江苏专用2018版高考数学专题复习专题4三角函数解三角形第28练正弦定理余弦定理练习文
江苏专用2018版高考数学专题复习专题4三角函数解三角形第30练三角函数综合练练习文
(江苏专用)2018版高考数学专题复习 专题4 三角函数、解三角形第30练 三角函数综合练练习 文1.(2016·柳州、北海、钦州三市模拟)若sin ⎝⎛⎭⎪⎫α-4=-cos 2α,则sin 2α的值可以为________.2.(2016·南昌模拟)已知sin(α-2π)=2sin ⎝⎛⎭⎪⎫3π2+α,且α≠k π+π2(k ∈Z ),则3sin 2α-sin 2α3+cos 2α的值为________. 3.已知扇形的周长为4 cm ,当它的半径为________ cm 和圆心角为________弧度时,扇形面积最大,这个最大面积是________ cm 2. 4.当x ∈⎣⎢⎡⎦⎥⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________. 5.若cos α=17,cos(α+β)=-1114,α∈⎝ ⎛⎭⎪⎫0,π2,α+β∈⎝ ⎛⎭⎪⎫π2,π,则β=________. 6.(2016·扬州一模)函数y =sin 2x +cos 2(x -π3)的单调增区间是________________________. 7.(2016·镇江模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2b 2=tan A tan B,则△ABC 的形状为________________三角形.8.将函数f (x )=sin 2x 的图象向右平移φ⎝⎛⎭⎪⎫0<φ<π2个单位后得到函数g (x )的图象,若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=________. 9.如图,某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A ,B ,C 三地位于同一水平面上,在C 处进行该仪器的垂直弹射,观测点A ,B 两地相距100m ,∠BAC =60°,在A 地听到弹射声音的时间比B 地晚217s .在A 地测得该仪器至最高点H时的仰角为30°,则该仪器的垂直弹射高度CH =________ m .(声音在空气中的传播速度为340 m/s)10.(2016·黄冈适应性测试)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,函数f (x )=2sin 2(x +π3)-cos 2x ,x ∈[π4,π2]在x =A 处取到最大值.(1)求角A 的大小;(2)若b =4,c =233a ,求△ABC 的面积.答案精析1.-12或1 2.43 3.1 2 1 4.782 5.π3解析 ∵cos α=17,α∈⎝⎛⎭⎪⎫0,π2, ∴sin α=437. 又∵cos(α+β)=-1114,α+β∈⎝ ⎛⎭⎪⎫π2,π, ∴sin(α+β)=5314, ∴cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)·sin α=12. 又∵α∈⎝ ⎛⎭⎪⎫0,π2,α+β∈⎝ ⎛⎭⎪⎫π2,π, ∴β∈(0,π),∴β=π3. 6.[k π-π12,k π+5π12],k ∈Z (开区间也正确) 解析 原式=1-cos 2x 2+1+cos 2x -2π3 2=1+12(-32·cos 2x +32sin 2x )=1+32sin(2x -π3).令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z ,故所求增区间为[k π-π12,k π+5π12],k ∈Z .(开闭均可) 7.等腰或直角解析 由a 2b 2=tan A tan B ,得sin 2A sin 2B =sin A cos A ·cos B sin B. ①当cos C =0,即C =π2时,△ABC 为直角三角形; ②当cos C ≠0时,sin A sin B =cos B cos A, 所以△ABC 为等腰三角形,所以△ABC 为直角三角形或等腰三角形.8.π6解析 因为g (x )=sin 2(x -φ)=sin(2x -2φ),所以|f (x 1)-g (x 2)|=|sin 2x 1-sin(2x 2-2φ)|=2.因为-1≤sin 2x 1≤1,-1≤sin(2x 2-2φ)≤1,所以sin 2x 1和sin(2x 2-2φ)的值中,一个为1,另一个为-1,不妨取sin 2x 1=1,sin(2x 2-2φ)=-1,则2x 1=2k 1π+π2,k 1∈Z,2x 2-2φ=2k 2π-π2,k 2∈Z ,2x 1-2x 2+2φ=2(k 1-k 2)π+π,(k 1-k 2)∈Z ,得|x 1-x 2|=⎪⎪⎪⎪⎪⎪ k 1-k 2 π+π2-φ. 因为0<φ<π2,所以0<π2-φ<π2, 故当k 1-k 2=0时,|x 1-x 2|min =π2-φ=π3,则φ=π6. 9.140 3解析 由题意,设AC =x m ,则BC =x -217×340=(x -40) m .在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos∠BAC ,即(x -40)2=10 000+x 2-100x ,解得x =420.在△ACH 中,AC =420 m ,∠CAH =30°,∠ACH =90°,所以CH =AC ·tan∠CAH =1403(m).故该仪器的垂直弹射高度CH 为140 3 m.10.解 (1)f (x )=2sin 2(x +π3)-cos 2x =1-cos(2x +2π3)-cos 2x =1+12cos 2x +32sin 2x -cos 2x =1+32sin 2x -12cos 2x =sin(2x -π6)+1. 又x ∈[π4,π2],所以π3≤2x -π6≤5π6,所以当2x -π6=π2,即x =π3时,函数f (x )取到最大值.所以A =π3.(2)由余弦定理知a 2=b 2+c 2-2bc cos A , 即a 2=16+43a 2-2×4×233a ×12,解得a =43,c =8,∴S △ABC =12bc sin A =12×4×8×32=8 3.。
精选江苏专用2018版高考数学专题复习专题4三角函数解三角形第27练函数y=Asin(ωx+φ)的图像与性质练习理
(江苏专用)2018版高考数学专题复习 专题4 三角函数、解三角形第27练 函数y =Asin(ωx +φ)的图像与性质练习 理1.(2016·徐州模拟)函数y =2sin(2x +π6)在x ∈(0,π2)上的值域为________.2.(2016·南通二模)若函数f (x )=2sin(ωx +π3)(ω>0)的图象与x 轴相邻两个交点间的距离为2,则实数ω的值为________.3.(2016·苏锡常一模)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,则将y =f (x )的图象向右平移π6个单位长度后,得到的图象的解析式为________________.4.(2016·长春三调)函数f (x )=sin(2x +φ)⎝⎛⎭⎪⎫|φ|<π2的图象向左平移π6个单位后关于原点对称,则函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最小值为________.5.(2016·安庆第二次模拟)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,则f (x )的递增区间为______________________.6.(2016·扬州期中)将函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π2<φ<π2)图象上每一点的横坐标变为原来的2倍(纵坐标不变),然后把所得图象上的所有点沿x 轴向右平移π3个单位,得到函数y =2sin x 的图象,则f (φ)=________.7.(2016·南阳期中)如图所示,M ,N 是函数y =2sin(ωx +φ)(ω>0)的图象与x 轴的交点,点P 在M ,N 之间的图象上运动,当△MPN 的面积最大时PM →·PN →=0,则ω=________.8.(2016·郑州第一次质检)如图,函数f (x )=A sin(ωx +φ)(其中A >0,ω>0,|φ|≤π2)与坐标轴的三个交点P 、Q 、R 满足P (1,0),∠PQR =π4,M (2,-2)为线段QR 的中点,则A的值为________.9.(2016·开封第一次摸底)已知函数f (x )=sin 2x cos φ+cos 2x sin φ(x ∈R ),其中φ为实数,且f (x )≤f ⎝⎛⎭⎪⎫2π9对任意实数R 恒成立,记p =f ⎝ ⎛⎭⎪⎫2π3,q =f ⎝ ⎛⎭⎪⎫5π6,r =f ⎝ ⎛⎭⎪⎫7π6,则p 、q 、r 的大小关系是______________.10.(2016·宿迁、徐州三模)在平面直角坐标系xOy 中,直线y =1与函数y =3sinπ2x (0≤x ≤10)的图象所有交点的横坐标之和为________.11.(2016·辽源联考)若0≤x ≤π,则函数y =sin ⎝ ⎛⎭⎪⎫π3+x ·cos ⎝ ⎛⎭⎪⎫π2+x 的单调递增区间为__________.12.(2015·陕西改编)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为________.13.关于x 的方程3sin 2x +cos 2x =k +1在⎣⎢⎡⎦⎥⎤0,π2内有两相异实根,则k 的取值范围是__________.14.(2016·皖北协作区联考)已知函数f (x )=sin x +3cos x ,则下列命题正确的是__________.(写出所有正确命题的序号)①f (x )的最大值为2;②f (x )的图象关于点⎝ ⎛⎭⎪⎫-π6,0对称;③f (x )在区间⎝ ⎛⎭⎪⎫-5π6,π6上单调递增;④若实数m 使得方程f (x )=m 在[0,2π]上恰好有三个实数解x 1,x 2,x 3,则x 1+x 2+x 3=7π3;⑤f (x )的图象与g (x )=2sin ⎝ ⎛⎭⎪⎫x -2π3的图象关于x 轴对称.答案精析 的图象与性质1.(-1,2] 2.π2 3.y =sin(2x -π6) 4.-32 5.[k π-π12,k π+5π12](k ∈Z )6.0解析 由题设可得f (x )=2sin(2x +π3),所以φ=π3,从而f (π3)=2sin π=0.7.π4解析 由图象可知,当P 位于M 、N 之间函数y =2sin(ωx +φ)(ω>0)图象的最高点时,△MPN 的面积最大.又此时PM →·PN →=0,∴△MPN 为等腰直角三角形, 过P 作PQ ⊥x 轴于Q ,∴PQ =2, 则MN =2PQ =4,∴T =2MN =8. ∴ω=2πT =2π8=π4.8.833解析 依题意得,点Q 的横坐标是4,R 的纵坐标是-4,T =2πω=2PQ =6,ω=π3,A sin φ=-4,f ⎝⎛⎭⎪⎫1+42=A sin ⎝ ⎛⎭⎪⎫π3×52+φ=A >0,即sin ⎝ ⎛⎭⎪⎫5π6+φ=1.又|φ|≤π2,π3≤5π6+φ≤4π3,因此5π6+φ=π2, φ=-π3,A sin ⎝ ⎛⎭⎪⎫-π3=-4,A =833.9.p <q <r解析 ∵f (x )=sin 2x cos φ+cos 2x sin φ=sin(2x +φ), ∴f (x )的最小正周期T =π. ∵f (x )≤f ⎝ ⎛⎭⎪⎫2π9,∴f ⎝⎛⎭⎪⎫2π9是最大值.∴f (x )=sin ⎝⎛⎭⎪⎫2x +π18, ∴p =sin 25π18,q =sin 31π18,r =sin 7π18,∴p <q <r . 10.30解析 y =3sin π2x 的周期为4,如图,作出函数在区间[0,10]上的图象,与直线y =1共有六个交点,根据图象关于直线x =5对称可知,x 1+x 6=x 2+x 5=x 3+x 4=10,所以六个交点的横坐标之和为30.11.⎣⎢⎡⎦⎥⎤π3,5π6解析 y =sin ⎝ ⎛⎭⎪⎫π3+x cos ⎝ ⎛⎭⎪⎫π2+x=⎝⎛⎭⎪⎫32cos x +12sin x ·(-sin x )=-12sin ⎝ ⎛⎭⎪⎫2x -π6-14,令2k π+π2≤2x -π6≤2k π+3π2,解得k π+π3≤x ≤k π+5π6(k ∈Z ),又0≤x ≤π,则函数的单调递增区间为⎣⎢⎡⎦⎥⎤π3,5π6.12.8解析 由图象知y min =2,因为y min =-3+k ,所以-3+k =2,解得k =5,所以这段时间水深的最大值是y max =3+k =3+5=8. 13.[0,1) 解析3sin 2x +cos 2x=2sin ⎝ ⎛⎭⎪⎫2x +π6,x ∈⎣⎢⎡⎦⎥⎤0,π2,令t =2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,作出函数y =2sin t ,t ∈⎣⎢⎡⎦⎥⎤π6,7π6和y =k +1的大致图象如图所示,由图象易知当1≤k +1<2,即0≤k <1时,方程有两相异实根. 14.①③④⑤解析 f (x )=sin x +3cos x =2⎝ ⎛⎭⎪⎫12sin x +32cos x=2sin ⎝⎛⎭⎪⎫x +π3,所以①正确; 因为将x =-π6代入f (x ),得f ⎝ ⎛⎭⎪⎫-π6=2sin(-π6+π3)=1≠0,所以②不正确; 由2k π-π2≤x +π3≤2k π+π2,k ∈Z ,得2k π-5π6≤x ≤2k π+π6,k ∈Z ,所以f (x )在区间⎝ ⎛⎭⎪⎫-5π6,π6上单调递增,所以③正确;若实数m 使得方程f (x )=m 在[0,2π]上恰好有三个实数解,结合函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3及y =m 的图象可知,必有x =0,x =2π,此时f (x )=2sin ⎝⎛⎭⎪⎫x +π3=3,另一解为x =π3,即x 1,x 2,x 3满足x 1+x 2+x 3=7π3,所以④正确;因为f (x )=2sin ⎝⎛⎭⎪⎫x +π3=2sin ⎝⎛⎭⎪⎫x +π-2π3 =-2sin ⎝⎛⎭⎪⎫x -2π3=-g (x ),所以⑤正确.。
(江苏专用)2018版高考数学大一轮温习 第四章节 三角函数、解三角形 4.3 三角函数的图象与性质讲义 文 苏
(2)已知 ω>0,函数 f(x)=sinωx+π4在π2,π上单调递减,则 ω 的取值范围 是__12_,__45___.
答案 解析
引申探究 本例(2)中,若已知 ω>0,函数 f(x)=cos(ωx+π4)在(π2,π)上单调递增,则 ω 的取值范围是_[_32_,__74_]_.
跟踪训练2 (1)函数f(x)=sin -2x+π3 的单调减区间为__kπ_-__1_π2_,__k_π_+__1_52_π__, _k_∈__Z__.
答案 解析
由已知函数得 y=-sin2x-π3, 欲求函数的单调减区间,只需求 y=sin2x-π3的单调增区间. 由 2kπ-π2≤2x-π3≤2kπ+π2,k∈Z,得 kπ-1π2≤x≤kπ+51π2,k∈Z. 故所给函数的单调减区间为kπ-1π2,kπ+51π2(k∈Z).
跟踪训练 3 (1)(2016·常州模拟)已知函数 f(x)=2sin(π2x+π5),若对任意的 实数 x,总有 f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值是___2__.
答案 解析
由题意可得|x1-x2|的最小值为半个周期, 即T2=ωπ =2.
(2)如果函数y=3cos(2x+φ)的图象关于点( 4π,0)中心对称,那么|φ|的最小 3
答案 解析
题型分类 深度剖析
题型一 三角函数的定义域和值域 例1 (1)函数f(x)=-2tan(2x+ π )的定义域是__{x_|_x_≠__k2_π_+__π6_,__k∈__Z__}_.
6
答案 解析
由 2x+π6≠π2+kπ,k∈Z, 得 x≠k2π+π6,k∈Z, 所以 f(x)的定义域为{x|x≠k2π+π6,k∈Z}.
