2018年高考数学总复习教师用书全套(含解析共1011页)

合集下载

2018届高三数学(理)高考总复习教师用书:第五章 数 列 Word版含答案

2018届高三数学(理)高考总复习教师用书:第五章 数 列 Word版含答案

第五章⎪⎪⎪数 列第一节数列的概念与简单表示法1.数列的有关概念 概念 含义数列 按照一定顺序排列的一列数 数列的项 数列中的每一个数 数列的通项 数列{a n }的第n 项a n通项公式 数列{a n }的第n 项a n 与n 之间的关系能用公式a n =f (n )表示,这个公式叫做数列的通项公式前n 项和数列{a n }中,S n =a 1+a 2+…+a n 叫做数列的前n 项和列表法 列表格表示n 与a n 的对应关系 图象法 把点(n ,a n )画在平面直角坐标系中 公式法通项公式 把数列的通项使用公式表示的方法递推公式使用初始值a 1和a n +1=f (a n )或a 1,a 2和a n +1=f (a n ,a n -1)等表示数列的方法n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.4.数列的分类[小题体验]1.已知数列{a n }的前4项为1,3,7,15,则数列{a n }的一个通项公式为________.答案:a n =2n -1(n ∈N *)2.已知数列{a n }中,a 1=1,a n +1=a n2a n +3,则a 5等于________. 答案:11613.(教材习题改编)已知函数f (x )=x -1x ,设a n =f (n )(n ∈N *),则{a n }是________数列(填“递增”或“递减”).答案:递增1.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.2.易混项与项数的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.3.在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.[小题纠偏]1.已知S n 是数列{a n }的前n 项和,且S n =n 2+1,则数列{a n }的通项公式是________.答案:a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥22.数列{a n }的通项公式为a n =-n 2+9n ,则该数列第________项最大. 答案:4或5考点一 由数列的前几项求数列的通项公式(基础送分型考点——自主练透)[题组练透]1.已知n ∈N *,给出4个表达式:①a n =⎩⎪⎨⎪⎧0,n 为奇数,1,n 为偶数,②a n =1+(-1)n2,③a n =1+cos n π2,④a n =⎪⎪⎪⎪sin n π2.其中能作为数列:0,1,0,1,0,1,0,1,…的通项公式的是( )A .①②③B .①②④C .②③④D .①③④解析:选A 检验知①②③都是所给数列的通项公式. 2.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…; (2)(易错题)-11×2,12×3,-13×4,14×5,…; (3)a ,b ,a ,b ,a ,b ,…(其中a ,b 为实数); (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小为4,所以它的一个通项公式a n =2(n +1),n ∈N *. (2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n ×1n (n +1),n ∈N *.(3)这是一个摆动数列,奇数项是a ,偶数项是b ,所以此数列的一个通项公式a n =⎩⎪⎨⎪⎧a ,n 为奇数,b ,n 为偶数. (4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1,n ∈N *.[谨记通法]由数列的前几项求数列通项公式的策略(1)根据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征,并对此进行归纳、联想,具体如下:①分式中分子、分母的特征; ②相邻项的变化特征; ③拆项后的特征; ④各项符号特征等.(2)根据数列的前几项写出数列的一个通项公式是利用不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n 或(-1)n+1来调整.如“题组练透”第2(2)题.考点二 由a n 与S n 的关系求通项a n (重点保分型考点——师生共研)[典例引领]已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式. (1)S n =2n 2-3n ;(2)S n =3n +b .解:(1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2·3n -1. 当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.[由题悟法]已知S n 求a n 的 3个步骤(1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.[即时应用]已知数列{a n }的前n 项和为S n . (1)若S n =(-1)n +1·n ,求a 5+a 6及a n ; (2)若S n =3n +2n +1,求a n .解:(1)a 5+a 6=S 6-S 4=(-6)-(-4)=-2, 当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1) =(-1)n +1·[n +(n -1)] =(-1)n +1·(2n -1), 又a 1也适合此式, 所以a n =(-1)n +1·(2n -1).(2)因为当n =1时,a 1=S 1=6; 当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1] =2·3n -1+2, 由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥2.考点三 由递推关系式求数列的通项公式(题点多变型考点——多角探明) [锁定考向]递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.常见的命题角度有: (1)形如a n +1=a n f (n ),求a n ; (2)形如a n +1=a n +f (n ),求a n ;(3)形如a n +1=Aa n +B (A ≠0且A ≠1),求a n .[题点全练]角度一:形如a n +1=a n f (n ),求a n 1.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),求数列{a n }的通项公式. 解:∵a n =n -1n a n -1(n ≥2),∴a n -1=n -2n -1a n -2,a n -2=n -3n -2a n -3,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时,a 1=1,上式也成立.∴a n =1n (n ∈N *). 角度二:形如a n +1=a n +f (n ),求a n2.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),求数列{a n }的通项公式. 解:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足此式,∴a n =n 2+n2(n ∈N *).角度三:形如a n +1=Aa n +B (A ≠0且A ≠1),求a n3.已知数列{a n }满足a 1=1,a n +1=3a n +2,求数列{a n }的通项公式. 解:∵a n +1=3a n +2,∴a n +1+1=3(a n +1),∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1, ∴a n =2·3n -1-1(n ∈N *).[通法在握]典型的递推数列及处理方法[演练冲关]根据下列条件,求数列{a n }的通项公式. (1)a 1=1,a n +1=a n +2n ; (2)a 1=12,a n =n -1n +1a n -1(n ≥2).解:(1)由题意知a n +1-a n =2n ,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+2+1=1-2n1-2=2n -1.(2)因为a n =n -1n +1a n -1(n ≥2),所以当n ≥2时,a n a n -1=n -1n +1,所以a na n -1=n -1n +1,a n -1a n -2=n -2n ,…,a 3a 2=24,a 2a 1=13,以上n -1个式子相乘得a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1=n -1n +1·n -2n ·…·24·13,即a n a 1=1n +1×1n ×2×1,所以a n =1n (n +1). 当n =1时,a 1=11×2=12,也与已知a 1=12相符,所以数列{a n }的通项公式为a n =1n (n +1).一抓基础,多练小题做到眼疾手快1.数列1,23,35,47,59,…的一个通项公式a n =( )A .n 2n +1B .n2n -1 C .n 2n -3D .n2n +3解析:选B 由已知得,数列可写成11,23,35,…,故通项为n 2n -1.2.已知数列{a n }的前n 项和为S n =n 2-2n +2,则数列{a n }的通项公式为( ) A .a n =2n -3B .a n =2n +3C .a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2D .a n =⎩⎪⎨⎪⎧1,n =1,2n +3,n ≥2解析:选C 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -3,由于n =1时a 1的值不适合n ≥2的解析式,故通项公式为选项C .3.若a 1=12,a n =4a n -1+1(n ≥2),当a n >100时,n 的最小值为( )A .3B .4C .5D .6解析:选C 由a 1=12,a n =4a n -1+1(n ≥2)得,a 2=4a 1+1=4×12+1=3,a 3=4a 2+1=4×3+1=13,a 4=4a 3+1=4×13+1=53,a 5=4a 4+1=4×53+1=213>100.4.(2016·肇庆三模)已知数列{a n }满足a 1=1,a n -a n -1=n (n ≥2),则数列{a n }的通项公式a n =________.解析:由a n -a n -1=n 得a 2-a 1=2, a 3-a 2=3,a 4-a 3=4,…,a n -a n -1=n , 上面(n -1)个式子相加得 a n =1+2+3+…+n =12n (n +1).又n =1时也满足此式, 所以a n =12n (n +1).答案:12n (n +1)5.(2017·南昌模拟)数列{a n }的前n 项和为S n ,若S n +S n -1=2n -1(n ≥2),且S 2=3,则a 1+a 3的值为________.解析:∵S n +S n -1=2n -1(n ≥2),令n =2, 得S 2+S 1=3,由S 2=3得a 1=S 1=0, 令n =3,得S 3+S 2=5,所以S 3=2,则a 3=S 3-S 2=-1,所以a 1+a 3=0+(-1)=-1. 答案:-1二保高考,全练题型做到高考达标1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( ) A .(-1)n +12B .cos n π2C .cos n +12πD .cos n +22π解析:选D 令n =1,2,3,…,逐一验证四个选项,易得D 正确.2.(2017·福建福州八中质检)已知数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2017=( )A .1B .0C .2 017D .-2 017解析:选A ∵a 1=1,∴a 2=(a 1-1)2=0,a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的数列,∴a 2 017=a 1=1.3.设数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a n =( ) A .2n B .2n -1 C .2nD .2n -1解析:选C 当n =1时,a 1=S 1=2(a 1-1),可得a 1=2,当n ≥2时,a n =S n -S n -1=2a n -2a n -1,∴a n =2a n -1,∴数列{a n }为等比数列,公比为2,首项为2,所以a n =2n .4.设曲线f (x )=x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1·x 2·x 3·x 4·…·x 2 017=( )A .2 0162 017B .12 017 C .2 0172 018D .12 018解析:选D 由f (x )=x n +1得f ′(x )=(n +1)x n ,切线方程为y -1=(n +1)(x -1),令y =0得x n =n n +1,故x 1·x 2·x 3·x 4·…·x 2 017=12×23×…×2 0172 018=12 018.5.(2017·衡水中学检测)若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:选B ∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列, ∴a n =19+(n -1)×(-3)=22-3n . 设{a n }的前k 项和数值最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0k ∈N *,∴⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0,∴193≤k ≤223, ∵k ∈N *,∴k =7.∴满足条件的n 的值为7.6.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第____________项.解析:令n -2n 2=0.08,得2n 2-25n +50=0,即(2n -5)(n -10)=0. 解得n =10或n =52(舍去).答案:107.已知数列{a n }满足a 1=1,a n =a 2n -1-1(n >1),则a 2 017=________,|a n +a n +1|=________(n >1).解析:由a 1=1,a n =a 2n -1-1(n >1),得a 2=a 21-1=12-1=0,a 3=a 22-1=02-1=-1, a 4=a 23-1=(-1)2-1=0,a 5=a 24-1=02-1=-1,由此可猜想当n >1,n 为奇数时a n =-1,n 为偶数时a n =0, ∴a 2 017=-1,|a n +a n +1|=1. 答案:-1 18.在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析:依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.答案:289.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.解:(1)由S n =12a 2n +12a n (n ∈N *),可得 a 1=12a 21+12a 1,解得a 1=1; S 2=a 1+a 2=12a 22+12a 2,解得a 2=2; 同理,a 3=3,a 4=4.(2)S n =12a 2n +12a n ,① 当n ≥2时,S n -1=12a 2n -1+12a n -1,② ①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0, 所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n . 10.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0, 解得1<n <4.因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实数k 的取值范围为(-3,+∞). 三上台阶,自主选做志在冲刺名校1.已知数列{a n }的通项公式为a n =(-1)n ·2n +1,该数列的项排成一个数阵(如图),则该数阵中的第10行第3个数为________.a 1 a 2 a 3 a 4 a 5 a 6 ……解析:由题意可得该数阵中的第10行、第3个数为数列{a n }的第1+2+3+…+9+3=9×102+3=48项,而a 48=(-1)48×96+1=97,故该数阵第10行、第3个数为97.答案:972.(2017·甘肃诊断性考试)已知数列{a n }满足a 1=8999,a n +1=10a n +1. (1)证明数列⎩⎨⎧⎭⎬⎫a n +19是等比数列,并求数列{a n }的通项公式;(2)数列{b n }满足b n =lg ⎝⎛⎭⎫a n +19,T n 为数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和,求证:T n <12. 证明:(1)由a n +1=10a n +1,得a n +1+19=10a n +109=10⎝⎛⎭⎫a n +19,即a n +1+19a n +19=10. 所以数列⎩⎨⎧⎭⎬⎫a n +19是等比数列,其中首项为a 1+19=100,公比为10,所以a n +19=100×10n -1=10n +1,即a n =10n +1-19.(2)由(1)知b n =lg ⎝⎛⎭⎫a n +19=lg 10n +1=n +1, 即1b n b n +1=1(n +1)(n +2)=1n +1-1n +2. 所以T n =12-13+13-14+…+1n +1-1n +2=12-1n +2<12.第二节等差数列及其前n 项和1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.[小题体验]1.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. 答案:102.(教材习题改编)已知等差数列{a n },a 5=-20,a 20=-35,则a n =________ 答案:-15-n3.(教材习题改编)已知等差数列5,427,347,…,则前n 项和S n =________.答案:114(75n -5n 2)1.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件.[小题纠偏]1.首项为24的等差数列,从第10项开始为负数,则公差d 的取值范围是( ) A .(-3,+∞) B .⎝⎛⎭⎫-∞,-83 C .⎝⎛⎭⎫-3,-83 D .⎣⎡⎭⎫-3,-83 答案:D2.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于________.解析:设等差数列{a n }的公差为d ,则S 3=3a 1+3d ,所以12=3×2+3d ,解得d =2,所以a 6=a 1+5d =2+5×2=12.答案:12考点一 等差数列的基本运算(基础送分型考点——自主练透)[题组练透]1.(2016·郑州二检)已知{a n }为等差数列,公差为1,且a 5是a 3与a 11的等比中项,S n是{a n }的前n 项和,则S 12的值为______.解析:由题意得,a 25=a 3a 11,即(a 1+4)2=(a 1+2)(a 1+10),a 1=-1,∴S 12=12×(-1)+12×112×1=54.答案:542.(2017·西安质检)公差不为零的等差数列{a n }中,a 7=2a 5,则数列{a n }中第________项的值与4a 5的值相等.解析:设等差数列{a n }的公差为d ,∵a 7=2a 5,∴a 1+6d =2(a 1+4d ),则a 1=-2d ,∴a n=a 1+(n -1)d =(n -3)d ,而4a 5=4(a 1+4d )=4(-2d +4d )=8d =a 11,故数列{a n }中第11项的值与4a 5的值相等.答案:113.(2016·江苏高考)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.解析:设等差数列{a n }的公差为d ,由S 5=10,知S 5=5a 1+5×42d =10,得a 1+2d =2,即a 1=2-2d .所以a 2=a 1+d =2-d ,代入a 1+a 22=-3,化简得d 2-6d +9=0,所以d =3,a 1=-4.故a 9=a 1+8d =-4+24=20.答案:204.设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1, 公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1.∴S 16=16×3+16×152×(-1)=-72.答案:-72[谨记通法]等差数列基本运算的方法策略(1)等差数列中包含a 1,d ,n ,a n ,S n 五个量,可“知三求二”.解决这些问题一般设基本量a 1,d ,利用等差数列的通项公式与求和公式列方程(组)求解,体现方程思想.(2)如果已知等差数列中有几项的和是常数的计算问题,一般是等差数列的性质和等差数列求和公式S n =n (a 1+a n )2结合使用,体现整体代入的思想.考点二 等差数列的判断与证明(重点保分型考点——师生共研)[典例引领]已知数列{a n }的前n 项和为S n 且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求a n 的表达式.解:(1)证明:∵a n =S n -S n -1(n ≥2), 又a n =-2S n ·S n -1,∴S n -1-S n =2S n ·S n -1,S n ≠0,n ≥2. 因此1S n -1S n -1=2(n ≥2).故由等差数列的定义知⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,2为公差的等差数列.(2)由(1)知1S n =1S 1+(n -1)d =2+(n -1)×2=2n ,即S n =12n.由于当n ≥2时,有a n =-2S n ·S n -1=-12n (n -1),又∵a 1=12,不适合上式.∴a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.[由题悟法]等差数列的判定与证明方法[即时应用]已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *).(1)求证:数列{b n }为等差数列; (2)求数列{a n }的通项公式.解:(1)证明:∵b n =1a n ,且a n =a n -12a n -1+1,∴b n +1=1a n +1=1a n 2a n +1=2+1a n ,∴b n +1-b n =2+1a n -1a n =2.又b 1=1a 1=1,∴数列{b n }是首项为1,公差为2的等差数列. (2)由(1)知数列{b n }的通项公式为 b n =1+(n -1)×2=2n -1,又b n =1a n,∴a n =1b n =12n -1.∴数列{a n }的通项公式为a n =12n -1.考点三 等差数列的性质及最值(重点保分型考点——师生共研)[典例引领]1.等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8=( ) A .18 B .12 C .9D .6解析:选D 由题意得S 11=11(a 1+a 11)2=11(2a 1+10d )2=22,即a 1+5d =2,所以a 3+a 7+a 8=a 1+2d +a 1+6d +a 1+7d =3(a 1+5d )=6.2.(2017·合肥质检)已知等差数列{a n }的前n 项和为S n ,a 8=1,S 16=0,当S n 取最大值时n 的值为( )A .7B .8C .9D .10解析:选B 法一:由⎩⎪⎨⎪⎧a 8=a 1+7d =1,S 16=16a 1+16×152d =0,解得⎩⎪⎨⎪⎧a 1=15,d =-2,则S n =-n 2+16n =-(n -8)2+64,则当n =8时,S n 取得最大值.法二:因为{a n }是等差数列,所以S 16=8(a 1+a 16)=8(a 8+a 9)=0,则a 9=-a 8=-1,即数列{a n }的前8项是正数,从第9项开始是负数,所以(S n )max =S 8,选项B 正确.[由题悟法]1.等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[即时应用]1.设S n 是等差数列{a n }的前n 项和,若a 6a 5=911,则S 11S9=( )A .1B .-1C .2D .12解析:选A S 11S 9=11(a 1+a 11)29(a 1+a 9)2=11a 69a 5=119×911=1.2.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36, 又S n =n (a 1+a n )2=324,∴18n =324,∴n =18.答案:183.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析:依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.答案:200一抓基础,多练小题做到眼疾手快1.(2017·桂林调研)等差数列{a n }中,a 4+a 8=10,a 10=6,则公差d =( ) A .14B .12C .2D .-12解析:选A 由a 4+a 8=2a 6=10,得a 6=5,所以4d =a 10-a 6=1,解得d =14,故选A .2.等差数列{a n }的前n 项之和为S n ,若a 5=6,则S 9为( ) A .45 B .54 C .63D .27解析:选B 法一:∵S 9=9(a 1+a 9)2=9a 5=9×6=54.故选B .法二:由a 5=6,得a 1+4d =6,∴S 9=9a 1+9×82d =9(a 1+4d )=9×6=54,故选B .3.(2017·陕西质量监测)已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( )A .21B .22C .23D .24解析:选C 3a n +1=3a n -2⇒a n +1=a n -23⇒{a n }是等差数列,则a n =473-23n .∵a k +1·a k <0, ∴⎝⎛⎭⎫473-23k ⎝⎛⎭⎫453-23k <0,∴452<k <472,又∵k ∈N *, ∴k =23.4.(2016·北京高考)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.解析:∵a 3+a 5=2a 4,∴a 4=0. ∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×(6-1)2d =6.答案:65.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5.答案:S 5二保高考,全练题型做到高考达标1.(2017·太原一模)在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0C .14D .12解析:选B 由题知,a 2+a 4=2a 3=2, 又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0.2.数列{a n }的前n 项和S n =2n 2+3n (n ∈N *),若p -q =5,则a p -a q =( ) A .10B .15C .-5D .20解析:选D 当n ≥2时,a n =S n -S n -1=2n 2+3n -[2(n -1)2+3(n -1)]=4n +1, 当n =1时,a 1=S 1=5,符合上式, ∴a n =4n +1,a p -a q =4(p -q )=20.3.(2017·河南六市一联)已知正项数列{a n }的前n 项和为S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 6=( )A .114B .32C .72D .1解析:选A 设{a n }的公差为d ,由题意得,S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,又{a n }和{S n}都是等差数列,且公差相同,∴⎩⎨⎧d = d 2,a 1-d2=0,解得⎩⎨⎧d =12,a 1=14,a 6=a 1+5d =14+52=114.4.(2017·沈阳教学质量监测)设等差数列{a n }满足a 2=7,a 4=3,S n 是数列{a n }的前n 项和,则使得S n >0成立的最大的自然数n 是( )A .9B .10C .11D .12解析:选A 由题可得{a n }的公差d =3-74-2=-2,a 1=9,所以a n =-2n +11,则{a n }是递减数列,且a 5>0>a 6,a 5+a 6=0,于是S 9=2a 52·9>0,S 10=a 5+a 62·10=0,S 11=2a 62·11<0,故选A .5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,因为b 1=1,则n +12n (n -1)d=k ⎣⎡⎦⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d , 整理得(4k -1)dn +(2k -1)(2-d )=0. 因为对任意的正整数n 上式均成立, 所以(4k -1)d =0,(2k -1)(2-d )=0, 解得d =2,k =14.所以数列{b n }的通项公式为b n =2n -1.6.在等差数列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________.解析:因为S 100=1002(a 1+a 100)=45,所以a 1+a 100=910,a 1+a 99=a 1+a 100-d =25,则a 1+a 3+a 5+…+a 99=502(a 1+a 99)=502×25=10.答案:107.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 8.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则正整数m 的值为________.解析:因为等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,所以a m =S m -S m -1=2,a m +1=S m +1-S m =3,数列的公差d =1,a m +a m +1=S m +1-S m-1=5,即2a 1+2m -1=5, 所以a 1=3-m .由S m =(3-m )m +m (m -1)2×1=0,解得正整数m 的值为5. 答案:59.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)设数列{b n }的通项b n =S nn ,证明:数列{b n }是等差数列,并求其前n 项和T n .解:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2, 所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (2)证明:由(1)得S n =n (2+2n )2=n (n +1), 则b n =S nn =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列,所以T n =n (2+n +1)2=n (n +3)2. 10.(2017·南昌调研)设数列{a n }的前n 项和为S n,4S n =a 2n +2a n -3,且a 1,a 2,a 3,a 4,a 5成等比数列,当n ≥5时,a n >0.(1)求证:当n ≥5时,{a n }成等差数列; (2)求{a n }的前n 项和S n .解:(1)证明:由4S n =a 2n +2a n -3,4S n +1=a 2n +1+2a n +1-3, 得4a n +1=a 2n +1-a 2n +2a n +1-2a n ,即(a n +1+a n )(a n +1-a n -2)=0. 当n ≥5时,a n >0,所以a n +1-a n =2, 所以当n ≥5时,{a n }成等差数列.(2)由4a 1=a 21+2a 1-3,得a 1=3或a 1=-1, 又a 1,a 2,a 3,a 4,a 5成等比数列, 所以由(1)得a n +1+a n =0(n ≤5),q =-1, 而a 5>0,所以a 1>0,从而a 1=3,所以a n =⎩⎪⎨⎪⎧3(-1)n -1,1≤n ≤4,2n -7,n ≥5,所以S n =⎩⎪⎨⎪⎧32[1-(-1)n ],1≤n ≤4,n 2-6n +8,n ≥5.三上台阶,自主选做志在冲刺名校1.(2016·安庆二模)已知数列{a n }是各项均不为零的等差数列,S n 为其前n 项和,且a n=S 2n -1(n ∈N *).若不等式λa n ≤n +8n对任意n ∈N *恒成立,则实数λ的最大值为________.解析:a n =S 2n -1⇒a n =(2n -1)(a 1+a 2n -1)2=(2n -1)a n ⇒a 2n =(2n -1)a n ⇒a n =2n-1,n ∈N *.λa n ≤n +8n 就是λ≤(n +8)(2n -1)n ⇒λ≤2n -8n +15,f (n )=2n -8n +15在n ≥1时单调递增,其最小值为f (1)=9,所以λ≤9,故实数λ的最大值为9.答案:92.已知数列{a n}满足,a n+1+a n=4n-3(n∈N*).(1)若数列{a n}是等差数列,求a1的值;(2)当a1=2时,求数列{a n}的前n项和S n.解:(1)法一:∵数列{a n}是等差数列,∴a n=a1+(n-1)d,a n+1=a1+nd.由a n+1+a n=4n-3,得(a1+nd)+[a1+(n-1)d]=4n-3,∴2dn+(2a1-d)=4n-3,即2d=4,2a1-d=-3,解得d=2,a1=-12.法二:在等差数列{a n}中,由a n+1+a n=4n-3,得a n+2+a n+1=4(n+1)-3=4n+1,∴2d=a n+2-a n=(a n+2+a n+1)-(a n+1+a n)=4n+1-(4n-3)=4,∴d=2.又∵a1+a2=2a1+d=2a1+2=4×1-3=1,∴a1=-12.(2)由题意,①当n为奇数时,S n=a1+a2+a3+…+a n=a1+(a2+a3)+(a4+a5)+…+(a n-1+a n)=2+4[2+4+…+(n-1)]-3×n-1 2=2n2-3n+52.②当n为偶数时,S n=a1+a2+a3+…+a n =(a1+a2)+(a3+a4)+…+(a n-1+a n)=1+9+…+(4n -7) =2n 2-3n 2.第三节等比数列及其前n 项和1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q . (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *), 则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k .[小题体验]1.(教材习题改编)将公比为q 的等比数列a 1,a 2,a 3,a 4,…依次取相邻两项的乘积组成新的数列a 1a 2,a 2a 3,a 3a 4,….此数列是( )A .公比为q 的等比数列B .公比为q 2的等比数列C .公比为q 3的等比数列D .不一定是等比数列 答案:B2.等比数列{a n }中,a 3=12,a 4=18,则a 6=________.解析:法一:由a 3=12,a 4=18,得⎩⎪⎨⎪⎧a 1q 2=12,a 1q 3=18,解得a 1=163,q =32,∴a 6=a 1q 5=163×⎝⎛⎭⎫325=812.法二:由等比数列性质知,a 23=a 2a 4, ∴a 2=a 23a 4=12218=8,又a 24=a 2a 6,∴a 6=a 24a 2=1828=812.答案:8123.(教材习题改编)在等比数列{a n }中,已知a 1=-1,a 4=64,则公比q =________,S 4=________.答案:-4 511.特别注意q =1时,S n =na 1这一特殊情况.2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.4.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n -S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.[小题纠偏]1.在等比数列{a n }中,a 3=2,a 7=8,则a 5等于( ) A .5 B .±5 C .4D .±4解析:选C a 25=a 3a 7=2×8=16,∴a 5=±4,又∵a 5=a 3q 2>0,∴a 5=4. 2.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________. 答案:-12或1考点一 等比数列的基本运算(重点保分型考点——师生共研)[典例引领]1.(2017·武汉调研)若等比数列{a n }的各项均为正数,a 1+2a 2=3,a 23=4a 2a 6,则a 4=( )A .38B .245 C .316D .916解析:选C 由题意,得⎩⎪⎨⎪⎧a 1+2a 1q =3,(a 1q 2)2=4a 1q ·a 1q 5,解得⎩⎨⎧a 1=32,q =12,所以a 4=a 1q 3=32×⎝⎛⎭⎫123=316.2.(2015·全国卷Ⅰ)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.解析:∵a 1=2,a n +1=2a n ,∴数列{a n }是首项为2,公比为2的等比数列. 又∵S n =126,∴2(1-2n )1-2=126,∴n =6.答案:6[由题悟法]解决等比数列有关问题的2种常用思想方程 的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解[即时应用]1.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A .13B .-13C .19D .-19解析:选C 设等比数列{a n }的公比为q , ∵S 3=a 2+10a 1,a 5=9,∴⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=a 1q +10a 1,a 1q 4=9,解得⎩⎪⎨⎪⎧q 2=9,a 1=19.2.(2017·洛阳统考)设等比数列{a n }的前n 项和为S n ,若a 1+8a 4=0,则S 4S 3=( )A .-53B .157C .56D .1514解析:选C 在等比数列{a n }中,因为a 1+8a 4=0,所以q =-12,所以S 4S 3=a 1(1-q 4)1-q a 1(1-q 3)1-q=1-⎝⎛⎭⎫-1241-⎝⎛⎭⎫-123=151698=56. 3.(2015·安徽高考)已知数列{}a n 是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{}a n 的前n 项和等于________.解析:设等比数列的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q 3=9,a 21·q 3=8,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=8,q =12.又{}a n 为递增数列,∴⎩⎪⎨⎪⎧a 1=1,q =2,∴S n =1-2n 1-2=2n -1.答案:2n -1考点二 等比数列的判定与证明(重点保分型考点——师生共研)[典例引领](2016·全国丙卷)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列, 于是a n =11-λ⎝⎛⎭⎪⎫λλ-1n -1.(2)由(1)得S n =1-⎝ ⎛⎭⎪⎫λλ-1n.由S 5=3132得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132.解得λ=-1.[由题悟法]等比数列的4种常用判定方法[提醒] (1)前两种方法是判定等比数列的常用方法,常用于证明;后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.[即时应用]设数列{}a n 的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1.(1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.解:(1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝⎛⎭⎫1+32+54+a 4+5⎝⎛⎭⎫1+32=8⎝⎛⎭⎫1+32+54+1,解得a 4=78. (2)证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2), 得4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2). ∵4a 3+a 1=4×54+1=6=4a 2,∴4a n +2+a n =4a n +1,∴a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n=4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n2(2a n +1-a n )=12, ∴数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.考点三 等比数列的性质(重点保分型考点——师生共研)[典例引领]1.(2017·湖南师大附中月考)已知各项不为0的等差数列{a n }满足a 6-a 27+a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11=( )A .1B .2C .4D .8解析:选D 由等差数列的性质,得a 6+a 8=2a 7.由a 6-a 27+a 8=0,可得a 7=2,所以b 7=a 7=2.由等比数列的性质得b 2b 8b 11=b 2b 7b 12=b 37=23=8.2.若等比数列{a n }的前n 项和为S n ,且S 4S 2=5,则S 8S 4=________.解析:设数列{a n }的公比为q , 由已知得S 4S 2=1+a 3+a 4a 1+a 2=5,即1+q 2=5, 所以q 2=4,S 8S 4=1+a 5+a 6+a 7+a 8a 1+a 2+a 3+a 4=1+q 4=1+16=17. 答案:17[由题悟法]等比数列的性质可以分为3类[即时应用]1.等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A .5B .9C .log 345D .10解析:选D 由等比数列的性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,所以a 5a 6=9,则原式=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=10.2.(2017·长春调研)在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________.解析:设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12,可得q 9=3,a n-1a n a n +1=a 31q3n -3=324,因此q 3n -6=81=34=q 36,所以3n -6=36,即n =14.答案:14一抓基础,多练小题做到眼疾手快1.对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列解析:选D 由等比数列的性质得,a 3·a 9=a 26≠0,因此a 3,a 6,a 9一定成等比数列,选D .2.在正项等比数列{a n }中,a 1=1,前n 项和为S n ,且-a 3,a 2,a 4成等差数列,则S 7的值为( )A .125B .126C .127D .128解析:选C 设{a n }的公比为q ,则2a 2=a 4-a 3,又a 1=1,∴2q =q 3-q 2,解得q =2或q =-1,∵a n >0,∴q >0,∴q =2,∴S 7=1-271-2=127.3.(2016·石家庄质检)已知数列{a n }的前n 项和为S n ,若S n =2a n -4(n ∈N *),则a n =( ) A .2n +1 B .2n C .2n -1D .2n -2解析:选A 依题意,a n +1=S n +1-S n =2a n +1-4-(2a n -4),则a n +1=2a n ,令n =1,则S 1=2a 1-4,即a 1=4,∴数列{a n }是以4为首项,2为公比的等比数列,∴a n =4×2n -1=2n +1,故选A .4.在等比数列{a n }中,若a 1·a 5=16,a 4=8,则a 6=________. 解析:由题意得,a 2·a 4=a 1·a 5=16, ∴a 2=2,∴q 2=a 4a 2=4,∴a 6=a 4q 2=32.答案:325.在等比数列{a n }中,a n >0,a 5-a 1=15,a 4-a 2=6,则a 3=________. 解析:∵a 5-a 1=15,a 4-a 2=6.∴⎩⎪⎨⎪⎧a 1q 4-a 1=15,a 1q 3-a 1q =6(q ≠1)两式相除得(q 2+1)(q 2-1)q ·(q 2-1)=156,即2q 2-5q +2=0, ∴q =2或q =12,当q =2时,a 1=1; 当q =12时,a 1=-16(舍去).∴a 3=1×22=4. 答案:4二保高考,全练题型做到高考达标1.已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为( ) A .10 B .20 C .100D .200解析:选C a 7(a 1+2a 3)+a 3a 9=a 7a 1+2a 7a 3+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=102=100.2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A .18B .-18C .578D .558解析:选A 因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,。

2018北师大版文科数学高考总复习教师用书:专题探究课一含答案

2018北师大版文科数学高考总复习教师用书:专题探究课一含答案

高考导航函数是中学数学的核心内容,导数是研究函数的重要工具,因此,导数的应用是历年高考的重点与热点,常涉及的问题有:讨论函数的单调性(求函数的单调区间)、求极值、求最值、求切线方程、求函数的零点或方程的根、求参数的范围、证明不等式等,涉及的数学思想有:函数与方程、分类讨论、数形结合、转化与化归思想等,中、高档难度均有.热点一利用导数研究函数的性质以含参数的函数为载体,结合具体函数与导数的几何意义,研究函数的性质,是高考的热点重点.本热点主要有三种考查方式:(1)讨论函数的单调性或求单调区间;(2)求函数的极值或最值;(3)利用函数的单调性、极值、最值,求参数的范围.【例1】(2015·全国Ⅱ卷)已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.解(1)f(x)的定义域为(0,+∞),f′(x)=错误!-a.若a≤0,则f′(x)〉0,所以f(x)在(0,+∞)上单调递增.若a〉0,则当x∈错误!时,f′(x)〉0;当x∈错误!时,f′(x)<0.所以f(x)在错误!上单调递增,在错误!上单调递减.(2)由(1)知,当a≤0,f(x)在(0,+∞)上无最大值;当a〉0时,f(x)在x=错误!取得最大值,最大值为f错误!=ln错误!+a错误!=-ln a+a-1.因此f错误!〉2a-2等价于ln a+a-1〈0.令g(a)=ln a+a-1,则g(a)在(0,+∞)上单调递增,g(1)=0。

于是,当0〈a<1时,g(a)<0;当a>1时,g(a)>0。

因此,a的取值范围是(0,1).探究提高(1)判断函数的单调性,求函数的单调区间、极值等问题,最终归结到判断f′(x)的符号问题上,而f′(x)>0或f′(x)〈0,最终可转化为一个一元一次不等式或一元二次不等式问题.(2)若已知f(x)的单调性,则转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题求解.【训练1】设f(x)=-错误!x3+错误!x2+2ax.(1)若f(x)在错误!上存在单调递增区间,求a的取值范围;(2)当0<a<2时,f(x)在[1,4]上的最小值为-163,求f(x)在该区间上的最大值.解(1)由f′(x)=-x2+x+2a=-错误!2+错误!+2a,当x∈错误!时,f′(x)的最大值为f′错误!=错误!+2a;令错误!+2a>0,得a>-错误!.所以,当a>-错误!时,f(x)在错误!上存在单调递增区间.(2)已知0<a<2,f(x)在[1,4]上取到最小值-163,而f′(x)=-x2+x+2a的图像开口向下,且对称轴x=错误!,∴f′(1)=-1+1+2a=2a>0,f′(4)=-16+4+2a=2a-12<0,则必有一点x0∈[1,4],使得f′(x0)=0,此时函数f(x)在[1,x0]上单调递增,在[x0,4]上单调递减,f(1)=-13+错误!+2a=错误!+2a>0,∴f(4)=-错误!×64+错误!×16+8a=-错误!+8a=-错误!⇒a=1.此时,由f′(x0)=-x错误!+x0+2=0⇒x0=2或-1(舍去),所以函数f(x)max=f(2)=错误!。

2018北师大版文科数学高考总复习教师用书:专题探究课

2018北师大版文科数学高考总复习教师用书:专题探究课

高考导航 从近几年的高考试题看,全国卷交替考查三角函数、解三角形.该部分解答题是高考得分的基本组成部分,不能掉以轻心.该部分的解答题考查的热点题型有:一考查三角函数的图像变换以及单调性、最值等;二考查解三角形问题;三是考查三角函数、解三角形与平面向量的交汇性问题,在解题过程中抓住平面向量作为解决问题的工具,要注意三角恒等变换公式的多样性和灵活性,注意题目中隐含的各种限制条件,选择合理的解决方法,灵活地实现问题的转化.热点一 三角函数的图像和性质(规范解答)注意对基本三角函数y =sin x ,y =cos x 的图像与性质的理解与记忆,有关三角函数的五点作图、图像的平移、由图像求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解.【例1】 (满分13分)(2015·北京卷)已知函数f (x )=sin x -23sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值.满分解答 (1)因为f (x )=sin x +3cos x - 3.2分 =2sin ⎝ ⎛⎭⎪⎫x +π3- 3.4分所以f (x )的最小正周期为2π.6分 (2)因为0≤x ≤2π3, 所以π3≤x +π3≤π.8分当x +π3=π,即x =2π3时,f (x )取得最小值.11分 所以f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值为f ⎝ ⎛⎭⎪⎫2π3=- 3.13分❶将f (x )化为a sin x +b cos x +c 形式得…………2分; ❷将f (x )化为A sin(ωx +φ)+h 形式得…………2分; ❸求出最小正周期得…………2分. ❹写出ωx +φ的取值范围得…………2分. ❺利用单调性分析最值得…………3分. ❻求出最值得…………2分.求函数y =A sin(ωx +φ)+B 周期与最值的模板第一步:三角函数式的化简,一般化成y =A sin(ωx +φ)+h 或y =A cos(ωx +φ)+h 的形式;第二步:由T =2π|ω|求最小正周期; 第三步:确定f (x )的单调性;第四步:确定各单调区间端点处的函数值; 第五步:明确规范地表达结论.【训练1】 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图像的一个对称中心到最近的对称轴的距离为π4. (1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. 解 (1)f (x )=32-3sin 2ωx -sin ωx cos ωx =32-3·1-cos 2ωx 2-12sin 2ωx=32cos 2ωx -12sin 2ωx =-sin ⎝ ⎛⎭⎪⎫2ωx -π3.因为y =f (x )的图像的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T =4×π4=π.又ω>0,所以2π2ω=π,因此ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.设t =2x -π3,则函数f (x )可转化为y =-sin t .当π≤x ≤3π2时,5π3≤t =2x -π3≤ 8π3,如图所示,作出函数y =sin t 在⎣⎢⎡⎦⎥⎤5π3,8π3 上的图像,由图像可知,当t ∈⎣⎢⎡⎦⎥⎤5π3,8π3时,sin t ∈⎣⎢⎡⎦⎥⎤-32,1,故-1≤-sin t ≤32,因此-1≤f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3≤32. 故f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.热点二 解三角形高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题.【例2】 (2017·咸阳模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (x )=2sin(x -A )cos x +sin(B +C )(x ∈R ),函数f (x )的图像关于点⎝ ⎛⎭⎪⎫π6,0对称.(1)当x ∈⎝ ⎛⎭⎪⎫0,π2时,求函数f (x )的值域;(2)若a =7,且sin B +sin C =13314,求△ABC 的面积. 解 (1)∵f (x )=2sin(x -A )cos x +sin(B +C ) =2(sin x cos A -cos x sin A )cos x +sin A =2sin x cos A cos x -2cos 2x sin A +sin A =sin 2x cos A -cos 2x sin A =sin(2x -A ), 又函数f (x )的图像关于点⎝ ⎛⎭⎪⎫π6,0对称,则f ⎝ ⎛⎭⎪⎫π6=0,即sin ⎝ ⎛⎭⎪⎫π3-A =0,又A ∈(0,π),则A =π3, 则f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3.由于x ∈⎝ ⎛⎭⎪⎫0,π2,则2x -π3∈⎝ ⎛⎭⎪⎫-π3,2π3,即-32<sin ⎝ ⎛⎭⎪⎫2x -π3≤1,则函数f (x )的值域为⎝ ⎛⎦⎥⎤-32,1.(2)由正弦定理,得a sin A =b sin B =c sin C =143,则sin B =314b ,sin C =314c ,sin B +sin C =314(b +c )=13314,即b +c =13. 由余弦定理,得a 2=c 2+b 2-2bc cos A , 即49=c 2+b 2-bc =(b +c )2-3bc ,即bc =40. 则△ABC 的面积S =12bc sin A =12×40×32=10 3.探究提高 三角函数和三角形的结合,一般可以利用正弦定理、余弦定理先确定三角形的边角,再代入到三角函数中,三角函数和(差)角公式的灵活运用是解决此类问题的关键.【训练2】 四边形ABCD 的内角A 与C 互补,且AB =1,BC =3,CD =DA =2.(1)求角C 的大小和线段BD 的长度; (2)求四边形ABCD 的面积. 解 (1)设BD =x ,在△ABD 中,由余弦定理,得cos A =1+4-x 22×2×1,在△BCD 中,由余弦定理,得cos C =9+4-x 22×2×3,∵A +C =π,∴cos A +cos C =0. 联立上式,解得x =7,cos C =12. 由于C ∈(0,π). ∴C =π3,BD =7.(2)∵A +C =π,C =π3,∴sin A =sin C =32. 又四边形ABCD 的面积S ABCD =S △ABD +S △BCD =12AB ·AD sin A +12CB ·CD sin C =32×(1+3)=23, ∴四边形ABCD 的面积为23. 热点三 三角函数与平面向量结合三角函数、解三角形与平面向量的结合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.【例3】 (2016·贵州适应性考试)已知△ABC 的三内角A ,B ,C 所对的边分别是a ,b ,c ,向量m =(cos B ,cos C ),n =(2a +c ,b ),且m ⊥n . (1)求角B 的大小;(2)若b =3,求a +c 的范围.解 (1)∵m =(cos B ,cos C ),n =(2a +c ,b ),且m ⊥n , ∴(2a +c )cos B +b cos C =0,∴cos B (2sin A +sin C )+sin B cos C =0, ∴2cos B sin A +cos B sin C +sin B cos C =0. 即2cos B sin A =-sin(B +C )=-sin A . ∵A ∈(0,π),∴sin A ≠0,∴cos B =-12. ∵0<B <π,∴B =2π3. (2)由余弦定理得b 2=a 2+c 2-2ac cos 23π=a 2+c 2+ac =(a +c )2-ac ≥(a +c )2-⎝ ⎛⎭⎪⎫a +c 22=34(a +c )2,当且仅当a =c 时取等号. ∴(a +c )2≤4,故a +c ≤2.又a +c >b =3,∴a +c ∈(3,2]. 即a +c 的取值范围是(3,2].探究提高 向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.【训练3】 已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a·b ,且y =f (x )的图像过点⎝ ⎛⎭⎪⎫π12,3和点⎝ ⎛⎭⎪⎫2π3,-2.(1)求m ,n 的值;(2)将y =f (x )的图像向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图像,若y =g (x )图像上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间. 解 (1)由题意知f (x )=a·b =m sin 2x +n cos 2x . 因为y =f (x )的图像过点⎝ ⎛⎭⎪⎫π12,3和⎝ ⎛⎭⎪⎫2π3,-2,所以⎩⎪⎨⎪⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎪⎨⎪⎧3=12m +32n ,-2=-32m -12n ,解得⎩⎨⎧m =3,n =1.(2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6.由题意知g (x )=f (x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +2φ+π6.设y =g (x )的图像上符合题意的最高点为(x 0,2),由题意知x 20+1=1,所以x 0=0,即到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g (x )得sin ⎝ ⎛⎭⎪⎫2φ+π6=1,因为0<φ<π,所以φ=π6, 因此g (x )=2sin ⎝ ⎛⎭⎪⎫2x +π2=2cos 2x .由2k π-π≤2x ≤2k π,k ∈Z 得k π-π2≤x ≤k π,k ∈Z . 所以函数y =g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π2,k π,k ∈Z .(建议用时:70分钟)1.(2017·南昌调研)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π6的部分图像如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值; (2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π2,-π12上最大值和最小值.解 (1)由题得,f (x )的最小正周期为π,y 0=3. 当y 0=3时,sin ⎝ ⎛⎭⎪⎫2x 0+π6=1,由题干图像可得2x 0+π6=2π+π2, 解得x 0=7π6.(2)因为x ∈⎣⎢⎡⎦⎥⎤-π2,-π12,所以2x +π6∈⎣⎢⎡⎦⎥⎤-5π6,0.于是:当2x +π6=0,即x =-π12时,f (x )取得最大值0; 当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.2.(2017·郑州模拟)在△ABC 中,内角A ,B ,C 所对应的边分别为a ,b ,c ,已知a sin 2B =3b sin A . (1)求B ;(2)若cos A =13,求sin C 的值. 解 (1)在△ABC 中, 由a sin A =bsin B , 可得a sin B =b sin A , 又由a sin 2B =3b sin A ,得2a sin B cos B =3b sin A =3a sin B , 又B ∈(0,π),所以sin B ≠0, 所以cos B =32, 得B =π6.(2)由cos A =13,A ∈(0,π),得sin A =223, 则sin C =sin[π-(A +B )]=sin(A +B ), 所以sin C =sin ⎝ ⎛⎭⎪⎫A +π6=32sin A +12cos A =26+16.3.(2017·西安调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6+2sin 2ωx 2(ω>0),已知函数f (x )的图像的相邻两对称轴间的距离为π. (1)求函数f (x )的解析式;(2)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c (其中b <c ),且f (A )=32,△ABC 的面积为S =63,a =27,求b ,c 的值. 解 (1)f (x )=32sin ωx +12cos ωx +1-cos ωx =32sin ωx -12cos ωx +1=sin ⎝ ⎛⎭⎪⎫ωx -π6+1.∵函数f (x )的图像的相邻两对称轴间的距离为π,∴函数f (x )的周期为2π.∴ω=1.∴函数f (x )的解析式为f (x )=sin ⎝ ⎛⎭⎪⎫x -π6+1.(2)由f (A )=32,得sin ⎝ ⎛⎭⎪⎫A -π6=12.又∵A ∈(0,π),∴A =π3.∵S =12bc sin A =63,∴12bc sin π3=63,bc =24,由余弦定理,得a 2=(27)2=b 2+c 2-2bc cos π3=b 2+c 2-24. ∴b 2+c 2=52,又∵b <c ,解得b =4,c =6.4.(2016·济南名校联考)已知函数f (x )=sin ωx +23cos 2ωx2+1-3(ω>0)的周期为π.(1)求f (x )的解析式并求其单调递增区间;(2)将f (x )的图像先向下平移1个单位长度,再向左平移φ(φ>0)个单位长度得到函数h (x )的图像,若h (x )为奇函数,求φ的最小值. 解 (1)f (x )=sin ωx +23cos 2ωx2+1-3= sin ωx +23×1+cos ωx2+1- 3 =sin ωx +3cos ωx +1=2sin(ωx +π3)+1. 又函数f (x )的周期为π,因此2πω =π,∴ω=2. 故f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1. 令2k π-π2≤2x +π3≤2k π+π2(k ∈Z ),得k π-5π12≤x ≤k π+π12(k ∈Z ),即函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k∈Z ).(2)由题意可知h (x )=2sin ⎣⎢⎡⎦⎥⎤2(x +φ)+π3,又h (x )为奇函数,则2φ+π3=k π,∴φ=k π2-π6(k ∈Z ).∵φ>0,∴当k =1时,φ取最小值π3. 5.已知△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,向量m = (2sin B ,-3),n =(cos 2B,2cos 2B2-1),且m ∥n . (1)求锐角B 的大小;(2)如果b =2,求S △ABC 的最大值. 解 (1)∵m ∥n ,∴2sin B ⎝ ⎛⎭⎪⎫2cos 2B2-1=-3cos 2B ,∴sin 2B =-3cos 2B ,即tan 2B =- 3. 又∵B 为锐角,∴2B ∈(0,π), ∴2B =2π3,∴B =π3. (2)∵B =π3,b =2,由余弦定理b 2=a 2+c 2-2ac cos B , 得a 2+c 2-ac -4=0.又a 2+c 2≥2ac ,代入上式,得ac ≤4, 当且仅当a =c =2时等号成立. 故S △ABC =12ac sin B =34ac ≤3, 当且仅当a =c =2时等号成立, 即S △ABC 的最大值为 3.6.(2017·合肥模拟)已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1),x ∈R .(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值. 解 (1)f (x )=2 cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos ⎝ ⎛⎭⎪⎫2x +π3,令2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),∴函数y =f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ). (2)∵f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1, ∴cos ⎝ ⎛⎭⎪⎫2A +π3=-1,又π3<2A +π3<7π3, ∴2A +π3=π,即A =π3.∵a =7,∴由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①∵向量m =(3,sin B )与n =(2,sin C )共线,∴2sin B =3sin C ,由正弦定理得2b =3c ,②由①②得b =3,c =2.。

