nn6、 (1)由已知,M 点的极角为y ,且M 点的极径等于 J ,n n故点M 的极坐标为 ~~ .⑵M 点的直角坐标为n ,二空,A (1,0),故直线AM 的参数方程为6 6nx=1 + 6 — 1t ,(t 为参数).| 3cos a — sina + 4|2cos7t6所以圆C 的圆心坐标为(1,0) 因为圆C经过点P .'2, n,所以圆C的半径PC= 2+ 12—2X 1 x J2cos■—= 1,¥ 4于是圆C 过极点,所以圆 C 的极坐标方程为p = 2cos e .0, ¥8、解:(1)由题意知,M N 的平面直角坐标分别为所以直线l 的平面直角坐标方程为 3x + 3y — 2 3= 0.又圆C 的圆心坐标为(2 , — ,;3),半径r = 2, 圆心到直线I 的距离d =, : — ■' =-<r ,故直线l 与圆C 相交.yJ 3 + 9 2又P 为线段MN 勺中点,从而点 P 的平面直角坐标为1,,故直线OP 的平面直角坐标方程为 ⑵因为直线l 上两点M N 的平面直角坐标分别为 (2,0)(2,0)。

2013届江苏高三数学试题分类汇编:坐标系与参数方程 (选修4-4)

2013届江苏高三数学试题分类汇编:坐标系与参数方程 (选修4-4)

广东省13大市2013届高三上期末考数学文试题分类汇编 坐标系与参数方程1、(东莞市2013届高三上学期期末)在直角坐标系xOy 中,圆以C 的参数方程是3cos 1sin x y θθ⎧=+⎪⎨=+⎪⎩(θ为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系, 则 圆心C 的极坐标是 . 答案:)6,2(π2、(佛山市2013届高三上学期期末)在极坐标系中,直线l 过点(1,0)且与直线3πθ=(ρ∈R )垂直,则直线l 极坐标方程为 . 答案:2sin()16πρθ+=(或2cos()13πρθ-=、cos 3sin 1ρθρθ+=) 3、(广州市2013届高三上学期期末)已知圆C 的参数方程为2x y cos ,sin ,θθ⎧=⎨=+⎩(θ为参数), 以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为1sin cos ρθρθ+=, 则直线l 截圆C 所得的弦长是 . 答案:24、(惠州市2013届高三上学期期末)直线2cos 1ρθ=与圆2cosρθ=相交的弦长为 .【解析】直线1cos 2=θρ与圆θρcos 2=的普通方程为1)1(1222=+-=y x x 和,圆心到直线的距离为21211=-,所以弦长为3)21(122=- 5、(江门市2013届高三上学期期末)以直角坐标系Oxy 的坐标原点为极点,x 轴的正半轴为极轴建立极坐标系) , (θρ(πθ20<≤),曲线C 的极坐标方程是2=ρ,正六边形ABCDEF 的顶点都在C 上,且A 、B 、C 、D 、E 、F 依逆时针次序排列。

若点A 的极坐标为)3, 2(π,则点B 的直角坐标为 . 答案:)3 , 1(-6、(茂名市2013届高三上学期期末)已知曲线C 的参数方程为2cos sin x y θθ=+⎧⎨=⎩ (θ为参数),则曲线C 上的点到直线3x-4y+4=0的距离的最大值为 。

答案:37、(汕头市2013届高三上学期期末)已知直线4sin cos :=-θρθρl ,圆θρcos 4:=C ,则直线l 与圆C 的位置关系是________.(相交或相切或相离?)答案:相交8、(增城市2013届高三上学期期末)曲线⎩⎨⎧+==1t y t x (t 为参数且0>t )与曲线⎩⎨⎧+==12cos cos θθy x (θ为参数)的交点坐标是 . 答案:(1,2)11、(珠海市2013届高三上学期期末)在直角坐标系x O y 中,已知曲线1C :⎩⎨⎧-=+=t y t x 212 , (为参数)与曲线2C :⎩⎨⎧==θθsin 3cos 3y x ,(θ为参数)相交于两个点A 、B ,则线段AB 的长为 .答案:4。

高中数学选修4-4知识点(坐标系与参数方程)

高中数学选修4-4知识点(坐标系与参数方程)
个变量的值;参数方程中自变量也只有一个,而且给定参数 t 的一个值,就可以求出唯一对 应的 x,y 的值.
这两种方程之间可以进行互化,通过消去参数可以把参数方程化为普通方程,而通过引 入参数,也可把普通方程化为参数方程. 2.圆的参数方程
1.圆心在坐标原点,半径为 r 的圆的参数方程 如图圆 O 与 x 轴正半轴交点 M0(r,0).
α α (t
为参数)
称为直线参数方程的标准形式,此时的参数 t 有明确的几何意义.
一般地,过点 M0(x0,y0),斜率 k=ba(a,b 为常数)的直线,参数方程为xy= =xy00+ +abtt(t 为参
数),称为直线参数方程的一般形式,此时的参数 t 不具有标准式中参数的几何意义. 四 渐开线与摆线(了解)
x=rsin φcos θ (2)空间点 P 的直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换公式为y=rsin φsin θ .
z=rcos φ
第二讲:
第4页
一 曲线的参数方程
1.参数方程的概念 1.参数方程的概念
(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标 x,y 都是某个变
2.参数方程与普通方程的区别与联系 (1)区别:普通方程 F(x,y)=0,直接给出了曲线上点的坐标 x,y 之间的关系,它含有
x,y 两个变量;参数方程xy= =fg((tt))(t 为参数)间接给出了曲线上点的坐标 x,y 之间的关系,
它含有三个变量 t,x,y,其中 x 和 y 都是参数 t 的函数. (2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一
就可得到普通方程. (3)普通方程化参数方程,首先确定变数 x,y 中的一个与参数 t 的关系,例如 x=f(t),