2.奇偶性
精选江苏专用2018版高考数学大一轮复习第四章三角函数解三角形4.2同角三角函数基本关系及诱导公式教师用书
第四章 三角函数、解三角形 4.2 同角三角函数基本关系及诱导公式教师用书 理 苏教版1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan α.2.各角的终边与角α的终边的关系3.六组诱导公式【知识拓展】1.诱导公式的记忆口诀:奇变偶不变,符号看象限.2.同角三角函数基本关系式的常用变形 (sin α±cos α)2=1±2sin αcos α; (sin α+cos α)2+(sin α-cos α)2=2;(sin α+cos α)2-(sin α-cos α)2=4sin αcos α. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( × ) (2)若α∈R ,则tan α=sin αcos α恒成立.( × )(3)sin(π+α)=-sin α成立的条件是α为锐角.( × )(4)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.( √ )1.(2015·福建改编)若sin α=-513,且α为第四象限角,则tan α的值为.答案 -512解析 ∵sin α=-513,且α为第四象限角,∴cos α=1213,∴tan α=sin αcos α=-512.2.(教材改编)已知cos θ=35,且3π2<θ<2π,那么tan θ的值为.答案 -43解析 因为θ为第四象限角,所以tan θ<0,sin θ<0, sin θ=-1-cos 2θ=-45,所以tan θ=sin θcos θ=-43.3.(2016·连云港模拟)计算:sin 116π+cos 103π=.答案 -1解析 ∵sin 116π=sin(π+56π)=-sin 5π6=-12,cos 103π=cos(2π+4π3)=cos 4π3=-12,∴sin 116π+cos 103π=-1.4.(教材改编)已知tan α=1,则2sin α-cos αsin α+cos α=.答案 12解析 原式=2tan α-1tan α+1=2-11+1=12.5.(教材改编)化简:π-απ-α3π2-α+π-αα-7π23π2+απ+α=.答案 1解析 因为tan(3π-α)=-tan α,sin(π-α)=sin α, sin(3π2-α)=-cos α,sin(2π-α)=-sin α,cos(α-7π2)=cos(α+π2)=-sin α,sin(3π2+α)=-cos α,cos(2π+α)=cos α,所以原式=-tan αsin α-cos α+-sin α-sin α-cos αcos α=1cos 2α-sin 2αcos 2α =1-sin 2αcos 2α =cos 2αcos 2α=1.题型一 同角三角函数关系式的应用例1 (1)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为.(2)(2016·苏州期末)已知θ是第三象限角,且sin θ-2cos θ=-25,则sin θ+cos θ=. 答案 (1)32 (2)-3125解析 (1)∵5π4<α<3π2,∴cos α<0,sin α<0且cos α>sin α, ∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32. (2)由⎩⎪⎨⎪⎧sin θ-2cos θ=-25,sin 2θ+cos 2θ=1,得5cos 2θ-85cos θ-2125=0,解得cos θ=35或-725.因为θ是第三象限角,所以cos θ=-725,从而sin θ=-2425,所以sin θ+cos θ=-3125.思维升华 (1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(3)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.已知sin α-cos α=2,α∈(0,π),则tan α=.答案 -1解析 由⎩⎨⎧sin α-cos α=2,sin 2α+cos 2α=1,消去sin α得2cos 2α+22cos α+1=0, 即(2cos α+1)2=0, ∴cos α=-22. 又α∈(0,π), ∴α=3π4,∴tan α=tan 3π4=-1.题型二 诱导公式的应用例2 (1)(2016·宿迁模拟)已知f (x )=π-x32π+x π-x112π-x ,则f (-21π4)=.(2)已知A =k π+αsin α+k π+αcos α(k ∈Z ),则A 的值构成的集合是.答案 (1)-1 (2){2,-2}解析 (1)f (x )=-sin x ·sin x -cos x -cos x=-tan 2x ,f (-21π4)=-tan 2(-21π4)=-tan 234π=-1. (2)当k 为偶数时,A =sin αsin α+cos αcos α=2;当k 为奇数时,A =-sin αsin α-cos αcos α=-2.∴A 的值构成的集合是{2,-2}. 思维升华 (1)诱导公式的两个应用 ①求值:负化正,大化小,化到锐角为终了. ②化简:统一角,统一名,同角名少为终了. (2)含2π整数倍的诱导公式的应用由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算,如cos(5π-α)=cos(π-α)=-cos α.(1)化简:π+απ+αα-3π2-α-3π-3π-α=.(2)(2016·南京模拟)已知角α终边上一点P (-4,3),则π2+α-π-α11π2-α9π2+α的值为.答案 (1)-1 (2)-34解析 (1)原式=tan αcos αsin[-2π+α+π2π+α-π+α=tan αcos απ2+α-cos αα=tan αcos αcos α-cos αα=-tan αcos αsin α=-sin αcos α·cos αsin α=-1.(2)原式=-sin αα-sin αα=tan α, 根据三角函数的定义得tan α=-34.题型三 同角三角函数关系式、诱导公式的综合应用 例3 (1)已知α为锐角,且有2tan(π-α)-3cos(π2+β)+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是. 答案31010解析 2tan(π-α)-3cos(π2+β)+5=0化简为-2tan α+3sin β+5=0,①tan(π+α)+6sin(π+β)-1=0化简为 tan α-6sin β-1=0.②由①②消去sin β,解得tan α=3. 又α为锐角,根据sin 2α+cos 2α=1, 解得sin α=31010.(2)已知-π<x <0,sin(π+x )-cos x =-15.①求sin x -cos x 的值; ②求sin 2x +2sin 2x 1-tan x的值.解 ①由已知,得sin x +cos x =15,sin 2x +2sin x cos x +cos 2x =125,整理得2sin x cos x =-2425.∵(sin x -cos x )2=1-2sin x cos x =4925.由-π<x <0,知sin x <0, 又sin x +cos x >0,∴cos x >0,sin x -cos x <0, 故sin x -cos x =-75.②sin 2x +2sin 2x 1-tan x=2sin x x +sinx1-sin x cos x=2sin x cos x x +sinxcos x -sin x=-2425×1575=-24175.引申探究本题(2)中,若将条件“-π<x <0”改为“0<x <π”,求sin x -cos x 的值. 解 若0<x <π,又2sin x cos x =-2425,∴sin x >0,cos x <0,∴sin x -cos x >0,又(sin x -cos x )2=1-2sin x cos x =4925,故sin x -cos x =75.思维升华 (1)利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形. (2)注意角的范围对三角函数符号的影响.已知sin α是方程5x 2-7x -6=0的根, 求α+3π23π2-α2π-απ-απ2-απ2+α的值.解 由于方程5x 2-7x -6=0的两根为2和-35,所以sin α=-35,再由sin 2α+cos 2α=1,得cos α=±1-sin 2α=±45,所以tan α=±34,所以原式=-cos α-cos α2α-tan αsin α-sin α=tan α=±34.7.分类讨论思想在三角函数中的应用典例 (1)已知sin α=255,则tan(α+π)+sin ⎝ ⎛⎭⎪⎫5π2+αcos ⎝ ⎛⎭⎪⎫5π2-α=. (2)已知k ∈Z ,化简:k π-αk -π-α]k +π+αk π+α=.思想方法指导 (1)在利用同角三角函数基本关系式中的平方关系时,要根据角的范围对开方结果进行讨论.(2)利用诱导公式化简时要对题中整数k 是奇数或偶数进行讨论. 解析 (1)∵sin α=255>0,∴α为第一或第二象限角.tan(α+π)+sin ⎝ ⎛⎭⎪⎫5π2+αcos ⎝ ⎛⎭⎪⎫5π2-α=tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α. ①当α是第一象限角时,cos α=1-sin 2α=55,原式=1sin αcos α=52.②当α是第二象限角时,cos α=-1-sin 2α=-55, 原式=1sin αcos α=-52.综合①②知,原式=52或-52.(2)当k =2n (n ∈Z )时, 原式=n π-αn -π-α]n+π+αn π+α=-α-π-απ+αα=-sin α-cos α-sin α·cos α=-1;当k =2n +1(n ∈Z )时, 原式=n +π-αn +1-π-α]n +1+π+αn +π+α]=π-ααsin απ+α=sin α·cos αsin α-cos α=-1.综上,原式=-1. 答案 (1)52或-52(2)-11.(2016·盐城模拟)已知cos α=45,α∈(0,π),则tan α的值为.答案 34解析 ∵α∈(0,π), ∴sin α= 1-cos 2α=1-452=35, 由tan α=sin αcos α,得tan α=34.2.已知cos α=13,且-π2<α<0,则-α-ππ+απ-α3π2-απ2+α=.答案 -2 2 解析 原式=-cos αα-tan α-cos α-sin α=tan α,∵cos α=13,-π2<α<0,∴sin α=-1-cos 2α=-223,∴tan α=sin αcos α=-2 2.3.若角α的终边落在第三象限,则cos α1-sin 2α+2sin α1-cos 2α的值为.答案 -3解析 由角α的终边落在第三象限, 得sin α<0,cos α<0,故原式=cos α|cos α|+2sin α|sin α|=cos α-cos α+2sin α-sin α=-1-2=-3.4.若sin(π-α)=-2sin(π2+α),则sin α·cos α的值为.答案 -25解析 由sin(π-α)=-2sin(π2+α),可得sin α=-2cos α,则tan α=-2,sinα·cos α=sin α·cos αsin 2α+cos 2α=tan α1+tan 2α=-25. 5.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (4)=3,则f (2 017)的值为. 答案 -3解析 ∵f (4)=a sin(4π+α)+b cos(4π+β) =a sin α+b cos β=3,∴f (2 017)=a sin(2 017π+α)+b cos(2 017π+β) =a sin(π+α)+b cos(π+β) =-a sin α-b cos β =-3.*6.(2016·扬州模拟)若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为.答案 1- 5解析 由题意知sin θ+cos θ=-m 2,sin θcos θ=m 4, 又(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m 2, 解得m =1±5,又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5.7.已知α为钝角,sin(π4+α)=34,则sin(π4-α)=. 答案 -74 解析 因为α为钝角,所以cos(π4+α)=-74, 所以sin(π4-α)=cos[π2-(π4-α)]=cos(π4+α)=-74. 8.(2016·江苏如东高级中学期中)若sin α=2cos α,则sin 2α+2cos 2α的值为.答案 65解析 由sin α=2cos α,得tan α=2,因此sin 2α+2cos 2α=sin 2α+2cos 2αsin 2α+cos 2α =tan 2α+2tan 2α+1=4+24+1=65. 9.已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线2x -y =0上,则3π2+θ+π-θπ2-θ-π-θ=. 答案 2解析 由题意可得tan θ=2,原式=-cos θ-cos θcos θ-sin θ=-21-tan θ=2. 10.(2016·无锡模拟)已知α为第二象限角,则 cos α1+tan 2α+sin α1+1tan 2α=. 答案 0解析 原式=cos αsin 2α+cos 2αcos 2α+sin αsin 2α+cos 2αsin 2α =cos α1|cos α|+sin α1|sin α|, 因为α是第二象限角,所以sin α>0,cos α<0,所以cos α1|cos α|+sin α1|sin α|=-1+1=0,即原式等于0. 11.已知sin(3π+α)=2sin ⎝⎛⎭⎪⎫3π2+α,求下列各式的值: (1)sin α-4cos α5sin α+2cos α; (2)sin 2α+sin 2α. 解 由已知得sin α=2cos α.(1)原式=2cos α-4cos α5×2cos α+2cos α=-16. (2)原式=sin 2α+2sin αcos αsin 2α+cos 2α=sin 2α+sin 2αsin 2α+14sin 2α=85. 12.已知在△ABC 中,sin A +cos A =15. (1)求sin A cos A 的值;(2)判断△ABC 是锐角三角形还是钝角三角形;(3)求tan A 的值.解 (1)∵(sin A +cos A )2=125, ∴1+2sin A cos A =125, ∴sin A cos A =-1225. (2)∵sin A cos A <0,又0<A <π,∴cos A <0,∴A 为钝角,∴△ABC 为钝角三角形.(3)(sin A -cos A )2=1-2sin A cos A =4925. 又sin A -cos A >0,∴sin A -cos A =75, ∴sin A =45,cos A =-35, 故tan A =-43. *13.已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,θ∈(0,2π).求:(1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值.解 (1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ. 由条件知sin θ+cos θ=3+12, 故sin 2θsin θ-cos θ+cos θ1-tan θ=3+12. (2)由sin 2θ+2sin θcos θ+cos 2θ=1+2sin θcos θ=(sin θ+cos θ)2,得m =32. (3)由⎩⎪⎨⎪⎧ sin θ+cos θ=3+12,sin θ·cos θ=34, 知⎩⎪⎨⎪⎧ sin θ=32,cos θ=12或⎩⎪⎨⎪⎧ sin θ=12,cos θ=32.又θ∈(0,2π),故θ=π3或θ=π6.。
2018版高考数学理江苏专用大一轮复习讲义教师版文档第
1.仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).2.方向角相对于某正方向的水平角,如南偏东30°,北偏西45°等. 3.方位角指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②). 【知识拓展】 1.三角形的面积公式S =p (p -a )(p -b )(p -c ) (p =a +b +c 2),S =abc4R =rp (R 为三角形外接圆半径,r 为三角形内切圆半径,p =a +b +c 2).2.坡度(又称坡比):坡面的垂直高度与水平长度之比. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( × ) (2)俯角是铅垂线与视线所成的角,其范围为[0,π2].( × )(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( √ )(4)方位角大小的范围是[0,2π),方向角大小的范围一般是[0,π2).( √ )1.(教材改编)如图所示,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为________ m. 答案 50 2解析 由正弦定理得AB sin ∠ACB =AC sin B ,又∵B =30°,∴AB =AC sin ∠ACBsin B =50×2212=502(m).2.轮船A 和轮船B 在中午12时同时离开海港C ,两船航行方向的夹角为120°,两船的航行速度分别为25 n mile /h ,15 n mile/h ,则下午2时两船之间的距离是________n mile. 答案 70解析 设两船之间的距离为d ,则d 2=502+302-2×50×30×cos 120°=4 900, ∴d =70,即两船相距70 n mile.3.(教材改编)海面上有A ,B ,C 三个灯塔,AB =10 n mile ,从A 望C 和B 成60°视角,从B 望C 和A 成75°视角,则BC =________ n mile. 答案 5 6解析 如图,在△ABC 中,AB =10,A =60°,B =75°, ∴BC sin 60°=10sin 45°, ∴BC =5 6.4.如图所示,D ,C ,B 三点在地面的同一直线上,DC =a ,从C ,D 两点测得A 点的仰角分别为60°,30°,则A 点离地面的高度AB =________.答案32a 解析 由已知得∠DAC =30°,△ADC 为等腰三角形,AD =3a ,又在Rt △ADB 中,AB =12AD=32a . 5.在一次抗洪抢险中,某救生艇发动机突然发生故障停止转动,失去动力的救生艇在洪水中漂行,此时,风向是北偏东30°,风速是20 km /h ;水的流向是正东,流速是20 km/h ,若不考虑其他因素,救生艇在洪水中漂行的方向为北偏东________,速度的大小为________ km/h. 答案 60° 20 3解析 如图,∠AOB =60°,由余弦定理知OC 2=202+202-800cos 120°=1 200,故OC =203,∠COY =30°+30°=60°.题型一 求距离、高度问题例1 (1)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高AD 是60 m ,则河流的宽度BC =________ m.(2)如图,A ,B 是海平面上的两个点,相距800 m ,在A 点测得山顶C 的仰角为45°,∠BAD =120°,又在B 点测得∠ABD =45°,其中D 是点C 到水平面的射影,则山高CD =________ m. 答案 (1)120(3-1) (2)800(3+1)解析 (1)如图,在△ACD 中,∠CAD =90°-30°=60°,AD =60 m ,所以CD =AD ·tan 60°=603(m).在△ABD 中,∠BAD =90°-75°=15°, 所以BD =AD ·tan 15°=60(2-3)(m). 所以BC =CD -BD =603-60(2-3) =120(3-1) (m).(2)在△ABD 中,∠BDA =180°-45°-120°=15°. 由AB sin 15°=AD sin 45°,得AD =AB ·sin 45°sin 15°=800×226-24=800(3+1)(m).∵CD ⊥平面ABD ,∠CAD =45°, ∴CD =AD =800(3+1) m.思维升华 求距离、高度问题应注意(1)理解俯角、仰角的概念,它们都是视线与水平线的夹角;理解方向角的概念.(2)选定或确定要创建的三角形,要首先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.(3)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.(1)一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°,行驶4 h 后,船到达C 处,看到这个灯塔在北偏东15°,这时船与灯塔的距离为________ km. (2)如图所示,为测一树的高度,在地面上选取A ,B两点,从A ,B 两点分别测得树尖的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则树的高度为________m.