2018年高考数学(理)总复习教师用书第十五单元Word版含解析

2018年高考数学(理)总复习教师用书第十五单元Word版含解析

第十五单元 ⎪⎪⎪计数原理教材复习课“计数原理”相关基础知识一课过[过双基]两个计数原理[小题速通]1.从3名男同学和2名女同学中选1人主持本班某次主题班会,不同选法种数为( ) A .6 B .5 C .3D .2解析:选B 由分类加法计算原理知总方法数为3+2=5(种).2.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数,a ,b 组成复数a +b i ,其中虚数有( ) A .30个 B .42个 C .36个D .35个解析:选C ∵a +b i 为虚数,∴b ≠0,即b 有6种取法,a 有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.3.(2016·西安质检)如果把个位数是1,且恰有3个数字相同的四位数叫作“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.解析:当相同的数字不是1时,有C 13个;当相同的数字是1时,共有C 13C 13个, 由分类加法计数原理知共有“好数”C 13+C 13C 13=12(个).答案:12[清易错]1.分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.2.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.1.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有()A.30B.20C.10 D.6解析:选D从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N=3+3=6种.2.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252C.261 D.279解析:选B0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个).排列与组合1.排列与排列数(1)排列:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,记作A m n.2.组合与组合数(1)组合:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C m n.3.排列数、组合数的公式及性质[小题速通]1.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C在实施时必须相邻,则在该实施中程序顺序的编排方法共有()A.34种B.48种C.96种D.144种解析:选C由题意知,程序A只能出现在第一步或最后一步,所以有A22=2种结果.因为程序B和C实施时必须相邻,所以把B和C看作一个元素,有A44A22=48种结果,根据分步乘法计数原理可知共有2×48=96种结果,故选C.2.某学校周二安排有语文、数学、英语、物理、化学、体育六节课,要求数学不排在第一节课,体育不排在第四节课,则这天课程表的不同排法种数为() A.720 B.504C.384 D.120解析:选B以数学课的排法进行分类:(1)数学排在第四节,则体育课可排在其余任意一节,故不同的排法种数为A55=120.(2)数学排在除第一节、第四节外的其余四节,其排法为4种;体育课则从除第四节、数学选择的节次外的其余四节任选一节,其排法为4种;其余课程由剩余4节课进行全排,不同的排法种数为A44=24.由分步乘法计数原理可得,不同的排法种数共有4×4×24=384.综上,由分类加法计数原理可得,不同的排法种数有120+384=504.3.将某师范大学4名大四学生分成2人一组,安排到A 城市的甲、乙两所中学进行教学实习,并推选甲校张老师、乙校李老师作为指导教师,则不同的实习安排方案共有________种.解析:采取“学校”选“人”的思路,则不同的实习安排方案有C 24C 22=6种.答案:64.方程3A 3x =2A 2x +1+6A 2x 的解为________.解析:由排列数公式可知3x (x -1)(x -2)=2(x +1)x +6x (x -1), ∵x ≥3且x ∈N *,∴3(x -1)(x -2)=2(x +1)+6(x -1),即3x 2-17x +10=0,解得x =5或x =23(舍去),∴x =5.答案:55.已知1C m 5-1C m 6=710C m 7,则C m8=________. 解析:由已知得m 的取值范围为{}m |0≤m ≤5,m ∈Z , m !(5-m )!5!-m !(6-m )!6!=7×(7-m )!m !10×7!,整理可得m 2-23m +42=0,解得m =21(舍去)或m =2.故C m 8=C 28=28.答案:28[清易错]只有两个偶数相邻,则这样的六位数的个数为( )A .423B .288C .216D .144解析:选B 若2,4相邻,把2,4捆绑在一起,与另外四个数排列(相当于5个元素排列),1不在左、右两侧,则六位数的个数为2×C 13×A 44=144,同理2,4与6相邻的有A 22×2×2×A 33=48个,所以只有2,4相邻的有144-48=96个,全部符合条件的六位数有96×3=288个.1.二项式定理2.二项式系数的性质[小题速通]1.已知C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =729,则C 1n +C 2n +C 3n +…+C nn 等于( )A .63B .64C .31D .32解析:选A 逆用二项式定理得C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =(1+2)n =3n =729,即3n =36,所以n =6,所以C 1n +C 2n +C 3n +…+C n n =26-C 0n =64-1=63.故选A.2.在x (1+x )6的展开式中,含x 3项的系数为( ) A .30 B .20 C .15D .10解析:选C 因为(1+x )6的展开式的第(r +1)项为T r +1=C r 6x r ,x (1+x )6的展开式中含x 3的项为C 26x 3=15x 3,所以系数为15.3.⎝⎛⎭⎪⎫x -124x 8的展开式中的有理项共有________项.解析:∵T r +1=C r 8(x )8-r⎝ ⎛⎭⎪⎫-124x r =⎝⎛⎭⎫-12r C r 8x 16-3r4,∴r 为4的倍数,故r =0,4,8共3项. 答案:34.(2017·山西四校联考)如果(2x -1)6=a 0+a 1x +a 2x 2+…+a 6x 6,那么a 1+a 2+…+a 6的值等于________.解析:令x =0,有1=a 0;令x =1,有1=a 0+a 1+…+a 6,所以a 1+a 2+…+a 6=0. 答案:0[清易错]1.二项式的通项易误认为是第k 项,实质上是第k +1项.2.易混淆二项式中的“项”,“项的系数”、“项的二项式系数”等概念,注意项的系数是指非字母因数所有部分,包含符号,二项式系数仅指C k n (k =0,1,…,n ).1.(2017·长沙长郡中学月考)若⎝⎛⎭⎫x 2-1x n 的展开式中的所有二项式系数之和为512,则该展开式中常数项为( )A .-84B .84C .-36D .36解析:选B 由二项式系数之和为2n =512,得n =9.又T r +1=(-1)r C r 9x18-3r,令18-3r =0,得r =6,故常数项为T 7=84.故选B.2.若二项式⎝⎛⎭⎫x -2x n 展开式中的第5项是常数,则自然数n 的值为( ) A .6 B .10 C .12D .15解析:选C 由二项式⎝⎛⎭⎫x -2x n 展开式的第5项C 4n (x )n -4⎝⎛⎭⎫-2x 4=16C 4n x n 2-6是常数项,可得n2-6=0,解得n =12.[双基过关检测] 一、选择题1.(2017·滨州模拟)甲、乙两人从4门课程中选修2门,则甲、乙所选课程中恰有1门相同的选法有( )A .6种B .12种C .24种D .30种解析:选C 分步完成:第一步,甲、乙选同一门课程有4种方法;第二步,甲从剩余的3门课程选一门有3种方法;第三步,乙从剩余的2门中选出一门课程有2种方法;∴甲、乙恰有1门相同课程的选法有4×3×2=24(种).2.现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有()A.24种B.30种C.36种D.48种解析:选D按A→B→C→D顺序分四步涂色,共有4×3×2×2=48(种).3.(2017·云南师大附中适应性考试)在(a+x)7展开式中x4的系数为280,则实数a的值为()A.1 B.±1C.2 D.±2解析:选C由题知,C47a3=280,得a=2,故选C.4.(2016·佛山二模)教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有() A.10种B.25种C.52种D.24种解析:选D每相邻的两层之间各有2种走法,共分4步.由分步乘法计数原理,共有24种不同的走法.5.张、王两家夫妇各带一个小孩一起到动物园游玩,购票后排队依次入园.为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这六人入园顺序的排法种数为()A.12 B.24C.36 D.48解析:选B将两位爸爸排在两端,有2种排法;将两个小孩视作一人与两位妈妈任意排在中间的三个位置上,有2A33种排法,故总的排法有2×2×A33=24(种).6.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案种数是()A.150 B.300C.600 D.900解析:选C 若甲去,则乙不去,丙去,再从剩余的5名教师中选2名,有C 25×A 44=240种方法;若甲不去,则丙不去,乙可去可不去,从6名教师中选4名,共有C 46×A 44=360种方法.因此共有600种不同的选派方案.7.(2017·成都一中模拟)设(x 2+1)(2x +1)9=a 0+a 1(x +2)+a 2(x +2)2+…+a 11(x +2)11,则a 0+a 1+a 2+…+a 11的值为( )A .-2B .-1C .1D .2解析:选A 令等式中x =-1,可得a 0+a 1+a 2+…+a 11=(1+1)(-1)9=-2,故选A. 8.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是( )A .9B .10C .18D .20解析:选C lg a -lg b =lg ab ,从1,3,5,7,9中任取两个数分别记为a ,b ,共有A 25=20种结果,其中lg 13=lg 39,lg 31=lg 93,故共可得到不同值的个数为20-2=18.故选C.二、填空题9.⎝⎛⎭⎫2x -1x 5的二项展开式中x 项的系数为________. 解析:⎝⎛⎭⎫2x -1x 5的展开式的通项是T r +1=C r 5·(2x )5-r ·⎝⎛⎭⎫-1x r =C r 5·(-1)r ·25-r ·x 5-2r.令5-2r =1得r =2.因此⎝⎛⎭⎫2x -1x 5的展开式中x 项的系数是C 25·(-1)2·25-2=80. 答案:8010.(2016·石家庄模拟)将甲、乙、丙、丁四名学生分到两个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法的种数为________(用数字作答).解析:第1步,把甲、乙分到不同班级有A 22=2种分法; 第2步,分丙、丁:①丙、丁分到同一班级有2种方法; ②丙、丁分到两个不同班有A 22=2种分法.由分步乘法计数原理,不同的分法为2×(2+2)=8(种). 答案:811.如图所示,在A ,B 间有四个焊接点,若焊接点脱落,则可能导致电路不通,今发现A ,B 之间线路不通,则焊接点脱落的不同情况有________种.解析:四个焊点共有24种情况,其中使线路通的情况有:1,4都通,2和3至少有一个通时线路才通,共有3种可能.故不通的情况有24-3=13(种)可能.答案:1312.(2017·宁波调研)如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色方法有________种.解析:若1,3不同色,则1,2,3,4必不同色,有3A 44=72种涂色法;若1,3同色,有C 14C 13A 22=24种涂色法.根据分类计数原理可知,共有72+24=96种涂色法.答案:96 三、解答题13.已知(a 2+1)n 展开式中的二项式系数之和等于⎝⎛⎭⎫165x 2+1x 5的展开式的常数项,而(a 2+1)n 的展开式的二项式系数最大的项等于54,求正数a 的值.解:⎝⎛⎭⎫165x 2+1x 5展开式的通项T r +1=C r 5⎝⎛⎭⎫165x 25-r ·⎝⎛⎭⎫1x r =C r 5⎝⎛⎭⎫1655-r x 20-5r 2, 令20-5r =0,得r =4,故常数项T 5=C 45·165=16,又(a 2+1)n 展开式的各项系数之和为2n , 由题意得2n =16,∴n =4.∴(a 2+1)4展开式中二项式系数最大的项是中间项T 3,从而C 24(a 2)2=54,∴a = 3.14.从1到9的9个数字中取3个偶数4个奇数,试问: (1)能组成多少个没有重复数字的七位数? (2)上述七位数中,3个偶数排在一起的有几个?(3)(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个?解:(1)分三步完成:第一步,在4个偶数中取3个,有C34种情况;第二步,在5个奇数中取4个,有C45种情况;第三步,3个偶数,4个奇数进行排列,有A77种情况.所以符合题意的七位数有C34C45A77=100 800个.(2)上述七位数中,3个偶数排在一起的有C34C45A33A55=14 400个.(3)(1)中的七位数中,3个偶数排在一起,4个奇数也排在一起的有C34C45A33A44A22=5 760个.高考研究课(一)—————————————————————————————————————排列与组合常考3类型——排列、组合、分组分配————————————————————————————————————[全国卷5年命题分析][典例]3(1)如果女生全排在一起,有多少种不同排法?(2)如果女生都不相邻,有多少种排法?(3)如果女生不站两端,有多少种排法?(4)其中甲必须排在乙前面(可不邻),有多少种排法?(5)其中甲不站左端,乙不站右端,有多少种排法?[解](1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同五个男生合在一起有6个元素,排成一排有A66种排法,而其中每一种排法中,三个女生间又有A33种排法,因此共有A66·A33=4 320(种)不同排法.(2)(插空法)先排5个男生,有A55种排法,这5个男生之间和两端有6个位置,从中选取3个位置排女生,有A36种排法,因此共有A55·A36=14 400(种)不同排法.(3)法一(位置分析法):因为两端不排女生,只能从5个男生中选2人排列,有A25种排法,剩余的位置没有特殊要求,有A 66种排法,因此共有A 25·A 66=14 400(种)不同排法.法二(元素分析法):从中间6个位置选3个安排女生,有A 36种排法,其余位置无限制,有A 55种排法,因此共有A 36·A 55=14 400(种)不同排法.(4)8名学生的所有排列共A 88种,其中甲在乙前面与乙在甲前面的各占其中12, ∴符合要求的排法种数为12A 88=20 160(种).(5)甲、乙为特殊元素,左、右两边为特殊位置.法一(特殊元素法):甲在最右边时,其他的可全排,有A 77种;甲不在最右边时,可从余下6个位置中任选一个,有A 16种.而乙可排在除去最右边位置后剩余的6个中的任一个上,有A 16种,其余人全排列,共有A 16·A 16·A 66种.由分类加法计数原理,共有A 77+A 16·A 16·A 66=30 960(种).法二(特殊位置法):先排最左边,除去甲外,有A 17种,余下7个位置全排,有A 77种,但应剔除乙在最右边时的排法A 16·A 66种,因此共有A 17·A 77-A 16·A 66=30 960(种).法三(间接法):8个人全排,共A 88种,其中,不合条件的有甲在最左边时,有A 77种,乙在最右边时,有A 77种,其中都包含了甲在最左边,同时乙在最右边的情形,有A 66种.因此共有A 88-2A 77+A 66=30 960(种).[方法技巧]求解排列应用题的主要方法[即时演练]1.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种解析:选B第一类:甲在左端,有A55=5×4×3×2×1=120(种)方法;第二类:乙在最左端,甲不在最右端,有4A44=4×4×3×2×1=96(种)方法.所以共有120+96=216(种)方法.2.用1,2,3,4这四个数字组成无重复数字的四位数,其中恰有一个偶数夹在两个奇数之间的四位数的个数为________.解析:(捆绑法)首先排两个奇数1,3有A22种排法,再在2,4中取一个数放在1,3排列之间,有C12种方法,然后把这3个数作为一个整体与剩下的另一个偶数全排列,有A22种排法,即满足条件的四位数的个数为A22C12A22=8.答案:8[典例](1)(2017·名学生中选派4名学生发言,要求甲、乙两人至少有一人参加,当甲、乙同时参加时,他们两人的发言不能相邻,那么不同的发言顺序的种数为()A.360B.520C.600 D.720(2)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为________.[解析](1)根据题意,分2种情况讨论:若只有甲、乙其中一人参加,有C1·C35·A44=2480种情况;若甲、乙两人都参加,有C22·C25·A44=240种情况,其中甲、乙相邻的有C22·C25·A33·A22=120种情况.则不同的发言顺序的种数为480+240-120=600.(2)第一类,含有1张红色卡片,不同的取法C14C212=264种.第二类,不含有红色卡片,不同的取法C312-3C34=220-12=208种.由分类加法计数原理知,不同的取法共有264+208[答案] (1)C (2)472 [方法技巧]组合问题常有的2类题型(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取;(2)“至少”或“最多”含有几个元素的题型:若直接法分类复杂时,逆向思维,间接求解.[即时演练]1.如果小明在某一周的第一天和第七天分别吃了3个水果,且从这周的第二天开始,每天所吃水果的个数与前一天相比,仅存在三种可能:或“多一个”或“持平”或“少一个”,那么,小明在这一周中每天所吃水果个数的不同选择方案共有( )A .50种B .51种C .140种D .141种解析:选D 因为第一天和第七天吃的水果数相同,所以中间“多一个”或“少一个”的天数必须相同,都是0,1,2,3,共4种情况,所以共有C 06+C 16C 15+C 26C 24+C 36C 33=141种,故选D.2.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( ) A .24对 B .30对 C .48对D .60对解析:选C 法一:直接法:如图,在上底面中选B1D 1,四个侧面中的面对角线都与它成60°,共8对,同样A 1C 1对应的也有8对,因此一个面上的2条面对角线与其相邻的4个面上的8条对角线共组成16对,又正方体共有6个面,所以共有16×6=96(对),又因为每对被计算了2次,因此成60°的面对角线有12×96=48(对).法二:间接法:正方体的12条面对角线中,任意两条垂直、平行或成角为60°,所以成角为60°的共有C 212-12-6=48(对).分组分配问题分组分配问题是排列、组合问题的综合运用,解决这类问题的一个基本指导思想就是先分组后分配.关于分组问题,有不等分、整体均分和部分均分三种,无论分成几组,应注意只要有一些组中元素的个数相等,就存在均分现象.,常见的命题角度有:(1)不等分问题; (2)整体均分问题; (3)部分均分问题. 角度一:不等分问题1.若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.解析:将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有C 16种取法;第2步,在余下的5名教师中任取2名作为一组,有C 25种取法;第3步,余下的3名教师作为一组,有C 33种取法.根据分步乘法计数原理,共有C 16C 25C 33=60种取法.再将这3组教师分配到3所中学,有A 33=6种分法, 故共有60×6=360种不同的分法. 答案:360角度二:整体均分问题2.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.解析:先把6个毕业生平均分成3组,有C 26C 24C 22A 33种方法,再将3组毕业生分到3所学校,有A 33=6种方法,故6个毕业生平均分到3所学校,共有C 26C 24C 22A 33·A 33=90种分派方法. 答案:90角度三:部分均分问题3..(2016·内江模拟)某科室派出4名调研员到3个学校,调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为( )A .144B .72C .36D .48解析:选C 分两步完成:第一步将4名调研员按2,1,1分成三组,其分法有C 24C 12C 11A 22;第二步将分好的三组分配到3个学校,其分法有A33种,所以满足条件的分配方案有C24C12C11A22·A33=36种.[方法技巧]解决分组分配问题的3种策略(1)不等分组只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.(2)整体均分解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n (n为均分的组数),避免重复计数.(3)部分均分解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,一个分组过程中有几个这样的均匀分组就要除以几个这样的全排列数.1.(2012·全国卷Ⅰ)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有() A.12种B.10种C.9种D.8种解析:选A先安排1名教师和2名学生到甲地,再将剩下的1名教师和2名学生安排到乙地,共有C12C24=12种安排方案.2.(2016·全国甲卷)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18C.12 D.9解析:选B由题意可知E→F有C24种走法,F→G有C13种走法,由乘法计数原理知,共C24·C13=18种走法,故选B.3.(2016·四川高考)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24 B.48C.60 D.72解析:选D第一步,先排个位,有C13种选择;第二步,排前4位,有A44种选择.由分步乘法计数原理,知有C13·A44=72(个).4.(2015·四川高考)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个解析:选B当万位数字为4时,个位数字从0,2中任选一个,共有2A34个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有C13A34个偶数.故符合条件的偶数共有2A34+C13A34=120(个).5.(2014·重庆高考)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72 B.120C.144 D.168解析:选B依题意,先仅考虑3个歌舞类节目互不相邻的排法种数为A33A34=144,其中3个歌舞类节目互不相邻但2个小品类节目相邻的排法种数为A22A22A33=24,因此满足题意的排法种数为144-24=120,选B.6.(2014·北京高考)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.解析:将A,B捆绑在一起,有A22种摆法,再将它们与其他3件产品全排列,有A44种摆法,共有A22A44=48种摆法,而A,B,C3件在一起,且A,B相邻,A,C相邻有CAB,BAC两种情况,将这3件与剩下2件全排列,有2×A33=12种摆法,故A,B相邻,A,C 不相邻的摆法有48-12=36种.答案:36[高考达标检测]一、选择题1.将字母a ,a ,b ,b ,c ,c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( )A .12种B .18种C .24种D .36种解析:选A 由分步乘法计数原理,先排第一列,有A 33种方法,再排第二列,有2种方法,故共有A 33×2=12种排列方法.2.有5名优秀毕业生到母校的3个班去做学习经验交流,则每个班至少去一名的不同分派方法种数为( )A .150B .180C .200D .280解析:选A 分两类:一类,3个班分派的毕业生人数分别为2,2,1,则有C 25C 23A 22·A 33=90种分派方法;另一类,3个班分派的毕业生人数分别为1,1,3,则有C 35·A 33=60种分派方法.所以不同分派方法种数为90+60=150.3.将标号为1,2,3,4的四个篮球分给三位小朋友,每位小朋友至少分到一个篮球,且标号1,2的两个篮球不能分给同一个小朋友,则不同的分法种数为( )A .15B .20C .30D .42解析:选C 四个篮球中两个分到一组有C 24种分法,三组篮球进行全排列有A 33种,标号1,2的两个篮球分给同一个小朋友有A 33种分法,所以有C 24A 33-A 33=36-6=30种分法,故选C.4.有5本不同的教科书,其中语文书2本,数学书2本,物理书1本.若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是( )A .24B .48C .72D .96解析:选B 据题意可先摆放2本语文书,当1本物理书在2本语文书之间时,只需将2本数学书插在前3本书形成的4个空中即可,此时共有A 22A 24种摆放方法;当1本物理书放在2本语文书一侧时,共有A 22A 12C 12C 13种不同的摆放方法,由分类加法计数原理可得共有A 22A 24+A 22A 12C 12C 13=48种摆放方法.5.现有2门不同的考试要安排在5天之内进行,每天最多进行一门考试,且不能连续两天有考试,那么不同的考试安排方案种数是( )A.12 B.6C.8 D.16解析:选A若第一门安排在开头或结尾,则第二门有3种安排方法,这时,共有C12×3=6种方法;若第一门安排在中间的3天中,则第二门有2种安排方法,这时,共有3×2=6种方法.综上可得,不同的考试安排方案共有6+6=12种.6.(2016·昆明调研)航空母舰“辽宁舰”将进行一次编队配置科学试验,要求2艘攻击型核潜艇一前一后,3艘驱逐舰和3艘护卫舰分列左右,每侧3艘,同侧不能都是同种舰艇,则舰艇分配方案的方法数为()A.72 B.324C.648 D.1 296解析:选D核潜艇排列数为A22,6艘舰艇任意排列的排列数为A66,同侧均是同种舰艇的排列数为A33A33×2,则舰艇分配方案的方法数为A22(A66-A33A33×2)=1 296.7.(2016·青岛模拟)将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.18种B.24种C.36种D.72种解析:选C一个路口有3人的分配方法有C13C22A33(种);两个路口各有2人的分配方法有C23C22A33(种).∴由分类加法计数原理,甲、乙在同一路口的分配方案为C13C22A33+C23C22A33=36(种).8.市内某公共汽车站有6个候车位(成一排),现有3名乘客随便坐在某个座位上候车,则恰好有2个连续空座位的候车方式的种数是()A.48B.54C.72 D.84解析:选C由题意,先把3名乘客全排列,有A33种排法,产生四个空,再将2个连续空座位和一个空座位插入四个空中,有A24种排法,则共有A33·A24=72(种)候车方式.故选C.二、填空题9.(2017·洛阳统考)四名学生保送到三所学校去,每所学校至少得一名,则不同的保送方案有________种.解析:分两步:先将四名学生分成2,1,1三组,共有C24种;而后,对三组学生进行全排列,有A33种.依分步乘法计数原理有C24A33=36(种)保送方案.答案:3610.若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种.解析:把g ,o ,o ,d 4个字母排一列,可分两步进行,第一步:排g 和d ,共有A 24种排法;第二步:排两个o ,共一种排法,所以总的排法种数有A 24=12(种).其中正确的有一种,所以错误的共有A 24-1=12-1=11(种).答案:1111.(2017·江苏淮海中学期中)若A ,B ,C ,D ,E ,F 六个不同元素排成一列,要求A 不排在两端,且B ,C 相邻,则不同的排法有________种(用数字作答).解析:由于B ,C 相邻,把B ,C 看做一个整体,有2种排法.这样,6个元素变成了5个.先排A ,由于A 不排在两端,则A 在中间的3个位子中,有A 13=3种方法,其余的4个元素任意排,有A 44种不同方法,故不同的排法有2×3×A 44=144种.答案:14412.(2017·济南模拟)航天员拟在太空授课,准备进行标号为0,1,2,3,4,5的六项实验,向全世界人民普及太空知识,其中0号实验不能放在第一项,最后一项的标号小于它前面相邻一项的标号,则实验顺序的编排方法种数为________(用数字作答).解析:优先安排第一项实验,再利用定序问题相除法求解.由于0号实验不能放在第一项,所以第一项实验有5种选择.最后两项实验的顺序确定,所以共有5A 55A 22=300种不同的编排方法.答案:300 三、解答题13.将7个相同的小球放入4个不同的盒子中. (1)不出现空盒时的放入方式共有多少种? (2)可出现空盒时的放入方式共有多少种?解:(1)将7个相同的小球排成一排,在中间形成的6个空当中插入无区别的3个“隔板”将球分成4份,每一种插入隔板的方式对应一种球的放入方式,则共有C 36=20种不同的放入方式.(2)每种放入方式对应于将7个相同的小球与3个相同的“隔板”进行一次排列,即从10个位置中选3个位置安排隔板,故共有C 310=120种放入方式.。

2018北师大版文科数学高考总复习教师用书:10-2统计图

2018北师大版文科数学高考总复习教师用书:10-2统计图

第2讲统计图表、数据的数字特征、用样本估计总体最新考纲 1.了解分布的意义和作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点;2.理解样本数据标准差的意义和作用,会计算数据标准差;3.能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释;4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想;5.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.知识梳理1.用样本的频率分布估计总体分布(1)频率分布表与频率分布直方图频率分布表与频率分布直方图的绘制步骤如下:①求极差(即一组数据中最大值与最小值的差);②定组距与组数;③将数据分组;④列频率分布表;⑤画频率分布直方图.(2)频率折线图在频率分布直方图中,按照分组原则,再在左边和右边各加一个区间.从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点直至右边所加区间的中点,就可以得到一条折线,我们称之为频率折线图.(3)茎叶图①茎叶图是统计中用来表示数据的一种图,茎是指中间的一列数,叶就是从茎的旁边生长出来的数.②对于样本数据较少,但较为集中的一组数据:若数据是两位整数,则将十位数字作茎,个位数字作叶;若数据是三位整数,则将百位、十位数字作茎,个位数字作叶,样本数据为小数时做类似处理.2.样本的数字特征1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( )(2)一组数据的方差越大,说明这组数据越集中.( )(3)频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间的频率越高.( )(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( )解析 (2)错误.方差越大,这种数据越离散.(4)错误.相同的数据叶要重复记录,故(4)错误.答案 (1)√ (2)× (3)√ (4)×2.(必修3P70改编)若某校高一年级8个班参加合唱比赛的得分茎叶图如图所示,则这组数据的中位数和平均数分别是( )A.91.5和91.5 B .91.5和92C .91和91.5D .92和92解析 这组数据由小到大排列为87,89,90,91,92,93,94,96,∴中位数是91+922=91.5,平均数x =87+89+90+91+92+93+94+968=91.5. 答案 A3.在样本的频率分布直方图中,共有7个小长方形,若中间一个小长方形的面积等于其他6个小长方形的面积的和的14,且样本容量为80,则中间一组的频数为( )A .0.25B .0.5C .20D .16解析 设中间一组的频数为x ,依题意有x 80=14(1-x 80),解得x =16.答案 D4.(2016·江苏卷)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.解析 易求x =15(4.7+4.8+5.1+5.4+5.5)=5.1,∴方差s 2=15[(-0.4)2+(-0.3)2+02+0.32+0.42]=0.1.答案 0.15.(2017·合肥调研)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组.下图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为________.解析 全体志愿者共有:20(0.24+0.16)×1=50(人), 所以第三组有志愿者:0.36×1×50=18(人),∵第三组中没有疗效的有6人,∴有疗效的有18-6=12(人).答案 12考点一 茎叶图及其应用【例1】 (2014·全国Ⅱ卷)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.解 (1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.规律方法 (1)茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.(2)①作样本的茎叶图时先要根据数据特点确定茎、叶,再作茎叶图;作“叶”时,要做到不重不漏,一般由内向外,从小到大排列,便于数据的处理.②根据茎叶图中数据数字特征进行分析判断考查识图能力,判断推理能力和创新应用意识;解题的关键是抓住“叶”的分布特征,准确提炼信息.【训练1】以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x+y的值为________.解析由茎叶图及已知得x=5,又乙组数据的平均数为16.8,即9+15+10+y+18+245=16.8,解得y=8,因此x+y=13.答案13考点二频率分布直方图(多维探究)命题角度一用频率分布直方图求频率、频数【例2-1】(2016·山东卷)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.140解析由频率分布直方图可知每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,则每周自习时间不少于22.5小时的人数为0.7×200=140.答案 D命题角度二用频率分布直方图估计总体【例2-2】(2016·四川卷)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),……,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.解(1)由频率分布直方图可知:月均用水量在[0,0.5)内的频率为0.08×0.5=0.04. 同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a,解得a=0.30.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5.又前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5.所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.规律方法(1)准确理解频率分布直方图的数据特点,频率分布直方图中纵轴上的数据是各组的频率除以组距的结果,不要误以为纵轴上的数据是各组的频率和条形图混淆.(2)“命题角度二”的例题中抓住频率分布直方图中各小长方形的面积之和为1,这是解题的关键,并利用频率分布直方图可以估计总体分布.【训练2】(2017·佛山质检)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则从月平均用电量在[220,240)内的用户中应抽取多少户?解(1)由(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1,得x=0.007 5,∴直方图中x的值为0.007 5.(2)月平均用电量的众数是220+2402=230.∵(0.002+0.009 5+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,则(0.002+0.009 5+0.011)×20+0.012 5×(a-220)=0.5,解得a=224,即中位数为224.(3)月平均用电量在[220,240)内的用户有0.012 5×20×100=25(户),同理可求月平均用电量为[240,260),[260,280),[280,300]的用户分别有15户、10户、5户,故抽样比为1125+15+10+5=1 5.∴从月平均用电量在[220,240)内的用户中应抽取25×15=5(户).考点三样本的数字特征【例3】(2017·南昌一中检测)某企业有甲、乙两个研发小组.为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b)(a,b),(a,b),(a,b),(a,b).其中a,a分别表示甲组研发成功和失败;b,b分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.解(1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,0,1,1,1,0,1,其平均数为x甲=1015=23.方差s2甲=115⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1-232×10+⎝⎛⎭⎪⎫0-232×5=29.乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,其平均数为x乙=915=35.方差s2乙=115⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1-352×9+⎝⎛⎭⎪⎫0-352×6=625.因为x甲>x乙,s2甲<s2乙,所以甲组的研发水平优于乙组.(2)记E={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),共7个.因此事件E发生的频率为7 15.用频率估计概率,即得所求概率为P(E)=7 15.规律方法(1)平均数反映了数据的中心,是平均水平,而方差和标准差反映的是数据围绕平均数的波动大小.进行平均数与方差的计算,关键是正确运用公式.(2)平均数与方差所反映的情况有着重要的实际意义,一般可以通过比较甲、乙两组样本数据的平均数和方差的差异,对甲、乙两品种可以做出评价或选择.【训练3】(2015·山东卷)为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③B.①④C.②③D.②④解析甲地5天的气温为:26,28,29,31,31,其平均数为x甲=26+28+29+31+315=29;方差为s2甲=15[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=3.6;标准差为s甲= 3.6.乙地5天的气温为:28,29,30,31,32,其平均数为x乙=28+29+30+31+325=30;方差为s2乙=15[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=2;标准差为s乙= 2.∴x甲<x乙,s甲>s乙.答案 B[思想方法]1.用样本估计总体是统计的基本思想.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.2.(1)众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量,与每个样本数据有关,这是中位数、众数所不具有的性质.(2)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度就越大.3.茎叶图、频率分布表和频率分布直方图都可直观描述样本数据的分布规律.[易错防范]1.在使用茎叶图时,一定要注意看清楚所有的样本数据,弄清楚这个图中的数字特点,不要漏掉了数据,也不要混淆茎叶图中茎与叶的含义.2.利用频率分布直方图求众数、中位数与平均数时,应注意这三者的区分:(1)最高的矩形的中点横坐标即众数;(2)中位数左边和右边的直方图的面积是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.3.直方图与条形图不要搞混频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.基础巩固题组(建议用时:40分钟)一、选择题1.(2015·重庆卷)重庆市2013年各月的平均气温(℃)数据的茎叶图如下:则这组数据的中位数是()A.19 B.20 C.21.5 D.23解析从茎叶图知所有数据为8,9,12,15,18,20,20,23,23,28,31,32,中间两个数为20,20,故中位数为20,选B.答案 B2.学校为了解学生在课外读物方面的支出情况,抽取了n位同学进行调查,结果显示这些同学的支出都在[10,50](单位:元)内,其中支出在[30,50](单位:元)内的同学有67人,其频率分布直方图如图所示,则n的值为()A.100 B.120 C.130 D.390解析支出在[30,50]内的同学的频率为1-(0.01+0.023)×10=0.67,n=67 0.67=100.答案 A3.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D.1 365石解析254粒和1 534石中夹谷的百分比含量是大致相同的,可据此估计这批米内夹谷的数量.设1 534石米内夹谷x石,则由题意知x1 534=28 254,解得x≈169.故这批米内夹谷约为169石.答案 B4.(2016·全国Ⅲ卷)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是()A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个解析对于选项A,由图易知各月的平均最低气温都在0 ℃以上,A正确;对于选项B,七月的平均最高气温点与平均最低气温点间的距离大于一月的平均最高气温点与平均最低气温点间的距离,所以七月的平均温差比一月的平均温差大,B正确;对于选项C,三月和十一月的平均最高气温均为10 ℃,所以C正确;对于选项D,平均最高气温高于20 ℃的月份有七月、八月、共2个月份,故D 错误.答案 D5.(2015·安徽卷)若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为()A.8 B.15 C.16 D.32解析已知样本数据x1,x2,…,x10的标准差为s=8,则s2=64,数据2x1-1,2x2-1,…,2x10-1的方差为22s2=22×64,所以其标准差为22×64=2×8=16,故选C.答案 C 二、填空题6.(2015·广东卷)已知样本数据x 1,x 2,…,x n 的平均数x =5,则样本数据2x 1+1,2x 2+1,…,2x n +1的平均数为________. 解析 由条件知x =x 1+x 2+…+x n n =5,则所求平均数x 0=2x 1+1+2x 2+1+…+2x n +1n=2(x 1+x 2+…+x n )+n n=2x +1=2×5+1=11. 答案 117.某校女子篮球队7名运动员身高(单位:cm)分布的茎叶图如图,已知记录的平均身高为175 cm ,但记录中有一名运动员身高的末位数字不清晰,如果把其末位数字记为x ,那么x 的值为________.解析 170+17×(1+2+x +4+5+10+11)=175, 17×(33+x )=5,即33+x =35,解得x =2. 答案 28.为了了解一片经济林的生长情况,随机抽取了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm.解析底部周长在[80,90)的频率为0.015×10=0.15,底部周长在[90,100)的频率为0.025×10=0.25,样本容量为60,所以树木的底部周长小于100 cm的株数为(0.15+0.25)×60=24. 答案24三、解答题9.某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.解(1)这20名工人年龄的众数为30;这20名工人年龄的极差为40-19=21.(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图如下:(3)这20名工人年龄的平均数为(19+28×3+29×3+30×5+31×4+32×3+40)÷20=30;所以这20名工人年龄的方差为120(30-19)2+320(30-28)2+320(30-29)2+520(30-30)2+420(30-31)2+320(30-32)2+120(30-40)2=12.6.10.(2016·北京卷)某市居民用水拟实行阶梯水价,每人月用水量中不超过w 立方米的部分按4元/立方米收费,超出w 立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(1)如果w 为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w 至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替.当w =3时,估计该市居民该月的人均水费.解 (1)由用水量的频率分布直方图,知该市居民该月用水量在区间[0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3]内的频率依次为0.1,0.15,0.2,0.25,0.15.所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.依题意,w 至少定为3.(2)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表如下:4×0.1+6×0.15+8×0.2+10×0.25+12×0.15+17×0.05+22×0.05+27×0.05=10.5(元).能力提升题组 (建议用时:20分钟)11.如图是一组样本数据的频率分布直方图,则依据图形中的数据,可以估计总体的平均数与中位数分别是( )A .12.5,12.5B .13,13C .13.5,12.5D .13.5,13解析 第1组的频率为0.04×5=0.2,第2组的频率为0.1×5=0.5,则第3组的频率为1-0.2-0.5=0.3,估计总体平均数为7.5×0.2+12.5×0.5+17.5×0.3=13.由题意知,中位数在第2组内,设为10+x ,则有0.1x =0.3,解得x =3,从而中位数是13. 答案 B12.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场作的9个分数的茎叶图,后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为( ) A.1169 B.367 C .36 D.677解析 由题意知87+94+90+91+90+90+x +917=91,解得x=4.所以s2=17[(87-91)2+(94-91)2+(90-91)2+(91-91)2+(90-91)2+(94-91)2+(91-91)2]=17(16+9+1+0+1+9+0)=367.答案 B13.(2015·湖北卷)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a=________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.解析(1)由0.1×1.5+0.1×2.5+0.1a+0.1×2.0+0.1×0.8+0.1×0.2=1,解得a =3.(2)区间[0.3,0.5)内的频率为0.1×1.5+0.1×2.5=0.4,故[0.5,0.9]内的频率为1-0.4=0.6.因此,消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000.答案(1)3(2)6 00014.(2014·全国Ⅰ卷)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?解(1)样本数据的频率分布直方图如图所示:(2)质量指标值的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104. (3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.。

浙江专用2018年高考数学总复习教师用书:第7章 第6讲数学归纳法含解析

浙江专用2018年高考数学总复习教师用书:第7章 第6讲数学归纳法含解析

第6讲数学归纳法最新考纲 1.了解数学归纳法的原理;2.能用数学归纳法证明一些简单的数学命题.知识梳理1.数学归纳法证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.2.数学归纳法的框图表示诊断自测1.判断正误(在括号内打“√”或“×”)(1)用数学归纳法证明等式“1+2+22+…+2n+2=2n+3-1”,验证n=1时,左边式子应为1+2+22+23.( )(2)所有与正整数有关的数学命题都必须用数学归纳法证明.( )(3)用数学归纳法证明问题时,归纳假设可以不用.( )(4)不论是等式还是不等式,用数学归纳法证明时,由n=k到n=k+1时,项数都增加了一项.( )解析对于(2),有些命题也可以直接证明;对于(3),数学归纳法必须用归纳假设;对于(4),由n=k到n=k+1,有可能增加不止一项.答案(1)√(2)×(3)×(4)×2.(选修2-2P99B1改编)在应用数学归纳法证明凸n边形的对角线为12n(n-3)条时,第一步检验n等于( )A.1B.2C.3D.4解析三角形是边数最少的凸多边形,故第一步应检验n=3. 答案 C3.已知f(n)=1n+1n+1+1n+2+…+1n2,则( )A.f(n)中共有n项,当n=2时,f(2)=12+13B.f(n)中共有n+1项,当n=2时,f(2)=12+13+14C.f(n)中共有n2-n项,当n=2时,f(2)=12+13D.f(n)中共有n2-n+1项,当n=2时,f(2)=12+13+14解析f(n)共有n2-n+1项,当n=2时,1n=12,1n2=14,故f(2)=12+13+14.答案 D4.用数学归纳法证明1+12+13+…+12n-1<n(n∈N,且n>1),第一步要证的不等式是________.解析当n=2时,式子为1+12+13<2.答案1+12+13<25.用数学归纳法证明“当n为正奇数时,x n+y n能被x+y整除”,当第二步假设n=2k-1(k∈N*)命题为真时,进而需证n=________时,命题亦真.解析由于步长为2,所以2k-1后一个奇数应为2k+1.答案2k+16.(2017·宁波调研)用数学归纳法证明“当n为正偶数时,x n-y n能被x+y 整除”第一步应验证n=________时,命题成立;第二步归纳假设成立应写成________.解析因为n为正偶数,故第一个值n=2,第二步假设n取第k个正偶数成立,即n=2k,故应假设成x2k-y2k能被x+y整除.答案 2 x2k-y2k能被x+y整除考点一用数学归纳法证明等式【例1】用数学归纳法证明:1 2×4+14×6+16×8+…+12n(2n+2)=n4(n+1)(n∈N*).证明(1)当n=1时,左边=12×1×(2×1+2)=1 8,右边=14(1+1)=18,左边=右边,所以等式成立.(2)假设n=k(k∈N*)时等式成立,即有1 2×4+14×6+16×8+…+12k(2k+2)=k4(k+1),则当n=k+1时,12×4+14×6+16×8+…+12k(2k+2)+12(k+1)[2(k+1)+2]=k4(k+1)+14(k+1)(k+2)=k(k+2)+14(k+1)(k+2)=(k+1)24(k+1)(k+2)=k+14(k+2)=k+14(k+1+1).所以当n=k+1时,等式也成立,由(1)(2)可知,对于一切n∈N*等式都成立.规律方法(1)用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n0是多少.(2)由n=k时等式成立,推出n=k+1时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确写出证明过程,不利用归纳假设的证明,就不是数学归纳法.【训练1】求证:(n+1)(n+2)·…·(n+n)=2n·1·3·5·…·(2n-1)(n∈N*). 证明(1)当n=1时,等式左边=2,右边=2,故等式成立;(2)假设当n=k(k∈N*)时等式成立,即(k+1)(k+2)·…·(k+k)=2k·1·3·5·…·(2k-1),那么当n=k+1时,左边=(k+1+1)(k+1+2)·…·(k+1+k+1)=(k+2)(k+3)·…·(k+k)(2k+1)(2k+2)=2k·1·3·5·…·(2k-1)(2k+1)·2=2k+1·1·3·5·…·(2k-1)(2k+1),所以当n=k+1时等式也成立.由(1)(2)可知,对所有n∈N*等式成立.考点二用数学归纳法证明不等式【例2】(2017·浙江五校联考)等比数列{a n}的前n项和为S n.已知对任意的n∈N*,点(n,Sn)均在函数y=b x+r(b>0,且b≠1,b,r均为常数)的图象上.(1)求r的值;(2)当b=2时,记b n=2(log2a n+1)(n∈N*).证明:对任意的n∈N*,不等式b1+1b1·b2+1b2·…·bn+1bn>n+1成立.(1)解由题意,S n=b n+r,当n≥2时,S n-1=b n-1+r,所以a n=S n-S n-1=b n-1(b-1),由于b>0,且b≠1,所以n≥2时,{a n}是以b为公比的等比数列,又a1=b+r,a2=b(b-1),a2a1=b,即b(b-1)b+r=b,解得r=-1.(2)证明由(1)知a n=2n-1,因此b n=2n(n∈N*),所证不等式为2+1 2·4+14·…·2n+12n>n+1.①当n=1时,左式=32,右式=2,左式>右式,所以结论成立.②假设n=k时结论成立,即2+12·4+14·…·2k+12k>k+1,则当n =k +1时,2+12·4+14·…·2k +12k ·2k +32(k +1)>k +1·2k +32(k +1)=2k +32k +1,要证当n =k +1时结论成立, 只需证2k +32k +1≥k +2,即证2k +32≥(k +1)(k +2),由基本不等式可得2k +32=(k +1)+(k +2)2≥(k +1)(k +2)成立, 故2k +32k +1≥k +2成立,所以当n =k +1时,结论成立. 由①②可知,n ∈N *时, 不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立. 规律方法 应用数学归纳法证明不等式应注意的问题(1)当遇到与正整数n 有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n =k 成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、求差(求商)比较法、放缩法、构造函数法等证明方法.【训练2】 求证:12+13+…+1n +1<ln(n +1),n ∈N *.证明 ①当n =1时,12<ln 2,结论成立.②假设当n =k (k ≥1,k ∈N *)时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2.下面证明ln(k +1)+1k +2<ln(k +2). 令f (x )=ln(1+x )-x 1+x(x >0),则f ′(x )=x (1+x )2>0,∴f (x )在(0,+∞)上递增,∴f (x )>f (0)=0,∵1k +1>0, ∴f ⎝ ⎛⎭⎪⎫1k +1>0,即ln ⎝⎛⎭⎪⎫1+1k +1-1k +11+1k +1>0,即ln k +2k +1-1k +2>0,∴ln(k +2)-ln(k +1)-1k +2>0,即ln(k +1)+1k +2<ln(k +2). ∴当n =k +1时,不等式也成立.综上由①②,12+13+…+1n +1<ln(n +1),n ∈N *成立.考点三 归纳——猜想——证明【例3】 已知数列{a n }的前n 项和S n 满足:S n =a n 2+1a n -1,且a n >0,n ∈N *.(1)求a 1,a 2,a 3,并猜想{a n }的通项公式; (2)证明(1)中的猜想.(1)解 当n =1时,由已知得a 1=a 12+1a 1-1,即a 21+2a 1-2=0.∴a 1=3-1(a 1>0).当n =2时,由已知得a 1+a 2=a 22+1a 2-1,将a 1=3-1代入并整理得a 22+23a 2-2=0. ∴a 2=5-3(a 2>0).同理可得a 3=7- 5. 猜想a n =2n +1-2n -1(n ∈N *).(2)证明 ①由(1)知,当n =1,2,3时,通项公式成立.②假设当n=k(k≥3,k∈N*)时,通项公式成立,即a k=2k+1-2k-1.由于a k+1=S k+1-S k=ak+12+1ak+1-ak2-1ak,将a k=2k+1-2k-1代入上式,整理得a2k+1+22k+1a k+1-2=0,∴a k+1=2k+3-2k+1,即n=k+1时通项公式成立.由①②可知对所有n∈N*,a n=2n+1-2n-1都成立.规律方法(1)利用数学归纳法可以探索与正整数n有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理论证结论的正确性.(2)“归纳—猜想—证明”的基本步骤是“试验—归纳—猜想—证明”.高中阶段与数列结合的问题是最常见的问题.【训练3】设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(1)令g1(x)=g(x),g n+1(x)=g(g n(x)),n∈N*,求g n(x)的表达式;(2)若f(x)≥ag(x)恒成立,求实数a的取值范围;(3)设n∈N*,猜想g(1)+g(2)+…+g(n)与n-f(n)的大小,并加以证明.解由题设得,g(x)=x1+x(x≥0).(1)由已知,g1(x)=x1+x,g2(x)=g(g1(x))=x1+x1+x1+x=x1+2x,g3(x)=x 1+3x ,…,可猜想g n(x)=x1+nx.下面用数学归纳法证明.①当n=1时,g1(x)=x1+x,结论成立.②假设n=k时结论成立,即g k(x)=x1+kx.那么,当n=k+1时,g k+1(x)=g(g k(x))=gk (x)1+g k(x)=x1+kx1+x1+kx=x1+(k+1)x,即结论成立.由①②可知,结论对n∈N*成立.(2)已知f(x)≥ag(x)恒成立,即ln(1+x)≥ax1+x恒成立.设φ(x)=ln(1+x)-ax1+x(x≥0),则φ′(x)=11+x-a(1+x)2=x+1-a(1+x)2,当a≤1时,φ′(x)≥0(仅当x=0,a=1时等号成立),∴φ(x)在[0,+∞)上单调递增.又φ(0)=0,∴φ(x)≥0在[0,+∞)上恒成立,∴a≤1时,ln(1+x)≥ax1+x恒成立(仅当x=0时等号成立).当a>1时,对x∈(0,a-1]有φ′(x)≤0,∴(x)在(0,a-1]上单调递减,∴φ(a-1)<φ(0)=0.即a>1时,存在x>0,使φ(x)<0,∴ln(1+x)≥ax1+x不恒成立,综上可知,实数a的取值范围是(-∞,1].(3)由题设知g(1)+g(2)+…+g(n)=12+23+…+nn+1,n-f(n)=n-ln(n+1),猜想结果为g(1)+g(2)+…+g(n)>n-ln(n+1).证明如下:上述不等式等价于12+13+…+1n+1<ln(n+1),在(2)中取a=1,可得ln(1+x)>x1+x,x>0.令x =1n ,n ∈N *,则1n +1<ln n +1n .下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立.②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+lnk +2k +1=ln(k +2),即结论成立. 由①②可知,结论对n ∈N *成立.[思想方法]1.数学归纳法证明中的两个步骤体现了递推思想,第一步是递推的基础,第二步是递推的依据,两个步骤缺一不可,否则就会导致错误.有一无二,是不完全归纳法,结论不一定可靠;有二无一,第二步就失去了递推的基础.2.归纳假设的作用在用数学归纳法证明问题时,对于归纳假设要注意以下两点:(1)归纳假设就是已知条件;(2)在推证n =k +1时,必须用上归纳假设. 3.利用归纳假设的技巧在推证n =k +1时,可以通过凑、拆、配项等方法用上归纳假设.此时既要看准目标,又要掌握n =k 与n =k +1之间的关系.在推证时,分析法、综合法、反证法等方法都可以应用. [易错防范]1.数学归纳法证题时初始值n 0不一定是1.2.推证n =k +1时一定要用上n =k 时的假设,否则不是数学归纳法.3.解“归纳——猜想——证明”题的关键是准确计算出前若干具体项,这是归纳、猜想的基础,否则将会做大量无用功.基础巩固题组(建议用时:40分钟)一、选择题1.用数学归纳法证明“2n>2n+1对于n≥n0的正整数n都成立”时,第一步证明中的起始值n0应取( )A.2B.3C.5D.6解析∵n=1时,21=2,2×1+1=3,2n>2n+1不成立;n=2时,22=4,2×2+1=5,2n>2n+1不成立;n=3时,23=8,2×3+1=7,2n>2n+1成立.∴n的第一个取值n0=3.答案 B2.某个命题与正整数有关,如果当n=k(k∈N*)时该命题成立,那么可以推出n=k+1时该命题也成立.现已知n=5时该命题成立,那么( )A.n=4时该命题成立B.n=4时该命题不成立C.n≥5,n∈N*时该命题都成立D.可能n取某个大于5的整数时该命题不成立解析显然A,B错误,由数学归纳法原理知C正确,D错.答案 C3.利用数学归纳法证明不等式“1+12+13+…+12n-1>n2(n≥2,n∈N*)”的过程中,由“n=k”变到“n=k+1”时,左边增加了( ) A.1项 B.k项 C.2k-1项 D.2k项解析左边增加的项为12k+12k+1+…+12k+1-1共2k项,故选D.答案 D4.对于不等式n2+n<n+1(n∈N*),某同学用数学归纳法证明的过程如下:(1)当n=1时,12+1<1+1,不等式成立.(2)假设当n=k(k∈N*)时,不等式k2+k<k+1成立,当n=k+1时,(k +1)2+k +1=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k +1)+1.∴当n =k +1时,不等式成立,则上述证法( ) A.过程全部正确 B.n =1验得不正确 C.归纳假设不正确D.从n =k 到n =k +1的推理不正确解析 在n =k +1时,没有应用n =k 时的假设,不是数学归纳法. 答案 D5.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上( ) A.k 2+1 B.(k +1)2C.(k +1)4+(k +1)22D.(k 2+1)+(k 2+2)+…+(k +1)2解析 当n =k 时,左端=1+2+3+…+k 2.当n =k +1时,左端=1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2, 故当n =k +1时,左端应在n =k 的基础上加上(k 2+1)+(k 2+2)+…+(k +1)2.故选D. 答案 D 二、填空题6.设S n =1+12+13+14+…+12n ,则S n +1-S n =________.解析 ∵S n +1=1+12+…+12n +12n +1+…+12n +2n,S n =1+12+13+14+…+12n . ∴S n +1-S n =12n +1+12n +2+12n +3+…+12n +2n.答案12n+1+12n+2+12n+3+…+12n+2n7.(2017·绍兴调研)数列{a n}中,已知a1=2,a n+1=an3a n+1(n∈N*),依次计算出a2,a3,a4的值分别为________;猜想a n=________.解析a1=2,a2=23×2+1=27,a3=273×27+1=213,a4=2133×213+1=219.由此,猜想a n是以分子为2,分母是以首项为1,公差为6的等差数列.∴a n=26n-5.答案27,213,21926n-58.凸n多边形有f(n)条对角线.则凸(n+1)边形的对角线的条数f(n+1)与f(n)的递推关系式为________.解析f(n+1)=f(n)+(n-2)+1=f(n)+n-1.答案f(n+1)=f(n)+n-1三、解答题9.用数学归纳法证明:1+122+132+…+1n2<2-1n(n∈N*,n≥2).证明(1)当n=2时,1+122=54<2-12=32,命题成立.(2)假设n=k时命题成立,即1+122+132+…+1k2<2-1k.当n=k+1时,1+122+132+…+1k2+1(k+1)2<2-1k+1(k+1)2<2-1k+1k(k+1)=2-1k+1k-1k+1=2-1k+1,命题成立.由(1)(2)知原不等式在n∈N*,n≥2时均成立.10.数列{a n}满足S n=2n-a n(n∈N*).(1)计算a1,a2,a3,a4,并由此猜想通项公式a n;(2)证明(1)中的猜想.(1)解当n=1时,a1=S1=2-a1,∴a1=1;当n=2时,a1+a2=S2=2×2-a2,∴a2=32;当n=3时,a1+a2+a3=S3=2×3-a3,∴a3=7 4;当n=4时,a1+a2+a3+a4=S4=2×4-a4,∴a4=15 8.由此猜想a n=2n-12n-1(n∈N*).(2)证明①当n=1时,a1=1,结论成立.②假设n=k(k≥1且k∈N*)时,结论成立,即a k=2k-12k-1,那么n=k+1时,ak+1=S k+1-S k=2(k+1)-a k+1-2k+a k=2+a k-a k+1,∴2a k+1=2+a k.∴a k+1=2+a k2=2+2k-12k-12=2k+1-12k.所以当n=k+1时,结论成立.由①②知猜想a n=2n-12n-1(n∈N*)成立.能力提升题组(建议用时:25分钟)11.(2017·昆明诊断)设n为正整数,f(n)=1+12+13+…+1n,经计算得f(2)=32,f(4)>2,f(8)>52,f(16)>3,f(32)>72,观察上述结果,可推测出一般结论( )A.f(2n)>2n+12B.f(n2)≥n+22C.f(2n)≥n+22D.以上都不对解析因为f(22)>42,f(23)>52,f(24)>62,f(25)>72,所以当n≥1时,有f(2n)≥n+2 2.答案 C12.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立”.那么,下列命题总成立的是( )A.若f(1)<1成立,则f(10)<100成立B.若f(2)<4成立,则f(1)≥1成立C.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立D.若f(4)≥16成立,则当k≥4时,均有f(k)≥k2成立解析选项A,B的答案与题设中不等号方向不同,故A,B错;选项C中,应该是k≥3时,均有f(k)≥k2成立;对于选项D,满足数学归纳法原理,该命题成立.答案 D13.(2017·金华调研)设平面上n个圆周最多把平面分成f(n)片(平面区域),则f(2)=________,f(n)=________.(n≥1,n∈N*)解析易知2个圆周最多把平面分成4片;n个圆周最多把平面分成f(n)片,再放入第n+1个圆周,为使得到尽可能多的平面区域,第n+1个应与前面n 个都相交且交点均不同,有n条公共弦,其端点把第n+1个圆周分成2n段,每段都把已知的某一片划分成2片,即f(n+1)=f(n)+2n(n≥1),所以f(n)-f(1)=n(n-1),而f(1)=2,从而f(n)=n2-n+2.答案 4 n2-n+214.数列{x n}满足x1=0,x n+1=-x2n+x n+c(n∈N*).(1)证明:{x n}是递减数列的充要条件是c<0;(2)若0<c≤14,证明数列{x n}是递增数列.证明(1)充分性:若c<0,由于x n+1=-x2n+x n+c≤x n+c<x n,∴数列{x n}是递减数列.必要性:若{x n}是递减数列,则x2<x1,且x1=0.又x2=-x21+x1+c=c,∴c<0.故{x n}是递减数列的充要条件是c<0.(2)若0<c ≤14,要证{x n }是递增数列.即x n +1-x n =-x 2n +c >0, 即证x n <c 对任意n ≥1成立. 下面用数学归纳法证明:当0<c ≤14时,x n <c 对任意n ≥1成立.①当n =1时,x 1=0<c ≤12,结论成立.②假设当n =k (k ≥1,k ∈N *)时结论成立,即x k <c .因为函数f (x )=-x 2+x +c 在区间⎝⎛⎦⎥⎤-∞,12内单调递增,所以x k +1=f (x k )<f (c )=c ,∴当n =k +1时,x k +1<c 成立.由①,②知,x n <c 对任意n ≥1,n ∈N *成立. 因此,x n +1=x n -x 2n +c >x n ,即{x n }是递增数列. 15.(2017·浙江名校协作体联考)已知函数f 0(x )=sin xx(x >0),设f n (x )为f n-1(x )的导数,n ∈N *.(1)求2f 1⎝ ⎛⎭⎪⎫π2+π2f 2⎝ ⎛⎭⎪⎫π2的值;(2)证明:对任意的n ∈N *,等式|nf n -1⎝ ⎛⎭⎪⎫π4+π4f n ⎝ ⎛⎭⎪⎫π4|=22都成立.(1)解 由已知,得f 1(x )=f ′0(x )=⎝ ⎛⎭⎪⎫sin x x ′=cos x x -sin x x 2,于是f 2(x )=f ′1(x )=⎝ ⎛⎭⎪⎫cos x x ′-⎝ ⎛⎭⎪⎫sin x x 2′=-sin x x -2cos x x 2+2sin x x 3,所以f 1⎝ ⎛⎭⎪⎫π2=-4π2,f 2⎝ ⎛⎭⎪⎫π2=-2π+16π3.故2f 1⎝ ⎛⎭⎪⎫π2+π2f 2⎝ ⎛⎭⎪⎫π2=-1.(2)证明 由已知,得xf 0(x )=sin x ,等式两边分别对x 求导,得f 0(x )+xf ′0(x )=cos x ,即f 0(x )+xf 1(x )=cos x =sin ⎝ ⎛⎭⎪⎫x +π2,类似可得2f 1(x )+xf 2(x )=-sin x =sin(x +π), 3f 2(x )+xf 3(x )=-cos x =sin ⎝ ⎛⎭⎪⎫x +3π2,4f 3(x )+xf 4(x )=sin x =sin(x +2π).下面用数学归纳法证明等式nf n -1(x )+xf n (x )=sin ⎝ ⎛⎭⎪⎫x +n π2对所有的n ∈N *都成立.(ⅰ)当n =1时,由上可知等式成立.(ⅱ)假设当n =k (k ≥1,且k ∈N *)时等式成立,即kf k -1(x )+xf k (x )=sin ⎝⎛⎭⎪⎫x +k π2.因为[kf k -1(x )+xf k (x )]′=kf ′k -1(x )+f k (x )+xf ′k (x )=(k +1)f k (x )+xf k+1(x ),⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫x +k π2′=cos ⎝ ⎛⎭⎪⎫x +k π2·⎝ ⎛⎭⎪⎫x +k π2′=sin ⎣⎢⎡⎦⎥⎤x +(k +1)π2, 所以(k +1)f k (x )+xf k +1(x )=sin ⎣⎢⎡⎦⎥⎤x +(k +1)π2. 因此当n =k +1时,等式也成立.综合(ⅰ),(ⅱ)可知等式nf n -1(x )+xf n (x )=sin⎝ ⎛⎭⎪⎫x +n π2对所有的n ∈N *都成立. 令x =π4,可得nf n -1⎝ ⎛⎭⎪⎫π4+π4f n ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π4+n π2(n ∈N *).所以|nf n -1⎝ ⎛⎭⎪⎫π4+π4f n ⎝ ⎛⎭⎪⎫π4|=22(n ∈N *).高考导航考查内容主要集中在两个方面:一是以选择题和填空题的形式考查等差、等比数列的运算和性质,题目多为常规试题;二是等差、等比数列的通项与求和问题;三是结合函数、不等式(放缩法)等进行综合考查,难度较大,涉及内容较为全面,试题思维量较大.热点一等差数列、等比数列的综合问题解决等差、等比数列的综合问题时,重点在于读懂题意,灵活利用等差、等比数列的定义、通项公式及前n项和公式解决问题,求解这类问题要重视方程思想的应用.【例1】已知首项为32的等比数列{a n}不是递减数列,其前n项和为S n(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.(1)求数列{a n}的通项公式;(2)设T n=S n-1Sn(n∈N*),求数列{T n}的最大项的值与最小项的值.解(1)设等比数列{a n}的公比为q,因为S3+a3,S5+a5,S4+a4成等差数列,所以S5+a5-S3-a3=S4+a4-S5-a5,即4a5=a3,于是q2=a5a3=14.又{a n}不是递减数列且a1=32,所以q=-12.故等比数列{a n}的通项公式为a n=32×⎝⎛⎭⎪⎫-12n-1=(-1)n-1·32n .(2)由(1)得S n=1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数,当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大, 所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n ∈N *,总有-712≤S n -1S n ≤56. 所以数列{T n }最大项的值为56,最小项的值为-712.探究提高 解决等差数列与等比数列的综合问题,既要善于综合运用等差数列与等比数列的相关知识求解,更要善于根据具体问题情境具体分析,寻找解题的突破口.【训练1】 (2017·乐清模拟)已知数列{a n }是公差不为零的等差数列,其前n 项和为S n ,满足S 5-2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项. (1)求数列{a n },{b n }的通项公式;(2)设T n 是数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和,是否存在k ∈N *,使得等式1-2T k =1b k 成立?若存在,求出k 的值;若不存在,请说明理由. 解 (1)设等差数列{a n }的公差为d (d ≠0), ∴⎩⎨⎧⎝ ⎛⎭⎪⎫5a 1+5×42d -2(a 1+d )=25,(a 1+3d )2=a 1(a 1+12d ),解得a 1=3,d =2,∴a n =2n +1. ∵b 1=a 1=3,b 2=a 4=9,∴等比数列{b n }的公比q =3,∴b n =3n . (2)不存在.理由如下: ∵1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝⎛⎭⎪⎫12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∴1-2T k =23+12k +3(k ∈N *),易知数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫12k +3为单调递减数列, ∴23<1-2T k ≤1315,又1b k =13k ∈⎝ ⎛⎦⎥⎤0,13, ∴不存在k ∈N *,使得等式1-2T k =1b k成立.热点二 数列的通项与求和(规范解答)数列的通项与求和是高考必考的热点题型,求通项属于基本问题,常涉及与等差、等比的定义、性质、基本量运算.求和问题关键在于分析通项的结构特征,选择合适的求和方法.常考求和方法有:错位相减法、裂项相消法、分组求和法等.【例2】 (满分12分)(2015·湖北卷)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100. (1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a n b n,求数列{c n }的前n 项和T n . 满分解答 (1)解 由题意有⎩⎨⎧10a 1+45d =100,a 1d =2,即⎩⎨⎧2a 1+9d =20,a 1d =2,2分 解得⎩⎨⎧a 1=1,d =2或⎩⎨⎧a 1=9,d =29.4分故⎩⎨⎧a n =2n -1,b n=2n -1或⎩⎪⎨⎪⎧a n=19(2n +79),b n=9·⎝ ⎛⎭⎪⎫29n -1.6分(2)解 由d >1,知a n =2n -1,b n =2n -1, 故c n =2n -12n -1,7分于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+925+…+2n -12n .②8分 ①-②可得12T n =2+12+122+…+12n -2-2n -12n 10分 =3-2n +32n,11分 故T n =6-2n +32n -1.12分❶由题意列出方程组得2分; ❷解得a 1与d 得2分,漏解得1分; ❸正确导出a n ,b n 得2分,漏解得1分; ❹写出c n 得1分;❺把错位相减的两个式子,按照上下对应好,再相减,就能正确地得到结果,本题就得满分,否则就容易出错,丢掉一些分数.用错位相减法解决数列求和的模板第一步:(判断结构)若数列{a n ·b n }是由等差数列{a n }与等比数列{b n }(公比q )的对应项之积构成的,则可用此法求和. 第二步:(乘公比)设{a n ·b n }的前n 项和为T n ,然后两边同乘以q . 第三步:(错位相减)乘以公比q 后,向后错开一位,使含有q k (k ∈N *)的项对应,然后两边同时作差.第四步:(求和)将作差后的结果求和,从而表示出T n . 【训练2】 已知数列{a n },a n =(-1)n -14n(2n -1)(2n +1),求数列{a n }的前n 项和T n .解 a n =(-1)n -1⎝⎛⎭⎪⎫12n -1+12n +1, 当n 为偶数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1=1-12n +1=2n2n +1. 当n 为奇数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数(或T n=2n +1+(-1)n -12n +1).热点三 数列的综合应用 热点3.1 数列的实际应用数列在实际问题中的应用,要充分利用题中限制条件确定数列的特征,如通项公式、前n 项和公式或递推关系式,建立数列模型.【例3-1】 某企业的资金每一年都比上一年分红后的资金增加一倍,并且每年年底固定给股东们分红500万元,该企业2010年年底分红后的资金为1 000万元.(1)求该企业2014年年底分红后的资金;(2)求该企业从哪一年开始年底分红后的资金超过32 500万元. 解 设a n 为(2010+n )年年底分红后的资金,其中n ∈N *, 则a 1=2×1 000-500=1 500,a 2=2×1 500-500=2 500,…, a n =2a n -1-500(n ≥2).∴a n -500=2(a n -1-500)(n ≥2),即数列{a n -500}是以a 1-500=1 000为首项,2为公比的等比数列, ∴a n -500=1 000×2n -1, ∴a n =1 000×2n -1+500.(1)∵a 4=1 000×24-1+500=8 500,∴该企业2014年年底分红后的资金为8 500万元.(2)由a n >32 500,即2n -1>32,得n >6,∴该企业从2017年开始年底分红后的资金超过32 500万元.热点3.2 数列与函数的综合问题数列是特殊的函数,以函数为背景的数列的综合问题体现了在知识交汇点上命题的特点,该类综合题的知识综合性强,能很好地考查逻辑推理能力和运算求解能力,因而一直是高考命题者的首选.【例3-2】 已知二次函数f (x )=ax 2+bx 的图象过点(-4n ,0),且f ′(0)=2n (n ∈N *).(1)求f (x )的解析式; (2)若数列{a n }满足1a n +1=f ′⎝ ⎛⎭⎪⎫1a n ,且a 1=4,求数列{a n }的通项公式; (3)对于(2)中的数列{a n },求证: ①∑nk =1a k <5;②43≤∑nk =1a k a k +1<2. (1)解 由f ′(x )=2ax +b ,f ′(0)=2n ,得b =2n ,又f (x )的图象过点(-4n ,0),∴16n 2a -4nb =0,解得a =12.∴f (x )=12x 2+2nx (n ∈N *). (2)解 由(1)知f ′(x )=x +2n (n ∈N *),∴1a n +1=1a n+2n ,即1a n +1-1a n=2n ,∴1a n -1a n -1=2(n -1),1a n -1-1a n -2=2(n -2),…,1a 2-1a 1=2,∴1a n -14=n 2-n ,∴a n =1n 2-n +14,即a n =4(2n -1)2(n ∈N *).(3)证明 ①a k =1k (k -1)+14<1k (k -1)=1k -1-1k(k ≥2).当n =1时,∑nk =1a k <5显然成立; 当n ≥2时,∑nk =1a k <4+ ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫1n -1-1n =5-1n <5. ②∵a k a k +1=4(2k -1)(2k +1)=22k -1-22k +1,∴∑nk =1 a k a k +1=⎝ ⎛⎭⎪⎫21-23+⎝ ⎛⎭⎪⎫23-25+…+⎝ ⎛⎭⎪⎫22n -1-22n +1=2-22n +1. ∵n ∈N *,∴2n +1≥3, ∴43≤2-22n +1<2. 综上,原不等式得证.热点3.3 数列与不等式的综合问题数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等.如果是解不等式问题,要使用不等式的各种不同解法,如数轴法、因式分解法. 【例3-3】 (2016·浙江卷)设数列{a n }满足|a n -a n +12|≤1,n ∈N *.(1)证明:|a n |≥2n -1(|a n |-2),n ∈N *;(2)若|a n |≤⎝ ⎛⎭⎪⎫32n,n ∈N *,证明:|a n |≤2,n ∈N *.证明 (1)由⎪⎪⎪⎪⎪⎪a n -a n +12≤1得|a n |-12|a n +1|≤1,故|a n |2n -|a n +1|2n +1≤12n ,n ∈N *, 所以|a 1|21-|a n |2n =⎝ ⎛⎭⎪⎫|a 1|21-|a 2|22+⎝ ⎛⎭⎪⎫|a 2|22-|a 3|23+…+⎝ ⎛⎭⎪⎫|a n -1|2n -1-|a n |2n ≤121+122+…+12n -1<1,因此|a n |≥2n -1(|a 1|-2).(2)任取n ∈N *,由(1)知,对于任意m >n ,|a n |2n -|a m |2m =⎝ ⎛⎭⎪⎫|a n |2n -|a n +1|2n +1+⎝ ⎛⎭⎪⎫|a n +1|2n +1-|a n +2|2n +2+…+⎝ ⎛⎭⎪⎫|a m -1|2m -1-|a m |2m≤12n +12n +1+…+12m -1<12n -1,故|a n |<⎝ ⎛⎭⎪⎫12n -1+|a m |2m ·2n ≤⎣⎢⎡⎦⎥⎤12n -1+12m ·⎝ ⎛⎭⎪⎫32m ·2n=2+⎝ ⎛⎭⎪⎫34m ·2n .从而对于任意m >n ,均有|a n |<2+⎝ ⎛⎭⎪⎫34m·2n .由m 的任意性得|a n |≤2.① 否则,存在n 0∈N *,有|a n 0|>2, 取正整数m 0>log34|a n 0|-22n 0且m 0>n 0,综上,对于任意n ∈N *,均有|a n |≤2.(建议用时:70分钟)1.(2015·重庆卷)已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n .解 (1)设{a n }的公差为d ,则由已知条件得a 1+2d =2,3a 1+3×22d =92, 化简得a 1+2d =2,a 1+d =32,解得a 1=1,d =12,故{a n }的通项公式a n =1+n -12,即a n =n +12.(2)由(1)得b 1=1,b 4=a 15=15+12=8. 设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2, 故{b n }的前n 项和T n =b 1(1-q n )1-q =1×(1-2n )1-2=2n-1.2.(2017·东北三省四校模拟)已知等差数列{a n }的前n 项和为S n ,公差d ≠0,且S 3+S 5=50,a 1,a 4,a 13成等比数列. (1)求数列{a n }的通项公式;(2)设⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫b n a n 是首项为1,公比为3的等比数列,求数列{b n }的前n 项和T n .解(1)依题意得⎩⎨⎧3a 1+3×22d +5a 1+4×52d =50,(a 1+3d )2=a 1(a 1+12d ),解得⎩⎨⎧a 1=3,d =2,∴a n =2n +1.(2)∵b n a n=3n -1,∴b n =a n ·3n -1=(2n +1)·3n -1, ∴T n =3+5×3+7×32+…+(2n +1)×3n -1,3T n =3×3+5×32+7×33+…+(2n -1)×3n -1+(2n +1)×3n , 两式相减得,-2T n =3+2×3+2×32+…+2×3n -1-(2n +1)×3n=3+2×3(1-3n -1)1-3-(2n +1)×3n =-2n ×3n,∴T n =n ×3n .3.已知函数f (x )=x 2-4,设曲线y =f (x )在点(x n ,f (x n ))处的切线与x 轴的交点为(x n +1,0)(n ∈N *),其中x 1为正实数. (1)用x n 表示x n +1;(2)求证:对一切正整数n ,x n +1≤x n 的充要条件是x 1≥2.(1)解 ∵f ′(x )=2x ,∴过点(x n ,f (x n ))的切线方程为y -(x 2n -4)=2x n (x -x n ),将(x n +1,0)代入切线方程并整理,得x 2n +4=2x n x n +1,显然x n ≠0,∴x n +1=x n 2+2x n. (2)证明 (必要性)若对一切正整数n ,x n +1≤x n ,则x 2≤x 1,即x 12+2x 1≤x 1,而x 1>0,∴x 21≥4,故x 1≥2.(充分性)由x 1≥2>0,x n +1=x n 2+2x n ,易得数列{x n }为正项数列,从而x n +1=x n 2+2x n≥2x n 2·2x n=2(n ≥1),即x n ≥2(n ≥2),又x 1≥2,∴x n ≥2(n ≥1).于是x n+1-x n =x n 2+2x n -x n =4-x 2n2x n =(2-x n )(2+x n )2x n≤0,即x n +1≤x n 对一切正整数n 成立.4.(2015·浙江卷)已知数列{a n }满足a 1=12且a n +1=a n -a 2n (n ∈N *).(1)证明:1≤a na n +1≤2(n ∈N *); (2)设数列{a 2n }的前n 项和为S n ,证明:12(n +2)≤S n n ≤12(n +1)(n ∈N *).(1)证明 由题意得a n +1-a n =-a 2n ≤0,即a n +1≤a n , 故a n ≤12.由a n =(1-a n -1)a n -1得a n =(1-a n -1)(1-a n -2)…(1-a 1)a 1>0.由0<a n ≤12得a n a n +1=a n a n -a 2n =11-a n ∈(1,2],即1≤a na n +1≤2成立. (2)解 由题意得a 2n =a n -a n +1,所以S n =a 1-a n +1①由1a n +1-1a n =a n a n +1和1≤a n a n +1≤2得1≤1a n +1-1a n≤2, 所以n ≤1a n +1-1a 1≤2n ,因此12(n +1)≤a n +1≤1n +2(n ∈N *).②由①②得12(n +2)≤S n n ≤12(n +1)(n ∈N *).5.(2017·杭州调研)已知数列{a n },{b n }中,a 1=1,b n =⎝ ⎛⎭⎪⎫1-a 2n a 2n +1·1a n +1,n ∈N *,数列{b n }的前n 项和为S n . (1)若a n =2n -1,求S n ;(2)是否存在等比数列{a n },使b n +2=S n 对任意n ∈N *恒成立?若存在,求出所有满足条件的数列{a n }的通项公式;若不存在,请说明理由; (3)若{a n }是单调递增数列,求证:S n <2. (1)解 当a n =2n -1时,b n =⎝⎛⎭⎪⎫1-14·12n =32n +2. 所以S n =38⎝ ⎛⎭⎪⎫1+12+…+12n -1=38×1-12n1-12=34-32n +2. (2)解 满足条件的数列{a n }存在且只有两个, 其通项公式为a n =1和a n =(-1)n -1. 证明:在b n +2=S n 中,令n =1,得b 3=b 1.设a n =qn -1,则b n =⎝⎛⎭⎪⎫1-1q 21q n .由b 3=b 1得⎝⎛⎭⎪⎫1-1q 21q 3=⎝ ⎛⎭⎪⎫1-1q 21q . 若q =±1,则b n =0,满足题设条件. 此时a n =1和a n =(-1)n -1.若q ≠±1,则1q 3=1q,即q 2=1,矛盾.综上所述,满足条件的数列{a n }存在,且只有两个, 一个是a n =1,另一个是a n =(-1)n -1. (3)证明 因为1=a 1<a 2<…<a n <…,故a n >0,0<a n a n +1<1,于是0<a 2na 2n +1<1.b n =⎝ ⎛⎭⎪⎫1-a 2n a 2n +1·1a n +1=⎝ ⎛⎭⎪⎫1+a n a n +1⎝ ⎛⎭⎪⎫1-a n a n +1·1a n +1=⎝⎛⎭⎪⎫1+a n a n +1⎝ ⎛⎭⎪⎫1a n -1a n +1·a n a n +1<2⎝⎛⎭⎪⎫1a n -1a n +1. 故S n =b 1+b 2+…+b n<2⎝ ⎛⎭⎪⎫1a 1-1a 2+2⎝ ⎛⎭⎪⎫1a 2-1a 3+…+2⎝ ⎛⎭⎪⎫1a n -1a n +1 =2⎝ ⎛⎭⎪⎫1a 1-1a n +1 =2⎝ ⎛⎭⎪⎫1-1a n +1<2.所以S n <2.6.已知正项数列{a n }满足S 2n =a 31+a 32+…+a 3n (n ∈N *),其中S n 为数列{a n }的前n 项的和.(1)求数列{a n }的通项公式;(2)求证:2n +1(n +1)n +1<⎝ ⎛⎭⎪⎫1a 132+⎝ ⎛⎭⎪⎫1a 232+⎝ ⎛⎭⎪⎫1a 332+…+⎝⎛⎭⎪⎫1a 2n +132<3. (1)解 ∵S 2n =a 31+a 32+…+a 3n (n ∈N *), ∴S 2n -1=a 31+a 32+a 3n -1,两式相减得S 2n -S 2n -1=a 3n ⇒a n (S n +S n -1)=a 3n ⇒S n +S n -1=a 2n ,则S n -1+S n -2=a 2n -1,两式相减得a n +a n -1=a 2n -a 2n -1⇒a n -a n -1=1,∴a n =n .(2)证明 根据(1)知⎝ ⎛⎭⎪⎫1a n 32=1n n.∵k (2n +2-k )≤⎝⎛⎭⎪⎫k +2n +2-k 22=(n +1)2, ∴1k k +1(2n +2-k )2n +2-k> 2k (2n +2-k )k (2n +2-k )≥2(n +1)n +1,即⎝ ⎛⎭⎪⎫1a k 32+⎝⎛⎭⎪⎫1a 2n +2-k 32>2⎝ ⎛⎭⎪⎫1a n +132, 令k =1,2,3,…,n ,累加后再加⎝ ⎛⎭⎪⎫1a n +132得⎝ ⎛⎭⎪⎫1a 132+⎝ ⎛⎭⎪⎫1a 232+⎝ ⎛⎭⎪⎫1a 332+…+⎝ ⎛⎭⎪⎫1a 2n +132 >2⎝ ⎛⎭⎪⎫1a n +132+2⎝ ⎛⎭⎪⎫1a n +132+2⎝ ⎛⎭⎪⎫1a n +132+…+2⎝ ⎛⎭⎪⎫1a n +132+⎝ ⎛⎭⎪⎫1a n +132 =(2n +1)⎝ ⎛⎭⎪⎫1a n +132=2n +1(n +1)n +1.又∵11+122+133+…+1(2n +1)2n +1<3⇔122+133+…+1(2n +1)2n +1<2,而1k k=1k ·k ·k<1k ·k ·k -1=1k ⎝ ⎛⎭⎪⎫1k -1-1k 1k -k -1=k +k -1k ⎝ ⎛⎭⎪⎫1k -1-1k <2k k ⎝ ⎛⎭⎪⎫1k -1-1k =2⎝ ⎛⎭⎪⎫1k -1-1k . 令k =2,3,4,…,2n +1,累加得 122+133+…+1(2n +1)2n +1<2⎝⎛⎭⎪⎫1-12+2⎝ ⎛⎭⎪⎫12-13+…+2⎝ ⎛⎭⎪⎫12n -12n +1 =2⎝⎛⎭⎪⎫1-12n +1<2, ∴2n +1(n +1)n +1<⎝ ⎛⎭⎪⎫1a 132+⎝ ⎛⎭⎪⎫1a 232+⎝ ⎛⎭⎪⎫1a 332+…+⎝⎛⎭⎪⎫1a 2n +132<3.。

