湖南省衡阳市衡阳县清潭中学八年级数学下学期期中模拟试题(含解析) 湘教版
湘教版数学八年级下册 期中模拟测试卷(一)附答案
两 人 之 间 的 距 离 与 所 经 时 间 的 关 系 .若 乙 的 速 度 为 每 秒1.5 m,则 经 过40
s,甲自 A 点移动了
()
A.60 m C.67.2 m
B.61.8 m D.69 m
二 、填 空 题 (每 小 题 4 分 ,共 32 分 )
11.若17,a,15是一组勾股数,且a 为最短边,则a=
21.(10分)如图,D 是 △ABC 的边AB 上一点,CN ∥AB,DN 交 AC 于 点 M ,已知 MA=MC. (1)求证:CD =AN ; (2)若 AC⊥DN ,∠CAN =30°,MN =1,求四边形 ADCN 的面积.
23.(10 分)(2019 山 东 滨 州)如 图,在 矩 形 ABCD 中,点 E 在 边CD 上,将 △BCE 沿BE 折叠,点 C 落 在 AD 边 上 的 点F 处,过 点 F 作FG∥CD 交BE 于点G,连接 CG. (1)求证:四边形 CEFG 是菱形; (2)若 AB=6,AD =10,求四边形 CEFG 的面积.
E A
D
B
C
22.(10分)如图,在正方形 ABCD 中,E 是 对 角 线BD 上 的 点,求 证:AE= CE.
24.(12分)(2018·江苏泗阳)某班学生的期中成绩(成绩 为 整 数)的 频 数 分 布 表 如 下 所 示 ,请 根 据 表 中 提 供 的 信 息 回 答 下 列 问 题 :
.
12.如图,在 ▱ABCD 中,AC =8,BD =6,AD =a,则 a 的 取 值 范 围 是
.
13.已知 a,b,c 为 △ABC 的 三 边 长,且 满 足 c2-a2-b2 +|a-b|=0,则
△ABC 是
湘教版八年级数学下册期中测试卷附答案
湘教版八年级数学下册第二学期期中测试卷一、选择题(每题3分,共24分)1.在Rt△ABC中,∠C=90°,∠B=40°,则∠A的度数是() A.60°B.30°C.50°D.40°2.下列图形既是轴对称图形又是中心对称图形的是()3.一个多边形的内角和是720°,则这个多边形的边数是()A.6 B.7 C.8 D.94.如图,在Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,若CD=3 cm,则下列说法正确的是()A.AC=3 cm B.BC=6 cmC.AB=6 cm D.AC=AD=3 cm5.已知平行四边形ABCD的周长为20,且AB∶BC=2∶3,则CD的长为() A.4 B.5 C.6 D.86.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别是AB,AC,AD的中点,若BC=2,则EF的长度为()A.12B.1C.32D. 37.如图,在∠AOB中,以点O为圆心,任意长为半径作弧,交射线OA于点C,交射线OB于点D,再分别以C,D为圆心,OC的长为半径作弧,两弧在∠AOB的内部交于点E,作射线OE,若OC=10,OE=16,则C,D两点之间距离为()A.10 B.12C.13 D.8 38.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD 于点F,连接EF,AP.给出下列5个结论:①AP=EF;②AP⊥EF;③△APD 一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中正确的结论有()A.2个B.3个C.4个D.5个二、填空题(每题4分,共32分)9.正五边形每个外角的大小是________度.10.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长CA,CB到点M,N,使AM=AC,BN=BC,测得MN=200 m,则A,B间的距离为________m.11.矩形、菱形、正方形的对角线都具有的性质是______________.12.如图,一根竹子高10尺,折断后竹子顶端落在离竹子底端3尺处,折断处离地的高度是________尺.13.如图,矩形ABCD的对角线AC和BD相交于点O,∠ADB=30°,AB=4,则OC=________.14.如图,在△ABC中,AB=6 cm,BC=7 cm,AC=5 cm,D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长等于________cm.15.在△ABC中,如果AB=5,AC=4,BC边上的高线AD=3,那么BC的长为______________.16.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为________.三、解答题(17,18题每题7分,24题10分,其余每题8分,共64分)17.如图,在Rt△ABC中,∠BAC=90°,AD是BC边上的中线,ED⊥BC于D,交BA的延长线于点E,若∠E=35°,求∠BDA的度数.18.如图,在正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点都在格点上.(1)求AB,AC,BC的长;(2)判断△ABC的形状,并说明理由.19.如图,在平行四边形ABCD中,AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.20.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B,F为圆心,大于12BF的长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)根据条件与作图信息知四边形ABEF是________;A.非特殊的平行四边形B.矩形C.菱形D.正方形(2)设AE与BF相交于点O,若四边形ABEF的周长为16,BF=4,求AE的长和∠C的度数.21.如图,在△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE ⊥AB于点E.(1)求∠EDA的度数;(2)若AB=10,AC=8,DE=3,求S△ABC.22.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)证明:四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.23.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于点D,CE ⊥DE于点E.(1)若B,C在直线DE的同侧(如图①所示),且AD=CE.求证:AB⊥AC;(2)若B,C在直线DE的两侧(如图②所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若垂直,请给出证明;若不垂直,请说明理由.24.如图,已知四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)若AB=2,CE=2,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.答案一、1.C 2.D3.A 点拨:设这个多边形的边数为n ,则(n -2)×180°=720°,解得n =6,故这个多边形的边数是6.4.C 5.A6.B 点拨:∵∠ACB =90°,∠A =30°,∴AB =2BC =4,又∵D 是AB 的中点,∴CD =12AB =2.∵E ,F 分别是AC ,AD 的中点,∴EF 为△ACD 的中位线,∴EF =12CD =1.7.B 点拨:如图,连接CD 交OE 于点F ,连接DE ,CE ,由作图过程可知OC =OD =DE =CE ,∴四边形ODEC 是菱形.∴OE ⊥CD ,OF =FE =12OE =8,∵OC =10,∴CF =DF =102-82=6,∴CD =2CF =12.8.C二、9.7210.10011.对角线互相平分12.912013.414.11 点拨:∵D ,E 分别是AB ,BC 的中点,∴DE ∥AC ,DE =12AC =2.5 cm ,同理可得EF ∥AB ,EF =12AB =3 cm ,∴四边形ADEF 是平行四边形,∴四边形ADEF 的周长=2×(2.5+3)=11(cm).15.4+7或4-7 点拨:如图①,当点D 落在BC 上时,∵AB =5,AD =3,AC =4,AD ⊥BC ,∴BD =AB 2-AD 2=4,CD =AC 2-AD 2=7,则BC =BD +CD =4+7.如图②,当点D 落在BC 的延长线上时,∵AB =5,AD =3,AC =4,AD ⊥BC ,∴BD =AB 2-AD 2=4,CD =AC 2-AD 2=7,则BC =BD -CD =4-7. 综上所述,BC 的长为4+7或4-7.16.72 点拨:∵CE =5,△CEF 的周长为18,∴CF +EF =18-5=13.∵F 为DE的中点,∴DF =EF .又四边形ABCD 是正方形,∴∠BCD =90°,∴CF =12DE=DF ,∴DE =EF +DF =EF +CF =13,∴CD =DE 2-CE 2=132-52=12.∵四边形ABCD 是正方形,∴BC =CD =12,O 为BD 的中点,∴OF 是△BDE的中位线,∴OF =12(BC -CE )=12×(12-5)=72.三、17.解:∵ED ⊥BC ,∴∠BDE =90°,又∵∠E =35°,∴∠B =55°.∵∠BAC =90°,AD 是BC 边上的中线,∴DA =DB ,∴∠B =∠DAB =55°,∴∠BDA =180°-55°-55°=70°.18.解:(1)根据勾股定理,得AB =5,AC =5,BC =10.(2)△ABC 是等腰直角三角形.理由如下:∵AB 2+AC 2=5+5=10=BC 2,∴△ABC 是直角三角形.∵AB =AC ,∴△ABC 是等腰直角三角形.19.(1)证明:∵在△ABC中,AB=6,BC=8,AC=10,∴62+82=102,即AB2+BC2=AC2,∴△ABC是直角三角形,∠ABC=90°,∵四边形ABCD是平行四边形,∴四边形ABCD是矩形.(2)解:由(1)知四边形ABCD是矩形,∴BD=AC.又∵AC=10,∴BD=10.20.解:(1)C(2)易知AE⊥BF,OB=OF,AO=EO,BE=EF,AB∥EF.∵BF=4,∴OB=12BF=2.∵四边形ABEF的周长为16,四边形ABEF是菱形,∴BE=4.在Rt△OBE中,根据勾股定理,得OE=2 3,∴AE=2OE=4 3.∵BE=BF=EF=4,∴△BEF是等边三角形,∴∠FEB=60°.∵四边形ABCD是平行四边形,∴AB∥CD.∵AB∥EF,∴CD∥EF,∴∠C=∠BEF=60°.21.解:(1)∵在△ABC中,∠B=50°,∠C=70°,∴∠BAC=180°-∠B-∠C=180°-50°-70°=60°.∵AD是△ABC的角平分线,∴∠BAD=12∠BAC=12×60°=30°.∵DE⊥AB,∴∠DEA=90°,∴∠EDA=180°-∠BAD-∠DEA=180°-30°-90°=60°.(2)如图,过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=3,又∵AB=10,AC=8,∴S△ABC =12AB·DE+12AC·DF=12×10×3+12×8×3=27.22.(1)证明:∵AF ∥BC ,∴∠AFE =∠DBE .∵E 是AD 的中点,∴AE =DE ,在△AFE 和△DBE 中,⎩⎨⎧∠AFE =∠DBE ,∠FEA =∠BED ,AE =DE ,∴△AFE ≌△DBE . ∴AF =DB .∵D 是BC 的中点,∴DB =DC ,∴AF =CD ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,∴AD =DC =12BC ,∴四边形ADCF 是菱形.(2)解:如图,连接DF ,∵AF ∥BC ,且由(1)知AF =BD ,∴四边形ABDF 是平行四边形,∴DF =AB =5,∴S 菱形ADCF =12AC ·DF =12×4×5=10.23.(1)证明:∵BD ⊥DE ,CE ⊥DE ,∴∠ADB =∠AEC =90°.在Rt △ABD 和Rt △CAE 中,⎩⎨⎧AB =CA ,AD =CE ,∴Rt △ABD ≌Rt △CAE .∴∠DBA =∠CAE .∵∠DAB +∠DBA =90°,∴∠BAD +∠CAE =90°. ∴∠BAC =180°-(∠BAD +∠CAE )=90°.∴AB ⊥AC .(2)解:AB ⊥AC .证明:同(1)可证得Rt △ABD ≌Rt △CAE .∴∠DAB =∠ECA .∵∠CAE +∠ECA =90°,∴∠CAE +∠BAD =90°,即∠BAC =90°,∴AB ⊥AC .24.(1)证明:过点E 作EP ⊥CD 于点P ,EQ ⊥BC 于点Q .∵四边形ABCD 为正方形,∴∠DCA =∠BCA ,∴EQ =EP .由题易知∠QEF +∠FEC =45°,∠PED +∠FEC =45°,∴∠QEF =∠PED .在△EQF 和△EPD 中,⎩⎨⎧∠QEF =∠PED ,EQ =EP ,∠EQF =∠EPD =90°,∴△EQF ≌△EPD ,∴EF =ED ,∴矩形DEFG 是正方形.(2)解:由题意知AC =2 2.∵CE =2,∴AE = 2. ∴AE =CE .∴点F 与点C 重合,此时△DCG 是等腰直角三角形,易知CG = 2.(3)解:∠EFC =120°或30°.。
【湘教版】八年级数学下期中模拟试题(及答案)
一、选择题1.把点()P x,y 绕原点顺时针旋转270°,点P 的对应点的坐标是( )A .(),y x -B .(),x y --C .(),y x -D .(),x y 2.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D . 3.一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA 与边FE 重合,顶点B 、C 、D 在一条直线上).将三角尺DEF 绕着点F 按逆时针方向旋转n °后(0<n <180 ),如果BA ∥DE ,那么n 的值是( )A .105B .95C .90D .754.如图,在ABC 中,70,30B BAC ∠=︒∠=︒,将ABC 绕点C 顺时针旋转得到,EDC 当点B 的对应点D 恰好落在AC 上时,连接,AE 则AED ∠的度数为( )A .40B .35C .25D .20 5.如图,有理数a 在数轴上的位置如图所示,下列各数中,大小一定在0至1之间的是( )A .aB .1a +C .1-aD .1a- 6.运行程序如图所示,规定从“输入一个值x ”到“结果是否95>”为一次程序操作,如果程序操作进行了两次才停止,那么x 的取值范围是()A .23x >B .2347x <≤C .1123x ≤<D .47x ≤ 7.如果a <b ,那么下列不等式中错误的是( )A .a ﹣b <0B .a ﹣1<b ﹣1C .2a <2bD .﹣3a <﹣3b 8.在方程组2122x y m x y +=-⎧⎨+=⎩中,若未知数x y ,满足0x y ->,则m 的取值范围是( ) A .1m >- B .1m <- C .1m ≥- D .1m ≤- 9.如图,平面直角坐标系中,O 是坐标原点,点A (3,2),点P (m ,0),若△POA 是等腰三角形,则m 可取的值最多有( )A .2个B .3个C .4个D .5个 10.下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是( ) A .8,10,12 B .3,4,5 C .5,12,13 D .7,24,25 11.如图,ABC 中,D 、E 为线段BE 上两点,且AC DC =,BA BE =,若52DAE BAC ∠=∠,则DAE ∠的度数为( )A .40︒B .45︒C .50︒D .60︒12.如图,ABC 中,AB AC =,BD DC =,若80BAC ∠=︒,AD AE =,则CDE ∠的度数为( )A .40°B .30°C .20°D .10°二、填空题13.如图①,O 为直线AB 上一点,作射线OC ,使60BOC ∠=︒,将一个直角三角尺如图摆放,直角顶点在点O 处,一条直角边OP 在射线OA 上.将图①中的三角尺绕点O 以每秒10°的速度按逆时针方向旋转(如图②所示),在旋转一周的过程中,第t 秒时,OQ 所在直线恰好平分AOC ∠,则t 的值为_______.14.如图,将△AOB 绕点O 按逆时针方向旋转50°后得到△COD ,如果∠AOB =15°,那么∠AOD 的度数为_____.15.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.16.不等式组2x a x >⎧⎨>⎩的解为2x >,则a 的取值范围是______. 17.不等式组()2231117232x x x x ⎧+>-⎪⎨-≤-⎪⎩的解为_____.18.如图,△ACD 是等边三角形,若AB =DE ,BC =AE ,∠E =115°,则∠BAE =_____°.19.如图,在ABC 中,线段AB 的垂直平分线交AC 于点D ,连接BD ,若80C ∠=︒,40CBD ∠=︒,则A ∠的度数为_____°.20.已知:如图,在△ABC 中CD 交AB 边于点D ,直线DE 平分BDC ∠且与直线BE 相交于点E ,2BDC A ∠=∠,3E ∠=∠.求证://CD EB证明:理由如下: DE 平分,BDC ∠(已知)_____ 2.∴=∠2,BDC A ∠=∠(已知)2,A ∴∠=∠(等量代换)____//____,______________,______________)∴(____3,______________,______________)∴=∠(又3,E ∠=∠(已知)________.∴=(等量代换)//____,______________,______________)CD ∴(三、解答题21.如图,在平面直角坐标系中,已知ABC 的三个顶点坐标分別是()2,1A -,()1,2B -,()3,3C -(1)将ABC 向上平移4个单位长度得到111A B C △,请画出111A B C △;(2)请画出与ABC 关于y 轴对称的222A B C △;(3)请写出1A 、2A 的坐标.22.如图,D 为ABC 内一点,AB AC =,50BAC ∠=︒,将AD 绕着点A 顺时针旋转50︒能与线段AE 重合.(1)求证:EB DC =;(2)若115ADC ∠=︒,求BED ∠的度数.23.抗击新型冠状肺炎疫情期间,84消毒液和酒精都是重要的防护物资.某药房根据实际需要采购了一批84消毒液和酒精,共花费11500元,84消毒液和酒精的进价和售价如下: 84消毒液 酒精进价(元/瓶) 25 20售价(元/瓶) 4028 6100元,则84消毒液和酒精各销售了多少瓶?(2)随着疫情的发展,该药房打算再次采购一批84消毒液和酒精,第二次采购仍以原价购进84消毒液和酒精,购进84消毒液的数量不变,而购进酒精的数量是第一次采购数量的2倍,84消毒液按原价出售,而酒精打折让利出售.若该药房将84消毒液和酒精全部销售完,要使第二次的销售获利不少于4900元,则每瓶酒精最多打几折?24.某通讯公司推出一款针对手机用户的5G 收费套餐(包括上网流量费和语音通话费两部分).套餐的收费方式是:上网流量费固定;通话时间不超过200分钟时,免收语音通话费;通话时间超过200分钟时,超过部分按每分钟0.25元收取语音通话费.套餐收费y (元)与当月语音通话时间x (分钟)之间的关系如图所示.(1)套餐的上网流量费是多少元?(2)请写出通话时间超过200分钟时,y 关于x 的函数表达式.(3)若要使套餐费用不超过165元,则当月最多能通话多少分钟?25.如图,在ABC 中,BD 平分,ABC FC ∠与BD 相交于点H ,34180∠+∠=︒,(1)试说明12∠=∠的理由;(2)若FG AC 与点G ,70A ∠=︒,求ACB ∠的度数.26.如图,点A 、B 、C 在同一直线上,在这条直线同侧作等边△ABD 和等边△BCE ,连结AE 和CD ,交点为M ,AE 交BD 于点P ,CD 交BE 于点Q 连结PQ .(1)求证:△ABE ≌△DBC ;(2)求∠AMC 的度数;(3)求证:△PBQ 是等边三角形【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据旋转中心为点O ,旋转方向顺时针,旋转角度270°,作出点P 的对应点P′,可得所求点的坐标.【详解】解:设P (x ,y )在第一象限,作PA ⊥x 轴于点A .作P'B ⊥x 轴于点B .∵点()P x,y 绕原点顺时针旋转270°,∴∠90P OP '=︒∴90P OB POA '∠+∠=︒∵90P POA ∠+∠=︒∴∠P P OB '=∠在△OAP 和△OBP'中,90PAO P BO P BOP OP OP ∠∠'︒⎧⎪∠∠'⎨⎪'⎩====, ∴△OAP ≌△P'BO ,∴OB=PA=y ,P'B=OA=x ,∵点()P x,y 绕原点顺时针旋转270°,则P'的坐标是(-y ,x ).故选:C .【点睛】本题考查了坐标与图形的旋转,全等三角形的判定与性质,正确的作出图形是解题的关键.2.B解析:B【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】A 、不是中心对称图形,是轴对称图形,不符合题意;B 、是中心对称图形,但不是轴对称图形,符合题意;C 、既是中心对称图形,又是轴对称图形,不符合题意;D 、不是中心对称图形,是轴对称图形,不符合题意;故选:B .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后和原图形重合. 3.A解析:A【分析】画出图形求解即可.【详解】解:∵三角尺DEF绕着点F按逆时针方向旋转n°后(0<n<180 ),BA∥DE,∴旋转角=90°+45°﹣30°=105°,故选:A.【点睛】本题考查了旋转变换,平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.4.D解析:D【分析】由三角形内角和定理可得∠ACB=80°,由旋转的性质可得∠ACE=∠ACB=80°,AC=CE,∠BAC=∠CED=30°,由等腰三角形的性质得到∠AEC=50°,由角的和差即可求解.【详解】解:∵∠B=70°,∠BAC=30°,∴∠ACB=80°,∵将△ABC绕点C顺时针旋转得△EDC,∴∠ACE=∠ACB=80°,AC=CE,∠BAC=∠CED=30°,∴∠CEA=50°,∴∠AED=∠AEC-∠CED=20°,故选:D.【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.第II卷(非选择题)请点击修改第II卷的文字说明5.D解析:D【分析】由已知可得a<-1或a<-2,由此可以判断每个选项是正确还是错误.【详解】解:由绝对值的意义及已知条件可知|a|>1,∴A错误;∵a<-1,∴a+1<0,∴B错误;∵a<-2有可能成立,此时|a|>2,|a|-1>1,∴C错误;由a<-1可知-a>1,因此101a<-<,∴D正确.【点睛】本题考查有理数的应用,熟练掌握有理数在数轴上的表示、绝对值、倒数及不等式的性质是解题关键.6.B解析:B【分析】根据运行程序,第一次运算结果小于等于95,第二次运算结果大于95列出不等式组,然后求解即可.【详解】解:由题意得,()2195221195x x +≤⎧⎪⎨++⎪⎩①>② 解不等式①得,47x ≤,解不等式②得,23x >,∴2347x ≤<,故选:B .【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.7.D解析:D【分析】根据不等式的性质解答即可.【详解】解:A 、由a <b 移项得到:a ﹣b <0,故本选项不符合题意.B 、由a <b 的两边同时减去1得到:a ﹣1<b ﹣1,故本选项不符合题意.C 、由a <b 的两边同时乘以2得到:2a <2b ,故本选项不符合题意.D 、由a <b 的两边同时乘以﹣3得到:﹣3a >﹣3b ,故本选项符合题意.故选:D .【点睛】本题考查不等式的性质,在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.8.B解析:B【分析】将方程组中两方程相减,便可得到关于x y -的方程,再根据0x y ->,即可求出m 的取值范围.2122x y m x y +=-⎧⎨+=⎩①②, ①-②得,()()()2212x y x y m +-+=--,即1x y m -=--,∵0x y ->,∴10m -->,解得:1m <-,故选:B .【点睛】本题考查了解二元一次方程组和解一元一次不等式,要注意0x y ->,则解出x ,y 关于m 的式子,最终求出m 的取值范围.9.C解析:C【分析】分两种情况分析:①以点OP 为底,②OP 为腰,讨论点P 的个数,再求出m 的值即可.【详解】解:由点P (m ,0)知点P 在x 轴上,分两种情况:当OP 为底时,以A 点为圆心OA 为半径画圆,交x 轴于点P ,以OA=AP 为腰,点P 的坐标为m=2×3=6,当OP 为腰时,以O 为圆心,OA 长为半径,画圆交x 轴于两点P ,点P 在y 轴左侧或右侧,OP=OA=222313+=,∴m=13±,点P 在y 轴右侧,以OA 为底,作AO 的垂直平分线交x 轴与P ,过A 作AB ⊥x 轴,OP=AP=()2223m +-,则m=()2223m +-,解得m=136,综上,共有4个点P ,即m 有4个值,【点睛】本题考察等腰三角形的性质,解题时分两种情况进行讨论,注意以点A、O为顶角顶点时应以点为圆心画弧线,避免有遗漏.10.A解析:A【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角来判定即可.【详解】解:A、∵82+102≠122,∴三条线段不能组成直角三角形,故A选项符合题意;B、∵32+42=52,∴三条线段能组成直角三角形,故B选项不符合题意;C、∵52+122=132,∴三条线段能组成直角三角形,故C选项不符合题意;D、∵72+242=252,∴三条线段能组成直角三角形,故D选项不符合题意;故选:A.【点睛】本题考查的是勾股定理逆定理,解题的关键是掌握勾股定理逆定理以及准确计算.11.A解析:A【分析】根据等腰三角形的性质可得出∠BAE=∠BEA,∠ADC=∠DAC,然后分别用外角的知识表示出这个关系,进而结合5∠DAE=2∠BAC可得出∠DAE的值.【详解】解:∵AC=DC,BA=BE,∴∠DAE+∠EAC=∠ADE=∠B+∠BAD①,∠EAD+∠BAD=∠AED=∠C+∠EAC②,①+②可得:∠DAE+∠EAC+∠EAD+∠BAD=∠B+∠BAD+∠C+∠EAC,整理,得∠DAE+∠BAC=180°﹣∠DAE,又5∠DAE=2∠BAC,设∠DAE=2x,则∠BAC=5x,上式即为2x+5x=180°-2x,解得:x=20°,即∠DAE=40°.故选:A.【点睛】本题考查等腰三角形的性质及三角形的内角和定理,有一定的难度,解答本题需用到等腰三角形的两底角相等、三角形的内角和等于180°.12.C解析:C【分析】根据已知可求得∠DAC及∠ADE的度数,根据∠CDE=90°-∠ADE即可得到答案.解:∵AB =AC ,BD=DC∴ AD ⊥BC (等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合) ∴∠ADC=90°,∵∠BAC =80°,∴∠BAD =∠DAC = 80°÷2=40° (等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合),∵AD =AE ,∴∠ADE =( 180°−40°)÷2=70° ,∴∠CDE =∠ADC-∠ADE=90°-70°=20°,故答案为:C.【点睛】本题主要考查了等腰三角形的性质,三角形内角和定理,掌握等腰三角形的性质,三角形内角和定理是解题的关键.二、填空题13.3或21【分析】过点O 作直线DE 平分∠AOC 根据及DE 平分∠AOC 求得∠AOE=∠BOD=当OQ 与OD 重合时所在直线恰好平分;当OQ 与OE 重合时所在直线恰好平分式求值即可【详解】过点O 作直线DE 平分解析:3或21【分析】过点O 作直线DE 平分∠AOC ,根据60BOC ∠=︒及DE 平分∠AOC ,求得∠AOE=∠BOD=60︒,当OQ 与OD 重合时,OQ 所在直线恰好平分AOC ∠,;当OQ 与OE 重合时,OQ 所在直线恰好平分AOC ∠,式求值即可.【详解】过点O 作直线DE 平分∠AOC ,如图,∵60BOC ∠=︒,∴120AOC ∠=︒∵DE 平分∠AOC ,∴∠AOE=∠BOD=60︒,当OQ 与OD 重合时,OQ 所在直线恰好平分AOC ∠,∴t=1809060310--=(秒); 当OQ 与OE 重合时,OQ 所在直线恰好平分AOC ∠, ∴36090602110t --==, 故答案为:3或21..【点睛】此题考查旋转角度计算,平分线的性质,有理数的混合运算,正确理解图形中旋转所得角度及OQ 所在的位置是解题的关键.14.65°【分析】首先根据旋转变换的性质求出∠AOC 的度数结合∠AOB =15°即可解决问题【详解】解:由题意及旋转变换的性质得:∠AOC =∠BOD =50°∵∠AOB =15°∴∠AOD =50°+15°=6解析:65°【分析】首先根据旋转变换的性质求出∠AOC 的度数,结合∠AOB =15°,即可解决问题.【详解】解:由题意及旋转变换的性质得:∠AOC =∠BOD =50°,∵∠AOB =15°,∴∠AOD =50°+15°=65°,故答案为:65°.【点睛】本题主要考查了旋转变换的性质及其应用问题,熟练掌握旋转的性质是解题的关键. 15.5或4【分析】先设长度为412的高分别是ab 边上的边c 上的高为h △ABC 的面积是S 根据三角形面积公式可求结合三角形三边的不等关系可得关于h 的不等式组解即可【详解】解:设长度为412的高分别是ab 边上解析:5或4.【分析】先设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求222,,412S S S a b c h ===,结合三角形三边的不等关系,可得关于h 的不等式组,解即可.【详解】解:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么 222,,412S S S a b c h===,又∵a-b <c <a+b , ∴2222412412S S S S c -<<+, 即2233S S S h <<, 解得3<h <6,∴h=4或h=5,故答案为:5或4.【点睛】本题考查了三角形面积、三角形三边之间的关系、解不等式组.求出整数值后,能根据三边关系列出不等式组是解题关键.16.【分析】根据不等式组的公共解集即可确定a 的取值范围【详解】由不等式组的解为可得故答案为:【点睛】本题主要考查了不等式组的解法关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大 解析:2a ≤【分析】根据不等式组的公共解集即可确定a 的取值范围.