答案 (1)302 (2)30+30 3解析 (1)如图,由题意,∠BAC =30°,∠ACB =105°,∴B =45°,AC =60 km ,由正弦定理BC sin 30°=ACsin 45°,∴BC =30 2 km.(2)在△P AB 中,∠P AB =30°,∠APB =15°,AB =60, sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin 30°=22×32-22×12=6-24, 由正弦定理得PB sin 30°=AB sin 15°,∴PB =12×606-24=30(6+2),∴树的高度为PB ·sin 45°=30(6+2)×22=(30+303)(m). 题型二 求角度问题例2 甲船在A 处,乙船在A 处的南偏东45°方向,距A 有9海里的B 处,并以20海里每小时的速度沿南偏西15°方向行驶,若甲船沿南偏东θ的方向,并以28海里每小时的速度行驶,恰能在C 处追上乙船.问用多少小时追上乙船,并求sin θ的值.(结果保留根号,无需求近似值) 解 设用t 小时,甲船追上乙船,且在C 处相遇,那么在△ABC 中,AC =28t ,BC =20t ,AB =9,∠ABC =180°-15°-45°=120°, 由余弦定理,得(28t )2=81+(20t )2-2×9×20t ×(-12),128t 2-60t -27=0, 解得t =34或t =-932(舍去),所以AC =21(海里),BC =15(海里), 根据正弦定理,得sin ∠BAC =BC sin ∠ABC AC =5314,cos ∠BAC =1-75142=1114. 又∠ABC =120°,∠BAC 为锐角, 所以θ=45°-∠BAC , sin θ=sin(45°-∠BAC )=sin 45°cos ∠BAC -cos 45°sin ∠BAC=112-5628. 思维升华 解决测量角度问题的注意事项 (1)首先应明确方位角或方向角的含义;(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步; (3)将实际问题转化为可用数学方法解决的问题后,注意正弦、余弦定理的“联袂”使用.(1)(2016·苏州模拟)如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,则cos θ的值为________. 答案2114解析 在△ABC 中,AB =40,AC =20,∠BAC =120°, 由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800⇒BC =207. 由正弦定理,得AB sin ∠ACB =BC sin ∠BAC⇒sin ∠ACB =AB BC ·sin ∠BAC =217.由∠BAC =120°,知∠ACB 为锐角,则cos ∠ACB =277.由θ=∠ACB +30°,得cos θ=cos(∠ACB +30°) =cos ∠ACB cos 30°-sin ∠ACB sin 30°=2114. 题型三 三角形与三角函数的综合问题例3 (2016·扬州调研)在斜三角形ABC 中,tan A +tan B +tan A tan B =1. (1)求C 的值;(2)若A =15°,AB =2,求△ABC 的周长.解 (1)方法一 因为tan A +tan B +tan A tan B =1,即tan A +tan B =1-tan A tan B , 因为在斜三角形ABC 中,1-tan A tan B ≠0, 所以tan(A +B )=tan A +tan B 1-tan A tan B =1,即tan(180°-C )=1,即tan C =-1, 因为0°<C <180°,所以C =135°.方法二 由tan A +tan B +tan A tan B =1,得sin A cos A +sin B cos B +sin A sin Bcos A cos B=1, 化简得sin A cos B +sin B cos A +sin A sin B =cos A cos B ,即sin(A +B )=cos(A +B ), 所以sin C =-cos C ,因为斜三角形ABC ,所以C =135°.(2)在△ABC 中,A =15°,C =135°,则B =180°-A -C =30°. 由正弦定理BC sin A =CA sin B =AB sin C 得BC sin 15°=CA sin 30°=2sin 135°=2, 故BC =2sin 15°=2sin(45°-30°) =2(sin 45°cos 30°-cos 45°sin 30°)=6-22, CA =2sin 30°=1.所以△ABC 的周长为AB +BC +CA =2+6-22+1 =2+6+22. 思维升华 三角形与三角函数的综合问题,要借助三角函数性质的整体代换思想,数形结合思想,还要结合三角形中角的范围,充分利用正弦定理、余弦定理解题.(2016·南京学情调研)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a cosB =b cos A . (1)求ba的值;(2)若sin A =13,求sin(C -π4)的值.解 (1)方法一 由a cos B =b cos A , 结合正弦定理得sin A cos B =sin B cos A , 即sin(A -B )=0.因为A ,B ∈(0,π),所以A -B ∈(-π,π), 所以A -B =0,即A =B ,所以a =b ,即ba =1.方法二 由a cos B =b cos A ,结合余弦定理得a ·a 2+c 2-b 22ac =b ·b 2+c 2-a 22bc,即2a 2=2b 2,即ba=1.(2) 因为sin A =13,由(1)知A =B ,因此A 为锐角,所以cos A =223. 所以sin C =sin(π-2A )=sin 2A =2sin A cos A =429,cos C =cos(π-2A )=-cos 2A =-1+2sin 2A =-79.所以sin(C -π4)=sin C cos π4-cos C sin π4=429×22+79×22=8+7218.10.函数思想在解三角形中的应用典例 (14分)某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.思想方法指导 已知两边和其中一边的对角解三角形时,可以设出第三边,利用余弦定理列方程求解;对于三角形中的最值问题,可建立函数模型,转化为函数最值问题解决. 规范解答解 (1)设相遇时小艇航行的距离为S 海里,[1分]则S =900t 2+400-2·30t ·20·cos (90°-30°) =900t 2-600t +400=900(t -13)2+300.[3分] 故当t =13时,S min =103,v =10313=30 3.[6分]即小艇以303海里/小时的速度航行,相遇时小艇的航行距离最小. [7分](2)设小艇与轮船在B 处相遇.则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°), 故v 2=900-600t +400t 2.[10分]∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30,故v =30时,t 取得最小值,且最小值等于23.此时,在△OAB 中,有OA =OB =AB =20.[13分]故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时.[14分]1.(2017·苏北四市联考)一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是________海里. 答案 10 2解析 如图所示,易知,在△ABC 中,AB =20海里,∠CAB =30°,∠ACB =45°, 根据正弦定理得BC sin 30°=AB sin 45°,解得BC =102(海里).2.在高出海平面200 m 的小岛顶上A 处,测得位于正西和正东方向的两船的俯角分别是45°与30°,此时两船间的距离为________ m. 答案 200(3+1)解析 过点A 作AH ⊥BC 于点H ,由图易知∠BAH =45°,∠CAH =60°,AH =200 m ,则BH =AH =200 m ,CH =AH ·tan 60°=200 3 (m). 故两船距离BC =BH +CH =200(3+1) (m).3.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距____m. 答案 10 3解析 如图,OM =AO tan 45°=30 (m),ON =AO tan 30°=30×33=10 3 (m),在△MON 中,由余弦定理得, MN =900+300-2×30×103×32=300=10 3 (m).4.(2016·南京模拟)如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m ,50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为________.答案 45°解析 依题意可得AD =2010(m),AC =305(m), 又CD =50(m),所以在△ACD 中, 由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD=(305)2+(2010)2-5022×305×2010= 6 0006 0002=22,又0°<∠CAD <180°,所以∠CAD =45°, 所以从顶端A 看建筑物CD 的张角为45°.5.如图所示,测量河对岸的塔高AB 时可以选与塔底B 在同一水平面内的两个测点C 与D ,测得∠BCD =15°,∠BDC =30°,CD =30,并在点C 测得塔顶A 的仰角为60°,则塔高AB =________.答案 15 6解析 在△BCD 中,∠CBD =180°-15°-30°=135°. 由正弦定理得BC sin 30°=30sin 135°,所以BC =15 2.在Rt △ABC 中,AB =BC tan ∠ACB =152×3=15 6.6.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度为15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为106米(如图所示),旗杆底部与第一排在一个水平面上.若国歌长度约为50秒,升旗手应以________(米/秒)的速度匀速升旗.答案 0.6解析 在△BCD 中,∠BDC =45°,∠CBD =30°,CD =106(米). 由正弦定理,得BC =CD sin 45°sin 30°=203(米).在Rt △ABC 中,AB =BC sin 60°=203×32=30(米). 所以升旗速度v =AB t =3050=0.6(米/秒).7.如图,CD 是京九铁路线上的一条穿山隧道,开凿前,在CD 所在水平面上的山体外取点A ,B ,并测得四边形ABCD 中,∠ABC =π3,∠BAD =23π,AB=BC =400米,AD =250米,则应开凿的隧道CD 的长为________米. 答案 350解析 在△ABC 中,AB =BC =400米,∠ABC =π3,∴AC =AB =400米,∠BAC =π3.∴∠CAD =∠BAD -∠BAC =2π3-π3=π3.∴在△CAD 中,由余弦定理,得 CD 2=AC 2+AD 2-2AC ·AD ·cos ∠CAD =4002+2502-2·400·250·cos π3=122 500.∴CD =350米.8.如图,一艘船上午9∶30在A 处测得灯塔S 在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10∶00到达B 处,此时又测得灯塔S 在它的北偏东75°处,且与它相距8 2 n mile.此船的航速是______ n mile/h.答案 32解析 设航速为v n mile/h ,在△ABS 中,AB =12v ,BS =82,∠BSA =45°,由正弦定理得82sin 30°=12v sin 45°,∴v =32.9.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2分钟,从D 沿DC 走到C 用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径为________米.答案 507解析 如图,连结OC ,在△OCD 中,OD =100,CD =150,∠CDO =60°.由余弦定理得OC 2=1002+1502-2×100×150×cos 60°=17 500,解得OC =507.*10.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且满足a +b =cx ,则实数x 的取值范围是________. 答案 (1,2]解析 x =a +b c =sin A +sin B sin C =sin A +cos A=2sin ⎝⎛⎭⎫A +π4.又A ∈⎝⎛⎭⎫0,π2, ∴sin π4<sin ⎝⎛⎭⎫A +π4≤sin π2,即x ∈(1,2]. 11.要测量电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,求电视塔的高度.解 如图,设电视塔AB 高为x m ,则在Rt △ABC 中,由∠ACB =45°,得BC =x . 在Rt △ADB 中,∠ADB =30°, 则BD =3x .在△BDC 中,由余弦定理得, BD 2=BC 2+CD 2-2BC ·CD ·cos 120°, 即(3x )2=x 2+402-2·x ·40·cos 120°, 解得x =40,所以电视塔高为40 m.12.(2015·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14.(1)求a 和sin C 的值; (2)求cos ⎝⎛⎭⎫2A +π6的值. 解 (1)在△ABC 中,由cos A =-14,可得sin A =154. 由S △ABC =12bc sin A =315,得bc =24,又由b -c =2,解得b =6,c =4. 由a 2=b 2+c 2-2bc cos A ,可得a =8. 由a sin A =c sin C ,得sin C =158. (2)cos ⎝⎛⎭⎫2A +π6=cos 2A ·cos π6-sin 2A ·sin π6=32(2cos 2A -1)-12×2sin A ·cos A =15-7316. *13.在海岸A 处发现北偏东45°方向,距A 处(3-1)海里的B 处有一艘走私船.在A 处北偏西75°方向,距A 处2海里的C 处的我方缉私船奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度从B 处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.解 如图,设缉私船应沿CD 方向行驶t 小时,才能最快截获走私船(在D 点),则CD =103t 海里,BD =10t 海里,在△ABC 中,由余弦定理,得 BC 2=AB 2+AC 2-2AB ·AC ·cos A =(3-1)2+22-2·(3-1)·2·cos 120° =6, 解得BC = 6. 又BC sin ∠BAC =ACsin ∠ABC,∴sin ∠ABC =AC ·sin ∠BAC BC =2·sin 120°6=22,∴∠ABC =45°,故B 点在C 点的正东方向上, ∴∠CBD =90°+30°=120°,在△BCD 中,由正弦定理,得BD sin ∠BCD =CDsin ∠CBD ,∴sin ∠BCD =BD ·sin ∠CBDCD=10t ·sin 120°103t=12. ∴∠BCD =30°,∴缉私船沿北偏东60°的方向行驶.又在△BCD 中,∠CBD =120°,∠BCD =30°, ∴∠D =30°,∴BD =BC ,即10t =6, 解得t =610小时≈15分钟. ∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟.14.(教材改编)如图,有两条相交成60°角的直路X ′X ,Y ′Y ,交点是O ,甲、乙两人分别在OX 、OY 上,甲的起始位置离点O 3 km ,乙的起始位置离点O 1 km.后来甲沿XX ′的方向,乙沿YY ′的方向,同时以4 km/h 的速度步行.(1) 求甲、乙在起始位置时两人之间的距离;(2) 设t h 后甲、乙两人的距离为d (t ),写出d (t )的表达式.当t 为何值时,甲、乙两人之间的距离最短?并求出两人之间的最短距离. 解 (1) 由余弦定理,得起初两人的距离为 12+32-2×1×3×cos 60°=7(km). (2)设t h 后两人的距离为d (t ),则 当0≤t ≤14时,d (t )=(1-4t )2+(3-4t )2-2×(1-4t )×(3-4t )×cos 60° =16t 2-16t +7; 当t >34时,d (t )=(4t -1)2+(4t -3)2-2×(4t -1)×(4t -3)×cos 60° =16t 2-16t +7; 当14<t ≤34时, d (t )=(4t -1)2+(3-4t )2-2×(4t -1)×(3-4t )×cos 120° =16t 2-16t +7. 所以d (t )=16t 2-16t +7 =16(t -12)2+3 (t ≥0),当t =12时,两人的距离最短.答当t =12时,两人的最短距离为 3 km.。
2018版高考数学文江苏专用大一轮复习讲义文档 第四章 三角函数、解三角形 4.5 第2课时 含答案 精品
大学生思想品德个人总结这段时间以来,我在党组织的关心和帮助下不断进步和成长。
同时,我也努力改正和弥补自己的不足和缺点。
在工作、学习和生活中严格按照党员的标准来要求自己,认真履行党员的义务。
通过老师及同学的帮助以及自己的努力不断充实自己和完善自己。
经过这段时间,我感到自己在思想和行为举止上都得到了较大的提高,各方面表现的也更加成熟,为了进一步接受____教育,提高自己的思想,现将我____月份的情况向党组织汇报:一、思想上我主动加强政治学习,利用业余时间认真学习-和____,了解我们____光辉奋斗史,从而更加珍惜现在的生活,坚定正确的政治信仰;此外,我还经常看电视新闻、看报纸、浏览相关网页以及学习____颁布的决策和决议,使自己在思想上和党组织____保持一致。
通过对理论知识的学习,使我树立了正确牢固的世界观、人生观,在社会不断发展的过程中的价值观,加强了自己的责任感和使命感,提高了自己的工作动力以及学习和生活的动力。
通过这一系列的学习,我提高了自己的政治思想水平,更加坚定了对____的信念,并且懂得了理论上的成熟是政治上成熟的基础,政治上的清醒来源于稳固的理论基石。
我明白,要想成为一名合格的____,不仅是组织上入党,更重要的是思想上入党。
二、学习上我明白自己现在仍是一名大学生,最重要的事情便是学习,所以,我从未在学习上放松自己。
所以我更加努力地去学习,课堂上我认真听讲,课下按时独立完成作业,遇到不懂的地方就向老师同学请教,临近考试,我每天上自习都上到很晚。
三、工作生活中我保持着积极向上的生活态度,用微笑来面对和打动身边的每个人,并且争取做好每一件事,努力做到乐于助人。
周围同学如果有什么困难,只要是我力所能及,我就会挺身而出,热心帮助他人,努力做好一名党员的模范带头作用。
另外,我时刻提醒自己,“不以善小而不为,不以恶小而为之”。
注意身边一点一滴的小事,努力培养自己良好的生活习惯和道德修养。
总之,在这段时间里,我在党组织及老师同学的帮助下,我在很多方面有了明显的提高,但我深知自己还存在一些缺点和不足。
江苏专用2018高考数学一轮复习第五章三角函数解三角形第27课正弦定理和余弦定理课件
与三角形面积有关的问题
已知 a,b,c 分别为△ABC 内角 A,B,C 的对边,sin2B=2sin Asin C. (1)若 a=b,求 cos B; (2)设 B=90° ,且 a= 2,求△ABC 的面积. [ 解] (1)由题设及正弦定理可得 b2=2ac.
又 a=b,可得 b=2c,a=2c. a2+c2-b2 1 由余弦定理可得 cos B= 2ac =4. (2)由(1)知 b2=2ac. 因为 B=90° ,由勾股定理得 a2+c2=b2, 故 a2+c2=2ac,进而可得 c=a= 2. 1 所以△ABC 的面积为2× 2× 2=1.
抓 基 础 · 自 主 学 习
第五章
第 27 课
三角函数、解三角形
正弦定理和余弦定理
明 考 向 · 题 型 突 破
课 时 分 层 训 练
[ 最新考纲] 内容 A 正弦定理、余弦定理及其应用 要求 B √ C
1.正弦定理和余弦定理 定理 正弦定理 余弦定理
2 2 2 a b c b + c -2bc· cos A ; a = ________________ = = sin A sin B sin C =2R.(R 为△ABC 外 _________________ 2 2 2 c + a -2ca· cos B ; 内容 b =________________ 接圆半径) a2+b2-2ab· cos C c2=________________
[ 规律方法]
三角形面积公式的应用方法:
1 1 1 (1)对于面积公式 S=2absin C=2acsin B=2bcsin A,一般是已知哪一个角就 使用哪一个公式. (2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.