高考数学(理)总复习教师用书选修4—4 坐标系与参数方程 Word版含答案

高考数学(理)总复习教师用书选修4—4 坐标系与参数方程 Word版含答案

选修4—4 ⎪⎪⎪坐标系与参数方程第1课坐标系[课前回扣教材][过双基]1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x λ>,y ′=μ·yμ>的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标①极径:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ. ②极角:以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ. ③极坐标:有序数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ). 3.极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则它们之间的关系为:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ;⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x x4.常见曲线的极坐标方程(1)圆心在极点,半径为r 的圆的极坐标方程:ρ=r (0≤θ<2π).(2)圆心为⎝⎛⎭⎪⎫r ,π2,半径为r 的圆的极坐标方程:ρ=2r sin_θ(0≤θ<π). (3)过极点,倾斜角为α的直线的极坐标方程:θ=α(ρ∈R)或θ=π+α(ρ∈R). (4)过点(a,0),与极轴垂直的直线的极坐标方程:ρcos θ=a ⎝ ⎛⎭⎪⎫-π2<θ<π2.(5)过点⎝⎛⎭⎪⎫a ,π2,与极轴平行的直线的极坐标方程:ρsin_θ=a (0<θ<π).[小题速通]1.已知曲线的极坐标方程为ρ=4cos 2θ2-2,则其直角坐标方程为________________. 解析:由ρ=4cos 2θ2-2, 得ρ=2cos θ,即x 2+y 2=2x ,得(x -1)2+y 2=1. 答案:(x -1)2+y 2=12.在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为________. 解析:把圆ρ=2cos θ的方程化为(x -1)2+y 2=1知,圆的垂直于极轴的两条切线方程分别为x =0和x =2,从而得这两条切线的极坐标方程为θ=π2(ρ∈R)和ρcos θ=2.答案:θ=π2(ρ∈R)和ρcos θ=23.点P 的直角坐标为(1,-3),则点P 的极坐标为________.解析:因为点P (1,-3)在第四象限,与原点的距离为2,且OP 与x 轴所成的角为-π3,所以点P 的极坐标为⎝⎛⎭⎪⎫2,-π3. 答案:⎝⎛⎭⎪⎫2,-π3 4.在极坐标系中,过点A ⎝⎛⎭⎪⎫1,-π2引圆ρ=8sin θ的一条切线,则切线长为________. 解析:点A ⎝⎛⎭⎪⎫1,-π2的极坐标化为直角坐标为A (0,-1), 圆ρ=8sin θ的直角坐标方程为x 2+y 2-8y =0, 圆的标准方程为x 2+(y -4)2=16, 点A 与圆心C (0,4)的距离为|AC |=5, 所以切线长为|AC |2-r 2=3. 答案:3[清易错]1.极坐标方程与直角坐标方程的互化易错用互化公式.在解决此类问题时考生要注意两个方面:一是准确应用公式,二是注意方程中的限制条件.2.在极坐标系下,点的极坐标不唯一性易忽视.注意极坐标(ρ,θ)(ρ,θ+2k π)(k ∈Z),(-ρ,π+θ+2k π)(k ∈Z)表示同一点的坐标.1.圆ρ=5cos θ-53sin θ的圆心的极坐标为________. 解析:将方程 ρ=5cos θ-53sin θ两边都乘以ρ得: ρ2=5ρcos θ-53ρsin θ,化成直角坐标方程为x 2+y 2-5x +53y =0. 圆心的坐标为⎝ ⎛⎭⎪⎫52,-532,化成极坐标为⎝⎛⎭⎪⎫5,5π3. 答案:⎝⎛⎭⎪⎫5,5π3(答案不唯一)2.若圆C 的极坐标方程为ρ2-4ρcos ⎝⎛⎭⎪⎫θ-π3-1=0,若以极点为原点,以极轴为x 轴的正半轴建立相应的平面直角坐标系xOy ,则在直角坐标系中,圆心C 的直角坐标是________.解析:因为ρ2-4ρcos ⎝⎛⎭⎪⎫θ-π3-1=0,所以ρ2-2ρcos θ-23ρsin θ-1=0,即x 2+y 2-2x -23y -1=0,因此圆心坐标为(1,3).答案:(1,3) [课堂研究高考]平面直角坐标系下图形的伸缩变换[典例] (1)在同一平面直角坐标系中,已知伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y .求点A ⎝⎛⎭⎪⎫13,-2经过φ变换所得的点A ′的坐标.(2)求直线l :y =6x 经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,变换后所得到的直线l ′的方程.[解] (1)设A ′(x ′,y ′),由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得到⎩⎪⎨⎪⎧x ′=3x ,y ′=12y ,由于点A 的坐标为⎝ ⎛⎭⎪⎫13,-2,于是x ′=3×13=1,y ′=12×(-2)=-1,∴A ′(1,-1)为所求.(2)设直线l ′上任意一点P ′(x ′,y ′), 由上述可知,将⎩⎪⎨⎪⎧x=13x ′,y =2y ′代入y =6x 得2y ′=6×⎝ ⎛⎭⎪⎫13x ′,∴y ′=x ′,即y =x 为所求. [方法技巧]伸缩变换的解题方法平面上的曲线y =f (x )在变换φ:⎩⎪⎨⎪⎧x ′=λx λ,y ′=μy μ的作用下得到的方程的求法是将⎩⎪⎨⎪⎧x =x ′λ,y =y ′μ代入y =f (x ),得y ′μ=f ⎝⎛⎭⎪⎫x ′λ,整理之后得到y ′=h (x ′),即为所求变换之后的方程.[即时演练]1.求椭圆x 24+y 2=1,经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=y后的曲线方程.解:由⎩⎪⎨⎪⎧x ′=12x ,y ′=y得到⎩⎪⎨⎪⎧x =2x ′,y =y ′.①将①代入x 24+y 2=1,得4x ′24+y ′2=1,即x ′2+y ′2=1.因此椭圆x 24+y 2=1经伸缩变换后得到的曲线方程是x 2+y 2=1. 2.若函数y =f (x )的图象在伸缩变换φ:⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 的作用下得到曲线的方程为y ′=3sin ⎝⎛⎭⎪⎫x ′+π6,求函数y =f (x )的最小正周期. 解:由题意,把变换公式代入曲线y ′=3sin ⎝ ⎛⎭⎪⎫x ′+π6得3y =3sin ⎝ ⎛⎭⎪⎫2x +π6, 整理得y =sin ⎝ ⎛⎭⎪⎫2x +π6,故f (x )=sin ⎝⎛⎭⎪⎫2x +π6.所以y =f (x )的最小正周期为2π2=π. 极坐标与直角坐标的互化[典例] 在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=22. (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. [解] (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,圆O 的直角坐标方程为:x 2+y 2=x +y ,即x 2+y 2-x -y =0,直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=22,即ρsin θ-ρcos θ=1, 则直线l 的直角坐标方程为:y -x =1,即x -y +1=0.(2)由错误!得错误!故直线l 与圆O 公共点的一个极坐标为错误!. [方法技巧]1.极坐标与直角坐标互化公式的3个前提条件 (1)取直角坐标系的原点为极点. (2)以x 轴的非负半轴为极轴. (3)两种坐标系规定相同的长度单位. 2.直角坐标化为极坐标的注意点(1)根据终边相同的角的意义,角θ的表示方法具有周期性,故点M 的极坐标(ρ,θ)的形式不唯一,即一个点的极坐标有无穷多个.当限定ρ≥0,θ∈[0,2π)时,除极点外,点M 的极坐标是唯一的.(2)当把点的直角坐标化为极坐标时,求极角θ应注意判断点M 所在的象限(即角θ的终边的位置),以便正确地求出角θ∈[0,2π)的值.[即时演练]在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π3=1(0≤θ<2π),M ,N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解:(1)由ρcos ⎝ ⎛⎭⎪⎫θ-π3=1得ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1,即x +3y -2=0.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N ⎝ ⎛⎭⎪⎫233,π2.(2)M 点的直角坐标为(2,0).N 点的直角坐标为⎝ ⎛⎭⎪⎫0,233. 所以P 点的直角坐标为⎝ ⎛⎭⎪⎫1,33, 则P 点的极坐标为⎝ ⎛⎭⎪⎫233,π6.所以直线OP 的极坐标方程为θ=π6(ρ∈R).极坐标方程的应用[典例] (2017·长春摸拟)已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎪⎫θ-π4=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. [解] (1)由ρ=2知ρ2=4,所以x 2+y 2=4; 因为ρ2-22ρcos ⎝⎛⎭⎪⎫θ-π4=2,所以ρ2-22ρ⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4=2,所以x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin ⎝ ⎛⎭⎪⎫θ+π4=22.[方法技巧]曲线的极坐标方程的求解策略在已知极坐标方程求曲线交点、距离、线段长等几何问题时,如果不能直接用极坐标解决,或用极坐标解决较麻烦,可将极坐标方程转化为直角坐标方程解决.[即时演练](2017·云南师大附中适应性考试)在直角坐标系xOy 中,半圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos φ,y =sin φ(φ为参数,0≤φ≤π).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求C 的极坐标方程;(2)直线l 的极坐标方程是ρ(sin θ+3cos θ)=53,射线OM :θ=π3与半圆C的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.解:(1)半圆C 的普通方程为(x -1)2+y 2=1(0≤y ≤1),又x =ρcos θ,y =ρsin θ, 所以半圆C 的极坐标方程是ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(2)设(ρ1,θ1)为点P 的极坐标, 则有错误!解得错误!设(ρ2,θ2)为点Q 的极坐标, 则有错误!解得错误!由于θ1=θ2,所以|PQ |=|ρ1-ρ2|=4, 所以线段PQ 的长为4.1.(2015·全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解:(1)因为x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得 ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.2.(2016·北京高考改编)在极坐标系中,直线ρcos θ-3ρsin θ-1=0与圆ρ=2cos θ交于A ,B 两点,求|AB |.解:∵x =ρcos θ,y =ρsin θ, ∴直线的直角坐标方程为x -3y -1=0. ∵ρ=2cos θ,∴ρ2(sin 2θ+cos 2θ)=2ρcos θ, ∴x 2+y 2=2x .∴圆的直角坐标方程为(x -1)2+y 2=1. ∵圆心(1,0)在直线x -3y -1=0上, ∴AB 为圆的直径,∴|AB |=2.3.(2015·安徽高考改编)在极坐标系中,求圆ρ=8sin θ上的点到直线θ=π3(ρ∈R)距离的最大值.解:圆ρ=8sin θ即ρ2=8ρsin θ, 化为直角坐标方程为x 2+(y -4)2=16, 直线 θ=π3即tan θ=3,化为直角坐标方程为3x -y =0, 圆心(0,4)到直线的距离为|-4|4=2,所以圆上的点到直线距离的最大值为2+4=6.4.(2015·北京高考改编)在极坐标系中,求点⎝⎛⎭⎪⎫2,π3到直线ρ(cos θ+3sin θ)=6的距离.解:点⎝⎛⎭⎪⎫2,π3的直角坐标为()1,3,直线ρ(cos θ+3sin θ)=6的直角坐标方程为x +3y -6=0. 所以点(1,3)到直线的距离d =|1+3×3-6|12+32=22=1. [高考达标检测]1.在极坐标系中,直线ρ(sin θ-cos θ)=a 与曲线ρ=2cos θ-4sin θ相交于A ,B 两点,若|AB |=23,求实数a 的值.解:直线的极坐标方程化为直角坐标方程为x -y +a =0, 曲线的极坐标方程化为直角坐标方程为(x -1)2+(y +2)2=5,所以圆心C 的坐标为(1,-2),半径r =5, 所以圆心C 到直线的距离为|1+2+a |2= r 2-⎝⎛⎭⎪⎫|AB |22=2,解得a =-5或a =-1. 故实数a 的值为-5或-1.2.在极坐标系中,求曲线ρ=4cos ⎝⎛⎭⎪⎫θ-π3上任意两点间的距离的最大值. 解:由ρ=4cos ⎝⎛⎭⎪⎫θ-π3可得ρ2=4ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=2ρcosθ+23ρsin θ,即得x 2+y 2=2x +23y ,配方可得(x -1)2+(y -3)2=4,该圆的半径为2,则圆上任意两点间距离的最大值为4.3.在极坐标系中,已知圆C 经过点P ⎝⎛⎭⎪⎫2,π4,圆心为直线ρsin ⎝⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.解:在ρsin ⎝⎛⎭⎪⎫θ-π3=-32中,令θ=0,得ρ=1, 所以圆C 的圆心坐标为(1,0).因为圆C 经过点P ⎝⎛⎭⎪⎫2,π4, 所以圆C 的半径PC =22+12-2×1×2cosπ4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ.4.在极坐标系中,求直线ρcos ⎝ ⎛⎭⎪⎫θ+π6=1与圆ρ=4sin θ的交点的极坐标. 解:ρcos ⎝ ⎛⎭⎪⎫θ+π6=1化为直角坐标方程为3x -y =2,即y =3x -2.ρ=4sin θ可化为x 2+y 2=4y , 把y =3x -2代入x 2+y 2=4y , 得4x 2-83x +12=0, 即x 2-23x +3=0, 所以x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为⎝⎛⎭⎪⎫2,π6. 5.(2017·邯郸调研)在极坐标系中,已知直线l 过点A (1,0),且其向上的方向与极轴的正方向所成的最小正角为π3,求: (1)直线的极坐标方程; (2)极点到该直线的距离. 解:(1)如图,由正弦定理得 ρsin 2π3=1sin ⎝ ⎛⎭⎪⎫π3-θ.即ρsin ⎝ ⎛⎭⎪⎫π3-θ=sin 2π3=32, ∴所求直线的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫π3-θ=32.(2)作OH ⊥l ,垂足为H , 在△OHA 中,OA =1,∠OHA =π2,∠OAH =π3, 则OH =OA sinπ3=32, 即极点到该直线的距离等于32. 6.(2016·山西质检)在极坐标系中,曲线C 的方程为ρ2=31+2sin 2θ,点R ⎝⎛⎭⎪⎫22,π4.(1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值,及此时P 点的直角坐标.解:(1)∵x =ρcos θ,y =ρsin θ, ∴曲线C 的直角坐标方程为x 23+y 2=1,点R 的直角坐标为R (2,2). (2)设P (3cos θ,sin θ),根据题意可得|PQ |=2-3cos θ,|QR |=2-sin θ, ∴|PQ |+|QR |=4-2sin(θ+60°), 当θ=30°时,|PQ |+|QR |取最小值2, ∴矩形PQRS 周长的最小值为4,此时点P 的直角坐标为⎝ ⎛⎭⎪⎫32,12.7.(2017·南京模拟)已知直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=4和圆C :ρ=2k cos ⎝ ⎛⎭⎪⎫θ+π4(k ≠0),若直线l 上的点到圆C 上的点的最小距离等于2.求实数k 的值并求圆心C 的直角坐标.解:∵ρ=2k cos θ-2k sin θ, ∴ρ2=2k ρcos θ-2k ρsin θ,∴圆C 的直角坐标方程为x 2+y 2-2kx +2ky =0, 即⎝ ⎛⎭⎪⎫x -22k 2+⎝ ⎛⎭⎪⎫y +22k 2=k 2, ∴圆心的直角坐标为⎝ ⎛⎭⎪⎫22k ,-22k .∵ρsin θ·22-ρcos θ·22=4, ∴直线l 的直角坐标方程为x -y +42=0, ∴⎪⎪⎪⎪⎪⎪22k +22k +422-|k |=2.即|k +4|=2+|k |, 两边平方,得|k |=2k +3,∴⎩⎪⎨⎪⎧k >0,k =2k +3或错误!解得k =-1,故圆心C 的直角坐标为⎝ ⎛⎭⎪⎫-22,22. 8.(2017·贵州联考)已知在一个极坐标系中点C 的极坐标为⎝⎛⎭⎪⎫2,π3.(1)求出以C 为圆心,半径长为2的圆的极坐标方程(写出解题过程)并画出图形; (2)在直角坐标系中,以圆C 所在极坐标系的极点为原点,极轴为x 轴的正半轴建立直角坐标系,点P 是圆C 上任意一点,Q (5,-3),M 是线段PQ 的中点,当点P 在圆C 上运动时,求点M 的轨迹的普通方程.解:(1)如图,设圆C 上任意一点A (ρ,θ),则∠AOC =θ-π3或π3-θ. 由余弦定理得,4+ρ2-4ρcos θ-π3=4,∴圆C 的极坐标方程为ρ=4cos ⎝⎛⎭⎪⎫θ-π3.作图如图所示. (2)在直角坐标系中,点C 的坐标为(1,3),可设圆C 上任意一点P (1+2cos α,3+2sin α),设M (x ,y ),由Q (5,-3),M 是线段PQ 的中点,得点M的轨迹的参数方程为⎩⎪⎨⎪⎧x =6+2cos α2,y =2sin α2(α为参数),即⎩⎪⎨⎪⎧x =3+cos α,y =sin α(α为参数),∴点M 的轨迹的普通方程为(x -3)2+y 2=1.第2课参数方程[课前回扣教材][过双基]1.参数方程的概念一般地,在平面直角坐标系中,如果曲线C 上任意一点P 的坐标x ,y 是某个变数t 的函数:错误!并且对于t 的每一个允许值,由函数式错误!所确定的点P (x ,y )都在曲线C 上,那么方程错误!叫做这条曲线的参数方程,变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数).[小题速通]1.参数方程错误!(t 为参数)与极坐标方程ρ=sin θ所表示的图形分别是________. 