【详解】由不等式组2x a x >⎧⎨>⎩的解为2x >, 可得2a ≤.故答案为:2a ≤.【点睛】本题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.17.x≤4【分析】求出每个不等式的解集再根据找不等式组解集的规律找出即可【详解】解:解不等式①得x <5;解不等式②得x≤4;所以不等式组的解集为:x≤4【点睛】本题考查的知识点是不等式的性质解一元一次不解析:x≤4【分析】求出每个不等式的解集,再根据找不等式组解集的规律找出即可.【详解】解:()2231131722x x x x ⎧+>-⎪⎨-≤-⎪⎩①② 解不等式①得,x <5;解不等式②得,x≤4;所以,不等式组的解集为:x≤4.【点睛】本题考查的知识点是不等式的性质,解一元一次不等式组,解此题的关键是能根据不等式的解集找出不等式组的解集.18.125【分析】先证明得到再根据三角形内角和得到所求角中两角的和最后与等边三角形内角相加就得到结果【详解】解:是等边三角形在与中故答案为125【点睛】这道题考察的是等边三角形的性质全等三角形的判定和性 解析:125【分析】先证明ABC DEA ≌,得到BAC ADE ∠∠=,再根据三角形内角和得到所求角中两角的和BAC DAE ∠+∠,最后与等边三角形内角CAD ∠相加就得到结果.【详解】解:ACD 是等边三角形,AC AD ∴=,60CAD ∠︒=在ABC 与DEA 中, =⎧⎪=⎨⎪=⎩AB DE BC AE AC AD ABC DEA SSS ∴≌()BAC ADE ∴∠∠=18011565BAC DAE ADE DAE ∴∠+∠∠+∠︒-︒︒===6560125BAE BAC DAE CAD ∴∠∠+∠+∠︒+︒︒===故答案为125.【点睛】这道题考察的是等边三角形的性质,全等三角形的判定和性质,三角形内角和的概念.解题的关键在于熟练掌握这些相关知识点.19.30【分析】根据三角形的外角性质求出∠CDB 根据线段垂直平分线的性质得到DA=DB 根据等腰三角形的性质得到∠A=∠B 根据三角形的外角性质计算得到答案【详解】解:∵∠C=80°∠CBD=40°∴∠CD解析:30【分析】根据三角形的外角性质求出∠CDB ,根据线段垂直平分线的性质得到DA=DB ,根据等腰三角形的性质得到∠A=∠B ,根据三角形的外角性质计算,得到答案.【详解】解:∵∠C=80°,∠CBD=40°,∴∠CDB=180°-∠C-∠CBD=60°,∵线段AB 的垂直平分线交AC 于点D ,∴DA=DB ,∴∠A=∠DBA=12∠CDB=30°, 故答案为:30.【点睛】本题考查的是线段的垂直平分线的性质、三角形的外角性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.20.ACDE 同位角相等两直线平行;两直线平行内错角相等;;EB 内错角相等两直线平行【分析】由平分可得由可得可推出利用平行线性质可得由利用传递性可得利用判定定理可得【详解】证明:理由如下:平分(已知)(已解析:1∠,AC ,DE ,同位角相等,两直线平行;1∠,两直线平行,内错角相等;1∠,E ∠;EB,内错角相等,两直线平行【分析】由DE 平分,BDC ∠可得1 2.∠=∠由2,BDC A ∠=∠可得2,A ∠=∠可推出AC //DE,利用平行线性质可得13,∠=∠由3,E ∠=∠利用传递性可得1 E.∠=∠利用判定定理可得//BE CD .【详解】证明:理由如下:DE 平分,BDC ∠(已知)_1 2.∴∠=∠2,BDC A ∠=∠(已知)2,A ∴∠=∠(等量代换)AC //DE,∴(同位角相等,两直线平行)13,∴∠=∠(两直线平行,内错角相等)又3,E ∠=∠(已知)1 E.∴∠=∠(等量代换)//BE CD ∴(内错角相等,两直线平行).故答案为:1∠;AC DE,,同位角相等,两直线平行;1,∠两直线平行,内错角相等;1E ∠∠,;BE,内错角相等,两直线平行.【点睛】本题考查平行线的判定与性质,角分线性质,等量代换,熟练掌握平行线的判定与性质,角平分线性质是解题关键.三、解答题21.(1)见解析;(2)见解析;(3)1(2,3)A ,2(2,1)--A .【分析】(1)根据平移的性质先作出三角形三个顶点,然后连线作图;(2)根据轴对称的性质,先做出三角形三个顶点关于x 轴的对称点,然后连线作图; (3)根据图形写出相应的点的坐标【详解】解:(1)如图所示:111A B C △,即为所求:(2)如图所示:222A B C △,即为所求:(3)1(2,3)A ,2(2,1)--A .【点睛】本题考查平移及轴对称作图,认真审题,正确作出图形对应的顶点是解题关键. 22.(1)证明见解析,(2)50°.【分析】(1)证△AEB ≌△ADC 即可;(2)由全等可知∠AEB=∠ADC=115°,依据等腰三角形的性质求出∠AED 即可.【详解】解:(1)证明:由旋转可知,AE=AD ,∠EAD=∠BAC=50°,∴∠EAB=∠DAC ,∵AB=AC ,∴△AEB ≌△ADC ,∴EB DC =.(2)∵△AEB ≌△ADC ,∴∠AEB=∠ADC=115°,∵AE=AD ,∠EAD=50°,∴∠AED=18050652︒-=︒, ∠BED=115°-65°=50°.【点睛】本题考查了旋转的性质,等腰三角形的性质,全等三角形的判定与性质,解题关键是抓住旋转的性质,联系全等三角形、等腰三角形解题.23.(1)销售84消毒液300瓶,酒精200瓶;(2)每瓶酒精最多打7.5折.【分析】(1)设84消毒液和酒精各销售了x ,y 瓶,根据“销售完这批84消毒液和酒精后共获利6100元”列出二元一次方程组,即可求解;(2)设酒精打m 折,根据第二次的销售获利不少于4900元,列出不等式,即可得到答案.【详解】解:(1)设84消毒液和酒精各销售了x ,y 瓶,根据题意得:252011500(4025)(2820)6100x y x y +=⎧⎨-+-=⎩,解得:300200x y =⎧⎨=⎩, 答:销售84消毒液300瓶,酒精200瓶;(2)设酒精打m 折, 由题意得:3004020022830025200220490010m ⨯+⨯⨯⨯-⨯-⨯⨯≥, 解得:m≥7.5,答:每瓶酒精最多打7.5折.【点睛】本题主要考查二元一次方程组及一元一次不等式的实际应用,根据数量关系,列出方程组和不等式,是解题的关键.24.(1)100元;(2)y=0.25x+50;(3)460分钟【分析】(1)根据图像可直接得到结果;(2)求出通话400分钟时a 的值,再将通话200分钟时费用为100,再利用待定系数法求解;(3)令0.25x+50≤165,求出x 的范围即可.【详解】解:(1)由图像可知:套餐的上网流量费是100元;(2)当x=400时,y=100+(400-200)×0.25=150,设y 与x 的表达式为y=kx+b , 则100200150400k b k b =+⎧⎨=+⎩, 解得:0.2550k b =⎧⎨=⎩,∴y关于x的函数表达式为y=0.25x+50;(3)0.25x+50≤165,解得:x≤460,∴当月最多能通话460分钟.【点睛】本题考查了一次函数的实际应用,解题的关键是结合图像,理解题意,求出函数表达式.25.(1)见解析;(2)70°【分析】(1)求出∠3+∠FHD=180°,根据平行线的判定得出FG∥BD,根据平行线的性质得出∠1=∠ABD,根据角平分线的定义得出∠ABD=∠2即可.(2)根据FG⊥AC,求出∠1,可得∠2,从而得到∠ABC,利用三角形内角和得到∠ACB.【详解】解:(1)∵∠3+∠4=180°,∠FHD=∠4,∴∠3+∠FHD=180°,∴FG∥BD,∴∠1=∠ABD,∵BD平分∠ABC,∴∠ABD=∠2,∴∠1=∠2;(2)∵FG⊥AC,∠A=70°,∴∠1=90°-70°=20°,∴∠2=∠ABD=∠1=20°,∴∠ABC=∠2+∠ABD=40°,∵∠A+∠ABC+∠ACB=180°,∴∠ACB=180°-∠A-∠ABC=180°-70°-40°=70°.【点睛】本题考查了平行线的性质和判定和角平分线的定义,能灵活运用平行线的性质和判定定理进行推理是解此题的关键.26.(1)见解析;(2) 120°;(3) 见解析.【分析】(1)由等边三角形的性质得出AB=DB,∠ABD=∠CBE=60°,BE=BC,得出∠ABE=∠DBC,由SAS即可证出△ABE≌△DBC;(2)由全等三角形的性质可得∠BAE=∠BDC,由三角形外角的性质和三角形内角和可求AMC的度数;(3)由“ASA”可证△ABP≌△DBQ,可得BP=BQ,即可证△PBQ是等边三角形.【详解】解:(1)∵△ABD、△BCE为等边三角形,∴AB=DB,∠ABD=∠CBE=60°,BE=BC,∴∠ABE=∠DBC,∠PBQ=60°,在△ABE 和△DBC 中,AB DB ABE DBC BE BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DBC (SAS ),(2)∵△ABE ≌△DBC ,∴∠BAE=∠BDC ,∵∠BDC+∠ACD=∠ABD=60°∴∠BAE+∠ACD=60°∴∠AMC=180°-∠BAE-∠ACD=120°(3)在△ABP 和△DBQ 中,60BAE BDC AB DBABP DBQ ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ABP ≌△DBQ (ASA ),∴BP=BQ ,且∠PBQ=60°∴△BPQ 为等边三角形,【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,熟练运用全等三角形的判定和性质是本题的关键.。
湖南省衡阳市衡阳县清潭中学八年级数学下学期期中试题
湖南省衡阳市衡阳县清潭中学2014-2015学年八年级数学下学期期中试题一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个2.下列式子中,属于最简二次根式的是()A.B.C. D.3.下列各式计算正确的是()A.8﹣2=6 B.5+5=10C.4÷2=2D.4×2=84.不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠C C.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D5.下列条件中,不能判断△ABC为直角三角形的是()A.a2=1,b2=2,c2=3 B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:56.下列命题中逆命题成立的有()①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③全等三角形的对应边相等;④如果两个实数相等,那么它们的平方相等.A.1个B.2个C.3个D.4个7.如图,四边形ABCD中,AB=6cm,BC=8cm,CD=24cm,DA=26cm,且∠ABC=90°,则四边形ABCD的面积是()cm2.A.336 B.144 C.102 D.无法确定8.如图,▱ABCD的对角线AC,BD相交于O,EF过点O与AD,BC分别相交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为()A.16 B.14 C.12 D.109.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第6个图形有()个小圆.A.42 B.44 C.46 D.4810.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A.10 B.8 C.6 D.5二、填空题(共10小题,每小题3分,满分30分)11.在Rt△ABC中,∠C=90°,∠A=65°,则∠B= .12.一个等腰直角三角形中,它的斜边与斜边上的高的和是18cm,那么斜边上的高为cm.13.如图,已知▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则DC边上的高AF的长是.14.▱ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB= cm.15.已知在▱ABCD中,AB=5cm,AD=8cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF= cm.16.一个多边形的每一个外角等于30°,则此多边形是边形,它的内角和等于.17.如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是.18.点 P(a,a﹣3)在第四象限,则a的取值范围是.19.如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,若点A的坐标是(﹣1,4),则点C的坐标是.20.如图所示,矩形纸片ABCD中,AB=5cm,点E在BC上,且AE=EC.若将纸片沿AE折叠,点B恰好与AC上的点B′重合,则AC= cm.三、解答题(共6小题,满分60分)21.已知x=+1,y=﹣1,求下列各式的值:(1)x2﹣y2;(2)x2+xy+y2.22.如图,△ABC中,∠BAC=90°,AD是△ABC的高,∠C=30°,BC=4,求BD的长.23.如图所示,如果▱ABCD的一内角∠BAD的平分线交BC于点E,且AE=BE,求▱ABCD各内角的度数.24.已知,如图在平面直角坐标系中,S△ABC=30,∠ABC=45°,BC=12,求△ABC三个顶点的坐标.25.已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.26.如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b满足b=++16.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O 同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.2014-2015学年湖南省衡阳市衡阳县清潭中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个、第四个图形既是轴对称图形又是中心对称图形,共2个.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列式子中,属于最简二次根式的是()A.B.C. D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数,故B错误;C、被开方数含能开得尽方的因数,故C错误;D、被开方数含分母,故D错误;故选:A.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3.下列各式计算正确的是()A.8﹣2=6 B.5+5=10C.4÷2=2D.4×2=8【考点】二次根式的加减法;二次根式的乘除法.【分析】根据同类二次根式的合并,及二次根式的乘除法则,分别进行各选项的判断即可.【解答】解:A、8﹣2=6,原式计算错误,故A选项错误;B、5与5不是同类二次根式,不能直接合并,故B选项错误;C、4÷2=2,原式计算错误,故C选项错误;D、4×2=8,原式计算正确,故D选项正确;故选:D.【点评】本题考查了二次根式的加减及乘除运算,属于基础题,解答本题的关键是掌握各部分的运算法则.4.不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠C C.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D【考点】平行四边形的判定.【分析】根据平行四边形的判定定理进行判断.【解答】解:A、“AB∥CD,AD=BC”是四边形ABCD的一组对边平行,另一组对边相等,该四边形可以是等腰梯形,不可以判定四边形ABCD是平行四边形.故本选项符合题意;B、根据“AB∥CD,∠A=∠C”可以判定AD∥BC,由“两组对边相互平行的四边形为平行四边形”可以判定四边形ABCD为平行四边形.故本选项不符合题意;C、“AD∥BC,AD=BC”是四边形ABCD的一组对边平行且相等,可以判定四边形ABCD是平行四边形.故本选项不符合题意;D、“∠A=∠C,∠B=∠D”是四边形ABCD的两组对角相等,可以判定四边形ABCD是平行四边形;故本选项不合题意;故选:A.【点评】本题考查平行四边形的判定,需注意一组对边相等,另一组对边相互平行的四边形不一定是平行四边形,等腰梯形也满足该条件.5.下列条件中,不能判断△ABC为直角三角形的是()A.a2=1,b2=2,c2=3 B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据三角形内角和定理,以及勾股定理逆定理分别进行分析可得答案.【解答】解:A、可利用勾股定理逆定理判定△ABC为直角三角形,故此选项不合题意;B、根据勾股定理的逆定理可判断△ABC是直角三角形,故此选项不合题意;C、根据三角形内角和定理可以计算出∠A=90°,△ABC为直角三角形,故此选项不合题意;D、根据三角形内角和定理可以计算出∠A=45°,∠B=60°,∠C=75°,可判定△ABC不是直角三角形,故此选项符合题意;故选:D.【点评】此题主要考查了勾股定理逆定理,判断三角形是否为直角三角形可利用勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.6.下列命题中逆命题成立的有()①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③全等三角形的对应边相等;④如果两个实数相等,那么它们的平方相等.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】把一个命题的条件和结论互换就得到它的逆命题,再把逆命题进行判断即可.【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,成立;②如果两个角是直角,那么它们相等的逆命题是如果两个角相等,那么这两个角是直角,不成立;③全等三角形的对应边相等的逆命题是对应边相等的三角形全等,成立;④如果两个实数相等,那么它们的平方相等的逆命题是如果两个实数的平方相等,那么这两个实数相等,不成立;逆命题成立的有2个;故选B.【点评】此题考查了命题与定理,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.7.如图,四边形ABCD中,AB=6cm,BC=8cm,CD=24cm,DA=26cm,且∠ABC=90°,则四边形ABCD的面积是()cm2.A.336 B.144 C.102 D.无法确定【考点】勾股定理的逆定理;勾股定理.【分析】利用勾股定理求出AC2的值,再由勾股定理的逆定理判定三角形ACD也为直角三角形,则S 四边形ABCD=S△ABC+S△ACD.【解答】解:如图,连接AC.在Rt△ABC中,AC2=AB2+BC2=100,∵AC2+CD2=AD2=676∴△CDA也为直角三角形,∴S四边形ABCD=S△ABC+S△ACD=AB×BC+AC×CD=×6×8+×10×24=144(cm2),故选B.【点评】本题考查了三角形面积和勾股定理逆定理的应用,注意:在一个三角形中,如果有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.8.如图,▱ABCD的对角线AC,BD相交于O,EF过点O与AD,BC分别相交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为()A.16 B.14 C.12 D.10【考点】平行四边形的性质.【分析】根据平行四边形的对边相等得:CD=AB=4,AD=BC=5.再根据平行四边形的性质和对顶角相等可以证明:△AOE≌△COF.根据全等三角形的性质,得:OF=OE=1.5,CF=AE,故四边形EFCD的周长为CD+EF+AD=12.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=4,AD=BC=5,OA=OC,AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OF=OE=1.5,CF=AE,故四边形EFCD的周长为CD+EF+ED+FC=CD+EF+AE+ED=CD+AD+EF=4+5+1.5×2=12.故选C.【点评】能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键.9.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第6个图形有()个小圆.A.42 B.44 C.46 D.48【考点】规律型:图形的变化类.【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;则知第n个图形中小圆的个数为n(n+1)+4.据此可以再求得第6个图形小圆的个数即可.【解答】解:根据第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,∵6=4+1×2,10=4+2×3,16=4+3×4,24=4+4×5…,∴第n个图形有:4+n(n+1)个小圆,∴第6个图形有:4+6×(6+1)=46个小圆.故选:C.【点评】此题主要考查了图形的规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.10.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A.10 B.8 C.6 D.5【考点】三角形中位线定理;垂线段最短;平行四边形的性质.【分析】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.【解答】解:平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小.∵OD⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位线,∴OD=AB=3,∴DE=2OD=6.故选C.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半,正确理解DE最小的条件是关键.二、填空题(共10小题,每小题3分,满分30分)11.在Rt△ABC中,∠C=90°,∠A=65°,则∠B=25°.【考点】直角三角形的性质.【分析】根据直角三角形两锐角互余列式计算即可得解.【解答】解:∵∠C=90°,∠A=65°,∴∠B=90°﹣65°=25°.故答案为:25°.【点评】本题考查了直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.12.一个等腰直角三角形中,它的斜边与斜边上的高的和是18cm,那么斜边上的高为 6 cm.【考点】等腰直角三角形.【分析】根据等腰三角形三线合一的性质及已知不难求得斜边的长.【解答】解:因为等腰直角三角形中,斜边上的高即是斜边上的中线,所以高等于斜边的一半,已知斜边与斜边上的高的和是18cm,则高是6cm,斜边是12cm.故答案为:6.【点评】此题考查等腰直角三角形的性质,关键是利用三线合一,求得斜边与斜边上的高的关系.13.如图,已知▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则DC边上的高AF的长是 3 .【考点】平行四边形的性质.【分析】根据平行四边形的对边相等,可得CD=AB=6,又因为S▱ABCD=BC•AE=CD•AF,所以求得DC边上的高AF的长是3.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=6,∴S▱ABCD=BC•AE=CD•AF=6×2=12,∴AF=3.∴DC边上的高AF的长是3.故答案为3.【点评】此题考查了平行四边形的性质:平行四边形的对边相等.还要注意平行四边形的面积的求解方法:底乘以高.14.▱ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB= 20 cm.【考点】平行四边形的性质.【分析】根据平行四边形的性质知,平行四边形的对边相等,则已知周长,可以求出一组邻边的长,△AOB的周长比△BOC的周长多10cm,则AB比BC的值多10,则进一步可求出AB和BC的长.【解答】解:∵▱ABCD的周长为60cm,AB+BC=30cm,∵△AOB的周长比△BOC的周长多10cm,∴AB﹣BC=10cm,∴AB=20cm,BC=10cm.故答案为:20.【点评】本题考查的是平行四变形的性质:平行四边形的两组对边分别相等;平行四边形的对角线互相平分.15.已知在▱ABCD中,AB=5cm,AD=8cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF= 3 cm.【考点】平行四边形的性质.【分析】由在▱ABCD中,∠ABC的平分线交AD于点E,交CD的延长线于点F,易证得AB=AE,DE=DF,继而可求得答案.【解答】解:∵四边形ABCD是平行四边形,∵AD∥BC,AB∥CD,∴∠AEB=∠CBE,∠FED=∠CBE,∠ABF=∠F,∵∠ABE=∠CBE,∴∠ABE=∠AEB,∠FED=∠F,∴AB=AE=5cm,DF=DE,∵AD=8cm,∴DE=AD﹣AE=3(cm),∴DF=3cm.故答案为:3.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.16.一个多边形的每一个外角等于30°,则此多边形是十二边形,它的内角和等于1800°.【考点】多边形内角与外角.【分析】根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:∵多边形的每一个外角等于30°,360°÷30°=12,∴这个多边形是十二边形;其内角和=(12﹣2)•180°=1800°.故答案为:十二,1800°.【点评】本题考查了多边形的内角与外角,理解多边形的外角和是360度,外角和不随边数的变化而变化是关键.17.如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是﹣.【考点】勾股定理;实数与数轴.【专题】压轴题.【分析】在直角三角形中根据勾股定理求得OB的值,即OA的值,进而求出数轴上点A表示的数【解答】解:∵OB==,∴OA=OB=,∵点A在数轴上原点的左边,∴点A表示的数是﹣,故答案为:﹣.【点评】本题考查了实数与数轴、勾股定理的综合运用.18.点 P(a,a﹣3)在第四象限,则a的取值范围是0<a<3 .【考点】点的坐标;解一元一次不等式组.【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【解答】解:∵点P(a,a﹣3)在第四象限,∴,解得0<a<3.故答案为:0<a<3.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).19.如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,若点A的坐标是(﹣1,4),则点C的坐标是(3,0).【考点】坐标与图形性质.【分析】根据点A的坐标求出正方形的边长与OB的长度,再求出OC的长,然后写出点C的坐标即可.【解答】解:∵点A的坐标是(﹣1,4),∴BC=AB=4,OB=1,∴OC=BC﹣OB=4﹣1=3,∴点C的坐标为(3,0).故答案为:(3,0).【点评】本题考查了坐标与图形性质,主要利用了正方形的性质,根据点A的坐标求出正方形的边长是解题的关键.20.如图所示,矩形纸片ABCD中,AB=5cm,点E在BC上,且AE=EC.若将纸片沿AE折叠,点B恰好与AC上的点B′重合,则AC= 10 cm.【考点】翻折变换(折叠问题).【分析】由矩形与折叠的性质,即可求得EB′⊥AC,又由AE=EC,根据三线合一的性质,即可求得答案.【解答】解:∵四边形ABCD是矩形,∴∠B=90°,根据题意得:∠BAE=∠EAB′,∠AB′E=∠B=90°,∴EB′⊥AC,∵AE=EC,∴AB′=CB′=AB=5cm,∴AC=10cm.故答案为:10.【点评】此题考查了矩形的性质,折叠的性质以及等腰三角形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.三、解答题(共6小题,满分60分)21.已知x=+1,y=﹣1,求下列各式的值:(1)x2﹣y2;(2)x2+xy+y2.【考点】二次根式的化简求值.【分析】(1)先代入分别求出x+y,x﹣y的值,根据平方差公式分解因式,代入求出即可;(2)先代入分别求出x+y,xy的值,根据完全平方公式代入求出即可;【解答】解:∵x=+1,y=﹣1,∴x+y=2,x﹣y=2,xy=(+1)×(﹣1)=2,(1)x2﹣y2;=(x+y)(x﹣y)=2×2=4.(2)x2+xy+y2.=(x+y)2﹣xy=(2)2﹣2=10.【点评】本题考查了对平方差公式,完全平方公式,二次根式的混合运算的应用,主要考查学生能否选择恰当的方法进行计算.22.如图,△ABC中,∠BAC=90°,AD是△ABC的高,∠C=30°,BC=4,求BD的长.【考点】含30度角的直角三角形.【分析】在直角△ABC中,根据“30度角所对的直角边等于斜边的一半”求得AB=BC=2;然后在直角△ABD中,根据“30度角所对的直角边等于斜边的一半”求得BD=AB=1.【解答】解:如图,∵在△ABC中,∠BAC=90°,∠C=30°,AD是高,∴∠ADB=90°,∠BAD=∠C=30°,∴在直角△ABC中,AB=BC=2,∴在直角△ABC中,BD=AB=1.∴BD的长为1.【点评】本题考查了含30度角的直角三角形.应用时,要注意找准30°的角所对的直角边和斜边是解题的关键.23.如图所示,如果▱ABCD的一内角∠BA D的平分线交BC于点E,且AE=BE,求▱ABCD各内角的度数.【考点】平行四边形的性质.【分析】由平行四边形ABCD中,∠BAD的平分线交BC于E,易得∠BAE=∠BEA,则AB=BE;又因为AE=BE,所以△ABE是等边三角形;即能求得∠BCD的度数.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠B+∠C=180°,∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∵AE=BE,∴△ABE是等边三角形,∴∠B=60°,∴∠BCD=120°.∴▱ABCD各内角的度数分别是:∠B=∠D=60°,∠BAD=∠C=120°.【点评】此题考查了平行四边形的性质:平行四边形的对边平行.还考查了等边三角形的判定与性质:等角对等边;等边三角形的三个角都等于60°,把四边形问题转化为三角形问题是关键.24.已知,如图在平面直角坐标系中,S△ABC=30,∠ABC=45°,BC=12,求△ABC三个顶点的坐标.【考点】坐标与图形性质;三角形的面积.