2018年高考数学(理)(江苏专用)总复习教师用书第四章三角函数、解三角形第1讲弧度制与任意角的三角函数W
第1讲弧度制与任意角的三角函数考试要求 1.任意角的概念,弧度制的概念,弧度与角度的互化,A级要求;2.任意角的三角函数(正弦、余弦、正切)的定义,B级要求.知识梳理1.角的概念的推广(1)正角、负角和零角:一条射线绕顶点按逆时针方向旋转所形成的角叫作正角,按顺时针方向旋转所形成的角叫作负角;如果射线没有作任何旋转,那么也把它看成一个角,叫作零角.(2)象限角:以角的顶点为坐标原点,角的始边为x轴的正半轴,建立平面直角坐标系,这样,角的终边在第几象限,我们就说这个角是第几象限的角.终边落在坐标轴上的角(轴线角)不属于任何象限.(3)终边相同的角:与角α的终边相同的角的集合为{β|β=k·360°+α,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式3.任意角的三角函数诊 断 自 测1.判断正误(在括号内打“√”或“×”) (1)小于90°的角是锐角.( ) (2)锐角是第一象限角,反之亦然.( )(3)将表的分针拨快5分钟,则分针转过的角度是30°.( )(4)若α∈⎝⎛⎭⎪⎫0,π2,则tan α>α>sin α.( )(5)相等的角终边一定相同,终边相同的角也一定相等.( )解析 (1)锐角的取值范围是⎝⎛⎭⎪⎫0,π2.(2)第一象限角不一定是锐角. (3)顺时针旋转得到的角是负角. (5)终边相同的角不一定相等.答案 (1)× (2)× (3)× (4)√ (5)× 2.若角α与角8π5的终边相同,则在[0,2π]内终边与角α4终边相同的角是________.解析 由题意知,α=2k π+8π5,k ∈Z ,∴α4=k π2+2π5,k ∈Z ,又α4∈[0,2π],∴k =0,α=2π5;k =1,α=9π10;k =2,α=7π5;k =3,α=19π10.答案2π5,9π10,7π5,19π103.(必修4P15习题6改编)若tan α>0,sin α<0,则α在第________象限.解析 由tan α>0,得α在第一或第三象限,又sin α<0,得α在第三或第四象限或终边在y 轴的负半轴上,故α在第三象限. 答案 三4.已知角α的终边经过点(-4,3),则cos α=________. 解析 ∵角α的终边经过点(-4,3),∴x =-4,y =3,r =5.∴cos α=x r =-45.答案 -455.(必修4P10习题8改编)一条弦的长等于半径,这条弦所对的圆心角大小为________弧度. 答案π3考点一 角的概念及其集合表示 【例1】 (1)若角α是第二象限角,则α2是第________象限角.(2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________. 解析 (1)∵α是第二象限角, ∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z . 当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.(2)如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y=3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π.答案 (1)一或三 (2)⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π规律方法 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角. (2)确定k α,αk(k ∈N *)的终边位置的方法先用终边相同角的形式表示出角α的范围,再写出k α或αk的范围,然后根据k 的可能取值讨论确定k α或αk的终边所在位置.【训练1】 (1)设集合M =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =k2·180°+45°,k ∈Z ,N =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =k4·180°+45°,k ∈Z ,则下列结论:①M =N ;②M ⊆N ;③N ⊆M ;④M ∩N =∅. 其中正确的是________(填序号).(2)集合⎩⎨⎧α⎪⎪⎪⎭⎬⎫k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是________(填序号).解析 (1)法一 由于M =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =k2·180°+45°,k ∈Z ={…,-45°,45°,135°,225°,…},N =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =k4·180°+45°,k ∈Z ={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M ⊆N .法二 由于M 中,x =k2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M⊆N .(2)当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+5π4≤α≤2n π+3π2,此时α表示的范围与5π4≤α≤3π2表示的范围一样. 答案 (1)② (2)③ 考点二 弧度制及其应用【例2】 已知一扇形的圆心角为α,半径为R ,弧长为l . (1)若α=60°,R =10 cm ,求扇形的弧长l ;(2)已知扇形的周长为10 cm ,面积是4 cm 2,求扇形的圆心角;(3)若扇形周长为20 cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?解 (1)α=60°=π3 rad ,∴l =α·R =π3×10=10π3(cm).(2)由题意得⎩⎪⎨⎪⎧2R +R α=10,12α·R 2=4,解得⎩⎪⎨⎪⎧R =1,α=8(舍去),⎩⎪⎨⎪⎧R =4,α=12.故扇形圆心角为12.(3)由已知得,l +2R =20.所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5时,S 取得最大值25,此时l =10,α=2.规律方法 应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形. 【训练2】 已知一扇形的圆心角为α (α>0),所在圆的半径为R . (1)若α=90°,R =10 cm ,求扇形的弧长及该弧所在的弓形的面积; (2)若扇形的周长是一定值C (C >0),当α为多少弧度时,该扇形有最大面积? 解 (1)设弧长为l ,弓形面积为S 弓,则 α=90°=π2,R =10,l =π2×10=5π(cm),S 弓=S 扇-S △=12×5π×10-12×102=25π-50(cm 2).(2)扇形周长C =2R +l =2R +αR , ∴R =C2+α,∴S 扇=12α·R 2=12α·⎝ ⎛⎭⎪⎫C 2+α2 =C 2α2·14+4α+α2=C 22·14+α+4α≤C 216. 当且仅当α2=4,即α=2时,扇形面积有最大值C 216.考点三 三角函数的概念【例3】 (1)(2017·扬州一中月考)已知角α的终边与单位圆x 2+y 2=1交于点P ⎝ ⎛⎭⎪⎫12,y 0,则cos 2α=________.(2)(2017·泰州模拟)已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m的值为________.(3)若sin α·tan α<0,且cos αtan α<0,则角α是第________象限角.解析 (1)根据题意可知,cos α=12,∴cos 2α=2cos 2α-1=2×14-1=-12.(2)∵r =64m 2+9, ∴cos α=-8m64m 2+9=-45, ∴m >0,∴4m 264m 2+9=125,即m =12.(3)由sin α·tan α<0可知sin α,tan α异号,从而α为第二或第三象限的角,由cos αtan α<0,可知cos α,tan α异号,从而α为第三或第四象限角.综上,α为第三象限角. 答案 (1)-12 (2)12(3)三规律方法 (1)利用三角函数的定义,求一个角的三角函数值,需确定三个量:角的终边上任意一个异于原点的点的横坐标x ,纵坐标y ,该点到原点的距离r .(2)根据三角函数定义中x ,y 的符号来确定各象限内三角函数的符号,理解并记忆:“一全正、二正弦、三正切、四余弦”.(3)利用三角函数线解三角不等式时要注意边界角的取舍,结合三角函数的周期性正确写出角的范围.【训练3】 (1)(2017·无锡期末)已知角α的终边与单位圆的交点P ⎝ ⎛⎭⎪⎫-12,y ,则sinα·tan α=________.(2)满足cos α≤-12的角α的集合为________.解析 (1)由|OP |2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3,此时,sin α·tan α=-32.当y =-32时,sin α=-32,tan α=3, 此时,sin α·tan α=-32.(2)作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为⎩⎨⎧α⎪⎪⎪⎭⎬⎫2k π+23π≤α≤2k π+43π,k ∈Z .答案 (1)-32 (2)⎩⎨⎧⎭⎬⎫α2k π+23π≤α≤2k π+43π,k ∈Z[思想方法]1.在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点.|OP |=r 一定是正值.2.三角函数符号是重点,也是难点,在理解的基础上可借助口诀:一全正,二正弦,三正切,四余弦.3.在解决简单的三角不等式时,利用单位圆及三角函数线是一个小技巧. [易错防范]1.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.基础巩固题组(建议用时:30分钟)1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题的个数为________.解析 -3π4是第三象限角,故①错误.4π3=π+π3,从而4π3是第三象限角,②正确.-400°=-360°-40°,从而③正确.-315°=-360°+45°,从而④正确. 答案 32.已知点P (tan α,cos α)在第三象限,则角α的终边在第________象限. 解析 由题意知tan α<0,cos α<0,∴α是第二象限角. 答案 二3.(2017·苏州期末)已知角θ的终边经过点P (4,m ),且sin θ=35,则m =________.解析 sin θ=m16+m 2=35,解得m =3. 答案 34.已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α用集合可表示为________.解析 在[0,2π)内,终边落在阴影部分角的集合为⎝ ⎛⎭⎪⎫π4,56π, 所以,所求角的集合为⎝ ⎛⎭⎪⎫2k π+π4,2k π+56π(k ∈Z ). 答案 ⎝⎛⎭⎪⎫2k π+π4,2k π+56π(k ∈Z )5.设P 是角α终边上一点,且|OP |=1,若点P 关于原点的对称点为Q ,则Q 点的坐标是________.解析 由已知P (cos α,sin α),则Q (-cos α,-sin α). 答案 (-cos α,-sin α)6.已知扇形的圆心角为π6,面积为π3,则扇形的弧长等于________.解析 设扇形半径为r ,弧长为l ,则⎩⎪⎨⎪⎧l r =π6,12lr =π3,解得⎩⎪⎨⎪⎧l =π3,r =2.答案π37.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为________.解析 由三角函数定义可知Q 点的坐标(x ,y )满足x =cos 2π3=-12,y =sin 2π3=32.答案 ⎝ ⎛⎭⎪⎫-12,328.设θ是第三象限角,且⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是第________象限角. 解析 由θ是第三象限角,知θ2为第二或第四象限角,∵⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,∴cos θ2≤0,综上知θ2为第二象限角. 答案 二9.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α∈(0,π)的弧度数为________.解析 设圆半径为r ,则其内接正三角形的边长为3r ,所以3r =α·r ,∴α= 3. 答案310.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=________.解析 由题意知,tan θ=2,即sin θ=2cos θ,将其代入sin 2θ+cos 2θ=1中可得cos 2θ=15,故cos 2θ=2cos 2θ-1=-35. 答案 -3511.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是________.解析 举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时既不是第二象限角,也不是第三象限角,故⑤错.综上可知只有③正确. 答案 112.(2017·苏北四市期末)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是________.解析 ∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴-2<a ≤3.答案 (-2,3]能力提升题组 (建议用时:15分钟)13.已知圆O :x 2+y 2=4与y 轴正半轴的交点为M ,点M 沿圆O 顺时针运动π2弧长到达点N ,以ON 为终边的角记为α,则tan α=________. 解析 圆的半径为2,π2的弧长对应的圆心角为π4,故以ON 为终边的角为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪α=2k π+π4,k ∈Z ,故tan α=1.答案 114.(2017·泰州模拟)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=________.解析 因为α是第二象限角, 所以cos α=15x <0,即x <0.又cos α=15x =xx 2+16,解得x =-3,所以tan α=4x =-43.答案 -4315.函数y =2sin x -1的定义域为________.解析 ∵2sin x -1≥0, ∴sin x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影所示). ∴x ∈⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z ). 答案 ⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z ) 16.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x 轴上沿正向滚动,当圆滚动到圆心位于(2,1)时,OP →的坐标为________.解析 如图,作CQ ∥x 轴,PQ ⊥CQ, Q 为垂足.根据题意得劣弧=2,故∠DCP =2,则在△PCQ 中,∠PCQ =2-π2, |CQ |=cos ⎝ ⎛⎭⎪⎫2-π2=sin 2,|PQ |=sin ⎝⎛⎭⎪⎫2-π2=-cos 2, 所以P 点的横坐标为2-|CQ |=2-sin 2,P 点的纵坐标为1+|PQ |=1-cos 2,所以P 点的坐标为(2-sin 2,1-cos 2),故OP →=(2-sin 2,1-cos 2).答案 (2-sin 2,1-cos 2)。
江苏专用2018高考数学一轮复习第五章三角函数解三角形第28课函数建模问题(二)__三角函数解三角形教师用书
第28课 函数建模问题(二)——三角函数、解三角形[最新考纲]1.仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角.(如图①).① ②图2812.方位角和方向角(1)方位角:从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②).(2)方向角:相对于某正方向的水平角,如南偏东30°等.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( )(2)俯角是铅垂线与视线所成的角,其范围为⎣⎢⎡⎦⎥⎤0,π2.( )(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( ) (4)如图282,为了测量隧道口AB 的长度,可测量数据a ,b ,γ进行计算.( )图282[答案] (1)× (2)× (3)√ (4)√2.(教材改编)如图283,已知A ,B 两点分别在河的两岸,某测量者在点A 所在的河岸边另选定一点C ,测得AC =50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为________m.图28350 2 [因为∠ACB =45°,∠CAB =105°,所以∠B =30°.由正弦定理可知ACsin B=ABsin C,即50sin 30°=ABsin 45°,解得AB =50 2 m .]3.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°,60°,则塔高为________米.4003 [如图所示,山的高度MN =200米,塔高为AB ,CN =MB =2003,AC =NC 3=2003·3=2003.所以塔高AB =200-2003=4003(米).]4.如图284,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖位置P (x ,y ).若初始位置为P 0⎝⎛⎭⎪⎫32,12,当秒针从P 0(注:此时t =0)正常开始走时,那么点P 的纵坐标y 与时间t 的函数关系式为________.图284y =sin ⎝ ⎛⎭⎪⎫-π30t +π6 [设点P 的纵坐标y 与时间t 的函数关系式为y =sin(ωt +φ).由题意可得,函数的初相位是π6.又函数周期是60(秒)且秒针按顺时针旋转,即T =⎪⎪⎪⎪⎪⎪2πω=60,所以|ω|=π30,即ω=-π30,所以y =sin ⎝ ⎛⎭⎪⎫-π30t +π6.]5.(教材改编)点P 在直径AB =1的半圆上移动(如图285所示),过P 作圆的切线PT 且PT =1,∠PAB =α,则α=________时,四边形ABTP 面积最大.图2853π8[∵AB 是圆的直径,∴∠APB =90°, 又AB =1,故PA =cos α,PB =sin α. ∴S 四边形ABTP =S △PAB +S △TPB =12sin αcos α+12sin 2α=14sin 2α+1-cos 2α4 =24sin ⎝⎛⎭⎪⎫2α-π4+14.∵α∈⎝⎛⎭⎪⎫0,π2,-π4<2α-π4<3π4, ∴当2α-π4=π2,即α=3π8时 S 四边形ABTP 最大.]☞角度1 测量距离如图286,A ,B 两点在河的同侧,且A ,B 两点均不可到达,要测出AB 的距离,测量者可以在河岸边选定两点C ,D ,若测得CD=32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A ,B 两点间的距离.图286[解] 在△ADC 中,CD =32,∠ACD =60°,∠ADC =30°+30°=60°, ∴△ADC 为正三角形,即AC =CD =32. 在△BDC 中,∠DBC =180°-30°-45°-60°=45°. 由正弦定理得, DC sin 45°=BCsin 30°,∴BC =32×1222=64.在△ABC 中,由余弦定理得AB 2=34+616-2×32×64×22=616, ∴AB =64(km). 所以A ,B 的距离为64km. ☞角度2 测量高度如图287,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =______m.图287100 6 [由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°.又AB =600 m ,故由正弦定理得600sin 45°=BCsin 30°,解得BC =300 2 m.在Rt △BCD 中,CD =BC ·tan 30°=3002×33=1006(m).] ☞角度3 测量角度在海岸A 处,发现北偏东45°方向、距离A 处(3-1)海里的B 处有一艘走私船;在A 处北偏西75°方向、距离A 处2海里的C 处的缉私船奉命以103海里/小时的速度追截走私船.同时,走私船正以10海里/小时的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?最少要花多长时间? 【导学号:62172152】[解] 设缉私船t 小时后在D 处追上走私船,则有CD =103t ,BD =10t .在△ABC 中,AB =3-1,AC =2,∠BAC =120°. 根据余弦定理,可得BC = 3-1 2+22-2×2× 3-1 cos 120°=6,由正弦定理,得sin ∠ABC =AC BC sin ∠BAC =26×32=22,∴∠ABC =45°,因此BC 与正北方向垂直.于是∠CBD =120°.在△BCD 中,由正弦定理,得 sin ∠BCD =BD sin ∠CBD CD =10t ·sin 120°103t=12,∴∠BCD =30°,又CD sin 120°=BCsin 30°,即103t 3=6,得t =610.∴当缉私船沿北偏东60°的方向能最快追上走私船,最少要花610小时. [规律方法] 1.研究测量距离(高度)问题,解决此问题的方法是:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.2.测量角度问题应关注以下三点(1)测量角度时,首先应明确方位角及方向角的含义. (2)求角的大小时,先在三角形中求出其正弦或余弦值.(3)在解应用题时,要根据题意正确画出示意图,通过这一步可将实际问题转化为可用数学方法解决的问题,解题中也要注意体会正、余弦定理“联袂”使用的优点.某旅游公司为方便游客,在l 上设立了A ,B 两个报名点,满足A ,B ,C 中任意两点间的距离为10 km.公司拟按以下思路运作:先将A ,B 两处游客分别乘车集中到AB 之间的中转点D 处(点D 异于A ,B 两点),然后乘同一艘轮游轮前往C 岛.据统计,每批游客A 处需发车2辆,B处需发车4辆,每辆汽车每千米耗费2元,游轮每千米耗费12元.设∠CDA =α,每批游客从各自报名点到C 岛所需运输成本为S 元.图288(1)写出S 关于α的函数表达式,并指出α的取值范围;(2)问:中转点D 距离A 处多远时,S 最小? 【导学号:62172153】[解] (1)由题知在△ACD 中,∠CAD =π3,∠CDA =α,AC =10,∠ACD =2π3-α.由正弦定理知CD sin π3=ADsin ⎝ ⎛⎭⎪⎫2π3-α=10sin α, 即CD =53sin α,AD =10sin ⎝ ⎛⎭⎪⎫2π3-αsin α,所以 S =4AD +8BD +12CD =12CD -4AD +80=603-40sin ⎝ ⎛⎭⎪⎫2π3-αsin α+80=2033-cos αsin α+60⎝ ⎛⎭⎪⎫π3<α<2π3.(2)S ′=2031-3cos αsin 2α, 令S ′=0得cos α=13.当cos α>13时,S ′<0;当cos α<13时,S ′>0,所以当cos α=13时,S 取得最小值,此时sin α=223,AD =53cos α+5sin αsin α=5+564,所以中转点C 距A 处20+564km 时,运输成本S 最小.[规律方法] 此类问题常以正、余弦定理为解题切入点,通过引入参变量“α”建立关于三角函数的解析式,在此基础上,借助最值工具(如:三角函数的有界性、导数或基本不等式)求解函数最值,从而解决实际问题.