解析:将参数方程错误!消去参数t 得2x -y -5=0,所以对应图形为直线.由ρ=sin θ得ρ2=ρsin θ,即x 2+y 2=y ,即x 2+⎝ ⎛⎭⎪⎫y -122=14,对应图形为圆.答案:直线、圆 2.曲线⎩⎪⎨⎪⎧x =sin θ,y =sin 2θ(θ为参数)与直线y =x +2的交点坐标为________.解析:曲线的直角坐标方程为y =x 2.将其与直线方程联立得错误!∴x 2-x -2=0,∴x =-1或x =2.由x =sin θ知,x =2不合题意.∴x =-1,y =1,∴交点坐标为(-1,1).答案:(-1,1)3.设曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),直线l 的方程为x -3y+2=0,则曲线C 上到直线l 距离为71010的点的个数为________.解析:∵曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),∴(x -2)2+(y +1)2=9, ∴圆心(2,-1)到直线l 的距离d =|2+3+2|1+9=710=71010.又∵71010<3,141010>3,∴有2个点. 答案:24.参数方程错误!(t 为参数)化为普通方程为________. 解析:∵x =2t 21+t 2,y =4-2t 21+t 2=+t 2-6t 21+t 2=4-3×2t21+t 2=4-3x .又x =2t21+t 2=+t 2-21+t 2=2-21+t2∈[0,2),∴x ∈[0,2),∴所求的普通方程为3x +y -4=0(x ∈[0,2)). 答案:3x +y -4=0(x ∈[0,2))[清易错]1.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.否则不等价.2.直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.1.直线y =x -1上的点到曲线⎩⎪⎨⎪⎧x =-2+cos θ,y =1+sin θ上的点的最近距离是________.解析:由⎩⎪⎨⎪⎧x =-2+cos θ,y =1+sin θ得错误!∴(x +2)2+(y -1)2=1,∴圆心坐标为(-2,1), 故圆心到直线x -y -1=0的距离d =42=22,∴直线上的点到圆上的点的最近距离是d -r =22-1. 答案:22-12.直线错误!(t 为参数)与圆错误!(θ为参数)相切,则切线的倾斜角为________. 解析:直线的普通方程为bx -ay -4b =0,圆的普通方程为(x -2)2+y 2=3,因为直线与圆相切,则圆心(2,0)到直线的距离为3,从而有 3=|2b -a ·0-4b |a 2+b 2,即3a 2+3b 2=4b 2,所以b =±3a ,而直线的倾斜角α的正切值tan α=ba,所以tan α=±3,因此切线的倾斜角π3或2π3.答案:π3或2π3[课堂研究高考]参数方程和普通方程的互化[典例] (2016·重庆巴蜀中学模拟)已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =cos α,y =m +sin α(α为参数),直线l 的参数方程为错误!(t 为参数),(1)求曲线C 与直线l 的普通方程;(2)若直线l 与曲线C 相交于P ,Q 两点,且|PQ |=455,求实数m 的值.[解] (1)由错误!得错误!①的平方加②的平方得曲线C 的普通方程为:x 2+(y -m )2=1.由x =1+55t 得55t =x -1,代入y =4+255t 得 y =4+2(x -1),所以直线l 的普通方程为y =2x +2.(2)圆心(0,m )到直线l 的距离为d =|-m +2|5,所以由勾股定理得⎝⎛⎭⎪⎫|-m +2|52+⎝ ⎛⎭⎪⎫2552=1,解得m =3或m =1. [方法技巧]将参数方程化为普通方程的方法(1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等,对于含三角函数的参数方程,常利用同角三角函数关系式消参,如sin 2θ+cos 2θ=1等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解. [即时演练]将下列参数方程化为普通方程. (1)错误!(k 为参数); (2)错误!(θ为参数). 解:(1)两式相除,得k =y2x, 将其代入x =3k1+k 2得x =3·y 2x 1+⎝ ⎛⎭⎪⎫y 2x 2, 化简得所求的普通方程是4x 2+y 2-6y =0(y ≠6). (2)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ) 得y 2=2-x .又x =1-sin 2θ∈[0,2], 得所求的普通方程为y 2=2-x ,x ∈[0,2].直线的参数方程[典例] C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),直线l 经过定点P (3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|PA |·|PB |的值. [解] (1)曲线C :(x -1)2+(y -2)2=16, 直线l :错误!(t 为参数).(2)将直线l 的参数方程代入圆C 的方程可得t 2+(2+33)t -3=0,设t 1,t 2是方程的两个根,则t 1t 2=-3, 所以|PA |·|PB |=|t 1||t 2|=|t 1t 2|=3.(1)解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决问题.(2)对于形如错误!(t 为参数).当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题. [方法技巧] [即时演练]已知直线l :x +y -1=0与抛物线y =x 2相交于A ,B 两点,求线段AB 的长度和点M (-1,2)到A ,B 两点的距离之积.解:因为直线l 过定点M ,且l 的倾斜角为3π4,所以它的参数方程为⎩⎪⎨⎪⎧x =-1+t cos 3π4,y =2+t sin 3π4(t 为参数),即错误!(t 为参数),把它代入抛物线的方程,得t 2+2t -2=0, 由根与系数的关系得t 1+t 2=-2,t 1·t 2=-2, 由参数t 的几何意义可知|AB |=|t 1-t 2|=10, |MA |·|MB |=|t 1t 2|=2.[典例] 1参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. [解] (1)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α+π3-2, 当且仅当α=2k π+π6(k ∈Z)时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝ ⎛⎭⎪⎫32,12. [方法技巧]处理极坐标、参数方程综合问题的方法(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.[即时演练](2016·全国乙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解:(1)消去参数t 得到C 1的普通方程为x 2+(y -1)2=a 2,则C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中, 得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0. (2)曲线C 1,C 2的公共点的极坐标满足方程组 错误!若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0, 由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0, 从而1-a 2=0,解得a =-1(舍去)或a =1.当a =1时,极点也为C 1,C 2的公共点,且在C 3上.所以a =1.1.(2016·全国甲卷)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为 ρ2+12ρcos θ+11=0.(2)法一:在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R). 设A ,B 所对应的极径分别为ρ1,ρ2, 将l 的极坐标方程代入C 的极坐标方程得 ρ2+12ρcos α+11=0,于是ρ1+ρ2=-12cos α,ρ1ρ2=11. |AB |=|ρ1-ρ2|=ρ1+ρ22-4ρ1ρ2=144cos 2α-44. 由|AB |=10得cos 2α=38,tan α=±153. 所以直线l 的斜率为153或-153. 法二:由直线l 的参数方程⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),消去参数得y =x ·tan α.设直线l 的斜率为k ,则直线l 的方程为kx -y =0. 由圆C 的方程(x +6)2+y 2=25知, 圆心坐标为(-6,0),半径为5.又|AB |=10,由垂径定理及点到直线的距离公式得 |-6k |1+k2=25-⎝ ⎛⎭⎪⎫1022,即36k 21+k 2=904,整理得k 2=53,解得k =±153, 即直线l 的斜率为±153. 2.(2015·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:错误!(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值. 解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0, 曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎪⎫32,32. (2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0), 其中0≤α<π.因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.3.(2014·全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆. 因为G 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝ ⎛⎭⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎫32,32. [高考达标检测]1.(2017·吉林实验中学)已知椭圆C :x 24+y 23=1,直线l :错误!(t 为参数).(1)写出椭圆C 的参数方程及直线l 的普通方程;(2)设A (1,0),若椭圆C 上的点P 满足到点A 的距离与其直线l 的距离相等,求点P 的坐标.解:(1)椭圆C 的参数方程为:⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为x -3y +9=0. (2)设P (2cos θ,3sin θ), 则|AP |=θ-2+3sin θ2=2-cos θ,P 到直线l 的距离 d =|2cos θ-3sin θ+9|2=2cos θ-3sin θ+92.由|AP |=d ,得3sin θ-4cos θ=5,又sin 2θ+cos 2θ=1, 得sin θ=35,cos θ=-45.故P ⎝ ⎛⎭⎪⎫-85,335.2.已知曲线C 1:错误!(t 为参数),曲线C 2:错误!(θ为参数). (1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:⎩⎪⎨⎪⎧x =3+2t ,y =-2+t(t 为参数)的距离的最小值.解:(1)曲线C 1:(x +4)2+(y -3)2=1,曲线C 2:x 264+y 29=1,曲线C 1是以(-4,3)为圆心,1为半径的圆;曲线C 2是以坐标原点为中心,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.(2)当t =π2时,P (-4,4),Q (8cos θ,3sin θ), 故M -2+4cos θ,2+32sin θ. 曲线C 3为直线x -2y -7=0,M 到C 3的距离d =55|4cos θ-3sin θ-13|,从而当cos θ=45,sin θ=-35时,d 取最小值855. 3.(2017·辽宁五校联考)倾斜角为α的直线l 过点P (8,2),直线l 和曲线C :⎩⎨⎧ x =42cos θ,y =2sin θ(θ为参数)交于不同的两点M 1,M 2.(1)将曲线C 的参数方程化为普通方程,并写出直线l 的参数方程;(2)求|PM 1|·|PM 2|的取值范围.解:(1)曲线C 的普通方程为x 232+y 24=1, 直线l 的参数方程为⎩⎪⎨⎪⎧ x =8+t cos α,y =2+t sin α(t 为参数).(2)将l 的参数方程代入曲线C 的方程得:(8+t cos α)2+8(2+t sin α)2=32,整理得(8sin 2α+cos 2α)t 2+(16cos α+32sin α)t +64=0,由Δ=(16cos α+32sin α)2-4×64(8sin 2α+cos 2α)>0,得cos α>sin α,故α∈⎣⎢⎡⎭⎪⎫0,π4, ∴|PM 1|·|PM 2|=|t 1t 2|=641+7sin 2α∈⎝ ⎛⎦⎥⎤1289,64. 4.(2017·山西模拟)在极坐标系中,曲线C 的极坐标方程为ρ=42sin ⎝⎛⎭⎪⎫θ+π4.现以极点O 为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧ x =-2+12t ,y =-3+32t (t 为参数).(1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)设直线l 和曲线C 交于A ,B 两点,定点P (-2,-3),求|PA |·|PB |的值.解:(1)ρ=42sin ⎝⎛⎭⎪⎫θ+π4=4sin θ+4cos θ, 所以ρ2=4ρsin θ+4ρcos θ,所以x 2+y 2-4x -4y =0,即(x -2)2+(y -2)2=8;直线l 的普通方程为3x -y +23-3=0.(2)把直线l 的参数方程代入到圆C : x 2+y 2-4x -4y =0中,得t 2-(4+53)t +33=0,设A ,B 对应的参数分别为t 1,t 2,则t 1t 2=33.点P (-2,-3)显然在直线l 上,由直线标准参数方程下t 的几何意义知|PA |·|PB |=|t 1t 2|=33,所以|PA |·|PB |=33.5.(2017·贵州模拟)极坐标系与直角坐标系xOy 有相同的长度单位,以原点为极点,以x 轴正半轴为极轴,曲线C 1的极坐标方程为ρ=4cos θ(ρ≥0),曲线C 2的参数方程为⎩⎪⎨⎪⎧ x =m +t cos α,y =t sin α(t 为参数,0≤α<π),射线θ=φ,θ=φ+π4,θ=φ-π4与曲线C 1分别交于(不包括极点O )点A ,B ,C .(1)求证:|OB |+|OC |=2|OA |;(2)当φ=π12时,B ,C 两点在曲线C 2上,求m 与α的值. 解:(1)证明:依题意|OA |=4cos φ,|OB |=4cos ⎝ ⎛⎭⎪⎫φ+π4, |OC |=4cos ⎝ ⎛⎭⎪⎫φ-π4, 则|OB |+|OC |=4cos ⎝ ⎛⎭⎪⎫φ+π4+4cos ⎝⎛⎭⎪⎫φ-π4 =22(cos φ-sin φ)+22(cos φ+sin φ)=42cos φ=2|OA |.(2)当φ=π12时,B ,C 两点的极坐标分别为⎝⎛⎭⎪⎫2,π3,⎝ ⎛⎭⎪⎫23,-π6,化为直角坐标为B ()1,3,C ()3,-3,所以经过点B ,C 的直线方程为y -3=-3(x -1),而C 2是经过点(m,0)且倾斜角为α的直线,故m =2,α=2π3. 6.(2017·唐山模拟)将曲线C 1:x 2+y 2=1上所有点的横坐标伸长到原来的 2 倍(纵坐标不变)得到曲线C 2,点A 为C 1与x 轴正半轴的交点,直线l 经过点A 且倾斜角为30°,记l 与曲线C 1的另一个交点为B ,与曲线C 2在第一、三象限的交点分别为C ,D .(1)写出曲线C 2的普通方程及直线l 的参数方程;(2)求|AC |-|BD |.解:(1)由题意可得C 2:x 22+y 2=1, l :⎩⎪⎨⎪⎧ x =1+32t ,y =12t (t 为参数). (2)将⎩⎪⎨⎪⎧ x =1+32t ,y =12t 代入x 22+y 2=1, 整理得5t 2+43t -4=0.设点C ,D 对应的参数分别为t 1,t 2,则t 1+t 2=-435, 且|AC |=t 1,|AD |=-t 2.又|AB |=2|OA |cos 30°=3,故|AC |-|BD |=|AC |-()|AD |-|AB |=|AC |-|AD |+|AB |=t 1+t 2+3=35. 7.(2016·长春模拟)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧ x =2+t cos α,y =3+t sin α(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=8cos ⎝⎛⎭⎪⎫θ-π3. (1)求曲线C 2的直角坐标方程,并指出其表示何种曲线;(2)若曲线C 1和曲线C 2交于A ,B 两点,求|AB |的最大值和最小值.解:(1)对于曲线C 2有ρ=8cos ⎝⎛⎭⎪⎫θ-π3, 即ρ2=4ρcos θ+43ρsin θ,因此曲线C 2的直角坐标方程为x 2+y 2-4x -43y =0,即(x -2)2+(y -23)2=16,其表示一个圆.(2)将C 1的参数方程代入C 2的方程可得, t 2-23sin α·t -13=0,设A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=23sin α,t 1t 2=-13.所以|AB |=|t 1-t 2|=t 1+t 22-4t 1t 2 =()23sin α2--=12sin 2α+52,因此|AB |的最大值为8,最小值为213.8.(2017·云南一模)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧ x =t -1,y =t +2(t 为参数).在以原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ=31+2cos 2θ.(1)直接写出直线l 的普通方程、曲线C 的直角坐标方程;(2)设曲线C 上的点到直线l 的距离为d ,求d 的取值范围.解:(1)直线l 的普通方程为x -y +3=0.曲线C 的直角坐标方程为3x 2+y 2=3.(2)∵曲线C 的直角坐标方程为3x 2+y 2=3,即x 2+y 23=1, ∴曲线C 上的点的坐标可表示为(cos α,3sin α).∴d =|cos α-3sin α+3|2 =⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫π6-α+32=2sin ⎝ ⎛⎭⎪⎫π6-α+32.∴d 的最小值为12=22, d 的最大值为52=522. ∴22≤d ≤522, 即d 的取值范围为⎣⎢⎡⎦⎥⎤22,522.。