【分析】根据S△ABC=30,求出OA,根据∠ABC=45°,所以OA=OB,根据BC=12,所以OC=7,即可解答.【解答】证明:∵∠ABC=45°,∴OA=OB,∵BC•OA=30,BC=12,∴OA=OB=60÷12=5,∴OC=BC﹣BO=12﹣5=7,∴A(0,5),B(﹣5,0),C(7,0).【点评】本题考查了坐标与图形性质,解决本题的关键是利用三角形的面积求出OA的长.25.已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.【考点】三角形中位线定理;全等三角形的判定与性质;等腰直角三角形.【专题】压轴题.【分析】(1)证法一:如答图1a所示,延长AB交CF于点D,证明BM为△ADF的中位线即可;证法二:如答图1b所示,延长BM交EF于D,根据在同一平面内,垂直于同一直线的两直线互相平行可得AB∥EF,再根据两直线平行,内错角相等可得∠BAM=∠DFM,根据中点定义可得AM=MF,然后利用“角边角”证明△ABM和△FDM全等,再根据全等三角形对应边相等可得AB=DF,然后求出BE=DE,从而得到△BDE是等腰直角三角形,根据等腰直角三角形的性质求出∠EBM=45°,从而得到∠EBM=∠ECF,再根据同位角相等,两直线平行证明MB∥CF即可,(2)解法一:如答图2a所示,作辅助线,推出BM、ME是两条中位线;解法二:先求出BE的长,再根据全等三角形对应边相等可得BM=DM,根据等腰三角形三线合一的性质可得EM⊥BD,求出△BEM是等腰直角三角形,根据等腰直角三角形的性质求解即可;(3)证法一:如答图3a所示,作辅助线,推出BM、ME是两条中位线:BM=DF,ME=AG;然后证明△ACG≌△DCF,得到DF=AG,从而证明BM=ME;证法二:如答图3b所示,延长BM交CF于D,连接BE、DE,利用同旁内角互补,两直线平行求出AB∥CF,再根据两直线平行,内错角相等求出∠BAM=∠DFM,根据中点定义可得AM=MF,然后利用“角边角”证明△ABM和△FDM全等,再根据全等三角形对应边相等可得AB=DF,BM=DM,再根据“边角边”证明△BCE和△DF E全等,根据全等三角形对应边相等可得BE=DE,全等三角形对应角相等可得∠BEC=∠DEF,然后求出∠BED=∠CEF=90°,再根据等腰直角三角形的性质证明即可.【解答】(1)证法一:如答图1a,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,∴点B为线段AD的中点,又∵点M为线段AF的中点,∴BM为△ADF的中位线,∴BM∥CF.证法二:如答图1b,延长BM交EF于D,∵∠ABC=∠CEF=90°,∴AB⊥CE,EF⊥CE,∴AB∥EF,∴∠BAM=∠DFM,∵M是AF的中点,∴AM=MF,在△ABM和△FDM中,,∴△ABM≌△FDM(ASA),∴AB=DF,∵BE=CE﹣BC,DE=EF﹣DF,∴BE=DE,∴△BDE是等腰直角三角形,∴∠EBM=45°,∵在等腰直角△CEF中,∠ECF=45°,∴∠EBM=∠ECF,∴MB∥CF;(2)解法一:如答图2a所示,延长AB交CF于点D,则易知△BCD与△ABC为等腰直角三角形,∴AB=BC=BD=a,AC=CD=a,∴点B为AD中点,又点M为AF中点,∴BM=DF.分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=GE=2a,CG=CF=a,∴点E为FG中点,又点M为AF中点,∴ME=AG.∵CG=CF=a,CA=CD=a,∴AG=DF=a,∴BM=ME=×a=a.解法二:如答图1b.∵CB=a,CE=2a,∴BE=CE﹣CB=2a﹣a=a,∵△ABM≌△FDM,∴BM=DM,又∵△BED是等腰直角三角形,∴△BEM是等腰直角三角形,∴BM=ME=BE=a;(3)证法一:如答图3a,延长AB交CE于点D,连接DF,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,AC=CD,∴点B为AD中点,又点M为AF中点,∴BM=DF.延长FE与CB交于点G,连接AG,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=EG,CF=CG,∴点E为FG中点,又点M为AF中点,∴ME=AG.在△ACG与△DCF中,,∴△ACG≌△DCF(SAS),∴DF=AG,∴BM=ME.证法二:如答图3b,延长BM交CF于D,连接BE、DE,∵∠BCE=45°,∴∠ACD=45°×2+45°=135°∴∠BAC+∠ACF=45°+135°=180°,∴AB∥CF,∴∠BAM=∠DFM,∵M是AF的中点,∴AM=FM,在△ABM和△FDM中,,∴△ABM≌△FDM(ASA),∴AB=DF,BM=DM,∴AB=BC=DF,在△BCE和△DFE中,,∴△BCE≌△DFE(SAS),∴BE=DE,∠BEC=∠DEF,∴∠BED=∠BEC+∠CED=∠DEF+∠CED=∠CEF=90°,∴△BDE是等腰直角三角形,又∵BM=DM,∴BM=ME=BD,故BM=ME.【点评】本题考查了三角形中位线定理、全等三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出中位线、全等三角形和等腰直角三角形是解题的关键,也是本题的难点.26.如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b满足b=++16.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O 同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.【考点】平行四边形的判定;坐标与图形性质;等腰三角形的判定;勾股定理.【分析】(1)根据二次根式的性质得出a,b的值进而得出答案;(2)由题意得:QP=2t,QO=t,PB=21﹣2t,QC=16﹣t,根据平行四边形的判定可得21﹣2t=16﹣t,再解方程即可;(3)①当PQ=CQ时,122+t2=(16﹣t)2,解方程得到t的值,再求P点坐标;②当PQ=PC时,由题意得:QM=t,CM=16﹣2t,进而得到方程t=16﹣2t,再解方程即可.【解答】解:(1)∵b=++16,∴a=21,b=16,故B(21,12)C(16,0);(2)由题意得:QP=2t,QO=t,则:PB=21﹣2t,QC=16﹣t,∵当PB=QC时,四边形PQCB是平行四边形,∴21﹣2t=16﹣t,解得:t=5,∴P(10,12)Q(5,0);(3)当PQ=CQ时,过Q作QN⊥AB,由题意得:122+t2=(16﹣t)2,解得:t=,故P(7,12),Q(,0),当PQ=PC时,过P作PM⊥x轴,由题意得:QM=t,CM=16﹣2t,则t=16﹣2t,解得:t=,2t=,故P(,12),Q(,0).【点评】此题主要考查了平行四边形的判定,等腰三角形的判定,关键是注意分类讨论,不要漏解.21。
【湘教版】八年级数学下期中第一次模拟试卷(含答案)
一、选择题1.如图,将ABC ∆绕顶点C 旋转得到DEC ∆,点A 对应点D ,点B 对应点E ,点B 刚好落在DE 边上,24,48A BCD ∠=︒∠=︒,则ABC ∠等于( )A .68︒B .70︒C .72︒D .74︒2.下列图形中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D . 3.一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA 与边FE 重合,顶点B 、C 、D 在一条直线上).将三角尺DEF 绕着点F 按逆时针方向旋转n °后(0<n <180 ),如果BA ∥DE ,那么n 的值是( )A .105B .95C .90D .754.已知点A 的坐标为(1,3),点B 的坐标为(2,1).将线段AB 沿某一方向平移后,点A 的对应点的坐标为(﹣2,1).则点B 的对应点的坐标为( )A .(5,3)B .(﹣1,﹣2)C .(﹣1,﹣1)D .(0,﹣1)5.不等式组10840x x -⎧⎨-≤⎩>的解集在数轴上表示为 ( ). A .B .C .D .6.在平面直角坐标系中,将点A (m -1,n +2)先向右平移3个单位,再向上平移2个单位,得到点A ′.若点A ′位于第二象限,则m 、n 的取值范围分别是( )A .m <0,n >0B .m <0,n <-2C .m <-2,n >-4D .m <1,n >-2 7.如果a <b ,那么下列不等式中一定成立的是( ) A .a 2<ab B .ab <b 2 C .a 2<b 2 D .a ﹣2b <﹣b 8.P Q R S ,,,四个小朋友玩跷跷板,结果如图所示,则他们的体重大小关系为( )A .R<Q P SB .Q<R S PC .Q<R P SD .Q<P R S 9.如图,在△ABC 中,AB =AC ,∠BAC =64°,∠BAC 的平分线与AB 的垂直平分线交于点O ,点E 、F 分别在BC 、AC 上,点C 沿EF 折叠后与点O 重合,则∠BEO 的度数是( )A .26°B .32°C .52°D .58°10.如图,在Rt ABC △中,CA CB =,D 为斜边AB 的中点,Rt EDF ∠在ABC 内绕点D 转动,分别交边AC ,BC 于点E ,F (点E 不与点A ,C 重合),下列说法正确的是( )①45DEF ︒∠=;②222BF AE EF ;③2CD EF CD <≤A .①②B .①③C .②③D .①②③ 11.如图,ABC 中,D 、E 为线段BE 上两点,且AC DC =,BA BE =,若52DAE BAC ∠=∠,则DAE ∠的度数为( )A .40︒B .45︒C .50︒D .60︒12.如图,过边长为3的等边ABC 的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交边AC 于点D ,则DE 的长为( )A .13B .12C .32D .2二、填空题13.平面直角坐标系xOy 中,先作出点P (2,3)-关于y 轴的对称点,再将该对称点先向下平移1个单位,再向左平移2个单位得到点P 1,称为完成一次图形变换,再将点P 1进行同样的图形变换得到点P 2,以此类推,则点P 2020的坐标为___________.14.如图,已知Rt △ABC ,∠ACB =90°,∠B =60°,AB =8,将△ABC 沿BC 方向平移7个单位长度得到△DEF ,则图中四边形ACED 的面积为_____.15.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________. 16.如图,函数y x =和4y ax =+的图象交于点()2,2,A 则不等式4x ax <+的解集为_____________________.17.如图,直线y kx b =+交坐标轴于,A B 两点,则不等式0kx b +>的解是__________.18.如图,在ABC 中,AB AC =,AD 是BAC ∠的角平分线,交BC 于点N ,60EBC BED ∠=∠=︒,若6BE =,2DE =,则BC =__________.19.如图,∠MON =33°,点P 在∠MON 的边ON 上,以点P 为圆心,PO 为半径画弧,角OM 于点A ,连接AP ,则∠APN =____.20.如图,AD 是ABC 的角平分线,DE 、DF 分别是ABD △和ACD △的高.若83AB AC +=,24ABC S =,120EDF ∠=︒,则AD 的长为______.三、解答题21.如图,在等边ABC ∆中,D 是边AC 上的一点,连接BD ,将BCD ∆绕点B 逆时针旋转60°得到BAE ∆,连接ED .若7,6BC BD ==,求AED ∆的周长.22.如图,在平面直角坐标系中,ABC 的顶点坐标分别为(1,3)A ,(3,6)B ,(0,5)C .(正方形网格的每个小正方形的边长都是1个单位长度)(1)ABC 平移后,点A 的对应点1A 的坐标为(5,3),画出平移后的111A B C △; (2)画出111A B C △绕点1A 旋转180︒得到的22A B C 1△;(3)ABC 绕点P ( )旋转180︒也可以得到22A B C 1△,连接CP ,2C P ,并求CP 在旋转过程中所扫过的面积.23.某通讯公司推出一款针对手机用户的5G 收费套餐(包括上网流量费和语音通话费两部分).套餐的收费方式是:上网流量费固定;通话时间不超过200分钟时,免收语音通话费;通话时间超过200分钟时,超过部分按每分钟0.25元收取语音通话费.套餐收费y (元)与当月语音通话时间x (分钟)之间的关系如图所示.(1)套餐的上网流量费是多少元?(2)请写出通话时间超过200分钟时,y 关于x 的函数表达式.(3)若要使套餐费用不超过165元,则当月最多能通话多少分钟?24.已知线段12AB =,点C ,E ,F 在线段AB 上,E 是线段AC 的中点.(1)如图1,当F 是线段BC 的中点时,求线段EF 的长;(2)如图2.当F 是线段AB 的中点时,EF a =,①求线段AC 的长(结果可用含a 的代数式表示);②若a 为正整数,请写出所有满足条件的a 的值.25.如图,已知四边形ABCD .(1)在边BC 上找一点P ,使得AP +PD 的值最小,在图①中画出点P ;(2)请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹): ①在线段AC 上找一点M ,使得BM =CM ,请在图②中作出点M ;②若AB 与CD 不平行,且AB =CD ,请在线段AC 上找一点N ,使得△ABN 和△CDN 的面积相等,请在图③中作出点N .26.如图,在△ABC 中,AC=BC ,∠ACB=90°,延长CA 至点D ,延长CB 至点E ,使AD=BE ,连接AE ,BD ,交点为O .(1)求证:OB=OA ;(2)连接OC ,若AC=OC ,则∠D 的度数是 度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先通过旋转得到24,ABC=DEC,∠=∠=︒∠∠=D A CE CB ,再通过等边对等角以及三角形外角的性质得到∠=∠=∠+∠E CBE BCD D ,最后代入已知的数据即可求解本题.【详解】解:由ABC ∆绕顶点C 旋转得到DEC ∆可知:24,ABC=DEC,∠=∠=︒∠∠=D A CE CB ,∴∠=∠=∠+∠E CBE BCD D ,∵48∠=︒BCD ,∴244872∠=︒+︒=︒CBE ,故ABC=DEC=72∠∠︒;故选:C .【点睛】本题考查了旋转的性质、等腰三角形的性质、三角形的外角,熟练掌握旋转的性质即可得到结论.2.C解析:C【分析】根据中心对称图形的定义:旋转180度之后与自身重合称为中心对称,轴对称是折叠后能够与自身完全重合称为轴对称,根据定义去解题.【详解】解:A 、是中心对称图形,不是轴对称图形,故本选项错误;B 、不是中心对称图形,是轴对称图形,故本选项错误;C 、既是中心对称图形又是轴对称图形,故本选项正确;D 、不是中心对称图形,是轴对称图形,故本选项错误.故选:C .【点睛】本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 3.A解析:A【分析】画出图形求解即可.【详解】 解:∵三角尺DEF 绕着点F 按逆时针方向旋转n °后(0<n <180 ),BA ∥DE ,∴旋转角=90°+45°﹣30°=105°,故选:A .【点睛】本题考查了旋转变换,平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.4.C解析:C【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.【详解】∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(﹣1,﹣1),故选C.【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.5.A解析:A【分析】解不等式组,看解集表示是否正确即可.【详解】解:10 840 xx-⎧⎨-≤⎩>①②解不等式①得,1x>,解不等式②得,2x≥,不等式组的解集为:2x≥.故选:A.【点睛】本题考查了一元一次不等式组的解法及在数轴上表示解集,解题关键是熟练的运用解不等式组的方法进行计算.6.C解析:C【分析】根据点的平移规律可得向右平移3个单位,再向上平移2个单位得到(m-1+3,n+2+2),再根据第二象限内点的坐标符号可得.【详解】点A(m-1,n+2)先向右平移3个单位,再向上平移2个单位得到点A′(m+2,n+4),∵点A′位于第二象限,∴2040 mn+<⎧⎨+>⎩解得:m<-2,n>-4,故选C.【点睛】此题主要考查了坐标与图形变化-平移,关键是横坐标,右移加,左移减;纵坐标,上移加,下移减.7.D解析:D【分析】利用不等式的基本性质逐一进行分析即可.【详解】A、a<b两边同时乘以a,应说明a>0才得a2<ab,故此选项错误;B、a<b两边同时乘以b,应说明b>0才得ab<b2,故此选项错误;C、a<b两边同时乘以相同的数,故此选项错误;D、a<b两边同时减2b,不等号的方向不变可得a−2b<−b,故此选项正确;故选D.【点睛】此题主要考查了不等式的基本性质,关键是要注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.8.C解析:C【分析】观察图中的三个跷跷板,哪个重则往哪边下沉,可得出一元一次不等式组,解之即可得出结论.【详解】解:依题意,哪个重则往哪边下沉可得:(1)(2)(3)S PP RP R S Q>⎧⎪>⎨⎪+>+⎩,由(1)(2)得:R P<S,由(3)得:Q R,故:Q R P S<<<,故选:C.【点睛】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.9.C解析:C【分析】连结OB,根据角平分线定义得到∠OAB=32°,再根据等腰三角形的性质得到∠ABC=∠ACB,再根据线段垂直平分线的性质得到OA=OB,则∠OBA=∠OAB,所以得出∠1,由于AB=AC,OA平分∠BAC,根据等腰三角形的性质得OA垂直平分BC,则BO=OC,所以得出∠1=∠2,然后根据折叠的性质得到EO=EC,于是∠2=∠3,再根据三角形内角和定理计算∠OEC,解答即可.【详解】解:连结OB、OC,∵∠BAC=64°,∠BAC的平分线与AB的中垂线交于点O,∴∠OAB=32°,∵AB=AC,∠BAC=64°,∴∠ABC=∠ACB=58°,∵OD垂直平分AB,∴OA=OB,∴∠OBA=∠OAB=32°,∴∠1=58°-32°=26°,∵AB=AC,OA平分∠BAC,∴OA垂直平分BC,∴BO=OC,∴∠1=∠2=26°,∵点C沿EF折叠后与点O重合,∴EO=EC,∴∠2=∠3=26°,∴∠BEO=∠2+∠3=52°,故选择:C.【点睛】本题考查了线段的垂直平分线的性质和等腰三角形的性质,折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10.A解析:A【分析】①证明∠A=∠DCB ,AD=CD ,∠ADE=∠CDF ,根据ASA 证明△ADE CDF ≅∆得ED=FD ,从而可判断①;②运用SAS 证明△EDC FDB ≅∆,得到CE BF =,再由222CE CF EF +=即可判断②;③当DE AC ⊥时,DE最短,从而可得DE CD ≤<,整理后代换即可判断③. 【详解】解:①∵,90CA CB ACB =∠=︒,∴△ABC 是等腰直角三角形∴∠45A B =∠=︒∵点D 是AB 的中点,∴,DA DB DC CD AB ==⊥,∠45DCB DCA =∠=︒∵∠EDF ADC =∠∴∠EDF EDC ADC EDC -∠=∠-∠∴∠ADE CDF =∠在△ADE 和△CDF 中A DCB AD CDADE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE CDF ≅∆∴,DE DF AE CF ==∴△DEF 是等腰直角三角形∴∠45DEF =︒,故①正确;②∵∠90EDF CDB ︒=∠=∴∠EDF CDF CDB CDF -∠=∠-∠∴∠EDC FDB =∠在△EDC 与△FDB 中DE DF EDC FDB DC DB =⎧⎪∠=∠⎨⎪=⎩∴△EDC FDB ≅∆∴CE BF =∵222CE CF EF +=∴222BF AE EF ,故②正确; ③∵△DEF 是等腰直角三角形,∴EF =∵当DE AC ⊥时,2DE ==最短,∴2DE CD ≤< ∴CD ≤<即CD EF ≤<,故③错误; ∴综上,正确的是①②,故选:A .【点睛】 此题考查了全等三角形的判定与性质以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.11.A解析:A【分析】根据等腰三角形的性质可得出∠BAE =∠BEA ,∠ADC =∠DAC ,然后分别用外角的知识表示出这个关系,进而结合5∠DAE =2∠BAC 可得出∠DAE 的值.【详解】解:∵AC =DC ,BA =BE ,∴∠DAE +∠EAC =∠ADE =∠B +∠BAD ①,∠EAD +∠BAD =∠AED =∠C +∠EAC ②,①+②可得:∠DAE +∠EAC +∠EAD +∠BAD =∠B +∠BAD +∠C +∠EAC ,整理,得∠DAE +∠BAC =180°﹣∠DAE ,又5∠DAE =2∠BAC ,设∠DAE =2x ,则∠BAC =5x ,上式即为2x +5x =180°-2x ,解得:x =20°,即∠DAE =40°.故选:A .【点睛】本题考查等腰三角形的性质及三角形的内角和定理,有一定的难度,解答本题需用到等腰三角形的两底角相等、三角形的内角和等于180°.12.C解析:C【分析】过P 作//PF BC 交AC 于F ,得出等边三角形APF ,推出AP PF QC ==,根据等腰三角形性质求出EF AE =,证PFD QCD ∆≅∆,推出FD CD =,推出12DE AC =即可. 【详解】解:过P 作//PF BC 交AC 于F , //PF BC ,ABC ∆是等边三角形,PFD QCD ∴∠=∠,60APF B ∠=∠=︒,60AFP ACB ∠=∠=︒,60A ∠=︒, APF ∴∆是等边三角形,AP PF AF ∴==,PE AC ⊥,AE EF ∴=,AP PF =,AP CQ =,PF CQ ∴=,在PFD ∆和QCD ∆中PFD QCD PDF CDQ PF CQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, PFD QCD ∴∆≅∆,FD CD ∴=,AE EF =,EF FD AE CD ∴+=+, 12AE CD DE AC ∴+==, 3AC =,32DE ∴=, 故选:C .【点睛】本题综合考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.二、填空题13.【分析】按程序先作y 轴对称求出点坐标横坐标-2纵坐标-1完成一次图形变换求出P 变换后的坐标找出几次变换后规律奇次变换点的横坐标x=0偶次变换点的横坐标x=-2纵坐标变一次下移一个单位【详解】解:完成解析:(2,2017)--【分析】按程序先作y 轴对称,求出点坐标,横坐标-2,纵坐标-1,完成一次图形变换求出P 变换后的坐标,找出几次变换后规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.【详解】解:完成1次图形变换,点P (2,3)-关于y轴的对称点(2,3),横坐标2-2=0,纵坐标3-1=2,P1(0,2),完成2次图形变换,点P1(0,2)关于y轴的对称点(0,2),横坐标0-2=-2,纵坐标2-1=1,P2(-2,1),完成3次图形变换,点P2(-2,1)关于y轴的对称点(2,1),横坐标3-3=0,纵坐标1-1=0,P3(0,0),完成4次图形变换,点P3(0,0)关于y轴的对称点(0,0),横坐标0-2=-2,纵坐标0-1=-1,P4(-2,-1),……,完成2020次图形变换,点P2019(0,3-2019)关于y轴的对称点(0,-2016),横坐标0-2=-2,纵坐标-2016-1=-2017,P2020(-2,-2017).故答案为:(-2,-2017).【点睛】本题考查图形规律探索问题,掌握图形程序变换的轴对称性质和平移特征,关键是找到变换规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.14.【分析】根据三角形的内角和得到∠BAC=30°根据直角三角形的性质得到BC=AB=4根据勾股定理得到AC=根据平移的性质得到AD=BE=7AD∥BE求得CE=3根据梯形的面积公式即可得到结论【详解】【分析】根据三角形的内角和得到∠BAC=30°,根据直角三角形的性质得到BC=12AB=4,根据勾股定理得到AC=AD=BE=7,AD∥BE,求得CE=3,根据梯形的面积公式即可得到结论.【详解】∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∵AB=8,∴BC=12AB=4,∴AC=∵将△ABC沿BC方向平移7个单位长度得到△DEF,∴AD=BE=7,AD∥BE,∴CE=3,∴图中四边形ACED的面积=12×(7+3)=,故答案为:【点睛】本题考查了含30°角的直角三角形,三角形的面积,平移的性质,熟练掌握平移的性质是解题的关键.15.【分析】先将m 看做常数解方程组求出再代入可得关于m 的不等式解之可得答案【详解】①-②得:将代入②得:∵∴+∴故答案为:【点睛】本题主要考查了解二元一次方程组和解一元一次不等式熟练掌握运算法则是解本题 解析:72m <【分析】先将m 看做常数解方程组求出2x m =-、2y m =+,再代入32x y +>-可得关于m 的不等式,解之可得答案.【详解】 23224x y m x y +=-+⎧⎨+=⎩①② ①2⨯-②得:2x m =-,将2x m =-代入②得:2y m =+, ∵32x y +>-, ∴2m - +322m +>-, ∴72m <. 故答案为:72m <. 【点睛】本题主要考查了解二元一次方程组和解一元一次不等式,熟练掌握运算法则是解本题的关键.注意:不等式两边都乘以或除以同一个负数不等号方向要改变.16.【分析】先利用A 点坐标然后观察函数图得到当x <2时y=x 的图象都在直线的下方由此得到不等式x <ax+4的解集【详解】解:A (23)观察函数图得到:当x <2时y=x 的图象都在直线的下方不等式x <ax+解析:2x <【分析】先利用A 点坐标,然后观察函数图得到当x <2 时,y=x 的图象都在直线4y ax =+的下方,由此得到不等式x <ax+4的解集.【详解】解: A (2,3),观察函数图得到:当x <2 时,y=x 的图象都在直线4y ax =+的下方,∴ 不等式x <ax+4的解集x <2.故答案为:2x <.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.理解好上面原理是解题的关键.17.【分析】看在x 轴上方的函数图象所对应的自变量的取值即可【详解】由图象可以看出x 轴上方的函数图象所对应自变量的取值为故不等式的解集是故答案为:【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的 解析:2x >-【分析】看在x 轴上方的函数图象所对应的自变量的取值即可.【详解】由图象可以看出,x 轴上方的函数图象所对应自变量的取值为2x >-,故不等式0kx b +>的解集是2x >-.故答案为:2x >-.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.18.8【分析】作出辅助线后根据等腰三角形的性质得出BE=6DE=2进而得出△BEM 为等边三角形△EFD 为等边三角形从而得出BN 的长进而求出答案【详解】如图所示:延长ED 交BC 于M 延长AD 交BC 于N ∵AB解析:8【分析】作出辅助线后根据等腰三角形的性质得出BE=6, DE=2,进而得出△BEM 为等边三角形,△EFD 为等边三角形,从而得出BN 的长,进而求出答案【详解】如图所示:延长ED 交BC 于M ,延长AD 交BC 于N ,∵ AB=AC ,AF 平分∠BAC ,∴AN ⊥BC ,BN=CN ;∵ ∠EBC=∠E=60°,∴ △BEM 为等边三角形,∴△EFD 为等边三角形,∵BE=6,DE=2,∴DM=4,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∠NDM=30°,∴NM=2,∴ BN=4,∴BC=2BN=8,故答案为:8.【点睛】此题主要考查了等腰三角形的性质和等边三角形的性质,能求出MN的长是解决问题的关键;19.66°【分析】根据等腰三角形的性质可知∠MON=∠PAO再用外角的性质求解即可【详解】解:由作图可知PO=PA∴∠MON=∠PAO=33°∠APN=∠MON+∠PAO=66°故答案为:66°【点睛】解析:66°【分析】根据等腰三角形的性质可知∠MON=∠PAO,再用外角的性质求解即可.【详解】解:由作图可知,PO=PA,∴∠MON=∠PAO=33°,∠APN=∠MON+∠PAO=66°,故答案为:66°.【点睛】本题考查了等腰三角形的性质和外角的性质,解题关键是通过作图得到等腰三角形,依据等腰三角形的性质熟练计算.20.【分析】先证明△ADE≌△ADF可得:DE=DF∠ADE=∠ADF==×120°=60°再利用面积法求出DE的值再根据直角三角形的性质即可解决问题【详解】解:∵DEDF分别是△ABD和△ACD的高∴解析:【分析】先证明△ADE≌△ADF,可得:DE=DF,∠ADE=∠ADF=12EDF∠=12×120°=60°,再利用面积法求出DE的值,再根据直角三角形的性质即可解决问题.【详解】解:∵DE、DF分别是△ABD和△ACD的高,∴∠AED=∠AFD=90°,∵AD是△ABC的角平分线,∴∠DAE=∠DAF,∵AD=AD,∴△ADE≌△ADF(AAS),∴DE=DF,∠ADE=∠ADF=12EDF∠=12×120°=60°,∴S△ABC=12•AB•DE+12•AC•DF=12•DE(AB+AC)=24,∵AB AC+=∴DE=∵∠ADE=∠ADF=60°,∴∠DAE=30°,∴AD=2DE=故答案是:【点睛】本题考查全等三角形的判定和性质,直角三角形的性质,角平分线等知识,解题的关键是正确寻找全等三角形解决问题,学会利用面积法解决问题,属于中考常考题型.三、解答题21.13【分析】先由△ABC是等边三角形得出AC=AB=BC=7,根据图形旋转的性质得出AE=CD,BD=BE,故可得出AE+AD=AD+CD=AC=7,由∠EBD=60°,BE=BD即可判断出△BDE是等边三角形,故DE=BD=6,即可求出△AED的周长.【详解】∵△ABC是等边三角形,∴AC=AB=BC=7,∵△BAE由△BCD逆时针旋旋转60°得出,∴AE=CD,BD=BE,∠EBD=60°,∴AE+AD=AD+CD=AC=7,∵∠EBD=60°,BE=BD ,∴△BDE 是等边三角形,∴DE=BD=6,∴△AED 的周长=AE+AD+DE=AC+BD=13.