2018年高考数学(理)总复习教师用书第九单元Word版含解析

2018年高考数学(理)总复习教师用书第九单元Word版含解析

第九单元 ⎪⎪⎪不等式教材复习课“不等式”相关基础知识一课过[过双基]1.两个实数比较大小的方法 (1)作差法⎩⎪⎨⎪⎧a -b >0⇔a >b ,a -b =0⇔a =b ,a -b <0⇔a <b ;(2)作商法⎩⎪⎨⎪⎧ab >1⇔a >b (a ∈R ,b >0),ab =1⇔a =b (a ∈R ,b >0),a b <1⇔a <b (a ∈R ,b >0).2.不等式的性质 (1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ; (3)可加性:a >b ⇔a +c >b +c ; a >b ,c >d ⇒a +c >b +d ; (4)可乘性:a >b ,c >0⇒ac >bc ; a >b >0,c >d >0⇒ac >bd ;(5)可乘方:a >b >0⇒a n >b n (n ∈N,n ≥1); (6)可开方:a >b >0n ∈N ,n ≥2). 3.三个“二次”间的关系[小题速通]1.若a >b >0,则下列不等式中恒成立的是( ) A.b a >b +1a +1B .a +1a >b +1b C .a +1b >b +1aD.2a +b a +2b >a b解析:选C 由a >b >0⇒0<1a <1b ⇒a +1b >b +1a ,故选C.2.设M =2a (a -2),N =(a +1)(a -3),则( ) A .M >N B .M ≥N C .M <ND .M ≤N解析:选A 由题意知,M -N =2a (a -2)-(a +1)(a -3)=2a 2-4a -(a 2-2a -3)=(a -1)2+2>0恒成立,所以M >N ,故选A.3.不等式⎝⎛⎭⎫x +12⎝⎛⎭⎫32-x ≥0的解集是( ) A .⎩⎨⎧⎭⎬⎫xx <-12或x >32B.⎩⎨⎧⎭⎬⎫xx ≤-12或x ≥32C.⎩⎨⎧⎭⎬⎫x -12≤x ≤32D.⎩⎨⎧⎭⎬⎫x -12<x <32解析:选C 将不等式化为⎝⎛⎭⎫x +12⎝⎛⎭⎫x -32≤0,故-12≤x ≤32. 4.(2017·南昌调研)设二次不等式ax 2+bx +1>0的解集为⎝⎛⎭⎫-1,13,则ab 的值为( ) A .-6 B .-5 C .6D .5解析:选C 由题意知,方程ax 2+bx +1=0的两根为-1,13,则有⎩⎨⎧-b a =-1+13,1a =-1×13,解得⎩⎪⎨⎪⎧a =-3,b =-2,∴ab =6,故选C.[清易错]1.在乘法法则中,要特别注意“乘数c 的符号”,例如当c ≠0时,有a >b ⇒ac 2>bc 2;若无c ≠0这个条件,a >b ⇒ac 2>bc 2就是错误结论(当c =0时,取“=”).2.对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. 3.当Δ<0时,ax 2+bx +c >0(a ≠0)的解集为R 还是∅,要注意区别. 1.设a ,b ,c ∈R ,且a >b ,则( ) A .ac >bc B.1a <1bC .a 2>b 2D .a 3>b 3解析:选D 当c <0时,ac >bc 不成立,故A 不正确,当a =1,b =-3时,B 、C 均不正确,故选D.2.若(m +1)x 2-(m -1)x +3(m -1)<0对任何实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(-∞,-1)C.⎝⎛⎭⎫-∞,-1311 D.⎝⎛⎭⎫-∞,-1311∪(1,+∞) 解析:选C ①m =-1时,不等式为2x -6<0,即x <3不合题意.②m ≠-1时,则⎩⎪⎨⎪⎧m +1<0,Δ<0,解得m <-1311.简单的线性规划问题[过双基]1.一元二次不等式(组)表示的平面区域不等式 表示区域Ax +By +C >0 直线Ax +By +C =0某一侧的所有点组成的平面区域不包括边界直线 Ax +By +C ≥0 包括边界直线不等式组各个不等式所表示平面区域的公共部分2.线性规划中的基本概念名称意义[小题速通]1.不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示)应是( )解析:选C (x -2y +1)(x +y -3)≤0⇔⎩⎪⎨⎪⎧ x -2y +1≥0,x +y -3≤0或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0.结合图形可知选C.2.(2017·南昌调研)设变量x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,2x -y -3≤0,则目标函数z =2x +3y 的最小值为( )A .7B .8C .22D .23解析:选A 变量x ,y 满足的区域如图阴影部分所示: 作直线l :2x +3y =0,平移直线l ,则在点(2,1)处z =2x +3y 取得最小值7,故选A.3.在平面直角坐标系xOy 中,P 为不等式组⎩⎪⎨⎪⎧y ≤1,x +y -2≥0,x -y -1≤0所表示的平面区域上一动点,则直线OP 斜率的最大值为( )A .2 B.13C.12D .1解析:选D 作出可行域如图阴影部分所示,当点P 位于⎩⎪⎨⎪⎧x +y =2,y =1的交点(1,1)时,(k OP )max =1 ,故选D.[清易错]1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式化为ax +by +c >0(a >0).2.线性规划问题中的最优解不一定是唯一的,即可行域内使目标函数取得最值的点不一定只有一个,也可能有无数多个,也可能没有.已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0,若目标函数z =y -ax (a ∈R)取最大值时的唯一最优解是(1,3),则实数a 的取值范围是( )A .(1,+∞)B .[1,+∞)C .(2,+∞)D .[2,+∞)解析:选A 作出不等式组表示的可行域如图阴影部分所示,当a ≤0时,直线y =ax +z 知在点(1,3)不可能取得最大值,则当a >0时,目标函数z =y -ax 要在(1,3)处取得最大值时有唯一最优解应满足a >1,故选A.基本不等式1.基本不等式ab ≤a +b 2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 (1)a 2+b 2≥ 2ab (a ,b ∈R); (2)b a +ab ≥2(a ,b 同号); (3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R); (4)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).[小题速通]1.已知a ,b ∈R +,且a +b =1,则ab 的最大值为( ) A .1 B.14C.12D.22解析:选B ∵a ,b ∈R +,∴1=a +b ≥2ab , ∴ab ≤14,当且仅当a =b =12时等号成立.2.若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( ) A. 2 B .2 C .2 2D .4解析:选C 由1a +2b =ab ,知a >0,b >0,所以ab =1a +2b ≥22ab ,即ab ≥22,当且仅当⎩⎨⎧1a =2b,1a +2b =ab ,即a =42,b =242时取“=”,所以ab 的最小值为2 2.3.(2017·汉中一模)已知x ,y 为正实数,且满足4x +3y =12,则xy 的最大值为________. 解析:∵12=4x +3y ≥24x ·3y ,∴xy ≤3.当且仅当⎩⎪⎨⎪⎧4x =3y ,4x +3y =12,即⎩⎪⎨⎪⎧x =32,y =2时xy 取得最大值3. 答案:3[清易错]1.求最值时要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件. 2.多次使用基本不等式时,易忽视取等号的条件的一致性. 1.在下列函数中,最小值等于2的函数是( ) A .y =x +1x B .y =cos x +1cos x ⎝⎛⎭⎫0<x <π2C .y =x 2+3x 2+2D .y =e x +4ex -2解析:选D 当x <0时,y =x +1x ≤-2,故A 错误;因为0<x <π2,所以0<cos x <1,所以y =cos x +1cos x>2,故B 错误;因为x 2+2≥2,所以y =x 2+2+1x 2+2≥2中等号取不到,故C 错误;因为e x >0,所以y =e x +4e x -2≥2e x ·4e x -2=2,当且仅当e x =4ex ,即e x =2时等号成立,故选D.2.函数y =1-2x -3x (x <0)的最小值为________.解析:∵x <0,∴y =1-2x -3x =1+(-2x )+⎝⎛⎭⎫-3x ≥1+2 (-2x )·3-x=1+26,当且仅当x =-62时取等号,故y 的最小值为1+2 6. 答案:1+2 6 [双基过关检测] 一、选择题1.(2017·洛阳统考)已知a <0,-1<b <0,那么( ) A .a >ab >ab 2 B .ab 2>ab >a C .ab >a >ab 2 D .ab >ab 2>a解析:选D ∵-1<b <0,∴b <b 2<1, 又a <0,∴ab >ab 2>a ,故选D. 2.下列不等式中正确的是( ) A .若a ∈R ,则a 2+9>6a B .若a ,b ∈R ,则a +bab≥2 C .若a ,b >0,则2lg a +b2≥lg a +lg bD .若x ∈R ,则x 2+1x 2+1>1 解析:选C ∵a >0,b >0,∴a +b2≥ab .∴2lg a +b 2≥2lg ab =lg(ab )=lg a +lg b .3.(2016·武汉调研)若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b ≥2解析:选D ∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误;对于B 、C ,当a <0,b <0时,明显错误.对于D ,∵ab >0,∴b a +ab ≥2b a ·a b =2.4.若关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( ) A.52 B.72C.154D.152解析:选A 由条件知x 1,x 2为方程x 2-2ax -8a 2=0,(a >0)的两根,则x 1+x 2=2a ,x 1x 2=-8a 2,故(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=(2a )2-4×(-8a 2)=36a 2=152,解得a =52.5.不等式组⎩⎪⎨⎪⎧y ≤-x +2,y ≤x -1,y ≥0所表示的平面区域的面积为( )A .1 B.12 C.13D.14解析:选D 作出不等式组对应的区域为△BCD ,由题意知x B =1,x C =2.由⎩⎪⎨⎪⎧y =-x +2,y =x -1,得y D =12,所以S △BCD =12×(x C -x B )×12=14.6.(2017·成都一诊)已知x ,y ∈(0,+∞),且log 2x +log 2y =2,则1x +1y 的最小值是( ) A .4 B .3 C .2D .1解析:选D 1x +1y =x +y xy ≥2xy xy =2xy ,当且仅当x =y 时取等号.∵log 2x +log 2y =log 2(xy )=2,∴xy =4.∴1x +1y ≥2xy=1.7.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( )A .-7B .-4C .1D .2解析:选A 法一:将z =y -2x 化为y =2x +z ,作出可行域和直线y =2x (如图所示),当直线y =2x +z 向右下方平移时,直线y =2x +z 在y 轴上的截距z 减小,数形结合知当直线y =2x +z 经过点A (5,3)时,z 取得最小值3-10=-7.故选A.法二:易知平面区域的三个顶点坐标分别为(1,3),(2,0),(5,3),分别代入z =y -2x 得z 的值为1,-4,-7,故z 的最小值为-7.故选A.8.(2017·东北育才中学模拟)若直线x a +yb =1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5解析:选C 因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b=1.所以a +b =(a +b )·⎝⎛⎭⎫1a +1b =2+a b +b a≥2+2 a b ·b a =4,当且仅当a =b =2时取“=”,故选C.二、填空题9.(2017·沈阳模拟)已知实数x ,y 满足x 2+y 2-xy =1,则x +y 的最大值为________. 解析:因为x 2+y 2-xy =1, 所以x 2+y 2=1+xy .所以(x +y )2=1+3xy ≤1+3×⎝ ⎛⎭⎪⎫x +y 22,当且仅当x =y 时等号成立,即(x +y )2≤4,解得-2≤x +y ≤2. 所以x +y 的最大值为2. 答案:210.(2016·郑州二模)某校今年计划招聘女教师a 名,男教师b 名,若a ,b 满足不等式组⎩⎪⎨⎪⎧2a -b ≥5,a -b ≤2,a <7,设这所学校今年计划招聘教师最多x 名,则x =________.解析:画出线性目标函数所表示的区域,如图阴影部分所示,作直线l :b +a =0,平移直线l ,再由a ,b ∈N ,可知当a =6,b =7时,招聘的教师最多,此时x =a +b =13.答案:1311.一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,则这个矩形的长为________ m ,宽为________ m 时菜园面积最大.解析:设矩形的长为x m ,宽为y m .则x +2y =30,所以S =xy =12x ·(2y )≤12⎝ ⎛⎭⎪⎫x +2y 22=2252,当且仅当x =2y ,即x =15,y =152时取等号. 答案:1515212.(2017·邯郸质检)若不等式组⎩⎪⎨⎪⎧x +y -3≥0,y ≤kx +3,0≤x ≤3表示的平面区域为一个锐角三角形及其内部,则实数k 的取值范围是________.解析:直线y =kx +3恒过定点(0,3),作出不等式组表示的可行域知,要使可行域为一个锐角三角形及其内部,需要直线y =kx +3的斜率在0与1之间,即k ∈(0,1).答案:(0,1) 三、解答题13.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值. 解:(1)∵f (x )=-3x 2+a (6-a )x +6, ∴f (1)=-3+a (6-a )+6 =-a 2+6a +3,∴原不等式可化为a 2-6a -3<0, 解得3-23<a <3+2 3.∴原不等式的解集为{a |3-23<a <3+23}.(2)f (x )>b 的解集为(-1,3)等价于方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,故⎩⎪⎨⎪⎧-1+3=a (6-a )3,-1×3=-6-b3,解得⎩⎪⎨⎪⎧a =3±3,b =-3.14.(2016·济南一模)已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y 的最小值.解:(1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy .∵2x +5y =20,∴210xy ≤20,即xy ≤10,当且仅当2x =5y 时等号成立.因此有⎩⎪⎨⎪⎧ 2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1.(2)∵x >0,y >0,∴1x +1y =⎝⎛⎭⎫1x +1y ·2x +5y 20=120⎝⎛⎭⎫7+5y x +2x y ≥120⎝⎛⎭⎫7+2 5y x ·2x y =7+21020,当且仅当5y x =2xy 时等号成立. ∴1x +1y 的最小值为7+21020.高考研究课(一)—————————————————————————不等式性质、一元二次不等式—————————————————————————[全国卷5年命题分析]不等式的性质及应用利用不等式性质比较大小或判断命题真假,一般直接利用性质推导或特殊值法验证. [典例] 若1a <1b <0,给出下列不等式:①1a +b <1ab ;②|a |+b >0;③a -1a >b -1b ;④ln a 2>lnb 2.其中正确的不等式是( )A .①④B .②③C .①③D .②④[解析] 法一:用“特值法”解题因为1a <1b <0,故可取a =-1,b =-2.显然|a |+b =1-2=-1<0,所以②错误;因为ln a 2=ln(-1)2=0,ln b 2=ln(-2)2=ln 4>0,所以④错误,综上所述,可排除A 、B 、D.法二:用“直接法”解题由1a <1b <0,可知b <a <0.①中,因为a +b <0,ab >0,所以1a +b <1ab ,即①正确; ②中,因为b <a <0,所以-b >-a >0.故-b >|a |,即|a |+b <0,故②错误; ③中,因为b <a <0,又1a <1b <0,则-1a >-1b >0,所以a -1a >b -1b,故③正确;④中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故④错误.由以上分析,知①③正确。

2018北师大版文科数学高考总复习教师用书6-3等比数列及其前n项和Word版含答案

2018北师大版文科数学高考总复习教师用书6-3等比数列及其前n项和Word版含答案

第3讲 等比数列及其前n 项和最新考纲 1.理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式;2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题;3.了解等比数列与指数函数的关系.知 识 梳 理1.等比数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的比都等于同一个非零常数,那么这个数列叫作等比数列,这个常数叫作等比数列的公比,公比通常用字母q (q ≠0)表示. 数学语言表达式:a na n -1=q (n ≥2,q 为非零常数),或a n +1a n =q (n ∈N +,q 为非零常数).(2)如果在a 与b 中插入一个数G ,使得a ,G ,b 成等比数列,那么根据等比数列的定义,G a =bG ,G 2=ab ,G =±ab ,那么G 叫作a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇔G 2=ab . 2. 等比数列的通项公式及前n 项和公式(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n -1; 通项公式的推广:a n =a m q n -m .(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n ) 1-q =a 1-a n q1-q .3.等比数列的性质已知{a n }是等比数列,S n 是数列{a n }的前n 项和. (1)若k +l =m +n (k ,l ,m ,n ∈N +),则有a k ·a l =a m ·a n . (2)等比数列{a n }的单调性:当q >1,a 1>0或0<q <1,a 1<0时,数列{a n }是递增数列; 当q >1,a 1<0或0<q <1,a 1>0时,数列{a n }是递减数列; 当q =1时,数列{a n }是常数列.(3)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m .(4)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .诊 断 自 测1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示 (1)与等差数列类似,等比数列的各项可以是任意一个实数.( ) (2)公比q 是任意一个常数,它可以是任意实数.( ) (3)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(4)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n)1-a.( )(5)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) 解析 (1)在等比数列中,a n ≠0. (2)在等比数列中,q ≠0.(3)若a =0,b =0,c =0满足b 2=ac ,但a ,b ,c 不成等比数列. (4)当a =1时,S n =na .(5)若a 1=1,q =-1,则S 4=0,S 8-S 4=0,S 12-S 8=0,不成等比数列. 答案 (1)× (2)× (3)× (4)× (5)×2.(2017·西安模拟)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( ) A .2 B .4 C. 2 D .2 2解析 在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q 2=a 4a 2=14,所以q =12,a 1=a 2q =4.答案 B3.(2017·江西七市考试)公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( )A .8B .9C .10D .11解析 由题意得,2a 5a 6=18,a 5a 6=9,∴a 1a m =a 5a 6=9, ∴m =10,故选C. 答案 C4.(2015·全国Ⅰ卷)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.解析 由a n +1=2a n ,知数列{a n }是以a 1=2为首项,公比q =2的等比数列,由S n =2(1-2n )1-2=126,解得n =6. 答案 65.(2015·广东卷)若a ,b ,c 三个正数成等比数列,其中a =5+26,c =5-26,则b 的值为________.解析 ∵a ,b ,c 成等比数列,∴b 2=ac . 即b 2=(5+26)(5-26)=1,又b >0, ∴b =1. 答案1考点一 等比数列基本量的运算【例1】 (1)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5等于( ) A.152 B.314 C.334 D.172(2)(2016·全国Ⅰ卷)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析(1)显然公比q ≠1,由题意得⎩⎨⎧a 1q ·a 1q 3=1,a 1(1-q 3)1-q =7,解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9,q =-13(舍去),∴S 5=a 1(1-q 5)1-q=4⎝ ⎛⎭⎪⎫1-1251-12=314. (2)设等比数列{a n }的公比为q ,∴⎩⎨⎧ a 1+a 3=10,a 2+a 4=5⇒⎩⎨⎧a 1+a 1q 2=10,a 1q +a 1q 3=5,解得⎩⎪⎨⎪⎧a 1=8,q =12,∴a 1a 2…a n =a n 1q 1+2+…+(n -1)=2-n 22+7n2.记t =-n 22+7n 2=-12(n 2-7n ),结合n ∈N +,可知n =3或4时,t 有最大值6.又y =2t 为增函数.所以a 1a 2…a n 的最大值为64. 答案 (1)B (2)64规律方法 等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.【训练1】 (1)(2015·全国Ⅰ卷)设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q 的值为________.(2)(2017·合肥模拟)设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列,则a n =________.解析 (1)由已知条件,得2S n =S n +1+S n +2,即2S n =2S n +2a n +1+a n +2,即a n +2a n +1=-2. (2)由已知得:⎩⎪⎨⎪⎧a 1+a 2+a 3=7,(a 1+3)+(a 3+4)2=3a 2.解得a 2=2.设数列{a n }的公比为q ,由a 2=2,可得a 1=2q ,a 3=2q .又S 3=7,可知2q +2+2q =7,即2q 2-5q +2=0,解得q 1=2,q 2=12.由题意得q >1,所以q =2,所以a 1=1. 故数列{a n }的通项为a n =2n -1.答案 (1)-2 (2)2n -1考点二 等比数列的性质及应用【例2】 (1)(2015·全国Ⅱ卷)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2等于( )A .2B .1 C.12 D.18(2)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=( )A .2 B.73 C.83 D .3解析 (1)由{a n }为等比数列,得a 3a 5=a 24,所以a 24=4(a 4-1),解得a 4=2,设等比数列{a n }的公比为q ,则a 4=a 1q 3,得2=14q 3,解得q =2,所以a 2=a 1q =12.选C.(2)法一 由等比数列的性质及题意,得S 3,S 6-S 3,S 9-S 6仍成等比数列,由已知得S 6=3S 3,∴S 6-S 3S 3=S 9-S 6S 6-S 3,即S 9-S 6=4S 3,S 9=7S 3,∴S 9S 6=73.法二 因为{a n }为等比数列,由S 6S 3=3,设S 6=3a ,S 3=a ,所以S 3,S 6-S 3,S 9-S 6为等比数列,即a,2a ,S 9-S 6成等比数列,所以S 9-S 6=4a ,解得S 9=7a ,所以S 9S 6=7a 3a =73.答案 (1)C (2)B规律方法 (1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.【训练2】 (1)在各项均为正数的等比数列{a n }中,a 3=2-1,a 5=2+1,则a 23+2a 2a 6+a 3a 7=________.(2)已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为________.解析 (1)由等比数列性质,得a 3a 7=a 25,a 2a 6=a 3a 5,所以a 23+2a 2a 6+a 3a 7=a 23+2a 3a 5+a 25=(a 3+a 5)2=(2-1+2+1)2=(22)2=8.(2)∵-1,x ,y ,z ,-3成等比数列,∴y 2=xz =(-1)×(-3)=3,且x 2=-y >0,即y <0, ∴y =-3,xz =3,∴xyz =-3 3. 答案 (1)8 (2)-3 3考点三 等比数列的判定与证明【例3】 已知数列{a n }的前n 项和为S n ,在数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n =n .(1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式. (1)证明 ∵a n +S n =n ,① ∴a n +1+S n +1=n +1.② ②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12,∴{a n -1}是等比数列.又a 1+a 1=1,∴a 1=12,又c n =a n -1,首项c 1=a 1-1,∴c 1=-12,公比q =12. ∴{c n }是以-12为首项,以12为公比的等比数列. (2)解 由(1)可知c n =⎝ ⎛⎭⎪⎫-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n , ∴a n =c n +1=1-⎝ ⎛⎭⎪⎫12n .∴当n ≥2时,b n =a n -a n -1=1-⎝ ⎛⎭⎪⎫12n -⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -1 =⎝ ⎛⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n =⎝ ⎛⎭⎪⎫12n . 又b 1=a 1=12代入上式也符合,∴b n =⎝ ⎛⎭⎪⎫12n .规律方法 证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.【训练3】 (2016·全国Ⅲ卷)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明 由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1,得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n , 由a 1≠0,λ≠0得a n ≠0,所以a n +1a n=λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1. (2)解 由(1)得S n =1-⎝ ⎛⎭⎪⎫λλ-1n.由S 5=3132得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132.解得λ=-1.[思想方法]1.等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q . 2.已知等比数列{a n }(1)数列{c ·a n }(c ≠0),{|a n |},{a 2n },⎩⎨⎧⎭⎬⎫1a n 也是等比数列. (2)a 1a n =a 2a n -1=…=a m a n -m +1. [易错防范]1.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.2.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.基础巩固题组(建议用时:40分钟)一、选择题1.已知{a n },{b n }都是等比数列,那么( ) A .{a n +b n },{a n ·b n }都一定是等比数列B .{a n +b n }一定是等比数列,但{a n ·b n }不一定是等比数列C .{a n +b n }不一定是等比数列,但{a n ·b n }一定是等比数列D .{a n +b n },{a n ·b n }都不一定是等比数列 解析 两个等比数列的积仍是一个等比数列. 答案 C2.在等比数列{a n }中,如果a 1+a 4=18,a 2+a 3=12,那么这个数列的公比为( ) A .2 B.12 C .2或12 D .-2或12解析 设数列{a n }的公比为q ,由a 1+a 4a 2+a 3=a 1(1+q 3)a 1(q +q 2)=1+q 3q +q 2=(1+q )(1-q +q 2)q (1+q )=1-q +q 2q =1812,得q =2或q =12.故选C. 答案 C3.(教材改编)一个蜂巢里有1只蜜蜂.第1天,它飞出去找回了5个伙伴;第2天,6只蜜蜂飞出去,各自找回了5个伙伴……如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中一共有________只蜜蜂( ) A .55 986 B .46 656 C .216 D .36解析 设第n 天蜂巢中的蜜蜂数量为a n ,根据题意得数列{a n }成等比数列,a 1=6,q =6,所以{a n }的通项公式a n =6×6n -1,到第6天,所有的蜜蜂都归巢后,蜂巢中一共有a 6=6×65=66=46 656只蜜蜂,故选B. 答案 B4.(2015·全国Ⅱ卷)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63 D .84解析 设等比数列{a n }的公比为q ,则由a 1=3,a 1+a 3+a 5=21得3(1+q 2+q 4)=21,解得q 2=-3(舍去)或q 2=2,于是a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42,故选B. 答案 B5.设各项都是正数的等比数列{a n },S n 为前n 项和,且S 10=10,S 30=70,那么S 40等于( )A .150B .-200C .150或-200D .400或-50解析 依题意,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列,因此有(S 20-S 10)2=S 10(S 30-S 20).即(S 20-10)2=10(70-S 20),故S 20=-20或S 20=30,又S 20>0, 因此S 20=30,S 20-S 10=20,S 30-S 20=40, 故S 40-S 30=80. S 40=150.故选A. 答案 A 二、填空题6.(2017·安庆模拟)在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q 等于________.解析 两式相减得a 4-a 3=2a 3,从而求得a 4a 3=3.即q =3.答案 37.在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________. 解析 因为a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,所以由a 8=a 6+2a 4得a 2q 6=a 2q 4+2a 2q 2,消去a 2q 2,得到关于q 2的一元二次方程(q 2)2-q 2-2=0,解得q 2=2,q 2=-1舍去,a 6=a 2q 4=1×22=4. 答案 48.已知各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=3S 2,a 3=2,则a 7=________.解析 设等比数列{a n }的首项为a 1,公比为q ,显然q ≠1且q >0,因为S 4=3S 2,所以a 1(1-q 4)1-q =3a 1(1-q 2)1-q ,解得q 2=2,因为a 3=2,所以a 7=a 3q 4=2×22=8. 答案 8 三、解答题9.在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n . 解 (1)设{a n }的公比为q ,依题意得 ⎩⎨⎧ a 1q =3,a 1q 4=81,解得⎩⎨⎧a 1=1,q =3. 因此,a n =3n -1.(2)因为b n =log 3a n =n -1,所以数列{b n }的前n 项和S n =n (b 1+b n )2=n 2-n 2.10.(2017·合肥模拟)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列. 解 (1)设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,① qS n =a 1q +a 1q 2+…+a 1q n ,② ①-②得,(1-q )S n =a 1-a 1q n ,∴S n =a 1(1-q n )1-q,∴S n =⎩⎨⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1.(2)假设{a n +1}是等比数列,则对任意的k ∈N +, (a k +1+1)2=(a k +1)(a k +2+1), a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1.∵q ≠0,∴q 2-2q +1=0,∴q =1,这与已知矛盾. 故数列{a n +1}不是等比数列.能力提升题组 (建议用时:20分钟)11.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( ) A .12 B .13 C .14 D .15 解析 设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12, 可得q 9=3,a n -1a n a n +1=a 31q3n -3=324, 因此q 3n -6=81=34=q 36, 所以n =14,故选C. 答案 C12.(2016·临沂模拟)数列{a n }中,已知对任意n ∈N +,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( )A .(3n -1)2 B.12(9n -1) C .9n -1 D.14(3n -1)解析 ∵a 1+a 2+…+a n =3n -1,n ∈N +,n ≥2时,a 1+a 2+…+a n -1=3n -1-1, ∴当n ≥2时,a n =3n -3n -1=2·3n -1, 又n =1时,a 1=2适合上式,∴a n =2·3n -1, 故数列{a 2n }是首项为4,公比为9的等比数列.因此a 21+a 22+…+a 2n =4(1-9n )1-9=12(9n -1). 答案 B13.(2017·南昌模拟)在等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是________.解析 当q >0时,S 3=a 1+a 2+a 3=1+a 1+a 3≥1+2a 1a 3=1+2a 22=3,当且仅当a 1=a 3=1时等号成立.当q <0时,S 3=a 1+a 2+a 3=1+a 1+a 3≤1-2a 1a 3=1-2a 22=-1,当且仅当a 1=a 3=-1时等号成立.所以,S 3的取值范围是(-∞,-1]∪[3,+∞).答案 (-∞,-1]∪[3,+∞)14.(2015·四川卷)设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值. 解 (1)由已知S n =2a n -a 1,有a n =S n -S n -1=2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2),所以q =2.从而a 2=2a 1,a 3=2a 2=4a 1,又因为a 1,a 2+1,a 3成等差数列,即a 1+a 3=2(a 2+1),所以a 1+4a 1=2(2a 1+1),解得a 1=2,所以,数列{a n }是首项为2,公比为2的等比数列,故a n =2n .(2)由(1)得1a n=12n , 所以T n =12+122+…+12n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-12n .由|T n -1|<11 000,得⎪⎪⎪⎪⎪⎪1-12n -1<11 000,即2n>1 000,因为29=512<1 000<1 024=210,所以n≥10,于是,使|T n-1|<11 000成立的n的最小值为10.。

2018北师大版文科数学高考总复习教师用书:2-1函数及其表示含答案

2018北师大版文科数学高考总复习教师用书:2-1函数及其表示含答案

第1讲函数及其表示最新考纲 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念;2。

在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数;3。

了解简单的分段函数,并能简单地应用(函数分段不超过三段).知识梳理1.函数的基本概念(1)函数的定义给定两个非空数集A和B,如果按照某个对应关系f,对于集合A中的任何一个数x,在集合B 中都存在唯一的数f(x)与之对应,那么就把对应关系f叫作定义在集合A上的函数,记作f:A→B或y =f(x),x∈A,此时x叫作自变量,集合A叫作函数的定义域,集合{f(x)|x∈A}叫作函数的值域.(2)函数的三要素是:定义域、值域和对应关系.(3)表示函数的常用方法有:解析法、列表法和图像法.(4)分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫作分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.2.函数定义域的求法类型x满足的条件错误!,n∈N+f(x)≥0错误!与[f(x)]0f(x)≠0log a f(x)f(x)>0四则运算组成的函数各个函数定义域的交集实际问题使实际问题有意义诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)函数y=1与y=x0是同一个函数.()(2)与x轴垂直的直线和一个函数的图像至多有一个交点.()(3)函数y=错误!-1的值域是{y|y ≥1}.()(4)若两个函数的定义域与值域相同,则这两个函数相等.()解析(1)函数y=1的定义域为R,而y=x0的定义域为{x|x≠0},其定义域不同,故不是同一函数.(3)由于x2+1≥1,故y=错误!-1≥0,故函数y=错误!-1的值域是{y|y≥0}.(4)若两个函数的定义域、对应法则均对应相同时,才是相等函数.答案(1)×(2)√(3)×(4)×2.(教材改编)若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y =f(x)的图像可能是()解析A中函数定义域不是[-2,2],C中图像不表示函数,D中函数值域不是[0,2].答案 B3.(2017·合肥一模)函数y=错误!的定义域为()A.(-∞,1]B.[-1,1]C.[1,2)∪(2,+∞)D.错误!∪错误!解析由题意,得错误!解之得-1≤x≤1且x≠-1 2.答案 D4.(2015·陕西卷)设f(x)={1-x,x≥0,,2x,x<0,则f(f(-2))等于()A.-1 B.错误!C。