[变式训练1] 如图289,两座建筑物AB ,CD 的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9 m和15 m ,从建筑物AB 的顶部A 看建筑物CD 的视角∠CAD =45°.图289(1)求BC 的长度;(2)在线段BC 上取一点P (点P 与点B ,C 不重合),从点P 看这两座建筑物的视角分别为∠APB =α,∠DPC =β,问点P 在何处时,α+β最小?[解] (1)作AE ⊥CD ,垂足E ,则CE=9,DE =6,设BC =x ,则tan ∠CAD =tan(∠CAE +∠DAE )=tan ∠CAE +tan ∠DAE 1-tan ∠CAE ×tan∠DAE =9x +6x 1-9x ·6x=1,化简得x 2-15x -54=0, 解得x =18或x =-3(舍). 所以,BC 的长度为18 m.(2)设BP =t ,则CP =18-t (0<t <18), tan(α+β)=9t +1518-t 1-9t ·1518-t =162+6t-t 2+18t -135=6 27+t-t 2+18t -135. 设f (t )=27+t -t +18t -135,f ′(t )=t 2+54t -27×23t -18t +135 ,令f ′(t )=0,因为0<t <18,得t =156-27,当t ∈(0,156-27)时,f ′(t )<0,f (t )是减函数;当t ∈(156-27,18)时,f ′(t )>0,f (t )是增函数,所以,当t =156-27时,f (t )取得最小值,即tan(α+β)取得最小值, 因为-t 2+18t -135<0恒成立,所以f (t )<0,所以tan(α+β)<0,α+β∈⎝ ⎛⎭⎪⎫π2,π,因为y =tan x 在⎝ ⎛⎭⎪⎫π2,π上是增函数,所以当t =156-27时,α+β取得最小值.答:当BP 为(156-27)m 时,α+β取得最小值.针旋转且每分钟转动5圈.如果当水轮上点P 从水中浮现时(图中点P 0)开始计算时间.图2810(1)将点P 距离水面的高度z m 表示为时间t s 的函数,求其解析式; (2)求点P 第一次到达最高点时所需要的时间.[解] (1)以水平方向为x 轴,竖直方向为y 轴,建立直角坐标系(图略),设角φ⎝ ⎛⎭⎪⎫-π2<φ<0是以Ox 为始边,OP 0为终边的角,OP 每分钟内所转过的角为5×2π,OP 每秒钟内所转过的角为5×2π60=π6,得z =4sin ⎝⎛⎭⎪⎫π6t +φ+2,当t =0时,z =0,得sin φ=-12,即φ=-π6,故所求的函数关系式为z =4sin ⎝ ⎛⎭⎪⎫π6t -π6+2.(2)令z =4sin ⎝ ⎛⎭⎪⎫π6t -π6+2=6,得sin ⎝⎛⎭⎪⎫π6t -π6=1, 所以π6t -π6=π2,得t =4,故点P 第一次到达最高点大约需要4 s.[规律方法] 1.三角函数模型在实际中的应用体现在两个方面:一是用已知的模型去分析解决实际问题,二是把实际问题抽象转化成数学问题,建立三角函数模型解决问题,其关键是合理建模.2.建模的方法是认真审题,把问题提供的“条件”逐条地“翻译”成“数学语言”,这个过程就是数学建模的过程.[变式训练2] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温? [解] (1)因为f (t )=10-2⎝ ⎛⎭⎪⎫32cos π12t +12sin π12t=10-2sin ⎝⎛⎭⎪⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝ ⎛⎭⎪⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎪⎫π12t +π3=1;当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. (2)依题意,当f (t )>11时实验室需要降温.由(1)得f (t )=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,故有10-2sin ⎝ ⎛⎭⎪⎫π12t +π3>11,即sin ⎝⎛⎭⎪⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温.[思想与方法]解三角形应用题的两种情形(1)已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.[易错与防范]1.“方位角”与“方向角”的区别:方位角大小的范围是[0,2π),方向角大小的范围一般是⎣⎢⎡⎭⎪⎫0,π2.2.在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易出现错误.课时分层训练(二十八)A 组 基础达标 (建议用时:30分钟)1.(2017·淮海中学模拟)如图2811,有一块半径为R 的半圆形空地,开发商计划征地建一个矩形游泳池ABCD 和其附属设施,附属设施占地形状是等腰△CDE ,其中O 为圆心,A ,B 在圆的直径上,C ,D ,E 在圆周上.图2811(1)设∠BOC =θ,征地面积记为f (θ),求f (θ)的表达式; (2)当θ为何值时,征地面积最大? 【导学号:62172154】 [解] (1)连结OE ,OC ,可得OE =R ,OB =R cos θ,BC =R sin θ;θ∈⎝⎛⎭⎪⎫0,π2.∴f (θ)=2S 梯形OBCE =R 2(sin θcos θ+cos θ)θ∈⎝ ⎛⎭⎪⎫0,π2. (2)f ′(θ)=-R 2(2sin θ-1)(sin θ+1). 令f ′(θ)=0,∴sin θ+1=0(舍)或者sin θ=12.∵θ∈⎝⎛⎭⎪⎫0,π2,当θ∈⎝ ⎛⎭⎪⎫0,π6时, f ′(θ)>0;当θ∈⎝ ⎛⎭⎪⎫π6,π2时,f ′(θ)<0, ∴当θ=π6时,f (θ)取得最大值.答:θ=π6时,征地面积最大.2. (2017·镇江期中)广告公司为某游乐场设计某项设施的宣传画,根据该设施的外观,设计成的平面图由半径为2m 的扇形AOB 和三角区域BCO 构成,其中C ,O ,A 在一条直线上,∠ACB =π4,记该设施平面图的面积为S (x ) m 2,∠AOB =x rad ,其中π2<x <π.图2812(1)写出S (x )关于x 的函数关系式; (2)如何设计∠AOB ,使得S (x )有最大值?[解] (1)由已知可得∠CBO =x -π4,S 扇形AOB =12lr =2x ,在△BCO 中,由正弦定理可得:COsin ∠CBO=BOsin C,所以CO =2(sin x -cos x ),从而S △CBO =12BO ·CO ·s in ∠BOC =2sin 2x -2sin x cos x ,所以S (x )=2sin 2x -2sin x cos x +2x =2sin x (sin x -cos x )+2x ⎝ ⎛⎭⎪⎫π2<x <π. (2)S ′(x )=2(sin 2x -cos 2x )+2=22sin ⎝ ⎛⎭⎪⎫2x -π4+2,由S ′(x )=0,解得x =3π4,令S ′(x )>0,解得π2<x <3π4,所以增区间是⎝ ⎛⎭⎪⎫π2,3π4;令S ′(x )<0,解得3π4<x <π,所以减区间是⎝ ⎛⎭⎪⎫3π4,π;所以S (x )在x =3π4处取得最大值是2+3π2m 2.答:设计成∠AOB =3π4时,该设施的平面图面积最大是2+3π2m 2.B 组 能力提升 (建议用时:15分钟)1.(2017·无锡期中)如图2813,某自行车手从O 点出发,沿折线O -A -B -O 匀速骑行,其中点A 位于点O 南偏东45°且与点O 相距202千米.该车手于上午8点整到达点A,8点20分骑至点C ,其中点C 位于点O 南偏东(45°-α)(其中sin α=126,0°<α<90°)且与点O 相距513千米(假设所有路面及观测点都在同一水平面上).图2813(1)求该自行车手的骑行速度;(2)若点O 正西方向27.5千米处有个气象观测站E ,假定以点E 为中心的3.5千米范围内有长时间的持续强降雨.试问:该自行车手会不会进入降雨区,并说明理由. 【导学号:62172155】[解] (1)由题意知,OA =202,OC =513,∠AOC =α,sin α=126.由于0°<α<90°,所以cos α=1-⎝ ⎛⎭⎪⎫1262=52626. 由余弦定理,得AC =OA 2+OC 2-2OA ·OC ·cos α=5 5. 所以该自行车手的行驶速度为5513=155(千米/小时).(2)如图,设直线OE 与AB 相交于点M .在△AOC 中,由余弦定理,得:cos ∠OAC =OA 2+AC 2-OC 22OA ·AC =202×2+52×5-52×132×202×55=31010,从而sin ∠OAC =1-cos 2∠OAC =1-910=1010. 在△AOM 中,由正弦定理,得:OM =OA sin ∠OAMsin 45°-∠OAM =202×101022⎝ ⎛⎭⎪⎫31010-1010=20.由于OE =27.5>20=OM ,所以点M 位于点O 和点E 之间,且ME =OE -OM =7.5. 过点E 作EH ⊥AB 于点H ,则EH 为点E 到直线AB 的距离.在Rt △EHM 中,EH =EM ·sin∠EMH =EM ·sin∠EMH =EM ·sin(45°-∠OAC )=7.5×55=352<3.5. 所以该自行车手会进入降雨区.2.(2017·启东中学高三第一次月考)如图2814,某广场中间有一块边长为2百米的菱形状绿化区ABCD ,其中BMN 是半径为1百米的扇形,∠ABC =2π3.管理部门欲在该地从M到D 修建小路:在弧MN 上选一点P (异于M ,N 两点),过点P 修建与BC 平行的小路PQ .问:点P 选择在何处时,才能使得修建的小路MP 与PQ 及QD 的总长最小?并说明理由.图2814[解] 连结BP ,过P 作PP 1⊥BC 垂足为P 1,过Q 作QQ 1⊥BC 垂足为Q 1.设∠PBP 1=θ⎝⎛⎭⎪⎫0<θ<2π3,MP =2π3-θ 若0<θ<π2,在Rt △PBP 1中,PP 1=sin θ,BP 1=cos θ,若θ=π2,则PP 1=sin θ,BP 1=cos θ,若π2<θ<2π3,则PP 1=sin θ,BP 1=cos(π-θ)=-cos θ, ∴PQ =2-cos θ-33sin θ. 在Rt △QBQ 1中,QQ 1=PP 1=sin θ,CQ 1=33sin θ,CQ =233sin θ, DQ =2-233sin θ. 所以总路径长f (θ)=2π3-θ+4-cos θ-3sin θ⎝⎛⎭⎪⎫0<θ<2π3,f ′(θ)=sin θ-3cos θ-1=2sin ⎝⎛⎭⎪⎫θ-π3-1令f ′(θ)=0,得θ=π2.当0<θ<π2时,f ′(θ)<0,当π2<θ<2π3时,f ′(θ)>0. 所以当θ=π2时,总路径最短.答:当BP ⊥BC 时,总路径最短.。
第28讲 正弦定理、余弦定理
[解析]由余弦定理得cos B====,∵0<B<π,∴B=.
题组二 常错题
4. 在△ABC中,若sin A=sin B,则A,B的大小关系为 ;若sin A>sin B,则A,B的大小关系为 .
课前双基巩固
[解析] 根据正弦定理知,在△ABC中,sin A=sin B⇔a=b⇔A=B,sin A>sin B⇔a>b⇔A>B.
B
课堂考点探究
练习1 [2021·河南新乡模拟] 在△ABC中,内角A,B,C的对边分别为a,b,c,sin(B+C)=sin .(1)求A的大小;(2)若b+c=6,△ABC的面积为2,求a.
解:(1)∵A+B+C=π,∴sin(B+C)=sin A,∴sin A=2sin cos =sin ,又A∈(0,π),∴∈(0,),∴cos =,∴=,∴A=.(2)∵△ABC的面积为bcsin A=2,∴bc=8,又b+c=6,∴根据余弦定理可知a2=b2+c2-2bccos A=b2+c2+bc=(b+c)2-bc=28,∴a=2.
课前双基巩固
(续表)
课前双基巩固
2.在△ABC中,已知a,b和A时,解的情况如下:
图形
关系式
解的个数
A为锐角
a=bsin A
bsin A<a<b
a≥b
A为钝角或直角
a>b
课前双基巩固
3.三角形面积公式
(1)S=ah(h表示边a上的高);(2)S=bcsin A=acsin B=absin C;(3)S=r(a+b+c)(r为三角形的内切圆半径).
2018年高考数学(理)(江苏专用)总复习教师用书第四章三角函数、解三角形第6讲正弦定理、余弦定理及解三
第6讲 正弦定理、余弦定理及解三角形考试要求 1.正弦定理、余弦定理,简单的三角形度量问题,B 级要求;2.运用定理等知识解决一些与测量和几何计算有关的实际问题,B 级要求.知 识 梳 理1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r . 3.实际问题中的常用角 (1)仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).(2)方位角从正北方向起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B 点的方位角为α(如图2).(3)方向角:正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等. (4)坡度:坡面与水平面所成的二面角的正切值.诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,A >B 必有sin A >sin B .( )(3)在△ABC 中,若sin A sin B <cos A cos B ,则此三角形是钝角三角形.( )(4)俯角是铅垂线与视线所成的角,其范围为⎣⎢⎡⎦⎥⎤0,π2.( )(5)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( ) 解析 (1)三角形中三边之比等于相对的三个内角的正弦值之比. (4)俯角是视线与水平线所构成的角. 答案 (1)× (2)√ (3)√ (4)× (5)√2.(2016·全国Ⅰ卷改编)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =________.解析 由余弦定理,得5=b 2+22-2×b ×2×23,解得b =3⎝ ⎛⎭⎪⎫b =-13舍去.答案 33.(必修5P10习题4改编)在△ABC 中,a cos A =b cos B ,则△ABC 的形状为________________. 解析 由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B , 即A =B 或A +B =π2,所以这个三角形为等腰三角形或直角三角形. 答案 等腰三角形或直角三角形4.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是________海里.解析 如图所示,易知,在△ABC 中,AB =20海里,∠CAB =30°,∠ACB =45°,根据正弦定理得BC sin 30°=ABsin 45°,解得BC =102(海里).答案 10 25.(2017·淮安质检)已知在△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c ,若A =π3,b =2a cos B ,c =1,则△ABC 的面积等于________.解析 由正弦定理得sin B =2sin A ·cos B ,故tan B =2sin A =2sin π3=3,又B ∈(0,π),所以B =π3,又A =π3,所以△ABC 是正三角形,所以S △ABC =12bc sin A =12×1×1×32=34. 答案34考点一 利用正、余弦定理解三角形【例1】 (1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有________个.(2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2=b 2+2bc ,则三内角A ,B ,C 的度数依次是________.(3)(2015·广东卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a =3, sin B =12,C =π6,则b =________.解析 (1)∵b sin A =6×22=3,∴b sin A <a <b . ∴满足条件的三角形有2个.(2)由题意知a =2b ,a 2=b 2+c 2-2bc cos A , 即2b 2=b 2+c 2-2bc cos A ,又c 2=b 2+2bc , ∴cos A =22,∵A ∈(0°,180°),∴A =45°,sin B =12,又B ∈(0°,180°),b <a ,∴B =30°,∴C =105°.(3)因为sin B =12且B ∈(0,π),所以B =π6或B =5π6.又C =π6,B +C <π,所以B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =b sin B ,即3sin 2π3=b sinπ6,解得b =1.答案 (1)2 (2)45°,30°,105° (3)1 规律方法 (1)判断三角形解的个数的两种方法①代数法:根据大边对大角的性质、三角形内角和公式、正弦函数的值域等判断. ②几何图形法:根据条件画出图形,通过图形直观判断解的个数.(2)已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数. 【训练1】 (1)(2017·扬州中学模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c =________.(2)(2016·全国Ⅱ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________. 解析 (1)a 2=c 2+b 2-2cb cos A ⇒13=c 2+9-2c ×3×cos 60°,即c 2-3c -4=0,解得c =4或c =-1(舍去).(2)在△ABC 中,由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A sin C =6365,由正弦定理得b =a sin B sin A =2113.答案 (1)4 (2)2113考点二 利用正弦、余弦定理判定三角形的形状(典例迁移)【例2】 (经典母题)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为________.解析 由正弦定理得sin B cos C +sin C cos B =sin 2A , ∴sin(B +C )=sin 2A ,即sin(π-A )=sin 2A ,sin A =sin 2A .∵A ∈(0,π),∴sin A >0,∴sin A =1,即A =π2.答案 直角三角形【迁移探究1】 将本例条件变为“若2sin A cos B =sin C ”,那么△ABC 一定是________.解析 法一 由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B .法二 由正弦定理得2a cos B =c ,再由余弦定理得2a ·a 2+c 2-b 22ac=c ⇒a 2=b 2⇒a =b .答案 等腰三角形【迁移探究2】 将本例条件变为“若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13”,则△ABC 一定是________.解析 在△ABC 中,sin A ∶sin B ∶sin C =5∶11∶13, ∴a ∶b ∶c =5∶11∶13,故设a =5k ,b =11k ,c =13k (k >0),由余弦定理可得cos C =a 2+b 2-c 22ab =25k 2+121k 2-169k 22×5×11k 2=-23110<0, 又∵C ∈(0,π),∴C ∈⎝ ⎛⎭⎪⎫π2,π,∴△ABC 为钝角三角形. 答案 钝角三角形【迁移探究3】 将本例条件变为“若a 2+b 2-c 2=ab ,且2cos A sin B =sin C ”,试确定△ABC 的形状.解 法一 利用边的关系来判断: 由正弦定理得sin C sin B =cb,由2cos A sin B =sin C ,有cos A =sin C 2sin B =c2b.又由余弦定理得cos A =b 2+c 2-a 22bc ,∴c 2b =b 2+c 2-a 22bc, 即c 2=b 2+c 2-a 2,所以a 2=b 2,所以a =b . 又∵a 2+b 2-c 2=ab . ∴2b 2-c 2=b 2,所以b 2=c 2, ∴b =c ,∴a =b =c . ∴△ABC 为等边三角形. 法二 利用角的关系来判断: ∵A +B +C =180°, ∴sin C =sin(A +B ), 又∵2cos A sin B =sin C ,∴2cos A sin B =sin A cos B +cos A sin B , ∴sin(A -B )=0,又∵A 与B 均为△ABC 的内角,所以A =B . 又由a 2+b 2-c 2=ab ,由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,又0°<C <180°,所以C =60°, ∴△ABC 为等边三角形.规律方法 (1)判定三角形形状的途径:①化边为角,通过三角变换找出角之间的关系;②化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.(2)无论使用哪种方法,都不要随意约掉公因式,要移项提取公因式,否则会有漏掉一种形状的可能.注意挖掘隐含条件,重视角的范围对三角函数值的限制. 考点三 和三角形面积有关的问题【例3】 (2016·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cosB +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B cos A )=sin C,2cos C sin(A +B )=sin C ,故2sin C cos C =sin C .由C ∈(0,π)知sin C ≠0, 可得cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cosC =7,故a 2+b 2=13,从而(a +b )2=25.所以△ABC 的周长为5+7.规律方法 三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【训练3】 (2017·南通调研)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(a +b -c )(a +b +c )=ab .(1)求角C 的大小;(2)若c =2a cos B ,b =2,求△ABC 的面积.解 (1)在△ABC 中,由(a +b -c )(a +b +c )=ab 得(a +b )2-c 2=ab ,进而得a 2+b 2-c 22ab=-12,即cos C =-12. 因为0<C <π,所以C =2π3.(2)法一 因为c =2a cos B , 由正弦定理得sin C =2sin A cos B ,因为A +B +C =π,所以sin C =sin(A +B ),所以sin(A +B )=2sin A cos B , 即sin A cos B -cos A sin B =0, 即sin(A -B )=0, 又-π3<A -B <π3,所以A -B =0,即A =B ,所以a =b =2.所以△ABC 的面积为S △ABC =12ab sin C =12×2×2×sin 2π3= 3.法二 由c =2a cos B 及余弦定理得c =2a ×a 2+c 2-b 22ac,化简得a =b =2,所以△ABC 的面积为S △ABC =12ab sin C =12×2×2×sin 2π3= 3.考点四 正、余弦定理在实际问题中的应用【例4】 如图,在海岸A 处,发现北偏东45°方向距A 为(3-1)海里的B 处有一艘走私船,在A 处北偏西75°方向,距A 为2海里的C 处的缉私船奉命以103海里/时的速度追截走私船.此时走私船正以10海里/时的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?