【点睛】此题考查旋转的性质,等边三角形的判定与性质,解题关键在于得到△BDE 是等边三角形.22.(1)见解析;(2)见解析;(3)()133,3,2π 【分析】(1)根据点A 的对应点1A 的坐标为(5,3),画出点1A ,1B ,1C ,再顺次连接起来即可; (2)画出1B ,1C 的对应点2B ,2C ,顺次连接起来,即可;(3)先得到点P 的坐标,再根据圆的面积公式,即可求解.【详解】解:(1)(1,3)A 平移后得到点1(5,3)A ABC ∴的平移方式是向右平移4个单位长度,(3,6)B ,(0,5)C1(7,6)B ∴,1(4,5)C如图,先在平面直角坐标系中,描出点1A ,1B ,1C ,再顺次连接即可得到111A B C △; (2)画图如下:(3)由网格图,可知:点P 的坐标为(3,3)P ,∵CP 扫过的面积是以CP 为半径的半圆的面积,222313CP =+=211322S CP ππ∴=⋅=. 【点睛】本题主要考查平移,旋转变换以及圆的面积公式和勾股定理,根据题意,画出变换后的对应点,是解题的关键.23.(1)100元;(2)y=0.25x+50;(3)460分钟【分析】(1)根据图像可直接得到结果;(2)求出通话400分钟时a 的值,再将通话200分钟时费用为100,再利用待定系数法求解;(3)令0.25x+50≤165,求出x 的范围即可.【详解】解:(1)由图像可知:套餐的上网流量费是100元;(2)当x=400时,y=100+(400-200)×0.25=150,设y 与x 的表达式为y=kx+b ,则100200150400k b k b=+⎧⎨=+⎩, 解得:0.2550k b =⎧⎨=⎩, ∴y 关于x 的函数表达式为y=0.25x+50;(3)0.25x+50≤165,解得:x≤460,∴当月最多能通话460分钟.【点睛】本题考查了一次函数的实际应用,解题的关键是结合图像,理解题意,求出函数表达式. 24.(1)6;(2)①122a -;② a 可取1,2,3,4,5【分析】(1)根据线段中点的性质,得12AE EC AC ==、12BF CF BC ==,再根据线段和差的性质计算,即可得到答案;(2)①根据线段中点的性质,得6AF BF ==;根据线段和差性质,得6AE a =-,再根据线段中点的性质计算,即可得到答案;②结合AC AB <,根据(2)①的结论,通过列不等式并求解,即可得到答案.【详解】(1)∵E 是线段AC 的中点 ∴12AE EC AC ==F 是线段BC 的中点 ∴12BF CF BC == ()11622EF EC CF AC BC AB =+=+==;(2)①F 是线段AB 的中点∴6AF BF ==∵EF a =,AC AB < ∴1122AE AC AB =<,即12AE AC AF =< ∴6AE AF EF a =-=-∴122AC a =- ②∵122AC a =-,且AC AB <∴012212a <-<∴06a <<∵a 为正整数∴a 可取1,2,3,4,5.【点睛】本题考查了线段、一元一次不等式的知识;解题的关键是熟练掌握线段中点、线段和差、一元一次不等式的性质,从而完成求解.25.(1)见解析;(2)①见解析;②见解析.【分析】(1)作A 点关于BC 的对称点A′,连接DA′交BC 于P 点,利用PA=PA′,则PA+PD=DA′,根据两点之间线段最短可判断P 点满足条件;(2)①作BC 的垂直平分线交AC 于M ;②BA 和CD 的延长线相交于O 点,作∠BOC 的平分线交AC 于N .【详解】解:(1)如图①,点P 为所作;(2)①如图①,点M 为所作;②如图②,点N 为所作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了最短路径问题. 26.(1)见解析;(2)22.5【分析】(1)根据全等三角形的判定和性质得出△ABD ≌△BAE ,进而得出OB=OA ;(2)根据全等三角形的判定和性质以及三角形内角和解答.【详解】证明:(1)∵AC=BC ,∠ACB=90°,∴∠ABC=∠BAC=45°.∴∠EBA=∠DAB=135°.在△ABD 与△BAE 中,135BE AD EBA DAB AB AB =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABD ≌△BAE (SAS ),∴∠DBA=∠EAB ,∴OB=OA ;(2)由(1)得:OB=OA ,在△OBC 与△OAC 中,OB OA OC OC BC AC =⎧⎪=⎨⎪=⎩,∴△OBC ≌△OAC (SSS ),∴∠OCB=∠OCA=12∠ACB=12×90°=45°, ∵AC=BC ,AC=OC ,∴OC=BC , ∴∠CBO=∠COB 1801804567.522OCB ︒︒︒︒-∠-===, 在Rt △BCD 中,∠D=180°-90°-∠CBO=22.5°.故答案为:22.5.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,关键是根据全等三角形的判定和性质解答.。
【湘教版】八年级数学下期中模拟试题(含答案)
一、选择题1.下列命题中,其逆命题是真命题的有( )个①全等三角形的对应角相等,② 两直线平行,同位角相等,③等腰三角形的两个底角相等,④正方形的四个角相等.A .1B .2C .3D .42.如图,在ABCD 中,对角线AC ,BD 相交于点O ,E 、F 是对角线AC 上的两点,给出下列四个条件,其中不能判定四边形DEBF 是平行四边形的有( )A .AE CF =B .DE BF =C .ADE CBF ∠=∠D .ABE CDF ∠=∠ 3.下列计算正确的是( )A .532-=B .25177+=C .422= D .1422233x x x += 4.下列式子中无意义的是( ) A .3-- B .3-- C .2(3)-- D .2(3)---5.下列计算中,正确的是()A .233255+=B .(37)10101010+⋅=⋅=C .(323)(323)3+-=-D .(2)(2)2a b a b a b ++=+ 6.下列二次根式:4、12、50、12中与2是同类二次根式的个数为( ) A .1个 B .2个 C .3个 D .4个7.如图,点D 和点E 分别是BC 和BA 的中点,已知AC =4,则DE 为( )A .1B .2C .4D .8 8.下列结论中,菱形具有而矩形不一定具有的性质是( ) A .对角线相等 B .对角线互相平分 C .对角线互相垂直 D .对边相等且平行 9.已知直角三角形纸片的两条直角边长分别为m 和3(m <3),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则( )A .m 2+6m +9=0B .m 2﹣6m +9=0C .m 2+6m ﹣9=0D .m 2﹣6m ﹣9=0 10.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,若30B ∠=︒,3AC =,2AD =,则ABD △的面积为( )A .3B .2C .23D .311.如图,是一种饮料的包装盒,长、宽、高分别为4cm 、3cm 、12cm ,现有一长为16cm 的吸管插入到盒的底部,则吸管漏在盒外面的部分()h cm 的取值范围为( )A .34h <<B .34h ≤≤C .24h ≤≤D .4h =12.如图,在△ABC 中,∠C =90°,点D 是线段AB 的垂直平分线与BC 的交点,连结AD .若CD =2,BD =4,则AC 的长为( )A .4B .3C .3D 3二、填空题13.如图,在ABC ∆中,点,D E 分别在边,AB AC 上,且BD CE =,连接,CD DE ,点,,M N P 分别是,,DE BC CD 的中点,34PMN ∠=,则MPN ∠的度数是_______.14.计算1248⨯的结果是________________.15.若二次根式26a +与33-是同类二次根式,则整数a 可以等于___________.(写出一个即可)16.23-分母有理化后得__________. 17.如图,正方形ABCD 的顶点B 在直线l 上,作AE l ⊥于E ,连结CE ,若4BE =,3AE =,则BCE 的面积________.18.如图,在等腰ABC 中,13AB AC ==,AD 是ABC 的高,12AD =,10BC =,E 、F 分别是AC 、AD 上一动点,则CF EF +的最小值为______.19.如图,在直角ABC 中,90B ∠=︒,AE 平分BAC ∠,交BC 边于点E ,若5BC =,13AC =,则AEC 的面积是________.20.如图,点P 是等边ABC 内的一点,6PA =,8PB =,10PC =.若点P '是ABC 外的一点,且P AB PAC '≌△△,则APB ∠的度数为_____.三、解答题21.在ABC 中,AC BC =,点E 在边AB 所在的直线上,过点E 作//DE BC 交直线AC 于点D ,//EF AC 交直线BC 于点F ,构造出平行四边形CDEF .(1)若点E 在线段AB 上时.①求证:FE FB =.②求证:DE EF BC +=.(2)点E 在边AB 所在的直线上,若8BC =,2EF =,请作出简单示意图并直接写出DE 的长度.22.如图,在中,,D 为的中点,,,连接交于点O .(1)证明:四边形为菱形; (2)若,,求菱形的高. 23.先化简,再求值:(1)221241442a a a a a a a -+⎛⎫⎛⎫-÷- ⎪ ⎪-+-⎝⎭⎝⎭,其中23a =- (2)225525x x x x x x ⎛⎫-÷ ⎪---⎝⎭,从不等式组23,212,x x --≤⎧⎨<⎩的解集中选取一个你认为符合题意的x 的值代入求值.24.先化简,再求值:2221111x x x x -+⎛⎫÷- ⎪-⎝⎭,其中x =21-. 25.如图,星期天小明去钓鱼,鱼钩A 在离水面的BD 的1.3米处,在距离鱼线1.2米处D 点的水下0.8米处有一条鱼发现了鱼饵,于是以0.2米/秒的速度向鱼饵游去,那么这条鱼至少几秒后才能到达鱼饵处?26.如图,在四边形ABCD 中,AB =13,BC =5,CD =15,AD =9,对角线AC ⊥BC . (1)求AC 的长;(2)求四边形ABCD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先把每一个命题的条件和结论互换就得到它的逆命题,再进行判断即可.【详解】解:“全等三角形的对应角相等”的逆命题是“三组角分别对应相等的两个三角形全等”,逆命题是假命题,故①不符合题意;“两直线平行,同位角相等”的逆命题是“同位角相等,两直线平行”,逆命题是真命题,故②符合题意;“等腰三角形的两个底角相等”的逆命题是“在一个三角形中,有两个角相等的三角形是等腰三角形”,逆命题是真命题,故③符合题意;“正方形的四个角相等”的逆命题是“四个角相等的四边形是正方形”,逆命题是假命题,故④不符合题意;综上:符合题意的有②③.故选:.B【点睛】本题考查的是命题与逆命题,命题真假的判断,正方形的判定方法,掌握由原命题得到逆命题,以及判断命题的真假是解题的关键.2.B解析:B【分析】根据全等三角形的判定和性质以及平行四边形的判定定理分别判断即可.【详解】,解:A、∵AE CF∴AO=CO,由于四边形ABCD是平行四边形,则BO=DO,∴四边形DEBF是平行四边形;B、不能证明四边形DEBF是平行四边形;C、∵四边形ABCD是平行四边形,∴AD=BC,∠DAE=∠BCF,又∠ADE=∠CBF,∴△DAE≌△BCF(ASA),∴AE=CF,同A可证四边形DEBF是平行四边形;D、同C可证:△ABE≌△CDF(ASA),∴AE=CF,同A可证四边形DEBF是平行四边形;故选:B.【点睛】本题考查了平行四边形的判定定理,对角线互相平分的四边形是平行四边形,熟练掌握平行四边形的判定定理是解题的关键.3.D解析:D【分析】根据二次根式加法以及二次根式的性质逐项排查即可.【详解】解:A A 选项错误;B 7=+B 选项错误;C =22=1,故C 选项错误;D =D 选项正确. 故答案为D .【点睛】 本题主要考查了二次根式加法以及二次根式的性质,掌握二次根式的加法运算法则是解答本题的关键.4.A解析:A【分析】先分别将各式化简,再根据二次根式的非负性解答.【详解】A 、-3,由被开放数不能为负数得此式无意义;B 、=3>0,故有意义;C 、=-3,有意义;D 、=13-,有意义, 故选:A.【点睛】此题考查二次根式的化简,二次根式的非负性,二次根式具有双重非负性,被开方数为非负数,二次根式的值为非负数.5.C解析:C【分析】根据二次根式的加法、乘法运算法则对每个选项的式子计算,判断正误即可.【详解】A 、=A 选项错误.B 、=B 选项错误.C 、22(339123+-=-=-=-,故C 选项正确.D 、2a b =+,故D 选项错误.故选:C .【点睛】本题主要考查二次根式的加法、乘法运算,熟记二次根数的加法、乘法运算法则是解题关键.6.B解析:B【分析】先把各二次根式化简为最简二次根式,再根据同类二次根式的概念解答即可.【详解】被开方数不同,故不是同类二次根式;被开方数不同,故不是同类二次根式;被开方数相同,故是同类二次根式;2被开方数相同,故是同类二次根式.2个,故选:B.【点睛】此题主要考查了同类二次根式的定义即化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.7.B解析:B【分析】根据三角形中位线定理解答即可.【详解】解:∵点D和点E分别是BC和BA的中点,∴DE是△ABC的中位线,∴DE=12AC=124=2,故选:B.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.8.C解析:C【分析】根据矩形和菱形的性质即可得出答案.【详解】解:A:因为矩形的对角线相等,故此选项不符合题意;B:因为菱形和矩形的对角线都互相平分,故此选项不符合题意;C:因为对角线互相垂直是菱形具有的性质,故此选项符合题意;D :因为矩形和菱形的对边都相等且平分,故此选项不符合题意;故选:C .【点睛】本题考查矩形和菱形的性质,掌握矩形和菱形性质的区别是解题关键.9.C解析:C【分析】如图,根据等腰三角形的性质和勾股定理可得m 2+m 2=(3﹣m )2,整理即可解答.【详解】解:如图,m 2+m 2=(3﹣m )2,2m 2=32﹣6m +m 2,m 2+6m ﹣9=0.故选:C .【点睛】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.10.A解析:A【分析】根据含30度角的直角三角形性质可求出CD=1,过点D 作DE ⊥AB ,证明Rt △ACD ≌Rt △AED ,得3Rt △BED ≌Rt △AED ,得3用三角形面积公式即可求出答案.【详解】解:∵30B ∠=︒,90C ∠=︒,∴∠BAC=90゜-30゜=60゜∵AD 平分BAC ∠,∴∠BAD=∠CAD=1302BAC ∠=︒ 在Rt △ACD 中,由AD=2∴CD=1;过点D 作DE ⊥AB ,如图,∵AD 平分BAC ∠,90C ∠=︒,∴DE=DC=1又AD=AD∴Rt △ACD ≌Rt △AED ,∴3在Rt △ADE 和Rt △BDE 中DAE DBE AED BED DE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴Rt △BED ≌Rt △AED∴3∴3 ∴11123322ABD S AB DE ∆=⨯=⨯⨯= 故选:A .【点睛】此题主要考查了角平分线的性质、含30度角的直角三角形的性质以及勾股定理,熟练掌握相关定理、性质是解答此题的关键. 11.B解析:B【分析】根据题中已知条件,首先要考虑吸管放进杯里垂直于底面时露在杯口外的最长长度;最短时与底面对角线和高正好组成直角三角形,用勾股定理解答,进而求出露在杯口外的最短长度.【详解】①当吸管放进杯里垂直于底面时露在杯口外的长度最长,最长为16−12=4(cm ); ②露出部分最短时与底面对角线和高正好组成直角三角形,底面对角线长2234+,高为12cm ,由勾股定理可得:杯里面管长22512+=13cm ,则露在杯口外的长度最短为16−13=3(cm ),∴34≤≤h故选:B.【点睛】本题考查了矩形中勾股定理的运用,解答此题的关键是要找出露在杯外面吸管最长和最短时,吸管在杯中所处的位置.12.C解析:C【分析】根据线段垂直平分线性质得出AD=BD,再用勾股定理即可求出AC.【详解】解:∵点D是线段AB的垂直平分线与BC的交点,BD=4,∴AD=BD=4,∴2222AC AD CD;4223故选:C.【点睛】本题考查了线段垂直平分线的性质,勾股定理的应用,掌握线段垂直平分线的性质是解题关键.二、填空题13.【分析】根据点MNP分别是DEBCCD的中点可以证明MP是ΔDEC的中位线NP是ΔDBC的中位线根据中位线定理可得到MP=NP再根据等腰三角形的性质得到∠PMN=∠PNM最后根据三角形的内角和定理可解析:112【分析】根据点 M,N,P 分别是 DE,BC,CD 的中点,可以证明MP是ΔDEC的中位线,NP是ΔDBC的中位线,根据中位线定理可得到MP=NP,再根据等腰三角形的性质得到∠PMN=∠PNM,最后根据三角形的内角和定理可以得到∠MPN.【详解】解:如图∵点 M,N,P 分别是 DE,BC,CD 的中点∴MP是ΔDEC的中位线,∴MP=12EC,NP是ΔDBC的中位线∴NP=12BD,又∵BD=CE∴MP=NP∴∠PMN=∠PNM=34∘∴∠MPN=180∘-∠PMN-∠PNM=180∘-34∘-34∘=112∘故答案位:112°【点睛】本题考查了三角形的中位线定理,等腰三角形的性质和判定,以及三角形的内角和定理,解题的关键是灵活运用三角形的中位线定理求线段的长度.14.【分析】利用二次根式的乘法运算法则进行计算即可【详解】解:=故答案为:【点睛】本题考查二次根式的乘法熟练掌握二次根式的乘法运算法则是解答的关键3【分析】利用二次根式的乘法运算法则进行计算即可.【详解】1 24812438⨯=3【点睛】本题考查二次根式的乘法,熟练掌握二次根式的乘法运算法则是解答的关键.15.3(答案不唯一)【分析】根据同类二次根式的概念列式计算即可【详解】解:∵二次根式与是同类二次根式∴可设则∴解得故答案为:3(答案不唯一)【点睛】本题考查的是同类二次根式的概念把几个二次根式化为最简二解析:3(答案不唯一)【分析】根据同类二次根式的概念列式计算即可.【详解】解:∵与-∴==∴2612a+=,解得3a=,故答案为:3(答案不唯一).【点睛】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.16.【分析】根据分数的性质:分子分母同时乘以计算求出结果【详解】故答案为:【点睛】此题考查分数的性质分母有理化的计算方法根据分母得到分子分母都乘以使分母有理化是解题的关键解析:2+【分析】根据分数的性质:分子、分母同时乘以2+【详解】2==,故答案为:2+【点睛】此题考查分数的性质,分母有理化的计算方法,根据分母得到分子、分母都乘以2+分母有理化是解题的关键.17.8【分析】过C作于点F根据正方形的性质找出对应相等的边和角求证出得到即可求三角形的面积【详解】如图所示过C作于点F四边形ABCD是正方形又又在和中故答案为8【点睛】此题考查了正方形的性质和三角形全等解析:8【分析】过C作CF l⊥于点F,根据正方形的性质找出对应相等的边和角,求证出ABE BCF≅得到4CF BE==即可求三角形的面积.【详解】如图所示,过C 作CF l ⊥于点F ,四边形ABCD 是正方形,AB BC ∴=,90ABC ∠=︒,又AE BE ⊥,CF BF ⊥,90AEB BFC ∴∠=∠=︒,又18090ABE CBF ABC ∠+∠=︒-∠=︒,18090ABE BAE AEB ∠+∠=︒-∠=︒,CBF BAE ∴∠=∠,∴在ABE △和BCF △中, AEB BFC BAE CBF AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABE BCF ∴≅,4CF BE ∴==,12BCE S BE CF ∴=⨯⨯1442=⨯⨯8=, 故答案为8.【点睛】此题考查了正方形的性质和三角形全等的判定,以及三角形面积的公式,难度一般. 18.【分析】作E 关于AD 的对称点M 连接CM 交AD 于F 连接EF 过C 作CN ⊥AB 于N 再求出BD 的长根据三角形面积公式求出CN 根据对称性得CF +EF =CM 根据垂线段最短得出CF +EF≥CM 即可得出答案【详解】 解析:12013【分析】作E 关于AD 的对称点M ,连接CM 交AD 于F ,连接EF ,过C 作CN ⊥AB 于N ,再求出BD 的长,根据三角形面积公式求出CN ,根据对称性得CF +EF =CM ,根据垂线段最短得出CF +EF≥CM ,即可得出答案.【详解】作E 关于AD 的对称点M ,连接CM 交AD 于F ,连接EF ,过C 作CN ⊥AB 于N , ∵AB =AC =13,BC =10,AD 是BC 边上的高,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,AD=12,∴S△ABC=12×BC×AD=12×AB×CN,∴CN=BC×AD÷AB=10×12÷13=12013,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短得出:CM≥CN,即CF+EF≥120 13,即CF+EF的最小值是120 13,故答案为:120 13.【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,掌握“点与直线上的所有点的连线中,垂线段最短”,是一道比较好的题目.19.【分析】如图(见解析)先利用勾股定理可得再根据角平分线的性质可得然后根据直角三角形全等的判定定理与性质可得从而可得设在中利用勾股定理可求出x的值最后利用三角形的面积公式即可得【详解】如图过点E作于点解析:78 5【分析】如图(见解析),先利用勾股定理可得12AB=,再根据角平分线的性质可得BE DE=,然后根据直角三角形全等的判定定理与性质可得12AD AB==,从而可得1CD=,设DE BE x==,在Rt CDE△中,利用勾股定理可求出x的值,最后利用三角形的面积公式即可得.【详解】如图,过点E 作ED AC ⊥于点D ,在Rt ABC 中,90,5,13B BC AC ∠=︒==,2212AB AC BC ∴=-=,AE ∵平分BAC ∠,且,90ED AC B ⊥∠=︒,BE DE ∴=,在Rt ABE △和Rt ADE △中,BE DE AE AE =⎧⎨=⎩, ()Rt ABE Rt ADE HL ∴≅,12AD AB ∴==,1CD AC AD ∴=-=,设DE BE x ==,则5CE BC BE x =-=-,在Rt CDE △中,222CD DE CE +=,即2221(5)x x +=-, 解得125x =, 即125DE =, 则AEC 的面积是111278132255AC DE ⋅=⨯⨯=, 故答案为:785. 【点睛】 本题考查了角平分线的性质、直角三角形全等的判定定理与性质、勾股定理等知识点,熟练掌握角平分线的性质是解题关键.20.150°【分析】由可知:PA =P′A ∠P′AB =∠PACBP′=CP 然后依据等式的性质可得到∠P′AP =∠BAC =60°从而可得到△APP′为等边三角形可求得PP′由△APP′为等边三角形得∠APP解析:150°【分析】由P AB PAC '≌△△可知:PA =P′A ,∠P′AB =∠PAC ,BP′=CP ,然后依据等式的性质可得到∠P′AP =∠BAC =60°,从而可得到△APP′为等边三角形,可求得PP′,由△APP′为等边三角形,得∠APP′=60°,在△PP′B 中,用勾股定理逆定理证出直角三角形,得出∠P′PB =90°,进而可求∠APB 的度数.【详解】连接PP′,∵P AB PAC '≌△△,∴PA =P′A=6,∠P′AB =∠PAC ,BP′=CP=10,∴∠P′AP =∠BAC =60°,∴△APP′为等边三角形,∴PP′=AP =AP′=6,又∵8PB =,∴PP′2+BP 2=BP′2,∴△BPP′为直角三角形,且∠BPP′=90°∴∠APB =90°+60°=150°,故答案是:150°【点睛】本题主要考查的是全等三角形的性质、等边三角形的判定、勾股定理的逆定理的应用,证得△APP′为等边三角形、△BPP′为直角三角形是解题的关键.三、解答题21.(1)①见解析;②见解析;(2)10或6【分析】(1)①根据平行线的性质得到∠FEB=∠A ,根据等边对等角得到∠B=∠A ,可得∠FEB=∠B ,从而可证;②证明四边形CDEF 是平行四边形,得到CF=DE ,结合FE=FB 可得结论;(2)点E 在边AB 所在的直线上,分三种情况讨论,即可得出DE 的长度.【详解】解:(1)①∵EF ∥AC ,∴∠FEB=∠A ,又∵AC=BC ,∴∠B=∠A ,∴∠FEB=∠B ,∴FE=FB ;②∵EF ∥AC ,DE ∥BC ,∴四边形CDEF是平行四边形.∴CF=DE,∵EF=BF,∴DE+EF=CF+BF=BC;(2)如图,同理可得:BF=EF,∴DE=BC+BF=BC+EF=8+2=10.如图,同理可得:BF=EF,DE=CF=BF-BC=EF-BC=2-8=-6(不合题意).如图④,DE=BC-BF=BC-EF=8-2=6.【点睛】本题考查平行四边形的判定与性质以及等腰三角形的判定,等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.22.(1)见解析;(2)【分析】(1)先证明四边形ADCE 是平行四边形,再由直角三角形斜边上的中线性质得出CD=AB=AD ,即可得出四边形ADCE 为菱形;(2)过点D 作DF ⊥CE ,垂足为点F ;先证明△BCD 是等边三角形,得出∠BDC=∠BCD=60°,CD=BC=6,再由平行线的性质得出∠DCE=∠BDC=60°,在Rt △CDF 中,求出DF 即可.【详解】解:(1)证明:∵AE ∥CD ,CE ∥AB ,∴四边形ADCE 是平行四边形,∵∠ACB=90°,D 为AB 的中点,∴CD=AB=AD ,∴四边形ADCE 为菱形;(2)过点D 作DF ⊥CE ,垂足为点F ,如图所示:DF 即为菱形ADCE 的高,∵∠B=60°,CD=BD ,∴△BCD 是等边三角形,∴∠BDC=∠BCD=60°,CD=BC=6,∵CE ∥AB ,∴∠DCE=∠BDC=60°,∴∠CDF=30°,又∵CD=BC=6,∴CF=3,∴在Rt △CDF 中,DF==.【点睛】本题考查了平行四边形的判定、菱形的判定、等边三角形的判定与性质、平行线的性质,熟练掌握直角三角形的性质,并能进行推理论证与计算是解决问题的关键.23.(1)()212a -,13;(2)x+5,当x=1时,原式=6 【分析】(1)先计算异分母分式减法,同时将除法化为乘法,再计算乘法,最后将a 的值代入计算即可;(2)先化简分式,再求出不等式组的解集,将适合的x 值代入计算.【详解】(1)原式=()2(1)(2)(2)42a a a a a a a a --+-⋅-- =()2442aa a a a -⋅-- =()212a -,当2a ==13; (2)原式=2(5)(5)52x x x x x+-⋅- =x+5, 解不等式组23212x x --≤⎧⎨<⎩,得56x -≤<, ∵x ≠-5,5,0,∴当x=1时,原式=1+5=6【点睛】此题考查分式的化简求值,二次根式的运算,解不等式组,分式的混合运算,正确掌握分式的混合运算的顺序及法则是解题的关键.24.+1x x ,22-. 【分析】先根据平方差公式,完全平方公式和分式的运算法则对原式进行化简,然后将x 1代入即可.【详解】 解:2221111x x x x -+⎛⎫÷- ⎪-⎝⎭=()()()21111x x x x x --÷+- =()()()21111x x x x x -+--× =+1x x当x 1时,原式【点睛】本题考查了分式的化简求值,掌握平方差公式,完全平方公式和分式的运算法则是解题关键.25.5【分析】过点C 作CE ⊥AB 于点E ,连接AC ,根据题意直接得出AE ,EC 的长,再利用勾股定理得出AC 的长,进而求出答案.【详解】如图所示:过点C 作CE ⊥AB 于点E ,连接AC ,由题意可得:EC =BD =1.2m ,AE =AB−BE =AB−DC =1.3−0.8=0.5m ,∴AC=22221.20.5 1.3CE AE +=+=m ,∴1.3÷0.2=6.5s ,答:这条鱼至少6.5秒后才能到这鱼饵处.【点睛】本题主要考查勾股定理,添加合适的辅助线,构造直角三角形,是解题的关键. 26.(1)12;(2)84.【分析】(1)在Rt ABC 中,利用勾股定理即可得;(2)先根据勾股定理的逆定理可得ACD △是直角三角形,再根据四边形ABCD 的面积等于Rt ABC 的面积与Rt ACD △的面积之和即可得.【详解】(1)AC BC ⊥,ABC ∴是直角三角形,13,5AB BC ==,2222213514412AC AB BC AC ∴=-=-==,; (2)15,9,12CD AD AC ===,222AC AD CD ∴+=,ACD ∴是直角三角形,则四边形ABCD 的面积为1122Rt ABC Rt ACD S S AC BC AC AD +=⋅+⋅,11125129=⨯⨯+⨯⨯,22=,84即四边形ABCD的面积为84.【点睛】本题考查了勾股定理、勾股定理的逆定理等知识点,熟练掌握勾股定理的逆定理是解题关键.。
2022年湘教版八年级数学下册期中模拟考试(加答案)
2022年湘教版八年级数学下册期中模拟考试(加答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.64的立方根是()A.4 B.±4 C.8 D.±82.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.03.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF5.方程组33814x yx y-=⎧⎨-=⎩的解为()A.12xy=-⎧⎨=⎩B.12xy=⎧⎨=-⎩C.21xy=-⎧⎨=⎩D.21xy=⎧⎨=-⎩6.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形7.下列图形中,是轴对称图形的是()A.B. C.D.8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°10.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是________.2.计算1273-=___________.3.因式分解:a3﹣2a2b+ab2=________.4.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于________.5.如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD=_____.6.如图,在矩形ABCD 中,BC =20cm ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形ABCD 的边运动,点P 和点Q 的速度分别为3cm /s 和2cm /s ,则最快_________s 后,四边形ABPQ 成为矩形.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=1.2.先化简,再求值:()()22141a a a +--,其中18a =.3.已知2a ﹣1的平方根为±3,3a +b ﹣1的算术平方根为4,求a +2b 的平方根.4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、B5、D6、B7、B8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、223、a(a﹣b)2.4、8.5、36、4三、解答题(本大题共6小题,共72分)1、x=12、23、±34、略.5、CD的长为3cm.6、(1)2元;(2)至少购进玫瑰200枝.。