2018年高考数学(理)总复习教师用书第一单元Word版含解析

2018年高考数学(理)总复习教师用书第一单元Word版含解析

第一单元 ⎪⎪⎪集合与常用逻辑用语第1课集__合[课前回扣教材][过双基]1.集合的含义及表示(1)集合的含义:研究对象叫做元素,一些元素组成的总体叫做集合.集合中元素的性质:确定性、无序性、互异性.(2)元素与集合的关系:①属于,记为∈;②不属于,记为∉. (3)集合的表示方法:列举法、描述法和图示法.(4)常用数集的记法:自然数集N ,正整数集N *或N +,整数集Z ,有理数集Q ,实数集R.2.集合间的基本关系A B 或 B A3.集合的基本运算4.集合问题中的几个基本结论(1)集合A是其本身的子集,即A⊆A;(2)子集关系的传递性,即A⊆B,B⊆C⇒A⊆C;(3)A∪A=A∩A=A,A∪∅=A,A∩∅=∅,∁U U=∅,∁U∅=U.[小题速通]1.(2017·云南统一检测)已知集合S={x|3x+a=0},如果1∈S,那么实数a的值为() A.-3B.-1C.1 D.3解析:选A∵1∈S,∴3+a=0,∴a=-3.2.(2017·江西临川一中期中)已知集合A={2,0,1,4},B={k|k∈R,k2-2∈A,k-2∉A},则集合B中所有的元素之和为()A.2 B.-2C.0 D. 2解析:选B若k2-2=2,则k=2或k=-2,当k=2时,k-2=0,不满足条件,当k=-2时,k-2=-4,满足条件;若k2-2=0,则k=±2,显然满足条件;若k2-2=1,则k=±3,显然满足条件;若k2-2=4,则k=±6,显然满足条件.所以集合B中的元素为-2,±2,±3,±6,所以集合B中的元素之和为-2,故选B.3.已知集合P={x|x<2},Q={x|x2<2},则()A.P⊆Q B.P⊇QC.P⊆∁R Q D.Q⊆∁R P解析:选B解x2<2,得-2<x<2,∴P⊇Q.4.(2017·河南适应性测试)已知集合A={0,1,2},B={y|y=2x,x∈A},则A∪B中的元素的个数为()A.6B.5C.4 D.3解析:选C因为B={0,2,4},所以A∪B={0,1,2,4},其元素的个数为4,故选C.5.(2016·全国丙卷)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞) D.(0,2]∪[3,+∞)解析:选D由题意知S={x|x≤2或x≥3},则S∩T={x|0<x≤2或x≥3}.故选D.6.设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=________.解析:由题意U={1,2,3,4,5,6,7,8,9,10},则∁U A={4,6,7,9,10},即(∁U A)∩B={7,9}.答案:{7,9}[清易错]1.在写集合的子集时,易忽视空集;在应用条件A∪B=B⇔A∩B=A⇔A⊆B时,易忽略A=∅的情况.2.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.3.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.1.(2017·西安质检)已知集合M={1,2,3,4},则集合P={x|x∈M,且2x∉M}的子集的个数为()A.8 B.4C.3 D.2解析:选B由题意,得P={3,4},所以集合P的子集有22=4个,故选B.2.已知A={x|x2-3x+2=0},B={x|ax-2=0},若A∩B=B,则实数a的值为() A.0或1或2 B.1或2C.0 D.0或1解析:选A由题意A={1,2},当B≠∅时,∵B⊆A,∴B={1}或{2},当B={1}时,a·1-2=0,解得a=2;当B={2}时,a·2-2=0,解得a=1.当B=∅时,a=0.故a的值为0或1或2.3.设全集U=R,A={x|2x(x-2)<1},B={x|y=ln(1-x)},则右图中阴影部分表示的集合为()A.{x|x≥1} B.{x|x≤1}C.{x|0<x≤1} D.{x|1≤x<2}解析:选D由2x(x-2)<1,得x(x-2)<0,解得0<x<2,由1-x>0,得x<1.图中阴影部分表示的集合为A∩∁U B,因为∁U B=[1,+∞),画出数轴,如图所示,所以A∩∁U B=[1,2).[课堂研究高考][全国卷5年命题分析]考点考查频度考查角度集合的基本概念5年2考集合的表示、集合元素的性质集合间的基本关系5年1考子集概念集合的基本运算5年7考交、并、补运算,多与不等式相结合集合的基本概念[典例](1)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中的元素个数为()A.3B.4C.5 D.6(2)(2017·厦门模拟)已知P={x|2<x<k,x∈N},若集合P中恰有3个元素,则k的取值范围为________.[解析](1)∵a∈A,b∈B,∴x=a+b为1+4=5,1+5=2+4=6,2+5=3+4=7,3+5=8.共4个元素.(2)因为P中恰有3个元素,所以P={3,4,5},故k的取值范围为5<k≤6.[答案](1)B(2)(5,6][方法技巧]与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是数集还是点集.(2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.[即时演练]1.(2017·莱州一中模拟)已知集合A ={x ∈N|x 2+2x -3≤0},B ={C |C ⊆A },则集合B 中元素的个数为( )A .2B .3C .4D .5解析:选C A ={x ∈N|(x +3)(x -1)≤0}={x ∈N|-3≤x ≤1}={0,1},共有22=4个子集,因此集合B 中元素的个数为4,选C.2.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.解析:由题意得m +2=3或2m 2+m =3,则m =1或m =-32,当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,而2m 2+m =3,故m =-32.答案:-32[典例] ,则集合A 的个数为( )A .8B .7C .4D .3(2)已知集合A ={x |1≤x <5},B ={x |-a <x ≤a +3},若B ⊆(A ∩B ),则a 的取值范围为________.[解析] (1)由题意可知,集合A 中必含有元素1和2,可含有3,4,5中的0个、1个、2个,则集合A 可以为{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},共7个.故选B.(2)因为B ⊆(A ∩B ),所以B ⊆A . ①当B =∅时,满足B ⊆A , 此时-a ≥a +3,即a ≤-32;②当B ≠∅时,要使B ⊆A ,则⎩⎪⎨⎪⎧-a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.由①②可知,a 的取值范围为(-∞,-1].[答案] (1)B (2)(-∞,-1] [方法技巧]已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析.[即时演练]1.(2017·兰州模拟)已知集合A ={x |y =ln(x +3)},B ={x |x ≥2},则下列结论正确的是( )A .A =B B .A ∩B =∅C .A ⊆BD .B ⊆A解析:选D 因为A ={x |x >-3},B ={x |x ≥2},所以结合数轴可得B ⊆A .2.已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,实数a 的取值范围是(c ,+∞),则c =________.解析:由log 2x ≤2,得0<x ≤4,即A ={x |0<x ≤4}, 而B =(-∞,a ),由于A ⊆B ,如图所示,则a >4,即c =4. 答案:4集合的基本运算集合运算多与解简单的不等式、函数的定义域、值域相联系,考查对集合的理解及不等式的有关知识;有些集合题为抽象集合题或新定义型集合题,考查学生的灵活处理问题的能力.,常见的命题角度有:(1)求交集或并集;(2)交、并、补的混合运算; (3)集合的新定义问题. 1.(2016·全国乙卷)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( ) A.⎝⎛⎭⎫-3,-32 B.⎝⎛⎭⎫-3,32 C.⎝⎛⎭⎫1,32 D.⎝⎛⎭⎫32,3解析:选D ∵x 2-4x +3<0, ∴1<x <3,∴A ={x |1<x <3}.∵2x -3>0,∴x >32,∴B =⎩⎨⎧⎭⎬⎫x ⎪⎪x >32. ∴A ∩B ={x |1<x <3}∩⎩⎨⎧⎭⎬⎫x ⎪⎪x >32=⎝⎛⎭⎫32,3. 2.(2016·山东高考)设集合A ={y |y =2x ,x ∈R},B ={x |x 2-1<0},则A ∪B =( ) A .(-1,1) B .(0,1) C .(-1,+∞)D .(0,+∞)解析:选C 由已知得A ={y |y >0},B ={x |-1<x <1},则A ∪B ={x |x >-1}.故选C.角度二:交、并、补的混合运算3.(2017·开封模拟)设集合A ={n |n =3k -1,k ∈Z},B ={x ||x -1|>3},则A ∩(∁R B )=( )A .{-1,2}B .{-2,-1,1,2,4}C .{1,4}D .∅解析:选A ∵B ={x |x >4或x <-2}, ∴∁R B ={x |-2≤x ≤4}, ∴A ∩(∁R B )={-1,2}.4.(2017·沈阳教学质量监测)设全集U =R ,集合A ={x |y =lg x },B ={-1,1},则下列结论中正确的是( )A .A ∩B ={-1} B .(∁R A )∪B =(-∞,0)C .A ∪B =(0,+∞)D .(∁R A )∩B ={-1} 解析:选D 由题意知,集合A ={x |x >0},则∁R A ={x |x ≤0}.又B ={-1,1},所以A ∩B ={1},(∁R A )∪B =(-∞,0]∪{1},A ∪B ={-1}∪(0,+∞),(∁R A )∩B ={-1},故选D.角度三:集合的新定义问题5.设A ,B 是非空集合,定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B }.已知集合A ={x |0<x <2},B ={y |y ≥0},则A ⊗B =________.解析:由已知,A ∪B ={}x |x ≥0,A ∩B ={x |0<x <2},故由新定义结合数轴得A ⊗B ={0}∪[2,+∞).答案:{0}∪[2,+∞)[方法技巧]解集合运算问题4个注意点(1)看元素构成:集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键.(2)对集合化简:有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决.(3)应用数形:常用的数形结合形式有数轴、坐标系和Venn图.(4)创新性问题:以集合为依托,对集合的定义、运算、性质进行创新考查,但最终化为原来的集合知识和相应数学知识来解决.1.(2016·全国甲卷)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=() A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}解析:选C因为B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},A={1,2,3},所以A∪B={0,1,2,3}.2.(2015·全国卷Ⅱ)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=()A.(-1,3) B.(-1,0)C.(0,2) D.(2,3)解析:选A将集合A与B在数轴上画出(如图).由图可知A∪B=(-1,3),故选A.3.(2014·全国卷Ⅱ)已知集合A={-2,0,2},B={ x|x2-x-2=0},则A∩B=() A.∅B.{2}C.{0} D.{-2}解析:选B因为B={x|x2-x-2=0}={-1,2},A={-2,0,2},所以A∩B={2},故选B.4.(2013·全国卷Ⅰ)已知集合A={x|x2-2x>0},B={x|-5<x<5},则()A .A ∩B =∅ B .A ∪B =RC .B ⊆AD.A ⊆B解析:选B 因为集合A ={x |x >2或x <0},所以A ∪B ={x |x >2或x <0}∪{x |-5<x <5}=R ,故选B.5.(2013·全国卷Ⅱ)已知集合M ={x |(x -1)2<4,x ∈R},N ={-1,0,1,2,3},则M ∩N =( ) A .{0,1,2} B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}解析:选A 不等式(x -1)2<4等价于-2<x -1<2,得-1<x <3,故集合M ={x |-1<x <3},则M ∩N ={0,1,2},故选A.[高考达标检测] 一、选择题1.(2017·郑州质量预测)设全集U ={x ∈N *|x ≤4},集合A ={1,4},B ={2,4},则∁U (A ∩B )=( )A .{1,2,3}B .{1,2,4}C .{1,3,4}D .{2,3,4}解析:选A 因为U ={1,2,3,4},A ∩B ={4},所以∁U (A ∩B )={1,2,3},故选A. 2.(2017·福州模拟)集合A ={-3,-1,2,4},B ={x |2x <8},则A ∩B =( ) A .{-3} B .{-1,2} C .{-3,-1,2}D .{-3,-1,2,4}解析:选C 由题意知,集合A ={-3,-1,2,4},B ={x |2x <8}={x |x <3},则A ∩B ={-3,-1,2},故选C.3.(2017·重庆适应性测试)设全集U =R ,集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪x -1x -2>0,B ={x ∈R|0<x <2},则(∁U A )∩B =( )A .(1,2]B .[1,2)C .(1,2)D .[1,2]解析:选B 依题意得∁U A ={x |1≤x ≤2},(∁U A )∩B ={x |1≤x <2}=[1,2),选B. 4.(2017·武汉调研)已知集合A ={x |-2≤x ≤3},B ={x |x 2+2x -8>0},则A ∪B =( ) A .(-∞,-4)∪[-2,+∞) B .(2,3]C .(-∞,3]∪(4,+∞)D.[-2,2)解析:选A因为B={x|x>2或x<-4},所以A∪B={x|x<-4或x≥-2},故选A.5.(2016·浙江高考)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=() A.[2,3]B.(-2,3]C.[1,2) D.(-∞,-2]∪[1,+∞)解析:选B∵Q={x∈R|x2≥4},∴∁R Q={x∈R|x2<4}={x∈R|-2<x<2}.∵P={x∈R|1≤x≤3},∴P∪(∁R Q)={x∈R|-2<x≤3}=(-2,3].6.设集合A={-1,0,1},集合B={0,1,2,3},定义A*B={(x,y)|x∈A∩B,y∈A∪B},则A*B中元素的个数是()A.7 B.10C.25D.52解析:选B因为A={-1,0,1},B={0,1,2,3},所以A∩B={0,1},A∪B={-1,0,1,2,3}.由x∈A∩B,可知x可取0,1;由y∈A∪B,可知y可取-1,0,1,2,3.所以元素(x,y)的所有结果如下表所示:所以A*B中的元素共有10个.7.(2017·吉林一模)设集合A={0,1},集合B={x|x>a},若A∩B中只有一个元素,则实数a的取值范围是()A.{a|a<1} B.{a|0≤a<1}C.{a|a≥1} D.{a|a≤1}解析:选B由题意知,集合A={0,1},集合B={x|x>a},画出数轴(图略).若A∩B中只有一个元素,则0≤a <1,故选B.8.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },如果P ={x |log 2x <1},Q ={x ||x -2|<1},那么P -Q =( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}解析:选B 由log 2x <1,得0<x <2, 所以P ={x |0<x <2}. 由|x -2|<1,得1<x <3, 所以Q ={x |1<x <3}.由题意,得P -Q ={x |0<x ≤1}. 二、填空题9.(2017·辽宁师大附中调研)若集合A ={x |(a -1)·x 2+3x -2=0}有且仅有两个子集,则实数a 的值为________.解析:由题意知,集合A 有且仅有两个子集,则集合A 中只有一个元素.当a -1=0,即a =1时,A =⎩⎨⎧⎭⎬⎫23,满足题意;当a -1≠0,即a ≠1时,要使集合A 中只有一个元素,需Δ=9+8(a -1)=0,解得a =-18.综上可知,实数a 的值为1或-18.答案:1或-1810.(2017·湖南岳阳一中调研)已知集合A ={x |x <a },B ={x |1<x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是________.解析:由∁R B ={x |x ≤1或x ≥2}, 且A ∪(∁R B )=R , 可得a ≥2. 答案:[2,+∞)11.(2017·贵阳监测)已知全集U ={a 1,a 2,a 3,a 4},集合A 是全集U 的恰有两个元素的子集,且满足下列三个条件:①若a 1∈A ,则a 2∈A ;②若a 3∉A ,则a 2∉A ;③若a 3∈A ,则a 4∉A .则集合A =________.(用列举法表示)解析:假设a 1∈A ,则a 2∈A ,由若a 3∉A ,则a 2∉A 可知,a 3∈A ,故假设不成立;假设a 4∈A ,则a 3∉A ,a 2∉A ,a 1∉A ,故假设不成立.故集合A ={a 2,a 3}.答案:{a 2,a 3}12.(2016·北京高考)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店①第一天售出但第二天未售出的商品有________种; ②这三天售出的商品最少有________种.解析:设三天都售出的商品有x 种,第一天售出,第二天未售出,且第三天售出的商品有y 种,则三天售出商品的种类关系如图所示.由图可知:①第一天售出但第二天未售出的商品有19-(3-x )-x =16(种). ②这三天售出的商品有(16-y )+y +x +(3-x )+(6+x )+(4-x )+(14-y )=43-y (种).由于⎩⎪⎨⎪⎧16-y ≥0,y ≥0,14-y ≥0,所以0≤y ≤14.所以(43-y )min =43-14=29. 答案:①16 ②29 三、解答题13.设全集U =R ,A ={x |1≤x ≤3},B ={x |2<x <4},C ={x |a ≤x ≤a +1}. (1)分别求A ∩B ,A ∪(∁U B );(2)若B ∪C =B ,求实数a 的取值范围.解:(1)由题意知,A ∩B ={x |1≤x ≤3}∩{x |2<x <4}={x |2<x ≤3}. 易知∁U B ={x |x ≤2或x ≥4},所以A ∪(∁U B )={x |1≤x ≤3}∪{x |x ≤2或x ≥4}={x |x ≤3或x ≥4}.(2)由B ∪C =B ,可知C ⊆B ,画出数轴(图略),易知2<a <a +1<4,解得2<a <3.故实数a 的取值范围是(2,3).14.(2017·青岛模拟)若集合M ={x |-3≤x ≤4},集合P ={x |2m -1≤x ≤m +1}. (1)证明M 与P 不可能相等;(2)若集合M 与P 中有一个集合是另一个集合的真子集,求实数m 的取值范围.解:(1)证明:若M =P ,则-3=2m -1且4=m +1,即m =-1且m =3,不成立. 故M 与P 不可能相等.(2)若PM ,当P ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1<4,m +1≥2m -1或⎩⎪⎨⎪⎧-3<2m -1,m +1≤4,m +1≥2m -1,解得-1≤m ≤2;当P =∅时,有2m -1>m +1,解得m >2,即m ≥-1;若MP ,则⎩⎪⎨⎪⎧-3≥2m -1,4<m +1,m +1≥2m -1或⎩⎪⎨⎪⎧-3>2m -1,4≤m +1,m +1≥m -1,无解.综上可知,当有一个集合是另一个集合的真子集时,只能是P M ,此时必有m ≥-1, 即实数m 的取值范围为[-1,+∞).第2课命题及其关系__充分条件与必要条件[课前回扣教材][过双基]1.命题2.四种命题及其相互关系 (1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充要条件[小题速通]1.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是()A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0解析:选D命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”,故选D.2.原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假解析:选B原命题正确,所以逆否命题正确.模相等的两复数不一定互为共轭复数,同时因为逆命题与否命题互为逆否命题,所以逆命题和否命题错误.故选B.3.(2016·天津高考)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件解析:选C当x=1,y=-2时,x>y,但x>|y|不成立;若x>|y|,因为|y|≥y,所以x>y.所以x>y是x>|y|的必要而不充分条件.4.(2017·保定调研)在△ABC中,“A=B”是“tan A=tan B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C由A=B得tan A=tan B,反之,若tan A=tan B,则A=B+kπ,k∈Z.∵0<A<π,0<B<π,∴A=B.故选C.[清易错]1.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A是B的充分不必要条件(A⇒B且B⇒/A)与A的充分不必要条件是B(B⇒A 且A⇒/B)两者的不同.1.已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A因为p:x+y≠-2,q:x≠-1,或y≠-1,所以綈p:x+y=-2,綈q:x=-1,且y=-1,因为綈q⇒綈p但綈p⇒/綈q,所以綈q是綈p的充分不必要条件,即p是q的充分不必要条件.2.“在△ABC中,若∠C=90°,则∠A,∠B都是锐角”的否命题为:________________.解析:原命题的条件:在△ABC中,∠C=90°,结论:∠A,∠B都是锐角.否命题是否定条件和结论.即“在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角”.答案:在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角[课堂研究高考][全国卷5年命题分析]考点考查频度考查角度四种命题及其关系5年1考复数相关命题的判断充分条件、必要条件未考查命题的相互关系及真假性[典例](1)(2017·西安八校联考)已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的()A.逆命题B.否命题C.逆否命题D.否定(2)原命题为“若a n+a n+12<a n,n∈N*,则{an}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,真,真B.假,假,真C.真,真,假D.假,假,假[解析](1)命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.(2)原命题即“若a n+1<a n,n∈N*,则{a n}为递减数列”为真命题,则其逆否命题为真,逆命题是:“若{a n}为递减数列,n∈N*,则a n+1<a n”为真命题,所以否命题也为真命题.[答案](1)B(2)A[方法技巧]命题的关系及真假判断(1)在判断命题之间的关系时,首先要分清命题的条件与结论,再分析每个命题的条件与结论之间的关系,要注意四种命题关系的相对性.(2)判断命题真假的方法:一是联系已有的数学公式、定理、结论进行正面直接判断;二是利用原命题和其逆否命题的等价关系进行判断.[即时演练]1.(2017·河北承德模拟)已知命题α:如果x<3,那么x<5;命题β:如果x≥3,那么x≥5;命题γ:如果x≥5,那么x≥3.关于这三个命题之间的关系,下列三种说法正确的是()①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题. A .①③ B .② C .②③D .①②③解析:选A 命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定,然后交换条件与结论所得,因此①正确,②错误,③正确,故选A.2.(2017·黄冈调研)给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A .3B .2C .1D .0解析:选C 易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题,故它的逆命题、否命题、逆否命题三个命题中,真命题只有一个.充分、必要条件的判定[典例] (1)(2016·山东高考)已知直线a ,b 分别在两个不同的平面αβ内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)(2017·浙江名校联考)一次函数y =-m n x +1n 的图象同时经过第一、三、四象限的必要不充分条件是( )A .m >1,且n <1B .mn <0C .m >0,且n <0D .m <0,且n <0[解析] (1)由题意知a ⊂α,b ⊂β,若a ,b 相交,则a ,b 有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a ,b 的位置关系可能为平行、相交或异面.因此“直线a 和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选A.(2)因为y =-m n x +1n 的图象经过第一、三、四象限,故-m n >0,1n <0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.[答案] (1)A (2)B [方法技巧]充要条件的3种判断方法(1)定义法:直接判断若p 则q ,若q 则p 的真假.(2)等价法:即利用A ⇒B 与綈B ⇒綈A ;B ⇒A 与綈A ⇒綈B ;A ⇔B 与綈B ⇔綈A 的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.(3)利用集合间的包含关系判断:设A ={x |p (x )},B ={x |q (x )}:若A ⊆B ,则p 是q 的充分条件或q 是p 的必要条件;若A B ,则p 是q 的充分不必要条件,若A =B ,则p 是q 的充要条件.[即时演练]1.(2016·四川高考)设p :实数x ,y 满足x >1且y >1,q :实数x ,y 满足x +y >2,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A ∵⎩⎪⎨⎪⎧x >1,y >1,∴x +y >2,即p ⇒q .而当x =0,y =3时,有x +y =3>2,但不满足x >1且y >1,即q ⇒/p .故p 是q 的充分不必要条件.2.(2017·合肥一模)函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x -a ,x ≤0有且只有一个零点的充分不必要条件是( )A .a ≤0或a >1B .0<a <12C.12<a <1 D .a <0解析:选D 因为f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x -a ,x ≤0有且只有一个零点的充要条件为a ≤0或a >1.由选项可知,使“a ≤0或a >1”成立的充分条件为选项D.根据充分、必要条件求参数的范围根据充分条件、必要条件求参数的范围是对充分条件、必要条件与集合之间关系的深层次考查.此类题的解决方法一般有两种:(1)先求出p ,q 为真命题时所对应的条件,然后表示出綈p 与綈q ,把綈p 是綈q 的必要不充分条件转化为綈p 与綈q 所对应集合之间的关系,列出参数a 所满足的条件求解;(2)利用等价转化法,把綈p ,綈q 的关系转化为p ,q 的关系.[典例] (2017·安徽黄山调研)已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.[解析] 由2x 2-3x +1≤0,得12≤x ≤1,∴条件p 对应的集合P =⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤1. 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1, ∴条件q 对应的集合为Q ={x |a ≤x ≤a +1}. 法一:用“直接法”解题綈p 对应的集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪x >1或x <12, 綈q 对应的集合B ={x |x >a +1或x <a }. ∵綈p 是綈q 的必要不充分条件, ∴a +1≥1且a ≤12,∴0≤a ≤12.即实数a 的取值范围是⎣⎡⎦⎤0,12. 法二:用“等价转化法”解题 ∵綈p 是綈q 的必要不充分条件,∴根据原命题与逆否命题等价,得p 是q 的充分不必要条件. ∴p ⇒q ,即P Q ⇔⎩⎪⎨⎪⎧ a <12,a +1≥1,或⎩⎪⎨⎪⎧a ≤12,a +1>1,解得0≤a ≤12.[答案] ⎣⎡⎦⎤0,12 [方法技巧]根据充要条件求解参数范围的注意点(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.[即时演练]1.(2017·安阳调研)已知p:x∈A={x|x2-2x-3≤0,x∈R},q:x∈B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.若p是綈q的充分条件,则实数m的取值范围是________.解析:∵A={x|-1≤x≤3},B={x|m-2≤x≤m+2},∴∁R B={x|x<m-2或x>m+2}.∵p是綈q的充分条件,∴A⊆∁R B,∴m-2>3或m+2<-1,∴m>5或m<-3.答案:(-∞,-3)∪(5,+∞)2.若“x2>1”是“x<a”的必要不充分条件,则a的最大值为________.解析:由x2>1,得x<-1,或x>1,又“x2>1”是“x<a”的必要不充分条件,知由“x<a”可以推出“x2>1”,反之不成立,所以a≤-1,即a的最大值为-1.答案:-11.(2016·北京高考)设a,b是向量,则“|a|=|b|”是“|a+b|=|a-b|”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选D若|a|=|b|成立,则以a,b为邻边的平行四边形为菱形.a+b,a-b表示的是该菱形的对角线,而菱形的两条对角线长度不一定相等,所以|a+b|=|a-b|不一定成立,从而不是充分条件;反之,若|a+b|=|a-b|成立,则以a,b为邻边的平行四边形为矩形,而矩形的邻边长度不一定相等,所以|a|=|b|不一定成立,从而不是必要条件.故“|a|=|b|”是“|a+b|=|a-b|”的既不充分也不必要条件.2.(2015·陕西高考)“sin α=cos α”是“cos 2α=0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A cos 2α=0等价于cos 2α-sin 2α=0,即cos α=±sin α.由cos α=sin α可得到cos 2α=0,反之不成立,故选A.3.(2015·重庆高考)“x >1”是“log 12(x +2)<0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件解析:选B ∵x >1⇒log 12(x +2)<0,log 12(x +2)<0⇒x +2>1⇒x >-1,∴“x >1”是“log 12(x +2)<0”的充分而不必要条件.4.(2014·全国卷Ⅱ)函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0;q :x =x 0是f (x )的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件解析:选C 当f ′(x 0)=0时,x =x 0不一定是f (x )的极值点,比如,y =x 3在x =0时,f ′(0)=0,但在x =0的左右两侧f ′(x )的符号相同,因而x =0不是y =x 3的极值点.由极值的定义知,x =x 0是f (x )的极值点必有f ′(x 0)=0.综上知,p 是q 的必要条件,但不是充分条件.5.(2013·浙江高考)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R),则“f (x )是奇函数”是“φ=π2”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B 若f (x )是奇函数,则φ=π2+k π(k ∈Z),且当φ=π2时,f (x )为奇函数,故f (x )是奇函数是φ=π2的必要不充分条件.[高考达标检测] 一、选择题1.(2017·菏泽一中模拟)命题“若a 2+b 2=0,则a =0且b =0”的逆否命题是( ) A .若a 2+b 2≠0,则a ≠0且b ≠0 B .若a 2+b 2≠0,则a ≠0或b ≠0 C .若a =0且b =0,则a 2+b 2≠0 D .若a ≠0或b ≠0,则a 2+b 2≠0解析:选D 命题的逆否命题是条件和结论对调且都否定,注意“且”应换成“或”. 2.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真解析:选D 对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.3.(2016·山西太原一模)“已知命题p :cos α≠12,命题q :α≠π3”,则命题p 是命题q的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 法一:若cos α≠12,则α≠2k π±π3(k ∈Z),则α也必然不等于π3,故p ⇒q ;若α≠π3,但α=-π3时,依然有cos α=12,故q ⇒/p .所以p 是q 的充分不必要条件. 法二:綈p :cos α=12,綈q :α=π3,则有綈p⇒/綈q,綈q⇒綈p,即綈q是綈p的充分不必要条件,根据原命题与逆否命题的等价性,可得p是q的充分不必要条件.4.(2017·烟台诊断)若条件p:|x|≤2,条件q:x≤a,且p是q的充分不必要条件,则a 的取值范围是()A.[2,+∞) B.(-∞,2]C.[-2,+∞) D.(-∞,-2]解析:选A p:|x|≤2⇔-2≤x≤2.因为p是q的充分不必要条件,所以[-2,2]⊆(-∞,a],即a≥2.5.(2017·嘉兴质检)命题“对任意x∈[1,2],x2-a≤0”为真命题的一个充分不必要条件可以是()A.a≥4 B.a>4C.a≥1 D.a>1解析:选B若“对任意x∈[1,2],x2-a≤0”为真命题,则有a≥(x2)max,其中x∈[1,2],所以a≥4,命题成立的一个充分不必要条件即寻找[4,+∞)的一个真子集即可,故选B.6.(2017·河南质量检测)设平面α与平面β相交于直线m,直线a在平面α内,直线b 在平面β内,且b⊥m,则“a⊥b”是“α⊥β”的()A.充分不必要条件B.必要不充分条件D.充要条件D.既不充分也不必要条件解析:选B因为α⊥β,b⊥m,所以b⊥α,又直线a在平面α内,所以a⊥b;但直线a,m不一定相交,所以“a⊥b”是“α⊥β”的必要不充分条件,故选B.7.如果x,y是实数,那么“x≠y”是“cos x≠cos y”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:选C设集合A={(x,y)|x≠y},B={(x,y)|cos x≠cos y},则A的补集C={(x,y)|x=y},B的补集D={(x,y)|cos x=cos y},显然C D,所以B A.于是“x≠y”是“cos x≠cos y”的必要不充分条件.8.(2017·南昌调研)下列说法正确的是()A .命题“若x 2=1,则x =1”的否命题是“若x 2=1,则x ≠1”B .“x =-1”是“x 2-x -2=0”的必要不充分条件C .命题“若x =y ,则sin x =sin y ”的逆否命题是真命题D .“tan x =1”是“x =π4”的充分不必要条件解析:选C 由原命题与否命题的关系知,原命题的否命题是“若x 2≠1,则x ≠1”,即A 不正确;因为x 2-x -2=0,所以x =-1或x =2,所以由“x =-1”能推出“x 2-x -2=0”,反之,由“x 2-x -2=0”推不出“x =-1”,所以“x =-1”是“x 2-x -2=0”的充分不必要条件,即B 不正确;因为由x =y 能推得sin x =sin y ,即原命题是真命题,所以它的逆否命题是真命题,故C 正确;由x =π4能推出tan x =1,但由tan x =1推不出x =π4,所以“tan x =1”是“x =π4”的必要不充分条件,即D 不正确.二、填空题9.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.解析:其中原命题和逆否命题为真命题,逆命题和否命题为假命题. 答案:210.(2017·德州一中模拟)下列命题中为真命题的序号是________. ①若x ≠0,则x +1x ≥2;②命题:若x 2=1,则x =1或x =-1的逆否命题为:若x ≠1且x ≠-1,则x 2≠1; ③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件;④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”. 解析:当x <0时,x +1x ≤-2,故①错误;根据逆否命题的定义可知,②正确;“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③错误;根据否命题的定义知④正确.故填②④.答案:②④11.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析:A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2. 答案:(2,+∞)12.设等比数列{a n }的公比为q ,前n 项和为S n ,则“|q |=1”是“S 4=2S 2”的________条件.解析:∵等比数列{a n }的前n 项和为S n ,又S 4=2S 2, ∴a 1+a 2+a 3+a 4=2(a 1+a 2),∴a 3+a 4=a 1+a 2, ∴q 2=1⇔|q |=1,∴“|q |=1”是“S 4=2S 2”的充要条件. 答案:充要 三、解答题13.写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题、否命题、逆否命题,并判断它们的真假.解:(1)逆命题:已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a 2<4b ,则关于x 的不等式x 2+ax +b ≤0没有非空解集,为真命题.14.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716, ∵x ∈⎣⎡⎦⎤34,2,∴716≤y ≤2, ∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2, ∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件,∴A ⊆B ,∴1-m 2≤716, 解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 第3课简单的逻辑联结词、全称量词与存在量词[课前回扣教材][过双基]1.命题p ∧q ,p ∨q ,綈p 的真假判断2.全称量词与存在量词3.全称命题和特称命题[小题速通]1.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(綈q );④(綈p )∨q 中,真命题是( )A .①③B .①④C .②③D .②④解析:选C 当x >y 时,-x <-y ,故命题p 为真命题,从而綈p 为假命题. 当x >y 时,x 2>y 2不一定成立,故命题q 为假命题,从而綈q 为真命题.故①p ∧q 为假命题;②p ∨q 为真命题;③p ∧(綈q )为真命题;④(綈p )∨q 为假命题. 2.已知命题p 1:函数y =2x -2-x在R 上为增函数,p 2:函数y =2x +2-x在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2,q 4:p 1∧(綈p 2)中,真命题是( )A .q 1,q 3B .q 2,q 3C .q 1,q 4D .q 2,q 4解析:选C ∵y =2x 在R 上为增函数, y =2-x =⎝⎛⎭⎫12x在R 上为减函数, ∴y =-2-x =-⎝⎛⎭⎫12x 在R 上为增函数,∴y =2x -2-x 在R 上为增函数,故p 1是真命题. ∵y =2x +2-x 在(0,+∞)上为增函数,故p 2是假命题. ∴q 1:p 1∨p 2是真命题,因此排除选项B 和选项D , q 2:p 1∧p 2是假命题,q 3:(綈p 1)∨p 2是假命题,排除选项A ,故选C.3.已知命题p :∀x >0,总有(x +1)e x >1,则綈p 为( ) A .∃x 0≤0,使得(x 0+1)e x 0≤1 B .∃x 0>0,使得(x 0+1)e x 0≤1 C .∀x >0,总有(x +1)e x ≤1 D .∀x ≤0,总有(x +1)e x ≤1解析:选B 命题p 为全称命题,所以綈p :∃x 0>0,使得(x 0+1)e x 0≤1. 4.已知命题p :∃x 0∈R ,sin x 0<12x 0,则綈p 为( )A .∃x 0∈R ,sin x 0=12x 0B .∀x ∈R ,sin x <12x。

2018年高考数学理总复习教师用书:第四单元 含解析 精

2018年高考数学理总复习教师用书:第四单元 含解析 精

第四单元 ⎪⎪⎪导数及其应用教材复习课“导数”相关基础知识一课过[过双基]1.基本初等函数的导数公式2.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 3.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.[小题速通]1.下列求导运算正确的是( ) A.⎝⎛⎭⎫x +1x ′=1+1x 2 B .(log 2x )′=1x ln 2C .(3x )′=3x log 3eD .(x 2cos x )′=-2sin x解析:选B ⎝⎛⎭⎫x +1x ′=1-1x 2;(3x )′=3x ln 3;(x 2cos x )′=2x cos x -x 2sin x ,故选B. 2.函数f (x )=(x +2a )(x -a )2的导数为( ) A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C ∵f (x )=(x +2a )(x -a )2=x 3-3a 2x +2a 3, ∴f ′(x )=3(x 2-a 2).3.(2016·天津高考)已知函数f (x )=(2x +1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为________.解析:因为f (x )=(2x +1)e x ,所以f ′(x )=2e x +(2x +1)e x =(2x +3)e x , 所以f ′(0)=3e 0=3. 答案:3 4.函数y =ln (2x +1)x的导数为________. 解析:y ′=⎣⎡⎦⎤ln (2x +1)x ′=[ln (2x +1)]′x -x ′ln (2x +1)x 2=(2x +1)′2x +1·x -ln (2x +1)x 2=2x2x +1-ln (2x +1)x 2=2x -(2x +1)ln (2x +1)(2x +1)x 2.答案:y ′=2x -(2x +1)ln (2x +1)(2x +1)x 2[清易错]1.利用公式求导时,一定要注意公式的适用范围及符号,如(x n )′=nx n-1中n ≠0且n∈Q *,(cos x )′=-sin x .2.注意公式不要用混,如(a x )′=a x ln a ,而不是(a x )′=xa x -1.1.已知函数f (x )=sin x -cos x ,若f ′(x )=12f (x ),则tan x 的值为( )A .1B .-3C .-1D .2解析:选B ∵f ′(x )=(sin x -cos x )′=cos x +sin x , 又f ′(x )=12f (x ),∴cos x +sin x =12sin x -12cos x ,∴tan x =-3.2.若函数f (x )=2x +ln x 且f ′(a )=0,则2a ln 2a =( ) A .-1 B .1 C .-ln 2D .ln 2解析:选A f ′(x )=2x ln 2+1x ,由f ′(a )=2a ln 2+1a =0,得2a ln 2=-1a ,则a ·2a ·ln 2=-1,即2a ln 2a =-1.[过双基]函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)·(x -x 0).[小题速通]1.曲线y =sin x +e x 在点(0,1)处的切线方程是( ) A .x -3y +3=0 B .x -2y +2=0 C .2x -y +1=0D .3x -y +1=0解析:选C ∵y =sin x +e x , ∴y ′=cos x +e x , ∴y ′| x =0=cos 0+e 0=2,∴曲线y =sin x +e x 在点(0,1)处的切线方程为y -1=2(x -0),即2x -y +1=0.故选C.2.(2017·郑州质检)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×⎝⎛⎭⎫-13=0. [清易错]1.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者.2.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.1.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( ) A .-1或-2564B .-1或214C .-74或-2564D .-74或7解析:选A 因为y =x 3,所以y ′=3x 2, 设过(1,0)的直线与y =x 3相切于点(x 0,x 30), 则在该点处的切线斜率为k =3x 20,所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又(1,0)在切线上,则x 0=0或x 0=32,当x 0=0时,由y =0与y =ax 2+154x -9相切,可得a =-2564, 当x 0=32时,由y =274x -274与y =ax 2+154x -9相切,可得a =-1,所以选A.2.(2017·兰州一模)已知直线y =2x +1与曲线y =x 3+ax +b 相切于点(1,3),则实数b 的值为________.解析:因为函数y =x 3+ax +b 的导函数为y ′=3x 2+a ,所以此函数的图象在点(1,3)处的切线斜率为3+a ,所以⎩⎪⎨⎪⎧ 3+a =2,3=1+a +b ,解得⎩⎪⎨⎪⎧a =-1,b =3.答案:3利用导数研究函数的单调性[过双基]1.函数f (x )在某个区间(a ,b )内的单调性与f ′(x )的关系 (1)若f ′(x )>0,则f (x )在这个区间上是增加的. (2)若f ′(x )<0,则f (x )在这个区间上是减少的. (3)若f ′(x )=0,则f (x )在这个区间内是常数. 2.利用导数判断函数单调性的一般步骤 (1)求f ′(x ).(2)在定义域内解不等式f ′(x )>0或f ′(x )<0.(3)根据结果确定f (x )的单调区间. [小题速通]1.函数f (x )=x +eln x 的单调递增区间为( ) A .(0,+∞)B .(-∞,0)C .(-∞,0)和(0,+∞)D .R解析:选A 函数f (x )的定义域为(0,+∞),f ′(x )=1+ex >0,故单调增区间是(0,+∞).2.已知函数f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则f (x )的图象可能是( )解析:选D 当x <0时,由导函数f ′(x )=ax 2+bx +c <0,知相应的函数f (x )在该区间内单调递减;当x >0时,由导函数f ′(x )=ax 2+bx +c 的图象可知,导函数在区间(0,x 1)内的值是大于0的,则在此区间内函数f (x )单调递增.只有D 选项符合题意.3.已知f (x )=x 2+ax +3ln x 在(1,+∞)上是增函数,则实数a 的取值范围为( ) A .(-∞,-26] B.⎝⎛⎦⎤-∞,62 C .[-26,+∞)D .[-5,+∞)解析:选C 由题意得f ′(x )=2x +a +3x =2x 2+ax +3x≥0在(1,+∞)上恒成立⇔g (x )=2x 2+ax +3≥0在(1,+∞)上恒成立⇔Δ=a 2-24≤0或⎩⎪⎨⎪⎧-a 4≤1g (1)≥0⇔-26≤a ≤26或⎩⎪⎨⎪⎧a ≥-4a ≥-5⇔a ≥-26,故选C. [清易错]若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________. 解析:∵f (x )=x 3+x 2+mx +1, ∴f ′(x )=3x 2+2x +m .又∵f (x )在R 上是单调增函数,∴f ′(x )≥0恒成立,∴Δ=4-12m ≤0,即m ≥13.答案:⎣⎡⎭⎫13,+∞1.函数的极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值.2.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点.3.函数的最值与导数(1)函数y =f (x )在[a ,b ]上的最大值点x 0指的是:函数在这个区间上所有点的函数值都不超过f (x 0).(2)函数y =f (x )在[a ,b ]上的最小值点x 0指的是:函数在这个区间上所有点的函数值都不小于f (x 0).[小题速通]1.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .4解析:选A 由图象及极值点的定义知f (x )只有一个极小值点. 2.若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4D .5解析:选D f ′(x )=3x 2+2ax +3,由题意知f ′(-3)=0,即3×(-3)2+2×(-3)a +3=0,解得a =5.3.(2017·济宁一模)函数f (x )=12x 2-ln x 的最小值为( )A.12 B .1 C .0D .不存在解析:选A f ′(x )=x -1x =x 2-1x,且x >0.令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1.∴f (x )在x =1处取得极小值也是最小值,且f (1)=12-ln 1=12.4.设x 1,x 2是函数f (x )=x 3-2ax 2+a 2x 的两个极值点,若x 1<2<x 2,则实数a 的取值范围是________.解析:由题意,f ′(x )=3x 2-4ax +a 2=0,得x =a3或a .又∵x 1<2<x 2,∴x 1=a3,x 2=a ,∴⎩⎪⎨⎪⎧a >2,a3<2,∴2<a <6.答案:(2,6)[清易错]1.f ′(x 0)=0是x 0为f (x )的极值点的非充分非必要条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点;又如f (x )=|x |,x =0是它的极小值点,但f ′(0)不存在.2.求函数最值时,易误认为极值点就是最值点,不通过比较就下结论. 1.(2017·岳阳一模)下列函数中,既是奇函数又存在极值的是( ) A .y =x 3 B .y =ln(-x ) C .y =x e -xD .y =x +2x解析:选D A 、B 为单调函数,不存在极值,C 不是奇函数,故选D. 2.函数f (x )=13x 3+x 2-3x -4在[0,2]上的最小值是________.解析:f ′(x )=x 2+2x -3,令f ′(x )=0得x =1(x =-3舍去),又f (0)=-4,f (1)=-173,f (2)=-103,故f (x )在[0,2]上的最小值是f (1)=-173.答案:-173定积分1.定积分的概念在∫b a f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.2.定积分的性质(1)∫b a kf (x )d x =k ∫b a f (x )d x (k 为常数); (2)∫b a [f 1(x )±f 2(x )]d x =∫b a f 1(x )d x ±∫b a f 2(x )d x ;(3)∫b a f (x )d x =∫c a f (x )d x +∫bc f (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么∫b a f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿-莱布尼茨公式.其中F (x )叫做f (x )的一个原函数.为了方便,常把F (b )-F (a )记作F (x )|b a ,即∫b a f (x )d x =F (x )|b a =F (b )-F (a ).[小题速通]1.(2017·南昌调研)∫10e x d x 的值等于( )A .eB .1-eC .e -1B.12(e -1)解析:选C ∫10e x d x =e x |10=e 1-e 0=e -1.2.(2017·河北省五校联盟质量监测)若f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +∫a 03t 2d t ,x ≤0,f (f (1))=1,则a 的值为( )A .1B .2C .-1D .-2解析:选A 因为f (1)=lg 1=0,f (0)=∫a 03t 2d t =t 3 |a 0=a 3,所以由f (f (1))=1得a 3=1,所以a =1.3.(2015·天津高考)曲线y =x 2与直线y =x 所围成的封闭图形的面积为________. 解析:如图,阴影部分的面积即为所求.由⎩⎪⎨⎪⎧y =x 2,y =x得A (1,1). 故所求面积为S =⎠⎛01(x -x 2)d x =⎝⎛⎭⎫12x 2-13x 3⎪⎪⎪10=16. 答案:16[清易错]定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负.(2017·洛阳调研)函数f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0e x ,0≤x ≤1的图象与直线x =1及x 轴所围成的封闭图形的面积为________.解析:由题意知,所求面积为∫0-1(x +1)d x +∫10e x d x =⎝⎛⎭⎫12x 2+x |0-1+e x |10=-⎝⎛⎭⎫12-1+(e -1)=e -12.答案:e -12[双基过关检测] 一、选择题1.已知函数f (x )=sin x -12x ,则f ′(x )=( )A .sin x -12B .cos x -12C .-cos x -12D .-sin x +12解析:选B f ′(x )=⎝⎛⎭⎫sin x -12x ′=(sin x )′-⎝⎛⎭⎫12x ′=cos x -12. 2.已知函数f (x )=log a x (a >0且a ≠1),若f ′(1)=-1,则a =( ) A .e B.1eC.1e2 B.12解析:选B 因为f ′(x )=1x ln a ,所以f ′(1)=1ln a =-1,所以ln a =-1,所以a =1e. 3.曲线y =x e x +2x -1在点(0,-1)处的切线方程为( ) A .y =3x -1 B .y =-3x -1 C .y =3x +1D .y =-2x -1解析:选A 因为y ′=e x +x e x +2,所以曲线y =x e x +2x -1在点(0,-1)处的切线的斜率k =y ′| x =0=3,∴切线方程为y =3x -1.4.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1B.12解析:选A 已知曲线y =x 24-3ln x (x >0)的一条切线的斜率为12,由y ′=12x -3x =12,得x =3,故选A.5.函数f (x )=(x -3)e x 的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4)D .(2,+∞)解析:选D 依题意得f ′(x )=(x -3)′e x +(x -3)(e x )′=(x -2)e x ,令f ′(x )>0,解得x >2,∴f (x )的单调递增区间是(2,+∞).故选D.6.已知函数f (x )=x (x -m )2在x =1处取得极小值,则实数m =( ) A .0 B .1 C .2D .3解析:选B f (x )=x (x 2-2mx +m 2)=x 3-2mx 2+m 2x ,所以f ′(x )=3x 2-4mx +m 2=(x -m )(3x -m ).由f ′(1)=0可得m =1或m =3.当m =3时,f ′(x )=3(x -1)(x -3),当1<x <3时,f ′(x )<0,当x <1或x >3时,f ′(x )>0,此时在x =1处取得极大值,不合题意,∴m =1,此时f ′(x )=(x -1)(3x -1),当13<x <1时,f ′(x )<0,当x <13或x >1时,f ′(x )>0,此时在x =1处取得极小值.选B.7.已知函数f (x )=⎩⎪⎨⎪⎧x 2,-2≤x ≤0,x +1,0<x ≤2,则⎠⎛2-2f(x)d x 的值为( )A .43 B .4 C .6B.203解析:选D ⎠⎛2-2f(x)d x=⎠⎛0-2x 2d x +⎠⎛20(x +1)d x=13x 3| 0-2+⎝⎛⎭⎫12x 2+x | 20 =⎝⎛⎭⎫0+83+⎝⎛⎭⎫12×4+2-0=203. 8.若函数f(x)=⎩⎪⎨⎪⎧1-2x,x ≤0,x 3-3x +a ,x>0的值域为[0,+∞),则实数a 的取值范围是( )A .[2,3]B .(2,3]C .(-∞,2]D .(-∞,2)解析:选A 当x ≤0时,1>f(x)=1-2x ≥0; 当x>0时,f(x)=x 3-3x +a ,f ′(x)=3x 2-3, 当x ∈(0,1)时,f ′(x)<0,f(x)单调递减, 当x ∈(1,+∞)时,f ′(x)>0,f(x)单调递增,所以当x =1时,函数f(x)取得最小值f(1)=1-3+a =a -2.由题意得1≥a -2≥0,解得2≤a ≤3,选A .二、填空题9.若函数f(x)=x +a ln x 不是单调函数,则实数a 的取值范围是________.解析:由题意知f(x)的定义域为(0,+∞),f ′(x)=1+ax,要使函数f(x)=x +a ln x 不是单调函数,则需方程1+ax=0在(0,+∞)上有解,即x =-a ,∴a<0.答案:(-∞,0)10.已知函数f(x)=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________. 解析:∵f ′(x)=1x -2f ′(-1)x +3,f ′(-1)=-1+2f ′(-1)+3,∴f ′(-1)=-2,∴f ′(1)=1+4+3=8. 答案:811.已知函数f(x)的图象在点M(1,f(1))处的切线方程是y =12x +3,则f(1)+f ′(1)=________.解析:由题意知f ′(1)=12,f(1)=12×1+3=72,∴f(1)+f ′(1)=72+12=4.答案:412.已知函数g(x)满足g(x)=g ′(1)e x -1-g(0)x +12x 2,且存在实数x 0,使得不等式2m-1≥g(x 0)成立,则实数m 的取值范围为________.解析:g ′(x)=g ′(1)e x -1-g(0)+x ,令x =1时,得g ′(1)=g ′(1)-g(0)+1, ∴g(0)=1,g(0)=g ′(1)e 0-1=1,∴g ′(1)=e ,∴g(x)=e x -x +12x 2,g ′(x)=e x -1+x ,当x<0时,g ′(x)<0,当x>0时,g ′(x)>0, ∴当x =0时,函数g(x)取得最小值g(0)=1. 根据题意得2m -1≥g(x)min =1,∴m ≥1. 答案:[1,+∞) 三、解答题13.已知函数f(x)=x +ax+b(x ≠0),其中a ,b ∈R.(1)若曲线y =f (x )在点P (2,f (2))处的切线方程为y =3x +1,求函数f (x )的解析式; (2)讨论函数f (x )的单调性;(3)若对于任意的a ∈⎣⎡⎦⎤12,2,不等式f (x )≤10在⎣⎡⎦⎤14,1上恒成立,求b 的取值范围.解:(1)f ′(x )=1-ax 2(x ≠0),由已知及导数的几何意义得f ′(2)=3,则a =-8.由切点P (2,f (2))在直线y =3x +1上可得-2+b =7,解得b =9,所以函数f (x )的解析式为f (x )=x -8x +9.(2)由(1)知f ′(x )=1-ax2(x ≠0).当a ≤0时,显然f ′(x )>0,这时f (x )在(-∞,0),(0,+∞)上是增函数. 当a >0时,令f ′(x )=0,解得x =±a , 当x 变化时,f ′(x ),f (x )的变化情况如下表:上是减函数.(3)由(2)知,对于任意的a ∈⎣⎡⎦⎤12,2,不等式f (x )≤10在⎣⎡⎦⎤14,1上恒成立等价于⎩⎪⎨⎪⎧ f ⎝⎛⎭⎫14≤10,f (1)≤10,即⎩⎪⎨⎪⎧b ≤394-4a ,b ≤9-a对于任意的a ∈⎣⎡⎦⎤12,2成立,从而得b ≤74, 所以满足条件的b 的取值范围是⎝⎛⎦⎤-∞,74. 14.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间与极值.解:(1)对f (x )求导,得f ′(x )=14-a x 2-1x (x >0),由f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x 2,令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数. 由此知函数f (x )在x =5时取得极小值f (5)=-ln 5,无极大值. 高考研究课(一)————————————————————————————— 导数运算是基点、几何意义是重点、定积分应用是潜考点————————————————————————————————— [全国卷5年命题分析][典例] (1)(2017·惠州模拟)已知函数f (x )=1x cos x ,则f (π)+f ′⎝⎛⎭⎫π2=( ) A .-3π2B .-1π2C .-3πD .-1π(2)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f ′2(x ),…,f n +1(x )=f ′n (x ),n ∈N *,则f 2 017(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x(3)已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( ) A .-e B .-1 C .1D .e[解析] (1)∵f ′(x )=-1x 2cos x +1x (-sin x ),∴f (π)+f ′⎝⎛⎭⎫π2=-1π+2π·(-1)=-3π. (2)∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,∴f 3(x )=f 2′(x )=-sin x -cos x ,∴f 4(x )=f 3′(x )=-cos x +sin x , ∴f 5(x )=f 4′(x )=sin x +cos x ,∴f n(x)是以4为周期的函数,∴f2 017(x)=f1(x)=sin x+cos x,故选D.(3)由f(x)=2xf′(1)+ln x,得f′(x)=2f′(1)+1 x.∴f′(1)=2f′(1)+1,则f′(1)=-1.[答案](1)C(2)D(3)B[方法技巧]求导运算应遵循的2个原则(1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错.(2)有的函数虽然表面形式为函数的商的形式,但在求导前利用代数或三角恒等式等变形将函数先化简,然后进行求导,有时可以避免使用商的求导法则,减少运算量.[即时演练]1.(2017·江西九校联考)已知y=(x+1)(x+2)(x+3),则y′=()A.3x2-12x+6 B.x2+12x-11C.x2+12x+6 D.3x2+12x+11解析:选D法一:y′=(x+2)(x+3)+(x+1)(x+3)+(x+1)(x+2)=3x2+12x+11.法二:∵y=(x2+3x+2)(x+3)=x3+6x2+11x+6,∴y′=3x2+12x+11.2.已知函数f(x)=x ln x,若f′(x0)=2,则x0=________.解析:f′(x)=ln x+1,由f′(x0)=2,即ln x0+1=2,解得x0=e.答案:e导数的几何意义导数的几何意义为高考热点内容,考查题型多为选择、填空题,也常出现在解答题的第(1)问中,难度较低,属中、低档题.,常见的命题角度有:(1)求切线方程;(2)确定切点坐标;(3)已知切线求参数值或范围;(4)切线的综合应用.1.(2016·全国丙卷)已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是________.解析:因为f (x )为偶函数,所以当x >0时,f (x )=f (-x )=ln x -3x ,所以当x >0时,f ′(x )=1x -3,则f ′(1)=-2.所以y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),即y =-2x -1.答案:y =-2x -1 角度二:求切点坐标2.(2017·沈阳模拟)在平面直角坐标系xOy 中,点M 在曲线C :y =x 3-x -1上,且在第三象限内,已知曲线C 在点M 处的切线的斜率为2,则点M 的坐标为________.解析:∵y ′=3x 2-1,曲线C 在点M 处的切线的斜率为2,∴3x 2-1=2,x =±1, 又∵点M 在第三象限,∴x =-1,∴y =(-1)3-(-1)-1=-1, ∴M 点的坐标为(-1,-1). 答案:(-1,-1)角度三:已知切线求参数值或范围3.(2017·西安检测)已知直线y =-x +m 是曲线y =x 2-3ln x 的一条切线,则m 的值为( )A .0B .2C .1D .3解析:选B 因为直线y =-x +m 是曲线y =x 2-3ln x 的切线,所以令y ′=2x -3x =-1,得x =1或x =-32(舍去),即切点为(1,1),又切点(1,1)在直线y =-x +m 上,所以m=2,故选B.4.(2017·武汉一模)已知a 为常数,若曲线y =ax 2+3x -ln x 上存在与直线x +y -1=0垂直的切线,则实数a 的取值范围是________.解析:由题意知曲线上存在某点的导数值为1, 所以y ′=2ax +3-1x =1有正根, 即2ax 2+2x -1=0有正根. 当a ≥0时,显然满足题意;当a <0时,需满足Δ≥0,解得-12≤a <0.综上,a ≥-12.答案:⎣⎡⎭⎫-12,+∞角度四:切线的综合应用5.(2016·全国甲卷)已知函数f(x)=(x+1)ln x-a(x-1).(1)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(2)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.解:(1)f(x)的定义域为(0,+∞).当a=4时,f(x)=(x+1)ln x-4(x-1),f(1)=0,f′(x)=ln x+1x-3,f′(1)=-2.故曲线y=f(x)在(1,f(1))处的切线方程为2x+y-2=0.(2)当x∈(1,+∞)时,f(x)>0等价于ln x-a(x-1)x+1>0.设g(x)=ln x-a(x-1) x+1,则g′(x)=1x-2a(x+1)2=x2+2(1-a)x+1x(x+1)2,g(1)=0.①当a≤2,x∈(1,+∞)时,x2+2(1-a)x+1≥x2-2x+1>0,故g′(x)>0,g(x)在(1,+∞)上单调递增,因此g(x)>0;②当a>2时,令g′(x)=0,得x1=a-1-(a-1)2-1,x2=a-1+(a-1)2-1.由x2>1和x1x2=1得x1<1,故当x∈(1,x2)时,g′(x)<0,g(x)在(1,x2)上单调递减,因此g(x)<0.综上,a的取值范围是(-∞,2].[方法技巧]利用导数解决切线问题的方法(1)已知切点A(x0,f(x0))求斜率k,即求该点处的导数值:k=f′(x0).(2)已知斜率k,求切点A(x1,f(x1)),即解方程f′(x1)=k.(3)已知过某点M(x1,f(x1))(不是切点)的切线斜率为k时,常需设出切点A(x0,f(x0)),利用k=f(x1)-f(x0)x1-x0求解.定积分及应用[典例] (1)(2017·东营模拟)设f (x )=⎩⎪⎨⎪⎧x ,x ∈[0,1],2-x ,x ∈(1,2],则⎠⎛02f(x)d x 等于( )A .34 B.45C .56D .不存在(2)定积分⎠⎛039-x 2d x 的值为________.(3)(2017·历城二中模拟)设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.[解析] (1)如图,⎠⎛02f(x)d x =⎠⎛01x 2d x +⎠⎛12(2-x)d x =13x 3⎪⎪⎪10+⎝⎛⎭⎫2x -12x 2⎪⎪⎪21=13+⎝⎛⎭⎫4-2-2+12=56. (2)由定积分的几何意义知,⎠⎛039-x 2d x 是由曲线y =9-x 2, 直线x =0,x =3,y =0围成的封闭图形的面积,其为圆x 2+y 2=9的面积的14,故⎠⎛39-x 2d x =π·324=9π4.(3)封闭图形如图所示,则⎠⎛0ax d x =23x 32⎪⎪⎪a0=23a 32-0=a 2,解得a =49.[答案] (1)C (2)9π4 (3)49[方法技巧](1)运用微积分基本定理求定积分时要注意以下几点 ①对被积函数要先化简,再求积分;②求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和;③对于含有绝对值符号的被积函数,要先去掉绝对值符号再求积分; ④注意用“F ′(x)=f(x)”检验积分的对错. (2)根据定积分的几何意义可利用面积求定积分. [即时演练]1.(2017·西安调研)定积分⎠⎛01(2x +e x )d x 的值为( )A .e +2B .e +1C .eD .e -1解析:选C ⎠⎛01(2x +e x)d x =(x 2+e x)⎪⎪⎪10=1+e 1-1=e .故选C .2.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2D .4解析:选D 如图,y =4x 与y =x 3的交点A(2,8), 图中阴影部分即为所求图形面积.S 阴=⎠⎛02(4x -x 3)d x =⎝⎛⎭⎫2x 2-14x 4⎪⎪⎪20=8-14×24=4,故选D . 3.(2017·济南模拟)如图,设抛物线y =-x 2+1的顶点为A ,与x 轴正半轴的交点为B ,设抛物线与两坐标轴正半轴围成的区域为M ,随机往M 内投一点P ,则点P 落在△AOB 内的概率是( )A .56 B.45C .34B.23解析:选C 由题意得,在第一象限内抛物线与坐标轴所围成的区域的面积为⎠⎛01(-x 2+1)d x =⎝⎛⎭⎫-13x 3+x ⎪⎪⎪10=23,△AOB 的面积为12×1×1=12,所以点P 落在△AOB 内的概率为1223=34.1.(2014·全国卷Ⅱ)设曲线y =ax -ln (x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3解析:选D y ′=a -1x +1,由题意得y ′| x =0=2,即a -1=2,所以a =3.2.(2016·全国甲卷)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b =________.解析:y =ln x +2的切线方程为: y =1x 1·x +ln x 1+1(设切点横坐标为x 1), y =ln (x +1)的切线方程为: y =1x 2+1x +ln (x 2+1)-x 2x 2+1(设切点的横坐标为x 2), ∴⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2. 答案:1-ln 23.(2015·全国卷Ⅰ)已知函数f(x)=ax 3+x +1的图象在点(1,f(1))处的切线过点(2,7),则a =________.解析:∵f ′(x)=3ax 2+1, ∴f ′(1)=3a +1.又f(1)=a +2,∴切线方程为y -(a +2)=(3a +1)(x -1). ∵切线过点(2,7),∴7-(a +2)=3a +1,解得a =1. 答案:14.(2015·全国卷Ⅱ)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:∵y =x +ln x , ∴y ′=1+1x,y ′| x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为 y -1=2(x -1),即y =2x -1.∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y , 得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 答案:8[高考达标检测] 一、选择题1.若∫π20(sin x -a cos x)d x =2,则实数a 等于( )A .-1B .1C .-2D .2解析:选A 由题意知(-cos x -a sin x)⎪⎪⎪⎪π20=1-a =2,a =-1.2.(2017·衡水调研)曲线y =1-2x +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -2解析:选A ∵y =1-2x +2=x x +2, ∴y ′=x +2-x (x +2)2=2(x +2)2,y ′|x =-1=2, ∴曲线在点(-1,-1)处的切线斜率为2, ∴所求切线方程为y +1=2(x +1), 即y =2x +1.3.(2017·济南一模)已知曲线f(x)=ln x 的切线经过原点,则此切线的斜率为( ) A .e B .-e C .1eD .-1e解析:选C 法一:∵f(x)=ln x , ∴x ∈(0,+∞),f ′(x)=1x .设切点P(x 0,ln x 0),则切线的斜率为k =f ′(x 0)=1x 0=k OP =ln x 0x 0.∴ln x 0=1,∴x 0=e ,∴k =1x 0=1e .法二:(数形结合法):在同一坐标系下作出y =ln x 及曲线y =ln x 经过原点的切线,由图可知,切线的斜率为正,且小于1,故选C .4.已知f(x)=ln x ,g(x)=12x 2+mx +72(m <0),直线l 与函数f(x),g(x)的图象都相切,且与f(x)图象的切点为(1,f(1)),则m 的值为( )A .-1B .-3C .-4D .-2解析:选D ∵f ′(x)=1x ,∴直线l 的斜率为k =f ′(1)=1. 又f(1)=0,∴直线l 的方程为y =x -1.g ′(x)=x +m ,设直线l 与g(x)的图象的切点为(x 0,y 0), 则有x 0+m =1,y 0=x 0-1, 又因为y 0=12x 20+mx 0+72(m <0), 解得m =-2,故选D .5.(2017·南昌二中模拟)设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线倾斜角α的取值范围为( )A .⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫5π6,π B.⎣⎡⎭⎫2π3,π C .⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π B.⎝⎛⎦⎤π2,5π6解析:选C 因为y ′=3x 2-3≥-3,故切线斜率k ≥-3,所以切线倾斜角α的取值范围是⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π. 6.已知曲线y =1e x+1,则曲线的切线斜率取得最大值时的直线方程为( ) A .x +4y -2=0 B .x -4y +2=0 C .4x +2y -1=0D .4x -2y -1=0解析:选A y ′=-e x(e x +1)2=-1e x +1ex +2,因为e x >0,所以e x +1e x ≥2e x ×1ex =2(当且仅当e x =1e x ,即x =0时取等号),则e x +1ex +2≥4,故y ′=-1e x +1ex +2≤-14当(x =0时取等号).当x =0时,曲线的切线斜率取得最大值,此时切点的坐标为⎝⎛⎭⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.故选A . 二、填空题7.(2017·山西模拟)已知函数f(x)=⎩⎨⎧4-x 2,-2≤x ≤0,x +2,0<x ≤2,则⎠⎛2-2f(x)d x =________.解析:f(x)=⎩⎨⎧4-x 2,-2≤x ≤0,x +2,0<x ≤2,则⎠⎛2-2f(x)d x =⎠⎛0-24-x 2d x +⎠⎛20(x +2)d x=14π×22+⎝⎛⎭⎫12x 2+2x ⎪⎪⎪20=π+6. 答案:π+68.曲线y =log 2x 在点(1,0)处的切线与坐标轴所围三角形的面积等于________. 解析:∵y ′=1x ln 2,∴k =1ln 2, ∴切线方程为y =1ln 2(x -1), ∴三角形面积为S =12×1×1ln 2=12ln 2=12log 2e .答案:12log 2e9.(2016·东营一模)函数f(x)=x ln x 在点P(x 0,f(x 0))处的切线与直线x +y =0垂直,则切点P(x 0,f(x 0))的坐标为________.解析:∵f(x)=x ln x , ∴f ′(x)=ln x +1,由题意得f ′(x 0)·(-1)=-1,即f ′(x 0)=1⇔ln x 0+1=1⇔ln x 0=0⇔x 0=1, ∴f(x 0)=1·ln 1=0, ∴P(1,0). 答案:(1,0) 三、解答题10.已知函数f(x)=13x 3-2x 2+3x(x ∈R)的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.解:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k ,则由题意,及(1)可知,⎩⎪⎨⎪⎧k ≥-1,-1k ≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞). 11.已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. 解:(1)∵f ′(x )=3x 2-8x +5, ∴f ′(2)=1,又f (2)=-2,∴曲线在点(2,f (2))处的切线方程为y +2=x -2, 即x -y -4=0.(2)设曲线与经过点A (2,-2)的切线相切于点P (x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),又切线过点P (x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0, 解得x 0=2或1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0,或y +2=0. 12.(2017·洛阳模拟)已知函数f (x )=ln x -a (x +1)x -1,曲线y =f (x )在点⎝⎛⎭⎫12,f ⎝⎛⎭⎫12处的切线平行于直线y =10x +1.(1)求函数f (x )的单调区间;(2)设直线l 为函数g (x )=ln x 的图象上任意一点A (x 0,y 0)处的切线,在区间(1,+∞)上是否存在x 0,使得直线l 与曲线h (x )=e x 也相切?若存在,满足条件的x 0有几个?解:(1)∵函数f (x )=ln x -a (x +1)x -1,∴f ′(x )=1x +2a (x -1)2,∵曲线y =f (x )在点⎝⎛⎭⎫12,f ⎝⎛⎭⎫12处的切线平行于直线y =10x +1, ∴f ′⎝⎛⎭⎫12=2+8a =10, ∴a =1,∴f ′(x )=x 2+1x (x -1)2.∵x >0且x ≠1, ∴f ′(x )>0,∴函数f (x )的单调递增区间为(0,1)和(1,+∞). (2)存在且唯一,证明如下: ∵g (x )=ln x ,∴切线l 的方程为y -ln x 0=1x 0(x -x 0),即y =1x 0x +ln x 0-1, ①设直线l 与曲线h (x )=e x 相切于点(x 1,e x 1), ∵h ′(x )=e x ,∴e x 1=1x 0,∴x 1=-ln x 0,∴直线l 的方程也可以写成y -1x 0=1x 0(x +ln x 0),即y =1x 0x +ln x 0x 0+1x 0, ②由①②得ln x 0-1=ln x 0x 0+1x 0, ∴ln x 0=x 0+1x 0-1. 下证:在区间(1,+∞)上x 0存在且唯一. 由(1)可知,f (x )=ln x -x +1x -1在区间(1,+∞)上单调递增,又f (e)=-2e -1<0, f (e 2)=e 2-3e 2-1>0,结合零点存在性定理,说明方程f (x )=0必在区间(e ,e 2)上有唯一的根,这个根就是所求的唯一x 0.高考研究课(二)————————————————————————————函数单调性必考,导数工具离不了————————————————————————————[全国卷5年命题分析][典例] (2016·山东高考节选)已知f (x )=a (x -ln x )+2x -1x 2,a ∈R.讨论f (x )的单调性. [解] f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0,x ∈(0,1)时,f ′(x )>0,f (x )单调递增; x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减. 当a >0时,f ′(x )=a (x -1)x 3⎝⎛⎭⎫x - 2a ⎝⎛⎭⎫x + 2a . ①若0<a <2,则 2a>1, 当x ∈(0,1)或x ∈⎝⎛⎭⎫2a ,+∞时, f ′(x )>0,f (x )单调递增; 当x ∈⎝⎛⎭⎫1,2a 时,f ′(x )<0,f (x )单调递减. ②若a =2,则2a=1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增. ③若a >2,则0< 2a <1,当x ∈⎝⎛⎭⎫0, 2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增; 当x ∈⎝⎛⎭⎫2a ,1时,f ′(x )<0,f (x )单调递减. 综上所述,当a ≤0时,f (x )在(0,1)内单调递增, 在(1,+∞)内单调递减;当0<a <2时,f (x )在(0,1)内单调递增,在⎝⎛⎭⎫1,2a 内单调递减,在⎝⎛⎭⎫ 2a ,+∞内单调递增;当a =2时,f (x )在(0,+∞)内单调递增; 当a >2时,f (x )在⎝⎛⎭⎫0,2a 内单调递增,在⎝⎛⎭⎫ 2a ,1内单调递减,在(1,+∞)内单调递增.[方法技巧]导数法判断或证明函数f (x )在(a ,b )内的单调性的3步骤(1)求f ′(x );(2)确定f ′(x )在(a ,b )内的符号;(3)作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.[提醒] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.[即时演练]1.(2017·芜湖一模)函数f (x )=e x -e x ,x ∈R 的单调递增区间是( ) A.()0,+∞ B.()-∞,0 C.()-∞,1D.()1,+∞解析:选D 由题意知,f ′(x )=e x -e ,令f ′(x )>0,解得x >1,故选D.2.(2016·全国甲卷节选)讨论函数f (x )=x -2x +2e x的单调性,并证明当x >0时,(x -2)e x+x +2>0.解:f (x )的定义域为(-∞,-2)∪(-2,+∞). f ′(x )=(x -1)(x +2)e x -(x -2)e x (x +2)2=x 2e x(x +2)2≥0,当且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)上单调递增. 因此当x ∈(0,+∞)时,f (x )>f (0)=-1. 所以(x -2)e x >-(x +2),即(x -2)e x +x +2>0.利用导数研究函数单调性的应用函数的单调性是高考命题的重点,其应用是考查热点.,常见的命题角度有: (1)y =f (x )与y =f ′(x )的图象辨识; (2)比较大小;(3)已知函数单调性求参数的取值范围.角度一:y =f (x )与y =f ′(x )图象辨识1.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )解析:选B 由函数f (x )的导函数y =f ′(x )的图象自左至右是先增后减,可知函数y =f (x )图象的切线的斜率自左至右先增大后减小.角度二:比较大小2.(2017·甘肃诊断考试)函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈()-∞,1时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:选C 因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数,所以a =f (0)<f ⎝⎛⎭⎫12=b ,又f (x )=f (2-x ), 所以c =f (3)=f (-1),所以c =f (-1)<f (0)=a ,所以c <a <b ,故选C. 角度三:已知函数单调性求参数的取值范围3.(2017·宝鸡一检)已知函数f (x )=x 2+4x +a ln x ,若函数f (x )在(1,2)上是单调函数,则实数a 的取值范围是( )A .(-6,+∞)B .(-∞,-16)C .(-∞,-16]∪[-6,+∞)D .(-∞,-16)∪(-6,+∞)解析:选C ∵f (x )的定义域为(0,+∞),f ′(x )=2x +4+a x =2x 2+4x +ax, f (x )在(1,2)上是单调函数,∴f ′(x )≥0或f ′(x )≤0在(1,2)上恒成立,即2x 2+4x +a ≥0或2x 2+4x +a ≤0在(1,2)上恒成立,即a ≥-()2x 2+4x 或a ≤-(2x 2+4x )在(1,2)上恒成立.记g (x )=-(2x 2+4x ),1<x <2,则-16<g (x )<-6,∴a ≥-6或a ≤-16,故选C.4.(2017·四川成都模拟)已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x =-(x -1)(x -3)x ,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,∴1∈(t ,t +1)或3∈(t ,t +1)⇔⎩⎪⎨⎪⎧ t <1,t +1>1或⎩⎪⎨⎪⎧t <3,t +1>3⇔0<t <1或2<t <3. 答案:(0,1)∪(2,3) [方法技巧]由函数的单调性求参数的取值范围的4种方法(1)可导函数f (x )在D 上单调递增(或递减)求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)对x ∈D 恒成立问题,再参变分离,转化为求最值问题,要注意“=”是否取到.(2)可导函数在某一区间上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,这样就把函数的单调性问题转化成不等式问题.(3)若已知f (x )在区间I 上的单调性,区间I 中含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围.(4)若已知f (x )在D 上不单调,则f (x )在D 上有极值点,且极值点不是D 的端点.1.(2016·全国乙卷)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1] B.⎣⎡⎦⎤-1,13 C.⎣⎡⎦⎤-13,13 B.⎣⎡⎦⎤-1,-13 解析:选C 法一:取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A 、B 、D.故选C.法二:函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,等价于f ′(x )=1-23cos2x +a cos x =-43cos 2x +a cos x +53≥0在(-∞,+∞)恒成立.设cos x =t ,则g (t )=-43t 2+at +53≥0在[-1,1]恒成立,所以⎩⎨⎧g (1)=-43+a +53≥0,g (-1)=-43-a +53≥0,解得-13≤a ≤13.故选C.2.(2014·全国卷Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x .因为f (x )在区间(1,+∞)上单调递增,所以当x >1时,f ′(x )=k -1x ≥0恒成立,即k ≥1x 在区间(1,+∞)上恒成立.因为x >1,所以0<1x<1,所以k ≥1.故选D.3.(2016·全国乙卷节选)已知函数f (x )=(x -2)e x +a (x -1)2.讨论f (x )的单调性. 解:f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). ①设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增. ②设a <0,由f ′(x )=0得x =1或x =ln(-2a ). 若a =-e2,则f ′(x )=(x -1)(e x -e),所以f (x )在(-∞,+∞)上单调递增. 若a >-e2,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0; 当x ∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a )),(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减. 若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0; 当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1),(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.[高考达标检测] 一、选择题1.(2017·厦门质检)函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1)B .(0,1]C .(1,+∞)D .(0,2)解析:选B 由题意知,函数的定义域为(0,+∞),又由y ′=x -1x ≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].2.(2017·成都外国语学校月考)已知函数f (x )=x 2+2cos x ,若f ′(x )是f (x )的导函数,则函数f ′(x )的图象大致是( )解析:选A 设g (x )=f ′(x )=2x -2sin x ,g ′(x )=2-2cos x ≥0,所以函数f ′(x )在R 上单调递增.3.对于R 上可导的任意函数f (x ),若满足1-x f ′(x )≤0,则必有( )A .f (0)+f (2)>2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)<2f (1)D .f (0)+f (2)≥2f (1)解析:选A 当x <1时,f ′(x )<0,此时函数f (x )单调递减,当x >1时,f ′(x )>0,此时函数f (x )单调递增,∴当x =1时,函数f (x )取得极小值同时也取得最小值, 所以f (0)>f (1),f (2)>f (1),则f (0)+f (2)>2f (1).4.已知函数f (x )=x sin x ,x 1,x 2∈⎝⎛⎭⎫-π2,π2,且f (x 1)<f (x 2),那么( ) A .x 1-x 2>0B .x 1+x 2>0C .x 21-x 22>0D .x 21-x 22<0解析:选D 由f (x )=x sin x 得f ′(x )=sin x +x cos x =cos x (tan x +x ),当x ∈⎝⎛⎭⎫0,π2时,f ′(x )>0,即f (x )在⎝⎛⎭⎫0,π2上为增函数,又f (-x )=-x sin(-x )=x sin x ,因而f (x )为偶函数,∴当f (x 1)<f (x 2)时有f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|,x 21-x 22<0,故选D.5.(2016·吉林长春三模)定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1)的大小关系为( )A .e x 1f (x 2)>e x 2f (x 1)。