选修4-4数学坐标系与参数方程

选修4-4数学坐标系与参数方程

选修4-4数学坐标系与参数方程一、基础知识与考点梳理坐标系是解决几何问题的工具之一,包括平面直角坐标系和极坐标系。

参数方程是通过参数的变化来描述图形的方程,常用于描述曲线的运动或变化。

考点:1. 平面直角坐标系:了解坐标系的定义、坐标轴的性质、平面点的坐标表示方法以及表示直线和曲线的方程的求解方法。

2. 极坐标系:了解极坐标系的定义、坐标轴的性质、平面点的极坐标表示方法以及表示曲线的方程的求解方法。

3. 参数方程:了解参数方程的定义和解题步骤,熟练掌握参数方程求交点和极值点的方法。

二、典型例题解析例1、已知函数y=x²-2x+3,求其图像与x轴、y轴、直线x=1、y=3所围成的面积。

【解析】:1. 求该函数的根,即当y=0时x满足的条件:x=1±√2。

2. 绘制函数图像。

由于该函数为二次函数,故开口向上,图像开口向上,存在顶点,而顶点的横坐标为x=-b/2a,即x=1。

当x=0时,y=3,即函数在y轴上截距为3,因此y轴上的一点为(0,3)。

3. 按要求计算所求面积=△x=1△x=-∫1√2(y-3)dx+∫√2^3(y-x²+2x)dx=2-2√2/3例2、考虑曲线x=2cost+cos2t,y=2sint-sin2t的形状和特征,求其极坐标方程,指出极点和极轴,找出曲线上各点的对称点。

【解析】:1. 观察曲线方程,发现x的系数为2,y的系数为-1。

而2cos2t+1=2cos²t-2sin²t+1,故有x=4cos²t-1-y。

2. 代入x²+y²=r²,消去t,即得其极坐标方程r=4cos2θ-3。

3. 极点为(θ=r=0),为对称中心,且曲线轨迹在极轴之上。

4. 若要求曲线上一点的对称点,可先求该点的极坐标系(r,θ),则其对称点的极坐标系为(r,-θ),再用x=rcosθ,y=rsinθ回代直角坐标系。

极坐标与参数方程——2013年高考试题

极坐标与参数方程——2013年高考试题

作者:曹亚云
返回导航
第3页
高考考点解析
新课标A版数学
选修4-4 极坐标与参数方程
题型2:求参数方程
【练习 1】 【2013 年高考陕西卷(理) 】 如图,以过原点的直线的倾斜角 为参数,则圆 x2 y 2 x 0 的参数方程为______.
y P θ
O
x
作者:曹亚云
返回导航
第4页
为参数) ,曲线 C
x 2 tan 2 的参数方程为 y 2 tan (
为参数) ,试求直
线 l 与曲线 C 的普通方程,并求出它们的公共点的坐标.
作者:曹亚云
返回导航
第2页
高考考点解析
新课标A版数学
选修4-4 极坐标与参数方程
题型2:求参数方程
【例 2】 【2013 年高考课标Ⅱ卷(文) 】 已知动点 P, Q
x at , 为参数)和直线 l2 : (t 为参数)平行,则常 y 2t 1
数 a 的值为_____.
作者:曹亚云
返回导航
第9页
高考考点解析
新课标A版数学
选修4-4 极坐标与参数方程
题型6:求参数的值
【练习 3】 【2013 年高考湖南卷(理) 】
x t, xoy l : 在平面直角坐标系 中,若 y t a
x 2cost C : 都在曲线 y 2sint (
t 为参数)上,对应参
数分别为 t 与 t 2 ( 0 2 ) , M 为 PQ 的中点。 (I)求 M 的轨迹的参数方程: (Ⅱ)将 M 到坐标原点的距离 d 表示为 的函数,并判 断 M 的轨迹是否过坐标原点.

(完整版)高中数学选修4—4(坐标系与参数方程)知识点总结

(完整版)高中数学选修4—4(坐标系与参数方程)知识点总结

坐标系与参数方程 知识点1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0)x xy yλλϕμμ'=>⎧⎨'=>⎩g g 的作用下,点P(x,y)对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩222tan (0)x y yx xρθ=+=≠ 在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程曲线 图形 极坐标方程圆心在极点,半径为r 的圆(02)r ρθπ=≤<圆心为(,0)r ,半径为r 的圆2cos ()22r ππρθθ=-≤<圆心为(,)2r π,半径为r 的圆2sin (0)r ρθθπ≤<过极点,倾斜角为α的直线(1)()()R R θαρθπαρ=∈=+∈或 (2)(0)(0)θαρθπαρ=≥=+≥和过点(,0)a ,与极轴垂直的直线cos ()22a ππρθθ=-<<过点(,)2a π,与极轴平行的直线sin (0)a ρθθπ=<<注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点(,)44M ππ可以表示为5(,2)(,2),444444ππππππππ+-或或(-)等多种形式,其中,只有(,)44ππ的极坐标满足方程ρθ=.二、参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数()()x f t y g t =⎧⎨=⎩①,并且对于t 的每一个允许值,由方程组①所确定的点(,)M x y 都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数,x y 的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数,x y 中的一个与参数t 的关系,例如()x f t =,把它代入普通方程,求出另一个变数与参数的关系()y g t =,那么()()x f t y g t =⎧⎨=⎩就是曲线的参数方程,在参数方程与普通方程的互化中,必须使,x y 的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。

选修4-4《坐标系及参数方程》复习讲义

选修4-4《坐标系及参数方程》复习讲义

选修4-4《坐标系与参数方程》复习讲义广东高考考试大纲说明的具体要求:1.坐标系:① 理解坐标系的作用. ② 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况. ③ 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.④ 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. 2.参数方程: ① 了解参数方程,了解参数的意义.② 能选择适当的参数写出直线、圆和圆锥曲线的参数方程.(一)基础知识梳理:1.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。

2.点M 的极坐标:设M 是平面内一点,极点O与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的∠XOM 叫做点M 的极角,记为θ。

有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ. 极坐标),(θρ与)Z k )(2k ,(∈+πθρ表示同一个点。

极点O 的坐标为)R )(,0(∈θθ. 3.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。

如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。

4.极坐标与直角坐标的互化:5。

圆的极坐标方程:在极坐标系中,以极点为圆心,r 为半径的圆的极坐标方程是 r =ρ;在极坐标系中,以 )0,a (C (a>0)为圆心, a 为半径的圆的极坐标方程是 θρ2acos =; 在极坐标系中,以 )2,a (C π(a>0)为圆心,a 为半径的圆的极坐标方程是 θρ2asin =;6.在极坐标系中,)0(≥=ραθ表示以极点为起点的一条射线;)R (∈=ραθ表示过极点的一条直线.在极坐标系中,过点)0a )(0,a (A >,且垂直于极轴的直线l 的极坐标方程是a cos =θρ. 7.参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数⎩⎨⎧==),t (g y ),t (f x 并且对于t 的每一个允许值,由这个方程所确定的点M(x,y)都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x,y 的变数t 叫做参变数,简称参数。

高考数学理科二轮专题复习课件:选修4-4坐标系与参数方程

高考数学理科二轮专题复习课件:选修4-4坐标系与参数方程
在普通方程中引入参数 t,将其转 换为参数方程。引入的参数 t 可 以是任意一个满足条件的函数, 例如角度、时间等。
03 极坐标
极坐标
• 请输入您的内容
04 综合应用
参数方程与极坐标的综合应用
参数方程与极坐标的互化
01
将参数方程转化为极坐标方程,或将极坐标方程转化为参数方
程,是解决综合问题的重要技巧。
参数方程在极坐标中的应用
02
利用参数方程表示的点在极坐标系中的位置,可以解决与极坐
标相关的问题。
极坐标在参数方程中的应用
03
利用极坐标的性质,可以简化参数方程的求解过程。
参数方程与直角坐标的综合应用
1 2
参数方程与直角坐标的互化
将参数方程转化为直角坐标方程,或将直角坐标 方程转化为参数方程,是解决综合问题的重要技 巧。
参数方程与普通方程的转换
参数方程可以转换为普通方程,反之亦然。参数方程转换为 普通方程的过程是通过消去参数 t 来实现的。普通方程转换 为参数方程则需要引入参数 t 来描述 x 和 y 的关系。
参数方程的应用
解决实际问题
参数方程在解决实际问题中有着广泛 的应用,例如物理学、工程学、经济 学等领域的问题可以通过建立参数方 程来解决。
描述复杂运动
优化问题求解
在某些优化问题中,参数方程可以用 来描述约束条件或目标函数,从而方 便求解。
对于一些复杂的运动,如行星运动, 参数方程可以用来描述它们的轨迹和 运动规律。
参数方程与普通方程的互化
消参法
通过消去参数 t,将参数方程转换 为普通方程。常用的消参方法有 代入消参和加减消参。
引入参数法
高考数学理科二轮专题复习 课件选修4-4坐标系与参数方