湘教版八年级数学下册期中模拟考试(加答案)
湘教版八年级数学下册期中模拟考试(加答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.设42-的整数部分为a ,小数部分为b ,则1a b-的值为( ) A .2- B .2 C .212+ D .212- 4.如果a+b <0,并且ab >0,那么( )A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <05.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或346.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一些蜂蜜,此时一只蚂蚁正好也在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,那么蚂蚁要吃到甜甜的蜂蜜所爬行的最短距离是( )A .13B .14C .15D .167.下面是一位同学做的四道题:①222()a b a b +=+;②224(2)4a a -=-;③532a a a ÷=;④3412a a a ⋅=,其中做对的一道题的序号是( )A.①B.②C.③D.④8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.39.如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC三条边长为a,b,c,化简:|a-b-c|-|a+c-b|=__________.21273=___________.323(1)0m n-+=,则m-n的值为________.4.如图,正方形ABCD中,点E、F分别是BC、AB边上的点,且AE⊥DF,垂足为点O,△AOD7,则图中阴影部分的面积为________.5.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=________度.6.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2450x x--=;(2)22210x x--=.2.先化简再求值:(a﹣22ab ba-)÷22a ba-,其中2,b=12.3.已知,a、b互为倒数,c、d互为相反数,求31ab c d+的值.4.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.6.为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、A5、D6、C7、C8、D9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a23、445、:略6、6三、解答题(本大题共6小题,共72分)1、(1)x1=5,x2=-1;(2)12x x==.2、原式=a b a b -= +3、0.4、(1)略;(25、(1)略(2)90°(3)AP=CE6、(1)A型学习用品20元,B型学习用品30元;(2)800.。
2022年湘教版八年级数学下册期中模拟考试(带答案)
2022年湘教版八年级数学下册期中模拟考试(带答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.﹣2020的倒数是( ) A .﹣2020 B .﹣12020 C .2020 D .120202.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =-B .1201508x x =+C .1201508x x =-D .1201508x x =+ 5.若 45+a =5b (b 为整数),则a 的值可以是( )A .15B .27C .24D .206.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .37.若a =7+2、b =2﹣7,则a 和b 互为( )A .倒数B .相反数C .负倒数D .有理化因式8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C.76 D.808.如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.–12B.12C.–2 D.210.如图,已知BD是ABC的角平分线,ED是BC的垂直平分线,90BAC∠=︒,3AD=,则CE的长为()A.6 B.5 C.4 D.33二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A表示的数为a,化简:a244a a+-+=________.2.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是__________.3.在数轴上表示实数a的点如图所示,化简2(5)a-+|a-2|的结果为____________.4.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF =AC,则∠ABC=________度.5.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE ,则∠E=________度.6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程:2(1)4x -=2.(1)已知x =35+,y =35-,试求代数式2x 2-5xy +2y 2的值.(2)先化简,再求值:222222x y x y x xy y x xy x y ⎛⎫--÷ ⎪-+--⎝⎭,其中x =221-,y =22-.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8.在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D ,E 两点的坐标.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、D5、D6、A7、D8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、30°或150°.3、3.4、455、:略6、32°三、解答题(本大题共6小题,共72分)1、x=-1或x=32、(1)42,(2)13+-3、(1)102b -≤≤;(2)2 4、E (4,8) D (0,5)5、略.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
2022年湘教版八年级数学下册期中模拟考试及参考答案
2022年湘教版八年级数学下册期中模拟考试及参考答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D .1522.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ).A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-6 3.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 4.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,(﹣3,5)B .10,(3,﹣5)C .1,(3,4)D .3,(3,2)5.如果2(21)12a a -=-,则a 的取值范围是( )A .12a <B .12a ≤C .12a >D .12a ≥ 6.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .1257.若a 72b 27a 和b 互为( )A .倒数B .相反数C .负倒数D .有理化因式8.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC ⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点8.如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.–12B.12C.–2 D.210.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.比较大小:23________13.3.将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为_________.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.5.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是________.6.如图,四边形ABCD 中,∠A=90°,AB=33,AD=3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为 .三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.4.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE =AD ;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、D5、B6、C7、D8、B9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、82、<3、如果两条直线平行于同一条直线,那么这两条直线平行.4、10.5、186、3三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、11a-,1.3、(1)12,32-;(2)略.4、(1)略;(2)四边形BECD是菱形,理由略;(3)当∠A=45°时,四边形BECD是正方形,理由略5、(1)略;(2)四边形ACEF是菱形,理由略.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
2022年湘教版八年级数学下册期中模拟考试及完整答案
2022年湘教版八年级数学下册期中模拟考试及完整答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.估计101+的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.语句“x 的18与x 的和不超过5”可以表示为( ) A .58x x +≤ B .58x x +≥ C .855x ≤+ D .58x x += 4.若m n >,下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >5.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为()A.60海里B.45海里C.203海里D.303海里9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里二、填空题(本大题共6小题,每小题3分,共18分)1.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=________.2.比较大小:3133.若关于x 的分式方程2222x m m x x+=--有增根,则m 的值为_______. 4.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当CEB'△为直角三角形时,BE 的长为______。
【湘教版】八年级数学下期中模拟试卷(及答案)
一、选择题1.如图,在ABC 中,D 是BC 边上的中点,连结AD ,把ABD △沿AD 翻折,得到AB D ',连接CB ',若2BD CB '==,3AD =,则AB C '的面积为( )A .332B .23C .3D .22.下列命题是真命题的是( )A .三角形的三条高线相交于三角形内一点B .一组对边平行,另一组对边相等的四边形是平行四边形C .对于所有自然数n ,237n n -+的值都是质数D .三角形一条边的两个顶点到这条边上的中线所在直线的距离相等3.当2a <时,化简3(2)a a -的结果是( )A .(2)a a a -B .(2)a a a --C .(2)a a a -D .(2)a a a -- 4.如图为实数a ,b 在数轴上的位置,则222()()()b a a b +---=( )A .-aB .bC .0D .a-b5.已知y 443x x -+-,则x y 的值为( ). A .43 B .43- C .34D .34- 6.3 ) A 15B . 18C 13D . 1.57.平行四边形一边的长是12cm ,则这个平行四边形的两条对角线长可以是( ) A .4cm 或6cm B .6cm 或10cm C .12cm 或12cm D .12cm 或14cm 8.如图,以平行四边形ABCD 的边AB 、BC 、CD 、DA 为斜边,分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,顺次连结这四个点,得四边形EFGH ,当()090ADC αα∠=︒<<︒时,有以下结论:①180GCF α∠=︒-;②90HAE α∠=︒+;③HE HG =;④ EH GH ⊥;⑤四边形EFGH 是平行四边形.则结论正确的是( )A .①③④B .②③⑤C .①③④⑤D .②③④⑤ 9.如图,在矩形纸片ABCD 中,BC a =,将矩形纸片翻折,使点C 恰好落在对角线交点O 处,折痕为BE ,点E 在边CD 上,则CE 的长为( )A .12aB .25aC .32aD .33a 10.如图,△ABC 中,∠BAC=90°,AB=8,将△ABC 沿直线BC 向右平移,得到△EDF ,连接AD ,若四边形ACFD 为菱形,EC=4,则平移的距离为( )A .4B .5C .6D .811.如图,在Rt ABC ∆中,90,45,2B BCA AC ︒︒∠=∠==,点D 在BC 边上,将ABD ∆沿直线AD 翻折,点B 恰好落在AC 边上的点E 处,若点P 是直线AD 上的动点,连接,PE PC ,则PEC ∆的周长的最小值为( )A .22-B .2C .21+D .1 12.如图,在ABC 中,13,17,AB AC AD BC ==⊥,垂足为D ,M 为AD 上任一点,则22MC MB -等于( )A .93B .30C .120D .无法确定二、填空题13.已知菱形的面积为962cm ,两条对角线之比为3∶4,则菱形的周长为__________. 14.如图,在四边形ABCD 中,AC a =,BD b =,且AC BD ⊥顺次连接四边形ABCD 各边的中点,得到四边形1111D C B A ,再顺次连接四边形1111D C B A 各边中点,得到四边形2222A B C D …如此进行下去,得到四边形n n n n A B C D ,下列结论正确的有__________.①四边形2222A B C D 是矩形;②四边形4444A B C D 是菱形;③四边形5555A B C D 的周长是4a b +.15.()235328+--=__________.16.计算:22)=___________.17.273=_____18.如图,在Rt ABC ∆中,90A ∠=︒,ABC ∠的平分线BD 交AC 于点D ,DE 是BC 的垂直平分线,点E 是垂足.若2DC =,1AD =,则BE 的长为__________.19.如图,A 点坐标为(3,0),C 点坐标为(0,1),将OAC 沿AC 翻折得ACP △,则P 点坐标为_________.20.如图AD=4,CD=3,∠ADC=90°,AB=13,BC=12,则图形ABCD 的面积=______________.三、解答题21.如图,已知点E 是ABCD 的边CD 延长线上的一点;连接AE ,BD ,且//AE BD ;过点E 作EF BC ⊥,交BC 的延长线于点F ,连接DF ;求证:DF DE =22.如图,点A ,B ,C ,D 在同一条直线上,点E ,F 分别在直线AD 的两侧,且AC BD =,EBC FCB ∠=∠,BE CF =.求证:四边形AFDE 是平行四边形;23.计算:20116(2019)|527|32π-⎛⎫⨯+---- ⎪⎝⎭. 24.解方程组和计算(1)计算:①(6﹣215) ×3﹣612; ②4(3+7)0+12×8﹣(1﹣2)2 (2)解方程组:①43522x y y x +=⎧⎨=-⎩; ②3414233x y x y -=⎧⎨-=⎩. 25.如图,在ABC 中,90ACB ∠=︒,5AB =,3BC =,点P 从点A 出发,以每秒2个单位长度的速度沿折线A C B A ---运动.设点P 的运动时间为t 秒()0t >. (1)求AC 的长及斜边AB 上的高.(2)当点P 在CB 上时,①CP 的长为______________(用含t 的代数式表示).②若点P 在BAC ∠的角平分线上,则t 的值为______________.(3)在整个运动过程中,直接写出BCP 是等腰三角形时t 的值.26.如图,A (-1,0),C (1,4),点B 在x 轴上,且BC =5.(1)求点B 的坐标;(2)求△ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】证明AD ∥CB′,推出S △ACB′=S △CDB′即可解决问题.【详解】∵D 是BC 的中点,∴BD DC =,由翻折的性质可知ADB ADB '∠=∠,DB DB '=,∴2BD CB '==,∴2CD DB CB ''===,∴CDB '是等边三角形, ∴60CDB DCB ''∠=∠=︒,120BDB '∠=︒, ∴120ADB ADB '∠=∠=︒, ∴60ADC CDB '∠=∠=︒, ∴ADC DCB '∠=∠, ∴//AD CB ',∴22ACB CDB S S ''===△△ 故选:C .【点睛】本题考查了折叠的性质,等边三角形的判定和性质,三角形的面积等知识,解题的关键是学会用转化的思想思考问题.2.D解析:D【分析】根据钝角三角形的高的交点在三角形外部可对A 进行判断;根据平行四边形的判定对B 进行判断;取n=6可对C 进行判断;根据三角形全等的知识可对D 进行判断.【详解】解:A 、钝角三角形的三条高线相交于三角形外一点,所以A 选项错误;B 、一组对边平行,另一组对边也平行的四边形是平行四边形,所以B 选项错误;C 、当n=6时,n 2-3n+7=25,25不是质数,所以C 选项错误;D 、通过证明三角形全等,可以证明三角形一条边的两个顶点到这条边上的中线所在直线的距离相等,所以D 选项准确.故选:D .【点睛】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题.也考查了平行四边形的判定及全等三角形的判定和性质.3.B解析:B【分析】根据二次根式的性质即可化简.【详解】解:∵2a <∴a 20-<∴-故选:B .【点睛】此题主要考查二次根式的化简,解题的关键是熟练掌握二次根式的性质.4.C解析:C【分析】由数轴可得a 、b 和a-b 的正负,再由二次根式性质去根号、合并同类项即可.【详解】根据实数a 、b 在数轴上的位置得知:-1<a <0<b <1,∴a-b <0,则原式=b-a-(b-a )=b-a-b+a=0.故选:C .【点睛】考查了数轴及二次根式的化简,解题关键是由数轴得出a 、b 和a-b 的正负情况. 5.A解析:A【分析】由二次根式有意义的条件可得出x 的值,即可得出y 的值,计算出x y 的值即可. 【详解】因为3y =,4040x x -≥⎧∴⎨-≥⎩, ∴x =4,∴y =3, ∴43x y =.故选:A.【点睛】本题主要考查二次根式有意义的条件,熟记二次根式有意义的条件是解题关键.6.C解析:C【分析】先根据二次根式的性质化简各项,再根据同类二次根式的定义逐项判断即得答案.【详解】解:A、15与3不是同类二次根式,故本选项不符合题意;B、1832=,所以18与3不是同类二次根式,故本选项不符合题意;C、11333=,所以13与3是同类二次根式,故本选项符合题意;D、61.5=,所以 1.5与3不是同类二次根式,故本选项不符合题意;故选:C.【点睛】本题考查了二次根式的性质和同类二次根式的定义,属于基础题型,熟练掌握上述知识是解题的关键.7.D解析:D【分析】由四边形ABCD是平行四边形,可得OA=12AC,OB=12BD,然后利用三角形三边关系分析求解即可求得答案.【详解】解:∵四边形ABCD是平行四边形,∴OA=12AC,OB=12BD,A、∵AC=4cm,BD=6cm,∴OA=2cm,OB=3cm,∴OA+OB=5cm<12cm,不能组成三角形,故不符合;B、∵AC=6cm,BD=10cm,∴OA=3cm,OB=5cm,∴OA+OB=8cm<12cm,不能组成三角形,故不符合;C 、∵AC=12cm ,BD=12cm ,∴OA=6cm ,OB=6cm ,∴OA+OB=12cm=12cm ,不能组成三角形,故不符合;D 、∵AC=12cm ,BD=14cm ,∴OA=6cm ,OB=7cm ,∴OA+OB=13cm >12cm ,能组成三角形,故符合;故选D .【点睛】此题考查了平行四边形的性质以及三角形的三边关系.注意掌握平行四边形的对角线互相平分.8.D解析:D【分析】根据平行四边形性质得出∠ABC=∠ADC=α,∠BAD=∠BCD ,AB=CD ,AD=BC ,AD ∥BC ,AB ∥CD ,根据等腰直角三角形得出BE=AE=CG=DG ,AH=DH=BF=CF ,∠ABE=∠EAB=∠FBC=∠FCB=∠GCD=∠GDC=∠HAD=∠EDA=45°,求出∠HAE=∠HDG=∠FCG=∠FBE=90°+α,证△FBE ≌△HAE ≌△HDG ≌△FCG ,推出∠BFE=∠GFC ,EF=EH=HG=GF ,求出∠EFG=90°,根据正方形性质得出即可.【详解】解:∵四边形ABCD 是平行四边形,∴∠ABC=∠ADC=α,∠BAD=∠BCD ,AB=CD ,AD=BC ,AD ∥BC ,AB ∥CD ,∵平行四边形ABCD 的边AB 、BC 、CD 、DA 为斜边,分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,∴BE=AE=CG=DG ,AH=DH=BF=CF ,∠ABE=∠EAB=∠FBC=∠FCB=∠GCD=∠GDC=∠HAD=∠EDA=45°,∵AB ∥CD ,∴∠BAD=∠BCD=180°-α,∴∠EAH=360°-45°-45°-(180°-α)=90°+α,∠GCF=360°-45°-45°-(180°-α)=90°+α, ∴①错误;②正确;∠HDG=45°+45°+α=90°+α,∠FBE=45°+45°+α=90°+α,∴∠HAE=∠HDG=∠FCG=∠FBE ,在△FBE 、△HAE 、△HDG 、△FCG 中,BF AH DH CF FBE HAE HDG FCG BE AE DG CG ===⎧⎪∠=∠=∠=∠⎨⎪===⎩,∴△FBE ≌△HAE ≌△HDG ≌△FCG (SAS ),∴∠BFE=∠GFC ,EF=EH=HG=GF ,③正确;∴四边形EFGH 是菱形,∵∠BFC=90°=∠BFE+∠EFC=∠GFC+∠CFE ,∴∠EFG=90°,∴四边形EFGH 是正方形,⑤正确;∴EH ⊥GH ,④正确;故选:D .【点睛】本题考查了等腰直角三角形,全等三角形的性质和判定,正方形的判定,平行四边形的性质,菱形的判定的应用,主要考查学生的推理能力.9.D解析:D【分析】首先证明△OBC 是等边三角形,在Rt △EBC 中求出CE 即可解决问题;【详解】解:∵四边形ABCD 是矩形,∴OB=OC ,∠BCD=90°,由翻折不变性可知:BC=BO ,∴BC=OB=OC ,∴△OBC 是等边三角形,∴∠OBC=60°,∴∠EBC=∠EBO=30°,∴BE=2CE根据勾股定理得:333a , 故选:D .【点睛】本题考查翻折变换,等边三角形的判定和性质等知识,解题的关键是证明△OBC 是等边三角形. 10.C解析:C【分析】根据平移的性质可得8,,AB DE AC DF BC EF ====,设AC DF CF AD x ====,求得BC=4x +,再由勾股定理理出方程求解即可.【详解】解:由平移的性质可得:8,,AB DE AC DF BC EF ====又∵四边形ACFD 是菱形∴设AC DF CF AD x ====又∵4EC =∴4BC EF CF CE x ==+=+又∵∠90BAC ︒=∴222AB AC BC +=∴2228(4)x x +=+解得,6x =即6AD DF CF AC ====故平移的距离为:6AD =故选:C .【点睛】本题主要考查了平移的性质,熟练掌握平移的基本性质是解答此题的关键.11.B解析:B【分析】连接BP ,根据已知条件求出AB=BC=1,由翻折得:BD=DE ,∠BDA=∠EDA ,AE=AB=1,1,证明△BDP ≌△EDP ,推出BP=EP ,当点P 与点D 重合时,即可求出PEC ∆的周长的最小值.【详解】连接BP ,在Rt ABC ∆中,90,45B BCA ︒∠=∠=︒,∴∠BAC=45BCA ∠=︒,AB=BC ,∴22222AB AC ===,∴AB=BC=1,由翻折得:BD=DE ,∠BDA=∠EDA ,AE=AB=1,∴1,在△BDP 和△EDP 中, BD ED BDP EDP DP DP =⎧⎪∠=∠⎨⎪=⎩,∴△BDP ≌△EDP ,∴BP=EP ,∴当点P 与点D 重合时,PE+PC=PB+PC=BC 的值最小,此时PEC ∆的周长最小, PEC ∆的周长的最小值为1故选:B ..【点睛】此题考查翻折的性质,勾股定理,全等三角形的判定及性质,解题的关键是根据翻折的性质证得△BDP ≌△EDP ,由此推出当点P 与点D 重合时PEC ∆的周长最小,合情推理科学论证.12.C解析:C【分析】由,AD BC ⊥结合勾股定理可得:2222,AC AB DC BD -=-2222MC MB DC BD -=-,再把已知线段的长度代入计算即可得到答案.【详解】解:,AD BC ⊥222222,,AB AD BD AC AD DC ∴=+=+22222222,AC AB AD DC AD BD DC BD ∴-=+--=-1713AC AB ==,,22221713304120DC BD ∴-=-=⨯=,,AD BC ⊥222222,,MC MD DC BM BD DM ∴=+=+22222222120.MC MB MD DC DM BD DC BD ∴-=+--=-=故选:.C【点睛】本题考查的是勾股定理的应用,掌握利用勾股定理解决问题是解题的关键.二、填空题13.40【分析】依题意已知菱形的面积以及对角线之比首先根据面积公式求出菱形的对角线长然后利用勾股定理求出菱形的边长【详解】解:设两条对角线长分别为3x 和4x 由题意可得:解得:x=±4(负值舍去)∴对角线解析:40cm【分析】依题意,已知菱形的面积以及对角线之比,首先根据面积公式求出菱形的对角线长,然后利用勾股定理求出菱形的边长.【详解】解:设两条对角线长分别为3x 和4x ,由题意可得:134962x x =,解得:x=±4(负值舍去) ∴对角线长分别为12cm 、16cm ,又∵菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长,则菱形的周长为40cm .故答案为:40cm .【点睛】此题主要考查菱形的性质和菱形的面积公式,综合利用了勾股定理.14.②③【分析】利用三角形的中位线的性质证明四边形是矩形四边形是菱形四边形是矩形四边形是菱形从而可得到规律序号n 是奇数时四边形是矩形当序号n 是偶数时四边形是菱形再探究n 是奇数时四边形的周长即可解决问题【 解析:②③【分析】利用三角形的中位线的性质证明四边形1111D C B A 是矩形,四边形2222A B C D 是菱形,四边形3333A B C D 是矩形,四边形4444A B C D 是菱形,从而可得到规律,序号n 是奇数时四边形是矩形,当序号n 是偶数时四边形是菱形,再探究n 是奇数时四边形的周长即可解决问题.【详解】解: 1111,,,A B C D 分别是,,,AB BC CD DA 的中点,1111111111//,,//,,22A B AC A B AC C D AC C D AC ∴== 11//,A D BD 11111111//,,A B C D A B C D ∴=∴ 四边形1111D C B A 是平行四边形,,AC BD ⊥ 11//,A B AC 11//,A D BD 1111,A B A D ∴⊥∴ 四边形1111D C B A 是矩形,1111,AC B D ∴=如图,2222,,,A B C D 分别是11111111,,,A B B C C D D A 的中点,∴ 2211221111,,22A B AC A D B D == 四边形2222A B C D 是平行四边形, 2222,A B A D ∴=∴ 四边形2222A B C D 是菱形,故①不符合题意,2222,A C B D ∴⊥同理可得:四边形3333A B C D 是矩形,四边形4444A B C D 是菱形,故②符合题意,······总结规律:四边形n n n n A B C D , 当序号n 是奇数时四边形是矩形,当序号n 是偶数时四边形是菱形,111111111111,,2222A B C D AC a A D B C BD b ====== ∴ 四边形1111D C B A 的周长为,a b +如图, 四边形1111D C B A 是矩形,四边形2222A B C D 是菱形,2222,,,A B C D 分别是11111111,,,A B B C C D D A 的中点,222222112211,,,A C B D A C A D B D A B ∴⊥==由中位线的性质同理可得:33332233332211111111,,22242224A DBC BD a a D C A B A C b b ===⨯====⨯= 所以四边形3333A B C D 的周长为()1,2a b + 由规律可得:四边形5555A B C D 是矩形, 同理可得:四边形5555A B C D 的周长是()11.224a b a b +⨯+=故③符合题意.