2018年高考数学理总复习教师用书:第十五单元 含解析

2018年高考数学理总复习教师用书:第十五单元 含解析

第十五单元 ⎪⎪⎪计数原理教材复习课“计数原理”相关基础知识一课过[过双基]两个计数原理[小题速通]1.从3名男同学和2名女同学中选1人主持本班某次主题班会,不同选法种数为( ) A .6 B .5 C .3D .2解析:选B 由分类加法计算原理知总方法数为3+2=5(种).2.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数,a ,b 组成复数a +b i ,其中虚数有( ) A .30个 B .42个 C .36个D .35个解析:选C ∵a +b i 为虚数,∴b ≠0,即b 有6种取法,a 有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.3.(2016·西安质检)如果把个位数是1,且恰有3个数字相同的四位数叫作“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.解析:当相同的数字不是1时,有C 13个;当相同的数字是1时,共有C 13C 13个, 由分类加法计数原理知共有“好数”C 13+C 13C 13=12(个).答案:12[清易错]1.分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.2.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.1.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有()A.30B.20C.10 D.6解析:选D从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N=3+3=6种.2.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252C.261 D.279解析:选B0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个).排列与组合1.排列与排列数(1)排列:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,记作A m n.2.组合与组合数(1)组合:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C m n.3.排列数、组合数的公式及性质[小题速通]1.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C在实施时必须相邻,则在该实施中程序顺序的编排方法共有()A.34种B.48种C.96种D.144种解析:选C由题意知,程序A只能出现在第一步或最后一步,所以有A22=2种结果.因为程序B和C实施时必须相邻,所以把B和C看作一个元素,有A44A22=48种结果,根据分步乘法计数原理可知共有2×48=96种结果,故选C.2.某学校周二安排有语文、数学、英语、物理、化学、体育六节课,要求数学不排在第一节课,体育不排在第四节课,则这天课程表的不同排法种数为() A.720 B.504C.384 D.120解析:选B以数学课的排法进行分类:(1)数学排在第四节,则体育课可排在其余任意一节,故不同的排法种数为A55=120.(2)数学排在除第一节、第四节外的其余四节,其排法为4种;体育课则从除第四节、数学选择的节次外的其余四节任选一节,其排法为4种;其余课程由剩余4节课进行全排,不同的排法种数为A44=24.由分步乘法计数原理可得,不同的排法种数共有4×4×24=384.综上,由分类加法计数原理可得,不同的排法种数有120+384=504.3.将某师范大学4名大四学生分成2人一组,安排到A城市的甲、乙两所中学进行教学实习,并推选甲校张老师、乙校李老师作为指导教师,则不同的实习安排方案共有________种.解析:采取“学校”选“人”的思路,则不同的实习安排方案有C24C22=6种.答案:64.方程3A3x=2A2x+1+6A2x的解为________.解析:由排列数公式可知3x(x-1)(x-2)=2(x+1)x+6x(x-1),∵x≥3且x∈N*,∴3(x-1)(x-2)=2(x+1)+6(x-1),即3x2-17x+10=0,解得x=5或x=23(舍去),∴x=5.答案:55.已知1C m5-1C m6=710C m7,则Cm8=________.解析:由已知得m的取值范围为{}m|0≤m≤5,m∈Z,m!(5-m)!5!-m!(6-m)!6!=7×(7-m)!m!10×7!,整理可得m2-23m+42=0,解得m=21(舍去)或m=2.故C m8=C28=28.答案:28[清易错]只有两个偶数相邻,则这样的六位数的个数为()A.423 B.288C.216 D.144解析:选B若2,4相邻,把2,4捆绑在一起,与另外四个数排列(相当于5个元素排列),1不在左、右两侧,则六位数的个数为2×C13×A44=144,同理2,4与6相邻的有A22×2×2×A33=48个,所以只有2,4相邻的有144-48=96个,全部符合条件的六位数有96×3=288个.1.二项式定理2.二项式系数的性质[小题速通]1.已知C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =729,则C 1n +C 2n +C 3n +…+C nn 等于( )A .63B .64C .31D .32解析:选A 逆用二项式定理得C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =(1+2)n =3n =729,即3n =36,所以n =6,所以C 1n +C 2n +C 3n +…+C n n =26-C 0n =64-1=63.故选A.2.在x (1+x )6的展开式中,含x 3项的系数为( ) A .30 B .20 C .15D .10解析:选C 因为(1+x )6的展开式的第(r +1)项为T r +1=C r 6x r ,x (1+x )6的展开式中含x 3的项为C 26x 3=15x 3,所以系数为15.3.⎝⎛⎭⎪⎫x -124x 8的展开式中的有理项共有________项.解析:∵T r +1=C r 8(x )8-r⎝ ⎛⎭⎪⎫-124x r =⎝⎛⎭⎫-12r C r 8x 16-3r4,∴r 为4的倍数,故r =0,4,8共3项. 答案:34.(2017·山西四校联考)如果(2x -1)6=a 0+a 1x +a 2x 2+…+a 6x 6,那么a 1+a 2+…+a 6的值等于________.解析:令x =0,有1=a 0;令x =1,有1=a 0+a 1+…+a 6,所以a 1+a 2+…+a 6=0. 答案:0[清易错]1.二项式的通项易误认为是第k 项,实质上是第k +1项.2.易混淆二项式中的“项”,“项的系数”、“项的二项式系数”等概念,注意项的系数是指非字母因数所有部分,包含符号,二项式系数仅指C k n (k =0,1,…,n ).1.(2017·长沙长郡中学月考)若⎝⎛⎭⎫x 2-1x n 的展开式中的所有二项式系数之和为512,则该展开式中常数项为( )A .-84B .84C .-36D .36解析:选B 由二项式系数之和为2n =512,得n =9.又T r +1=(-1)r C r 9x18-3r,令18-3r=0,得r =6,故常数项为T 7=84.故选B.2.若二项式⎝⎛⎭⎫x -2x n 展开式中的第5项是常数,则自然数n 的值为( ) A .6 B .10 C .12D .15解析:选C 由二项式⎝⎛⎭⎫x -2x n 展开式的第5项C 4n (x )n -4⎝⎛⎭⎫-2x 4=16C 4n x n 2-6是常数项,可得n2-6=0,解得n =12.[双基过关检测] 一、选择题1.(2017·滨州模拟)甲、乙两人从4门课程中选修2门,则甲、乙所选课程中恰有1门相同的选法有( )A .6种B .12种C .24种D .30种解析:选C 分步完成:第一步,甲、乙选同一门课程有4种方法; 第二步,甲从剩余的3门课程选一门有3种方法; 第三步,乙从剩余的2门中选出一门课程有2种方法; ∴甲、乙恰有1门相同课程的选法有4×3×2=24(种).2.现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有( )A .24种B .30种C .36种D .48种 解析:选D 按A →B →C →D 顺序分四步涂色,共有4×3×2×2=48(种).3.(2017·云南师大附中适应性考试)在(a +x )7展开式中x 4的系数为280,则实数a 的值为( )A .1B .±1C .2D .±2解析:选C由题知,C47a3=280,得a=2,故选C.4.(2016·佛山二模)教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有() A.10种B.25种C.52种D.24种解析:选D每相邻的两层之间各有2种走法,共分4步.由分步乘法计数原理,共有24种不同的走法.5.张、王两家夫妇各带一个小孩一起到动物园游玩,购票后排队依次入园.为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这六人入园顺序的排法种数为()A.12 B.24C.36 D.48解析:选B将两位爸爸排在两端,有2种排法;将两个小孩视作一人与两位妈妈任意排在中间的三个位置上,有2A33种排法,故总的排法有2×2×A33=24(种).6.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案种数是()A.150 B.300C.600 D.900解析:选C若甲去,则乙不去,丙去,再从剩余的5名教师中选2名,有C25×A44=240种方法;若甲不去,则丙不去,乙可去可不去,从6名教师中选4名,共有C46×A44=360种方法.因此共有600种不同的选派方案.7.(2017·成都一中模拟)设(x2+1)(2x+1)9=a0+a1(x+2)+a2(x+2)2+…+a11(x+2)11,则a0+a1+a2+…+a11的值为()A.-2 B.-1C.1 D.2解析:选A令等式中x=-1,可得a0+a1+a2+…+a11=(1+1)(-1)9=-2,故选A.8.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b 的不同值的个数是()A.9 B.10C.18 D.20解析:选C lg a-lg b=lg ab,从1,3,5,7,9中任取两个数分别记为a,b,共有A25=20种结果,其中lg 13=lg39,lg31=lg93,故共可得到不同值的个数为20-2=18.故选C.二、填空题9.⎝⎛⎭⎫2x -1x 5的二项展开式中x 项的系数为________. 解析:⎝⎛⎭⎫2x -1x 5的展开式的通项是T r +1=C r 5·(2x )5-r ·⎝⎛⎭⎫-1x r =C r 5·(-1)r ·25-r ·x 5-2r.令5-2r =1得r =2.因此⎝⎛⎭⎫2x -1x 5的展开式中x 项的系数是C 25·(-1)2·25-2=80. 答案:8010.(2016·石家庄模拟)将甲、乙、丙、丁四名学生分到两个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法的种数为________(用数字作答).解析:第1步,把甲、乙分到不同班级有A 22=2种分法; 第2步,分丙、丁:①丙、丁分到同一班级有2种方法; ②丙、丁分到两个不同班有A 22=2种分法.由分步乘法计数原理,不同的分法为2×(2+2)=8(种). 答案:811.如图所示,在A ,B 间有四个焊接点,若焊接点脱落,则可能导致电路不通,今发现A ,B 之间线路不通,则焊接点脱落的不同情况有________种.解析:四个焊点共有24种情况,其中使线路通的情况有:1,4都通,2和3至少有一个通时线路才通,共有3种可能.故不通的情况有24-3=13(种)可能.答案:1312.(2017·宁波调研)如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色方法有________种.解析:若1,3不同色,则1,2,3,4必不同色,有3A 44=72种涂色法;若1,3同色,有C 14C 13A 22=24种涂色法.根据分类计数原理可知,共有72+24=96种涂色法.答案:96 三、解答题13.已知(a 2+1)n 展开式中的二项式系数之和等于⎝⎛⎭⎫165x 2+1x 5的展开式的常数项,而(a 2+1)n 的展开式的二项式系数最大的项等于54,求正数a 的值.解:⎝⎛⎭⎫165x 2+1x 5展开式的通项T r +1=C r 5⎝⎛⎭⎫165x 25-r ·⎝⎛⎭⎫1x r =C r 5⎝⎛⎭⎫1655-r x 20-5r 2,令20-5r =0,得r =4, 故常数项T 5=C 45·165=16, 又(a 2+1)n 展开式的各项系数之和为2n , 由题意得2n =16,∴n =4.∴(a 2+1)4展开式中二项式系数最大的项是中间项T 3,从而C 24(a 2)2=54,∴a = 3.14.从1到9的9个数字中取3个偶数4个奇数,试问: (1)能组成多少个没有重复数字的七位数? (2)上述七位数中,3个偶数排在一起的有几个?(3)(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个?解:(1)分三步完成:第一步,在4个偶数中取3个,有C 34种情况;第二步,在5个奇数中取4个,有C 45种情况;第三步,3个偶数,4个奇数进行排列,有A 77种情况.所以符合题意的七位数有C 34C 45A 77=100 800个.(2)上述七位数中,3个偶数排在一起的有C 34C 45A 33A 55=14 400个.(3)(1)中的七位数中,3个偶数排在一起,4个奇数也排在一起的有C 34C 45A 33A 44A 22=5 760个.高考研究课(一)————————————————————————————————————— 排列与组合常考3类型——排列、组合、分组分配———————————————————————————————————— [全国卷5年命题分析][典例] 3(1)如果女生全排在一起,有多少种不同排法? (2)如果女生都不相邻,有多少种排法? (3)如果女生不站两端,有多少种排法?(4)其中甲必须排在乙前面(可不邻),有多少种排法? (5)其中甲不站左端,乙不站右端,有多少种排法?[解] (1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同五个男生合在一起有6个元素,排成一排有A 66种排法,而其中每一种排法中,三个女生间又有A 33种排法,因此共有A 66·A 33=4 320(种)不同排法.(2)(插空法)先排5个男生,有A 55种排法,这5个男生之间和两端有6个位置,从中选取3个位置排女生,有A 36种排法,因此共有A 55·A 36=14 400(种)不同排法.(3)法一(位置分析法):因为两端不排女生,只能从5个男生中选2人排列,有A 25种排法,剩余的位置没有特殊要求,有A 66种排法,因此共有A 25·A 66=14 400(种)不同排法.法二(元素分析法):从中间6个位置选3个安排女生,有A 36种排法,其余位置无限制,有A 55种排法,因此共有A 36·A 55=14 400(种)不同排法.(4)8名学生的所有排列共A 88种,其中甲在乙前面与乙在甲前面的各占其中12, ∴符合要求的排法种数为12A 88=20 160(种).(5)甲、乙为特殊元素,左、右两边为特殊位置.法一(特殊元素法):甲在最右边时,其他的可全排,有A 77种;甲不在最右边时,可从余下6个位置中任选一个,有A 16种.而乙可排在除去最右边位置后剩余的6个中的任一个上,有A 16种,其余人全排列,共有A 16·A 16·A 66种.由分类加法计数原理,共有A 77+A 16·A 16·A 66=30 960(种). 法二(特殊位置法):先排最左边,除去甲外,有A 17种,余下7个位置全排,有A 77种,但应剔除乙在最右边时的排法A 16·A 66种,因此共有A 17·A 77-A 16·A 66=30 960(种). 法三(间接法):8个人全排,共A 88种,其中,不合条件的有甲在最左边时,有A 77种,乙在最右边时,有A 77种,其中都包含了甲在最左边,同时乙在最右边的情形,有A 66种.因此共有A 88-2A 77+A 66=30 960(种).[方法技巧]求解排列应用题的主要方法间接法正难则反,等价转化的方法[即时演练]1.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种解析:选B第一类:甲在左端,有A55=5×4×3×2×1=120(种)方法;第二类:乙在最左端,甲不在最右端,有4A44=4×4×3×2×1=96(种)方法.所以共有120+96=216(种)方法.2.用1,2,3,4这四个数字组成无重复数字的四位数,其中恰有一个偶数夹在两个奇数之间的四位数的个数为________.解析:(捆绑法)首先排两个奇数1,3有A22种排法,再在2,4中取一个数放在1,3排列之间,有C12种方法,然后把这3个数作为一个整体与剩下的另一个偶数全排列,有A22种排法,即满足条件的四位数的个数为A22C12A22=8.答案:8组合问题[典例](1)(2017·名学生中选派4名学生发言,要求甲、乙两人至少有一人参加,当甲、乙同时参加时,他们两人的发言不能相邻,那么不同的发言顺序的种数为()A.360B.520C.600 D.720(2)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为________.[解析](1)根据题意,分2种情况讨论:若只有甲、乙其中一人参加,有C1·C35·A44=2480种情况;若甲、乙两人都参加,有C22·C25·A44=240种情况,其中甲、乙相邻的有C22·C25·A33·A22=120种情况.则不同的发言顺序的种数为480+240-120=600.(2)第一类,含有1张红色卡片,不同的取法C14C212=264种.第二类,不含有红色卡片,不同的取法C312-3C34=220-12=208种.由分类加法计数原理知,不同的取法共有264+208=472种.[答案](1)C(2)472[方法技巧]组合问题常有的2类题型(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取;(2)“至少”或“最多”含有几个元素的题型:若直接法分类复杂时,逆向思维,间接求解.[即时演练]1.如果小明在某一周的第一天和第七天分别吃了3个水果,且从这周的第二天开始,每天所吃水果的个数与前一天相比,仅存在三种可能:或“多一个”或“持平”或“少一个”,那么,小明在这一周中每天所吃水果个数的不同选择方案共有( )A .50种B .51种C .140种D .141种解析:选D 因为第一天和第七天吃的水果数相同,所以中间“多一个”或“少一个”的天数必须相同,都是0,1,2,3,共4种情况,所以共有C 06+C 16C 15+C 26C 24+C 36C 33=141种,故选D.2.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( ) A .24对 B .30对 C .48对D .60对解析:选C 法一:直接法:如图,在上底面中选B1D 1,四个侧面中的面对角线都与它成60°,共8对,同样A 1C 1对应的也有8对,因此一个面上的2条面对角线与其相邻的4个面上的8条对角线共组成16对,又正方体共有6个面,所以共有16×6=96(对),又因为每对被计算了2次,因此成60°的面对角线有12×96=48(对).法二:间接法:正方体的12条面对角线中,任意两条垂直、平行或成角为60°,所以成角为60°的共有C 212-12-6=48(对).分组分配问题分组后分配.关于分组问题,有不等分、整体均分和部分均分三种,无论分成几组,应注意只要有一些组中元素的个数相等,就存在均分现象.,常见的命题角度有:(1)不等分问题; (2)整体均分问题; (3)部分均分问题. 角度一:不等分问题1.若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.解析:将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有C 16种取法; 第2步,在余下的5名教师中任取2名作为一组,有C 25种取法; 第3步,余下的3名教师作为一组,有C 33种取法.根据分步乘法计数原理,共有C 16C 25C 33=60种取法.再将这3组教师分配到3所中学,有A 33=6种分法, 故共有60×6=360种不同的分法. 答案:360角度二:整体均分问题2.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.解析:先把6个毕业生平均分成3组,有C 26C 24C 22A 33种方法,再将3组毕业生分到3所学校,有A 33=6种方法,故6个毕业生平均分到3所学校,共有C 26C 24C 22A 33·A 33=90种分派方法. 答案:90角度三:部分均分问题3..(2016·内江模拟)某科室派出4名调研员到3个学校,调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为( )A .144B .72C .36D .48解析:选C 分两步完成:第一步将4名调研员按2,1,1分成三组,其分法有C 24C 12C 11A 22;第二步将分好的三组分配到3个学校,其分法有A 33种,所以满足条件的分配方案有C 24C 12C 11A 22·A 33=36种.[方法技巧]解决分组分配问题的3种策略(1)不等分组只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.(2)整体均分解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n (n 为均分的组数),避免重复计数.(3)部分均分解题时注意重复的次数是均匀分组的阶乘数,即若有m 组元素个数相等,则分组时应除以m!,一个分组过程中有几个这样的均匀分组就要除以几个这样的全排列数.1.(2012·全国卷Ⅰ)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有() A.12种B.10种C.9种D.8种解析:选A先安排1名教师和2名学生到甲地,再将剩下的1名教师和2名学生安排到乙地,共有C12C24=12种安排方案.2.(2016·全国甲卷)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18C.12 D.9解析:选B由题意可知E→F有C24种走法,F→G有C13种走法,由乘法计数原理知,共C24·C13=18种走法,故选B.3.(2016·四川高考)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24 B.48C.60 D.72解析:选D第一步,先排个位,有C13种选择;第二步,排前4位,有A44种选择.由分步乘法计数原理,知有C13·A44=72(个).4.(2015·四川高考)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个解析:选B当万位数字为4时,个位数字从0,2中任选一个,共有2A34个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有C13A34个偶数.故符合条件的偶数共有2A34+C13A34=120(个).5.(2014·重庆高考)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A .72B .120C .144D .168解析:选B 依题意,先仅考虑3个歌舞类节目互不相邻的排法种数为A 33A 34=144,其中3个歌舞类节目互不相邻但2个小品类节目相邻的排法种数为A 22A 22A 33=24,因此满足题意的排法种数为144-24=120,选B.6.(2014·北京高考)把5件不同产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有________种.解析:将A ,B 捆绑在一起,有A 22种摆法,再将它们与其他3件产品全排列,有A 44种摆法,共有A 22A 44=48种摆法,而A ,B ,C 3件在一起,且A ,B 相邻,A ,C 相邻有CAB ,BAC 两种情况,将这3件与剩下2件全排列,有2×A 33=12种摆法,故A ,B 相邻,A ,C不相邻的摆法有48-12=36种.答案:36 [高考达标检测] 一、选择题1.将字母a ,a ,b ,b ,c ,c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( )A .12种B .18种C .24种D .36种解析:选A 由分步乘法计数原理,先排第一列,有A 33种方法,再排第二列,有2种方法,故共有A 33×2=12种排列方法.2.有5名优秀毕业生到母校的3个班去做学习经验交流,则每个班至少去一名的不同分派方法种数为( )A .150B .180C .200D .280解析:选A 分两类:一类,3个班分派的毕业生人数分别为2,2,1,则有C 25C 23A 22·A 33=90种分派方法;另一类,3个班分派的毕业生人数分别为1,1,3,则有C 35·A 33=60种分派方法.所以不同分派方法种数为90+60=150.3.将标号为1,2,3,4的四个篮球分给三位小朋友,每位小朋友至少分到一个篮球,且标号1,2的两个篮球不能分给同一个小朋友,则不同的分法种数为( )A .15B .20C .30D .42解析:选C 四个篮球中两个分到一组有C 24种分法,三组篮球进行全排列有A 33种,标号1,2的两个篮球分给同一个小朋友有A 33种分法,所以有C 24A 33-A 33=36-6=30种分法,故选C.4.有5本不同的教科书,其中语文书2本,数学书2本,物理书1本.若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是()A.24 B.48C.72 D.96解析:选B据题意可先摆放2本语文书,当1本物理书在2本语文书之间时,只需将2本数学书插在前3本书形成的4个空中即可,此时共有A22A24种摆放方法;当1本物理书放在2本语文书一侧时,共有A22A12C12C13种不同的摆放方法,由分类加法计数原理可得共有A22A24+A22A12C12C13=48种摆放方法.5.现有2门不同的考试要安排在5天之内进行,每天最多进行一门考试,且不能连续两天有考试,那么不同的考试安排方案种数是()A.12 B.6C.8 D.16解析:选A若第一门安排在开头或结尾,则第二门有3种安排方法,这时,共有C12×3=6种方法;若第一门安排在中间的3天中,则第二门有2种安排方法,这时,共有3×2=6种方法.综上可得,不同的考试安排方案共有6+6=12种.6.(2016·昆明调研)航空母舰“辽宁舰”将进行一次编队配置科学试验,要求2艘攻击型核潜艇一前一后,3艘驱逐舰和3艘护卫舰分列左右,每侧3艘,同侧不能都是同种舰艇,则舰艇分配方案的方法数为()A.72 B.324C.648 D.1 296解析:选D核潜艇排列数为A22,6艘舰艇任意排列的排列数为A66,同侧均是同种舰艇的排列数为A33A33×2,则舰艇分配方案的方法数为A22(A66-A33A33×2)=1 296.7.(2016·青岛模拟)将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.18种B.24种C.36种D.72种解析:选C一个路口有3人的分配方法有C13C22A33(种);两个路口各有2人的分配方法有C23C22A33(种).∴由分类加法计数原理,甲、乙在同一路口的分配方案为C13C22A33+C23C22A33=36(种).8.市内某公共汽车站有6个候车位(成一排),现有3名乘客随便坐在某个座位上候车,则恰好有2个连续空座位的候车方式的种数是()A.48B.54C.72 D.84解析:选C 由题意,先把3名乘客全排列,有A 33种排法,产生四个空,再将2个连续空座位和一个空座位插入四个空中,有A 24种排法,则共有A 33·A 24=72(种)候车方式.故选C.二、填空题9.(2017·洛阳统考)四名学生保送到三所学校去,每所学校至少得一名,则不同的保送方案有________种.解析:分两步:先将四名学生分成2,1,1三组,共有C 24种;而后,对三组学生进行全排列,有A 33种.依分步乘法计数原理有C 24A 33=36(种)保送方案.答案:3610.若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种. 解析:把g ,o ,o ,d 4个字母排一列,可分两步进行,第一步:排g 和d ,共有A 24种排法;第二步:排两个o ,共一种排法,所以总的排法种数有A 24=12(种).其中正确的有一种,所以错误的共有A 24-1=12-1=11(种).答案:1111.(2017·江苏淮海中学期中)若A ,B ,C ,D ,E ,F 六个不同元素排成一列,要求A 不排在两端,且B ,C 相邻,则不同的排法有________种(用数字作答).解析:由于B ,C 相邻,把B ,C 看做一个整体,有2种排法.这样,6个元素变成了5个.先排A ,由于A 不排在两端,则A 在中间的3个位子中,有A 13=3种方法,其余的4个元素任意排,有A 44种不同方法,故不同的排法有2×3×A 44=144种.答案:14412.(2017·济南模拟)航天员拟在太空授课,准备进行标号为0,1,2,3,4,5的六项实验,向全世界人民普及太空知识,其中0号实验不能放在第一项,最后一项的标号小于它前面相邻一项的标号,则实验顺序的编排方法种数为________(用数字作答).解析:优先安排第一项实验,再利用定序问题相除法求解.由于0号实验不能放在第一项,所以第一项实验有5种选择.最后两项实验的顺序确定,所以共有5A 55A 22=300种不同的编排方法.答案:300 三、解答题13.将7个相同的小球放入4个不同的盒子中. (1)不出现空盒时的放入方式共有多少种? (2)可出现空盒时的放入方式共有多少种?解:(1)将7个相同的小球排成一排,在中间形成的6个空当中插入无区别的3个“隔板”将球分成4份,每一种插入隔板的方式对应一种球的放入方式,则共有C 36=20种不同的放入方式.。