高考复习配套讲义:选修4-4 第2讲 参数方程

高考复习配套讲义:选修4-4 第2讲 参数方程

第2讲 参数方程[最新考纲]1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆的参数方程.3.掌握直线的参数方程及参数的几何意义,能用直线的参数方程解决简单的相关问题.知 识 梳 理1.曲线的参数方程在平面直角坐标系xOy 中,如果曲线上任意一点的坐标x ,y 都是某个变量t 的函数⎩⎨⎧x =f (t ),y =g (t ).并且对于t 的每一个允许值上式所确定的点M (x ,y )都在这条曲线上,则称上式为该曲线的参数方程,其中变量t 称为参数. 2.一些常见曲线的参数方程(1)过点P 0(x 0,y 0),且倾斜角为α的直线的参数方程为⎩⎨⎧x =x 0+t cos αy =y 0+t sin α(t 为参数).(2)圆的方程(x -a )2+(y -b )2=r 2的参数方程为⎩⎨⎧x =a +r cos θy =b +r sin θ(θ为参数).(3)椭圆方程x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎨⎧x =a cos θy =b sin θ(θ为参数).(4)抛物线方程y 2=2px (p >0)的参数方程为⎩⎨⎧x =2pt 2y =2pt (t 为参数).诊 断 自 测1.极坐标方程ρ=cos θ和参数方程⎩⎨⎧x =-1-t ,y =2+t (t 为参数)所表示的图形分别是________.①直线、直线;②直线、圆;③圆、圆;④圆、直线.解析 ∵ρcos θ=x ,∴cos θ=x ρ代入到ρ=cos θ,得ρ=xρ,∴ρ2=x ,∴x 2+y 2=x 表示圆.又∵⎩⎪⎨⎪⎧x =-1-t ,y =2+t ,相加得x +y =1,表示直线.答案 ④2.若直线⎩⎨⎧x =1-2t ,y =2+3t (t 为实数)与直线4x +ky =1垂直,则常数k =________.解析 参数方程⎩⎪⎨⎪⎧x =1-2t ,y =2+3t ,所表示的直线方程为3x +2y =7,由此直线与直线4x +ky =1垂直可得-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案 -63.(2012·北京卷)直线⎩⎨⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎨⎧x =3cos α,y =3sin α(α为参数)的交点个数为________.解析 直线方程可化为x +y -1=0,曲线方程可化为x 2+y 2=9,圆心(0,0)到直线x +y -1=0的距离d =12=22<3.∴直线与圆相交有两个交点. 答案 24.已知直线l :⎩⎨⎧x =1-2t ,y =2+2t (t 为参数)上到点A (1,2)的距离为42的点的坐标为________.解析 设点Q (x ,y )为直线上的点, 则|QA |=(1-1+2t )2+(2-2-2t )2=(2t )2+(-2t )2=42,解之得,t =±22,所以Q (-3,6)或Q (5,-2). 答案 (-3,6)和(5,-2)5.(2013·广东卷)已知曲线C 的极坐标方程为ρ=2cos θ,以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为________.解析 由ρ=2cos θ知,ρ2=2ρcos θ 所以x 2+y 2=2x ,即(x -1)2+y 2=1, 故其参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数).答案 ⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数)考点一 参数方程与普通方程的互化【例1】 把下列参数方程化为普通方程,并说明它们各表示什么曲线;(1)⎩⎪⎨⎪⎧x =1+12t ,y =2+32t(t 为参数);(2)⎩⎨⎧x =1+t 2,y =2+t(t 为参数); (3)⎩⎪⎨⎪⎧x =t +1t ,y =1t -t(t 为参数).解 (1)由x =1+12t 得t =2x -2. ∴y =2+32(2x -2).∴3x -y +2-3=0,此方程表示直线. (2)由y =2+t 得t =y -2,∴x =1+(y -2)2. 即(y -2)2=x -1,此方程表示抛物线. (3)⎩⎪⎨⎪⎧x =t +1t y =1t -t①②∴①2-②2得x 2-y 2=4,此方程表示双曲线.规律方法 参数方程化为普通方程:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,不要忘了参数的范围.【训练1】 将下列参数方程化为普通方程. (1)⎩⎨⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参数); (2)⎩⎪⎨⎪⎧x =12(e t +e -t),y =12(e t-e-t)(t 为参数).解 (1)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ), 得y 2=2-x .又x =1-sin 2θ∈[0,2], 得所求的普通方程为y 2=2-x ,x ∈[0,2]. (2)由参数方程得e t =x +y ,e -t =x -y , ∴(x +y )(x -y )=1,即x 2-y 2=1.考点二 直线与圆参数方程的应用【例2】 在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t(t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B ,若点P 的坐标为(3,5),求|P A |+|PB |. 解 (1)由ρ=25sin θ,得ρ2=25ρsin θ. ∴x 2+y 2=25y ,即x 2+(y -5)2=5. (2)将l 的参数方程代入圆C 的直角坐标方程. 得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0.由于Δ=(32)2-4×4=2>0,故可设t 1,t 2是上述方程的两实根,所以⎩⎨⎧t 1+t 2=32,t 1·t 2=4.又直线l 过点P (3,5),故由上式及t 的几何意义得|P A |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2.规律方法 (1)过定点P 0(x 0,y 0),倾斜角为α的直线参数方程的标准形式为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),t 的几何意义是直线上的点P 到点P 0(x 0,y 0)的数量,即t =|PP 0|时为距离.使用该式时直线上任意两点P 1、P 2对应的参数分别为t 1、t 2,则|P 1P 2|=|t 1-t 2|,P 1P 2的中点对应的参数为12(t 1+t 2).(2)对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.【训练2】 已知直线l 的参数方程为⎩⎨⎧x =1+t ,y =4-2t (参数t ∈R ),圆C 的参数方程为⎩⎨⎧x =2cos θ+2,y =2sin θ(参数θ∈[0,2π]),求直线l 被圆C 所截得的弦长.解 由⎩⎨⎧ x =1+t ,y =4-2t消参数后得普通方程为2x +y -6=0,由⎩⎨⎧x =2cos θ+2,y =2sin θ消参数后得普通方程为(x -2)2+y 2=4,显然圆心坐标为(2,0),半径为2.由于圆心到直线2x +y -6=0的距离为d =|2×2+0-6|22+1=255,所以所求弦长为222-⎝⎛⎭⎪⎫2552=855. 考点三 极坐标、参数方程的综合应用【例3】 已知P 为半圆C :⎩⎨⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程.解 (1)由已知,点M 的极角为π3,且点M 的极径等于π3,故点M 的极坐标为⎝ ⎛⎭⎪⎫π3,π3.(2)点M 的直角坐标为⎝ ⎛⎭⎪⎫π6,3π6,A (1,0). 故直线AM 的参数方程为⎩⎪⎨⎪⎧x =1+⎝ ⎛⎭⎪⎫π6-1t ,y =3π6t(t 为参数).规律方法 涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.【训练3】 (2013·福建卷)在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知点A 的极坐标为(2,π4),直线l 的极坐标方程为ρcos(θ-π4)=a ,且点A 在直线l 上. (1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎨⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.解 (1)由点A (2,π4)在直线ρcos(θ-π4)=a 上,可得a = 2. 所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1,所以圆C 的圆心为(1,0),半径r =1, 因为圆心C 到直线l 的距离d =12=22<1, 所以直线l 与圆C 相交.转化思想在解题中的应用【典例】 已知圆锥曲线⎩⎨⎧x =2cos θy =3sin θ(θ是参数)和定点A (0, 3),F 1、F 2是圆锥曲线的左、右焦点.(1)求经过点F 1且垂直于直线AF 2的直线l 的参数方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求直线AF 2的极坐标方程.[审题视点] (1)先将圆锥曲线参数方程化为普通方程,求出F 1的坐标,然后求出直线的倾斜角度数,再利用公式就能写出直线l 的参数方程.(2)直线AF 2是已知确定的直线,利用求极坐标方程的一般方法求解.解 (1)圆锥曲线⎩⎪⎨⎪⎧x =2cos θy =3sin θ化为普通方程x 24+y 23=1,所以F 1(-1,0),F 2(1,0),则直线AF 2的斜率k =-3,于是经过点F 1且垂直于直线AF 2的直线l 的斜率k ′=33,直线l 的倾斜角是30°,所以直线l 的参数方程是⎩⎪⎨⎪⎧x =-1+t cos 30°y =t sin 30°(t 为参数),即⎩⎪⎨⎪⎧x =32t -1,y =12t(t 为参数).(2)直线AF 2的斜率k =-3,倾斜角是120°,设P (ρ,θ)是直线AF 2上任一点,则ρsin 60°=1sin (120°-θ),ρsin(120°-θ)=sin 60°,则ρsin θ+3ρcos θ= 3.[反思感悟] (1)本题考查了极坐标方程和参数方程的求法及应用.重点考查了转化与化归能力.(2)当用极坐标或参数方程研究问题不很熟练时,可以转化成我们比较熟悉的普通方程求解.(3)本题易错点是计算不准确,极坐标方程求解错误.【自主体验】已知直线l 的参数方程为⎩⎨⎧ x =4-2t y =t -2(t 为参数),P 是椭圆x 24+y 2=1上任意一点,求点P 到直线l 的距离的最大值.解 将直线l 的参数方程⎩⎨⎧x =4-2ty =t -2(t 为参数)转化为普通方程为x +2y =0,因为P 为椭圆x 24+y 2=1上任意一点, 故可设P (2cos θ,sin θ),其中θ∈R . 因此点P 到直线l 的距离d =|2cos θ+2sin θ|12+22=22⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫θ+π45. 所以当θ=k π+π4,k ∈Z 时, d 取得最大值2105.一、填空题1.(2014·芜湖模拟)直线⎩⎨⎧x =-2-2t ,y =3+2t(t 为参数)上与点A (-2,3)的距离等于2的点的坐标是________.解析 由题意知(-2t )2+(2t )2=(2)2,所以t 2=12,t =±22,代入⎩⎪⎨⎪⎧x =-2-2t ,y =3+2t(t 为参数),得所求点的坐标为(-3,4)或(-1,2). 答案 (-3,4)或(-1,2)2.(2014·海淀模拟)若直线l :y =kx 与曲线C :⎩⎨⎧x =2+cos θ,y =sin θ(参数θ∈R )有唯一的公共点,则实数k =________.解析 曲线C 化为普通方程为(x -2)2+y 2=1,圆心坐标为(2,0),半径r =1.由已知l 与圆相切,则r =|2k |1+k 2=1⇒k =±33.答案 ±333.已知椭圆的参数方程⎩⎨⎧x =2cos t y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为________.解析 当t =π3时,x =1,y =23,则M (1,23),∴直线OM 的斜率k =2 3. 答案 2 34.(2013·湖南卷)在平面直角坐标系xOy 中,若l :⎩⎨⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________. 解析 ∵x =t ,且y =t -a , 消去t ,得直线l 的方程y =x -a , 又x =3cos φ且y =2sin φ,消去φ, 得椭圆方程x 29+y 24=1,右顶点为(3,0),依题意0=3-a , ∴a =3. 答案 35.直线3x +4y -7=0截曲线⎩⎨⎧x =cos α,y =1+sin α(α为参数)的弦长为________.解析 曲线可化为x 2+(y -1)2=1,圆心(0,1)到直线的距离d =|0+4-7|9+16=35,则弦长l =2r 2-d 2=85.答案 856.已知直线l 1:⎩⎨⎧ x =1-2t ,y =2+kt (t 为参数),l 2:⎩⎨⎧x =s ,y =1-2s (s 为参数),若l 1∥l 2,则k =________;若l 1⊥l 2,则k =________.解析 将l 1、l 2的方程化为直角坐标方程得l 1:kx +2y -4-k =0,l 2:2x +y -1=0,由l 1∥l 2,得k 2=21≠4+k1⇒k =4,由l 1⊥l 2,得2k +2=0⇒k =-1. 答案 4 -17.(2012·广东卷)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧ x =t ,y =t (t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________.解析 曲线C 1的普通方程为y 2=x (y ≥0), 曲线C 2的普通方程为x 2+y 2=2.由⎩⎪⎨⎪⎧y 2=x (y ≥0),x 2+y 2=2,解得⎩⎪⎨⎪⎧ x =1,y =1,即交点坐标为(1,1). 答案 (1,1)8.直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线C 1:⎩⎨⎧ x =3+cos θ,y =sin θ(θ为参数)和曲线C 2:ρ=1上,则|AB |的最小值为________.解析 消掉参数θ,得到关于x 、y 的一般方程C 1:(x -3)2+y 2=1,表示以(3,0)为圆心,以1为半径的圆;C 2:x 2+y 2=1,表示的是以原点为圆心的单位圆,|AB |的最小值为3-1-1=1.答案 19.(2012·湖南卷)在极坐标系中,曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a (a >0)的一个交点在极轴上,则a =______.解析 ρ(2cos θ+sin θ)=1,即2ρcos θ+ρsin θ=1对应的普通方程为2x +y -1=0,ρ=a (a >0)对应的普通方程为x 2+y 2=a 2.在2x +y -1=0中,令y =0,得x =22.将⎝ ⎛⎭⎪⎫22,0代入x 2+y 2=a 2得a =22. 答案 22二、解答题10.(2013·新课标全国Ⅰ卷)已知曲线C 1的参数方程为⎩⎨⎧ x =4+5cos t ,y =5+5sin t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解 (1)将⎩⎨⎧x =4+5cos t ,y =5+5sin t 消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎨⎧ x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0.由⎩⎨⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0, 解得⎩⎨⎧ x =1,y =1或⎩⎨⎧ x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝ ⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2. 11.(2013·新课标全国Ⅱ卷)已知动点P 、Q 都在曲线C :⎩⎨⎧ x =2cos t ,y =2sin t(t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解 (1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α),因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎨⎧ x =cos α+cos 2α,y =sin α+sin 2α,(α为参数,0<α<2π). (2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π).当α=π时,d =0,故M 的轨迹通过坐标原点.12.(2012·新课标全国卷)已知曲线C 1的参数方程是⎩⎨⎧x =2cos φ,y =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为⎝ ⎛⎭⎪⎫2,π3. (1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|P A |2+|PB |2+|PC |2+|PD |2的取值范围.解 (1)由已知可得A ⎝ ⎛⎭⎪⎫2cos π3,2sin π3, B ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π2,2sin ⎝ ⎛⎭⎪⎫π3+π2, C ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π,2sin ⎝ ⎛⎭⎪⎫π3+π, D ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+3π2,2sin ⎝ ⎛⎭⎪⎫π3+3π2, 即A (1,3),B (-3,1),C (-1,-3),D (3,-1).(2)设P (2cos φ,3sin φ),令S =|P A |2+|PB |2+|PC |2+|PD |2,则S =16cos 2φ+36sin 2φ+16=32+20sin 2φ.因为0≤sin 2φ≤1,所以S 的取值范围是[32,52].。