并求出所需要的时间(注:6≈2.449).解 设缉私船应沿CD 方向行驶t 小时,才能最快截获(在D 点)走私船,则有CD =103t (海里),BD =10t (海里).在△ABC 中,∵AB =(3-1)海里,AC =2海里,∠BAC =45°+75°=120°,根据余弦定理,可得BC =3-2+22-3-=6(海里).根据正弦定理,可得sin ∠ABC =AC sin 120°BC=2×326=22. ∴∠ABC =45°,易知CB 方向与正北方向垂直, 从而∠CBD =90°+30°=120°. 在△BCD 中,根据正弦定理,可得 sin ∠BCD =BD sin ∠CBD CD =10t ·sin 120°103t=12, ∴∠BCD =30°,∠BDC =30°,∴BD =BC =6(海里), 则有10t =6,t =610≈0.245小时=14.7分钟. 故缉私船沿北偏东60°方向,需14.7分钟才能追上走私船.规律方法 解三角形应用题的两种情形:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.【训练4】 (2015·湖北卷)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.解析在△ABC 中,AB =600,∠BAC =30°,∠ACB =75°-30°=45°,由正弦定理得BCsin ∠BAC=AB sin ∠ACB ,即BC sin 30°=600sin 45°,所以BC =300 2.在Rt △BCD 中,∠CBD =30°,CD =BC tan ∠CBD =3002·tan 30°=1006(m). 答案 100 6[思想方法]1.应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.2.解题中要灵活使用正弦定理、余弦定理进行边、角的互化,一般要化到只含角或只含边. 3.利用解三角形解决实际问题时,(1)要理解题意,整合题目条件,画出示意图,建立一个三角形模型;(2)要理解仰角、俯角、方位角、方向角等概念;(3)三角函数模型中,要确定相应参数和自变量范围,最后还要检验问题的实际意义.4.在三角形和三角函数的综合问题中,要注意边角关系相互制约,推理题中的隐含条件. [易错防范]1.在利用正弦定理解已知三角形的两边和其中一边的对角解三角形有时出现一解、两解,所以要进行分类讨论(此类类型也可利用余弦定理求解).2.利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制. 3.解三角形实际问题时注意各个角的含义,根据这些角把需要的三角形的内角表示出来.而容易出现的错误是把角的含义弄错,把这些角与要求解的三角形的内角之间的关系弄错.基础巩固题组(建议用时:40分钟)一、填空题1.(2017·哈尔滨模拟)在△ABC 中,AB =3,AC =1,B =30°,△ABC 的面积为32,则C =________.解析 法一 ∵S △ABC =12·AB ·AC ·sin A =32,即12×3×1×sin A =32,∴sin A =1,由A ∈(0°,180°),∴A =90°,∴C =60°. 法二 由正弦定理,得sin B AC =sin C AB ,即12=sin C 3,sin C =32,又C ∈(0°,180°),∴C =60°或C =120°. 当C =120°时,A =30°,S △ABC =34≠32(舍去).而当C =60°时,A =90°,S △ABC =32,符合条件,故C =60°. 答案 60°2.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A =2π3,a =2,b =233,则B =________.解析 ∵A =2π3,a =2,b =233,∴由正弦定理a sin A =bsin B 可得, sin B =b a sin A =2332×32=12.∵A =2π3,∴B =π6.答案π63.(2017·海门中学月考)如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与B 的距离为________ km.解析 由题图可知,∠ACB =120°,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos∠ACB =a 2+a 2-2·a ·a ·⎝ ⎛⎭⎪⎫-12=3a 2,解得AB =3a (km).答案3a4.(2017·盐城诊断)在△ABC 中,cos 2B 2=a +c 2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为________. 解析 因为cos 2B 2=a +c 2c, 所以2cos 2B 2-1=a +c c -1,所以cos B =a c,所以a 2+c 2-b 22ac =a c,所以c 2=a 2+b 2.所以△ABC 为直角三角形. 答案 直角三角形5.(2016·山东卷改编)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A =________.解析 在△ABC 中,由b =c ,得cos A =b 2+c 2-a 22bc =2b 2-a 22b2,又a 2=2b 2(1-sin A ),所以cos A =sin A ,即tan A =1,又知A ∈(0,π),所以A =π4.答案π46.(2017·南京、盐城模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a +2c =2b ,sin B =2sin C ,则cos A =________.解析 由sin B =2sin C 结合正弦定理可得b =2c ,又a +2c =2b ,则a =2c ,由余弦定理可得cos A =b 2+c 2-a 22bc =2c 2+c 2-2c 222c2=24. 答案247.(2015·重庆卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.解析 由3sin A =2sin B 及正弦定理,得3a =2b ,又a =2,所以b =3,故c 2=a 2+b 2-2ab cosC =4+9-2×2×3×⎝ ⎛⎭⎪⎫-14=16,所以c =4.答案 48.(2016·北京卷)在△ABC 中,A =2π3,a =3c ,则bc =________.解析 在△ABC 中,a 2=b 2+c 2-2bc ·cos A , 将A =2π3,a =3c 代入,可得(3c )2=b 2+c 2-2bc ·⎝ ⎛⎭⎪⎫-12,整理得2c 2=b 2+bc .∵c ≠0,∴等式两边同时除以c 2,得2=⎝ ⎛⎭⎪⎫b c 2+bc, 可解得b c=1. 答案 1 二、解答题9.(2016·江苏卷)在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长;(2)cos ⎝⎛⎭⎪⎫A -π6的值.解 (1)由cos B =45,B ∈(0,π),则sin B =1-cos 2B =35,又∵C =π4,AC =6,由正弦定理,得AC sin B =ABsinπ4,即635=AB22⇒AB =5 2. (2)由(1)得:sin B =35,cos B =45,sin C =cos C =22,则sin A =sin(B +C )=sin B cos C +cos B sin C =7210,cos A =-cos(B +C )=-(cos B cos C -sin B sin C )=-210,则cos ⎝⎛⎭⎪⎫A -π6=cos A cos π6+sin A sin π6=72-620.10.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B . (1)求B ;(2)若b =2,求△ABC 面积的最大值. 解 (1)由已知及正弦定理得 sin A =sin B cos C +sin C sin B ,① 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .② 由①②和C ∈(0,π)得sin B =cos B .又B ∈(0,π),∴B =π4.(2)△ABC 的面积S =12ac sin B =24ac .由已知及余弦定理得4=a 2+c 2-2ac cos π4.又a 2+c 2≥2ac ,故ac ≤42-2,当且仅当a =c 时,等号成立.因此△ABC 面积的最大值为2+1.能力提升题组 (建议用时:20分钟)11.在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若S △ABC =23,a +b =6,a cos B +b cos Ac=2cos C ,则c =________.解析 ∵a cos B +b cos Ac=2cos C ,由正弦定理,得sin A cos B +cos A sin B =2sin C cos C ,∴sin(A +B )=sin C =2sin C cos C ,由于0<C <π,sin C ≠0,∴cos C =12,∴C =π3,∵S △ABC =23=12ab sin C =34ab ,∴ab =8,又a +b =6,⎩⎪⎨⎪⎧a =2,b =4或⎩⎪⎨⎪⎧a =4,b =2,c 2=a 2+b 2-2ab cos C =4+16-8=12,∴c =2 3.答案 2 312.(2016·江苏卷)在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是________.解析 在△ABC 中,A +B +C =π, sin A =sin[π-(B +C )]=sin(B +C ), 由已知,sin A =2sin B sin C , ∴sin(B +C )=2sin B sin C .∴sin B cos C +cos B sin C =2sin B sin C ,A ,B ,C 全为锐角,两边同时除以cos B cos C 得:tan B +tan C =2tan B tan C . 又tan A =-tan(B +C )=-tan B +tan C 1-tan B tan C =tan B +tan Ctan B tan C -1.∴tan A (tan B tan C -1)=tan B +tan C . 则tan A tan B tan C -tan A =tan B +tan C ,∴tan A tan B tan C =tan A +tan B +tan C =tan A + 2tan B tan C ≥22tan A tan B tan C , ∴tan A tan B tan C ≥22, ∴tan A tan B tan C ≥8. 答案 813.(2017·呼和浩特调研)某人为测出所住小区的面积,进行了一些测量工作,最后将所住小区近似地画成如图所示的四边形,测得的数据如图所示,则该图所示的小区的面积是________km 2.解析 如图,连接AC ,由余弦定理可知AC =AB 2+BC 2-2AB ·BC ·cos B =3,故∠ACB =90°,∠CAB =30°,∠DAC =∠DCA =15°,∠ADC =150°,AC sin ∠ADC =ADsin ∠DCA,即AD =AC sin ∠DCAsin ∠ADC=3·6-2412=32-62,故S 四边形ABCD =S △ABC +S △ADC =12×1×3+12×⎝ ⎛⎭⎪⎫32-622×12=6-34(km 2).答案6-3414.(2017·苏北四市调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知cos(B -C )=1-cos A ,且b ,a ,c 成等比数列.(1)求sin B ·sin C 的值; (2)求A ;(3)求tan B +tan C 的值. 解 (1)因为A +B +C =π, 所以A =π-(B +C ). 由cos(B -C )=1-cos A , 得cos(B -C )=1+cos(B +C ),整理得sin B ·sin C =12.(2)因为b ,a ,c 成等比数列, 所以a 2=bc ,由正弦定理得sin 2A =sinB ·sinC , 所以sin 2A =12.因为A ∈(0,π),所以sin A =22, 由a 2=bc 得a 不是最大边,所以A =π4.(3)因为B +C =π-A =3π4,所以cos(B +C )=cos B ·cos C -sin B ·sin C =-22, 所以cos B ·cos C =1-22,所以tan B +tan C =sin B cos B +sin C cos C =B +C cos B ·cos C =sin Acos B ·cos C =221-22=-2- 2.高考导航 从近几年的高考试题看,试卷交替考查三角函数、解三角形.该部分解答题是高考得分的基本组成部分,不能掉以轻心.该部分的解答题考查的热点题型有:一考查三角函数的图象变换以及单调性、最值等;二考查解三角形问题;三是考查三角函数、解三角形与平面向量的交汇性问题,在解题过程中抓住平面向量作为解决问题的工具,要注意三角恒等变换公式的多样性和灵活性,注意题目中隐含的各种限制条件,选择合理的解决方法,灵活地实现问题的转化.热点一 三角函数的图象和性质(规范解答)注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解. 【例1】 (满分13分)(2015·北京卷)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值.满分解答 (1)解 因为f (x )=sin x +3cos x - 3. 2分=2sin ⎝⎛⎭⎪⎫x +π3- 3.4分所以f (x )的最小正周期为2π.6分 (2)解 因为0≤x ≤2π3,所以π3≤x +π3≤π.8分当x +π3=π,即x =2π3时,f (x )取得最小值.11分所以f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值为f ⎝ ⎛⎭⎪⎫2π3=- 3.13分❶将f (x )化为a sin x +b cos x +c 形式得…………2分. ❷将f (x )化为A sin(ωx +φ)+h 形式得………2分. ❸求出最小正周期得…………2分. ❹写出ωx +φ的取值范围得…………2分. ❺利用单调性分析最值得…………3分. ❻求出最值得…………2分.求函数y =A sin(ωx +φ)+B 周期与最值的模板第一步:三角函数式的化简,一般化成y =A sin(ωx +φ)+h 或y =A cos(ωx +φ)+h 的形式;第二步:由T =2π|ω|求最小正周期;第三步:确定f (x )的单调性;第四步:确定各单调区间端点处的函数值; 第五步:明确规范地表达结论.【训练1】 (2017·苏、锡、常、镇、宿迁五市调研)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3-3sin ⎝⎛⎭⎪⎫2x -π6.(1)求函数f (x )的最小正周期和单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤-π6,π3时,试求函数f (x )的最值,并写出取得最值时自变量x 的值. 解 (1)由题意知f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3+3cos ⎝ ⎛⎭⎪⎫2x +π3 =2sin ⎝⎛⎭⎪⎫2x +2π3,所以f (x )的最小正周期为T =2π3=π.当-π2+2k π≤2x +2π3≤π2+2k π(k ∈Z )时,f (x )单调递增,解得x ∈⎣⎢⎡⎦⎥⎤-7π12+k π,-π12+k π(k ∈Z ),所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-7π12+k π,-π12+k π(k ∈Z ).(2)因为x ∈⎣⎢⎡⎦⎥⎤-π6,π3,所以π3≤2x +2π3≤4π3,当2x +2π3=π2,即x =-π12时,f (x )取得最大值2;当2x +2π3=4π3,即x =π3时,f (x )取得最小值- 3.热点二 解三角形与三角函数结合高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题.【例2】 (2017·成都诊断)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (x )=2sin(x-A )cos x +sin(B +C )(x ∈R ),函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π6,0对称.(1)当x ∈⎝⎛⎭⎪⎫0,π2时,求函数f (x )的值域;(2)若a =7,且sin B +sin C =13314,求△ABC 的面积.解 (1)∵f (x )=2sin(x -A )cos x +sin(B +C ) =2(sin x cos A -cos x sin A )cos x +sin A =2sin x cos A cos x -2cos 2x sin A +sin A =sin 2x cos A -cos 2x sin A =sin(2x -A ),又函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π6,0对称, 则f ⎝ ⎛⎭⎪⎫π6=0,即sin ⎝ ⎛⎭⎪⎫π3-A =0,又A ∈(0,π),则A =π3,则f (x )=sin ⎝⎛⎭⎪⎫2x -π3. 由于x ∈⎝⎛⎭⎪⎫0,π2, 则2x -π3∈⎝ ⎛⎭⎪⎫-π3,2π3,即-32<sin ⎝⎛⎭⎪⎫2x -π3≤1, 则函数f (x )的值域为⎝ ⎛⎦⎥⎤-32,1. (2)由正弦定理,得a sin A =b sin B =c sin C =143,则sin B =314b ,sin C =314c , sin B +sin C =314(b +c )=13314,即b +c =13. 由余弦定理,得a 2=c 2+b 2-2bc cos A , 即49=c 2+b 2-bc =(b +c )2-3bc ,即bc =40. 则△ABC 的面积S =12bc sin A =12×40×32=10 3.探究提高 三角函数和三角形的结合,一般可以利用正弦定理、余弦定理先确定三角形的边角,再代入到三角函数中,三角函数和(差)角公式的灵活运用是解决此类问题的关键. 【训练2】 (2017·苏州测试)已知函数f (x )=3cos 2ωx +sin ωx cos ωx (ω>0)的周期为π.(1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求函数f (x )的值域;(2)已知△ABC 的内角A ,B ,C 对应的边分别为a ,b ,c ,若f ⎝ ⎛⎭⎪⎫A 2=3,且a =4,b +c =5,求△ABC 的面积. 解 (1)f (x )=32(1+cos 2ωx )+12sin 2ωx =sin ⎝⎛⎭⎪⎫2ωx +π3+32. 因为f (x )的周期为π,且ω>0,所以2π2ω=π,解得ω=1.所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3+32.又0≤x ≤π2,得π3≤2x +π3≤43π,-32≤sin ⎝ ⎛⎭⎪⎫2x +π3≤1,0≤sin ⎝ ⎛⎭⎪⎫2x +π3+32≤32+1,即函数y =f (x )在x ∈⎣⎢⎡⎦⎥⎤0,π2上的值域为⎣⎢⎡⎦⎥⎤0,32+1.(2)因为f ⎝ ⎛⎭⎪⎫A 2=3,所以sin ⎝ ⎛⎭⎪⎫A +π3=32.由A ∈(0,π),知π3<A +π3<43π,解得A +π3=23π,所以A =π3.由余弦定理知a 2=b 2+c 2-2bc cos A ,即16=b 2+c 2-bc . 所以16=(b +c )2-3bc ,因为b +c =5,所以bc =3. 所以S △ABC =12bc sin A =334.热点三 三角函数与平面向量结合三角函数、解三角形与平面向量的结合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.【例3】 (2017·苏北四市调研)已知△ABC 的三内角A ,B ,C 所对的边分别是a ,b ,c ,向量m =(cos B ,cos C ),n =(2a +c ,b ),且m ⊥n . (1)求角B 的大小;(2)若b =3,求a +c 的范围.解 (1)∵m =(cos B ,cos C ),n =(2a +c ,b ),且m ⊥n , ∴(2a +c )cos B +b cos C =0,∴cos B (2sin A +sin C )+sin B cos C =0, ∴2cos B sin A +cos B sin C +sin B cos C =0. 即2cos B sin A =-sin(B +C )=-sin A . ∵A ∈(0,π),∴sin A ≠0,∴cos B =-12.∵0<B <π,∴B =2π3.(2)由余弦定理得b 2=a 2+c 2-2ac cos 23π=a 2+c 2+ac =(a +c )2-ac ≥(a +c )2-⎝ ⎛⎭⎪⎫a +c 22=34(a +c )2,当且仅当a =c 时取等号.∴(a +c )2≤4,故a +c ≤2.又a +c >b =3,∴a +c ∈(3,2].即a +c 的取值范围是(3,2].探究提高 向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.【训练3】 已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a·b ,且y =f (x )的图象过点⎝ ⎛⎭⎪⎫π12,3和点⎝ ⎛⎭⎪⎫2π3,-2. (1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图象,若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间. 解 (1)由题意知f (x )=a·b =m sin 2x +n cos 2x . 因为y =f (x )的图象过点⎝⎛⎭⎪⎫π12,3和⎝ ⎛⎭⎪⎫2π3,-2,所以⎩⎪⎨⎪⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎪⎨⎪⎧3=12m +32n ,-2=-32m -12n ,解得⎩⎨⎧m =3,n =1.(2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6. 由题意知g (x )=f (x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +2φ+π6. 设y =g (x )的图象上符合题意的最高点为(x 0,2), 由题意知x 20+1=1,所以x 0=0,即到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g (x )得sin ⎝ ⎛⎭⎪⎫2φ+π6=1,因为0<φ<π,所以φ=π6,因此g (x )=2sin ⎝⎛⎭⎪⎫2x +π2=2cos 2x . 由2k π-π≤2x ≤2k π,k ∈Z 得k π-π2≤x ≤k π,k ∈Z . 所以函数y =g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π2,k π,k ∈Z .(建议用时:60分钟)1.(2017·南通调研)函数f (x )=3sin ⎝⎛⎭⎪⎫2x +π6的部分图象如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π2,-π12上最大值和最小值. 解 (1)由题意得,f (x )的最小正周期为π,y 0=3.当y 0=3时,sin ⎝⎛⎭⎪⎫2x 0+π6=1, 由题干图象可得,2x 0+π6=2π+π2, 解得x 0=7π6. (2)因为x ∈⎣⎢⎡⎦⎥⎤-π2,-π12, 所以2x +π6∈⎣⎢⎡⎦⎥⎤-5π6,0. 于是:当2x +π6=0,即x =-π12时,f (x )取得最大值0; 当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3. 2.(2017·郑州模拟)在△ABC 中,内角A ,B ,C 所对应的边分别为a ,b ,c ,已知a sin 2B =3b sin A .