2018年高考数学理总复习教师用书:第八单元 含解析 精

2018年高考数学理总复习教师用书:第八单元 含解析 精

第八单元 ⎪⎪⎪数 列教材复习课“数列”相关基础知识一课过1.数列的有关概念2.a n 与S n 的关系若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[小题速通]1.已知数列{a n }的前n 项和为S n =n 2-2n +2,则数列{a n }的通项公式为( ) A .a n =2n -3B .a n =2n +3C .a n =⎩⎪⎨⎪⎧ 1,n =1,2n -3,n ≥2D .a n =⎩⎪⎨⎪⎧1,n =1,2n +3,n ≥2解析:选C 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -3,由于n =1时a 1的值不适合n ≥2的解析式,故通项公式a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2.2.已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n =( ) A .2n -1-1B .2n -1C .2n -1D .2n +1解析:选B 当n ≥2时,a n =S n -S n -1=2a n -n -2a n -1+(n -1),即a n =2a n -1+1,∴a n +1=2(a n -1+1),当n =1时,a 1=S 1=2a 1-1,∴a 1=1,∴数列{a n +1}是首项为a 1+1=2,公比为2的等比数列,∴a n +1=2·2n -1=2n ,∴a n =2n -1.3.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( )A .5 B.72C.92D.132解析:选B ∵a n +a n +1=12,a 2=2,∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2, n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72.[清易错]1.易混项与项数,它们是两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.2.在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.1.已知数列的通项公式为a n =n 2-8n +15,则( ) A .3不是数列{a n }中的项 B .3只是数列{a n }中的第2项 C .3只是数列{a n }中的第6项 D .3是数列{a n }中的第2项或第6项解析:选D 令a n =3,即n 2-8n +15=3,解得n =2或6,故3是数列{a n }中的第2项或第6项.2.已知数列{a n }的前n 项和为S n =3+2n ,则数列{a n }的通项公式为________. 解析:当n =1时,a 1=S 1=3+2=5;当n ≥2时,a n =S n -S n -1=3+2n -(3+2n -1)=2n-2n -1=2n -1.因为当n =1时,不符合a n =2n -1,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥21.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n+1-a n=d(n∈N*,d为常数).(2)等差中项:数列a,A,b成等差数列的充要条件是A=a+b2,其中A叫做a,b的等差中项.2.等差数列的有关公式(1)通项公式:a n=a1+(n-1)d.(2)前n项和公式:S n=na1+n(n-1)2d=n(a1+a n)2.3.等差数列的常用性质(1)通项公式的推广:a n=a m+(n-m)d(n,m∈N*).(2)若{a n}为等差数列,且k+l=m+n(k,l,m,n∈N*),则a k+a l=a m+a n.(3)若{a n}是等差数列,公差为d,则{a2n}也是等差数列,公差为2d.(4)若{a n},{b n}是等差数列,则{pa n+qb n}也是等差数列.(5)若{a n}是等差数列,公差为d,则a k,a k+m,a k+2m,…(k,m∈N*)是公差为md的等差数列.[小题速通]1.在等差数列{}a n中,若a2=4,a4=2,则a6=()A.-1B.0C.1 D.6解析:选B∵{}a n为等差数列,∴2a4=a2+a6,∴a6=2a4-a2,即a6=2×2-4=0.2.等差数列{}a n的前三项为x-1,x+1,2x+3,则这个数列的通项公式为()A.a n=2n-5 B.a n=2n-3C.a n=2n-1 D.a n=2n+1解析:选B∵等差数列{a n}的前三项为x-1,x+1,2x+3,∴2(x+1)=(x-1)+(2x+3),解得x=0.∴a1=-1,a2=1,d=2,故a n=-1+(n-1)×2=2n-3.3.(2017·太原一模)在等差数列{a n}中,a9=12a12+6,则数列{a n}的前11项和S11等于________.解析:S 11=11(a 1+a 11)2=11a 6,设公差为d ,由a 9=12a 12+6得a 6+3d =12(a 6+6d )+6,解得a 6=12,所以S 11=11×12=132.答案:1324.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得 ⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 [清易错]1.要注意等差数列概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.注意区分等差数列定义中同一个常数与常数的区别.3.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件. 1.(2016·武昌联考)已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 的值为( )A .18B .19C .20D .21解析:选C 由a 1+a 3+a 5=105⇒a 3=35,a 2+a 4+a 6=99⇒a 4=33,则{a n }的公差d =33-35=-2,a 1=a 3-2d =39,S n =-n 2+40n ,因此当S n 取得最大值时,n =20.2.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.解析:因为a 1=1,a n =a n -1+12(n ≥2),所以数列{a n }是首项为1、公差为12的等差数列,所以前9项和S 9=9+9×82×12=27. 答案:27等比数列1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q .(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)都是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k . [小题速通]1.(2017·唐山期末)已知等比数列{a n }单调递减,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4 C. 2D .2 2解析:选B 设等比数列{a n }的公比为q ,由题意,q >0,则a 23=a 2a 4=1,又a 2+a 4=52,且{a n }单调递减,所以a 2=2,a 4=12,q 2=14,q =12,所以a 1=a 2q =4,故选B.2.设等比数列{a n }中,公比q =2,前n 项和为S n ,则S 4a 3的值为( )A.154B.152C.74D.72解析:选A 根据等比数列的公式,得S 4a 3=a 1(1-q 4)1-q a 1q 2=1-q 4(1-q )q 2=1-24(1-2)×22=154. 3.设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( )A .2B.73C.310D .1或2解析:选B 设S 2=k ,S 4=3k ,由数列{a n }为等比数列,得S 2,S 4-S 2,S 6-S 4为等比数列,∴S 2=k ,S 4-S 2=2k ,S 6-S 4=4k ,∴S 6=7k ,S 4=3k ,∴S 6S 4=7k 3k =73.4.(2017·信阳调研)已知等比数列{a n }的公比q >0,且a 5·a 7=4a 24,a 2=1,则a 1=( ) A.12 B.22C. 2D .2解析:选B 因为{a n }是等比数列,所以a 5a 7=a 26=4a 24,所以a 6=2a 4,q 2=a 6a 4=2,又q >0, 所以q =2,a 1=a 2q =22,故选B.[清易错]1.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.2.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n-S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.1.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D.558解析:选A 因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.2.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________. 解析:当q ≠1时,由题意,a 1(1-q 3)1-q =3a 1q 2,即1-q 3=3q 2-3q 3,整理得2q 3-3q 2+1=0,解得q =-12.当q =1时,S 3=3a 3,显然成立. 故q =-12或1.答案:-12或1[双基过关检测] 一、选择题1.已知等差数列{a n }满足:a 3=13,a 13=33,则数列{a n }的公差为( ) A .1 B .2 C .3D .4解析:选B 设等差数列{a n }的公差为d ,则d =a 13-a 313-3=33-1310=2,故选B.2.(2017·江西六校联考)在等比数列{a n }中,若a 3a 5a 7=-33,则a 2a 8=( ) A .3 B.17 C .9D .13解析:选A 由a 3a 5a 7=-33,得a 35=-33,故a 2a 8=a 25=3.3.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 015=( ) A .8 B .6 C .4D .2解析:选D 由题意得a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8.所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 015=a 335×6+5=a 5=2.4.已知数列{a n }满足a 1=1,a n =a n -1+2n (n ≥2),则a 7=( ) A .53 B .54 C .55D .109解析:选C a 2=a 1+2×2,a 3=a 2+2×3,……,a 7=a 6+2×7,各式相加得a 7=a 1+2(2+3+4+…+7)=55.故选C.5.设数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则S 6=( ) A .44 B .45 C.13×(46-1) D.14×(45-1)解析:选B 由a n +1=3S n 得a 2=3S 1=3.当n ≥2时,a n =3S n -1,则a n +1-a n =3a n ,n ≥2,即a n +1=4a n ,n ≥2,则数列{a n }从第二项起构成等比数列,所以S 6=a 73=3×453=45,故选B.6.(2017·河南中原名校摸底)已知等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8=( )A .18B .12C .9D .6解析:选D 设等差数列{a n }的公差为d ,由题意得S 11=11(a 1+a 11)2=11(2a 1+10d )2=22,即a 1+5d =2,所以a 3+a 7+a 8=a 1+2d +a 1+6d +a 1+7d =3(a 1+5d )=6,故选D.7.(2017·哈尔滨模拟)在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于( ) A.32 B.23C .-23D.23或-23解析:选C 由⎩⎪⎨⎪⎧a 1q =18,a 1q 3=8,解得⎩⎪⎨⎪⎧a 1=27,q =23或⎩⎪⎨⎪⎧a 1=-27,q =-23. 又a 1<0,因此q =-23.8.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .75B .90C .105D .120解析:选C a 1+a 2+a 3=15⇒3a 2=15⇒a 2=5,a 1a 2a 3=80⇒(a 2-d )a 2(a 2+d )=80,将a 2=5代入,得d =3(d =-3舍去),从而a 11+a 12+a 13=3a 12=3(a 2+10d )=3×(5+30)=105.二、填空题9.已知数列{a n }的通项公式a n =⎩⎪⎨⎪⎧2·3n -1,n 为偶数,2n -5,n 为奇数,则a 3a 4=________.解析:由题意知,a 3=2×3-5=1,a 4=2×34-1=54,∴a 3a 4=54.答案:5410.(2016·宁夏吴忠联考)等比数列的首项是-1,前n 项和为S n ,如果S 10S 5=3132,则S 4的值是________.解析:由已知得S 10S 5=1-q 101-q 5=1+q 5=3132,故q 5=-132,解得q =-12,S 4=(-1)×⎝⎛⎭⎫1-1161+12=-58.答案:-5811.(2016·潍坊一模)已知数列{a n }的前n 项和S n =13a n +23,则{a n }的通项公式a n =________.解析:当n =1时,a 1=S 1=13a 1+23,∴a 1=1.当n ≥2时,a n =S n -S n -1=13a n -13a n -1,∴a n a n -1=-12.∴数列{a n }为首项a 1=1,公比q =-12的等比数列,故a n =⎝⎛⎭⎫-12n -1. 答案:⎝⎛⎭⎫-12n -1 三、解答题12.(2017·德州检测)已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)设数列{b n }的通项b n =S nn,证明数列{b n }是等差数列,并求其前n 项和T n .解:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k . 由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (2)由(1)得S n =n (2+2n )2=n (n +1),则b n =S nn =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n (2+n +1)2=n (n +3)2. 13.已知数列{a n }的前n 项和为S n ,且S n =4a n -3(n ∈N *). (1)证明:数列{a n }是等比数列;(2)若数列{b n }满足b n +1=a n +b n (n ∈N *),且b 1=2,求数列{b n }的通项公式. 解:(1)证明:当n =1时,a 1=4a 1-3,解得a 1=1. 当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1,又a 1=1≠0,∴{a n }是首项为1,公比为43的等比数列.(2)由(1)知a n =⎝⎛⎭⎫43n -1,∵b n+1=a n +b n (n ∈N *), ∴b n +1-b n =⎝⎛⎭⎫43n -1.当n ≥2时,可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-⎝⎛⎭⎫43n -11-43=3⎝⎛⎭⎫43n -1-1,当n =1时,上式也成立,∴数列{b n }的通项公式为b n =3⎝⎛⎭⎫43n -1-1.14.设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N *. (1)求a 1的值;(2)求数列{a n }的通项公式. 解:(1)令n =1,T 1=2S 1-1, ∵T 1=S 1=a 1,∴a 1=2a 1-1,∴a 1=1. (2)n ≥2时,T n -1=2S n -1-(n -1)2, 则S n =T n -T n -1=2S n -n 2-[2S n -1-(n -1)2] =2(S n -S n -1)-2n +1 =2a n -2n +1.因为当n =1时,a 1=S 1=1也满足上式, 所以S n =2a n -2n +1(n ≥1),当n ≥2时,S n -1=2a n -1-2(n -1)+1, 两式相减得a n =2a n -2a n -1-2,所以a n =2a n -1+2(n ≥2),所以a n +2=2(a n -1+2), 因为a 1+2=3≠0,所以数列{a n +2}是以3为首项,公比为2的等比数列. 所以a n +2=3×2n -1,∴a n =3×2n -1-2,当n =1时也成立, 所以a n =3×2n -1-2.高考研究课(一)———————————————————————————————— 等差数列的3考点——求项、求和和判定————————————————————————————————— [全国卷5年命题分析]等差数列前n 项和 5年3考 求项数、求和等差数列的判定5年1考探索参数使数列成等差数列等差数列基本量的运算[典例] n n 12,S n +2-S n =36,则n =( )A .5B .5C .7D .8(2)(2016·全国甲卷)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.①求b 1,b 11,b 101;②求数列{b n }的前1 000项和.[解析] (1)法一:由等差数列前n 项和公式可得S n +2-S n =(n +2)a 1+(n +2)(n +1)2d -⎣⎡⎦⎤na 1+n (n -1)2d =2a 1+(2n +1)d =2+4n +2=36, ∴n =8,故选D.法二:由S n +2-S n =a n +2+a n +1=a 1+a 2n +2=36,因此a 2n +2=a 1+(2n +1)d =35,解得n =8,故选D.答案:D(2)解:①设数列{a n }的公差为d ,由已知得7+21d =28,解得d =1. 所以数列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2. ②因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893. [方法技巧]等差数列运算的解题思路由等差数列的前n 项和公式及通项公式可知若已知a 1,d ,n ,a n ,S n 中三个便可求出其余两个,即“知三求二”,“知三求二”的实质是方程思想,即建立方程组求解.[即时演练]1.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =________. 解析:由S m -1=-2,S m =0,S m +1=3,得a m =S m -S m -1=2,a m +1=S m +1-S m =3, 所以等差数列的公差d =a m +1-a m =3-2=1, 由⎩⎪⎨⎪⎧a m =a 1+(m -1)d =2,S m =a 1m +12m (m -1)d =0,得⎩⎪⎨⎪⎧a 1+m -1=2,a 1m +12m (m -1)=0,解得⎩⎪⎨⎪⎧a 1=-2,m =5. 答案:52.(2017·大连联考)已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(1)求d 及S n;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65. 解:(1)由题意知(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式解得d =2或d =-5.因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1),所以(2m +k -1)(k +1)=65. 由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎪⎨⎪⎧ 2m +k -1=13,k +1=5,解得⎩⎪⎨⎪⎧m =5,k =4. 即所求m 的值为5,k 的值为4.[典例] n n n n S n -1=0(n ≥2),a 1=12. (1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.[解] (1)证明:当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2, 故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列.(2)由(1)可得1S n =2n ,∴S n =12n .当n ≥2时, a n =S n -S n -1=12n -12 n -1 =n -1-n 2n n -1 =-12n n -1. 当n =1时,a 1=12不适合上式.故a n=⎩⎨⎧12,n =1,-12n n -1 ,n ≥2.[方法技巧]等差数列的判定与证明方法[即时演练]1.(2016·浙江高考)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n+2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列C .{d n }是等差数列D .{d 2n }是等差数列解析:选A 由题意,过点A 1,A 2,A 3,…,A n ,A n +1,…分别作直线B 1B n +1的垂线,高分别记为h 1,h 2,h 3,…,h n ,h n +1,…,根据平行线的性质,得h 1,h 2,h 3,…,h n ,h n +1,…成等差数列,又S n =12×|B n B n +1|×h n ,|B n B n +1|为定值,所以{S n }是等差数列.故选A.2.已知公差大于零的等差数列{}a n 的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求数列{a n }的通项公式; (2)若数列{}b n 满足b n =S nn +c,是否存在非零实数c 使得{b n }为等差数列?若存在,求出c 的值;若不存在,请说明理由.解:(1)∵数列{}a n 为等差数列, ∴a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,∴a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13,∴⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,解得⎩⎪⎨⎪⎧a 1=1,d =4.∴数列{a n }的通项公式为a n =4n -3. (2)由(1)知a 1=1,d =4, ∴S n =na 1+n (n -1)2×d =2n 2-n , ∴b n =S nn +c =2n 2-n n +c ,∴b 1=11+c ,b 2=62+c ,b 3=153+c,其中c ≠0. ∵数列{}b n 是等差数列,∴2b 2=b 1+b 3, 即62+c ×2=11+c +153+c,∴2c 2+c =0, ∴c =-12或c =0(舍去),故c =-12.即存在一个非零实数c =-12,使数列{b n }为等差数列.[典例] (1)n 3610a 13=32,若a m =8,则m 的值为( )A .8B .12C .6D .4(2)(2017·天水模拟)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.[解析] (1)由a 3+a 6+a 10+a 13=32,得(a 3+a 13)+(a 6+a 10)=32,得4a 8=32,∴a 8=8,∴m =8.故选A.(2)∵S 10,S 20-S 10,S 30-S 20成等差数列, ∴2(S 20-S 10)=S 10+S 30-S 20, ∴40=10+S 30-30,∴S 30=60. [答案] (1)A (2)60 [方法技巧]等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n . [即时演练]1.(2017·岳阳模拟)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.设等差数列{a n }的前n 项和为S n ,等差数列{b n }的前n 项和为T n ,若S n T n =n +1n -1,则a 2b 4+b 6+a 8b 3+b 7=________. 解析:a 2b 4+b 6+a 8b 3+b 7=a 22b 5+a 82b 5=a 2+a 82b 5=2a 52b 5=S 9T 9=9+19-1=54.答案:54等差数列前n 项和最值等差数列的通项a n 及前n 项和S n 均为n 的函数,通常利用函数法或通项变号法解决等差数列前n 项和S n 的最值问题.n n 1311n取得最大值.[解] 法一:用“函数法”解题由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.从而S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 因为a 1>0,所以-a 113<0. 故当n =7时,S n 最大. 法二:用“通项变号法”解题 由法一可知,d =-213a 1. 要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎨⎧a 1+(n -1)⎝⎛⎭⎫-213a 1≥0,a 1+n ⎝⎛⎭⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大. [方法技巧]求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)通项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[即时演练]1.(2017·潍坊模拟)在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( )A .S 15B .S 16C .S 15或S 16D .S 17解析:选A ∵a 1=29,S 10=S 20, ∴10a 1+10×92d =20a 1+20×192d ,解得d =-2, ∴S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值.2.(2017·辽宁五校联考)设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选C ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.1.(2016·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97解析:选C 法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧ a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C. 法二:∵{a n }是等差数列, ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5. 故a 100=a 5+(20-1)×5=98.故选C.2.(2015·全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192C .10D .12解析:选B ∵公差为1, ∴S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6. ∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.故选B.3.(2014·全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.解:(1)证明:由题设,a n a n+1=λS n-1,a n+1a n+2=λS n+1-1.两式相减得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.4.(2013·全国卷Ⅱ)已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(1)求{a n}的通项公式;(2)求a1+a4+a7+…+a3n-2.解:(1)设{a n}的公差为d.由题意,a211=a1a13,即(a1+10d)2=a1(a1+12d),于是d(2a1+25d)=0.又a1=25,所以d=0(舍去),或d=-2.故a n=-2n+27.(2)令S n=a1+a4+a7+…+a3n-2.由(1)知a3n-2=-6n+31,故{a3n-2}是首项为25,公差为-6的等差数列.从而S n=n2(a1+a3n-2)=n2(-6n+56)=-3n2+28n.[高考达标检测]一、选择题1.(2017·长沙名校联考)已知数列{a n}是等差数列,a1+a7=-8,a2=2,则数列{a n}的公差d等于()A.-1B.-2C.-3 D.-4解析:选C 法一:由题意可得⎩⎪⎨⎪⎧a 1+(a 1+6d )=-8,a 1+d =2,解得d =-3.法二:a 1+a 7=2a 4=-8,∴a 4=-4, ∴a 4-a 2=-4-2=2d ,∴d =-3.2.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( ) A .37 B .36 C .20D .19解析:选A a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37,∴m =37.故选A. 3.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =( )A .n (3n -1) B.n (n +3)2C .n (n +1)D.n (3n +1)2解析:选C 依题意得a n +1=a n +a 1,即a n +1-a n =a 1=2,所以数列{a n }是以2为首项、2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n (2+2n )2=n (n +1),选C. 4.(2016·大同模拟)在等差数列{}a n 中,a 1+a 2+a 3=3,a 18+a 19+a 20=87,则此数列前20项的和等于( )A .290B .300C .580D .600解析:选B 由a 1+a 2+a 3=3a 2=3,得a 2=1. 由a 18+a 19+a 20=3a 19=87,得a 19=29, 所以S 20=20(a 1+a 20)2=10(a 2+a 19)=300. 5.设等差数列{a n }的前n 项和为S n ,且S 9=18,a n -4=30(n >9),若S n =336,则n 的值为( )A .18B .19C .20D .21解析:选D 因为{a n }是等差数列,所以S 9=9a 5=18,a 5=2,S n =n (a 1+a n )2=n (a 5+a n -4)2=n2×32=16n =336,解得n =21,故选D. 6.(2017·烟台模拟)设数列{a n }是公差d <0的等差数列,S n 为其前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n =( )A .5B .6C .5或6D .6或7解析:选C ∵S 6=5a 1+10d ,∴6a 1+15d =5a 1+10d ,得a 1+5d =0,即a 6=0.∵数列{a n }是公差d <0的等差数列,∴n =5或6时,S n 取最大值.7.设{a n }是等差数列,d 是其公差,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .当n =6或n =7时S n 取得最大值解析:选C 由S 5<S 6,得a 1+a 2+a 3+a 4+a 5<a 1+a 2+a 3+a 4+a 5+a 6,即a 6>0.同理由S 7>S 8,得a 8<0.又S 6=S 7,∴a 1+a 2+…+a 6=a 1+a 2+…+a 6+a 7,∴a 7=0,∴B 正确;∵d =a 7-a 6<0,∴A 正确;而C 选项,S 9>S 5,即a 6+a 7+a 8+a 9>0,可得2(a 7+a 8)>0,由结论a 7=0,a 8<0,知C 选项错误;∵S 5<S 6,S 6=S 7>S 8,∴结合等差数列前n 项和的函数特性可知D 正确.选C.二、填空题8.(2017·枣庄模拟)若数列{a n }满足a 1=13,1a n +1-1a n=5(n ∈N *),则a 10=________.解析:因为1a n +1-1a n =5,所以⎩⎨⎧⎭⎬⎫1a n 是以1a 1=3为首项、5为公差的等差数列,所以1a n=3+5(n -1)=5n -2,即a n =15n -2,所以a 10=150-2=148. 答案:1489.等差数列{a n }中,a 1=12 017,a m =1n ,a n =1m (m ≠n ),则数列{a n }的公差d =________.解析:∵a m =12 017+(m -1)d =1n ,a n =12 017+(n -1)d =1m ,∴(m -n )d =1n -1m ,∴d =1mn ,∴a m =12 017+(m -1)1mn =1n ,解得1mn =12 017,即d =12 017. 答案:12 01710.(2016·江苏高考)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.解析:法一:设等差数列{a n }的公差为d ,由S 5=10,知S 5=5a 1+5×42d =10,得a 1+2d =2,即a 1=2-2d .所以a 2=a 1+d =2-d ,代入a 1+a 22=-3,化简得d 2-6d +9=0,所以d =3,a 1=-4.故a 9=a 1+8d =-4+24=20.法二:设等差数列{a n }的公差为d ,由S 5=10,知5(a 1+a 5)2=5a 3=10,所以a 3=2. 所以由a 1+a 3=2a 2,得a 1=2a 2-2,代入a 1+a 22=-3,化简得a 22+2a 2+1=0,所以a 2=-1.公差d =a 3-a 2=2+1=3,故a 9=a 3+6d =2+18=20. 答案:20 三、解答题11.(2017·成都模拟)已知数列{a n }各项均为正数,且a 1=1,a n +1a n +a n +1-a n =0(n ∈N *). (1)设b n =1a n,求证:数列{b n }是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和S n .解:(1)证明:因为a n +1a n +a n +1-a n =0(n ∈N *), 所以a n +1=a na n +1. 因为b n =1a n ,所以b n +1-b n =1a n +1-1a n =a n +1a n -1a n =1.又b 1=1a 1=1,所以数列{b n }是以1为首项、1为公差的等差数列. (2)由(1)知,b n =n ,所以1a n=n ,即a n =1n ,所以a n n +1=1n (n +1)=1n -1n +1, 所以S n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=1-1n +1=n n +1. 12.(2017·沈阳质检)已知等差数列{a n }的前n 项和为S n ,且a 3+a 6=4,S 5=-5. (1)求数列{a n }的通项公式;(2)若T n =|a 1|+|a 2|+|a 3|+…+|a n |,求T 5的值和T n 的表达式. 解:(1)设等差数列{a n }的公差为d ,由题意知⎩⎪⎨⎪⎧2a 1+7d =4,5a 1+5×42d =-5,解得⎩⎪⎨⎪⎧a 1=-5,d =2, 故a n =2n -7(n ∈N *).(2)由a n =2n -7<0,得n <72,即n ≤3,所以当n ≤3时,a n =2n -7<0,当n ≥4时,a n =2n -7>0. 由(1)知S n =n 2-6n ,所以当n ≤3时,T n =-S n =6n -n 2; 当n ≥4时,T n =-S 3+(S n -S 3)=S n -2S 3=n 2-6n +18.故T 5=13,T n =⎩⎪⎨⎪⎧6n -n 2,n ≤3,n 2-6n +18,n ≥4.13.已知等比数列{a n }是递增数列,且a 2a 5=32,a 3+a 4=12,数列{b n }满足b 1=1,且b n +1=2b n +2a n (n ∈N *).(1)证明:数列⎩⎨⎧⎭⎬⎫b n a n 是等差数列;(2)若对任意n ∈N *,不等式(n +2)b n +1≥λb n 总成立,求实数λ的最大值.解:(1)证明:设{a n }的公比为q ,因为a 2a 5=a 3a 4=32,a 3+a 4=12,且{a n }是递增数列, 所以a 3=4,a 4=8,所以q =2,a 1=1,所以a n =2n -1.因为b n +1=2b n +2a n , 所以b n +1a n +1=b na n+1, 所以数列⎩⎨⎧⎭⎬⎫b n a n 是以b 1a 1=1为首项、1为公差的等差数列.(2)由(1)知b n =n ×2n -1,所以λ≤(n +2)b n +1b n =(n +2)(n +1)2n n ·2n 1=2⎝⎛⎭⎫n +2n +3. 因为n ∈N *,易知当n =1或2时,2⎝⎛⎭⎫n +2n +3取得最小值12,所以λ的最大值为12. 高考研究课(二)———————————————————————————————— 等比数列的3考点——基本运算、判定和应用—————————————————————————————————[全国卷5年命题分析][典例] (1)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S n a n =( )A .4n -1B .4n -1C .2n -1D .2n -1(2)(2017·石家庄模拟)设数列{a n }的前n 项和S n 满足6S n +1=9a n (n ∈N *). ①求数列{a n }的通项公式;②若数列{b n }满足b n =1a n ,求数列{b n }前n 项和T n .[解析] (1)设{a n }的公比为q ,∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52, (ⅰ)a 1q +a 1q 3=54, (ⅱ)由(ⅰ)(ⅱ)可得1+q 2q +q 3=2,∴q =12,代入(ⅰ)得a 1=2, ∴a n =2×⎝⎛⎭⎫12n -1=42n ,∴S n =2×⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=4⎝⎛⎭⎫1-12n ,∴S n a n=4⎝⎛⎭⎫1-12n 42n =2n-1,选D.答案:D(2)解:①当n =1时,由6a 1+1=9a 1,得a 1=13.当n ≥2时,由6S n +1=9a n ,得6S n -1+1=9a n -1, 两式相减得6(S n -S n -1)=9(a n -a n -1), 即6a n =9(a n -a n -1),∴a n =3a n -1.∴数列{a n }是首项为13,公比为3的等比数列,其通项公式为a n =13×3n -1=3n -2.②∵b n =1a n=⎝⎛⎭⎫13n -2,∴{b n }是首项为3,公比为13的等比数列,∴T n =b 1+b 2+…+b n =3⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13=92⎣⎡⎦⎤1-⎝⎛⎭⎫13n .[方法技巧]解决等比数列有关问题的常用思想方法(1)方程的思想:等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论的思想:等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q1-q.[即时演练]1.已知数列{a n }是首项a 1=14的等比数列,其前n 项和S n 中S 3=316,若a m =-1512,则m 的值为( )A .8B .10C .9D .7解析:选A 设数列{a n }的公比为q ,若q =1,则S 3=34≠316,不符合题意,∴q ≠1.由⎩⎨⎧a 1=14,S 3=a 1(1-q 3)1-q =316,得⎩⎨⎧a 1=14q =-12,∴a n =14·⎝⎛⎭⎫-12n -1=⎝⎛⎭⎫-12n +1,由a m=⎝⎛⎭⎫-12m +1=-1512得,m =8. 2.(2017·汕头模拟)设数列{a n }的前n 项和为S n ,a 1=1,且数列{S n }是以2为公比的等比数列.(1)求数列{a n }的通项公式; (2)求a 1+a 3+…+a 2n +1.解:(1)∵S 1=a 1=1,且数列{S n }是以2为公比的等比数列, ∴S n =2n -1,又当n ≥2时,a n =S n -S n -1=2n -1-2n -2=2n -2.当n =1时,a 1=1,不适合上式.∴a n =⎩⎪⎨⎪⎧1,n =1,2n -2,n ≥2.(2)a 3,a 5,…,a 2n +1是以2为首项,以4为公比的等比数列, ∴a 3+a 5+…+a 2n +1=2(1-4n )1-4=2(4n -1)3.∴a 1+a 3+…+a 2n +1=1+2(4n -1)3=22n +1+13.等比数列的判定与证明[典例] 设数列{a n }的前n 项和为S n ,已知a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *).(1)求a 2,a 3的值;(2)求证:数列{S n +2}是等比数列.[解] (1)∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *), ∴当n =1时,a 1=2×1=2; 当n =2时,a 1+2a 2=(a 1+a 2)+4, ∴a 2=4;当n =3时,a 1+2a 2+3a 3=2(a 1+a 2+a 3)+6, ∴a 3=8.(2)证明:∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *),①∴当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=(n -2)S n -1+2(n -1).② ①-②得na n =(n -1)S n -(n -2)S n -1+2 =n (S n -S n -1)-S n +2S n -1+2 =na n -S n +2S n -1+2.∴-S n +2S n -1+2=0,即S n =2S n -1+2, ∴S n +2=2(S n -1+2).∵S 1+2=4≠0,∴S n -1+2≠0, ∴S n +2S n -1+2=2,故{S n +2}是以4为首项,2为公比的等比数列. [方法技巧]等比数列的3种判定方法(1)定义法:若a n +1a n=q (q 为非零常数,n ∈N *),则{a n }是等比数列.(2)等比中项法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. (3)通项公式法:若数列通项公式可写成a n =c ·q n (c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.[即时演练]1.已知数列{a n }的前n 项和为S n ,且S n +a n =2n (n ∈N *),则下列数列中一定为等比数列的是( )A .{a n }B .{a n -1}C .{a n -2}D .{S n }解析:选C 由S n +a n =2n (n ∈N *),可得S n -1+a n -1=2(n -1)(n ≥2,n ∈N *),两式相减得a n =12a n -1+1(n ≥2,n ∈N *),所以a n -2=12(a n -1-2)(n ≥2,n ∈N *),且a 1=1,a 1-2=-1≠0,所以{a n -2}一定是等比数列,故选C.2.(2017·惠州模拟)设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式.解:(1)证明:由a 1=1及S n +1=4a n +2, 得a 1+a 2=S 2=4a 1+2. ∴a 2=5,∴b 1=a 2-2a 1=3. ∵S n +1=4a n +2, ①∴当n ≥2时,S n =4a n -1+2, ② ①-②,得a n +1=4a n -4a n -1, ∴a n +1-2a n =2(a n -2a n -1). ∵b n =a n +1-2a n , ∴b n =2b n -1(n ≥2),故{b n }是首项b 1=3,公比为2的等比数列. (2)由(1)知b n =a n +1-2a n =3·2n -1,∴a n +12n +1-a n 2n =34,故⎩⎨⎧⎭⎬⎫a n 2n 是首项为12,公差为34的等差数列.∴a n 2n =12+(n -1)·34=3n -14, ∴a n =(3n -1)·2n -2.[典例] (1)(2017·n S n ,若S n =2,S 3n=14,则S 4n 等于( )A .80B .30C .26D .16(2)等比数列{a n }满足a n >0,n ∈N *,且a 3·a 2n -3=22n (n ≥2),则当n ≥1时,log 2a 1+log 2a 2+…+log2a2n-1=________.[解析](1)∵S n,S2n-S n,S3n-S2n,S4n-S3n成等比数列,∴S n·(S3n-S2n)=(S2n-S n)2,即2×(14-S2n)=(S2n-2)2,解得S2n=6或S2n=-4(舍去).同理,(6-2)(S4n-14)=(14-6)2,解得S4n=30.(2)由等比数列的性质,得a3·a2n-3=a2n=22n,从而得a n=2n.∴log2a1+log2a2+…+log2a2n-1=log2[(a1a2n-1)·(a2a2n-2)·…·(a n-1a n+1)a n]=log22n(2n-1)=n(2n-1)=2n2-n.[答案](1)B(2)2n2-n[方法技巧](1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n=p+q,则a m·a n=a p·a q”,可以减少运算量,提高解题速度.(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.[即时演练]1.(2017·辽宁五校联考)已知数列{a n}为等比数列,若a4+a6=10,则a7(a1+2a3)+a3a9的值为()A.10B.20C.100 D.200解析:选C a7(a1+2a3)+a3a9=a7a1+2a7a3+a3a9=a24+2a4a6+a26=(a4+a6)2=102=100.2.(2016·长春二模)在正项等比数列{a n}中,已知a1a2a3=4,a4a5a6=12,a n-1a n a n+1=324,则n=________.解析:设数列{a n}的公比为q,由a1a2a3=4=a31q3与a4a5a6=12=a31q12,可得q9=3,a n-1a n a n+1=a31q3n-3=324,因此q3n-6=81=34=q36,所以3n-6=36,即n=14,答案:141.(2015·全国卷Ⅱ)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63D .84解析:选B 设数列{a n }的公比为q ,∵a 1=3,a 1+a 3+a 5=21, ∴3+3q 2+3q 4=21.∴1+q 2+q 4=7,解得q 2=2或q 2=-3(舍去). ∴a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42.故选B.2.(2013·全国卷Ⅱ)等比数列{a n }的前n 项和为S n .已知S 3=a 2 +10a 1 ,a 5=9,则a 1=( )A.13 B .-13C.19D .-19解析:选C 由题知q ≠1,则S 3=a 1(1-q 3)1-q =a 1q +10a 1,得q 2=9,又a 5=a 1q 4=9,则a 1=19,故选C.3.(2016·全国乙卷)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n 1q1+2+…+(n -1)=23n ·⎝⎛⎭⎫12(n -1)n 2=23n -n 22+n 2=2-n 22+72n .记t =-n 22+7n 2=-12(n 2-7n )=-12⎝⎛⎭⎫n -722+498, 结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. 答案:644.(2016·全国乙卷)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n +1+b n +1=nb n .(1)求{a n }的通项公式; (2)求{b n }的前n 项和.解:(1)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2.。

2018年高考数学(浙江专用)总复习教师用书:第10章 第3讲 二项式定理 含解析

2018年高考数学(浙江专用)总复习教师用书:第10章 第3讲 二项式定理 含解析

第3讲 二项式定理最新考纲 1.能用计数原理证明二项式定理;2.会用二项式定理解决与二项展开式有关的简单问题.知 识 梳 理1.二项式定理(1)二项式定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *); (2)通项公式:T r +1=C r n an -r b r ,它表示第r +1项; (3)二项式系数:二项展开式中各项的系数C 0n ,C 1n ,…,C n n .2.二项式系数的性质(1)(a +b )n 展开式的各二项式系数和:C 0n +C 1n +C 2n +…+C n n =2n.(2)偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1. 诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)C k n an -k b k 是二项展开式的第k 项.( ) (2)二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( )(4)(a +b )n 某项的系数是该项中非字母因数部分,包括符号等,与该项的二项式系数不同.( )-或中间两项,故(1)(2)均不正确. 答案 (1)× (2)× (3)√ (4)√2.(x -y )n 的二项展开式中,第m 项的系数是( ) A.C m nB.C m +1n C.C m -1nD.(-1)m -1C m -1n解析 (x -y )n 展开式中第m 项的系数为C m -1n (-1)m -1.答案 D3.(选修2-3P35练习T1(3)改编)C 02 017+C 12 017+C 22 017+…+C 2 0172 017C 02 016+C 22 016+C 42 016+…+C 2 0162 016的值为( ) A.2 B.4C.2 017D.2 016×2 017 解析 原式=22 01722 016-1=22=4.答案 B4.(2017·瑞安市质检)⎝ ⎛⎭⎪⎫x 2-12x 9的展开式中,第4项的二项式系数是________,第4项的系数是________. 解析 展开式通项为T r +1=C r 9x2(9-r )⎝⎛⎭⎪⎫-12x r=(-1)r 12r C r 9x 18-3r(其中r =0,1,…,9) ∴T 4=(-1)3123C 39x 9,故第4项的二项式系数为C 39=84,第4项的系数为 (-1)3123C 39=-212. 答案 84 -2125.(2017·石家庄调研)(1+x )n 的二项式展开式中,仅第6项的系数最大,则n =________.解析 (1+x )n 的二项式展开式中,项的系数就是项的二项式系数,所以n 2+1=6,n =10.6.⎝ ⎛⎭⎪⎫x 2-2x 35展开式中的常数项为________. 解析T k +1=C k 5(x 2)5-k ⎝⎛⎭⎪⎫-2x 3k=C k 5(-2)k x 10-5k.令10-5k =0,则k =2.∴常数项为T 3=C 25(-2)2=40.答案40考点一 求展开式中的特定项或特定项的系数【例1】 已知在⎝ ⎛⎭⎪⎪⎫3x -123x n的展开式中,第6项为常数项. (1)求n ;(2)求含x 2的项的系数; (3)求展开式中所有的有理项. 解 (1)通项公式为T k +1=C k n xn -k3⎝ ⎛⎭⎪⎫-12k x -k 3=C k n ⎝ ⎛⎭⎪⎫-12k x n -2k 3.因为第6项为常数项,所以k =5时,n -2×53=0,即n =10.(2)令10-2k3=2,得k =2,故含x 2的项的系数是C 210⎝⎛⎭⎪⎫-122=454.(3)根据通项公式,由题意⎩⎪⎨⎪⎧10-2k 3∈Z ,0≤k ≤10,k ∈N ,令10-2k 3=r (r ∈Z ),则10-2k =3r ,k =5-32r , ∵k ∈N ,∴r 应为偶数.∴r 可取2,0,-2,即k 可取2,5,8, ∴第3项,第6项与第9项为有理项, 它们分别为454x 2,-638,45256x -2.第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解. 【训练1】(1)(2015·全国Ⅰ卷)(x2+x+y)5的展开式中,x5y2的系数为()A.10B.20C.30D.60(2)(2016·全国Ⅰ卷)(2x+x)5的展开式中,x3的系数是________(用数字作答).(3)(2014·全国Ⅰ卷)(x-y)(x+y)8的展开式中x2y7的系数为________(用数字作答). 解析(1)法一(x2+x+y)5=[(x2+x)+y]5,含y2的项为T3=C25(x2+x)3·y2.其中(x2+x)3中含x5的项为C13x4·x=C13x5.所以x5y2的系数为C25C13=30.法二(x2+x+y)5表示5个x2+x+y之积.∴x5y2可从其中5个因式中选两个因式取y,两个取x2,一个取x.因此x5y2的系数为C25C23C11=30.(2)由(2x+x)5得T r+1=C r5(2x)5-r(x)r=25-r C r5x5-r2,令5-r2=3得r=4,此时系数为10.(3)(x-y)(x+y)8=x(x+y)8-y(x+y)8,∵x(x+y)8中含x2y7的项为x·C78xy7,y(x+y)8中含x2y7的项为y·C68x2y6.故(x-y)(x+y)8的展开式中x2y7的系数为C78-C68=C18-C28=-20.答案(1)C(2)10(3)-20考点二二项式系数的和与各项的系数和问题【例2】在(2x-3y)10的展开式中,求:(1)二项式系数的和;(2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和;(4)奇数项系数和与偶数项系数和;(5)x的奇次项系数和与x的偶次项系数和.解设(2x-3y)10=a0x10+a1x9y+a2x8y2+…+a10y10,(*)各项系数和为a0+a1+…+a10,奇数项系数和为a0+a2+…+a10,偶数项系数和为a 1+a 3+a 5+…+a 9,x 的奇次项系数和为a 1+a 3+a 5+…+a 9,x 的偶次项系数和为a 0+a 2+a 4+…+a 10.由于(*)是恒等式,故可用“赋值法”求出相关的系数和.(1)二项式系数的和为C 010+C 110+…+C 1010=210.(2)令x =y =1,各项系数和为(2-3)10=(-1)10=1.(3)奇数项的二项式系数和为C 010+C 210+…+C 1010=29, 偶数项的二项式系数和为C 110+C 310+…+C 910=29.(4)令x =y =1,得到a 0+a 1+a 2+…+a 10=1,① 令x =1,y =-1(或x =-1,y =1), 得a 0-a 1+a 2-a 3+…+a 10=510,② ①+②得2(a 0+a 2+…+a 10)=1+510, ∴奇数项系数和为1+5102;①-②得2(a 1+a 3+…+a 9)=1-510, ∴偶数项系数和为1-5102.(5)x 的奇次项系数和为a 1+a 3+a 5+…+a 9=1-5102; x 的偶次项系数和为a 0+a 2+a 4+…+a 10=1+5102.规律方法 (1)“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n 、(ax 2+bx +c )m (a ,b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.【训练2】 (1)(2017·岳阳模拟)若二项式⎝ ⎛⎭⎪⎫3x 2-1x n的展开式中各项系数的和是512,则展开式中的常数项为( ) A.-27C 39B.27C 39C.-9C 9D.9C 9(2)(2017·义乌调研)(1-3x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,求|a 0|+|a 1|+|a 2|+|a 3|+|a 4|+|a 5|=( ) A.1 024B.243C.32D.24解析 (1)令x =1得2n=512,所以n =9,故⎝ ⎛⎭⎪⎫3x 2-1x 9的展开式的通项为T r +1=C r 9(3x 2)9-r ⎝⎛⎭⎪⎫-1x r=(-1)r C r 9·39-r x 18-3r,令18-3r =0得r =6,所以常数项为T 7=(-1)6C 69·33=27C 39.(2)令x =-1得a 0-a 1+a 2-a 3+a 4-a 5=|a 0|+|a 1|+|a 2|+|a 3|+|a 4|+|a 5|=[1-(-3)]5=45=1 024. 答案 (1)B (2)A考点三 二项式定理的应用【例3】 (1)求证:1+2+22+…+25n -1(n ∈N *)能被31整除; (2)用二项式定理证明2n >2n +1(n ≥3,n ∈N *). 证明 (1)∵1+2+22+…+25n -1=25n -12-1=25n -1=32n -1=(31+1)n -1=C 0n ×31n +C 1n ×31n -1+…+C n -1n ×31+C nn -1 =31(C 0n ×31n -1+C 1n ×31n -2+…+C n -1n ), 显然C 0n ×31n -1+C 1n ×31n -2+…+C n -1n 为整数,∴原式能被31整除. (2)当n ≥3,n ∈N *.2n =(1+1)n =C 0n +C 1n +…+C n -1n +C n n ≥C 0n +C 1n +C n -1n +C n n =2n +2>2n +1,∴不等式成立.规律方法 (1)整除问题和求近似值是二项式定理中两类常见的应用问题,整除问题中要关注展开式的最后几项.而求近似值则应关注展开式的前几项.(2)二项式定理的应用基本思路是正用或逆用二项式定理,注意选择合适的形式. (3)由于(a +b )n 的展开式共有n +1项,故可通过对某些项的取舍来放缩,从而达到证明不等式的目的.【训练3】 求S =C 127+C 227+…+C 2727除以9的余数. 解 S =C 1+C 2+…+C 27=227-1=89-1=(9-1)-1=C 9×9-C 9×9+…+C 9×9-C 9-1=9(C 09×98-C 19×97+…+C 89)-2. ∵C 09×98-C 19×97+…+C 89是整数,∴S 被9除的余数为7.[思想方法]1.二项式系数与项的系数是完全不同的两个概念.二项式系数是指C 0n ,C 1n ,…,C n n ,它只与各项的项数有关,而与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a ,b 的值有关. 2.因为二项式定理中的字母可取任意数或式,所以在解题时根据题意给字母赋值是求解二项展开式各项系数和的一种重要方法.赋值法求展开式中的系数和或部分系数和,常赋的值为0,±1. [易错防范]1.通项T k +1=C k n an -k b k 是(a +b )n 的展开式的第k +1项,而不是第k 项,这里k =0,1,…,n .2.区别“项的系数”与“二项式系数”,审题时要仔细.项的系数与a ,b 有关,可正可负,二项式系数只与n 有关,恒为正.3.切实理解“常数项”“有理项”(字母指数为整数)“系数最大的项”等概念.基础巩固题组 (建议用时:25分钟)一、选择题1.(2016·四川卷)设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A.-15x 4 B.15x 4 C.-20i x 4D.20i x 4解析 (x +i)6的展开式的通项为T r +1=C r 6x 6-r i r (r =0,1,2,…,6),令r =2,得含x 4的项为C 26x 4i 2=-15x 4,故选A.答案 A2.(2017·台州市调研)二项式⎝ ⎛⎭⎪⎫ax +366的展开式的第二项的系为-3,则a 的值A.53B.-1C.3D.113解析∵T r +1=C r 6(ax )6-r ⎝ ⎛⎭⎪⎫36r =C r 6a 6-r ·⎝ ⎛⎭⎪⎫36r x 6-r, ∴第二项的系数为C 16a 5·36=-3,∴a =-1. 答案 B3.(2017·漳州模拟)在⎝ ⎛⎭⎪⎪⎫x 2-13x n的展开式中,只有第5项的二项式系数最大,则展开式的常数项为( ) A.-7B.7C.-28D.28解析 依题意有n2+1=5,∴n =8.二项式⎝ ⎛⎭⎪⎪⎫x 2-13x 8的展开式的通项公式T k +1=(-1)k ⎝ ⎛⎭⎪⎫128-k C k 8x 8-43k ,令8-43k =0得k =6,故常数项为T 7=(-1)6⎝ ⎛⎭⎪⎫122C 68=7.答案 B4.(2015·湖北卷)已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ) A.29B.210C.211D.212解析 由题意,C 3n =C 7n ,解得n =10.则奇数项的二项式系数和为2n -1=29.故选A. 答案 A5.(2016·海口调研)若(x 2-a )⎝ ⎛⎭⎪⎫x +1x 10的展开式中x 6的系数为30,则a 等于( )A.13 B.12C.1D.2解析 依题意,注意到⎝ ⎛⎭⎪⎫x +1x 10的展开式的通项公式是T r +1=C r 10·x 10-r ·⎝ ⎛⎭⎪⎫1x r =C r 10·x 10-2r ,⎝⎛⎭⎪⎫x +1x 10的展开式中含x 4(当r =3时)、x 6(当r =2时)项的系数分别为C 310、C 210,因此由题意得C 310-a C 210=120-45a =30,由此解得a =2,选D.答案 D6.已知C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =729,则C 1n +C 2n +C 3n +…+C n n 等于A.63B.64C.31D.32解析 逆用二项式定理得C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =(1+2)n =3n=729,即3n =36,所以n =6,所以C 1n +C 2n +C 3n +…+C n n =26-C 0n =64-1=63.故选A.答案 A7.(2017·宁波十校联考)设(2-x )5=a 0+a 1x +a 2x 2+…a 5x 5,那么(a 1+a 3+a 5)2-(a 0+a 2+a 4)2的值为( ) A.32B.-32C.243D.-243解析 ∵(2-x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,∴令x =1,有a 0+a 1+…+a 5=1,再令x =-1,有a 0-a 1+…-a 5=35=243,∴(a 1+a 3+a 5)2-(a 0+a 2+a 4)2=-(a 0+a 2+a 4+a 1+a 3+a 5)(a 0+a 2+a 4-a 1-a 3-a 5)=-243. 答案 D8.(2017·九江模拟)(x 2-x +1)10展开式中x 3项的系数为( ) A.-210B.210C.30D.-30解析 (x 2-x +1)10=[(x 2-x )+1]10的展开式的通项公式为T r +1=C r 10(x 2-x )10-r ,对于(x 2-x )10-r 的通项公式为T r ′+1=(-1)r ′C r ′10-r x20-2r -3r ′.令20-2r -r ′=3,根据0≤r ′≤10-r ,r ,r ′∈N ,解得⎩⎨⎧r =8,r ′=1或⎩⎨⎧r =7,r ′=3,∴(x 2-x +1)10展开式中x 3项的系数为C 810C 12(-1)+C 710C 33(-1)=-90-120=-210.答案 A 二、填空题9.(2016·北京卷)在(1-2x )6的展开式中,x 2的系数为________(用数字作答).解析 (1-2x )6的展开式的通项公式为T k +1=C k 6(-2x )k =C k 6(-2)k ·x k ,令k =2得x 2的系数为C 26(-2)2=60.答案 6010.(2016·山东卷)若⎝ ⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a =________(用数字作答).解析 ⎝⎛⎭⎪⎫ax 2+1x 5的展开式的通项T r +1=C r 5(ax 2)5-r ·x -r 2=C r 5a 5-r ·x 10-5r2,令10-52r =5,得r =2,所以C 25a 3=-80,解得a =-2.答案 -211.若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________(用数字作答).解析 f (x )=x 5=(1+x -1)5,它的通项为T k +1=C k 5(1+x )5-k·(-1)k ,T 3=C 25(1+x )3(-1)2=10(1+x )3,∴a 3=10. 答案 1012.若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 0=________;a 2+a 4+…+a 12=________(用数字作答).解析 令x =1,得a 0+a 1+a 2+…+a 12=36,令x =-1,得a 0-a 1+a 2-…+a 12=1,∴a 0+a 2+a 4+…+a 12=36+12.令x =0,得a 0=1,∴a 2+a 4+…+a 12=36+12-1=364. 答案 1 36413.(2017·乐清检测)(2x -1)(3-2x )5的展开式中,含x 次数最高的项的系数是________(用数字作答).解析 (3-2x )5的展开式的通项公式:T r +1=C r 535-r (-2x )r ,令r =5,可得(2x -1)(3-2x )5的展开式中,含x 次数最高的项的系数为2×(-2)5=-64. 答案 -64能力提升题组 (建议用时:15分钟)14.设a ∈Z ,且0≤a <13,若512 016+a 能被13整除,则a =( ) A.0B.1C.11D.12解析 ∵512 016+a =(52-1)2 016+a =C 02 016·522 016-C 12 016·522 015+C 22 016·522 014+…-C 2 0152 016·52+1+a 能被13整除,且0≤a <13,∴1+a 能被13整除,故a =12. 答案 D15.(2017·青岛模拟)已知(x +1)10=a 1+a 2x +a 3x 2+…+a 11x 10.若数列a 1,a 2,a 3,…,a k (1≤k ≤11,k ∈N *)是一个单调递增数列,则k 的最大值是( ) A.5B.6C.7D.8解析 由二项式定理知a n =C n -110(n =1,2,3,…,n ).又(x +1)10展开式中二项式系数最大项是第6项.∴a 6=C 510,则k 的最大值为6.16.在(1+x )(1+y )的展开式中,记x y 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( )A.45B.60C.120D.210解析 在(1+x )6的展开式中,x m 的系数为C m 6,在(1+y )4的展开式中,y n 的系数为C n 4,故f (m ,n )=C m 6·C n 4.所以f (3,0)+f (2,1)+f (1,2)+f (0,3)=C 36C 04+C 26C 14+C 16C 24+C 06C 34=120. 答案 C17.(2017·宁波月考)已知二项式⎝⎛⎭⎪⎫x +3x n 的展开式中,各项系数的和与其各项二项式系数的和之比为64,则展开式中x 的系数为________.解析 由已知得4n 2n =64,所以n =6.展开式的通项为T r +1=3r C r 6x3-r ,令3-r =1得r =2,所以x 的系数为9C 26=135.答案 13518.(2017·绍兴调研)已知f (x )=(2x -3)n 展开式的二项式系数和为512,且(2x -3)n =a 0+a 1(x -1)+a 2(x -1)2+…+a n (x -1)n .(1)a 2的值为________;(2)a 1+a 2+a 3+…+a n 的值为________.解析 (1)由f (x )=(2x -3)n 展开式的二项式系数和为512,可得2n =512,∴n =9.∵(2x -3)9=[-1+2(x -1)]9=a 0+a 1(x -1)+a 2(x -1)2+…+a 9(x -1)9,∴a 2=C 29·(-1)7·22=-144.(2)在(2x -3)9=a 0+a 1(x -1)+a 2(x -1)2+…+a 9(x -1)9中,令x =1,可得a 0=-1.再令x =2,可得a 0+a 1+a 2+a 3+…+a n =1,∴a 1+a 2+a 3+…+a n =2.答案 (1)-144 (2)2。

2018年高考数学理总复习教师用书:第十单元 含解析 精

2018年高考数学理总复习教师用书:第十单元 含解析 精

第十单元 ⎪⎪⎪空间几何体教材复习课“空间几何体”相关基础知识一课过[过双基]1.简单旋转体的结构特征(1)圆柱可以由矩形绕其任一边旋转得到; (2)圆锥可以由直角三角形绕其直角边旋转得到;(3)圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到;(4)球可以由半圆或圆绕直径旋转得到. 2.简单多面体的结构特征(1)棱柱的侧棱都平行且相等,上下底面是全等的多边形; (2)棱锥的底面是任意多边形,侧面是有一个公共点的三角形;(3)棱台可由平行于棱锥底面的平面截棱锥得到,其上下底面是相似多边形. [小题速通]1.关于空间几何体的结构特征,下列说法不正确的是( ) A .棱柱的侧棱长都相等 B .棱锥的侧棱长都相等C .三棱台的上、下底面是相似三角形D .有的棱台的侧棱长都相等解析:选B 根据棱锥的结构特征知,棱锥的侧棱长不一定都相等. 2.下列结构中正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任一点的连线都是母线解析:选D 当一个几何体由具有相同的底面且顶点在底面两侧的两个三棱锥构成时,尽管各面都是三角形,但它不是三棱锥,故A 错误;若三角形不是直角三角形或是直角三角形但旋转轴不是直角边所在直线,所得几何体就不是圆锥,故B 错误;若六棱锥的所有棱都相等,则底面多边形是正六边形,由几何图形知,若以正六边形为底面,则棱长必然要大于底面边长,故C错误.选D.[清易错]1.认识棱柱、棱锥、棱台、圆柱、圆锥、圆台的结构特征时,易忽视定义,可借助于几何模型强化对空间几何体的结构特征的认识.2.台体可以看成是由锥体截得的,但一定强调截面与底面平行.1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是() A.圆柱B.圆锥C.球体D.圆柱,圆锥,球体的组合体解析:选C由球的性质可知,用平面截球所得的截面都是圆面.2.下列几何体是棱台的是________(填序号).解析:①③都不是由棱锥截成的,不符合棱台的定义,故①③不满足题意.②中的截面不平行于底面,不符合棱台的定义,故②不满足题意.④符合棱台的定义,故填④.答案:④三视图与直观图1.直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.2.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.[提醒]正视图也称主视图,侧视图也称左视图.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线.[小题速通]1.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()解析:选B D选项为正视图或者侧视图,俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B.2.如图所示,等腰△A′B′C′是△ABC的直观图,那么△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形解析:选B由题图知A′C′∥y′轴,A′B′∥x′轴,由斜二测画法知,在△ABC 中,AC∥y轴,AB∥x轴,∴AC⊥AB.又因为A′C′=A′B′,∴AC=2AB≠AB,∴△ABC是直角三角形.3.(2017·武汉调研)若某几何体的三视图如图所示,则此几何体的直观图是()解析:选A B的侧视图不对,C的俯视图不对,D的正视图不对,排除B、C、D,A 正确.[清易错]1.画三视图时,能看见的线和棱用实线表示,不能看见的线和棱用虚线表示. 2.一物体放置的位置不同,所画的三视图可能不同.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为( )解析:选B 给几何体的各顶点标上字母,如图1.A ,E 在侧投影面上的投影重合,C ,G 在侧投影面上的投影重合,几何体在侧投影面上的投影及把侧投影面展平后的情形如图2所示,故正确选项为B.空间几何体的表面积与体积[过双基]空间几何体的表面积与体积公式名称几何体 表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥) S 表面积=S 侧+S 底 V =13Sh台体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h 球S =4πR 2V =43πR 3[小题速通]1.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7B .6C .5D .3 解析:选A 设圆台较小底面半径为r ,则另一底面半径为3r .由S =π(r +3r )·3=84π,解得r =7.2.一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+4解析:选D 由几何体的三视图可知,该几何体为半圆柱,直观图如图所示.表面积为2×2+2×12×π×12+π×1×2=4+3π.3.(2017·云南师大附中测试)如图是一几何体的三视图,则该几何体的体积是( )A .9B .10C .12D .18解析:选A 由三视图还原出几何体的直观图如图,SD ⊥平面ABCD ,AB 与DC 平行,AB =2,DC =4,AD =3,SD =3,所求体积V =13×12×(2+4)×3×3=9.4.(2016·青岛模拟)某三棱锥的三视图如图所示,该三棱锥的体积是________.解析:由给定的三视图可知此三棱锥的直观图如图所示,满足平面SAC ⊥平面ABC ,△ABC 为等腰三角形且AB =BC ,AC =8,在△ABC 中,AC 边上的高为6,三棱锥S -ABC 的高为4,故该三棱锥的体积V =13×4×S △ABC =13×4×12×8×6=32.答案:32[清易错]1.求组合体的表面积时:组合体的衔接部分的面积问题易出错.2.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.3.易混侧面积与表面积的概念.1.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A .84 cm 3B .92 cm 3C .100 cm 3D .108 cm 3解析:选C 由三视图的几何体,利用体积公式求解.由三视图可得该几何体是棱长分别为6,3,6的长方体截去一个三条侧棱两两垂直,且长度分别为3,4,4的三棱锥,所以该几何体的体积是6×6×3-13×12×4×4×3=108-8=100 cm 3.2.若某几何体的三视图如图所示,则此几何体的表面积是________.解析:由三视图可知,该几何体由一个正四棱柱和一个棱台组成,其表面积S =3×4×2+2×2×2+4×22×2+4×6+12×(2+6)×2×2=72+16 2.答案:72+16 2 [双基过关检测] 一、选择题1.(2017·南昌调研)某空间几何体的正视图是三角形,则该几何体不可能是( )A .圆柱B .圆锥C .四面体D .三棱柱解析:选A 圆柱的正视图是矩形,则该几何体不可能是圆柱.2.用斜二测画法画出的某平面图形的直观图如图,边AB 平行于y 轴,BC ,AD 平行于x 轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形的面积为( )A .4 cm 2B .4 2 cm 2C .8 cm 2D .8 2 cm 2解析:选C 依题意可知∠BAD =45°,则原平面图形为直角梯形,上下底面的长与BC ,AD 相等,高为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.3.(2017·大连双基测试)一个球的表面积是16π,那么这个球的体积为( ) A.163π B.323πC .16πD .24π解析:选B 设球的半径为R ,则表面积是16π,即4πR 2=16π,解得R =2.所以体积为43πR 3=32π3. 4.已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的底面边长为6时,其高的值为( )A .3 3 B. 3 C .2 6D .2 3解析:选D 设正六棱柱的高为h ,则可得(6)2+h 24=32,解得h =2 3.5.(2016·长春模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为( )A.323 B .64 C.3233D.643解析:选D 由三视图可知,该多面体是一个四棱锥,且由一个顶点出发的三条棱两两垂直,长度都为4,∴其体积为13×4×4×4=643,故选D.6.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9πD.27π4解析:选A 如图,设球心为O ,半径为r ,则在Rt △AOF 中,(4-r )2+(2)2=r 2,解得r =94,∴该球的表面积为4πr 2=4π×⎝⎛⎭⎫942=81π4. 7.(2017·南阳联考)已知一个三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为( )解析:选C 由已知条件得直观图如图所示,PC ⊥底面ABC ,正视图是直角三角形,中间的线是看不见的线PA 形成的投影,应为虚线,故选C.8.某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3 C.323cm 3 D.403cm 3解析:选C 由三视图可知,该几何体是由一个正方体和一个正四棱锥构成的组合体.下面是棱长为2 cm 的正方体,体积V 1=2×2×2=8(cm 3);上面是底面边长为2 cm ,高为2 cm 的正四棱锥,体积V 2=13×2×2×2=83(cm 3),所以该几何体的体积V =V 1+V 2=323(cm 3).二、填空题9.如图,三棱锥V -ABC 的底面为正三角形,侧面VAC 与底面垂直且VA =VC ,已知其正(主)视图的面积为23,则其侧(左)视图的面积为________.解析:设三棱锥V -ABC 的底面边长为a ,侧面VAC 的边AC 上的高为h ,则ah =43,其侧(左)视图是由底面三角形ABC 边AC 上的高与侧面三角形VAC 边AC 上的高组成的直角三角形,其面积为12×32a ×h =12×32×43=33.答案:3310.已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.若该四棱锥的侧视图为直角三角形,则它的体积为________.解析:由俯视图可知,四棱锥顶点在底面的射影为O (如图),又侧视图为直角三角形,则直角三角形的斜边为BC =2,斜边上的高为SO =1,此高即为四棱锥的高,故V =13×2×2×1=43. 答案:4311.(2016·北京高考)某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析:由题意知该四棱柱为直四棱柱,其高为1,其底面为上底长为1,下底长为2,高为1的等腰梯形,所以该四棱柱的体积为V =(1+2)×12×1=32. 答案:3212.某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为________.解析:本题构造长方体,体对角线长为7,其在侧视图中为侧面对角线a ,在俯视图中为底面对角线b ,设长方体底面宽为1,则b 2-1+a 2-1=6,则a 2+b 2=8,利用不等式⎝⎛⎭⎫a +b 2≤a 2+b 22=4,则a +b ≤4.答案:4三、解答题13.已知正三棱锥V -ABC 的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图; (2)求出侧视图的面积.解:(1)直观图如图所示.(2)根据三视图间的关系可得BC =23, ∴侧视图中VA =42-⎝⎛⎭⎫23×32×232=23, ∴S △VBC =12×23×23=6.14.(2017·大庆质检)如图是一个几何体的正视图和俯视图. (1)试判断该几何体是什么几何体;(2)画出其侧视图,并求该平面图形的面积; (3)求出该几何体的体积.解:(1)由题意可知该几何体为正六棱锥. (2)其侧视图如图所示,其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图中的正六边形对边的距离,即BC =3a ,AD 的长是正六棱锥的高,即AD=3a ,∴该平面图形的面积S =12·3a ·3a =32a 2.(3)V =13×6×34a 2×3a =32a 3.高考研究课——————————————————————————————— 求解空间几何体问题的2环节——识图与计算————————————————————————————————— [全国卷5年命题分析][典例]几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()(2)若某几何体的三视图如图所示,则这个几何体的直观图可以是()[解析](1)先根据正视图和俯视图还原出几何体,再作其侧(左)视图.由几何体的正视图和俯视图可知该几何体为图①,故其侧(左)视图为图②.(2)根据选项A、B、C、D中的直观图,画出其三视图,只有B项正确.[答案](1)B(2)B[方法技巧]三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的视图.先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.[即时演练]1.如图甲,将一个正三棱柱ABC -DEF截去一个三棱锥A -BCD,得到几何体BCDEF,如图乙,则该几何体的正视图(主视图)是()解析:选C由于三棱柱为正三棱柱,故平面ADEB⊥平面DEF,△DEF是等边三角形,所以CD在后侧面上的投影为AB的中点与D的连线,CD的投影与底面不垂直,故选C.2.(2017·昆明模拟)如图,在正四棱柱ABCD -A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P -BCD的正视图与侧视图的面积之比为()A.1∶1B.2∶1C.2∶3 D.3∶2解析:选A根据题意,三棱锥P-BCD的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥P -BCD的正视图与侧视图的面积之比为1∶1.空间几何体的表面积与体积[典例]1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A .18+365B .54+18 5C .90D .81(2)(2016·山东高考)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D.13+2π[解析] (1)由三视图可知该几何体是底面为正方形的斜四棱柱,其中有两个侧面为矩形,另两个侧面为平行四边形,则表面积为(3×3+3×6+3×35)×2=54+18 5.故选B.(2)由三视图可知,该四棱锥是底面边长为1,高为1的正四棱锥结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×43π×⎝⎛⎭⎫223=13+26π.故选C. [答案] (1)B (2)C[方法技巧]1.空间几何体的表面积的3种类型求解策略(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. (3)旋转体的表面积问题注意其侧面展开图的应用.2.空间几何体体积问题的3种类型及解题策略 (1)求简单几何体的体积.若所给的几何体为柱体、锥体或台体,则可直接利用公式求解. (2)求组合体的体积.若所给定的几何体是组合体,不能直接利用公式求解,则常用转换法、分割法、补形法等进行求解.(3)求以三视图为背景的几何体的体积.应先根据三视图得到几何体的直观图,然后根据条件求解. [即时演练]1.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23B.33C.43D.32解析:选A 如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12,AG =GD =BH =HC=32,则△BHC 中BC 边的高h =22. ∴S △AGD =S △BHC =12×22×1=24,∴V =V E -ADG +V F -BHC +V AGD -BHC =2V E -ADG +V AGD -BHC=13×24×12×2+24×1=23. 2.在三棱柱ABC -A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形.设点M ,N ,P 分别是棱AB ,BC ,B 1C 1的中点,则三棱锥P -A 1MN 的体积是________.解析:因为M ,N ,P 分别是棱AB ,BC ,B 1C 1的中点,所以MN ∥AC ,NP ∥CC 1, 所以平面MNP ∥平面CC 1A 1A ,所以A 1到平面MNP 的距离等于A 到平面MNP 的距离. 根据题意有∠MAC =90°,AB =1, 可得A 到平面MNP 的距离为12.又MN =12,NP =1,所以VP -A 1MN =V A -MNP =13S △MNP ×12=13×12×12×1×12=124. 答案:1243.(2016·台州模拟)某几何体的三视图如图所示,则该几何体的表面积为________.解析:该简单组合体由半球加上圆锥构成,故所求表面积S =4π×422+12×2π×4×5=52π.答案:52π1.三棱锥P -ABC 中,PA ⊥平面ABC 且PA =2,△ABC 是边长为3的等边三角形,则该三棱锥外接球的表面积为( )A.4π3 B .4π C .8πD .20π解析:选C 由题意得,此三棱锥外接球即以△ABC 为底面、以PA 为高的正三棱柱的外接球,因为△ABC 的外接圆半径r =32×3×23=1,外接球球心到△ABC 的外接圆圆心的距离d =1,所以外接球的半径R =r 2+d 2=2,所以三棱锥外接球的表面积S =4πR 2=8π,故选C.角度二:四棱锥的外接球2.(2017·长沙模拟)若体积为163的正四棱锥S -ABCD 的底面中心为O ,SO 与侧面成的角的正切值为22,则过S -ABCD 的各顶点的球的表面积为( )A .32πB .24πC .16πD .12π解析:选C 如图,取AB 的中点为F ,连接SF ,过点O 作OG ⊥SF ,则∠OSG 为SO 与侧面所成的角, 且tan ∠OSG =OF SO =22.设AB =2a ,则SO =2a ,所以13×4a 2×2a =163,得a = 2.延长SO交外接球于E ,则EB ⊥SB ,由OB 2=SO ·OE 得4=2·(2R -2),所以R =2,S =4π×22=16π.角度三:三棱柱的外接球3.(2017·长春模拟)已知三棱柱ABC -A 1B 1C 1的底面是边长为6的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表面积为12π,则该三棱柱的体积为________.解析:设球半径为R ,上,下底面中心设为M ,N ,由题意,外接球心为MN 的中点,设为O ,则OA =R ,由4πR 2=12π,得R =OA =3,又易得AM =2,由勾股定理可知,OM =1,所以MN =2,即棱柱的高h =2,所以该三棱柱的体积为34×(6)2×2=3 3. 答案:3 3角度四:圆锥的内切球与外接球4.若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为________.解析:过圆锥的旋转轴作轴截面,得截面△ABC 及其内切圆⊙O 1和外接圆⊙O 2,且两圆同圆心,即△ABC 的内心与外心重合,易得△ABC 为正三角形,由题意知⊙O 1的半径为r =1,∴△ABC 的边长为23,圆锥的底面半径为3,高为3,∴V =13×π×3×3=3π.答案:3π角度五:四面体的内切球5.若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.解析:设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π. 答案:63π[方法技巧]“切”“接”问题处理的注意事项(1)“切”的处理解决与球的内切问题主要是指球内切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.(2)“接”的处理把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.1.(2014·全国卷Ⅰ)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A .62B .4 2C .6D .4解析:选C 如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥A -BCD ,最长的棱为AD =(42)2+22=6,选C.2.(2013·全国卷Ⅱ)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )解析:选A 作出空间直角坐标系,在坐标系中标出各点的位置,然后进行投影,分析其正视图形状.易知选A.3.(2016·全国甲卷)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:选C 由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得:l =22+(23)2=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π.4.(2016·全国乙卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π解析:选A 由几何体的三视图可知,该几何体是一个球体去掉上半球的14,得到的几何体如图.设球的半径为R ,则43πR 3-18×43πR 3=283π,解得R =2.因此它的表面积为78×4πR 2+34πR 2=17π.故选A.5.(2015·全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:选C 如图,设球的半径为R ,∵∠AOB =90°,∴S △AOB=12R 2. ∵V O -ABC =V C -AOB ,而△AOB 面积为定值,∴当点C 到平面AOB的距离最大时,V O -ABC 最大,∴当C 为与球的大圆面AOB 垂直的直径的端点时,体积V O -ABC 最大,为13×12R 2×R =36,∴R =6,∴球O 的表面积为4πR 2=4π×62=144π.故选C.6.(2015·全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π×r 2×5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛).故选B. 7.(2014·全国卷Ⅱ)正三棱柱ABC -A 1B 1C 1 的底面边长为2,侧棱长为 3 ,D 为BC 中点,则三棱锥A -B 1DC 1 的体积为( )A .3 B.32C .1D.32解析:选C 由题意可知AD ⊥BC ,由面面垂直的性质定理可得AD ⊥平面DB 1C 1,又AD =2sin 60°=3,所以VA -B 1DC 1=13AD ·S △B 1D C 1=13×3×12×2×3=1,故选C.[高考达标检测]一、选择题1.(2017·大连调研)如图,在长方体ABCD -A 1B 1C 1D 1中点P 是棱CD 上一点,则三棱锥P -A 1B 1A 的侧视图是( )解析:选D 在长方体ABCD -A 1B 1C 1D 1中,从左侧看三棱锥P -A 1B 1A ,B 1,A 1,A 的射影分别是C 1,D 1,D ;AB 1的射影为C 1D ,且为实线,PA 1的射影为PD 1,且为虚线.故选D.2.(2017·永州一模)如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为( )A .1B.52C. 6 D .2 3解析:选D 由题意得,该几何体的直观图为三棱锥A -BCD ,如图,其最大面的表面是边长为22的等边三角形,故其面积为34×(22)2=2 3.3.(2016·太原一模)一个正三棱柱的正(主)视图和俯视图如图所示,则这个三棱柱的侧(左)视图的面积为( )A .6 3B .8C .8 3D .12解析:选A 该三棱柱的侧(左)视图为一个矩形,由“长对正,高平齐,宽相等”的原理知,其侧(左)视图的底边长为俯视图中正三角形的高,即为23,侧(左)视图的高为3,故其侧(左)视图的面积为S =23×3=63,故选A.4.如图是一个四面体的三视图,这三个视图均是腰长为2的等腰直角三角形,正视图和俯视图中的虚线是三角形的中线,则该四面体的体积为( )A.23B.43C.83D .2解析:选A 由三视图可知,此四面体如图所示,其高为2,底面三角形的一边长为1,对应的高为2,所以其体积V =13×12×2×1×2=23,故选A.5.(2016·全国甲卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) A .12π B.323πC .8πD .4π解析:选A 设正方体棱长为a ,则a 3=8,所以a =2.所以正方体的体对角线长为23,所以正方体外接球的半径为3,所以球的表面积为4π·(3)2=12π,故选A.6.(2016·北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D .1解析:选A 通过三视图可还原几何体为如图所示的三棱锥P -ABC ,通过侧视图得高h =1,底面积S =12×1×1=12,所以体积V =13Sh =13×12×1=16. 7.如图是某几何体的三视图,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A.16π3 B.8π3C .43πD .23π解析:选A 由对称性可知外接球球心在侧视图中直角三角形的高线上,设外接球的半径为R ,则(3-R )2+12=R 2,R =233,其表面积S =4πR 2=4π⎝⎛⎭⎫2332=16π3.8.(2016·全国丙卷)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4π B.9π2C .6πD.32π3解析:选B 设球的半径为R , ∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3, ∴R ≤32,∴V max =43×π×⎝⎛⎭⎫323=9π2.故选B. 二、填空题9.(2016·四川高考)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.解析:由正视图知三棱锥的形状如图所示,且AB =AD =BC =CD =2,BD =23,设O 为BD 的中点,连接OA ,OC ,则OA ⊥BD ,OC ⊥BD ,结合正视图可知AO ⊥平面BCD .又OC =CD 2-OD 2=1,∴V 三棱锥A -BCD =13×⎝⎛⎭⎫12×23×1×1=33. 答案:3310.(2016·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是________cm 2,体积是________cm 3.解析:由三视图还原几何体如图所示,下面长方体的长、宽都是4,高为2;上面正方体的棱长为2.所以该几何体的表面积为(4×4+2×4+2×4)×2+2×2×4=80(cm 2);体积为4×4×2+23=40(cm 3). 答案:80 4011.(2016·天津高考)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为________m 3.解析:由三视图知,四棱锥的高为3 m ,底面平行四边形的一边长为2 m ,对应高为1 m ,所以其体积V =13Sh =13×2×1×3=2(m 3).答案:212.如图,点O 为正方体ABCD -A ′B ′C ′D ′的中心,点E 为面B ′BCC ′的中心,点F 为B ′C ′的中点,则空间四边形D ′OEF 在该正方体的各个面上的正投影可能是________(填出所有可能的序号).解析:空间四边形D ′OEF 在正方体的面DCC ′D ′及其对面ABB ′A ′上的正投影是①;在面BCC ′B ′及其对面ADD ′A ′上的正投影是②;在面ABCD 及其对面A ′B ′C ′D ′上的正投影是③.答案:①②③ 三、解答题13.如图,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直,下图为该四棱锥的正视图和侧视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)根据所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积; (2)求PA .解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm 的正方形,如图,其面积为36 cm 2.(2)由侧视图可求得PD =PC 2+CD 2=62+62=6 2. 由正视图可知AD =6,且AD ⊥PD ,所以在Rt △APD 中, PA =PD 2+AD 2=(62)2+62=6 3 cm.。