2013高考全国2卷数学理科试题及答案详解

2013高考全国2卷数学理科试题及答案详解

2013年普通高等学校招生全国统一考试数学(全国新课标卷II)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅱ,理1)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=( ).A.{0,1,2} B.{-1,0,1,2} C.{-1,0,2,3} D.{0,1,2,3}2.(2013课标全国Ⅱ,理2)设复数z满足(1-i)z=2i,则z=( ).A.-1+i B.-1-I C.1+i D.1-i3.(2013课标全国Ⅱ,理3)等比数列{a n}的前n项和为S n.已知S3=a2+10a1,a5=9,则a1=( ).A.13 B .13-C.19 D.19-4.(2013课标全国Ⅱ,理4)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,lα,lβ,则( ).A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l5.(2013课标全国Ⅱ,理5)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=( ).A.-4 B.-3 C.-2 D.-16.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N=10,那么输出的S=( ).A .111 1+2310+++B.111 1+2!3!10!+++C.111 1+2311+++D.111 1+2!3!11!+++7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为( ).8.(2013课标全国Ⅱ,理8)设a=log36,b=log510,c=log714,则( ).A.c>b>a B.b>c>a C.a>c>b D.a>b>c9.(2013课标全国Ⅱ,理9)已知a>0,x,y满足约束条件1,3,3.xx yy a x≥⎧⎪+≤⎨⎪≥(-)⎩若z=2x+y的最小值为1,则a=( ).A.14 B.12 C.1 D.210.(2013课标全国Ⅱ,理10)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ).A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=011.(2013课标全国Ⅱ,理11)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( ).A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x12.(2013课标全国Ⅱ,理12)已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( ).A.(0,1) B.112⎛⎫-⎪⎪⎝⎭ C.113⎛⎤⎥⎝⎦ D.11,32⎡⎫⎪⎢⎣⎭第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。

高中数学选修4-4-极坐标与参数方程-知识点与题型

高中数学选修4-4-极坐标与参数方程-知识点与题型

选做题部分 极坐标系与参数方程一、极坐标系1.极坐标系与点的极坐标(1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2.极坐标与直角坐标的互化点M 直角坐标(x ,y ) 极坐标(ρ,θ)互化公式题型一 极坐标与直角坐标的互化1、已知点P 的极坐标为)4,2(π,则点P 的直角坐标为 ( )A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)2、设点P 的直角坐标为(3,3)-,以原点为极点,实轴正半轴为极轴建立极坐标系(02)θπ≤<,则点P 的极坐标为( )A .3)4πB .5()4π-C .5(3,)4πD .3(3,)4π-3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( ) A .ρ=cos θ B .ρ=sin θ C .ρcos θ=1 D .ρsin θ=15.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π4(ρ>0)所表示的图形的交点的极坐标.题型二 极坐标方程的应用由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.1.在极坐标系中,已知圆C 经过点P(2,π4),圆心为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的直角坐标方程.2.圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为⎝ ⎛⎭⎪⎫4,π3,则|CP|=________.3.在极坐标系中,已知直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=1,圆C 的圆心的极坐标是C ⎝ ⎛⎭⎪⎫1,π4,圆的半径为1.(i)则圆C 的极坐标方程是________; (ii)直线l 被圆C 所截得的弦长等于________.4.在极坐标系中,已知圆C :ρ=4cos θ被直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π6=a 截得的弦长为23,则实数a 的值是________.二、参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么,⎩⎪⎨⎪⎧x =f t ,y =gt就是曲线的参数方程.2.常见曲线的参数方程和普通方程 点的轨迹普通方程参数方程直线y -y 0=tan α(x -x 0)⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α (t 为参数)题型一 参数方程与普通方程的互化 【例1】把下列参数方程化为普通方程: (1)⎩⎪⎨⎪⎧x =3+cos θ,y =2-sin θ;(2)⎩⎪⎨⎪⎧x =1+12t ,y =5+32t .题型二 直线与圆的参数方程的应用1、已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t ,y =4-2t (参数t ∈R ),圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ+2,y =2sin θ(参数θ∈[0,2π]),求直线l 被圆C所截得的弦长.2、曲线C的极坐标方程为:ρ=acosθ(a>0),直线l的参数方程为:(1)求曲线C与直线l的普通方程;(2)若直线l与曲线C相切,求a值.3、在直角坐标系xoy中,曲线C1的参数方程为,(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为.(Ⅰ)求曲线C1的普通方程与曲线C2的直角坐标方程;(Ⅱ)设P为曲线C1上的动点,求点P到C2上点的距离最小值.综合应用 1、曲线25()12x tt y t=-+⎧⎨=-⎩为参数与坐标轴的交点是( )A 21(0,)(,0)52、 B 11(0,)(,0)52、 C (0,4)(8,0)-、 D 5(0,)(8,0)9、3、参数方程222sin sin x y θθ⎧=+⎪⎨=⎪⎩(θ为参数)化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 3.判断下列结论的正误.(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系( )(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是(2,-π3)( )(3)在极坐标系中,曲线的极坐标方程不是唯一的( ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线( )4.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线5.与参数方程为)x t y ⎧=⎪⎨=⎪⎩为参数等价的普通方程为( ) A .214y +=2x B .21(01)4y x +=≤≤2xC .21(02)4y y +=≤≤2x D .21(01,02)4y x y +=≤≤≤≤2x15.参数方程()为参数θθθ⎩⎨⎧+==cot tan 2y x 所表示的曲线是( )A .直线B .两条射线C .线段D .圆16.下列参数方程(t 是参数)与普通方程y x 2=表示同一曲线的方程是: ( )A .x t y t ==⎧⎨⎩2B .x t y t ==⎧⎨⎩sin sin 2C .x t y t ==⎧⎨⎪⎩⎪D .⎪⎩⎪⎨⎧=+-=t y t t x tan 2cos 12cos 13.由参数方程()⎪⎭⎫⎝⎛<<-⎩⎨⎧=-=202tan 21sec 22ππθθθ为参数,y x 给出曲线在直角坐标系下的方程是 。

高二级数学选修4-4《极坐标与参数方程》考试卷

高二级数学选修4-4《极坐标与参数方程》考试卷

高二级数学选修4-4《极坐标与参数方程》考试卷一、选择题1.曲线的极坐标方程θρsin 4=化为直角坐标为 ( )A 4)2(22=++y xB 4)2(22=-+y xC 4)2(22=+-y xD 4)2(22=++y x2.已知点P 的极坐标是),1(π,则过点P 且垂直极轴的直线方程是 ( )A 1=ρB θρcos =C θρcos 1-=D θρcos 1= 3.在极坐标系中,圆=2cos ρθ的垂直于极轴的两条切线方程分别为 ( )A.=0()cos=2∈R θρρ和B.ρρπθ=(∈R)和cos =22 C. πθ=(ρ∈R)和ρcos =12D.θ=0(ρ∈R)和ρcos =1 4.直线12+=x y 的参数方程是 ( ) A ⎩⎨⎧+==1222t y t x (t 为参数) B ⎩⎨⎧+=-=1412t y t x (t 为参数) C ⎩⎨⎧-=-=121t y t x (t 为参数) D ⎩⎨⎧+==1sin 2sin θθy x (t 为参数)5.圆5cos ρθθ=-的圆心是 ( )A .4(5,)3π--B .(5,)3π-C .(5,)3πD .5(5,)3π- 6.参数方程⎩⎨⎧+-=+=θθ2cos 1sin 22y x (θ为参数)化为普通方程是 ( ) A 042=+-y x B 042=-+y xC 042=+-y x ]3,2[∈xD 042=-+y x ]3,2[∈x7.设点P 对应的复数为i 33+-,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P 的极坐标为 ( ) A (23,π43) B (23-,π45) C (3,π45) D (-3,π43) 8.在符合互化条件的直角坐标系和极坐标系中,直线l :02=++kx y 与曲线C :θρcos 2=相交,则k 的取值范围是 ( ) A 34k <- B 43-≥k C R k ∈ D R k ∈但0≠k9.已知过曲线{()3cos 4sin x y θθπθθ≤≤==为参数,0上一点P 与原点O 的直线PO 的倾斜角为4π,则P 点坐标是 ( )A (3,4)B 1212(,)55--C (-3,-4) D1212(,)5510.若圆的方程为⎩⎨⎧+=+-=θθsin 23cos 21y x (θ为参数),直线的方程为⎩⎨⎧-=-=1612t y t x (t 为参数),则直线与圆的位置关系是 () A 相交过圆心 B 相交而不过圆心 C 相切 D 相离11.直线112()x tt y ⎧=+⎪⎪⎨⎪=-⎪⎩为参数和圆2216x y +=交于,A B 两点,则AB 的中点坐标()A .(3,3)- B.( C.3)- D.(3,12.极坐标方程cos 2sin 2ρθθ=表示的曲线为 () A .一条射线和一个圆 B .两条直线 C .一条直线和一个圆 D .一个圆二、填空题13.在极坐标系中,以)2,2(πa 为圆心,2a为半径的圆的极坐标方程是 。

2013年高考数学(人教版)二轮复习专题讲义:选修4-4 坐标系与参数方程 课时演练

2013年高考数学(人教版)二轮复习专题讲义:选修4-4 坐标系与参数方程 课时演练

选修4-41.已知直线l 经过点P(1,1),倾斜角α=π6,求直线l 的参数方程.2.已知直线l 过点P(2,0),斜率为43,直线l 和抛物线y2=2x 相交于A ,B 两点,设线段AB 的中点为M ,求直线l 的参数方程和M 点的坐标.3.在直角坐标系xOy 中,曲线C1的参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数).以O 为极点,x轴正半轴为极轴,建立极坐标系.曲线C2的极坐标方程为ρ(cos θ-sin θ)+1=0.[来源:学。