(1)求B ;(2)若cos A =13,求sin C 的值. 解 (1)在△ABC 中,由a sin A =bsin B , 可得a sin B =b sin A ,又由a sin 2B =3b sin A ,得2a sin B cos B =3b sin A =3a sin B ,又B ∈(0,π),所以sin B ≠0,所以cos B =32, 得B =π6. (2)由cos A =13,A ∈(0,π),得sin A =223, 则sin C =sin[π-(A +B )]=sin(A +B ), 所以sin C =sin ⎝⎛⎭⎪⎫A +π6 =32sin A +12cos A =26+16. 3.(2017·济南名校联考)已知函数f (x )=sin ωx +23cos2ωx 2+1-3(ω>0)的周期为π.(1)求f (x )的解析式并求其单调递增区间; (2)将f (x )的图象先向下平移1个单位长度,再向左平移φ(φ>0)个单位长度得到函数h (x )的图象,若h (x )为奇函数,求φ的最小值.解 (1)f (x )=sin ωx +23cos 2ωx 2+1-3= sin ωx +23×1+cos ωx 2+1- 3 =sin ωx +3cos ωx +1=2sin(ωx +π3)+1. 又函数f (x )的周期为π,因此2πω=π,∴ω=2. 故f (x )=2sin ⎝⎛⎭⎪⎫2x +π3+1. 令2k π-π2≤2x +π3≤2k π+π2(k ∈Z ),得k π-5π12≤x ≤k π+π12(k ∈Z ),即函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ).(2)由题意可知h (x )=2sin ⎣⎢⎡⎦⎥⎤x +φ+π3, 又h (x )为奇函数,则2φ+π3=k π,∴φ=k π2-π6(k ∈Z ).∵φ>0,∴当k =1时,φ取最小值π3. 4.(2017·南京、盐城模拟)设函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6+2sin 2ωx 2(ω>0),已知函数f (x )的图象的相邻两对称轴间的距离为π.(1)求函数f (x )的解析式;(2)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c (其中b <c ),且f (A )=32,△ABC 的面积为S =63,a =27,求b ,c 的值.解 (1)f (x )=32sin ωx +12cos ωx +1-cos ωx =32sin ωx -12cos ωx +1=sin ⎝⎛⎭⎪⎫ωx -π6+1. ∵函数f (x )的图象的相邻两对称轴间的距离为π,∴函数f (x )的周期为2π.∴ω=1.∴函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎪⎫x -π6+1. (2)由f (A )=32,得sin ⎝⎛⎭⎪⎫A -π6=12. 又∵A ∈(0,π),∴A =π3. ∵S =12bc sin A =63,∴12bc sin π3=63,bc =24, 由余弦定理,得a 2=(27)2=b 2+c 2-2bc cos π3=b 2+c 2-24. ∴b 2+c 2=52,又∵b <c ,解得b =4,c =6.5.(2017·苏州调研)已知△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,向量m =(2sin B ,-3),n =(cos 2B,2cos 2B2-1),且m ∥n . (1)求锐角B 的大小;(2)如果b =2,求S △ABC 的最大值.解 (1)∵m ∥n ,∴2sin B ⎝ ⎛⎭⎪⎫2cos 2B 2-1=-3cos 2B , ∴sin 2B =-3cos 2B ,即tan 2B =- 3.又∵B 为锐角,∴2B ∈(0,π),∴2B =2π3,∴B =π3. (2)∵B =π3,b =2, 由余弦定理b 2=a 2+c 2-2ac cos B ,得a 2+c 2-ac -4=0.又a 2+c 2≥2ac ,代入上式,得ac ≤4,当且仅当a =c =2时等号成立.故S △ABC =12ac sin B =34ac ≤3, 当且仅当a =c =2时等号成立,即S △ABC 的最大值为 3.6.(2017·南昌模拟)已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1),x ∈R .(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值.解 (1)f (x )=2 cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos ⎝⎛⎭⎪⎫2x +π3, 令2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),∴函数y =f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ). (2)∵f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,∴cos ⎝⎛⎭⎪⎫2A +π3=-1,又π3<2A +π3<7π3,∴2A +π3=π,即A =π3. ∵a =7,∴由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①∵向量m =(3,sin B )与n =(2,sin C )共线,∴2sin B =3sin C ,由正弦定理得2b =3c ,②由①②得b =3,c =2.。
(江苏版)2018年高考数学一轮复习(讲+练+测): 专题4.6 正余弦定理(测)
专题4.6 正余弦定理一、填空题1.在△ABC 中,若sin C sin A =3,b 2-a 2=52ac ,则cos B 的值为【解析】由题意知,c =3a ,b 2-a 2=52ac =c 2-2ac cos B ,所以cos B =c 2-52ac 2ac=9a 2-152a 26a2=14. 2.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若S +a 2=(b +c )2,则cos A 等于3.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是 【解析】由正弦定理得b sin B =csin C ,∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.4.已知△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c ,若A =π3,b =2a cos B ,c =1,则△ABC 的面积等于【解析】由正弦定理得sin B =2sin A cos B ,故tan B =2sin A =2sin π3=3,又B ∈(0,π),所以B =π3,又A =π3=B ,则△ABC 是正三角形,所以S △ABC =12bc sin A =12×1×1×32=34.5.(2017·渭南模拟)在△ABC 中,若a 2-b 2=3bc 且sin A +B sin B=23,则A =【解析】因为sin A +B sin B =23,故sin C sin B =23,即c =23b ,则cos A =b 2+c 2-a 22bc =12b 2-3bc 43b 2=6b243b 2=32,所以A =π6. 6.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin Asin C +sin B,则B =【解析】根据正弦定理a sin A =b sin B =c sin C =2R ,得c -b c -a =sin A sin C +sin B =a c +b ,即a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =12,故B =π3.7.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若c =1,B =45°,cos A =35,则b =________.【答案】57【解析】因为cos A =35,所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫352=45,所以sin C =sin[180°-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =45cos 45°+35sin 45°=7210.由正弦定理b sin B =c sin C ,得b =17210×sin45°=57.8.在△ABC 中,若b =2,A =120°,三角形的面积S =3,则三角形外接圆的半径为________. 【答案】2【解析】由面积公式,得S =12bc sin A ,代入数据得c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =22+22-2×2×2cos 120°=12,故a =23,由正弦定理,得2R =asin A=2332,解得R =2.9.在△ABC 中,a =4,b =5,c=6,则sin 2Asin C =________.【答案】110.在△ABC 中,B =120°,AB =2,A 的角平分线AD =3,则AC =________.【答案】 6【解析】如图,在△ABD 中,由正弦定理,得AD sin B =ABsin ∠ADB,∴sin ∠ADB =22.由题意知0°<∠ADB <60°,∴∠ADB =45°,∴∠BAD =180°-45°-120°=15°.∴∠BAC =30°,C =30°,∴BC =AB = 2.在△ABC 中,由正弦定理,得AC sin B =BCsin ∠BAC,∴AC = 6.二、解答题11.(2017·河北三市联考)在△ABC 中,a ,b ,c 分别为内角A , B ,C 的对边,且a sin B =-b sin ⎝⎛⎭⎪⎫A +π3.(1)求A ;(2)若△ABC 的面积S =34c 2,求sin C 的值.12.(2017·郑州模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos 2C -cos 2A =2sin ⎝ ⎛⎭⎪⎫π3+C ·sin ⎝ ⎛⎭⎪⎫π3-C . (1)求角A 的值;(2)若a =3且b ≥a ,求2b -c 的取值范围.解:(1)由已知得2sin 2A -2sin 2C =234cos 2C -14sin 2C ,化简得sin A =32,故A =π3或2π3.(2)由题知,若b ≥a ,则A =π3,又a =3, 所以由正弦定理可得b sin B =c sin C =asin A =2,得b =2sin B ,c =2sin C ,故2b -c =4sin B -2sin C =4sin B -2sin ⎝⎛⎭⎪⎫2π3-B =3sin B -3cos B =23sin ⎝ ⎛⎭⎪⎫B -π6.因为b ≥a ,所以π3≤B <2π3,π6≤B -π6<π2,所以23sin ⎝⎛⎭⎪⎫B -π6∈[3,23).即2b -c 的取值范围为[3,23).。
江苏版2018年高考数学一轮复习专题4.6正余弦定理测
专题4.6 正余弦定理一、填空题1.在△ABC 中,若sin C sin A =3,b 2-a 2=52ac ,则cos B 的值为【解析】由题意知,c =3a ,b 2-a 2=52ac =c 2-2ac cos B ,所以cos B =c 2-52ac 2ac=9a 2-152a 26a2=14. 2.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若S +a 2=(b +c )2,则cos A 等于3.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是 【解析】由正弦定理得b sin B =csin C ,∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.4.已知△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c ,若A =π3,b =2a cos B ,c =1,则△ABC 的面积等于【解析】由正弦定理得sin B =2sin A cos B ,故tan B =2sin A =2sin π3=3,又B ∈(0,π),所以B =π3,又A =π3=B ,则△ABC 是正三角形,所以S △ABC =12bc sin A =12×1×1×32=34.5.(2017·渭南模拟)在△ABC 中,若a 2-b 2=3bc 且sin A +B sin B=23,则A =【解析】因为sin A +B sin B =23,故sin C sin B =23,即c =23b ,则cos A =b 2+c 2-a 22bc =12b 2-3bc 43b 2=6b243b 2=32,所以A =π6. 6.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin Asin C +sin B,则B =【解析】根据正弦定理a sin A =b sin B =c sin C =2R ,得c -b c -a =sin A sin C +sin B =a c +b ,即a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =12,故B =π3.7.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若c =1,B =45°,cos A =35,则b =________.【答案】57【解析】因为cos A =35,所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫352=45,所以sin C =sin[180°-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =45cos 45°+35sin 45°=7210.由正弦定理b sin B =c sin C ,得b =17210×sin45°=57.8.在△ABC 中,若b =2,A =120°,三角形的面积S =3,则三角形外接圆的半径为________. 【答案】2【解析】由面积公式,得S =12bc sin A ,代入数据得c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =22+22-2×2×2cos 120°=12,故a =23,由正弦定理,得2R =asin A=2332,解得R =2.9.在△ABC 中,a =4,b =5,c =6,则sin 2Asin C =________.【答案】110.在△ABC 中,B =120°,AB =2,A 的角平分线AD =3,则AC =________.【答案】 6【解析】如图,在△ABD 中,由正弦定理,得AD sin B =ABsin ∠ADB,∴sin ∠ADB =22.由题意知0°<∠ADB <60°,∴∠ADB =45°,∴∠BAD =180°-45°-120°=15°.∴∠BAC =30°,C =30°,∴BC =AB = 2.在△ABC 中,由正弦定理,得AC sin B =BCsin ∠BAC,∴AC = 6.二、解答题11.(2017·河北三市联考)在△ABC 中,a ,b ,c 分别为内角A , B ,C 的对边,且a sin B =-b sin ⎝⎛⎭⎪⎫A +π3.(1)求A ;(2)若△ABC 的面积S =34c 2,求sin C 的值.12.(2017·郑州模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos 2C -cos 2A =2sin ⎝ ⎛⎭⎪⎫π3+C ·sin ⎝ ⎛⎭⎪⎫π3-C . (1)求角A 的值;(2)若a =3且b ≥a ,求2b -c 的取值范围.解:(1)由已知得2sin 2A -2sin 2C =234cos 2C -14sin 2C ,化简得sin A =32,故A =π3或2π3.(2)由题知,若b ≥a ,则A =π3,又a =3, 所以由正弦定理可得b sin B =c sin C =asin A=2,得b =2sin B ,c =2sin C , 故2b -c =4sin B -2sin C =4sin B -2sin ⎝⎛⎭⎪⎫2π3-B =3sin B -3cos B =23sin ⎝ ⎛⎭⎪⎫B -π6.因为b ≥a ,所以π3≤B <2π3,π6≤B -π6<π2,所以23sin ⎝⎛⎭⎪⎫B -π6∈[3,23).即2b -c 的取值范围为[3,23).。
2018版高考数学理江苏专用大一轮复习讲义教师版文档第
1.角的概念(1)任意角:①定义:角可以看做平面内一条射线绕着它的端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. (3)象限角:使角的顶点与坐标原点重合,角的始边与x 轴的正半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. (2)角度制和弧度制的互化:180°=π rad ,1°=π180rad ,1 rad =⎝⎛⎭⎫180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的初步性质如下表:4.三角函数线如图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .为正弦线;有向线段OM 为余弦线;有向线段【知识拓展】1.三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦. 2.任意角的三角函数的定义(推广)设P (x ,y )是角α终边上异于顶点的任一点,其到原点O 的距离为r ,则sin α=y r ,cos α=xr ,tan α=yx (x ≠0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)锐角是第一象限的角,第一象限的角也都是锐角.( × ) (2)角α的三角函数值与其终边上点P 的位置无关.( √ ) (3)不相等的角终边一定不相同.( × ) (4)终边相同的角的同一三角函数值相等.( √ ) (5)若α∈(0,π2),则tan α>α>sin α.( √ )(6)若α为第一象限角,则sin α+cos α>1.( √ )1.(教材改编)在0°到360°之间与-120°终边相同的角是________. 答案 240°解析 与-120°终边相同的角α=-120°+k ·360°(k ∈Z ),由0°≤-120°+k ·360°<360°,k ∈Z ,得13≤k <43,又k ∈Z ,所以k =1,此时α=-120°+360°=240°.2.(教材改编)圆心角为π3弧度,半径为6的扇形的面积为________.答案 6π解析 扇形的面积为12×62×π3=6π.3.(教材改编)已知角α的终边与单位圆的交点为P (55,-255),则sin α+cos α=________. 答案 -55解析 因为sin α=y =-255,cos α=x =55,所以sin α+cos α=-255+55=-55.4.设集合M ={α|α=k π2-π3,k ∈Z },N ={α|-π<α<π},则M ∩N =________.答案 {-5π6,-π3,π6,2π3}解析 分别取k =-1,0,1,2,得α=-5π6,-π3,π6,2π3.故M ∩N ={-5π6,-π3,π6,2π3}.5.函数y =2cos x -1的定义域为________. 答案 ⎣⎡⎦⎤2k π-π3,2k π+π3(k ∈Z )解析 ∵2cos x -1≥0, ∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影部分所示). ∴x ∈⎣⎡⎦⎤2k π-π3,2k π+π3(k ∈Z ).题型一 角及其表示例1 (1)若α=k ·180°+45°(k ∈Z ),则α在第________象限.(2)已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α用集合可表示为________________.答案 (1)一或三 (2)⎝⎛⎭⎫2k π+π4,2k π+56π(k ∈Z ) 解析 (1)当k =2n (n ∈Z )时,α=2n ·180°+45°=n ·360°+45°,α为第一象限角; 当k =2n +1(n ∈Z )时,α=(2n +1)·180°+45°=n ·360°+225°,α为第三象限角. 所以α为第一或第三象限角.(2)∵在[0,2π)内,终边落在阴影部分角的集合为⎝⎛⎭⎫π4,56π,∴所求角的集合为⎝⎛⎭⎫2k π+π4,2k π+56π(k ∈Z ). 思维升华 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角.(2)利用终边相同的角的集合S ={β|β=2k π+α,k ∈Z }判断一个角β所在的象限时,只需把这个角写成[0,2π)范围内的一个角α与2π的整数倍的和,然后判断角α的象限.(1)终边在直线y =3x 上的角的集合是__________________.(2)(2016·苏州模拟)若角θ的终边与6π7角的终边相同,则在[0,2π]内终边与θ3角的终边相同的角的个数为________.答案 (1){α|α=π3+k π,k ∈Z } (2)3解析 (1)在(0,π)内终边在直线y =3x 上的角为π3,∴终边在直线y =3x 上的角的集合为 {α|α=π3+k π,k ∈Z }.(2)∵θ=6π7+2k π(k ∈Z ),∴θ3=2π7+2k π3(k ∈Z ), 依题意0≤2π7+2k π3≤2π,k ∈Z ,∴-37≤k ≤187,∴k =0,1,2,即在[0,2π]内终边与θ3角的终边相同的角为2π7,20π21,34π21共三个.题型二 弧度制例2 (1)(2016·南京模拟)若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________. 答案2解析 设圆半径为r ,则圆内接正方形的对角线长为2r ,∴正方形边长为2r ,∴圆心角的弧度数是2rr= 2. (2)已知扇形的圆心角是α,半径是r ,弧长为l . ①若α=100°,r =2,求扇形的面积;②若扇形的周长为20,求扇形面积的最大值,并求此时扇形圆心角的弧度数. 解 ①S =12lr =12αr 2=12×59π×4=109π.②由题意知l +2r =20,即l =20-2r , S =12l ·r =12(20-2r )·r =-(r -5)2+25, 当r =5时,S 的最大值为25.当r =5时,l =20-2×5=10,α=lr=2(rad).即扇形面积的最大值为25,此时扇形圆心角的弧度数为2. 思维升华 应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决. (3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.(1)将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是________.(2)若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为________. 答案 (1)-π3(2) 3解析 (1)将表的分针拨快应按顺时针方向旋转,为负角,又因为拨快10分钟,故应转过的角为圆周的16,即为-16×2π=-π3.(2)如图,等边三角形ABC 是半径为r 的圆O 的内接三角形,则线段AB 所对的圆心角∠AOB =2π3,作OM ⊥AB 垂足为M ,在Rt △AOM 中,AO =r ,∠AOM =π3,∴AM =32r ,AB =3r ,∴l =3r , 由弧长公式得α=l r =3rr = 3.题型三 三角函数的概念 命题点1 三角函数定义的应用例3 (1)(2016·徐州模拟)若角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24m ,则cos θ的值为________.(2)点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为____________. 