故答案为②③.【点睛】本题考查三角形的中位线的性质,中点四边形,菱形的判定与性质,矩形的判定与性质,解题的关键是学会从特殊到一般,探究规律,利用规律解决问题.15.7-【分析】首先利用绝对值的性质和二次根式算术平方根立方根的性质化简然后再计算加减即可【详解】解:【点睛】此题主要考查了实数运算关键是掌握绝对值的性质和二次根式的性质解析:【分析】首先利用绝对值的性质和二次根式、算术平方根、立方根的性质化简,然后再计算加减即可.【详解】3()--=322=32+2=7【点睛】此题主要考查了实数运算,关键是掌握绝对值的性质和二次根式的性质.16.2【分析】根据二次根式的性质化简即可【详解】2故答案为:2【点睛】此题考查二次根式的性质掌握二次根式的性质:是解答此题的关键解析:2【分析】根据二次根式的性质化简即可.【详解】2=2,故答案为:2【点睛】==,是解答此题的关键.此题考查二次根式的性质.掌握二次根式的性质:2a a17.【分析】先将化为再合并同类二次根式即可【详解】解:=故答案为【点睛】此题考查了二次根式的加减法把化为是解答此题的关键解析:【分析】化为【详解】==.故答案为【点睛】化为18.【分析】根据是的垂直平分线得到BD=CDBE=CE推出∠DBC=∠C根据BD平分推出∠ABD=∠CBD=∠C求出∠C=得到DE=1利用勾股定理求出CE即可得到BE【详解】∵是的垂直平分线∴BD=CD【分析】根据DE是BC的垂直平分线,得到BD=CD,BE=CE,推出∠DBC=∠C,根据BD平分ABC∠,推出∠ABD=∠CBD=∠C,求出∠C=30,得到DE=1,利用勾股定理求出CE即可得到BE.【详解】∵DE是BC的垂直平分线,∴BD=CD,BE=CE,∴∠DBC=∠C,∵BD平分ABC∠,∴∠ABD=∠CBD,∴∠ABD=∠CBD=∠C,∵∠ABD+∠CBD+∠C=90︒,∴∠C=30,∵2DC=,∴DE=1,∴=,【点睛】此题考查线段垂直平分线的性质,角平分线的性质,直角三角形30度角的性质,勾股定理,熟记线段垂直平分线的性质及角平分线的性质是解题的关键.19.【分析】在Rt△COA中根据OA=和OC=1根据勾股定理可得AC=2得到根据翻折性质可得继而可得在Rt△PAG中根据所对直角边等于斜边的一半可以求出AG的长利用勾股定理可求出PG的长从而得到P点坐标解析:32⎫⎪⎪⎝⎭【分析】在Rt △COA 中,根据OA=3和OC=1,根据勾股定理可得AC=2,得到30CAO ∠=︒,根据翻折性质可得CAO PAC ∠=∠,继而可得60PAO ∠=︒,30GPA ∠=︒,在Rt △PAG 中,根据30所对直角边等于斜边的一半可以求出AG 的长,利用勾股定理可求出PG 的长,从而得到P 点坐标.【详解】如下图,过点P 作PG x ⊥轴于点G ,∵3,OC=1,∴22+2OA OC =,∴12OC AC =, ∴30CAO ∠=︒, ∵△AOC 沿AC 翻折得到△APC ,∴CAO PAC ∠=∠,∴=60PAO ∠︒,=30GPA ∠︒,3,∴132AG AP ==,2232PG PA GA =-=, ∴333 ∴点P 的坐标为3322⎛⎫ ⎪ ⎪⎝⎭,, 故答案为:332⎫⎪⎪⎝⎭,. 【点睛】本题考查折叠的性质、含30︒角的直角三角形及勾股定理,熟练掌握含30︒角的直角三角形及勾股定理是解题的关键.20.24【分析】连接AC 在中根据勾股定理求得AC 的长度利用勾股定理逆定理可得为直角三角形根据即可求解【详解】解:连接AC 在中∴∵∴∴为直角三角形∴故答案为:24【点睛】本题考查勾股定理及其逆定理掌握勾股 解析:24【分析】连接AC ,在Rt ACD △中根据勾股定理求得AC 的长度,利用勾股定理逆定理可得ABC 为直角三角形,根据ABCD ABC ACD S SS =-即可求解.【详解】解:连接AC , ,在Rt ACD △中,90ADC ∠=︒,4=AD ,3CD =, ∴225AC AD CD =+=,∵13AB =,12BC =,∴222AC BC AB +=,∴ABC 为直角三角形,90ACB ∠=︒, ∴112422ABCD ABC ACD S S S AC BC AD CD =-=⋅-⋅=, 故答案为:24.【点睛】本题考查勾股定理及其逆定理,掌握勾股定理的内容是解题的关键.三、解答题21.见解析【分析】根据平行四边形的性质可得AB CD =,//AB CD ,然后结合题意利用两组对边分别平行的四边形是平行四边形可判定四边形ABDE 是平行四边形,然后利用平行四边形的性质和直角三角形斜边中线等于斜边一半证明求解.【详解】证明:∵四边形ABCD 是平行四边形,∴AB CD =,//AB CD ,又∵//AE BD∴四边形ABDE 是平行四边形;∴AB DE =,即CD DE =;又EF BC ⊥于点F ;∴∠EFC=90°∴在Rt CEF △中,点D 是斜边CE 的中点∴DF DE =.【点睛】本题考查平行四边形的性质和判定以及直角三角形斜边中线等于斜边的一半,掌握相关性质定理正确推理论证是解题关键.22.见解析【分析】证明△ABE ≌△DCF ,得到AE=DF ,∠EAB=∠FDC ,推出AE ∥DF ,即可证明结论.【详解】解:∵AC=BD ,即AB+BC=CD+CB ,∴AB=CD ,∵∠EBC=∠FCB ,∴∠ABE=∠DCF ,在△ABE 和△DCF 中,AB CD ABE DCF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCF (SAS ),∴AE=DF ,∠EAB=∠FDC ,∴AE ∥DF ,∴四边形AFDE 是平行四边形.【点睛】本题考查了全等三角形的判定和性质,平行四边形的判定,解题的关键是根据全等得到对应角和对应边相等.23.2.【分析】实数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:2016(2019)|52π-⎛⎫--- ⎪⎝⎭=61|543⨯+---154=+-2=-【点睛】本题考查实数的混合运算、二次根式的性质和负整数指数幂的运算等知识,掌握运算顺序和计算法则正确计算是解题关键.24.(1)①-②;(2)①111015x y ⎧=⎪⎪⎨⎪=⎪⎩;②3019x y =⎧⎨=⎩【分析】(1)①直接利用二次根式的混合运算法则化简,进而计算得出答案;②直接利用负整数指数幂的性质以及二次根式的混合运算法则分别化简得出答案;(2)①直接利用代入消元法解方程得出答案;②直接利用加减消元法解方程得出答案.【详解】解:(1)①原式62=⨯==-,故答案为:-②原式=4+(122⨯+-=4+2-故答案为:;(2)解①方程组:435(1)22(2)+=⎧⎨=-⎩x yy x,把(2)代入(1)中得:4x+3(2x﹣2)=5,解得:x=11 10,把x=1110代入(2)得y=15,所以方程组的解为:111015xy⎧=⎪⎪⎨⎪=⎪⎩,故答案为111015xy⎧=⎪⎪⎨⎪=⎪⎩;解②方程组:3414(1) 233(2)-=⎧⎨-=⎩x yx y,(1)×2﹣(2)×3得:-8y+9y=28﹣9,解得y=19,把y=19代入(2)中得:2x﹣57=3,解得x=30,所以方程组的解为:3019 xy=⎧⎨=⎩.故答案为:3019 xy=⎧⎨=⎩.【点睛】本题考查了二次根式的四则运算及二元一次方程组的解法,属于基础题,计算过程中细心即可.25.(1)125;(2)①24t -;②83;(3)t 的值为0.5或4.75或5或5.3. 【分析】(1)直接利用勾股定理即可求得AC 的长,再利用等面积法即可求得斜边AB 上的高; (2)①CP 的长度等于运动的路程减去AC 的长度,②过点P '作P 'D ⊥AB ,证明Rt △AC P '≌Rt △AD P '得出AD=AC=4,分别表示各线段,在Rt △BD P '利用勾股定理即可求得t 的值;(3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上,①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,②当点P 在线段AB 上时,又分三种情况:BC=BP ;PC=BC ;PC=PB ,分别求得点P 运动的路程,再除以速度即可得出答案.【详解】解:(1)∵90C ∠=︒,5AB =,3BC =,∴在Rt ABC ∆中, 2222534AC AB BC =-=-=.∴AC 的长为4.设斜边AB 上的高为h .∵1122AB h AC BC ⨯⨯=⨯⨯, ∴1153422h ⨯⨯=⨯⨯, ∴125h =. ∴斜边AB 上的高为125. (2)已知点P 从点A 出发,以每秒2个单位长度的速度沿折线A-C-B-A 运动, ①当点P 在CB 上时,点P 运动的长度为:AC+CP=2t ,∵AC=4,∴CP=2t-AC=2t-4.故答案为:2t-4.②当点P '在∠BAC 的角平分线上时,过点P '作P 'D ⊥AB ,如图:∵A P '平分∠BAC ,P 'C ⊥AC ,P 'D ⊥AB ,∴P 'D=P 'C=2t-4,∵BC=3,∴B P '=3-(2t-4)=7-2t ,在Rt △AC P '和Rt △AD P '中,AP AP P D P C ''''=⎧⎨=⎩, ∴Rt △AC P '≌Rt △AD P '(HL ),∴AD=AC=4,又∵AB=5,∴BD=1,在Rt △BD P '中,由勾股定理得:2221(24)(72)t t +-=- 解得:83t =, 故答案为:83; (3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上,①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,∴此时CP=BC=3,∴AP=AC-CP=4-3=1,∴2t=1,∴t=0.5;②当点P 在线段AB 上时,若BC=BP ,则点P 运动的长度为:AC+BC+BP=4+3+3=10,∴2t=10,∴t=5;若PC=BC ,如图2,过点C 作CH ⊥AB 于点H ,则BP=2BH ,在△ABC 中,∠ACB=90°,AB=5,BC=3,AC=4,∴AB•CH=AC•BC ,∴5CH=4×3,∴125CH =, 在Rt △BCH 中,由勾股定理得:22123() 1.85BH =-=, ∴BP=3.6, ∴点P 运动的长度为:AC+BC+BP=4+3+3.6=10.6,∴2t=10.6,∴t=5.3;若PC=PB ,如图3所示,过点P 作PQ ⊥BC 于点Q ,则30.52BQ CQ BC ==⨯=,∠PQB=90°, ∴∠ACB=∠PQB=90°,∴PQ ∥AC ,∴PQ 为△ABC 的中位线,∴PQ=0.5×AC=0.5×4=2, 在Rt △BPQ 中,由勾股定理得:223()2 2.52BP =+=, 点P 运动的长度为:AC+BC+BP=4+3+2.5=9.5,∴2t=9.5,∴t=4.75.综上,t 的值为0.5或4.75或5或5.3.【点睛】本题考查勾股定理,HL 定理,等腰三角形的性质和判定.掌握等面积法和分类讨论思想是解题关键.26.(1)B (4,0)或B (-2,0);(2)10或2【分析】(1)过点C 作CD ⊥x 轴,垂足为D ,根据勾股定理可求出BD=3,求出B 点坐标; (2)根据三角形面积公式计算即可.【详解】解:(1)如图,过点C 作CD ⊥x 轴,垂足为D ,可知D 点坐标为(1,0),∵BC=5,CD=4,∴22543-=,当B 点在点D 右侧时,B 点坐标是(4,0),当B 点在点D 左侧时,B 点坐标是(-2,0);(2)当B 点在点D 右侧时,S △ABC =12AB CD ⨯⨯, =1542⨯⨯,=10;当B 点在点D 左侧时,S △ABC =112AB CD ⨯⨯, =1142⨯⨯, =2.【点睛】此题主要考查了勾股定理、利用坐标求线段长、根据坐标轴上线段长求坐标以及利用坐标求三角形的面积,正确的掌握坐标与线段长的关系是解题关键.。
【湘教版】八年级数学下期中模拟试卷(带答案)
一、选择题1.如图,菱形ABCD 中,50A ∠=︒,则ADB ∠的度数为( )A .65︒B .55︒C .45︒D .25︒2.下列式子中正确的是( )A .527+=B . 22a b a b -=-C .()a x b x a b x -=-D .6834322+=+=+ 3.一个等腰三角形两边的长分别为75和18,则这个三角形的周长为( ) A .10332+ B .5362+C .10332+或5362+D .无法确定 4.当2a <时,化简3(2)a a -的结果是( )A .(2)a a a -B .(2)a a a --C .(2)a a a -D .(2)a a a -- 5.估计1(2622)2-⨯的值是( ) A .0到1之间 B .1到2之间C .2到3之间D .3到4之间 6.如图,已知正方形ABCD 的边长为4,点Р是对角线BD 上一动点(不与D ,B 重合),PF CD ⊥于点F ,PE BC ⊥于点E ,连接AP ,EF .则下列结论错误的是( )A .2PD EC =B .AP EF =,且AP EF ⊥C .四边形PECF 的周长是8D .12BD EF AB ≤< 7.已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB BC =时,四边形ABCD 是菱形B .当AC BD ⊥时,四边形ABCD 是菱形C .当90ABC ∠=时,四边形ABCD 是矩形D .当AC BD =时,四边形ABCD 是正方形8.如图,在矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB ,CD 交于点E 、F ,连接BF 交AC 于点M ,连接DE ,BO .若60COB ∠=︒,FO FC =.则下列结论:①FB 垂直平分OC ;②四边形DEBF 为菱形;③OC FB =;④2AM BM =;⑤:3:2BOM AOE S S =.其中正确结论的个数是( )A .5个B .4个C .3个D .2个9.如图,在Rt △ABC 中,∠ACB =90°,AB =10,AC =8,AB 的垂直平分线DE 交BC 的延长线于点E ,则DE 的长为( )A .103B .256C .203D .15410.如图所示,有一块直角三角形纸片,90C ∠=︒,12AC cm =,9BC cm =,将斜边AB 翻折使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CD 的长为( )A .4cmB .5cmC 17cmD .94cm 11.《九章算术》是我国古代的数学名著,其中“勾股”章有一题,大意是说:已知矩形门的高比宽多6尺,门的对角线长10尺,那么门的高和宽各是多少?如果设门的宽为x 尺,根据题意可列方程( )A .222(6)10x x ++=B .222(6)10x x -+=C .222(6)10x x +-=D .222610x +=12.如图,在长为10的线段AB 上,作如下操作:经过点B 作BC AB ⊥,使得12BC AB =;连接AC ,在CA 上截取CE CB =;在AB 上截取AD AE =,则AD 的长为( )A .555-B .1055-C .10510-D .555+二、填空题13.如图,在菱形ABCD 中,13cm AB =,24cm AC =,E ,F 分别是CD 和BC 的中点,连接EF 并延长与AB 的延长线相交于点G ,则EG 的长度为________cm .14.正三角形ABC 中,已知AB =6,D 是直线AC 上的动点,CE ⊥BD 于点E ,连接AE ,则AE 长的取值范围是_______________.15.如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积1258S π=,22S π=,则3S 是________.16.23()a -=______(a≠0),2(3)-=______,132)-=______.17.化简-15827102÷31225a=___________. 当1<x <4时,|x -221x x -+=____________.18.计算1112|13|()23----+的值是_____ 19.如图,在Rt ABC △中,90ACB ︒∠=,10AB =,8AC =,D 是AB 的中点,M 是边AC 上一点,连接DM ,以DM 为直角边作等腰直角三角形DME ,斜边DE 交线段CM 于点F ,若2MDF MEF S S =,则CF 的长为________.20.如图是放在地面上的一个长方体盒子,其中AB =24cm ,BC =12cm ,BF =7cm ,点M 在棱AB 上,且AM =6cm ,点N 是FG 的中点,一只蚂蚁要沿着长方体盒子的表面从点M 爬行到点N ,它需要爬行的最短路程为_______.三、解答题21.在Rt ABC 中,90ACB ∠=︒,点D 是AB 的中点,点E 是直线BC 上一点(不与点B ,C 重合),连结CD ,DE .(1)如图①若90CDE ∠=︒,求证:A E ∠=∠.②若BD 平分CDE ∠,且24E ∠=︒,求A ∠的度数.(2)设()45A αα∠=>︒,DEC β∠=,若CD CE =,求β关于α的函数关系式,并说明理由.22.如图,ABCD的对角线AC,BD相交于点O,E,F是AC上的两点,并且AE CF=,连接DE,BF.(1)求证:△≌△DOE BOF;(2)若BD EF=,连接EB,DF,判断四边形EBFD的形状,并说明理由.23.已知a,b,c满足22|8|1025(18)0a b b c-+-++-=.试问以a,b,c为边能否构成三角形?若能,求出其周长;若不能,请说明理由.24.计算:1241|2|(2)23π-⎛⎫-+--+ ⎪⎝⎭.25.已知ABC的三边长分别为a、b、c,且18a=,32b=,50c=.(1)判断ABC的形状,并说明理由;(2)如果一个正方形的面积与ABC的面积相等时,求这个正方形的边长.26.如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米.(1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】由菱形得到AB=AD,进而得到∠ADB=∠ABD,再由三角形内角和定理即可求解.【详解】解:∵四边形ABCD为菱形,∴AD=AB,∴∠ADB=∠ABD=(180°-∠A)÷2=(180°-50°)÷2=65°,故选:A.【点睛】本题考查了菱形的性质,菱形的邻边相等,属于基础题,熟练掌握菱形的性质是解决本题的关键.2.C解析:C【分析】根据二次根式的运算法则分别计算,再作判断.【详解】解:A、不是同类二次根式,不能合并,故错误,不符合题意;B、计算错误,不符合题意;C、符合合并同类二次根式的法则,正确,符合题意.D、计算错误,不符合题意;故选:C.【点睛】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.3.A解析:A【分析】满足三角形成立的条件,最后对三边求和即可.【详解】若,则周长为+若=,∴,此三角形不存在,∴这个三角形的周长为故选:A .【点睛】本题考查等腰三角形的性质,涉及化简二次根式,熟练掌握等腰三角形的性质以及三角形成立的条件是解题的关键.4.B解析:B【分析】根据二次根式的性质即可化简.【详解】解:∵2a <∴a 20-<∴-故选:B .【点睛】此题主要考查二次根式的化简,解题的关键是熟练掌握二次根式的性质.5.B解析:B【分析】直接利用二次根式的性质结合估算无理数的大小方法得出答案.【详解】解:2, ∵34<<, ∴.122<<,故选:B .【点睛】此题主要考查了估算无理数的大小,正确估算无理数是解题关键. 6.A解析:A【分析】由三个直角的四边形是矩形,由此判断四边形PECF 是矩形,得到EC PF =,再结合正方形的性质,解得PD =,由此判断A ;过点P 作PN AB ⊥垂足为N ,过P 作//PM EF 交DC 于点M ,连接AM ,由角平分线的性质得到PN PE =,继而结合勾股定理证明AP EF =、证明四边形PEFM 是平行四边形,即可得到EF PM AP ==,设BE x =,结合勾股定理证明222PM A M P A +=,即可判断B ;根据等腰直角三角形的性质计算四边形PECF 的周长即可判断C ;设BE x =,由勾股定理解得EF 的长,再结合04x ≤≤,解得EF 与BD AB 、的数量关系即可判断D .【详解】解:A. ,PE BC PF CD ⊥⊥90PEC PFC ∴∠=∠=︒90C ∠=︒∴四边形PECF 是矩形EC PF ∴=正方形ABCD 中45PDF ∠=︒ 22PD PF EC ∴==故A 错误;B.过点P 作PN AB ⊥垂足为N ,过P 作//PM EF 交DC 于点M ,连接AM ,BD 平分ABC ∠,PN AB ⊥,PE BC ⊥PN PE ∴=222222,AP AN PN EF EC PE =+=+且,AN EC PN PE ==AP EF ∴=//,//PM EF PE CD∴四边形PEFM 是平行四边形EF PM AP ∴==设BE x =,则,42PE FC MF x DM x ====-,4EC PF x ==-22(4)AP EF PM x x ===+-222216(42)AD MD AM x +==+-222AP PM AM +=AP PM ∴⊥AP EF ∴⊥故B 正确;C.BPE 为等腰直角三角形PE BE ∴=4PE PF BE EC BC ∴+=+==故四边形PECF 的周长为2()8PE PF +=,故C 正确;D.设BE x =EF ∴==04x ≤≤EF ∴≥12EF BD ∴≥ 4EF <EF AB ∴<12BD EF AB ∴≤< 故D 正确,故选:A .【点睛】本题考查四边形的综合题,涉及勾股定理、矩形的判定与性质、正方形的判定与性质、平行四边形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键. 7.D解析:D【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【详解】解:A 、根据邻边相等的平行四边形是菱形可知:四边形ABCD 是平行四边形,当AB BC =时,它是菱形,故本选项不符合题意;B 、根据对角线互相垂直的平行四边形是菱形知:当AC BD ⊥时,四边形ABCD 是菱形,故本选项不符合题意;C 、根据有一个角是直角的平行四边形是矩形知:当90ABC ∠=时,四边形ABCD 是矩形,故本选项不符合题意;D 、根据对角线相等的平行四边形是矩形可知:当AC BD =时,它是矩形,不是正方形,故本选项符合题意;综上所述,符合题意是D 选项;故选:D .【点睛】本题考查了对矩形的判定、菱形的判定,正方形的判定的应用,能正确运用判定定理进行判断是解此题的关键,难度适中.8.C解析:C【分析】证明△OFB≌△CFB,可判断结论①正确;利用菱形的定义,可判断结论②正确;根据OC=OB,斜边大于直角边,可判断结论③错误;根据30度角的性质,可判断AB=2BM,故结论④是错误的;证NE∥BM,AN=NO=OM,所以BM=3NE,AO=2OM,利用三角形面积公式计算判断,结论⑤正确.【详解】连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三角形,∴OB=BC=OC,∠OBC=60°,∵FO=FC,BF=BF∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,∴△AOE≌△COF,∴OE=OF,FC=AE,∴DF=BE,DF∥BE,∴四边形EBFD是平行四边形,∵OA=OB,∴∠OAB=∠OBA=30°,∵FO=OE=FC=AE,∴∠AOE=∠FOM=30°,∴∠BOF=90°,∴BE=BF,∴四边形EBFD是菱形,∴结论②正确;∵OA=OB,∴∠OAB=∠OBA=30°,∵FO=OE=FC=AE,∴∠AOE=∠FOM=30°,∴∠BOF=90°,∴FB >OB ,∵OB=OC ,∴FB >OC ,∴③错误,在直角三角形AMB 中,∵∠BAM=30°,∠AMB=90°,∴AB=2BM ,∴④错误,设ED 与AC 的交点为N ,设AE=OE=2x ,则NE=x ,BE=4x ,∴AB=6x ,∴BM=3x , ∴11::22BOM AOE S SOM BM AO NE =⋅⋅ =3:2OM x OM x ⋅⋅=3:2,结论⑤正确.故选C .【点睛】本题考查了矩形的性质,等腰三角形三线合一性质,全等三角形,直角三角形30°角的性质,菱形的判定,熟练掌握,灵活运用是解题的关键.9.C解析:C【分析】利用勾股定理求BC 的长度,连接AE ,然后设BE=AE=x ,结合勾股定理列方程求解.【详解】解:如图,∵Rt △ABC 中,∠ACB=90°,∴22221086BC AB AC =-=-=,∵DE 是AB 的垂直平分线,∴BD=12AB=5,∠EDB=90°,AE=BE 连接AE ,设AE=BE=x ,则CE=x-6在Rt △ACE 中,222(6)8x x -+=,解得:253x = ∴BE=AE=253 在Rt △BDE 中,ED=22222520()533BE BD -=-=. 故选:C .【点睛】本题考查了勾股定理解直角三角形和线段垂直平分线的性质,掌握相关性质定理正确推理计算是解题关键.10.A解析:A【分析】根据勾股定理可将斜边AB 的长求出,根据折叠的性质知,AE=AB ,已知AC 的长,可将CE 的长求出,再根据勾股定理列方程求解,即可得到CD 的长.【详解】解:在Rt △ABC 中,12AC cm =,9BC cm =,22AC BC +,根据折叠的性质可知:AE=AB=15cm ,∵AC=12cm ,∴CE=AE-AC=3cm ,设CD=xcm ,则BD=9-x=DE ,在Rt △CDE 中,根据勾股定理得CD 2+CE 2=DE 2,即x 2+32=(9-x )2,解得x=4,即CD 长为4cm .故选:A .【点睛】本题考查图形的翻折变换,解题过程中应注意折叠前后的对应相等关系.解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.11.A解析:A【分析】设门的宽为x 尺,则高为(x+6)尺,根据勾股定理解答.【详解】设门的宽为x 尺,则高为(x+6)尺,根据题意可列方程222(6)10x x ++=,故选:A .【点睛】此题考查勾股定理计算,正确理解题意掌握勾股定理计算公式是解题的关键. 12.A解析:A【分析】由勾股定理求出AC=55,则AD=AE=AC-CE=55-5即可.【详解】解:∵BC ⊥AB ,AB=10,CE =BC=1110522AB =⨯=, ∴AC=222210555AB BC +=+=,∴AD=AE=AC-CE=555-,故选:A【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.二、填空题13.10【分析】连接对角线BD 交AC 于点O 证四边形BDEG 是平行四边形得EG =BD 利用勾股定理求出OD 的长BD =2OD 即可求出EG 【详解】解:连接BD 交AC 于点O 如图:∵菱形ABCD 的边长为13cm ∴A解析:10【分析】连接对角线BD ,交AC 于点O ,证四边形BDEG 是平行四边形,得EG =BD ,利用勾股定理求出OD 的长,BD =2OD ,即可求出EG .【详解】解:连接BD ,交AC 于点O ,如图:∵菱形ABCD 的边长为13cm ,∴AB//CD ,AB =BC =CD =DA =13cm ,∵ 点E 、F 分别是边CD 、BC 的中点,∴ EF//BD ,∵AC 、BD 是菱形的对角线,AC =24cm ,∴AC ⊥BD ,AO =CO =12AC =12cm ,OB =OD , 又∵AB//CD ,EF//BD ,∴DE//BG ,BD//EG ,∴四边形BDEG 是平行四边形,∴BD =EG , 在△COD 中,∵OC ⊥OD ,CD =13cm ,CO =12cm ,∴OB =OD =2213125-=cm ,∴BD =2OD =10cm ,∴EG =BD =10cm ;故答案为:10.【点睛】本题主要考查了菱形的性质,平行四边形的判定与性质及勾股定理等知识;熟练掌握菱形、平行四边形的性质和勾股定理是解题的关键.14.≤AE≤【分析】取BC 中点O 利用勾股定理以及直角三角形的性质分别求得AO 和OE 再利用三角形三边关系即可求解【详解】解:取BC 中点O 连接OAOE ∵△ABC 正三角形且AB=6∴AO ⊥BCBO=OC=BC解析:333-≤AE ≤333+【分析】取BC 中点O ,利用勾股定理以及直角三角形的性质分别求得AO 和OE ,再利用三角形三边关系即可求解.【详解】解:取BC 中点O ,连接OA 、OE ,∵△ABC 正三角形,且AB=6,∴AO ⊥BC ,BO=OC=12BC=12AB=3, ∴AO=22226333AB BO -=-=,在△OAE 中,OA-OE<AE< OA+OE , 当O 、A 、E 在同一直线上时,取等号,∴OA-OE ≤AE ≤OA+OE ,∴333-≤AE 333≤+, 故答案为:333-≤AE 333≤+.【点睛】本题考查了等边三角形的性质,直角三角形的性质,三角形三边的关系,注意,直角三角形斜边上的中线等于斜边的一半.15.【分析】由勾股定理得推出由此得到将数据代入计算得出答案【详解】解:在直角三角形中利用勾股定理得:∴变形为:即又∴故答案为:【点睛】此题考查勾股定理的应用圆的面积计算公式正确理解各部分图形之间的面积关解析:98π. 【分析】 由勾股定理得222+=a b c ,推出222111()()()222222a b c πππ+=,由此得到231S S S +=,将数据代入计算得出答案.【详解】解:在直角三角形中,利用勾股定理得:222+=a b c ,∴222888a b c πππ+=,变形为:222111()()()222222a b c πππ+=,即231S S S +=. 又1258S π=,22S π=, ∴312259288S S S πππ=-=-=,故答案为:98π. 【点睛】 此题考查勾股定理的应用,圆的面积计算公式,正确理解各部分图形之间的面积关系及勾股定理的计算公式是解题的关键.16.【分析】根据负整数指数幂的运算法则计算即可【详解】=;;【点睛】此题考查了负整数指数幂:a-n=也考查了分母有理化解析:61a 13+ 【分析】 根据负整数指数幂的运算法则计算即可.【详解】23()a -=661a a -==;2-==13;1-=== 【点睛】 此题考查了负整数指数幂:a -n =1(0)n a a ≠.也考查了分母有理化. 17.;【分析】由二次根式的性质进行化简然后计算除法运算即可;由绝对值的意义和二次根式的性质进行化简即可求出答案【详解】解:-÷====;∵∴∴;∴;故答案为:;【点睛】本题考查了二次根式的乘除运算二次根解析:2- 25x -+.【分析】由二次根式的性质进行化简,然后计算除法运算即可;由绝对值的意义和二次根式的性质进行化简即可求出答案.