科。

网Z 。

X 。

X 。

K](1)求曲线C1的普通方程和C2的直角坐标方程; (2)求曲线C1上的点到曲线C2的最大距离.4.(2012·吉林实验中学高三模拟)已知圆C :⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),直线l :⎩⎨⎧x =2+45t ,y =35t(t 为参数).(1)求圆C 的普通方程,若以原点为极点,以x 轴的正半轴为极轴建立极坐标系,写出圆C 的极坐标方程;(2)判断直线l 与圆C 的位置关系,并说明理由;若相交,请求出弦长.5.在平面直角坐标系xOy 中,以原点O 为极点,x 轴为极轴建立极坐标系,曲线C1的参数方程为⎩⎨⎧x =1tan φ,y =1tan2φ(φ为参数),曲线C2的极坐标方程为:ρ(cos θ+sin θ)=1,若曲线C1与C2相交于A 、B 两点.(1)求|AB|的值;(2)求点M(-1,2)到A 、B 两点的距离之积.6.(2012·东北三校第二次联考)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =-2-3t ,y =2-4t (t 为参数),它与曲线C :(y -2)2-x2=1交于A 、B 两点. (1)求|AB|的长;(2)以O 为极点,x 轴的正半轴为极轴建立极坐标系,设点P 的极坐标为⎝⎛⎭⎫22,3π4,求点P 到线段AB 中点M 的距离.7.(2012·新课标全国卷)已知曲线C1的参数方程是⎩⎪⎨⎪⎧x =2cos φ,y =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为⎝⎛⎭⎫2,π3, (1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.8.(2012·长春调研)在极坐标系中,O 为极点,半径为2的圆C 的圆心的极坐标为⎝⎛⎭⎫2,π3. (1)求圆C 的极坐标方程;(2)P 是圆C 上一动点,点Q 满足3OP →=OQ →,以极点O 为原点,以极轴为x 轴正半轴建立直角坐标系,求点Q 的轨迹的直角坐标方程.9.已知极坐标系的极点在直角坐标系的原点O 处,极轴与x 轴的正半轴重合,直线l 的参数方程为⎩⎪⎨⎪⎧x =tcos α,y =tsin α(t 为参数,α为直线l 的倾斜角).圆C 的极坐标方程为ρ2-8ρcos θ+12=0.(1)若直线l 与圆C 相切,求α的值;(2)若tan α=12,直线l 与圆C 交于A ,B 两点,求|OA|+|OB|的值.答案:1.解析: 直线l 的参数方程为⎩⎨⎧x =1+tcos π6y =1+tsin π6,即⎩⎨⎧x =1+32ty =1+12t (t 为参数).2.解析: 由tan α=43得:sin α=45,cos α=35(α为直线l 的倾斜角),所以直线l 的参数方程为⎩⎨⎧x =2+35ty =45t(t 为参数),代入y2=2x 化简得:1625t2-65t -4=0,由根与系数的关系得t1+t2=158,t1t2=-254,因为t0=t1+t22=1516,则⎩⎨⎧x =2+35×1516=4116y =45×1516=34,所以M 点的坐标为⎝⎛⎭⎫4116,34.3.解析: (1)将⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数)化为普通方程得x2+(y -1)2=1,将ρ(cos θ-sin θ)+1=0化为直角坐标方程得x -y +1=0.(2)由(1)知曲线C1表示圆心为(0,1),半径为1的圆,曲线C2表示直线x -y +1=0,并且过圆心(0,1),所以曲线C1上的点到曲线C2的最大距离等于圆的半径1. 4.解析: (1)由圆C 的参数方程消参可得,(x -2)2+y2=4, 圆的极坐标方程为ρ=4cos θ.(2)方法一:由于直线l 过圆心(2,0), 所以直线与圆相交,且弦长为4. 方法二:l :3x -4y -6=0,圆心到直线的距离d =|6-6|32+-42=0<r ,所以直线l 与圆相交,由于直线l 过圆心(2,0),所以弦长为4.5.解析: (1)由曲线C1的参数方程可得曲线C1的普通方程为y =x2(x ≠0),由曲线C2的极坐标方程可得曲线C2的直角坐标方程为x +y -1=0,则曲线C2的参数方程为⎩⎨⎧x =-1-22t ,y =2+2t (t 为参数),将其代入曲线C1的普通方程得t2+2t -2=0,设A 、B 两点对应的参数分别为t1、t2, 则t1+t2=-2,t1t2=-2,所以|AB|=|t1-t2|=t 1+t22-4t1t2=10. (2)由(1)可得|MA|·|MB|=|t1t2|=2.6.解析: (1)把直线的参数方程代入曲线方程并化简得7t2-12t -5=0. 设A ,B 对应的参数分别为t1,t2,则t1+t2=127,t1t2=-57.所以|AB|=-32+-42|t1-t2| =5t 1+t22-4t1t2=10717. (2)易得点P 在平面直角坐标系下的坐标为(-2,2),根据中点坐标的性质可得A B 中点M 对应的参数为t1+t22=67.由t 的几何意义可得点P 到M 的距离为|PM|=-32+-42·⎪⎪⎪⎪67=307. 7.解析: (1)由已知可得A ⎝⎛⎭⎫2cos π3,2sin π3, B ⎝⎛⎭⎫2cos ⎝⎛⎭⎫π3+π2,2sin ⎝⎛⎭⎫π3+π2, C ⎝⎛⎭⎫2cos ⎝⎛⎭⎫π3+π,2sin ⎝⎛⎭⎫π3+π, D ⎝⎛⎭⎫2cos ⎝⎛⎭⎫π3+3π2,2sin ⎝⎛⎭⎫π3+3π2, 即A(1,3),B(-3,1),C(-1,-3),D(3,-1).(2)设P(2cos φ,3sin φ),令S =|PA|2+|PB|2+|PC|2+|PD|2,则S =16cos2φ+36sin2φ+16=32+20sin2φ.因为0≤sin2φ≤1,所以S 的取值范围是[32,52].8.解析: (1)设M(ρ,θ)是圆C 上任一点,过点C 作CH ⊥OM 于H 点,则在Rt △COH 中,OH =OC·cos ∠COH. ∵∠COH =∠COM =⎪⎪⎪⎪θ-π3,OH =12OM =12ρ, OC =2,∴12ρ=2cos ⎪⎪⎪⎪θ-π3, 即ρ=4cos ⎝⎛⎭⎫θ-π3为所求的圆C 的极坐标方程. (2)设点Q 的极坐标为(ρ,θ),∵3OP →=OQ →, ∴P 的极坐标为⎝⎛⎭⎫13ρ,θ, 代入圆C 的极坐标方程得13ρ=4cos ⎝⎛⎭⎫θ-π3, 即ρ=6cos θ+63sin θ,∴ρ2=6ρcos θ+63ρsin θ,令x =ρco s θ,y =ρsin θ, 得x2+y2=6x +63y ,9.解析:(1)将直线l 的参数方程化为普通方程,得y =xta n α.将圆C 的极坐标方程ρ2-8ρcos θ+12=0化为直角坐标方程得(x -4)2+y2=4. 因为直线l 与圆C 切于点M , 则sin α=CM OC =24=12,所以α=π6或α=5π6.(2)若tan α=12,则sin α=55,cos α=255.将直线l 的参数方程与圆C 的直角坐标方程联立可得(tcos α-4)2+(tsin α)2=4,化简,得t2-8tcos α+12=0,即t2-1655t +12=0.设A 、B 两点对应的参数分别为t1、t2, 由参数t 的几何意义知: |OA|+|OB|=|t1|+|t2|=|t1+t2|=1655.。

2013届高考数学复习 选修4-4坐标系与参数方程课件

2013届高考数学复习 选修4-4坐标系与参数方程课件

0≤θ≤2π);
x-x0 2 y-y02 ②椭圆 + = 1(a > b > 0) 的 参 数 方 程 为 a2 b2 x=x0+acosθ (θ 为参数). y=y0+bsinθ
(4)双曲线的参数方程 x 2 y2 ①双曲线 2- 2=1(a>0,b>0)的参数方程为 a b x=asecθ 1 (θ 为参数,其中 secθ= ); cosθ y=btanθ y2 x 2 ②双曲线 2- 2=1(a>0,b>0)的参数方程为 a b x=btanθ (θ 为参数); y=asecθ
2.求曲线的极坐标方程的方法 求曲线的极坐标方程的基本步骤与直角坐标系中求曲线方程的 基本步骤相同.即: 第一步 建立适当的极坐标系; 第二步 在曲线上任取一点 P(ρ,θ); 第三步 根据曲线上的点所满足的条件写出等式; 第四步 用极坐标 ρ,θ 表示上述等式,并化简得极坐标方程; 第五步 证明所得的方程是曲线的极坐标方程. 通常,第五步的过程不必写出,只要对方程进行检验,最后加 以确认.
x-x0 2 y-y02 ③双曲线 - =1(a>0,b>0)的参数方程为 a2 b2 x=x0+asecθ (θ 为参数); y=y0+btanθ y-y02 x-x0 2 ④双曲线 - =1(a>0,b>0)的参数方程为 a2 b2 x=x0+btanθ (θ 为参数). y=y0+asecθ
变式 1 极坐标方程 ρ2cosθ-ρ=0 的直角坐标方程为________.
答案 x2+y2=0 或 x=1 解析 ∵ρ(ρcosθ-1)=0,∴ρ=0 或 ρcosθ=1, ∴x2+y2=0 或 x=1.
题型二 利用极坐标解题 例 2.O 为已知圆 O′外的定点,点 M 在圆 O′上,以 OM 为边 作正三角形 OMN,当点 M 在圆 O′上移动时,求点 N 的轨迹方程 (O、M、N 逆时针排列). 分析 建立极坐标系,由余弦定理得圆 O′的极坐标方程,再

第二讲 坐标系与参数方程(选修4-4)