2018北师大版文科数学高考总复习教师用书:11-2综合法含答案

2018北师大版文科数学高考总复习教师用书:11-2综合法含答案

第2讲综合法、分析法、反证法最新考纲 1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点;2.了解间接证明的一种基本方法——反证法;了解反证法的思考过程和特点.知识梳理1.直接证明内容综合法分析法定义从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近要证明的结论,直到完成命题的证明.我们把这样的思维方法称为综合法。

从求证的结论出发,一步一步地探索保证前一个结论成立的充分条件,直到归结为这个命题的条件,或者归结为定义、公理、定理等.我们把这样的思维方法称为分析法.实质由因导果执果索因框图表示错误!→错误!→…→错误!错误!→错误!→…→错误!文字语言因为……所以……或由……得……要证……只需证……即证……2。

间接证明间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法.(1)反证法的定义:在假定命题结论反面成立的前提下,经过推理,若推出的结果与定义、公理、定理矛盾,或与命题中的已知条件相矛盾,或与假定相矛盾,从而说明命题结论的反面不可能成立,由此断定命题结论成立的方法叫反证法.(2)用反证法证明的一般步骤:①反设——假设命题的结论不成立;②归谬——根据假设进行推理,直到推出矛盾为止;③结论——断言假设不成立,从而肯定原命题的结论成立.诊断自测1.判断正误(在括号内打“√”或“×") 精彩PPT展示(1)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.()(2)用反证法证明结论“a〉b”时,应假设“a〈b”.( )(3)反证法是指将结论和条件同时否定,推出矛盾.( )(4)在解决问题时,常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.()解析(1)分析法是从要证明的结论出发,逐步寻找使结论成立的充分条件.(2)应假设“a≤b".(3)反证法只否定结论.答案(1)×(2)×(3)×(4)√2.要证a2+b2-1-a2b2≤0,只要证明()A.2ab-1-a2b2≤0B.a2+b2-1-错误!≤0C。

2018年高考数学(理)总复习教师用书第十四单元Word版含解析

2018年高考数学(理)总复习教师用书第十四单元Word版含解析

第十四单元 ⎪⎪⎪椭圆、双曲线、抛物线教材复习课“椭圆、双曲线、抛物线”相关基础知识一课过1.椭圆的定义平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数: (1)当2a >|F 1F 2|时,P 点的轨迹是椭圆; (2)当2a =|F 1F 2|时,P 点的轨迹是线段; (3)当2a <|F 1F 2|时,P 点不存在. 2.椭圆的标准方程和几何性质[小题速通]1.设P 是椭圆x 225+y 216=1上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )A .4B .5C .8D .10解析:选D 由椭圆的定义知:|PF 1|+|PF 2|=2×5=10.2.(2016·天津红桥一模)已知椭圆C 的焦点在y 轴上,焦距等于4,离心率为22,则椭圆C 的标准方程是( )A.x 216+y 212=1 B.x 212+y 216=1 C.x 24+y 28=1 D.x 28+y 24=1 解析:选C 由题意可得2c =4,故c =2,又e =2a =22,解得a =22,故b =()222-22=2,因为焦点在y 轴上,故选C.3.(2017·临沂一中模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )A.36B.13C.12D.33解析:选D 在Rt △PF 2F 1中,令|PF 2|=1,因为∠PF 1F 2=30°,所以|PF 1|=2,|F 1F 2|= 3.故e =2c 2a =|F 1F 2||PF 1|+|PF 2|=33.故选D. 4.若焦点在x 轴上的椭圆x 22+y 2m =1的离心率为12,则m =________.解析:因为焦点在x 轴上,所以0<m <2,所以a 2=2,b 2=m ,c 2=a 2-b 2=2-m .椭圆的离心率为e =12,所以e 2=14=c 2a 2=2-m 2,解得m =32.答案:32[清易错]1.椭圆的定义中易忽视2a >|F 1F 2|这一条件,当2a =|F 1F 2|其轨迹为线段F 1F 2,当2a <|F 1F 2|不存在轨迹.2.求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为x 2a 2+y 2b2=1(a >b >0).1.若直线x -2y +2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为( ) A.x 25+y 2=1 B.x 24+y 25=1 C.x 25+y 2=1或x 24+y 25=1 D .以上答案都不对解析:选C 直线与坐标轴的交点为(0,1),(-2,0), 由题意知当焦点在x 轴上时,c =2,b =1, ∴a 2=5,所求椭圆的标准方程为x 25+y 2=1.当焦点在y 轴上时,b =2,c =1, ∴a 2=5,所求椭圆标准方程为y 25+x 24=1.2.已知椭圆x 29+y 24-k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21 D.1925或-21 解析:选D 当9>4-k >0,即4>k >-5时, a =3,c 2=9-(4-k )=5+k ,∴5+k 3=45,解得k =1925. 当9<4-k ,即k <-5时,a =4-k ,c 2=-k -5,∴-k -54-k=45,解得k =-21,所以k 的值为1925或-21.1.双曲线的定义平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0. (1)当2a <|F 1F 2|时,P 点的轨迹是双曲线; (2)当2a =|F 1F 2|时,P 点的轨迹是两条射线; (3)当2a >|F 1F 2|时,P 点不存在.2.标准方程(1)中心在坐标原点,焦点在x 轴上的双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0);(2)中心在坐标原点,焦点在y 轴上的双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0).3.双曲线的性质[小题速通]1.(2017·邢台摸底)双曲线x 2-4y 2=-1的渐近线方程为( ) A .x ±2y =0 B .y ±2x =0 C .x ±4y =0D .y ±4x =0解析:选A 依题意,题中的双曲线即y 214-x 2=1,因此其渐近线方程是y 214-x 2=0,即x ±2y=0,选A.2.(2017·江南十校联考)已知双曲线的焦距为23,离心率为3,则双曲线的标准方程是( )A .x 2-y 22=1 B.x 24-y 28=1C .x 2-y 22=1或y 2-x 22=1 D.y 22-x 2=1解析:选C 因为双曲线的焦距为23,所以2c =23,c =3,因为双曲线的离心率为3,所以ca =3,a =1,因为a 2+b 2=c 2,所以b 2=2,由题意无法判断焦点的位置,故有两个标准方程,故选C.3.(2016·甘肃张掖一诊)如图,F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b>0)的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于点B ,A .若△ABF 2为等边三角形,则双曲线的离心率为( )A.7 B .4 C.233D. 3解析:选A 依题意得|AB |=|AF 2|=|BF 2|,结合双曲线的定义可得|BF 1|=2a ,|BF 2|=4a ,|F 1F 2|=2c ,根据等边三角形,可知∠F 1BF 2=120°,应用余弦定理,可得4a 2+16a 2+2×2a ×4a ×12=4c 2,整理得c a =7,故选A.4.已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:由题意得,|FP |-|PA |=6,|FQ |-|QA |=6,两式相加,利用双曲线的定义得|FP |+|FQ |=28,所以△PQF 的周长为|FP |+|FQ |+|PQ |=44.答案:44[清易错]1.双曲线的定义中易忽视2a <|F 1F 2|这一条件.若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a >|F 1F 2|,则轨迹不存在.2.注意区分双曲线中的a ,b ,c 大小关系与椭圆中的a ,b ,c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.3.易忽视渐近线的斜率与双曲线的焦点位置关系.当焦点在x 轴上,渐近线斜率为±ba ,当焦点在y 轴上,渐近线斜率为±ab .1.双曲线x 236-m 2-y 2m2=1(0<m <3)的焦距为( )A .6B .12C .36D .236-2m 2解析:选B c 2=36-m 2+m 2=36,∴c =6.双曲线的焦距为12. 2.双曲线x 24-y 212=1的焦点到渐近线的距离为( )A .2 3B .2 C. 3D .1解析:选A 由题意知双曲线的渐近线方程为y =±3x ,焦点为(±4,0),故焦点到渐近线的距离d =2 3.1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.2.抛物线的标准方程与几何性质[小题速通]1.已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线焦点坐标为( ) A .(-1,0) B .(1,0) C .(0,-1)D .(0,1)解析:选B 抛物线y 2=2px (p >0)的准线为x =-p 2且过点(-1,1),故-p2=-1,解得p=2.所以抛物线的焦点坐标为(1,0).2.若抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A.1716 B.1516 C.78D .0解析:选B M 到准线的距离等于M 到焦点的距离,又准线方程为y =-116,设M (x ,y ),则y +116=1,∴y =1516.3.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( )A .4B .2C .1D .8解析:选C 由y 2=x ,得2p =1,即p =12,因此焦点F ⎝⎛⎭⎫14,0,准线方程为l :x =-14.设A 点到准线的距离为d ,由抛物线的定义可知d =|AF |,从而x 0+14=54x 0,解得x 0=1,故选C.4.(2017·唐山模拟)已知抛物线的焦点F (a,0)(a <0),则抛物线的标准方程是( ) A .y 2=2ax B .y 2=4ax C .y 2=-2axD .y 2=-4ax解析:选B 以F (a,0)为焦点的抛物线的标准方程为y 2=4ax .[清易错]1.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p 易忽视只有p >0,才能证明其几何意义是焦点F 到准线l 的距离,否则无几何意义.1.抛物线y =ax 2的准线方程是y =1,则a 的值为( )A.14 B .-14C .4D .-4解析:选B 由题意知抛物线的标准方程为x 2=1a y ,所以准线方程y =-14a =1,解得a=-14.2.动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为________. 解析:设动圆的圆心坐标为(x ,y ),则圆心到点(1,0)的距离与到直线x =-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y 2=4x .答案:y 2=4x[过双基]1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0,消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交;Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2=1+1k 2·|y 1-y 2|= 1+1k2·(y 1+y 2)2-4y 1y 2. [小题速通]1.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相交B .相切C .相离D .不确定解析:选A 直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.2.(2017·福州质检)抛物线C 的顶点为原点,焦点在x 轴上,直线x -y =0与抛物线C 交于A ,B 两点,若P (1,1)为线段AB 的中点,则抛物线C 的方程为( )A .y =2x 2B .y 2=2xC .x 2=2yD .y 2=-2x解析:选B 设A (x 1,y 1),B (x 2,y 2),抛物线方程为y 2=2px ,则⎩⎪⎨⎪⎧y 21=2px 1,y 22=2px 2两式相减可得2p =y 1-y 2x 1-x 2×(y 1+y 2)=k AB ×2=2,即可得p =1,∴抛物线C 的方程为y 2=2x .3.设双曲线x 29-y 216=1的右顶点为A ,右焦点为F .过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.解析:c =5,设过点F 平行于一条渐近线的直线方程为y =43(x -5),即4x -3y -20=0,联立直线与双曲线方程,求得y B =-3215,则S =12×(5-3)×3215=3215.答案:3215[清易错]1.直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线相交于一点.2.直线与抛物线交于一点时,除直线与抛物线相切外易忽视直线与对称轴平行时也相交于一点.1.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( )A .1条B .2条C .3条D .4条解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).2.直线y =b a x +3与双曲线x 2a 2-y 2b 2=1的交点个数是( )A .1B .2C .1或2D .0解析:选A 因为直线y =b a x +3与双曲线的渐近线y =ba x 平行,所以它与双曲线只有1个交点.[双基过关检测] 一、选择题1.以x 轴为对称轴,原点为顶点的抛物线上的一点P (1,m )到焦点的距离为3,则抛物线的方程是( )A .y =4x 2B .y =8x 2C .y 2=4xD .y 2=8x解析:选D 设抛物线的方程为y 2=2px ,则由抛物线的定义知1+p2=3,即p =4,所以抛物线方程为y 2=8x .2.(2017·济南第一中学检测)抛物线y =4x 2的焦点坐标是( ) A.⎝⎛⎭⎫116,0 B .(1,0) C.⎝⎛⎭⎫0,116 D .(0,1)解析:选C 抛物线的标准方程为x 2=14y ,则p =18,所以焦点坐标是⎝⎛⎭⎫0,116. 3.(2017·贵州七校联考)已知双曲线x 2+my 2=1的虚轴长是实轴长的两倍,则实数m 的值是( )A .4B .-14C.14D .-4解析:选B 由双曲线的方程知a =1,b = -1m ,又b =2a ,所以-1m =2,解得m =-14,故选B.4.已知椭圆x 225+y 2m 2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .9解析:选B 由左焦点为F 1(-4,0)知c =4.又a =5, ∴25-m 2=16,解得m =3或-3.又m >0,故m =3.5.(2016·甘肃张掖一诊)过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |=( )A .9B .8C .7D .6解析:选B 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8.故选B.6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点,若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 解析:选A 由椭圆的性质知|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,又∵△AF 1B 的周长=|AF 1|+|AF 2|+|BF 1|+|BF 2|=43,∴a = 3.又e =33,∴c =1.∴b 2=a 2-c 2=2,∴椭圆的方程为x 23+y 22=1,故选A. 7.椭圆ax 2+by 2=1与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32,则a b =( )A.32B.233C.932D.2327解析:选A 设A (x 1,y 1),B (x 2,y 2),AB 的中点M (x 0,y 0),结合题意,由点差法得,y 2-y 1x 2-x 1=-a b ·x 1+x 2y 1+y 2=-a b ·x 0y 0=-a b ·23=-1,∴a b =32.8.已知双曲线x 212-y 24=1的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( )A.⎝⎛⎭⎫-33,33 B.()-3,3 C.⎣⎡⎦⎤-33,33 D.[]-3,3解析:选C 由题意知F (4,0),双曲线的两条渐近线方程为y =±33x .当过点F 的直线与渐近线平行时,满足与右支只有一个交点,画出图象,数形结合可知应选C.二、填空题9.(2016·北京高考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5,0),则a =________,b =________.解析:因为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为2x +y =0,即y =-2x ,所以ba=2.①又双曲线的一个焦点为(5,0),所以a 2+b 2=5.② 由①②得a =1,b =2. 答案:1 210.(2016·山东高考)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.解析:如图,由题意知|AB |=2b 2a ,|BC |=2c .又2|AB |=3|BC |,∴2×2b 2a =3×2c ,即2b 2=3ac ,∴2(c 2-a 2)=3ac ,两边同除以a 2并整理得2e 2-3e -2=0,解得e =2(负值舍去). 答案:211.已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为________.解析:设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0),由题意可得点P 到x 轴的距离为1,所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152,∴P 点坐标为⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1.答案:⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1 12.(2017·西安中学模拟)如图,过抛物线y =14x 2的焦点F 的直线l 与抛物线和圆x 2+(y-1)2=1交于A ,B ,C ,D 四点,则AB ―→·DC ―→=________.解析:不妨设直线AB 的方程为y =1,联立⎩⎪⎨⎪⎧y =1,y =14x 2,解得x =±2,则A (-2,1),D (2,1),因为B (-1,1),C (1,1),所以AB ―→=(1,0),DC ―→=(-1,0),所以AB ―→·DC ―→=-1.答案:-1 三、解答题13.(2017·揭阳一中期末)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,右焦点为F (1,0).(1)求椭圆E 的标准方程;(2)设点O 为坐标原点,过点F 作直线l 与椭圆E 交于M ,N 两点,若OM ⊥ON ,求直线l 的方程.解:(1)依题意可得⎩⎪⎨⎪⎧1a =22,a 2=b 2+1,解得a =2,b =1,所以椭圆E 的标准方程为x 22+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2), ①当MN 垂直于x 轴时,直线l 的方程为x =1,不符合题意; ②当MN 不垂直于x 轴时, 设直线l 的方程为y =k (x -1).联立得方程组⎩⎪⎨⎪⎧x 22+y 2=1,y =k (x -1),消去y ,整理得(1+2k 2)x 2-4k 2x +2(k 2-1)=0, 所以x 1+x 2=4k 21+2k 2,x 1x 2=2(k 2-1)1+2k 2.所以y 1y 2=k 2[x 1x 2-(x 1+x 2)+1]=-k 21+2k 2. 因为OM ⊥ON , 所以OM ―→·ON ―→=0, 所以x 1x 2+y 1y 2=k 2-21+2k 2=0, 所以k =±2,即直线l 的方程为y =±2(x -1).14.已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.解:(1)由抛物线的定义得|AF |=2+p 2.因为|AF |=3,即2+p2=3,解得p =2,所以抛物线E 的方程为y 2=4x .(2)因为点A (2,m )在抛物线E :y 2=4x 上, 所以m =±2 2.由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1).由⎩⎨⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0, 解得x =2或x =12,从而B ⎝⎛⎭⎫12,-2. 又G (-1,0),所以k GA =22-02-(-1)=223,k GB =-2-012-(-1)=-223,所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切.高考研究课(一)————————————————————————————————————— 椭圆命题3角度——求方程、研性质、判关系————————————————————————————————————— [全国卷5年命题分析][典例] (1)若椭圆C :x 9+y 2=1的焦点为F 1,F 2,点P 在椭圆C 上,且|PF 1|=4,则∠F 1PF 2=( )A.π6 B.π3 C.2π3D.5π6(2)(2017·大庆模拟)如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),其中左焦点为F (-25,0),P 为C 上一点,满足|OP |=|OF |,且|PF |=4,则椭圆C 的方程为( )A.x 225+y 25=1 B.x 236+y 216=1 C.x 230+y 210=1 D.x 245+y 225=1 [解析] (1)由题意得a =3,c =7,则|PF 2|=2. 在△F 2PF 1中,由余弦定理可得 cos ∠F 2PF 1=42+22-(27)22×4×2=-12.又∵∠F 2PF 1∈(0,π),∴∠F 2PF 1=2π3.(2)设椭圆的焦距为2c ,右焦点为F 1,连接PF 1,如图所示. 由F (-25,0),得c =2 5. 由|OP |=|OF |=|OF 1|, 知PF 1⊥PF .在Rt △PF 1F 中,由勾股定理, 得|PF 1|=|F 1F |2-|PF |2=()452-42=8.由椭圆定义,得|PF 1|+|PF |=2a =4+8=12, 从而a =6,得a 2=36,于是b 2=a 2-c 2=36-(25)2=16, 所以椭圆C 的方程为x 236+y 216=1.[答案] (1)C (2)B [方法技巧]求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,可把椭圆方程设为mx 2+ny 2=1(m >0,n >0,m ≠n )的形式.[即时演练]1.(2016·西安质检)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则椭圆C 的方程是( )A.x 23+y 24=1 B.x 24+y 23=1 C.x 24+y 23=1 D.x 24+y 2=1 解析:选C 依题意,所求椭圆的焦点位于x 轴上,且c =1,e =c a =12⇒a =2,b 2=a 2-c 2=3,因此椭圆C 的方程是x 24+y 23=1.2.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1―→⊥PF 2―→.若△PF 1F 2的面积为9,则b =________.解析:设|PF 1|=r 1,|PF 2|=r 2,则⎩⎪⎨⎪⎧r 1+r 2=2a ,r 21+r 22=4c 2,∴2r 1r 2=(r 1+r 2)2-(r 21+r 22)=4a 2-4c 2=4b 2,又∵S △PF 1F 2=12r 1r 2=b 2=9,∴b =3.答案:3椭圆的几何性质[典例] (1)(2017·兰州一模)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点P 在椭圆上,O 为坐标原点,若|OP |=12|F 1F 2|,且|PF 1||PF 2|=a 2,则该椭圆的离心率为( )A.34B.32C.22D.12(2)如图,椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.①若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程; ②若|PQ |=λ|PF 1|,且34≤λ<43,求椭圆离心率e 的取值范围.[解析] (1)由|OP |=12|F 1F 2|,且|PF 1||PF 2|=a 2,可得点P 是椭圆的短轴端点,即P (0,±b ),故b =12×2c =c ,故a =2c ,即c a =22,故选C.答案:C(2)①由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 因此2c =|F 1F 2|=|PF 1|2+|PF 2|2=(2+2)2+(2-2)2=23,即c =3,从而b =a 2-c 2=1.故所求椭圆的标准方程为x 24+y 2=1.②如图,由PF 1⊥PQ , |PQ |=λ|PF 1|, 得|QF 1|=|PF 1|2+|PQ |2=1+λ2|PF 1|.由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a ,进而|PF 1|+|PQ |+|QF 1|=4a . 于是(1+λ+1+λ2)|PF 1|=4a ,解得PF 1=4a1+λ+1+λ2,故|PF 2|=2a -|PF 1|=2a (λ+1+λ2-1)1+λ+1+λ2.由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2=4c 2,从而⎝ ⎛⎭⎪⎫4a 1+λ+1+λ22+⎣⎢⎢⎡⎦⎥⎥⎤2a (λ+1+λ2-1)1+λ+1+λ22=4c 2, 两边除以4a 2,得4(1+λ+1+λ2)2+(λ+1+λ2-1)2(1+λ+1+λ2)2=e 2. 若记t =1+λ+1+λ2,则上式变成e 2=4+(t -2)2t2=8⎝⎛⎭⎫1t -142+12. 由34≤λ<43,并注意到t =1+λ+1+λ2关于λ单调递增,得3≤t <4,即14<1t ≤13.进而12<e 2≤59,即22<e ≤53.[方法技巧]椭圆几何性质的应用技巧(1)与椭圆几何性质有关的问题要结合图形进行分析,即使画不出图形,思考时也要联想到一个图形.(2)椭圆的范围或最值问题常常涉及一些不等式.例如,-a ≤x ≤a ,-b ≤y ≤b,0<e <1,在求椭圆相关量的范围时,要注意应用这些不等关系.[即时演练]1.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为 F 1,F 2,过F 2 作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.解析:由题意知F 1(-c,0),F 2(c,0),其中c =a 2-b 2,因为过F 2且与x 轴垂直的直线为x =c ,由椭圆的对称性可设它与椭圆的交点为A ⎝⎛⎭⎫c ,b 2a ,B ⎝⎛⎭⎫c ,-b 2a .因为AB 平行于y 轴,且|F 1O |=|OF 2|,所以|F 1D |=|DB |,即D 为线段F 1B 的中点,所以点D 的坐标为⎝⎛⎭⎫0,-b22a ,又AD ⊥F 1B ,所以k AD ·kF 1B =-1,即b 2a -⎝⎛⎭⎫-b 22a c -0×-b 2a -0c -(-c )=-1,整理得3b 2=2ac ,所以3(a 2-c 2)=2ac ,又e =c a ,0<e <1,所以3e 2+2e -3=0,解得e =33(e =-3舍去).答案:332.(2017·安徽黄山质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为 F 1,F 2,点P 为椭圆C 与y 轴的交点,若以F 1,F 2,P 三点为顶点的等腰三角形一定不可能为钝角三角形,则椭圆C 的离心率的取值范围是________.解析:∵点P 为椭圆C 与y 轴的交点,以F 1,F 2,P 三点为顶点的等腰三角形一定不可能为钝角三角形,即∠F 1PF 2≤90°,∴tan ∠OPF 2≤1,∴c b ≤1,c ≤b ,c 2≤a 2-c 2,∴0<e ≤22.答案:⎝⎛⎦⎤0,22[典例] (2016·四川高考)已知椭圆E :x a 2+y b 2=1(a >b >0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P ⎝⎛⎭⎫3,12在椭圆E 上. (1)求椭圆E 的方程;(2)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:|MA |·|MB |=|MC |·|MD |.[解] (1)由已知,a =2b , 又椭圆x 2a 2+y 2b 2=1过点P ⎝⎛⎭⎫3,12, 故34b 2+14b 2=1,解得b 2=1. 所以椭圆E 的方程是x 24+y 2=1.(2)证明:设直线l 的方程为y =12x +m (m ≠0),A (x 1,y 1),B (x 2,y 2).联立方程组⎩⎨⎧x 24+y 2=1,y =12x +m ,得x 2+2mx +2m 2-2=0,由Δ=4(2-m 2)>0,解得-2<m < 2.由根与系数的关系得x 1+x 2=-2m ,x 1x 2=2m 2-2,所以M 点坐标为⎝⎛⎭⎫-m ,m 2, 直线OM 的方程为y =-12x .由方程组⎩⎨⎧x 24+y 2=1,y =-12x ,得C ⎝⎛⎭⎫-2,22,D ⎝⎛⎭⎫2,-22. 所以|MC |·|MD |=52(-m +2)·52(2+m ) =54(2-m 2). 又|MA |·|MB |=14|AB |2=14[(x 1-x 2)2+(y 1-y 2)2]=516[(x 1+x 2)2-4x 1x 2]=516[4m 2-4(2m 2-2)] =54(2-m 2), 所以|MA |·|MB |=|MC |·|MD |. [方法技巧](1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率).[提醒] 利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.[即时演练]1.若对任意k ∈R ,直线y -kx -1=0与椭圆x 22+y 2m =1恒有公共点,则实数m 的取值范围是( )A .(1,2]B .[1,2)C .[1,2)∪(2,+∞)D .[1,+∞)解析:选C 联立直线与椭圆的方程,消去y 得(2k 2+m )x 2+4kx +2-2m =0,因为直线与椭圆恒有公共点,所以Δ=16k 2-4(2k 2+m )(2-2m )≥0,即2k 2+m -1≥0恒成立,因为k∈R ,所以k 2≥0,则m -1≥0,所以m ≥1,又m ≠2,所以实数m 的取值范围是[1,2)∪(2,+∞).2.(2017·辽宁质检)已知离心率为63的椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点为F ,过F 且与x 轴垂直的直线与椭圆交于A ,B 两点,|AB |=233. (1)求此椭圆的方程;(2)已知直线y =kx +2与椭圆交于C ,D 两点,若以线段CD 为直径的圆过点E (-1,0),求k 的值.解:(1)设焦距为2c , ∵e =c a =63,a 2=b 2+c 2,∴b a =33,由|AB |=233,易知b 2a =33,∴b =1,a =3, ∴椭圆的方程为x 23+y 2=1.(2)将y =kx +2代入椭圆方程, 得(1+3k 2)x 2+12kx +9=0, 又直线与椭圆有两个交点,所以Δ=(12k )2-36(1+3k 2)>0,解得k 2>1. 设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2, 若以CD 为直径的圆过E 点,则EC ―→·ED ―→=0,即(x 1+1)(x 2+1)+y 1y 2=0, 而y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4, 则(x 1+1)(x 2+1)+y 1y 2=(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5=9(k 2+1)1+3k 2-12k (2k +1)1+3k 2+5=0, 解得k =76,满足k 2>1.1.(2016·全国乙卷)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13B.12C.23D.34解析:选B 不妨设直线l 经过椭圆的一个顶点B (0,b )和一个焦点F (c,0),则直线l 的方程为x c +y b =1,即bx +cy -bc =0.由题意知|-bc |b 2+c 2=14×2b ,解得c a =12,即e =12.故选B.2.(2016·全国甲卷)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E于A ,M 两点,点N 在E 上,MA ⊥NA .(1)当|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,证明:3<k <2. 解:(1)设M (x 1,y 1),则由题意知y 1>0.由已知及椭圆的对称性知,直线AM 的倾斜角为π4.又A (-2,0),因此直线AM 的方程为y =x +2. 将x =y -2代入x 24+y 23=1得7y 2-12y =0.解得y =0或y =127,所以y 1=127. 因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)证明:设直线AM 的方程为y =k (x +2)(k >0), 代入x 24+y 23=1得(3+4k 2)x 2+16k 2x +16k 2-12=0.由x 1·(-2)=16k 2-123+4k 2,得x 1=2(3-4k 2)3+4k 2,故|AM |=|x 1+2|1+k 2=121+k23+4k 2.由题意,设直线AN 的方程为y =-1k (x +2), 故同理可得|AN |=12k 1+k 23k 2+4.由2|AM |=|AN |,得23+4k 2=k 3k 2+4, 即4k 3-6k 2+3k -8=0.设f (t )=4t 3-6t 2+3t -8,则k 是f (t )的零点.f ′(t )=12t 2-12t +3=3(2t -1)2≥0,所以f (t )在(0,+∞)上单调递增.又f (3)=153-26<0,f (2)=6>0,因此f (t )在(0,+∞)上有唯一的零点,且零点k 在(3,2)内,所以3<k <2.3.(2015·全国卷Ⅱ)已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝⎛⎭⎫m3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.解:(1)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1), B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入9x 2+y 2=m 2, 得(k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x 1+x 22=-kb k 2+9,y M =kx M +b =9bk 2+9.于是直线OM 的斜率k OM =y M x M=-9k ,即k OM ·k =-9.所以直线OM 的斜率与l 的斜率的乘积为定值. (2)四边形OAPB 能为平行四边形.因为直线l 过点⎝⎛⎭⎫m 3,m ,所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3.由(1)得OM 的方程为y =-9k x .设点P 的横坐标为x P . 由⎩⎪⎨⎪⎧y =-9k x ,9x 2+y 2=m 2,得x 2P =k 2m 29k 2+81,即x P =±km3k 2+9.将点⎝⎛⎭⎫m3,m 的坐标代入直线l 的方程得b =m (3-k )3, 因此x M =k (k -3)m3(k 2+9).四边形OAPB 为平行四边形,当且仅当线段AB 与线段OP 互相平分,即x P =2x M . 于是±km 3k 2+9=2×k (k -3)m 3(k 2+9),解得k 1=4-7,k 2=4+7. 因为k i >0,k i ≠3,i =1,2,所以当直线l 的斜率为4-7或4+7时, 四边形OAPB 为平行四边形. [高考达标检测] 一、选择题1.如果x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0,1) B .(0,2) C .(1,+∞)D .(0,+∞)解析:选A x 2+ky 2=2转化为椭圆的标准方程,得x 22+y 22k =1,∵x 2+ky 2=2表示焦点在y 轴上的椭圆,∴2k>2,解得0<k <1. ∴实数k 的取值范围是(0,1).故选A.2.(2017·济南质检)已知焦点在x 轴上的椭圆的离心率为12,且它的长轴长等于圆C :x 2+y 2-2x -15=0的半径,则椭圆的标准方程是( )A.x 24+y 23=1 B.x 216+y 212=1 C.x 24+y 2=1 D.x 216+y 24=1 解析:选A 由x 2+y 2-2x -15=0, 知r =4=2a ,所以a =2.又e =c a =12,所以c =1,则b 2=a 2-c 2=3. 因此椭圆的标准方程为x 24+y 23=1.3.设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A.12 B.23 C.34D.45解析:选C 由题意可得|PF 2|=|F 1F 2|, 所以2⎝⎛⎭⎫32a -c =2c , 所以3a =4c ,所以e =34.4.(2017·厦门模拟)椭圆E :x 2a 2+y 23=1(a >0)的右焦点为F ,直线y =x +m 与椭圆E 交于A ,B 两点,若△FAB 周长的最大值是8,则m 的值等于( )A .0B .1 C. 3D .2解析:选B 设椭圆的左焦点为F ′,则△FAB 的周长为AF +BF +AB ≤AF +BF +AF ′+BF ′=4a =8,所以a =2,当直线AB 过焦点F ′(-1,0)时,△FAB 的周长取得最大值,所以0=-1+m ,所以m =1.故选B.5.已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,椭圆C 上点A 满足AF 2⊥F 1F 2.若点P 是椭圆C 上的动点,则F 1P ―→·F 2A ―→的最大值为( )A.32B.332C.94D.154解析:选B 设向量F 1P ―→,F 2A ―→的夹角为θ.由条件知|AF 2|=b 2a =32,则F 1P ―→·F 2A ―→=32|F 1P |―→cos θ,于是F 1P ―→·F 2A ―→要取得最大值,只需F 1P ―→在向量F 2A ―→上的投影值最大,易知此时点P 在椭圆短轴的上顶点,所以F 1P ―→·F 2A ―→=32|F 1P |―→cos θ≤332,即F 1P ―→·F 2A ―→的最大值为332.6.从椭圆x 2a 2+y 2b 2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( )A.24B.12C.22D.32解析:选C 由题意可设P (-c ,y 0)(c 为半焦距),k OP =-y 0c ,k AB =-ba ,由于OP ∥AB ,∴-y 0c =-b a ,y 0=bc a ,把P ⎝⎛⎭⎫-c ,bc a 代入椭圆方程得(-c )2a 2+⎝⎛⎭⎫bc a 2b 2=1,即⎝⎛⎭⎫c a 2=12,∴e =c a =22.选C.二、填空题7.若F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________________.解析:设点A 在点B 上方,F 1(-c,0),F 2(c,0),其中c =1-b 2,则可设A (c ,b 2),B (x 0,y 0),由|AF 1|=3|F 1B |,可得AF 1―→=3F 1B ―→,故⎩⎪⎨⎪⎧-2c =3(x 0+c ),-b 2=3y 0,即⎩⎨⎧x 0=-53c ,y 0=-13b 2,代入椭圆方程可得25(1-b 2)9+19b 2=1,解得b 2=23,故椭圆方程为x 2+3y 22=1.答案:x 2+3y 22=18.已知椭圆的方程是x 2+2y 2-4=0,则以M (1,1)为中点的弦所在直线方程是______. 解析:设过M (1,1)点的方程为y =kx +b , 则有k +b =1,即b =1-k ,即y =kx +(1-k ),联立方程组⎩⎪⎨⎪⎧x 2+2y 2-4=0,y =kx +(1-k ),则有(1+2k 2)x 2+(4k -4k 2)x +(2k 2-4k -2)=0, 所以x 1+x 22=12·4k 2-4k1+2k 2=1,解得k =-12,故b =32,所以y =-12x +32,即x +2y -3=0.答案:x +2y -3=09.如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1PA 2为钝角,则此椭圆的离心率的取值范围为________.解析:设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),∠B 1PA 2为钝角可转化为B 2A 2―→,F 2B 1―→所夹的角为钝角,则(a ,-b )·(-c ,-b )<0,得b 2<ac ,即a 2-c 2<ac ,故⎝⎛⎭⎫c a 2+c a -1>0,即e 2+e -1>0,e >5-12或e <-5-12,又0<e <1,∴5-12<e <1.答案:⎝⎛⎭⎪⎫5-12,1三、解答题10.(2016·洛阳一模)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(0,4),离心率为35.(1)求C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标.解:(1)将(0,4)代入C 的方程得16b 2=1,∴b =4,由e =c a =35,得a 2-b 2a 2=925,即1-16a 2=925,∴a =5,∴C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与椭圆C 的交点为A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M (x 0,y 0). 将直线方程y =45(x -3)代入椭圆C 的方程,得x 225+(x -3)225=1, 即x 2-3x -8=0,由根与系数的关系得x 1+x 2=3, ∴x 0=x 1+x 22=32,y 0=y 1+y 22=25(x 1+x 2-6)=-65,即线段AB 的中点坐标为⎝⎛⎭⎫32,-65. 11.(2017·广州五校联考)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率e =22,且经过点(6,1),O 为坐标原点.(1)求椭圆E 的标准方程;(2)圆O 是以椭圆E 的长轴为直径的圆,M 是直线x =-4在x 轴上方的一点,过M 作圆O 的两条切线,切点分别为P ,Q ,当∠PMQ =60°时,求直线PQ 的方程.解:(1)由题意可得e =c a =22,∵椭圆E 经过点(6,1),∴6a 2+1b2=1,又a 2-b 2=c 2,解得a =22,b =2, ∴椭圆E 的标准方程为x 28+y 24=1.(2)连接OM ,OP ,OQ ,OM 与PQ 交于点A , 依题意可设M (-4,m ).由圆的切线性质及∠PMQ =60°,可知△OPM 为直角三角形且∠OMP =30°, ∵|OP |=22,∴|OM |=42, ∴(-4)2+m 2=42,又m >0,解得m =4,∴M (-4,4), ∴直线OM 的斜率k OM =-1,由MP =MQ ,OP =OQ 可得OM ⊥PQ , ∴直线PQ 的斜率k PQ =1, 设直线PQ 的方程为y =x +n , ∵∠OMP =30°,∴∠POM =60°, ∵∠OPA =30°,由|OP |=22知|OA |=2,即点O 到直线PQ 的距离为2, ∴|n |12+(-1)2=2,解得n =±2(舍去负值),∴直线PQ 的方程为x -y +2=0.12.如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 的斜率为0时,|AB |+|CD |=3 2.(1)求椭圆的方程;(2)求以A ,B ,C ,D 为顶点的四边形的面积的取值范围. 解:(1)由题意知,e =c a =22,则a =2c ,b =c .当直线AB 的斜率为0时,|AB |+|CD |=2a +2b 2a =22c +2c =32,∴c =1.∴椭圆的方程为x 22+y 2=1.(2)①当直线AB 与直线CD 中有一条的斜率为0时,另一条的斜率不存在. 由题意知S 四边形=12|AB |·|CD |=12×22×2=2.②当两条直线的斜率均存在且不为0时, 设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =k (x -1),则直线CD 的方程为y =-1k (x -1).将直线AB 的方程代入椭圆方程,并整理得 (1+2k 2)x 2-4k 2x +2k 2-2=0, ∴x 1+x 2=4k 21+2k 2, x 1x 2=2k 2-21+2k 2, ∴|AB |=k 2+1|x 1-x 2|=k 2+1·22k 2+11+2k 2=22(k 2+1)1+2k2. 同理,|CD |=22⎝⎛⎭⎫1k 2+11+2k 2=22(k 2+1)k 2+2. ∴S 四边形=12·|AB |·|CD |=12·22(k 2+1)1+2k 2·22(k 2+1)k 2+2=4(k 2+1)22k 4+2+5k 2=4⎝⎛⎭⎫k +1k 22⎝⎛⎭⎫k +1k 2+1=2-22⎝⎛⎭⎫k +1k 2+1. ∵2⎝⎛⎭⎫k +1k 2+1≥2⎝⎛⎭⎫2 k ·1k 2+1=9, 当且仅当k =±1时取等号, ∴S 四边形∈⎣⎡⎭⎫169,2.综合①与②可知,S 四边形∈⎣⎡⎦⎤169,2.高考研究课(二)————————————————————————————————————— 双曲线命题3角度——用定义、求方程、研性质—————————————————————————————————————[全国卷5年命题分析][典例] (1)设F 1,F 2是双曲线x 2-y 24=1的两个焦点,P 是双曲线上的一点,且|PF 1|=43|PF 2|,则△PF 1F 2的面积等于( ) A .42 B .8 3 C .24D .48(2)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的焦距为10,点P (2,1)在C 的一条渐近线上,则C 的方程为( )A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1 [解析] (1)由双曲线定义||PF 1|-|PF 2||=2, 又|PF 1|=43|PF 2|,∴|PF 1|=8,|PF 2|=6, 又|F 1F 2|=2c =10,∴|PF 1|2+|PF 2|2=|F 1F 2|2,△PF 1F 2为直角三角形.△PF 1F 2的面积S =12×6×8=24.(2)依题意⎩⎪⎨⎪⎧a 2+b 2=25,1=b a ×2,解得⎩⎪⎨⎪⎧a 2=20,b 2=5,∴双曲线C 的方程为x 220-y 25=1.[答案] (1)C (2)A [方法技巧]双曲线定义及标准方程问题求解中的2个注意点(1)应用双曲线的定义需注意的问题:在双曲线的定义中要注意双曲线上的点(动点)具备的几何条件,即“到两定点(焦点)的距离之差的绝对值为一常数,且该常数必须小于两定点的距离”.若定义中的“绝对值”去掉,点的轨迹是双曲线的一支.同时注意定义的转化应用.(2)求双曲线方程时一是标准形式判断;二是注意a ,b ,c 的关系易错易混. [即时演练]1.若双曲线x 24-y 212=1的左焦点为F ,点P 是双曲线右支上的动点,A (1,4),则|PF |+|PA |的最小值是( )A .8B .9C .10D .12解析:选B 由题意知,双曲线x 24-y 212=1的左焦点F 的坐标为(-4,0),设双曲线的右焦点为B ,则B (4,0),由双曲线的定义知,|PF |+|PA |=4+|PB |+|PA |≥4+|AB |=4+(4-1)2+(0-4)2=4+5=9,当且仅当A ,P ,B 三点共线且P 在A ,B 之间时取等号. 2.(2016·天津高考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为25,且双曲线的一条渐近线与直线2x +y =0垂直,则双曲线的方程为( )A.x 24-y 2=1 B .x 2-y 24=1C.3x 220-3y 25=1 D.3x 25-3y 220=1 解析:选A 由焦距为25,得c = 5.因为双曲线的一条渐近线与直线2x +y =0垂直,所以b a =12.又c 2=a 2+b 2,解得a =2,b =1,所以双曲线的方程为x 24-y 2=1.双曲线的渐近线与离心率问题是每年各地高考命题的热点. 常见的命题角度有:(1)已知离心率求渐近线方程; (2)已知渐近线求离心率;(3)由离心率或渐近线求双曲线方程;(4)利用渐近线与已知直线位置关系求离心率.角度一:已知离心率求渐近线方程1.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12xD .y =±x解析:选C 因为双曲线x 2a 2-y 2b 2=1的焦点在x 轴上,所以双曲线的渐近线方程为y =±ba x .又离心率为e =c a =a 2+b 2a= 1+⎝⎛⎭⎫b a 2=52,所以b a =12,所以双曲线的渐近线方程为y=±12x .角度二:已知渐近线求离心率2.(2016·海淀模拟)已知双曲线x 2a 2-y 2b 2=1的一条渐近线为y =2x ,则双曲线的离心率为________.解析:由题意知ba =2,得b =2a ,c =5a , 所以e =ca = 5.答案: 5角度三:由离心率或渐近线求双曲线方程3.设双曲线x 2a +y 2b =1的一条渐近线为y =-2x ,且一个焦点与抛物线y =14x 2的焦点相同,则此双曲线的方程为( )A.54x 2-5y 2=1 B .5y 2-54x 2=1C .5x 2-54y 2=1D.54y 2-5x 2=1 解析:选D 因为x 2=4y 的焦点为(0,1),所以双曲线的焦点在y 轴上.因为双曲线的一条渐近线为y =-2x ,所以设双曲线的方程为y 2-4x 2=λ(λ>0),即y 2λ-x 2λ4=1,则λ+λ4=1,λ=45,所以双曲线的方程为5y 24-5x 2=1,故选D. 角度四:利用渐近线与已知直线位置关系求离心率4.已知双曲线x 2a 2-y 2b 2=1与直线y =2x 有交点,则双曲线离心率的取值范围为( )A .(1,5)B .(1,5]C .(5,+∞)D .[5,+∞)解析:选C ∵双曲线的一条渐近线方程为y =ba x , 则由题意得ba >2, ∴e =c a=1+⎝⎛⎭⎫b a 2>1+4= 5.即双曲线离心率的取值范围为(5,+∞). [方法技巧]解决有关渐近线与离心率关系问题的2个注意点(1)已知渐近线方程y =mx ,若焦点位置不明确要分|m |=b a 或|m |=ab 讨论.。