【详解】 解:-15827102÷31225a=158-=215896a-⨯÷=2=2-∵14x <<,∴40x -<,10x ->,∴44x x -=-∴44(1)25x x x x -=---=-+;故答案为:2-25x -+.【点睛】本题考查了二次根式的乘除运算,二次根式的性质,绝对值的意义,解题的关键是熟练掌握运算法则,正确的进行解题.18.【分析】直接利用二次根式的性质绝对值以及负整数指数幂的性质分别化简得出答案【详解】故答案为:【点睛】本题主要考查了二次根式的混合运算以及负整数指数幂的性质正确掌握相关运算法则是解题关键解析:3【分析】直接利用二次根式的性质,绝对值以及负整数指数幂的性质分别化简得出答案.【详解】11|1()2---+21=3=.故答案为:3.【点睛】本题主要考查了二次根式的混合运算以及负整数指数幂的性质,正确掌握相关运算法则是解题关键.19.3【分析】作DG ⊥AC 于GEH ⊥AC 于H 则∠DGM =∠MHE =90°DG ∥BC 由勾股定理得出BC =6证出DG 是△ABC 的中位线得出DG =BC =3AG =CG =AC =4证明△MDG ≌△EMH (ASA )得解析:3【分析】作DG ⊥AC 于G ,EH ⊥AC 于H ,则∠DGM =∠MHE =90°,DG ∥BC ,由勾股定理得出BC =6,证出DG 是△ABC 的中位线,得出DG =12BC =3,AG =CG =12AC =4,证明△MDG ≌△EMH (ASA ),得出MG =EH ,由三角形面积关系得出DG =2EH =3,得出MG=EH =32,再证明∆DGF~∆EHF ,从而求出GF ,进而即可得出答案. 【详解】作DG ⊥AC 于G ,EH ⊥AC 于H ,如图所示:则∠DGM =∠MHE =90°,DG ∥BC ,∵∠ACB =90°,AB =10,AC =8, ∴BC6=,∵DG ∥BC ,D 是AB 的中点,∴DG 是△ABC 的中位线,∴DG =12BC =3,AG =CG =12AC =4, ∵△DME 是等腰直角三角形,∴∠DME =90°,DM =ME ,∵∠DMG +∠GDM =∠DMG +∠EMH =90°,∴∠GDM =∠EMH ,在△MDG 和△EMH 中,DGM MHE DM MEGDM EMH ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△MDG ≌△EMH (ASA ),∴MG =EH ,∵S △MDF =2S △MEF ,∴DG =2EH =3,∴MG =EH =32, ∵DG ∥EH ,∴∆DGF~∆EHF , ∴21DG GF EH HF ==, ∵GH=MH-MG=DG-MG=3-32=32, ∴GF=32×221+=1, ∴CF=AC-AG-GF=8-4-1=3,故答案是:3..【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、相似三角形的判定和性质;添加辅助线,构造三角形全等是解题的关键.20.cm【分析】利用平面展开图有两种情况画出图形利用勾股定理求出MN的长即可【详解】解:如图1∵AB=24cmAM=6cm∴BM=18cm∵BC=GF=12cm点N 是FG的中点∴FN=6cm∵BF=7c解析:493cm【分析】利用平面展开图有两种情况,画出图形利用勾股定理求出MN的长即可.【详解】解:如图1,∵AB=24cm,AM=6cm,∴BM=18cm,∵BC=GF=12cm,点N是FG的中点,∴FN=6cm,∵BF=7cm,∴BN=7+6=13cm,∴22493;1813如图2,∵AB=24cm ,AM =6cm ,∴BM=18cm ,∵BC=GF=12cm ,点N 是FG 的中点,∴BP=FN=6cm ,∴MP=18+6=24cm ,∵PN= BF =7cm ,∴2224762525+==cm . ∵49325,∴蚂蚁沿长方体表面爬到N 493. 493.【点睛】此题主要考查了平面展开图的最短路径问题和勾股定理的应用,利用展开图有两种情况分析得出是解题关键.三、解答题21.(1)①见解析;②22°;(2)1452βα=+︒或1452βα=-+︒,见解析 【分析】(1)①由直角三角形斜边上中线的性质得AD DC BD ==,再根据等腰三角形的性质,由等角的余角相等,即可证明结论;②设DBC x ∠=︒,则24BDE x ∠=︒-︒,根据角平分线的性质以及三角形的内角和列式求出x 的值即可;(2)分情况讨论,当点E 在线段BC 上,或当点E 在线段BC 的延长线上,由等腰三角形的性质即可求出结果.【详解】(1)①证明:∵90ACB ∠=︒,∴90A ABC ∠+∠=︒,∵点D 是AB 的中点,∴AD DC BD ==,∴DCB ABC ∠=∠.∵90CDE ∠=︒,∴90E DCB ∠+∠=︒,∴A E ∠=∠;②解:设DBC x ∠=︒,则24BDE x ∠=︒-︒,∵BD 平分CDE ∠,∴24CDB BDE x ∠=∠=︒-︒.∵DB DC =,∴DCB DBC x ∠=∠=︒,∴24180x x x ︒+︒+︒-︒=︒,解得68x =,∴906822A ∠=︒-︒=︒;(2)①如图,当CD CE =时,∴CDE CED β∠=∠=.∵A α∠=,AD DC =,∴ACD α∠=,∴90DCB α∠=︒-,∴290180βα+︒-=︒,得1452βα=+︒;②如图,当CD CE =时∴CDE E β∠=∠=,∴290βα=︒-,得1452βα=-+︒.【点睛】本题考查等腰三角形的性质,直角三角形斜边上中线的性质,解题的关键是熟练掌握这些几何的性质定理.22.(1)见解析;(2)矩形,见解析【分析】(1)已知四边形ABCD 是平行四边形,根据平行四边形的性质可得OA =OC ,OB =OD ,由AE =CF 即可得OE =OF ,利用SAS 即可证明△BOE ≌△DOF ;(2)四边形BEDF 是矩形.由(1)得OD =OB ,OE =OF , 根据对角线互相平方的四边形为平行四边形可得四边形BEDF 是平行四边形, 再由BD =EF ,根据对角线相等的平行四边形为矩形即可判定四边形EBFD 是矩形.【详解】(1)证明:四边形ABCD 是平行四边形, OB OD ∴=,OA OC =. 又AE CF =,OA AE OC CF ∴-=-,即OE OF =,在DOE △和BOF 中,OE OF DOE BOF OD OB =⎧⎪∠=∠⎨⎪=⎩,∴△≌△DOE BOF .(2)四边形EBFD 是矩形,理由如下: BD ,EF 相交于点O ,OD OB =,OE OF =,∴四边形EBFD 是平行四边形.又BD EF =,∴四边形EBFD 是矩形.【点睛】本题考查了三角形全等的性质和判定,平行四边形的性质及判定、矩形的判定,熟练运用相关的性质及判定定理是解决问题的关键.23.能构成三角形,其周长为【分析】利用已知条件以及绝对值的性质确定a ,b ,c 的值即可,根据三角形的三边关系判断能构成三角形,然后再求周长即可.【详解】解:能构成三角形,理由:∵2|(0a c =,∴=0,(b-5)2=0,,∴a,b =5,c;∵5,∴能构成三角形,周长为:+5.【点睛】本题主要考查了绝对值;二次根式;非负数的性质,关键是掌握绝对值、算术平方根和偶次幂具有非负性.24.1.【分析】利用二次根式的性质、绝对值的性质和负整数指数幂、零指数幂逐项计算即可求解.【详解】101|(2)2π-⎛⎫--+ ⎪⎝⎭12=+-+1=.【点睛】本题考查实数的混合运算,掌握二次根式的性质、绝对值的性质和负整数指数幂是解题的关键.25.(1)ABC 是直角三角形,理由见解析;(2)【分析】(1)先比较根式的大小,再计算较小的两个边的平方和,与最大的平方比较,得出结论即可;(2)设这个正方形的边长为x ,由一个正方形的面积与ABC 的面积相等,构造方程212x =,解之即可. 【详解】解:(1)在ABC <<222250a b +=+=,2250c ==,222a b c ∴+=,ABC ∴是直角三角形;(2)设这个正方形的边长为x ,∵一个正方形的面积与ABC 的面积相等,∴212x =,解得:x =±0x ,x ∴=答:这个正方形的边长为x =【点睛】本题考查勾股定理的逆定理,以及利用面积列方程解应用题,掌握勾股定理逆定理的应用条件与方法,会利用正方形的面积与ABC 的面积相等构造方程解决问题是关键. 26.(1)7米;(2)不是【分析】(1)利用勾股定理直接求出边长即可;(2)梯子的顶端下滑了4米,则20a =米,利用勾股定理求出b 的值,判断是否梯子的底部在水平方向也滑动了4米.【详解】(1)如图,由题意得此时a =24米,c =25米,由勾股定理得222+=a b c , ∴2225247b =-=(米);(2)不是,如果梯子的顶端下滑了4米,此时20a =米,25c =米, 由勾股定理,22252015b =-=(米),1578-=(米),即梯子的底部在水平方向滑动了8米.【点睛】本题考查勾股定理的应用,解题的关键是掌握用勾股定理解直角三角形的方法.。
八年级数学下学期期中模拟试题(含解析) 湘教版-湘教版初中八年级全册数学试题
某某省某某市某某县清潭中学2015-2016学年八年级数学下学期期中模拟试题一.选择题(共12小题)1.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40° B.45° C.60° D.70°2.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()A.B.1 C.D.23.下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.86.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32° B.64° C.77° D.87°7.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.8.如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P 到边AB所在直线的距离为()A.B.C.D.19.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()A.﹣1 B.﹣5 C.﹣4 D.﹣310.若不等式组恰有两个整数解,则m的取值X围是()A.﹣1≤m<0 B.﹣1<m≤0 C.﹣1≤m≤0 D.﹣1<m<011.不等式组的整数解的个数为()A.1 B.2 C.3 D.412.在平面直角坐标系中,点A(,),B(3,3),动点C在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为()A.2 B.3 C.4 D.5二.填空题(共6小题)13.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.14.如图,△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若△ABC与△EBC的周长分别是40cm,24cm,则AB=cm.15.如图,Rt△ABC中,∠B=90°,AB=4,BC=3,AC的垂直平分线DE分别交AB,AC于D,E两点,则CD 的长为.16.关于x的不等式组的解集为1<x<3,则a的值为.17.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为.18.如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF=.三.解答题(共6小题)19.如图,在Rt△ABC中,∠C=90°,BD是△ABC的一条角平分线.点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形.(1)求证:点O在∠BAC的平分线上;(2)若AC=5,BC=12,求OE的长.20.解不等式:≤﹣1,并把解集表示在数轴上.21.解不等式组,并写出它的所有非负整数解.22.今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?23.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).24.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.2015-2016学年某某省某某市某某县清潭中学八年级(下)期中数学模拟试卷参考答案与试题解析一.选择题(共12小题)1.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40° B.45° C.60° D.70°【考点】等腰三角形的性质;平行线的性质.【分析】根据平行线的性质可得∠CBD的度数,根据角平分线的性质可得∠CBA的度数,根据等腰三角形的性质可得∠C的度数,根据三角形内角和定理可得∠BAC的度数.【解答】解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选:A.【点评】考查了平行线的性质,角平分线的性质,等腰三角形的性质和三角形内角和定理.关键是得到∠C=∠CBA=70°.2.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()A.B.1 C.D.2【考点】含30度角的直角三角形;角平分线的性质;线段垂直平分线的性质.【分析】先根据线段垂直平分线的性质得出BE=CE=2,故可得出∠B=∠DCE=30°,再由角平分线定义得出∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,利用三角形内角和定理求出∠A=180°﹣∠B﹣∠ACB=90°,然后在Rt△CAE中根据30°角所对的直角边等于斜边的一半得出AE=CE=1.【解答】解:∵在△ABC中,∠B=30°,BC的垂直平分线交AB于E,BE=2,∴BE=CE=2,∴∠B=∠DCE=30°,∵CE平分∠ACB,∴∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,∴∠A=180°﹣∠B﹣∠ACB=90°.在Rt△CAE中,∵∠A=90°,∠ACE=30°,CE=2,∴AE=CE=1.故选B.【点评】本题考查的是含30度角的直角三角形的性质,线段垂直平分线的性质,等腰三角形的性质,角平分线定义,三角形内角和定理,求出∠A=90°是解答此题的关键.3.下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b【考点】不等式的性质.【分析】根据不等式的性质进行判断.【解答】解:A、在不等式a>b的两边同时加上c,不等式仍成立,即a+c>b+c,不符合题意;B、在不等式a+c>b+c的两边同时减去c,不等式仍成立,即a>b,不符合题意;C、当c=0时,若a>b,则不等式ac2>bc2不成立,符合题意;D、在不等式ac2>bc2的两边同时除以不为0的c2,该不等式仍成立,即a>b,不符合题意.故选:C.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:故选:D.【点评】本题主要考查对不等式的性质,解一元一次不等式(组),在数轴上表示不等式的解集等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.5.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.8【考点】坐标与图形变化-平移;一次函数图象上点的坐标特征.【分析】根据题意,线段BC扫过的面积应为一平行四边形的面积,其高是AC的长,底是点C平移的路程.求当点C落在直线y=2x﹣6上时的横坐标即可.【解答】解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4.∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得 x=5.即OA′=5.∴CC′=5﹣1=4.∴S▱BCC′B′=4×4=16 (面积单位).即线段BC扫过的面积为16面积单位.故选:C.【点评】此题考查平移的性质及一次函数的综合应用,解决本题的关键是明确线段BC扫过的面积应为一平行四边形的面积.6.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32° B.64° C.77° D.87°【考点】旋转的性质.【分析】旋转中心为点A,C、C′为对应点,可知AC=AC′,又因为∠CAC′=90°,根据三角形外角的性质求出∠C′B′A的度数,进而求出∠B的度数.【解答】解:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.【点评】本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应线段相等.也考查了等腰直角三角形的性质.7.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P 到边AB所在直线的距离为()A.B.C.D.1【考点】角平分线的性质;等边三角形的性质;含30度角的直角三角形;勾股定理.【分析】根据△ABC为等边三角形,BP平分∠ABC,得到∠PBC=30°,利用PC⊥BC,所以∠PCB=90°,在Rt△PCB中, =1,即可解答.【解答】解:∵△ABC为等边三角形,BP平分∠ABC,∴∠PBC==30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中, =1,∴点P到边AB所在直线的距离为1,故选:D.【点评】本题考查了等边三角形的性质、角平分线的性质、利用三角函数求值,解决本题的关键是等边三角形的性质.9.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()A.﹣1 B.﹣5 C.﹣4 D.﹣3【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】满足不等式﹣x+m>nx+4n>0就是直线y=﹣x+m位于直线y=nx+4n的上方且位于x轴的上方的图象,据此求得自变量的取值X围即可.【解答】解:∵直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,∴关于x的不等式﹣x+m>nx+4n的解集为x<﹣2,∵y=nx+4n=0时,x=﹣4,∴nx+4n>0的解集是x>﹣4,∴﹣x+m>nx+4n>0的解集是﹣4<x<﹣2,∴关于x的不等式﹣x+m>nx+4n>0的整数解为﹣3,故选:D.【点评】本题考查了一次函数的图象和性质以及与一元一次不等式的关系,要熟练掌握.10.若不等式组恰有两个整数解,则m的取值X围是()A.﹣1≤m<0 B.﹣1<m≤0 C.﹣1≤m≤0 D.﹣1<m<0【考点】一元一次不等式组的整数解.【分析】先求出不等式的解集,根据题意得出关于m的不等式组,求出不等式组的解集即可.【解答】解:∵不等式组的解集为m﹣1<x<1,又∵不等式组恰有两个整数解,∴﹣2≤m﹣1<﹣1,解得:﹣1≤m<0恰有两个整数解,故选A.【点评】本题考查了解一元一次不等式组,不等式组的解集的应用,解此题的关键是能求出关于m的不等式组,难度适中.11.不等式组的整数解的个数为()A.1 B.2 C.3 D.4【考点】一元一次不等式组的整数解.【分析】先求出两个不等式的解集,再求其公共解,然后写出所有的整数解即可求出个数.【解答】解:,解不等式①得,x>﹣,解不等式②得,x≤1,所以,不等式组的解集是﹣<x≤1,所以,不等式组的整数解有﹣1、0、1共3个.故选C.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).12.在平面直角坐标系中,点A(,),B(3,3),动点C在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为()A.2 B.3 C.4 D.5【考点】等腰三角形的判定;坐标与图形性质.【专题】压轴题.【分析】首先根据线段的中垂线上的点到线段两端点的距离相等,求出AB的中垂线与x轴的交点,即可求出点C1的坐标;然后再求出AB的长,以点A为圆心,以AB的长为半径画弧,与x轴的交点为点C2、C3;最后判断出以点B为圆心,以AB的长为半径画弧,与x轴没有交点,据此判断出点C的个数为多少即可.【解答】解:如图,,∵AB所在的直线是y=x,∴设AB的中垂线所在的直线是y=﹣x+b,∵点A(,),B(3,3),∴AB的中点坐标是(2,2),把x=2,y=2代入y=﹣x+b,解得b=4,∴AB的中垂线所在的直线是y=﹣x+4,∴C1(4,0)以点A为圆心,以AB的长为半径画弧,与x轴的交点为点C2、C3;AB==4,∵3>4,∴以点B为圆心,以AB的长为半径画弧,与x轴没有交点.综上,可得若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为3.故选:B.【点评】(1)此题主要考查了等腰三角形的性质和应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(2)此题还考查了坐标与图形性质,要熟练掌握,解答此题的关键是要明确:到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.二.填空题(共6小题)13.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是4:3 .【考点】角平分线的性质.【分析】估计角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.14.如图,△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若△ABC与△EBC的周长分别是40cm,24cm,则AB=16 cm.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】首先根据DE是AB的垂直平分线,可得AE=BE;然后根据△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,可得△ABC的周长﹣△EBC的周长=AB,据此求出AB的长度是多少即可.【解答】解:∵DE是AB的垂直平分线,∴AE=BE;∵△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,∴△ABC的周长﹣△EBC的周长=AB,∴AB=40﹣24=16(cm).故答案为:16.【点评】(1)此题主要考查了垂直平分线的性质,要熟练掌握,解答此题的关键是要明确:垂直平分线上任意一点,到线段两端点的距离相等.(2)此题还考查了等腰三角形的性质,以及三角形的周长的求法,要熟练掌握.15.如图,Rt△ABC中,∠B=90°,AB=4,BC=3,AC的垂直平分线DE分别交AB,AC于D,E两点,则CD 的长为.【考点】线段垂直平分线的性质;勾股定理.【分析】先根据线段垂直平分线的性质得出CD=AD,故AB=BD+AD=BD+CD,设CD=x,则BD=4﹣x,在Rt△BCD 中根据勾股定理求出x的值即可.【解答】解:∵DE是AC的垂直平分线,∴CD=AD,∴AB=BD+AD=BD+CD,设CD=x,则BD=4﹣x,在Rt△BCD中,CD2=BC2+BD2,即x2=32+(4﹣x)2,解得x=.故答案为:.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.16.关于x的不等式组的解集为1<x<3,则a的值为 4 .【考点】解一元一次不等式组.【分析】求出不等式组的解集,根据已知得出a﹣1=3,从而求出a的值.【解答】解:∵解不等式①得:x>1,解不等式②得:x<a﹣1,∵不等式组的解集为1<x<3,∴a﹣1=3,∴a=4故答案为:4.【点评】本题考查了一元一次不等式组,解一元一次方程的应用,关键是能求出a﹣1=3.17.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为10 .【考点】平移的性质.【分析】根据平移的基本性质解答即可.【解答】解:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故答案为:10.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.18.如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF= 5 .【考点】旋转的性质.【分析】根据旋转的性质,EC=BC=4,DC=AC=6,∠ACD=∠ACB=90°,由点F是DE的中点,可求出EG、GF,因为AE=AC﹣EC=2,可求出AG,然后运用勾股定理求出AF.【解答】解:作FG⊥AC,根据旋转的性质,EC=BC=4,DC=AC=6,∠ACD=∠ACB=90°,∵点F是DE的中点,∴FG∥CD∴GF=CD=AC=3EG=EC=BC=2∵AC=6,EC=BC=4∴AE=2∴AG=4根据勾股定理,AF=5.【点评】本题主要考查了旋转的性质、三角形中位线性质、勾股定理的综合运用,作垂线构造直角三角形是解决问题的关键.三.解答题(共6小题)19.如图,在Rt△ABC中,∠C=90°,BD是△ABC的一条角平分线.点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形.(1)求证:点O在∠BAC的平分线上;(2)若AC=5,BC=12,求OE的长.【考点】角平分线的性质;全等三角形的判定与性质;正方形的性质.【分析】(1)过点O作OM⊥AB,由角平分线的性质得OE=OM,由正方形的性质得OE=OF,易得OM=OF,由角平分线的判定定理得点O在∠BAC的平分线上;(2)由勾股定理得AB的长,利用方程思想解得结果.【解答】(1)证明:过点O作OM⊥AB,∵BD是∠ABC的一条角平分线,∴OE=OM,∵四边形OECF是正方形,∴OE=OF,∴OF=OM,∴AO是∠BAC的角平分线,即点O在∠BAC的平分线上;(2)解:∵在Rt△ABC中,AC=5,BC=12,∴AB===13,设CE=CF=x,BE=BM=y,AM=AF=z,∴,解得:,∴CE=2,∴OE=2.【点评】本题主要考查了正方形的性质,以及角平分线定理及性质,熟练掌握正方形的性质,运用方程思想是解本题的关键.20.解不等式:≤﹣1,并把解集表示在数轴上.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.【解答】解:去分母得,4(2x﹣1)≤3(3x+2)﹣12,去括号得,8x﹣4≤9x+6﹣12,移项得,8x﹣9x≤6﹣12+4,合并同类项得,﹣x≤﹣2,把x的系数化为1得,x≥2.在数轴上表示为:.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.21.解不等式组,并写出它的所有非负整数解.【考点】解一元一次不等式组;一元一次不等式组的整数解.【专题】计算题.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可确定出所有非负整数解.【解答】解:,由①得:x≥﹣2;由②得:x<,∴不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.【点评】此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.22.今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?【考点】一元一次不等式组的应用;分式方程的应用.【分析】(1)设去年每吨大蒜的平均价格是x元,则第一次采购的平均价格为(x+500)元,第二次采购的平均价格为(x﹣500)元,根据第二次的采购数量是第一次采购数量的两倍,据此列方程求解;(2)先求出今年所采购的大蒜数,根据采购的大蒜必需在30天内加工完毕,蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,据此列不等式组求解,然后求出最大利润.【解答】解:(1)设去年每吨大蒜的平均价格是x元,由题意得,×2=,解得:x=3500,经检验:x=3500是原分式方程的解,且符合题意,答:去年每吨大蒜的平均价格是3500元;(2)由(1)得,今年的大蒜数为:×3=300(吨),设应将m吨大蒜加工成蒜粉,则应将(300﹣m)吨加工成蒜片,由题意得,,解得:100≤m≤120,总利润为:1000m+600(300﹣m)=400m+180000,当m=120时,利润最大,为228000元.答:应将120吨大蒜加工成蒜粉,最大利润为228000元.【点评】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.23.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).【考点】作图-旋转变换;弧长的计算;作图-轴对称变换.【专题】作图题.【分析】(1)利用关于x轴对称点的横坐标相等,纵坐标化为相反数可先找出点A1、B1、C1的坐标,然后画出图形即可;(2)利用旋转的性质可确定出点A2、C2的坐标;(3)利用弧长公式进行计算即可.【解答】解:(1)根据关于x轴对称点的坐标特点可知:A1(2,﹣4),B1(1,﹣1),C1(4,﹣3),如图下图:连接A1、B1、C1即可得到△A1B1C1.(2)如图:(3)由两点间的距离公式可知:BC=,∴点C旋转到C2点的路径长=.【点评】本题主要考查的是图形的对称、图形的旋转以及扇形的弧长公式,掌握相关性质是解题的关键.24.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.【考点】等腰三角形的性质.【专题】证明题.【分析】根据三角形三线合一的性质可得∠CAD=∠BAD,根据同角的余角相等可得:∠CBE=∠CAD,再根据等量关系得到∠CBE=∠BAD.【解答】证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD.【点评】考查了余角的性质,等腰三角形的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.。
湘教版数学八年级下册期中抽考模拟试卷(含答案)