答案 (1)-64 (2)⎝⎛⎭⎫-12,32 解析 (1)由题意知r =3+m 2, ∴sin θ=m 3+m2=24m , ∵m ≠0,∴m =±5,∴r =3+m 2=22, ∴cos θ=-322=-64.(2)由三角函数定义可知Q 点的坐标(x ,y )满足 x =cos2π3=-12,y =sin 2π3=32. ∴Q 点的坐标为(-12,32).命题点2 三角函数线例4 函数y =lg(2sin x -1)+1-2cos x 的定义域为__________________. 答案 [2k π+π3,2k π+5π6)(k ∈Z )解析 要使原函数有意义,必须有⎩⎪⎨⎪⎧2sin x -1>0,1-2cos x ≥0,即⎩⎨⎧sin x >12,cos x ≤12,如图,在单位圆中作出相应的三角函数线,由图可知,原函数的定义域为[2k π+π3,2k π+5π6)(k ∈Z ).思维升华 (1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围.(1)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0.则实数a 的取值范围是________.(2)满足cos α≤-12的角α的集合为________.答案 (1)(-2,3] (2){α|2k π+23π≤α≤2k π+43π,k ∈Z }解析 (1)∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0, ∴-2<a ≤3.(2)作直线x =-12交单位圆于C 、D 两点,连结OC 、OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为{α|2k π+23π≤α≤2k π+43π,k ∈Z }.6.数形结合思想在三角函数中的应用典例 (1)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于C (2,1)时,OP →的坐标为________.(2)(2016·盐城模拟)函数y =lg(3-4sin 2x )的定义域为________.思想方法指导 在坐标系中研究角就是一种数形结合思想,利用三角函数线可直观得到有关三角函数不等式的解集. 解析 (1)如图所示,过圆心C 作x 轴的垂线,垂足为A ,过P 作x 轴的垂线与过C 作y 轴的垂线交于点B .因为圆心移动的距离为2,所以劣弧PA =2,即圆心角∠PCA =2, 则∠PCB =2-π2,所以PB =sin(2-π2)=-cos 2,CB =cos(2-π2)=sin 2,所以x P =2-CB =2-sin 2,y P =1+PB =1-cos 2, 所以OP →=(2-sin 2,1-cos 2).(2)∵3-4sin 2x >0, ∴sin 2x <34,∴-32<sin x <32. 利用三角函数线画出x 满足条件的终边范围(如图阴影部分所示), ∴x ∈⎝⎛⎭⎫k π-π3,k π+π3(k ∈Z ). 答案 (1)(2-sin 2,1-cos 2) (2)⎝⎛⎭⎫k π-π3,k π+π3(k ∈Z )1.下列与9π4的终边相同的角的表达式中正确的是________.①2k π+45°(k ∈Z )②k ·360°+94π(k ∈Z )③k ·360°-315°(k ∈Z )④k π+5π4(k ∈Z )答案 ③解析 与9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有③正确.2.若α是第三象限角,则下列各式中不成立的是________. ①sin α+cos α<0 ②tan α-sin α<0 ③cos α-tan α<0④tan αsin α<0答案 ②解析 α是第三象限角,sin α<0,cos α<0,tan α>0,则可排除①、③、④. 3.(2016·镇江一模)已知α是第二象限的角,其终边上的一点为P (x ,5),且cos α=24x ,则tan α=________. 答案 -153解析 ∵P (x ,5),∴y = 5. 又cos α=24x =xr,∴r =22, ∴x 2+(5)2=(22)2,解得x =±3. 由α是第二象限的角,得x =-3, ∴tan α=y x =5-3=-153.4.已知点P (tan α,cos α)在第三象限,则角α的终边在第________象限. 答案 二解析 ∵点P (tan α,cos α)在第三象限,∴tan α<0,cos α<0,∴角α的终边在第二象限. 5.给出下列各函数值: ①sin(-1 000°);②cos(-2 200°); ③tan(-10);④sin 7π10cos πtan17π9.其中符号为负的是________. 答案 ③解析 sin(-1 000°)=sin 80°>0;cos(-2 200°)=cos(-40°)=cos 40°>0;tan(-10)=tan(3π-10)<0;sin 7π10cos πtan 179π=-sin7π10tan17π9>0.6.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为________. 答案 -1解析 由α=2k π-π5(k ∈Z )及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1.7.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________. 答案 (-1,3)解析 依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3).8.已知扇形的圆心角为π6,面积为π3,则扇形的弧长等于________.答案 π3解析 设扇形半径为r ,弧长为l ,则⎩⎨⎧l r =π6,12lr =π3,解得⎩⎪⎨⎪⎧l =π3,r =2.9.设θ是第三象限角,且⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是第________象限角. 答案 二解析 由θ是第三象限角,知θ2为第二或第四象限角,∵⎪⎪⎪⎪cos θ2=-cos θ2, ∴cos θ2≤0,综上知θ2为第二象限角.10.在(0,2π)内,使sin x >cos x 成立的x 的取值范围为________. 答案 (π4,5π4)解析 如图所示,找出在(0,2π)内,使sin x =cos x 的x 值,sin π4=cosπ4=22,sin 5π4=cos 5π4=-22.根据三角函数线的变化规律标出满足题中条件的角x ∈(π4,5π4).11.若-3π4<α<-π2,则sin α,cos α,tan α的大小关系是______________.答案 sin α<cos α<tan α解析 如图,在单位圆中,作出-3π4<α<-π2内的一个角及其正弦线,余弦线,正切线.由图知,OM <MP <AT ,考虑方向可得MP <OM <AT ,即sin α<cos α<tan α.12.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ+cos θ.解 ∵θ的终边过点(x ,-1)(x ≠0),∴tan θ=-1x,又tan θ=-x , ∴x 2=1,即x =±1.当x =1时,sin θ=-22,cos θ=22, 因此sin θ+cos θ=0;当x =-1时,sin θ=-22,cos θ=-22, 因此sin θ+cos θ=- 2.故sin θ+cos θ的值为0或- 2.13.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB . 解 设扇形的半径为r cm ,弧长为l cm ,则⎩⎪⎨⎪⎧ 12lr =1,l +2r =4,解得⎩⎪⎨⎪⎧r =1,l =2. ∴圆心角α=l r=2(rad). 如图,过O 作OH ⊥AB 于H ,则∠AOH =1 rad.∴AH =1·sin 1=sin 1(cm),∴AB =2sin 1(cm).∴圆心角的弧度数为2,弦长AB 为2sin 1 cm.*14.已知sin α<0,tan α>0.(1)求角α的集合;(2)求α2终边所在的象限; (3)试判断tan α2sin α2cos α2的符号. 解 (1)由sin α<0,知α在第三、四象限或y 轴的负半轴上; 由tan α>0,知α在第一、三象限,故角α在第三象限, 其集合为{α|2k π+π<α<2k π+3π2,k ∈Z }. (2)由2k π+π<α<2k π+3π2,k ∈Z , 得k π+π2<α2<k π+3π4,k ∈Z , 故α2终边在第二、四象限. (3)当α2在第二象限时,tan α2<0, sin α2>0,cos α2<0, 所以tan α2sin α2cos α2取正号; 当α2在第四象限时,tan α2<0,sin α2<0,cos α2>0, 所以tan α2sin α2cos α2也取正号. 因此,tan α2sin α2cos α2取正号.。
江苏高考数学专题复习专题4三角函数26练三角函数的图像与性质练习复习资料
(江苏专用)2018版高考数学专题复习 专题4 三角函数、解三角形第26练 三角函数的图像与性质练习 文1.(2016·临沂期中)函数f (x )=2-2sin 2⎝ ⎛⎭⎪⎫2+π的最小正周期是________. 2.(2016·泰州一模)函数f (x )=sin(3x +π6)的最小正周期为______________. 3.(2016·三明月考)y =cos ⎝ ⎛⎭⎪⎫x 2-π6(-π≤x ≤π)的值域为_______________. 4.(2016·苏州一模)函数f (x )=tan(2x -π3)的单调递增区间是_______ _________________________. 5.比较大小:sin ⎝ ⎛⎭⎪⎫-π18________sin ⎝ ⎛⎭⎪⎫-π10. 6.函数y =tan ⎝⎛⎭⎪⎫2x +π4的图象与x 轴交点的坐标是________________. 7.函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3-1,x ∈⎣⎢⎡⎦⎥⎤0,π3的值域为________,函数取最大值时x 的值为________.8.(2016·无锡一模)设函数f (x )=sin(ωx +φ)+3cos(ωx +φ)(ω>0,|φ|<π2)的最小正周期为π,且满足f (-x )=f (x ),则函数f (x )的单调增区间为______________.9.(2016·北京海淀区期末)已知函数f (x )=sin(ωx +φ)(ω>0),若f (x )的图象向左平移π3个单位所得的图象与f (x )的图象向右平移π6个单位所得的图象重合,则ω的最小值为____________________________.10.(2016·淮安模拟)已知函数f (x )=cos(3x +π3),其中x ∈[π6,m ](m ∈R ,且m >π6),若f (x )的值域是[-1,-32],则m 的最大值是__________________.11.(2017·沈阳质检)已知函数f (x )=sin 2x +3cos 2x 关于点(x 0,0)成中心对称,若x 0∈⎣⎢⎡⎦⎥⎤0,π2,则x 0=________. 12.若f (x )=2cos(2x +φ)(φ>0)的图象关于直线x =π3对称,且当φ取最小值时,∃x 0∈(0,π2),使得f (x 0)=a ,则a 的取值范围是________.13.(2016·南通一模)已知函数f (x )=sin(2x +π6),若y =f (x -φ)(0<φ<π2)是偶函数,则φ=________.14.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π6,a . 当a =π3时,f (x )的值域是____________;若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则a 的取值范围是____________.答案精析1.2π 2.2π3 3.⎣⎢⎡⎦⎥⎤-12,14.(k π2-π12,k π2+5π12)(k ∈Z )5.>解析 因为y =sin x 在⎣⎢⎡⎦⎥⎤-π2,0上为增函数,且-π18>-π10,所以sin ⎝ ⎛⎭⎪⎫-π18>sin ⎝ ⎛⎭⎪⎫-π10.6.⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z )解析 由2x +π4=k π(k ∈Z ),得x =k π2-π8(k ∈Z ).∴函数y =tan ⎝ ⎛⎭⎪⎫2x +π4的图象与x 轴交点的坐标是⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ).7.[-1,1] π12解析 ∵0≤x ≤π3,∴π3≤2x +π3≤π,∴0≤sin ⎝ ⎛⎭⎪⎫2x +π3≤1,∴-1≤2sin ⎝ ⎛⎭⎪⎫2x +π3-1≤1,即值域为[-1,1],且当sin ⎝ ⎛⎭⎪⎫2x +π3=1,即x =π12时,y 取最大值. 8.[-π2+k π,k π](k ∈Z ) 解析 ∵f (x )=sin(ωx +φ)+3cos(ωx +φ)=2sin(ωx +φ+π3), 由题意得2πω=π,∴ω=2. ∵f (-x )=f (x ),且|φ|<π2, ∴φ+π3=π2,得φ=π6, ∴f (x )=2cos 2x ,由2k π-π≤2x ≤2k π(k ∈Z ),得函数f (x )的单调增区间为[-π2+k π,k π](k ∈Z ). 9.4解析 f (x )=sin(ωx +φ)(ω>0),把f (x )的图象向左平移π3个单位可得y =sin[ω(x +π3)+φ]=sin(ωx +ωπ3+φ)的图象,把f (x )的图象向右平移π6个单位可得y =sin[ω(x -π6)+φ]=sin(ωx -ωπ6+φ)的图象,根据题意可得,y =sin(ωx +ωπ3+φ)和y =sin(ωx -ωπ6+φ)的图象重合,则ωπ3+φ=2k π-ωπ6+φ(k ∈Z ),所以ω=4k (k ∈Z ),又ω>0,所以ω的最小值为4.10.5π18解析 由x ∈[π6,m ],可知5π6≤3x +π3≤3m +π3, ∵f (π6)=cos 5π6=-32,且f (2π9)=cos π=-1, ∴要使f (x )的值域是[-1,-32], 需要π≤3m +π3≤7π6,即2π9≤m ≤5π18, 即m 的最大值是5π18.11.π3解析 由题意可知f (x )=2sin ⎝⎛⎭⎪⎫2x +π3,其对称中心为点(x 0,0), 故2x 0+π3=k π(k ∈Z ), ∴x 0=-π6+k π2(k ∈Z ), 又x 0∈⎣⎢⎡⎦⎥⎤0,π2,∴k =1,x 0=π3. 12.[-2,1)解析 由题意有2×π3+φ=k π,k ∈Z ,即φ=k π-23π,k ∈Z .又因为φ>0,所以当k =1时,φ取得最小值π3,此时f (x )=2cos(2x +π3),当x 0∈(0,π2)时,2x +π3∈(π3,4π3),则f (x )∈[-2,1),所以a ∈[-2,1).13.π3解析 f (x -φ)=sin[2(x -φ)+π6] =sin(2x +π6-2φ). 令x =0,得sin(π6-2φ)=±1, 所以π6-2φ=π2+k π,k ∈Z , 即φ=-π6-k π2,k ∈Z . 又φ∈(0,π2),所以φ=π3. 14.⎣⎢⎡⎦⎥⎤-12,1 ⎣⎢⎡⎦⎥⎤π6,π2 解析 若-π6≤x ≤π3,则-π6≤2x +π6≤5π6, 此时-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1, 即f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1.若-π6≤x ≤a ,则-π3≤2x ≤2a ,-π6≤2x +π6≤2a +π6.因为当2x +π6=-π6或2x +π6=7π6时,sin ⎝ ⎛⎭⎪⎫2x +π6=-12,所以要使f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则π2≤2a +π6≤7π6, 即π3≤2a ≤π,所以π6≤a ≤π2,即a 的取值范围是⎣⎢⎡⎦⎥⎤π6,π2.。
近年高考数学一轮复习 第五章 三角函数、解三角形 第28课 函数建模问题(二)——三角函数、解三角形
(江苏专用)2018高考数学一轮复习第五章三角函数、解三角形第28课函数建模问题(二)——三角函数、解三角形课时分层训练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专用)2018高考数学一轮复习第五章三角函数、解三角形第28课函数建模问题(二)——三角函数、解三角形课时分层训练)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专用)2018高考数学一轮复习第五章三角函数、解三角形第28课函数建模问题(二)——三角函数、解三角形课时分层训练的全部内容。
第五章三角函数、解三角形第28课函数建模问题(二)-—三角函数、解三角形课时分层训练A组基础达标(建议用时:30分钟)1.(2017·淮海中学模拟)如图2811,有一块半径为R的半圆形空地,开发商计划征地建一个矩形游泳池ABCD和其附属设施,附属设施占地形状是等腰△CDE,其中O为圆心,A,B 在圆的直径上,C,D,E在圆周上.图28。
11(1)设∠BOC=θ,征地面积记为f(θ),求f(θ)的表达式;(2)当θ为何值时,征地面积最大?【导学号:62172154】[解](1)连结OE,OC,可得OE=R,OB=R cos θ,BC=R sin θ;θ∈错误!.∴f(θ)=2S梯形OBCE=R2(sin θcos θ+cos θ)θ∈错误!.(2)f′(θ)=-R2(2sin θ-1)(sin θ+1).令f′(θ)=0,∴sin θ+1=0(舍)或者sin θ=错误!.∵θ∈错误!,当θ∈错误!时,f′(θ)〉0;当θ∈错误!时,f′(θ)〈0,∴当θ=错误!时,f(θ)取得最大值.答:θ=错误!时,征地面积最大.2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(江苏专用)2018版高考数学专题复习 专题4 三角函数、解三角形
第28练 正弦定理、余弦定理练习 文
2.(2016·银川月考)如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点间的距离为______________ m.
3.(2016·辽宁师大附中期中)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B cos C +c sin B cos A =12b ,则B =________.
4.(2016·苏北四市一模)在△ABC 中,已知AB =3,A =120°,且△ABC 的面积为1534,那么边BC 的长为________.
5.(2016·常州一模)在△ABC 中,已知内角A ,B ,C 的对边分别为a ,b ,c .若tan A =7tan B ,a 2-b 2
c
=3,则c =________. 6.(2016·东营期中)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,S
表示△ABC 的面
积,若a cos B +b cos A =c sin C ,S =14
(b 2+c 2-a 2),则B =________. 7.(2016·南京、盐城、徐州二模)如图,在△ABC 中,D 是BC 边上一点,已知∠B =60°,AD =2,AC =10,DC =2,那么AB =________.
8.已知点O 是△ABC 的外接圆圆心,且AB =3,AC =4.若存在非零实数x ,y ,使得AO →=xAB
→+yAC →,且x +2y =1,则cos∠BAC 的值为________.
9.△ABC 中,A 、B 、C 是其内角,若sin 2A +sin(A -C )-sin B =0,则△ABC 的形状是________________三角形.
10.(2016·惠州二调)在△ABC 中,设角A ,B ,C 的对边分别是a ,b ,c ,且∠C =60°,c =3,则a +23cos A sin B
=________. 11.(2016·佛山期中) 如图,一艘船以每小时15 km 的速度向东航行,船在A 处看到一灯塔M 在北偏东60°方向,行驶4 h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________ km.
12.(2016·吉安期中)在△ABC 中,D 为BC 边上一点,若△ABD 是等边三角形,且AC =43,则△ADC 的面积的最大值为________.
13.(2016·如东高级中学期中)在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,a =8,b =10,△ABC 的面积为203,则△ABC 的最大角的正切值是________.
14.(2016·南通二模)若一个钝角三角形的三个内角成等差数列,且最大边与最小边之比为m ,则实数m 的取值范围是________.
答案精析
1.15 2.50 2 3.π6或5π6
4.7
5.4 6.45°
解析 由正弦定理可知a cos B +b cos A =2R sin A cos B +2R sin B cos A =2R sin(A +B )=2R sin C =c sin C =2R sin C ·sin C ,
∴sin C =1,C =90°.∴S =12ab =14
(b 2+c 2-a 2),解得a =b ,因此B =45°. 7.263
解析 在△ADC 中,AD =2,AC =10,DC =2,则cos∠ADC =-22
,所以∠ADC =135°,从而在△ABD 中,∠ADB =45°.又因为∠B =60°,由正弦定理得AD sin B =AB sin∠ADB ,即23
2=AB
2
2
,解得AB =263. 8.23
解析 设线段AC 的中点为点D ,则直线OD ⊥AC .
因为AO →=xAB →+yAC →,所以AO →=xAB →+2yAD →.
又x +2y =1,所以点O 、B 、D 三点共线,
即点B 在线段AC 的中垂线上,则AB =BC =3.
在△ABC 中,由余弦定理,得cos∠BAC =32+42-322×3×4=23
. 9.等腰或直角
解析 因为sin 2A +sin(A -C )-sin B
=sin 2A +sin(A -C )-sin(A +C )
=2sin A cos A -2sin C cos A
=2cos A (sin A -sin C )=0,
所以cos A =0或sin A =sin C ,
所以A =π2或A =C .
故△ABC 为等腰或直角三角形.
10.4
解析 由正弦定理知a sin A =c sin C =2,所以a =2sin A ,代入得原式=2sin A +23cos A sin B
=4·sin A +60° sin B
=4. 11.30 2
解析 依题意有AB =15×4=60,∠MAB =30°,∠AMB =45°,在△AMB 中,由正弦定理得60sin 45°=BM sin 30°,解得BM =30 2. 12.4 3
解析 在△ACD 中,cos∠ADC =AD 2+DC 2-AC 22AD ·DC =AD 2+DC 2-482AD ·DC =-12
,整理得AD 2+DC 2=48-AD ·DC ≥2AD ·DC ,
∴AD ·DC ≤16,当且仅当AD =CD 时等号成立,
∴△ADC 的面积S =12
AD ·DC · sin∠ADC =
34
AD ·DC ≤4 3. 13.533 解析 由题意得203=12×8×10×sin C ⇒sin C =32⇒C =π3或C =2π3
(舍),由余弦定理得c 2=82+102-2×8×10×12
=84,由三角形中大边对大角知角B 最大,则cos B =82+84-1022×8×84=384
,所以tan B =533. 14.(2,+∞)
解析 设A 为钝角,C 为最小角,则A +C =120°,C ∈(0°,30°),由正弦定理得m =a c
=sin A sin C =sin 120°-C sin C =32tan C +12.而0<tan C <33,∴1tan C
>3,则m >2.。