第二讲 坐标系与参数方程(选修4-4)
π (3)直线过Mb,2且平行于极轴:ρsinθ=b.
2.圆的极坐标方程 若圆心为M(ρ0,θ0),半径为r的圆方程为:
2 ρ2-2ρ0ρcos(θ-θ0)+ρ2 0-r =0.
几个特殊位置的圆的极坐标方程 (1)当圆心位于极点,半径为r:ρ=r; (2)当圆心位于M(r,0),半径为r:ρ=2rcosθ;
【标准解答】
(1)设(x1,y1)为圆上的点,在已知变换
x=x1 下变为C上点(x,y),依题意,得 y=2y1
2 y y 2 2 2 2 由x 1 +y 2 1 =1得x +( ) =1,即曲线C的方程为x + = 2 4
1.
x=cost 故C的参数方程为 y=2sint
π π 3 3 故D的直角坐标为(1+cos3,sin3),即(2, 2 ).
类题通法
对于同时含有极坐标方程和参数方程的题可考虑同时 化为普通方程再求解.
x=-2t-1, 5.已知直线l: y=t-1
(t为参数)与曲线C:ρ= )
π 4 2sin(θ+ ),则直线l和曲线C的位置关系为( 4 A.相交 C.相离 B.相切 D.相交或相切
ห้องสมุดไป่ตู้例3】
(2014· 新课标卷Ⅱ)在直角坐标系xOy中,以
坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C π 的极坐标方程为ρ=2cosθ,θ∈[0, ]. 2 (1)求C的参数方程; (2)设点D在C上,C在D处的切线与直线l:y= 3 x+2
垂直,根据(1)中你得到的参数方程,确定D的坐标.
解:将曲线C1的参数方程化为普通方程,曲线C2的极 坐标方程化为参数方程后求解. (1)由曲线C1的参数方程可得曲线C1的普通方程为y= x2(x≠0),由曲线C2的极坐标方程可得曲线C2的直角坐标方 程为x+y-1=0,则曲线C2的参数方程为 x=-1- 2t, 2 2 y=2+ 2 t 得t2+ 2t-2=0,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修4—4 坐标系与参数方程真题试做1.(2012·上海高考,理10)如图,在极坐标系中,过点M(2,0)的直线l 与极轴的夹角α=π6.若将l 的极坐标方程写成 ρ=f(θ)的形式,则f(θ)=__________.2.(2012·北京高考,理9)直线⎩⎪⎨⎪⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数为__________.3.(2012·江西高考,理15)曲线C 的直角坐标方程为x2+y2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为__________.4.(2012·课标全国高考,理23)已知曲线C1的参数方程是⎩⎪⎨⎪⎧x =2cos φ,y =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为⎝⎛⎭⎫2,π3.(1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围. 5.(2012·辽宁高考,文23)在直角坐标系xOy 中,圆C1:x2+y2=4,圆C2:(x -2)2+y2=4. (1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示); (2)求圆C1与C2的公共弦的参数方程. 考向分析从近几年的高考情况看,该部分主要有三个考点:一是平面坐标系的伸缩变换;二是极坐标方程与直角坐标方程的互化;三是极坐标方程与参数方程的综合应用.对于平面坐标系的伸缩变换,主要是以平面直角坐标系和极坐标系为平台,考查伸缩变换公式的应用,试题设计大都是运用坐标法研究点的位置或研究几何图形的形状.对于极坐标方程与直角坐标方程的互化,是高考的重点和热点,涉及直线与圆的极坐标方程,从点与直线、直线与圆的位置关系等不同角度考查,研究求距离、最值、轨迹等常规问题.极坐标方程与参数方程的综合应用,主要是以直线、圆和圆锥曲线的参数方程为背景,转化为普通方程,从而进一步判断位置关系或进行有关距离、最值的运算.预计2013年高考中,本部分内容主要考查极坐标方程与直角坐标方程的互化、参数方程与普通方程的互化,考查简单曲线的极坐标方程和参数方程,试题多以填空题、解答题的形式呈现,属于中档题.热点例析热点一 平面坐标系的伸缩变换【例1】在同一平面直角坐标系中,将直线x -2y =2变成直线2x ′-y ′=4,求满足图象变换的伸缩变换.规律方法 1.平面坐标系的伸缩变换对图形的变化起到了一个压缩或拉伸的作用,如三角函数图象周期的变化.2.设点P(x ,y)是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下,点P(x ,y)对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.变式训练1 在同一平面直角坐标系中,经过伸缩变换⎩⎪⎨⎪⎧x ′=5x ,y ′=3y 后,曲线C 变为曲线2x ′2+8y ′2=1,则曲线C 的方程为( ).A .50x2+72y2=1B .9x2+100y2=1C .25x2+36y2=1D .225x2+89y2=1热点二 极坐标方程与直角坐标方程的互化【例2】在极坐标系中,已知圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a =0相切,求实数a 的值.规律方法 1.直角坐标和极坐标的互化 把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两个坐标系中取相同的长度单位,设M 是平面内任意一点,它的直角坐标是(x ,y),极坐标是(ρ,θ),则 x =ρcos θ,y =ρsin θ且ρ2=x2+y2,tan θ=yx (x≠0).这就是直角坐标和极坐标的互化公式.2.曲线的极坐标方程的概念:在极坐标系中,如果平面曲线C 上任意一点的极坐标至少有一个满足方程f(ρ,θ)=0,并且坐标适合f(ρ,θ)=0的点都在曲线C 上,那么方程f(ρ,θ)=0就叫做曲线C 的极坐标方程.变式训练2 圆O1和圆O2的极坐标方程分别为ρ=4cos θ,ρ=-sin θ. (1)把圆O1和圆O2的极坐标方程化为直角坐标方程; (2)求经过圆O1,圆O2两个交点的直线的直角坐标方程. 热点三 参数方程与普通方程的互化 【例3】把下列参数方程化为普通方程.(1)⎩⎪⎨⎪⎧x =3+cos θ,y =2-sin θ; (2)⎩⎪⎨⎪⎧x =1+12t ,y =5+32t.规律方法 1.参数方程部分,重点还是参数方程与普通方程的互化,主要是将参数方程消去参数化为普通方程.2.参数方程与普通方程的互化:参数方程化为普通方程的过程就是消参过程,常见方法有三种: ①代入法:首先利用解方程的技巧求出参数t ,然后代入消去参数; ②三角法:利用三角恒等式消去参数; ③整体消元法:根据参数方程本身的结构特征,从整体上消去参数.化参数方程为普通方程F(x ,y)=0:在消参过程中注意变量x ,y 取值范围的一致性,必须根据参数的取值范围,确定f(t)和g(t)的值域即x ,y 的取值范围.变式训练3 把下列参数方程化为普通方程,并说明它们各表示什么曲线.(1)⎩⎪⎨⎪⎧x =1+12t ,y =2+32t(t 为参数);(2)⎩⎪⎨⎪⎧x =4sin θ+1,y =5cos θ(θ为参数). 热点四 极坐标方程与参数方程的综合应用【例4】在平面直角坐标系xOy 中,已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =sin α(α为参数).以直角坐标系原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=2 2.点P 为曲线C 上的动点,求点P 到直线l 距离的最大值.规律方法 如果直接由曲线的极坐标方程看不出曲线是什么图形,往往先将曲线的极坐标方程化为相应的直角坐标方程,然后再通过直角坐标方程判断出曲线是什么图形.变式训练4 在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数). (1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.1.(2012·安徽安庆二模,4)以平面直角坐标系的原点为极点,以x 轴的正半轴为极轴,建立极坐标系,则曲线⎩⎨⎧x =7cos φ,y =7sin φ(φ为参数,φ∈R)上的点到曲线ρcos θ+ρsin θ=4(ρ,θ∈R) 的最短距离是( ).A .0B .22-7C .1D .2 22.设直线的参数方程为⎩⎪⎨⎪⎧x =2+12t ,y =3+32t(t 为参数),则其斜截式方程为__________.3.(2012·广东梅州中学三模,15)在极坐标系中,若过点A(3,0)且与极轴垂直的直线交曲线ρ=4cos θ于A ,B 两点,则|AB|=__________.4.(2012·北京丰台区三月模拟,11)在平面直角坐标系xOy 中,直线l 的参数方程是⎩⎪⎨⎪⎧x =1+32t ,y =12t(t 为参数).以O 为极点,x 轴正方向为极轴的极坐标系中,圆C 的极坐标方程是ρ2-4ρcos θ+3=0.则圆心到直线的距离是__________.5.在平面直角坐标系xOy 中,判断曲线C :⎩⎪⎨⎪⎧ x =2cos θ,y =sin θ(θ为参数)与直线l :⎩⎪⎨⎪⎧x =1+2t ,y =1-t (t 为参数)是否有公共点,并证明你的结论.6.(2012·江苏镇江5月模拟,21)已知椭圆C 的极坐标方程为ρ2=123cos2θ+4sin2θ,点F1,F2为其左、右焦点,直线l 的参数方程为⎩⎪⎨⎪⎧x =2+22t ,y =22t(t 为参数,t ∈R).求点F1,F2到直线l 的距离之和.7.(2012·吉林长春实验中学模拟,23)已知圆C 的方程为x2+y2-2x =0,直线l 的参数方程为⎩⎨⎧x =t ,y =-23+3t(t 为参数).(1)设y =sin θ,求圆C 的参数方程;(2)直线l 与圆C 交于A ,B 两点,求线段AB 的长. 参考答案 命题调研·明晰考向 真题试做1.1sin ⎝⎛⎭⎫π6-θ2.2 3.ρ=2cos θ 4.解:(1)由已知可得A ⎝⎛⎭⎫2cos π3,2sin π3,B ⎝⎛⎭⎫2cos ⎝⎛⎭⎫π3+π2,2sin ⎝⎛⎭⎫π3+π2,C ⎝⎛⎭⎫2cos ⎝⎛⎭⎫π3+π,2sin ⎝⎛⎭⎫π3+π,D ⎝⎛⎭⎫2cos ⎝⎛⎭⎫π3+3π2,2sin ⎝⎛⎭⎫π3+3π2, 即A(1,3),B(-3,1),C(-1,-3),D(3,-1).(2)设P(2cos φ,3sin φ),令S =|PA|2+|PB|2+|PC|2+|PD|2, 则S =16cos2φ+36sin2φ+16=32+20sin2φ. 因为0≤sin2φ≤1,所以S 的取值范围是[32,52].5.解:(1)圆C1的极坐标方程为ρ=2, 圆C2的极坐标方程为ρ=4cos θ.解⎩⎪⎨⎪⎧ρ=2,ρ=4cos θ,得ρ=2,θ=±π3, 故圆C1与圆C2交点的坐标为⎝⎛⎭⎫2,π3,⎝⎛⎭⎫2,-π3.注:极坐标系下点的表示不唯一.(2)解法一:由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,得圆C1与C2交点的直角坐标分别为(1,3),(1,-3).故圆C1与C2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =t ,-3≤t≤ 3.(或参数方程写成⎩⎪⎨⎪⎧x =1,y =y ,-3≤y≤3)解法二:将x =1代入⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,得ρcos θ=1,从而ρ=1cos θ.于是圆C1与C2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =tan θ,-π3≤θ≤π3.精要例析·聚焦热点热点例析【例1】解:设变换为⎩⎪⎨⎪⎧x ′=λx ,y ′=μy ,代入第二个方程,得2λx -μy =4与x -2y =2比较,将其变成2x -4y =4,比较系数得λ=1,μ=4.则伸缩变换公式为⎩⎪⎨⎪⎧x ′=x ,y ′=4y ,即直线x -2y =2图象上所有点的横坐标不变,纵坐标扩大到原来的4倍可得到直线2x ′-y ′=4.【变式训练1】A【例2】解:将极坐标方程化为直角坐标方程,得圆的方程x2+y2=2x ,即(x -1)2+y2=1, 直线的方程为3x +4y +a =0.由题设知,圆心(1,0)到直线的距离为1,即有|3×1+4×0+a|32+42=1,解得a =-8,或a =2.故a 的值为-8或2.【变式训练2】解:(1)因为圆O1和圆O2的极坐标方程分别为 ρ=4cos θ,ρ=-sin θ,又因为ρ2=x2+y2,ρcos θ=x ,ρsin θ=y , 所以由ρ=4cos θ,ρ=-sin θ得, ρ2=4ρcos θ,ρ2=-ρsin θ.即x2+y2-4x =0,x2+y2+y =0.所以圆O1和圆O2的直角坐标方程分别为 x2+y2-4x =0,x2+y2+y =0.(2)由(1)易得,经过圆O1和圆O2两个交点的直线的直角坐标方程为4x +y =0.【例3】解:(1)由已知可得⎩⎪⎨⎪⎧cos θ=x -3,sin θ=2-y.由三角恒等式cos2θ+sin2θ=1,可知(x -3)2+(y -2)2=1,这就是它的普通方程.(2)由已知,得t =2x -2,代入y =5+32t 中,得y =5+32(2x -2), 即3x -y +5-3=0就是它的普通方程.【变式训练3】解:(1)由x =1+12t ,得t =2x -2. ∴y =2+32(2x -2).∴3x -y +2-3=0,此方程表示直线.(2)由⎩⎪⎨⎪⎧x =4sin θ+1,y =5cos θ,得⎩⎨⎧sin θ=x -14,cos θ=y5,两式平方并相加,得(x -1)216+y225=1,此方程表示椭圆.【例4】解:ρcos ⎝⎛⎭⎫θ-π4=22化简为ρcos θ+ρsin θ=4,则直线l 的直角坐标方程为x +y =4.设点P 的坐标为(2cos α,sin α),得P 到直线l 的距离d =|2cos α+sin α-4|2,即d =|5sin(α+φ)-4|2,其中cos φ=15,sin φ=25.当sin(α+φ)=-1时,dmax =22+102.【变式训练4】解:(1)把极坐标系中的点P ⎝⎛⎭⎫4,π2化为直角坐标,得P(0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上. (2)因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α),从而点Q 到直线l 的距离是 d =|3cos α-sin α+4|2=2cos ⎝⎛⎭⎫α+π6+42=2cos⎝⎛⎭⎫α+π6+22,由此得,当cos ⎝⎛⎭⎫α+π6=-1时,d 取得最小值,且最小值为 2.创新模拟·预测演练1.B 2.y =3x +3-23 3.23 4.12 5.解:无公共点.理由如下: 直线l 的普通方程为x +2y -3=0.把曲线C 的参数方程代入l 的方程x +2y -3=0, 得2cos θ+2sin θ-3=0,即2sin ⎝⎛⎭⎫θ+π4=32.因为2sin ⎝⎛⎭⎫θ+π4∈[-2,2],而32∉[-2,2]. 所以方程2sin ⎝⎛⎭⎫θ+π4=32无解.即曲线C 与直线l 没有公共点.6.解:直线l 的普通方程为y =x -2; 曲线C 的普通方程为x24+y23=1. ∵F1(-1,0),F2(1,0), ∴点F1到直线l 的距离 d1=|-1-0-2|2=322,点F2到直线l 的距离 d2=|1-0-2|2=22,∴d1+d2=2 2.7.解:(1)将y =sin θ代入(x -1)2+y2=1中,得x =cos θ+1.因此圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ+1,y =sin θ(θ为参数).(2)将直线⎩⎨⎧x =t ,y =-23+3t化为⎩⎪⎨⎪⎧x =12t ′,y =-23+32t ′,代入x2+y2-2x =0中,得t ′2-7t ′+12=0,解得t1′=3,t2′=4.|AB|=|t1′-t2′|=1.。

相关文档
最新文档