湘教版八年级数学(下)期中抽考模拟试卷(含答案)一、选择题(每小题3分)1,以下列各组数为边能构成直角三角形的是( ) A. 2,3,5; B. 3,4,5; C.32,42,52;D. 1,2,3;2.如图,在△ABC 中,∠B ,∠C 的平分线相交于点O ,过O 作DE ∥BC ,若 BD+ EC=5,则DE 等于( )A. 7B. 6C. 5D. 43.如图,在平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件不能是( )A.AE= CFB.BE =FDC.BF =DE D .∠1=∠24.一个圆柱形桶,底面直径为24 cm ,高为32 cm ,则桶内所能容下的最长木棒长为(不计桶的厚度) ( )A.20 cmB.50 cmC.40 cmD.45 cm5.如图所示,在Rt △ABC 中,∠A=90°,BD 平分∠ABC ,交AC 于点D ,且AB=4,BD =5,则点D 到BC 的距离是( )A .3 B.4 C.5 D.66.如图,正方形ABCD 的对角线BD 长为22,若直线l 满足:①点D 到直线l 的距离为3,②A 、C 两点到直线l 的距离相等,则符合题意的直线l 的条数为( )A .1B .2C .3D .4 7如图,在△ABC 中,∠C=90°,若BD//AE ,∠DBC=20°,则∠CAE 的度数是 A.40°. B.60°. C.70°. D.80°8.已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线a 的 取值范围是( )A .4<a <16B .14<a <26.C .12<a <20D .以上答案都不正确.9.如图所示,在ABCD 中,BM 是∠ABC 的平分线,交CD 于点M ,且MC=2,ABCD 的周长是14,则DM 等于( )A B C O D E 第2题 A B C D E F 1 2 第3题 A B C D 第5题 A B C D第6题A B C D E 第7题 A B C D E 第9题A.lB.2C.3D.410.已知矩形 ABCD 的周长为20 cm ,两条对角线AC ,BD 相交于点O ,过点O 作AC 的垂线EF ,分别交两边AD ,BC 于E ,F(不与顶点重合),则以下关于△CDE 与△ABF 判断完全正确的一项为( )A .△CDE 与△ABF 的周长都等于10 cm ,m ,但面积不一定相等。
2022年湘教版八年级数学下册期中模拟考试(及参考答案)
2022年湘教版八年级数学下册期中模拟考试(及参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是()A.-2 B.12-C.12D.22.若12xyx-=有意义,则x的取值范围是()A.1x2≤且x0≠B.1x2≠C.1x2≤D.x0≠3.若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m-n的值是()A.2 B.0 C.-1 D.14.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.1201508x x=-B.1201508x x=+C.1201508x x=-D.1201508x x=+5.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.6.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.5B.5C.5 D.67.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.530020015030x yx y+=⎧⎨+=⎩B.530015020030x yx y+=⎧⎨+=⎩C.302001505300x yx y+=⎧⎨+=⎩D.301502005300x yx y+=⎧⎨+=⎩10.若b>0,则一次函数y=﹣x+b的图象大致是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是.2.计算:16=_______.3.若28n是整数,则满足条件的最小正整数n为________.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2410x x -+= (2)()()2411x x x -=-2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B 型商品的进价多30元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、A4、D5、D6、C7、D8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、43、74、10.5、36、15.三、解答题(本大题共6小题,共72分)1、(1)1222x x ==2)1241,3x x ==.2、112x -;15.3、(1)略(2)1或24、(1)略(2-15、(1)略;(2)四边形EFGH 是菱形,略;(3)四边形EFGH 是正方形.6、(1) B 型商品的进价为120元, A 型商品的进价为150元;(2) 5500元.。
湘教版数学八年级下册期中形成性考试模拟试卷(含答案)
初中数学试卷 金戈铁骑整理制作湘教版八年级数学(下)期中形成性考试模拟试卷(含答案)一、选择题(每小题3分,共 30分)1、晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对称图形但不是轴对称图形的是( )2、勾股定理是几何中的一个重要定理,在我国 古算书《周髀算经》中就有“若勾三,股四, 则弦五”的记载,图①是由边长相等的小正方形 和直角三角形构成的,可以用其面积关系验证勾 股定理.图②是将图①放入矩形内得到的,∠BAC =90°,AB =3,AC=4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( )A .90;B .100;C .110;D .121;3.在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,则下列条件:①∠A :∠B :∠C =5:2:3;②(c+a )(c -a )=b 2;③a =32,b =42,c =52;④a :b :c =1:1:2;能判定△ABC 是直角三角形的有( )A.l 个;B.2个;C.3个; D .4个;4,若三角形三边长分别为5,12,13,那么它最长边上的中线的长是( )A .5; B.5.5; C.6.5; D.1.7;5.如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长(小于AC)为半径画弧分别AB ,AC 于点M 和N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法中正确的个数是①AD 平分∠BAC ;②∠ADC=60°;③点D 在AB 的中垂线上; ④S △DAC :S △ABC=1:3 ( )A.1;B.2;C.3;D.4;A B C D M N P 第5题 A B C D 1 2第8题 A B C D H 第9题A B C D E F 第10题6.正十边形每个内角的度数为 ( )A.1 440°;B.144°;C.36°;D.108°;7.五边形的内角和为( )A. 720°;B.540°;C.360°;D.180°;8.如图,在平行四边形ABCD 中,下列结论中不一定正确的是( )A. ∠l=∠2B. ∠BAD=∠BCDC.AB= CD ;D.AC ⊥BD9、如图所示,四边形ABCD 是菱形,AC=8,DB =6,DH ⊥AB 于H , 则DH=( ) A. 245; B. 125; C.12; D.24; 10.如图,正方形 ABCD 中,点E ,F 分别在BC ,CD 上,△AEF 是等边三角形,连接AC 交EF 于G ,下列结论:①BE=DF ;②∠DAF =15°;③AC 垂直平分EF ;④BE+DF=EF ,其中正确结论的个数是( )A .2B .3C .4D .5二、填空题(每小题4分,共 32)11.如图,DE 为△ABC 的中位线,点F 在DE 上,且么AFB =90。
【湘教版】八年级数学下期中模拟试卷(含答案)
10.如图,长方形的长为3,宽为2,对角线为 ,且 ,则下列各数中与点 表示的数最接近的是()
A.-3.5B.-3.6C.-3.7D.-3.8
11.如图所示,在 中, ,分别以点A、B为圆心,大于 的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交 于点D,则线段 的长是()
8.D
解析:D
【分析】
首先证明△OBC是等边三角形,在Rt△EBC中求出CE即可解决问题;
【详解】
解:∵四边形ABCD是矩形,
∴OB=OC,∠BCD=90°,
由翻折不变性可知:BC=BO,
∴BC=OB=OC,
∴△OBC是等边三角形,
∴∠OBC=60°,
∴∠EBC=∠EBO=30°,
∴BE=2CE
根据勾股定理得:EC= = ,
14.4【分析】根据直角三角形斜边上的中线等于斜边的一半可以得【详解】∵D是AB的中点∴∴故答案为:4【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质熟记性质是解题的关键
解析:4.
【分析】
根据直角三角形斜边上的中线等于斜边的一半可以得 .
【详解】
∵ ,D是AB的中点,
∴ ,
∴ .
故答案为:4.
所以
因此,
故④正确.
故选A.
【点睛】
本题考查了全等三角形的判定,全等三角形的性质,勾股定理,等腰三角形的性质和三角形的面积.
二、填空题
13.【分析】如图过作于证明求解结合三角形的三边的关系可得:>当三点共线时可得从而可得答案【详解】解:如图过作于由三角形三边的关系可得:>当三点共线时的最小值是:点C到原点O的最小距离为故答案为:【点睛】
12.A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省衡阳市衡阳县清潭中学2015-2016学年八年级数学下学期期中模拟试题一.选择题(共12小题)1.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40° B.45° C.60° D.70°2.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()A.B.1 C.D.23.下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b4.不等式组的解集在数轴上表示正确的是()A.B.C. D.5.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.86.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32° B.64° C.77° D.87°7.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.8.如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为()A.B.C.D.19.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()A.﹣1 B.﹣5 C.﹣4 D.﹣310.若不等式组恰有两个整数解,则m的取值范围是()A.﹣1≤m<0 B.﹣1<m≤0 C.﹣1≤m≤0 D.﹣1<m<011.不等式组的整数解的个数为()A.1 B.2 C.3 D.412.在平面直角坐标系中,点A(,),B(3,3),动点C在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为()A.2 B.3 C.4 D.5二.填空题(共6小题)13.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.14.如图,△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若△ABC与△EBC的周长分别是40cm,24cm,则AB= cm.15.如图,Rt△ABC中,∠B=90°,AB=4,BC=3,AC的垂直平分线DE分别交AB,AC于D,E两点,则CD 的长为.16.关于x的不等式组的解集为1<x<3,则a的值为.17.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为.18.如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF= .三.解答题(共6小题)19.如图,在Rt△ABC中,∠C=90°,BD是△ABC的一条角平分线.点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形.(1)求证:点O在∠BAC的平分线上;(2)若AC=5,BC=12,求OE的长.20.解不等式:≤﹣1,并把解集表示在数轴上.21.解不等式组,并写出它的所有非负整数解.22.今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?23.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).24.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.2015-2016学年湖南省衡阳市衡阳县清潭中学八年级(下)期中数学模拟试卷参考答案与试题解析一.选择题(共12小题)1.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40° B.45° C.60° D.70°【考点】等腰三角形的性质;平行线的性质.【分析】根据平行线的性质可得∠CBD的度数,根据角平分线的性质可得∠CBA的度数,根据等腰三角形的性质可得∠C的度数,根据三角形内角和定理可得∠BAC的度数.【解答】解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选:A.【点评】考查了平行线的性质,角平分线的性质,等腰三角形的性质和三角形内角和定理.关键是得到∠C=∠CBA=70°.2.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()A.B.1 C.D.2【考点】含30度角的直角三角形;角平分线的性质;线段垂直平分线的性质.【分析】先根据线段垂直平分线的性质得出BE=CE=2,故可得出∠B=∠DCE=30°,再由角平分线定义得出∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,利用三角形内角和定理求出∠A=180°﹣∠B﹣∠ACB=90°,然后在Rt△CAE中根据30°角所对的直角边等于斜边的一半得出AE=CE=1.【解答】解:∵在△ABC中,∠B=30°,BC的垂直平分线交AB于E,BE=2,∴BE=CE=2,∴∠B=∠DCE=30°,∵CE平分∠ACB,∴∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,∴∠A=180°﹣∠B﹣∠ACB=90°.在Rt△CAE中,∵∠A=90°,∠ACE=30°,CE=2,∴AE=CE=1.故选B.【点评】本题考查的是含30度角的直角三角形的性质,线段垂直平分线的性质,等腰三角形的性质,角平分线定义,三角形内角和定理,求出∠A=90°是解答此题的关键.3.下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b【考点】不等式的性质.【分析】根据不等式的性质进行判断.【解答】解:A、在不等式a>b的两边同时加上c,不等式仍成立,即a+c>b+c,不符合题意;B、在不等式a+c>b+c的两边同时减去c,不等式仍成立,即a>b,不符合题意;C、当c=0时,若a>b,则不等式ac2>bc2不成立,符合题意;D、在不等式ac2>bc2的两边同时除以不为0的c2,该不等式仍成立,即a>b,不符合题意.故选:C.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.不等式组的解集在数轴上表示正确的是()A.B.C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:故选:D.【点评】本题主要考查对不等式的性质,解一元一次不等式(组),在数轴上表示不等式的解集等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.5.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.8【考点】坐标与图形变化-平移;一次函数图象上点的坐标特征.【分析】根据题意,线段BC扫过的面积应为一平行四边形的面积,其高是AC的长,底是点C平移的路程.求当点C落在直线y=2x﹣6上时的横坐标即可.【解答】解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4.∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得 x=5.即OA′=5.∴CC′=5﹣1=4.=4×4=16 (面积单位).∴S▱BCC′B′即线段BC扫过的面积为16面积单位.故选:C.【点评】此题考查平移的性质及一次函数的综合应用,解决本题的关键是明确线段BC扫过的面积应为一平行四边形的面积.6.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32° B.64° C.77° D.87°【考点】旋转的性质.【分析】旋转中心为点A,C、C′为对应点,可知AC=AC′,又因为∠CAC′=90°,根据三角形外角的性质求出∠C′B′A的度数,进而求出∠B的度数.【解答】解:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.【点评】本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应线段相等.也考查了等腰直角三角形的性质.7.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为()A.B.C.D.1【考点】角平分线的性质;等边三角形的性质;含30度角的直角三角形;勾股定理.【分析】根据△ABC为等边三角形,BP平分∠ABC,得到∠PBC=30°,利用PC⊥BC,所以∠PCB=90°,在Rt△PCB中, =1,即可解答.【解答】解:∵△ABC为等边三角形,BP平分∠ABC,∴∠PBC==30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中, =1,∴点P到边AB所在直线的距离为1,故选:D.【点评】本题考查了等边三角形的性质、角平分线的性质、利用三角函数求值,解决本题的关键是等边三角形的性质.9.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()A.﹣1 B.﹣5 C.﹣4 D.﹣3【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】满足不等式﹣x+m>nx+4n>0就是直线y=﹣x+m位于直线y=nx+4n的上方且位于x轴的上方的图象,据此求得自变量的取值范围即可.【解答】解:∵直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,∴关于x的不等式﹣x+m>nx+4n的解集为x<﹣2,∵y=nx+4n=0时,x=﹣4,∴nx+4n>0的解集是x>﹣4,∴﹣x+m>nx+4n>0的解集是﹣4<x<﹣2,∴关于x的不等式﹣x+m>nx+4n>0的整数解为﹣3,故选:D.【点评】本题考查了一次函数的图象和性质以及与一元一次不等式的关系,要熟练掌握.10.若不等式组恰有两个整数解,则m的取值范围是()A.﹣1≤m<0 B.﹣1<m≤0 C.﹣1≤m≤0 D.﹣1<m<0【考点】一元一次不等式组的整数解.【分析】先求出不等式的解集,根据题意得出关于m的不等式组,求出不等式组的解集即可.【解答】解:∵不等式组的解集为m﹣1<x<1,又∵不等式组恰有两个整数解,∴﹣2≤m﹣1<﹣1,解得:﹣1≤m<0恰有两个整数解,故选A.【点评】本题考查了解一元一次不等式组,不等式组的解集的应用,解此题的关键是能求出关于m的不等式组,难度适中.11.不等式组的整数解的个数为()A.1 B.2 C.3 D.4【考点】一元一次不等式组的整数解.【分析】先求出两个不等式的解集,再求其公共解,然后写出所有的整数解即可求出个数.【解答】解:,解不等式①得,x>﹣,解不等式②得,x≤1,所以,不等式组的解集是﹣<x≤1,所以,不等式组的整数解有﹣1、0、1共3个.故选C.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).12.在平面直角坐标系中,点A(,),B(3,3),动点C在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为()A.2 B.3 C.4 D.5【考点】等腰三角形的判定;坐标与图形性质.【专题】压轴题.【分析】首先根据线段的中垂线上的点到线段两端点的距离相等,求出AB的中垂线与x轴的交点,即可求出点C1的坐标;然后再求出AB的长,以点A为圆心,以AB的长为半径画弧,与x轴的交点为点C2、C3;最后判断出以点B为圆心,以AB的长为半径画弧,与x轴没有交点,据此判断出点C的个数为多少即可.【解答】解:如图,,∵AB所在的直线是y=x,∴设AB的中垂线所在的直线是y=﹣x+b,∵点A(,),B(3,3),∴AB的中点坐标是(2,2),把x=2,y=2代入y=﹣x+b,解得b=4,∴AB的中垂线所在的直线是y=﹣x+4,∴C1(4,0)以点A为圆心,以AB的长为半径画弧,与x轴的交点为点C2、C3;AB==4,∵3>4,∴以点B为圆心,以AB的长为半径画弧,与x轴没有交点.综上,可得若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为3.故选:B.【点评】(1)此题主要考查了等腰三角形的性质和应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(2)此题还考查了坐标与图形性质,要熟练掌握,解答此题的关键是要明确:到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.二.填空题(共6小题)13.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是4:3 .【考点】角平分线的性质.【分析】估计角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.14.如图,△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若△ABC与△EBC的周长分别是40cm,24cm,则AB= 16 cm.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】首先根据DE是AB的垂直平分线,可得AE=BE;然后根据△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,可得△ABC的周长﹣△EBC的周长=AB,据此求出AB的长度是多少即可.【解答】解:∵DE是AB的垂直平分线,∴AE=BE;∵△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,∴△ABC的周长﹣△EBC的周长=AB,∴AB=40﹣24=16(cm).故答案为:16.【点评】(1)此题主要考查了垂直平分线的性质,要熟练掌握,解答此题的关键是要明确:垂直平分线上任意一点,到线段两端点的距离相等.(2)此题还考查了等腰三角形的性质,以及三角形的周长的求法,要熟练掌握.15.如图,Rt△ABC中,∠B=90°,AB=4,BC=3,AC的垂直平分线DE分别交AB,AC于D,E两点,则CD的长为.【考点】线段垂直平分线的性质;勾股定理.【分析】先根据线段垂直平分线的性质得出CD=AD,故AB=BD+AD=BD+CD,设CD=x,则BD=4﹣x,在Rt△BCD 中根据勾股定理求出x的值即可.【解答】解:∵DE是AC的垂直平分线,∴CD=AD,∴AB=BD+AD=BD+CD,设CD=x,则BD=4﹣x,在Rt△BCD中,CD2=BC2+BD2,即x2=32+(4﹣x)2,解得x=.故答案为:.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.16.关于x的不等式组的解集为1<x<3,则a的值为 4 .【考点】解一元一次不等式组.【分析】求出不等式组的解集,根据已知得出a﹣1=3,从而求出a的值.【解答】解:∵解不等式①得:x>1,解不等式②得:x<a﹣1,∵不等式组的解集为1<x<3,∴a﹣1=3,∴a=4故答案为:4.【点评】本题考查了一元一次不等式组,解一元一次方程的应用,关键是能求出a﹣1=3.17.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为10 .【考点】平移的性质.【分析】根据平移的基本性质解答即可.【解答】解:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故答案为:10.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.18.如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF= 5 .【考点】旋转的性质.【分析】根据旋转的性质,EC=BC=4,DC=AC=6,∠ACD=∠ACB=90°,由点F是DE的中点,可求出EG、GF,因为AE=AC﹣EC=2,可求出AG,然后运用勾股定理求出AF.【解答】解:作FG⊥AC,根据旋转的性质,EC=BC=4,DC=AC=6,∠ACD=∠ACB=90°,∵点F是DE的中点,∴FG∥CD∴GF=CD=AC=3EG=EC=BC=2∵AC=6,EC=BC=4∴AE=2∴AG=4根据勾股定理,AF=5.【点评】本题主要考查了旋转的性质、三角形中位线性质、勾股定理的综合运用,作垂线构造直角三角形是解决问题的关键.三.解答题(共6小题)19.如图,在Rt△ABC中,∠C=90°,BD是△ABC的一条角平分线.点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形.(1)求证:点O在∠BAC的平分线上;(2)若AC=5,BC=12,求OE的长.【考点】角平分线的性质;全等三角形的判定与性质;正方形的性质.【分析】(1)过点O作OM⊥AB,由角平分线的性质得OE=OM,由正方形的性质得OE=OF,易得OM=OF,由角平分线的判定定理得点O在∠BAC的平分线上;(2)由勾股定理得AB的长,利用方程思想解得结果.【解答】(1)证明:过点O作OM⊥AB,∵BD是∠ABC的一条角平分线,∴OE=OM,∵四边形OECF是正方形,∴OE=OF,∴OF=OM,∴AO是∠BAC的角平分线,即点O在∠BAC的平分线上;(2)解:∵在Rt△ABC中,AC=5,BC=12,∴AB===13,设CE=CF=x,BE=BM=y,AM=AF=z,∴,解得:,∴CE=2,∴OE=2.【点评】本题主要考查了正方形的性质,以及角平分线定理及性质,熟练掌握正方形的性质,运用方程思想是解本题的关键.20.解不等式:≤﹣1,并把解集表示在数轴上.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.【解答】解:去分母得,4(2x﹣1)≤3(3x+2)﹣12,去括号得,8x﹣4≤9x+6﹣12,移项得,8x﹣9x≤6﹣12+4,合并同类项得,﹣x≤﹣2,把x的系数化为1得,x≥2.在数轴上表示为:.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.21.解不等式组,并写出它的所有非负整数解.【考点】解一元一次不等式组;一元一次不等式组的整数解.【专题】计算题.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可确定出所有非负整数解.【解答】解:,由①得:x≥﹣2;由②得:x<,∴不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.【点评】此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.22.今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?【考点】一元一次不等式组的应用;分式方程的应用.【分析】(1)设去年每吨大蒜的平均价格是x元,则第一次采购的平均价格为(x+500)元,第二次采购的平均价格为(x﹣500)元,根据第二次的采购数量是第一次采购数量的两倍,据此列方程求解;(2)先求出今年所采购的大蒜数,根据采购的大蒜必需在30天内加工完毕,蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,据此列不等式组求解,然后求出最大利润.【解答】解:(1)设去年每吨大蒜的平均价格是x元,由题意得,×2=,解得:x=3500,经检验:x=3500是原分式方程的解,且符合题意,答:去年每吨大蒜的平均价格是3500元;(2)由(1)得,今年的大蒜数为:×3=300(吨),设应将m吨大蒜加工成蒜粉,则应将(300﹣m)吨加工成蒜片,由题意得,,解得:100≤m≤120,总利润为:1000m+600(300﹣m)=400m+180000,当m=120时,利润最大,为228000元.答:应将120吨大蒜加工成蒜粉,最大利润为228000元.【点评】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.23.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).【考点】作图-旋转变换;弧长的计算;作图-轴对称变换.【专题】作图题.【分析】(1)利用关于x轴对称点的横坐标相等,纵坐标化为相反数可先找出点A1、B1、C1的坐标,然后画出图形即可;(2)利用旋转的性质可确定出点A2、C2的坐标;(3)利用弧长公式进行计算即可.【解答】解:(1)根据关于x轴对称点的坐标特点可知:A1(2,﹣4),B1(1,﹣1),C1(4,﹣3),如图下图:连接A1、B1、C1即可得到△A1B1C1.(2)如图:(3)由两点间的距离公式可知:BC=,∴点C旋转到C2点的路径长=.【点评】本题主要考查的是图形的对称、图形的旋转以及扇形的弧长公式,掌握相关性质是解题的关键.24.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.【考点】等腰三角形的性质.【专题】证明题.【分析】根据三角形三线合一的性质可得∠CAD=∠BAD,根据同角的余角相等可得:∠CBE=∠CAD,再根据等量关系得到∠CBE=∠BAD.【解答】证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD.【点评】考查了余角的性质,等腰三角形的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.。