2018版高考数学一轮复习 教师用书 理 新人教A版

2018版高考数学一轮复习 教师用书 理 新人教A版

2018版高考数学一轮复习教师用书理新人教A版第一章集合与常用逻辑用语§1.1集合及其运算考纲展示►1.了解集合的含义,体会元素与集合的属于关系.2.理解集合之间包含与相等的含义,能识别给定集合的子集.3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.5.能使用韦恩(Venn)图表达集合间的基本关系及运算.考点1 集合的基本概念元素与集合(1)集合元素的特性:________、________、无序性.(2)集合与元素的关系:若a属于集合A,记作________;若b不属于集合A,记作________.(3)集合的表示方法:________、________、图示法.(4)常见数集及其符号表示:集合表示的两个误区:集合的代表元素;图示法.(1)已知集合A={y|y=sin x},B={x|y=sin x},则A∩B=________.答案:[-1,1]解析:集合A表示的是函数y=sin x的值域,即A=[-1,1];集合B表示的是函数y =sin x的定义域,即B=R,所以A∩B=[-1,1].(2)设全集U=R,A={x|0<x<2},B={x|x<1},则图中阴影部分表示的集合为________.答案:{x|1≤x<2}解析:图中阴影部分可用(∁U B)∩A表示,故(∁U B)∩A={x|1≤x<2}.解决集合问题的两个方法:列举法;图示法.(1)若集合A={1,2,3},B={1,3,4},则A∩B的子集的个数为________.答案:4解析:A∩B={1,3},其子集分别为∅,{1},{3},{1,3},共4个.(2)[2015·北京卷改编]若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B=________.答案:{x|-3<x<2}解析:在数轴上画出表示集合A,B的两个区间,观察可知A∩B={x|-3<x<2}.[典题1] (1)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是( )A.1 B.3C.5 D.9[答案] C[解析] ∵A={0,1,2},∴B={x-y|x∈A,y∈A}={0,-1,-2,1,2}.故集合B中有5个元素.(2)若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=( )A.92B.98C .0D .0或98[答案] D[解析] 当a =0时,显然成立;当a ≠0时,Δ=(-3)2-8a =0,即a =98.(3)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a,b ,则b -a =( )A .1B .-1C .2D .-2[答案] C[解析] 因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,则ba=-1, 所以a =-1,b =1,所以b -a =2.(4)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. [答案] -32[解析] 由题意得m +2=3或2m 2+m =3,则m =1或m =-32.当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,而2m 2+m =3,故m =-32.[点石成金] 与集合中的元素有关问题的求解策略(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型集合.(2)集合中元素的三个特性中的互异性对解题的影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.考点2 集合间的基本关系集合间的基本关系∅B且B≠∅任何非空集合中的两个易混结论:集合中元素的个数;集合的子集的个数.(1)[2015·江苏卷]已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为________.答案:5解析:因为A∪B={1,2,3,4,5},所以A∪B中元素的个数为5.(2)集合A={1,4,7,10,13,16,19,21},则集合A有________个子集、________个真子集、________个非空子集、________个非空真子集.答案:2828-1 28-1 28-2解析:因为集合A中有8个元素,所以集合A有28个子集,28-1个真子集,28-1个非空子集,28-2个非空真子集.[典题2] (1)设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则( )A.P⊆Q B.Q⊆PC.∁R P⊆Q D.Q⊆∁R P[答案] C[解析] 因为P={y|y=-x2+1,x∈R}={y|y≤1},Q={y|y=2x,x∈R}={y|y>0},所以∁R P={y|y>1},所以∁R P⊆Q,故选C.(2)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4[答案] D[解析] 由x 2-3x +2=0得x =1或x =2, ∴A ={1,2}.由题意知B ={1,2,3,4},∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.(3)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________.[答案] (-∞,3] [解析] ∵B ⊆A ,∴①若B =∅,则2m -1<m +1,此时m <2. ②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5,解得2≤m ≤3.由①②可得,符合题意的实数m 的取值范围为(-∞,3]. [题点发散1] 在本例(3)中,若A ⊆B ,如何求解?解:若A ⊆B ,则⎩⎪⎨⎪⎧m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m ≤-3,m ≥3.所以m 的取值范围为∅.[题点发散2] 若将本例(3)中的集合A ,B 分别更换为A ={1,2},B ={x |x 2+mx +1=0,x ∈R },如何求解?解:①若B =∅,则Δ=m 2-4<0, 解得-2<m <2;②若1∈B ,则12+m +1=0,解得m =-2,此时B ={1},符合题意; ③若2∈B ,则22+2m +1=0,解得m =-52,此时B =⎩⎨⎧⎭⎬⎫2,12,不合题意. 综上所述,实数m 的取值范围为[-2,2).[点石成金] 1.集合间基本关系的两种判定方法和一个关键2.根据两集合的关系求参数的方法已知两个集合之间的关系求参数时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解.(1)若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时注意集合中元素的互异性;(2)若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到.1.设M为非空的数集,M⊆{1,2,3},且M中至少含有一个奇数元素,则这样的集合M共有( )A.6个B.5个C.4个D.3个答案:A解析:由题意知,M={1},{3},{1,2},{1,3},{2,3},{1,2,3}.2.[2017·广西南宁模拟]已知集合M={x|x2-2x-3<0},N={x|x>a},若M⊆N,则实数a的取值范围是( )A.(-∞,-1] B.(-∞,-1)C.[3,+∞)D.(3,+∞)答案:A解析:M={x|(x-3)(x+1)<0}=(-1,3),又M⊆N,因此有a≤-1,即实数a的取值范围是(-∞,-1].考点3 集合的基本运算集合的基本运算(1)三种基本运算的概念及表示:①A ∪B =A ⇔B ⊆A ,A ∩B =A ⇔A ⊆B . ②A ∩A =________,A ∩∅=________. ③A ∪A =________,A ∪∅=________. ④A ∩(∁U A )=________,A ∪(∁U A )=________, ∁U (∁U A )=________.⑤A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B ⇔A ∩(∁U B )=∅. 答案:(1)A ∪B A ∩B ∁U A x ∈A ,或x ∈Bx ∈A ,且x ∈B {x |x ∈U ,且x ∉A }(2)②A ∅ ③A A ④∅ U A(1)[教材习题改编]满足{0,1}⊆A 的集合A 的个数为( ) A .1 B .2 C .3 D .4答案:C解析:A 中包含元素0,1,还有集合{2,3}真子集中的元素,{2,3}的真子集有22-1=3(个).(2)[教材习题改编]已知集合A ={1,2},B ={x |ax -1=0},且A ∪B =A ,则a 的值可为________.答案:1或12或0解析:A ∪B =A ⇒B A ,若B =∅,则a =0;若1∈B ⇒a =1;若2∈B ⇒a =12.集合中两组常用结论:集合间的基本关系;集合的运算.(1)A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B⇔A∩(∁U B)=∅.(2)(∁U A)∩(∁U B)=________,(∁U A)∪(∁U B)=________.答案:∁U(A∪B) ∁U(A∩B)解析:设x∈∁U(A∪B),则x∉A∪B,得x∉A且x∉B,即x∈∁U A且x∈∁U B,即x∈(∁U A)∩(∁U B),即∁U(A∪B)⊆(∁U A)∩(∁U B);反之,当x∈(∁U A)∩(∁U B)时,得x∈∁U A且x∈∁U B,得x∉A 且x∉B,则x∉A∪B,所以x∈∁U(A∪B),即∁U(A∪B)⊇(∁U A)∩(∁U B).根据集合相等的定义,得∁U(A∪B)=(∁U A)∩(∁U B).同理可证另一结论.[考情聚焦] 有关集合运算的考题,在高考中多以选择题或填空题的形式呈现,试题难度不大,多为低档题,集合运算多与解简单的不等式、函数的定义域、值域相联系,考查对集合的理解及不等式的有关知识;有些集合题为抽象集合题或新定义型集合题,考查学生灵活处理问题的能力.主要有以下几个命题角度:角度一离散型数集间的交、并、补运算[典题3] [2017·湖南株洲模拟]设全集U={0,1,2,3,4,5},集合A={2,4},B={y|y =log3(x-1),x∈A},则集合(∁U A)∩(∁U B)=( )A.{0,4,5,2} B.{0,4,5}C.{2,4,5} D.{1,3,5}[答案] D[解析] 由题意知B={0,2},∴∁U A={0,1,3,5},∁U B={1,3,4,5},∴(∁U A)∩(∁U B)={1,3,5}.角度二连续型数集间的交、并、补运算[典题4] (1)设全集U=R,A={x|x(x+3)<0},B={x|x<-1},则图中阴影部分表示的集合为( )A.{x|-3<x<-1} B.{x|-3<x<0}C .{x |-1≤x <0}D .{x |x <-3}[答案] C[解析] 因为A ={x |x (x +3)<0}={x |-3<x <0},∁U B ={x |x ≥-1},阴影部分为A ∩(∁UB ),所以A ∩(∁U B )={x |-1≤x <0},故选C.(2)设集合A ={x |(x +1)(x -2)<0},B ={x |1<x <3},则A ∪B =________,A ∩B =________.[答案] {x |-1<x <3} {x |1<x <2}[解析] ∵A ={x |(x +1)(x -2)<0}={x |-1<x <2}, ∴A ∪B ={x |-1<x <3},A ∩B ={x |1<x <2}.(3)已知集合A ={y |y =x 2-2x ,x ∈R },B ={y |y =-x 2+2x +6,x ∈R },则A ∩B =__________.[答案] {y |-1≤y ≤7}[解析] ∵y =x 2-2x =(x -1)2-1≥-1,y =-x 2+2x +6=-(x -1)2+7≤7, ∴A ={y |y ≥-1},B ={y |y ≤7}, 故A ∩B ={y |-1≤y ≤7}.[题点发散1] 本例(3)中,若集合A 变为“A ={x |y =x 2-2x ,x ∈R }”,其他条件不变,求A ∩B .解:因为A 中元素是函数自变量,则A =R , 而B ={y |y ≤7},则A ∩B ={y |y ≤7}.[题点发散2] 本例(3)中,若集合A ,B 中元素都为整数,求A ∩B . 解:由(3)可知A ∩B ={y |-1≤y ≤7},则当A ,B 中元素都为整数时,A ∩B ={-1,0,1,2,3,4,5,6,7}. [题点发散3] 本例(3)中,若集合A ,B 不变,试求(∁R A )∪(∁R B ). 解:∵A ={y |y ≥-1},B ={y |y ≤7}, ∴∁R A ={y |y <-1},∁R B ={y |y >7}, 故(∁R A )∪(∁R B )={y |y <-1或y >7}.[题点发散4] 本例(3)中,若集合A ,B 变为“A ={(x ,y )|y =x 2-2x ,x ∈R },B ={(x ,y )|y =-x 2+2x +6,x ∈R }”,求A ∩B .解:由⎩⎪⎨⎪⎧y =x 2-2x ,y =-x 2+2x +6⇒x 2-2x -3=0,解得x =3或x =-1.于是,⎩⎪⎨⎪⎧x =3,y =3或⎩⎪⎨⎪⎧x =-1,y =3,故A ∩B ={(3,3),(-1,3)}.角度三根据集合的运算结果求参数[典题5] (1)设U =R ,集合A ={x |x 2+3x +2=0},B ={x |x 2+(m +1)x +m =0}.若(∁UA )∩B =∅,则m 的值是________.[答案] 2[解析] ∵(∁U A )∩B =∅,∴B ⊆A . 又A ={x |x 2+3x +2=0}={-1,-2},∴-1和-2是方程x 2+(m +1)x +m =0的两个根. ∴m =2.(2)已知集合A ={x |x 2-2x -8≤0},B ={x |x 2-(2m -3)x +m (m -3)≤0,m ∈R },若A ∩B=[2,4],则实数m =________.[答案] 5[解析] 由题知A =[-2,4],B =[m -3,m ], 因为A ∩B =[2,4],故⎩⎪⎨⎪⎧m -3=2,m ≥4,则m =5.[点石成金] 解决集合的基本运算问题,从三点入手(1)离散型数集或抽象集合间的运算,常借用Venn 图求解.(如角度一)(2)集合中的元素若是连续的实数,常借助数轴求解,但是要注意端点值能否取到等号的情况.(如角度二)(3)根据集合运算求参数,先把符号语言译成文字语言,然后适时应用数形结合求解.(如角度三)角度四 新定义集合问题[典题6] (1)若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( )A .1B .3C .7D .31[答案] B[解析] 具有伙伴关系的元素组是-1;12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.(2)对于集合M ,N ,定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ),设A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥-94,x ∈R,B ={x |x <0,x ∈R },则A ⊕B =( ) A.⎝ ⎛⎭⎪⎫-94,0B.⎣⎢⎡⎭⎪⎫-94,0 C.⎝⎛⎭⎪⎫-∞,-94∪[0,+∞) D.⎝ ⎛⎦⎥⎤-∞,-94∪(0,+∞) [答案] C[解析] 依题意得A -B ={x |x ≥0,x ∈R },B -A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-94,x ∈R,故A ⊕B =⎝ ⎛⎭⎪⎫-∞,-94∪[0,+∞).[点石成金] 解决集合的新定义问题,从两点入手(1)正确理解创新定义.这类问题不是简单的考查集合的概念或性质问题,而是以集合为载体的有关新定义问题.常见的命题形式有新概念、新法则、新运算等.(2)合理利用集合性质.运用集合的性质(如元素的性质、集合的运算性质等)是破解新定义型集合问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用集合性质的一些因素,但关键之处还是合理利用集合的运算与性质.[方法技巧] 1.在解题时经常用到集合元素的互异性,一方面利用集合元素的互异性能顺利找到解题的切入点;另一方面,在解答完毕时,注意检验集合的元素是否满足互异性以确保答案正确.2.求集合的子集(真子集)个数问题,需要注意以下结论的应用:含有n 个元素的集合有2n个子集,有2n-1个非空子集,有2n-1个真子集,有2n-2个非空真子集.3.对于集合的运算,常借助数轴、Venn 图求解.[易错防范] 1.集合问题解题中要认清集合中元素的属性(是数集、点集还是其他类型集合),要对集合进行化简.2.在解决有关A ∩B =∅,A ⊆B 等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.3.Venn 图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.真题演练集训1.[2016·新课标全国卷Ⅰ]设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( )A.⎝⎛⎭⎪⎫-3,-32 B .⎝⎛⎭⎪⎫-3,32C.⎝ ⎛⎭⎪⎫1,32D .⎝ ⎛⎭⎪⎫32,3答案:D解析:由题意得,A ={x |1<x <3},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >32,则A ∩B =⎝ ⎛⎭⎪⎫32,3.故选D.2.[2016·新课标全国卷Ⅱ]已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A ∪B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}答案:C解析:由已知可得B ={x |(x +1)(x -2)<0,x ∈Z }={x |-1<x <2,x ∈Z }={0,1},∴ A ∪B ={0,1,2,3},故选C.3.[2016·新课标全国卷Ⅲ]设集合S ={x |(x -2)·(x -3)≥0},T ={x |x >0},则S ∩T =( )A .[2,3]B .(-∞,2]∪[3,+∞)C .[3,+∞)D .(0,2]∪[3,+∞) 答案:D解析:集合S =(-∞,2]∪[3,+∞),结合数轴,可得S ∩T =(0,2]∪[3,+∞). 4.[2015·新课标全国卷Ⅱ]已知集合A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2} 答案:A解析:由题意知B={x|-2<x<1},所以A∩B={-1,0}.故选A.5.[2014·新课标全国卷Ⅰ]已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B =( )A.[-2,-1] B.[-1,2)C.[-1,1] D.[1,2)答案:A解析:∵A={x|x≥3或x≤-1},B={x|-2≤x<2},∴A∩B={x|-2≤x≤-1}=[-2,-1],故选A.6.[2014·新课标全国卷Ⅱ]设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=( ) A.{1} B.{2}C.{0,1} D.{1,2}答案:D解析:N={x|x2-3x+2≤0}={x|1≤x≤2},又M={0,1,2},所以M∩N={1,2}.课外拓展阅读集合运算问题的三种解题模板集合的基本运算包括交集、并集、补集,是历年高考必考的内容.解决集合的基本运算问题,要先明确集合中元素的特征,求出每个集合,然后理清几个集合之间的关系,最后利用列举法或借助数轴、Venn图等进行基本运算,从而得出结果.方法一列举法列举法就是通过枚举集合中所有的元素,然后根据集合基本运算的定义求解的方法.此种方法适用于数集的有关运算以及集合的新定义运算问题,其基本的解题步骤是:(1)定元素:确定已知集合中所含的元素,利用列举法写出所有元素.(2)定运算:根据要求及新定义运算,将所求解集合的运算问题转化为集合的交集、并集与补集的基本运算问题,或转化为数的有关运算问题.(3)定结果:根据定义的运算进行求解,利用列举法写出所求集合中的所有元素.[典例1] 设集合A={-1,0,1},集合B={0,1,2,3},定义A*B={(x,y)|x∈A∩B,y ∈A∪B},则A*B中元素的个数是( )A.7 B.10C.25D.52[思路分析][答案] B[解析] 因为A={-1,0,1},B={0,1,2,3},所以A∩B={0,1},A∪B={-1,0,1,2,3}.由x∈A∩B,可知x可取0,1;由y∈A∪B,可知y可取-1,0,1,2,3.所以元素(x,y)的所有结果如下表所示:所以A*B中的元素共有10个.方法二数形结合法数形结合法就是利用数轴或Venn图或平面直角坐标系中的图象表示出相关集合,然后根据图形求解集合的补集或者进行相关集合的交集、并集的基本运算.其求解的基本步骤是:(1)画图形:根据题设条件给出的几何意义,画出与集合对应的几何图形或函数图象.(2)定区域:利用数轴、韦恩(Venn)图或直角坐标系中的函数图象确定集合运算所表示的平面区域.(3)求结果:根据图形确定相关运算的结果或区域所表示的几何图形的面积.[典例2] 若集合A={x|y=1-|x|},B={y|y=x2,x∈R},则A∩B=( )A.{x|-1≤x≤1}B.{x|x≥0}C.{x|0≤x≤1}D.∅[思路分析][答案] C[解析] 因为集合A表示函数y=1-|x|中x的取值范围,即该函数的定义域,由1-|x|≥0得-1≤x≤1,即A={x|-1≤x≤1},又集合B表示函数y=x2在定义域R上的值域,由x2≥0得B={y|y≥0},所以结合数轴,如图所示阴影部分,可得A∩B={x|0≤x≤1}.方法三特值法高考对集合的基本运算的考查以选择题为主,所以我们可以利用特值法解题,即根据选项之间的明显差异,选择一些特殊元素进行检验排除,从而得到正确选项.其求解的基本步骤如下:(1)辨差异:分析各选项,辨别各选项的差异.(2)定特殊:根据选项的差异,选定一些特殊的元素.(3)验排除:将特殊的元素代入进行验证,排除干扰项.(4)定结果:根据排除的结果确定正确的选项.[典例3] [2017·河北衡水中学模拟]已知U为全集,集合A={x|x2-2x-3>0},B={x|2<x<4},那么集合B∩(∁U A)=( )A.{x|-1≤x≤4}B.{x|2<x≤3}C.{x|2≤x<3} D.{x|-1<x<4}[思路分析]比较选项―→抛同求异―→定特值―→检验排除―→定结果 [答案] B[解析] A 项与D 项的不同之处在于元素-1,4是否属于该集合;B 项与C 项的区别在于2与3是否属于该集合.A ,D 与B ,C 的区别可通过检验0是否属于该集合来判断.因为0∉B ,所以0∉B ∩(∁U A ),故可排除A ,D ;因为2∉B ,所以2∉B ∩(∁U A ),故可排除C.归纳总结用特值法求解集合运算问题的关键在于根据各选项的差异灵活选择适当的特殊元素,然后根据特殊元素与各集合的关系检验其是否满足运算,从而排除选项.忽视空集是任何集合的子集勿忘空集和集合本身.由于∅是任何集合的子集,是任何非空集合的真子集,任何集合的本身是该集合的子集,所以在进行列举时千万不要忘记.[典例4] 已知集合A ={x |x 2-x -12≤0},B ={x |2m -1<x <m +1},且A ∩B =B ,则实数m 的取值范围为( )A .[-1,2)B .[-1,3]C .[2,+∞)D .[-1,+∞)[错解] 由x 2-x -12≤0,得 (x +3)(x -4)≤0, 即-3≤x ≤4,所以A ={x |-3≤x ≤4}. 又A ∩B =B ,所以B ⊆A ,所以⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,解得-1≤m ≤3.故选B.[剖析] 集合B 为不等式2m -1<x <m +1的解集,但m 的取值不同,解集也不同.当m +1≤2m -1时,集合B 为空集,而空集是任何集合的子集,且是任何非空集合的真子集,求解时应分B =∅和B ≠∅两种情况,结合数轴,讨论求解.[正解] 由x 2-x -12≤0,得 (x +3)(x -4)≤0,即-3≤x ≤4,所以A ={x |-3≤x ≤4}. 又A ∩B =B ,所以B ⊆A .(1)当B =∅时,有m +1≤2m -1,解得m ≥2. (2)当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上,m 的取值范围为[-1,+∞). [答案] D 易错提醒当题目中出现A ⊆B 或A ∩B =A 或A ∪B =B 时,在解题过程中务必注意对集合A 进行分类讨论,即分A =∅和A ≠∅两种情况进行讨论,并注意端点值的检验.提醒 完成课时跟踪检测(一)§1.2命题及其关系、充分条件与必要条件考纲展示► 1.理解命题的概念.2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解充分条件、必要条件与充要条件的含义.考点1 命题及其相互关系1.命题2.四种命题及其相互关系(1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于________,原命题的否命题等价于________.在四种形式的命题中真命题的个数只能是________.答案:(1)若q,则p若綈p,则綈q若綈q,则綈p(2)逆否命题逆命题0,2,4(1)[教材习题改编]命题“若m<0,则方程x2+x-2m=0有实根”的否命题是_______________________________________________.答案:若m≥0,则方程x2+x-2m=0无实根(2)[教材习题改编]“若a,b都是偶数,则ab必是偶数”的逆否命题为___________________________________________________.答案:若ab不是偶数,则a,b不都是偶数命题中的易错点:对条件、结论的否定不当.“单调函数不是周期函数”的逆否命题是___________________________________________________________________________.答案:周期函数不是单调函数解析:原命题可改写为“若函数是单调函数,则函数不是周期函数”,故其逆否命题是“若函数是周期函数,则函数不是单调函数”,简化为“周期函数不是单调函数”.[典题1] (1)命题“若a>b,则a-1>b-1”的否命题是( )A.若a>b,则a-1≤b-1B.若a>b,则a-1<b-1C.若a≤b,则a-1≤b-1D.若a<b,则a-1<b-1[答案] C[解析] 根据否命题的定义可知,命题“若a>b,则a-1>b-1”的否命题应为“若a≤b,则a-1≤b-1”.(2)[2017·宁夏银川模拟]命题“若x2+y2=0,x,y∈R,则x=y=0”的逆否命题是( )A.若x≠y≠0,x,y∈R,则x2+y2=0B.若x=y≠0,x,y∈R,则x2+y2≠0C.若x≠0且y≠0,x,y∈R,则x2+y2≠0D.若x≠0或y≠0,x,y∈R,则x2+y2≠0[答案] D[解析] 将原命题的条件和结论否定,并互换位置即可.由x=y=0知x=0且y=0,其否定是x≠0或y≠0.(3)已知:命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题是“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”,是真命题B.逆命题是“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”,是假命题C.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”,是真命题D.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”,是真命题[答案] D[解析] 由f(x)=e x-mx在(0,+∞)上是增函数,则f′(x)=e x-m≥0恒成立,∴m≤1.∴命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”是真命题,∴其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.[点石成金] 1.写一个命题的其他三种命题时,需注意:(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.2.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例即可.3.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.考点2 充分条件、必要条件的判定充要条件答案:充分必要充分不必要真子集必要不充分真子集充要A=B既不充分也不必要包含1.充要条件的易混点:混淆条件的充分性和必要性.“x(x-1)=0”是“x=1”的________条件.答案:必要不充分解析:x(x-1)=0⇒x=0或x=1;反之,由x=1可得x(x-1)=0.故“x(x-1)=0”是“x=1”的必要不充分条件.2.充要条件的易错点:否定形式下充分条件、必要条件判断错误.“a≠b”是“a2≠b2”的________条件.答案:必要不充分解析:由a≠b不能得到a2≠b2,但由a2≠b2一定得出a≠b,故为必要不充分条件.1.充分、必要条件的判断方法:定义判断法;集合判断法.(1)[2014·浙江卷改编]设四边形ABCD的两条对角线分别为AC,BD,则“四边形ABCD 为菱形”是“AC⊥BD”的________条件.答案:充分不必要解析:若四边形ABCD为菱形,则AC⊥BD;反之,若AC⊥BD,则四边形ABCD不一定为菱形.故“四边形ABCD为菱形”是“AC⊥BD”的充分不必要条件.(2)[2015·安徽卷改编]设p:x<3,q:-1<x<3,则p是q成立的________条件.答案:必要不充分解析:因为p:x<3,q:-1<x<3,所以q⇒p,但p⇒/q,所以p是q成立的必要不充分条件.2.充要条件的两个结论:传递性;等价性.(1)若p是q的充分不必要条件,q是r的充分不必要条件,则p是r的________条件.答案:充分不必要解析:根据充分条件的概念可知,p⇒q,q⇒r,则p⇒r.又因为q⇒/p,r⇒/q,则r⇒/ p,所以p是r的充分不必要条件.(2)若p是q的充分不必要条件,则綈q是綈p的________条件答案:充分不必要解析:因为原命题和它的逆否命题是等价命题,所以綈q是綈p的充分不必要条件.[典题2] (1)设x∈R,则“|x-2|<1”是“x2+x-2>0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] A[解析] |x-2|<1⇔1<x<3,x2+x-2>0⇔x>1或x<-2.由于{x|1<x<3}是{x|x>1或x<-2}的真子集,所以“|x-2|<1”是“x2+x-2>0”的充分不必要条件.(2)若p是綈q的充分不必要条件,则綈p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] B[解析] ∵p是綈q的充分不必要条件,∴綈q是p的必要不充分条件.∴綈p是q的必要不充分条件,故选B.(3)已知a,b∈R,下列四个条件中,使a>b成立的必要不充分的条件是( )A.a>b-1 B.a>b+1C.|a|>|b| D.2a>2b[答案] A[解析] 因为a>b⇒a>b-1,但a>b-1⇒/ a>b,故A是a>b的必要不充分条件;B是a>b 的充分不必要条件;C是a>b的既不充分也不必要条件;D是a>b的充要条件.[点石成金] 充要条件的三种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,常用的是逆否等价法.如“xy≠1”是“x≠1或y≠1”的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.①綈q是綈p的充分不必要条件⇔p是q的充分不必要条件;②綈q是綈p的必要不充分条件⇔p是q的必要不充分条件;③綈q是綈p的充要条件⇔p是q的充要条件.1.[2017·山东淄博模拟]“a=2”是“函数f(x)=x2-2ax-3在区间[2,+∞)上为增函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:A解析:“a=2”⇒“函数f(x)=x2-2ax-3在区间[2,+∞)上为增函数”,但反之不成立.2.[2017·河北武邑中学高三上期中]设a,b∈R,则“(a-b)a2≥0”是“a≥b”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B解析:若“(a -b )a 2≥0”,则“a ≥b ”不成立,故“(a -b )a 2≥0”不是“a ≥b ”的充分条件;若“a ≥b ”,则“(a -b )a 2≥0”成立,故“(a -b )a 2≥0”是“a ≥b ”的必要条件,故选B.考点3 充分条件、必要条件的应用[典题3] (1)[2017·江西南昌模拟]已知条件p :|x -4|≤6;条件q :(x -1)2-m 2≤0(m >0),若p 是q 的充分不必要条件,则m 的取值范围是( )A .[21,+∞)B .[9,+∞)C .[19,+∞)D .(0,+∞)[答案] B[解析] 条件p :-2≤x ≤10,条件q :1-m ≤x ≤m +1, 又因为p 是q 的充分不必要条件,所以有⎩⎪⎨⎪⎧1-m ≤-2,1+m ≥10,解得m ≥9.(2)已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,则m 的取值范围为________.[答案] [0,3][解析] 由x 2-8x -20≤0得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,∴0≤m ≤3.所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. [题点发散1] 本例(2)条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.[题点发散2] 本例(2)条件不变,若綈P 是綈S 的必要不充分条件,求实数m 的取值范围.解:由例题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件, ∴P ⇒S 且S ⇒/ P . ∴[--m,1+m ],∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10,∴m ≥9,即m 的取值范围是[9,+∞).[点石成金] 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.1.已知p :x >1或x <-3,q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围是( ) A .[1,+∞) B .(-∞,1] C .[-3,+∞) D .(-∞,-3)答案:A解析:解法一:设P ={x |x >1或x <-3},Q ={x |x >a },因为q 是p 的充分不必要条件,所以Q P ,因此a ≥1.解法二:令a =-3,则q :x >-3,则由命题q 推不出命题p ,此时q 不是p 的充分条件,排除B ,C ;同理,取a =-4,排除D.故选A.2.已知不等式|x -m |<1成立的充分不必要条件是13<x <12,则m 的取值范围是( )A.⎝⎛⎦⎥⎤-∞,-12 B .⎣⎢⎡⎭⎪⎫43,+∞C.⎣⎢⎡⎦⎥⎤-43,12 D .⎣⎢⎡⎦⎥⎤-12,43 答案:D解析:由|x -m |<1得m -1<x <1+m ,又因为|x -m |<1的充分不必要条件是13<x <12,借助数轴,所以⎩⎪⎨⎪⎧m -1≤13,m +1≥12,解得-12≤m ≤43.[方法技巧] 1.判断四种命题间关系的方法写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题、逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.2.充分、必要条件的判断方法(1)定义法:直接判断“若p ,则q ”“若q ,则p ”的真假即可.(2)利用集合间的包含关系判断:设A ={x |p (x )},B ={x |q (x )},若A ⊆B ,则p 是q 的充分条件或q 是p 的必要条件;若A B ,则p 是q 的充分不必要条件;若A =B ,则p 是q 的充要条件.[易错防范] 1.当一个命题有大前提而要写出其他三种命题时,必须保留大前提. 2.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p ,则q ”的形式.3.判断条件之间的关系要注意条件之间关系的方向,要注意“A 是B 的充分不必要条件”与“A 的充分不必要条件是B ”的区别,要正确理解“p 的一个充分不必要条件是q ”的语言.真题演练集训1.[2015·山东卷]设m ∈R ,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( )A .若方程x 2+x -m =0有实根,则m >0 B .若方程x 2+x -m =0有实根,则m ≤0 C .若方程x 2+x -m =0没有实根,则m >0 D .若方程x 2+x -m =0没有实根,则m ≤0 答案:D解析:根据逆否命题的定义,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是“若方程x 2+x -m =0没有实根,则m ≤0”.故选D.2.[2015·北京卷]设α,β是两个不同的平面,m 是直线且m ⊂α,“m ∥β”是“α∥β”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案:B解析:当m ∥β时,过m 的平面α与β可能平行也可能相交,因而m ∥β D ⇒/ α∥β;当α∥β时,α内任一直线与β平行,因为m ⊂α,所以m ∥β.综上知,“m ∥β”是“α∥β”的必要而不充分条件.3.[2015·重庆卷]“x >1”是“log 12 (x +2)<0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 答案:B解析:∵ x >1⇒log 12 (x +2)<0,log 12 (x +2)<0⇒x +2>1⇒x >-1,∴ x >1是log 12(x +2)<0的充分而不必要条件.4.[2016·四川卷]设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 答案:A解析:取x =y =0满足条件p ,但不满足条件q ,反之,对于任意的x ,y 满足条件q ,显然必满足条件p ,所以p 是q 的必要不充分条件,故选A.课外拓展阅读根据充要条件求参数取值范围的方法1.解决根据充要条件求参数取值范围的问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的包含、相等关系列出关于参数的不等式(组)求解;有时也采用等价转化思想把复杂、疑难问题转化为简单、熟悉的问题来解决.2.在解求参数的取值范围的题目时,一定要注意区间端点值的检验,在利用集合关系列不等式时,不等式是否能取到等号直接决定着端点值的取舍,在这里容易增解或漏解.[典例] 已知p :⎪⎪⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0(m >0),且綈p 是綈q 的必要不充分条件,则实数m 的取值范围为________.[答案] [9,+∞) [解析] 解法一:由⎪⎪⎪⎪⎪⎪1-x -13≤2,得 -2≤x ≤10,∴綈p 对应的集合为{x |x >10或x <-2}, 设A ={x |x >10或x <-2}. 由x 2-2x +1-m 2≤0(m >0), 得1-m ≤x ≤1+m (m >0),∴綈q 对应的集合为{x |x >m +1或x <1-m ,m >0}, 设B ={x |x >m +1或x <1-m ,m >0}. ∵綈p 是綈q 的必要而不充分的条件,∴B A ,∴⎩⎪⎨⎪⎧m >0,1-m ≤-2,1+m ≥10,且不能同时取得等号,解得m ≥9,∴实数m 的取值范围为[9,+∞). 解法二:∵綈p 是綈q 的必要而不充分条件, ∴q 是p 的必要而不充分条件, 即p 是q 的充分而不必要条件. 由x 2-2x +1-m 2≤0(m >0),得 1-m ≤x ≤1+m (m >0).∴q 对应的集合为{x |1-m ≤x ≤1+m ,m >0}, 设M ={x |1-m ≤x ≤1+m ,m >0}, 又由⎪⎪⎪⎪⎪⎪1-x -13≤2,得-2≤x ≤10,∴p 对应的集合为{x |-2≤x ≤10}, 设N ={x |-2≤x ≤10}.由p 是q 的充分而不必要条件知N M ,∴⎩⎪⎨⎪⎧m >0,1-m ≤-2,1+m ≥10,且不能同时取等号,解得m ≥9.∴实数m 的取值范围为[9,+∞).。

2018年高考数学总复习教师用书第1章 第1讲 集合 Word版含解析

2018年高考数学总复习教师用书第1章 第1讲 集合 Word版含解析

第讲集合最新考纲.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩()图表达集合间的基本关系及集合的基本运算.知识梳理.元素与集合.()集合中元素的三个特性:确定性、、互异性无序性或属于不属于()元素与集合的关系是.∉,表示符号分别为和∈()集合的三种表示方法:、列举法、图示法.描述法.集合间的基本关系,都有∈∈()子集:若对任意.⊇,则或⊆⊆()真子集:若,且集合中至少有一个元素不属于集合,则.或⊆()相等:若且,⊆则=.,是∅()空集的性质:任何集非空集合的真子集.合的子集,是任何.集合的基本运算()若有限集中有个元素,则的子集有个,真子集有-个.()子集的传递性:⊆,⊆⇒⊆.()⊆⇔∩=⇔∪=.()∁(∩)=(∁)∪(∁),∁(∪)=(∁)∩(∁).诊断自测.判断正误(在括号内打“√”或“×”)()任何集合都有两个子集.( )()已知集合={=},={=},={(,)=},则==.( )()若{,}={,},则=,.( )()若∩=∩,则=.( )解析()错误.空集只有一个子集,就是它本身,故该说法是错误的. ()错误.集合是函数=的定义域,即=(-∞,+∞);集合是函数=的值域,即=[,+∞);集合是抛物线=上的点集.因此,,不相等.()错误.当=,不满足互异性.()错误.当=∅时,,可为任意集合.答案()×()×()×()×.(必修练习改编)若集合={∈≤},=,则下列结论正确的是( ).{}⊆⊆.{}∈∉解析由题意知={,,,},由=,知∉.答案.(·全国Ⅰ卷)设集合={,,,},={≤≤},则∩=( ).{,} .{,}.{,} .{,}解析因为={,,,},而,∈且,∈,所以∩={,}.答案.(·杭州模拟)设全集={∈*,<},集合={,},={,},则∁(∪)等于( ).{,} .{,} .{,} .{,}解析由题意得∪={,}∪{,}={,,}.又={,,,,},∴∁(∪)={,}.答案.(·绍兴调研)已知全集=,集合={≥},={≤<},则∪=,(∁)∩=.解析∵={≥},={≤<},∴∪={≥},(∁)∩={≤<}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高考数学总复习教师用书全套(含解析共1011页)第1讲集合最新考纲 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.知识梳理1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系(1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A.(2)真子集:若A⊆B,且集合B中至少有一个元素不属于集合A,则A B或B A.(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算(1)若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.(2)子集的传递性:A⊆B,B⊆C⇒A⊆C.(3)A⊆B⇔A∩B=A⇔A∪B=B.(4)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).诊断自测1.判断正误(在括号内打“√”或“×”)(1)任何集合都有两个子集.()(2)已知集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A=B=C.()(3)若{x2,1}={0,1},则x=0,1.()(4)若A∩B=A∩C,则B=C.()解析(1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.集合A是函数y=x2的定义域,即A=(-∞,+∞);集合B是函数y=x2的值域,即B=[0,+∞);集合C是抛物线y=x2上的点集.因此A,B,C不相等.(3)错误.当x=1,不满足互异性.(4)错误.当A=∅时,B,C可为任意集合.答案(1)×(2)×(3)×(4)×2.(必修1P7练习2改编)若集合A={x∈N|x≤10},a=22,则下列结论正确的是()A.{a}⊆AB.a⊆AC.{a}∈AD.a∉A解析由题意知A={0,1,2,3},由a=22,知a∉A.答案 D3.(2016·全国Ⅰ卷)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}解析 因为A ={1,3,5,7},而3,5∈A 且3,5∈B ,所以A ∩B ={3,5}. 答案 B4.(2017·杭州模拟)设全集U ={x |x ∈N *,x <6},集合A ={1,3},B ={3,5},则∁U (A ∪B )等于( ) A.{1,4}B.{1,5}C.{2,5}D.{2,4}解析 由题意得A ∪B ={1,3}∪{3,5}={1,3,5}.又U ={1,2,3,4,5},∴∁U (A ∪B )={2,4}. 答案 D5.(2017·绍兴调研)已知全集U =R ,集合A ={x |x ≥2},B ={x |0≤x <5},则A ∪B =________,(∁U A )∩B =________.解析 ∵A ={x |x ≥2},B ={x |0≤x <5},∴A ∪B ={x |x ≥0},(∁U A )∩B ={x |0≤x <2}. 答案 {x |x ≥0} {x |0≤x <2}6.已知集合A ={(x ,y )|x ,y ∈R ,且x 2+y 2=1},B ={(x ,y )|x ,y ∈R ,且y =x },则A ∩B 的元素个数为________.解析 集合A 表示圆心在原点的单位圆,集合B 表示直线y =x ,易知直线y =x 和圆x 2+y 2=1相交,且有2个交点,故A ∩B 中有2个元素. 答案 2考点一 集合的基本概念【例1】 (1)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( ) A.1B.3C.5D.9(2)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( ) A.92B.98C.0D.0或98解析 (1)当x =0,y =0,1,2时,x -y =0,-1,-2; 当x =1,y =0,1,2时,x -y =1,0,-1; 当x =2,y =0,1,2时,x -y =2,1,0.根据集合中元素的互异性可知,B 的元素为-2,-1,0,1,2,共5个.(2)若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0,得a =98,所以a 的取值为0或98. 答案 (1)C (2)D规律方法 (1)第(1)题易忽视集合中元素的互异性误选D.第(2)题集合A 中只有一个元素,要分a =0与a ≠0两种情况进行讨论,此题易忽视a =0的情形. (2)用描述法表示集合,先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合. 【训练1】 (1)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.(2)已知集合A ={x ∈R |ax 2+3x -2=0},若A =∅,则实数a 的取值范围为________. 解析(1)因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,ba ,b ,a ≠0, 所以a +b =0,且b =1,所以a =-1,b =1,所以b -a =2. (2)由A =∅知方程ax 2+3x -2=0无实根, 当a =0时,x =23不合题意,舍去; 当a ≠0时,Δ=9+8a <0,∴a <-98. 答案 (1)2 (2)⎝ ⎛⎭⎪⎫-∞,-98考点二 集合间的基本关系【例2】 (1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( ) A.A BB.B AC.A ⊆BD.B =A(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________.解析 (1)易知A ={x |-1≤x ≤1},所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}. 因此B A .(2)当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎨⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4. 综上,m 的取值范围为(-∞,4]. 答案 (1)B (2)(-∞,4]规律方法 (1)若B ⊆A ,应分B =∅和B ≠∅两种情况讨论.(2)已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常要合理利用数轴、Venn 图,化抽象为直观进行求解.【训练2】 (1)(2017·镇海中学质检)若集合A ={x |x >0},且B ⊆A ,则集合B 可能是( ) A.{1,2} B.{x |x ≤1} C.{-1,0,1}D.R(2)(2016·郑州调研)已知集合A ={x |x =x 2-2,x ∈R },B ={1,m },若A ⊆B ,则m 的值为( ) A.2 B.-1 C.-1或2D.2或2解析 (1)因为A ={x |x >0},且B ⊆A ,再根据选项A ,B ,C ,D 可知选项A 正确.(2)由x =x 2-2,得x =2,则A ={2}. 因为B ={1,m }且A ⊆B , 所以m =2. 答案 (1)A (2)A 考点三 集合的基本运算【例3】 (1)(2015·全国Ⅰ卷)已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.2(2)(2016·浙江卷)设集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2)∪[1,+∞)解析(1)集合A中元素满足x=3n+2,n∈N,即被3除余2,而集合B中满足这一要求的元素只有8和14.共2个元素.(2)易知Q={x|x≥2或x≤-2}.∴∁R Q={x|-2<x<2},又P={x|1≤x≤3},故P∪(∁R Q)={x|-2<x≤3}.答案(1)D(2)B规律方法(1)在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.(2)一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.【训练3】(1)(2017·石家庄模拟)设集合M={-1,1},N={x|x2-x<6},则下列结论正确的是()A.N⊆MB.N∩M=∅C.M⊆ND.M∩N=R(2)(2016·山东卷)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=()A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}解析(1)易知N=(-2,3),且M={-1,1},∴M⊆N.(2)∵A={1,3,5},B={3,4,5},∴A∪B={1,3,4,5},又全集U={1,2,3,4,5,6},因此∁U(A∪B)={2,6}.答案(1)C(2)A[思想方法]1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到.解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn图.这是数形结合思想的又一体现.[易错防范]1.集合问题解题中要认清集合中元素的属性(是数集、点集还是其他类型集合),要对集合进行化简.2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.4.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.基础巩固题组(建议用时:25分钟)一、选择题1.(2015·全国Ⅱ卷)已知集合A={1,2,3},B={2,3},则()A.A=BB.A∩B=∅C.A BD.B A解析∵A={1,2,3},B={2,3},∴2,3∈A且2,3∈B,1∈A但1∉B,∴B A.答案 D2.(2016·全国Ⅱ卷)已知集合A={1,2,3},B={x|x2<9},则A∩B=()A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}解析由于B={x|x2<9}={x|-3<x<3},又A={1,2,3},因此A∩B={1,2}. 答案 D3.(2017·肇庆模拟)已知集合A={x|lg x>0},B={x|x≤1},则()A.A ∩B ≠∅B.A ∪B =RC.B ⊆AD.A ⊆B解析 由B ={x |x ≤1},且A ={x |lg x >0}=(1,+∞),∴A ∪B =R . 答案 B4.已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( ) A.(-∞,-1] B.[1,+∞)C.[-1,1]D.(-∞,-1]∪[1,+∞)解析 因为P ∪M =P ,所以M ⊆P ,即a ∈P ,得a 2≤1,解得-1≤a ≤1,所以a 的取值范围是[-1,1]. 答案 C5.(2016·山东卷)设集合A ={y |y =2x ,x ∈R },B ={x |x 2-1<0},则A ∪B =( ) A.(-1,1) B.(0,1) C.(-1,+∞)D.(0,+∞)解析 由y =2x ,x ∈R ,知y >0,则A =(0,+∞). 又B ={x |x 2-1<0}=(-1,1). 因此A ∪B =(-1,+∞). 答案 C6.(2016·浙江卷)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则(∁U P )∪Q =( ) A.{1} B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}解析 ∵U ={1,2,3,4,5,6},P ={1,3,5},∴∁U P ={2,4,6},∵Q ={1,2,4},∴(∁U P )∪Q ={1,2,4,6}. 答案 C7.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( ) A.1B.3C.7D.31解析 具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2. 答案 B8.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}解析∵A={x|x≤0},B={x|x≥1},∴A∪B={x|x≤0或x≥1},在数轴上表示如图.∴∁U(A∪B)={x|0<x<1}.答案 D二、填空题9.已知集合A={x|x2-2x+a>0},且1∉A,则实数a的取值范围是________.解析∵1∉{x|x2-2x+a>0},∴1∈{x|x2-2x+a≤0},即1-2+a≤0,∴a≤1.答案(-∞,1]10.(2017·宁波调研)集合A={0,|x|},B={1,0,-1},若A∪B=B,则A∩B =________;A∪B=________;∁B A=________.解析A={0,|x|},B={1,0,-1},若A∪B=B,则A⊆B,∴|x|=1,∴A∩B ={0,1},A∪B={-1,0,1},∁B A={-1}.答案{0,1}{-1,0,1}{-1}11.集合A={x|x<0},B={x|y=lg[x(x+1)]},若A-B={x|x∈A,且x∉B},则A -B=________.解析由x(x+1)>0,得x<-1或x>0,∴B=(-∞,-1)∪(0,+∞),∴A-B=[-1,0).答案[-1,0)12.(2017·湖州质检)已知集合A={x|x2-2 016x-2 017≤0},B={x|x<m+1},若A⊆B,则实数m的取值范围是________.解析由x2-2 016x-2 017≤0,得A=[-1,2 017],又B={x|x<m+1},且A⊆B,所以m+1>2 017,则m>2 016.答案(2 016,+∞)13.(2017·金华模拟)设集合A={x∈N|6x+1∈N},B={x|y=ln(x-1)},则A=________,B =________,A ∩(∁R B )=________.解析 当x =0,1,2,5时,6x +1的值分别为6,3,2,1,当x ∈N 且x ≠0,1,2,5时,6x +1∉N ,∴A ={0,1,2,5},由x -1>0,得x >1,∴B ={x |x >1},∁R B={x |x ≤1},∴A ∩(∁R B )={0,1}. 答案 {0,1,2,5} {x |x >1} {0,1}能力提升题组 (建议用时:10分钟)14.(2016·全国Ⅲ卷改编)设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则(∁R S )∩T =( ) A.[2,3] B.(-∞,-2)∪[3,+∞) C.(2,3)D.(0,+∞)解析 易知S =(-∞,2]∪[3,+∞),∴∁R S =(2,3), 因此(∁R S )∩T =(2,3). 答案 C15.(2016·黄山模拟)集合U =R ,A ={x |x 2-x -2<0},B ={x |y = ln(1-x )},则图中阴影部分所表示的集合是( ) A.{x |x ≥1} B.{x |1≤x <2} C.{x |0<x ≤1}D.{x |x ≤1}解析 易知A =(-1,2),B =(-∞,1),∴∁U B =[1,+∞),A ∩(∁U B )=[1,2).因此阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}. 答案 B16.(2017·南昌十所省重点中学模拟)设集合A =⎩⎨⎧⎭⎬⎫x ∈N |14≤2x ≤16,B ={x |y =ln(x 2-3x )},则A ∩B 中元素的个数是________. 解析 由14≤2x ≤16,x ∈N ,∴x =0,1,2,3,4,即A ={0,1,2,3,4}. 又x 2-3x >0,知B ={x |x >3或x <0}, ∴A ∩B ={4},即A ∩B 中只有一个元素. 答案 117.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m +n =________.解析 A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1},由A ∩B =(-1,n )可知m <1,则B ={x |m <x <2},画出数轴,可得m =-1,n =1.所以m +n =0.答案 018.(2017·丽水质检)若三个非零且互不相等的实数a ,b ,c 满足1a +1b =2c ,则称a ,b ,c 是调和的;若满足a +c =2b ,则称a ,b ,c 是等差的,若集合P 中元素a ,b ,c 既是调和的,又是等差的,则称集合P 为“好集”,若集合M ={x ||x |≤2 014,x ∈Z },集合P ={a ,b ,c }⊆M ,则(1)“好集”P 中的元素最大值为________;(2)“好集”P 的个数为________.解析 (1)由题意得,⎩⎪⎨⎪⎧1a +1b =2c ,a +c =2b⇒1a +2a +c =2c ⇒c (a +c )+2ac =2a (a +c )⇒c 2+ac -2a 2=0⇒(c +2a )(c -a )=0,∵c ≠a ,∴c =-2a ,b =a +c 2=-a 2,∴c =4b ,令-2 014≤4b ≤2 014,得-503≤b ≤503,∴P 中最大元素为4b =4×503=2 012.(2)由(1)知P ={-2b ,b ,4b }且-503≤b ≤503,所以“好集”P 的个数为2×503=1 006.答案 (1)2 012 (2)1 006第2讲命题及其关系、充分条件与必要条件最新考纲 1.理解命题的概念,了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;2.理解必要条件、充分条件与充要条件的意义,能判断并证明命题成立的充分条件、必要条件、充要条件.知识梳理1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题时,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念q1.判断正误(在括号内打“√”或“×”)(1)“x2+2x-3<0”是命题.()(2)命题“若p,则q”的否命题是“若p,则綈q”.()(3)当q是p的必要条件时,p是q的充分条件.()(4)“若p不成立,则q不成立”等价于“若q成立,则p成立”.() 解析(1)错误.该语句不能判断真假,故该说法是错误的.(2)错误.否命题既否定条件,又否定结论.答案(1)×(2)×(3)√(4)√2.(选修2-1P6练习改编)命题“若α=π4,则tan α=1”的逆否命题是()A.若α≠π4,则tan α≠1 B.若α=π4,则tan α≠1C.若tan α≠1,则α≠π4 D.若tan α≠1,则α=π4解析命题“若p,则q”的逆否命题是“若綈q,则綈p”,显然綈q:tan α≠1,綈p:α≠π4,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.答案 C3.(2016·天津卷)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析x>y x>|y|(如x=1,y=-2).但x>|y|时,能有x>y.∴“x>y”是“x>|y|”的必要不充分条件.答案 C4.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中假命题的个数为()A.1B.2C.3D.4解析原命题正确,从而其逆否命题也正确;其逆命题为“若a>-6,则a>-3”是假命题,从而其否命题也是假命题.因此四个命题中有2个假命题.答案 B5.(2017·舟山双基检测)已知函数f(x)的定义域为R,则命题p:“函数f(x)为偶函数”是命题q:“∃x0∈R,f(x0)=f(-x0)”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若f(x)为偶函数,则有f(x)=f(-x),所以p⇒q;若f(x)=x,当x=0时,f(0)=f(-0),而f(x)=x为奇函数,所以q p.∴“命题p”是“命题q”的充分不必要条件.答案 A6.(2017·温州调研)已知命题p:“若a2=b2,则a=b”,则命题p的否命题为________,该否命题是一个________命题(填“真”,“假”).解析由否命题的定义可知命题p的否命题为“若a2≠b2,则a≠b”.由于命题p的逆命题“若a=b,则a2=b2”是一个真命题,∴否命题是一个真命题.答案“若a2≠b2,则a≠b”真考点一四种命题的关系及其真假判断【例1】(1)命题“若x2-3x-4=0,则x=4”的逆否命题及其真假性为()A.“若x=4,则x2-3x-4=0”为真命题B.“若x≠4,则x2-3x-4≠0”为真命题C.“若x≠4,则x2-3x-4≠0”为假命题D.“若x=4,则x2-3x-4=0”为假命题(2)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是()A.真、假、真B.假、假、真C.真、真、假D.假、假、假解析(1)根据逆否命题的定义可以排除A,D;由x2-3x-4=0,得x=4或-1,所以原命题为假命题,所以其逆否命题也是假命题.(2)由共轭复数的性质,|z1|=|z2|,∴原命题为真,因此其逆否命题为真;取z1=1,z2=i,满足|z1|=|z2|,但是z1,z2不互为共轭复数,∴其逆命题为假,故其否命题也为假.答案(1)C(2)B规律方法(1)由原命题写出其他三种命题,关键要分清原命题的条件和结论,如果命题不是“若p,则q”的形式,应先改写成“若p,则q”的形式;如果命题有大前提,写其他三种命题时需保留大前提不变.(2)判断一个命题为真命题,要给出推理证明;判断一个命题为假命题,只需举出反例.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.【训练1】已知:命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是()A.否命题是“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”,是真命题B.逆命题是“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”,是假命题C.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”,是真命题D.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”,是真命题解析由f(x)=e x-mx在(0,+∞)上是增函数,则f′(x)=e x-m≥0恒成立,∴m≤1. 因此原命题是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.答案 D考点二充分条件与必要条件的判定【例2】(1)函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分要件,也不是q的必要条件(2)(2017·衡阳一模)“a=1”是“直线ax+y+1=0与直线(a+2)x-3y-2=0垂直”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析(1)由极值的定义,q⇒p,但p⇒/q.例如f(x)=x3,在x=0处f′(0)=0,f(x)=x3是增函数,x=0不是函数f(x)=x3的极值点.因此p是q的必要不充分条件.(2)直线ax+y+1=0与直线(a+2)x-3y-2=0垂直的充要条件为a(a+2)+1×(-3)=0,解得a=1或-3,故“a=1”是“直线ax+y+1=0与直线(a+2)x -3y-2=0垂直”的充分不必要条件.答案(1)C(2)B规律方法充要条件的三种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的何种条件,即可转化为判断“x=1且y=1”是“xy=1”的何种条件.【训练2】(2016·山东卷)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件. 答案 A考点三充分条件、必要条件的应用(典例迁移)【例3】(经典母题)已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要条件,求m的取值范围.解由x2-8x-20≤0,得-2≤x≤10,∴P={x|-2≤x≤10}.∵x∈P是x∈S的必要条件,则S⊆P.∴⎩⎨⎧1-m ≥-2,1+m ≤10,解得m ≤3. 又∵S 为非空集合,∴1-m ≤1+m ,解得m ≥0,综上,可知0≤m ≤3时,x ∈P 是x ∈S 的必要条件.【迁移探究1】 本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?解 由例题知P ={x |-2≤x ≤10}.若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎨⎧1-m =-2,1+m =10,∴⎩⎨⎧m =3,m =9, 这样的m 不存在.【迁移探究2】 本例条件不变,若綈P 是綈S 的必要不充分条件,求实数m 的取值范围.解 由例题知P ={x |-2≤x ≤10}.∵綈P 是綈S 的必要不充分条件,∴P 是S 的充分不必要条件,∴P ⇒S 且S P .∴[-2,10][1-m ,1+m ].∴⎩⎨⎧1-m ≤-2,1+m >10或⎩⎨⎧1-m <-2,1+m ≥10,∴m ≥9,则m 的取值范围是[9,+∞).规律方法 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解;(2)要注意区间端点值的检验.【训练3】 ax 2+2x +1=0只有负实根的充要条件是________.解析 当a =0时,原方程为一元一次方程2x +1=0,有一个负实根x =-12.当a ≠0时,原方程为一元二次方程,又ax 2+2x +1=0只有负实根,所以有⎩⎪⎨⎪⎧Δ=4-4a ≥0,-2a<0,1a >0,即0<a ≤1. 综上,方程只有负根的充要条件是0≤a ≤1.答案 0≤a ≤1[思想方法]1.写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题、逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.2.充要条件的几种判断方法(1)定义法:直接判断若p 则q 、若q 则p 的真假.(2)等价法:即利用A ⇒B 与綈B ⇒綈A ;B ⇒A 与綈A ⇒綈B ;A ⇔B 与綈B ⇔綈A 的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.(3)利用集合间的包含关系判断:设A ={x |p (x )},B ={x |q (x )};若A ⊆B ,则p 是q 的充分条件或q 是p 的必要条件;若A B ,则p 是q 的充分不必要条件,若A =B ,则p 是q 的充要条件.[易错防范]1.当一个命题有大前提而要写出其他三种命题时,必须保留大前提.2.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p ,则q ”的形式.3.判断条件之间的关系要注意条件之间关系的方向,正确理解“p 的一个充分而不必要条件是q ”等语言.基础巩固题组(建议用时:25分钟)一、选择题1.(2015·山东卷)设m∈R, 命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是()A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0解析根据逆否命题的定义,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.答案 D2.“x=1”是“x2-2x+1=0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析因为x2-2x+1=0有两个相等的实数根为x=1,所以“x=1”是“x2-2x+1=0”的充要条件.答案 A3.设α,β是两个不同的平面,m是直线且m⊂α,则“m∥β”是“α∥β”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析m⊂α,m∥β⇒/α∥β,但m⊂α,α∥β⇒m∥β,∴“m∥β”是“α∥β”的必要不充分条件.答案 B4.(2017·安徽江南十校联考)“a=0”是“函数f(x)=sin x-1x+a为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析显然a=0时,f(x)=sin x-1x为奇函数;当f(x)为奇函数时,f(-x)+f(x)=0.又f(-x)+f(x)=sin(-x)-1-x+a+sin x-1x+a=0.因此2a=0,故a=0.所以“a=0”是“函数f(x)为奇函数”的充要条件.答案 C5.下列结论错误的是()A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”B.“x=4”是“x2-3x-4=0”的充分条件C.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”解析C项命题的逆命题为“若方程x2+x-m=0有实根,则m>0”.若方程有实根,则Δ=1+4m≥0,即m≥-14,不能推出m>0.所以不是真命题.答案 C6.设x∈R,则“1<x<2”是“|x-2|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析由|x-2|<1,得1<x<3,所以1<x<2⇒1<x<3;但1<x<3 ⇒1<x<2.所以“1<x<2”是“|x-2|<1”的充分不必要条件.答案 A7.已知命题p:x2+2x-3>0;命题q:x>a,且綈q的一个充分不必要条件是綈p,则a的取值范围是()A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]解析由x2+2x-3>0,得x<-3或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q的充分不必要条件,等价于q是p的充分不必要条件.故a≥1. 答案 A8.(2017·台州模拟)已知a,b都是实数,那么“a>b”是“ln a>ln b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件当a =1,b =0时,满足a >b ,但ln b 无意义,所以ln a >ln b 不成立,故充分性不成立. 答案 B 二、填空题9.(2017·杭州调研)已知λ是实数,a 是向量,若λa =0,则λ=________或a =________(使命题为真命题). 解析 ∵λa =0,∴λ=0或a =0. 答案 0 010.(2017·丽水月考)命题“若x 2-3x +2=0,则x =1”的逆命题为________,否命题为________,逆否命题为________.解析 “若x 2-3x +2=0,则x =1”的逆命题为“若x =1,则x 2-3x +2=0”;否命题为“若x 2-3x +2≠0,则x ≠1”;逆否命题为“若x ≠1,则x 2-3x +2≠0”.答案 若x =1,则x 2-3x +2=0 若x 2-3x +2≠0,则x ≠1 若x ≠1,则x 2-3x +2≠011.“sin α=cos α”是“cos 2α=0”的________条件. 解析 cos 2α=0等价于cos 2α-sin 2α=0, 即cos α=±sin α.由cos α=sin α得到cos 2α=0;反之不成立.∴“sin α=cos α”是“cos 2α=0”的充分不必要条件. 答案 充分不必要12.已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是________.解析 令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}. ∵p 是q 的充分不必要条件,∴M N , ∴⎩⎨⎧a >0,a +1<4,解得0<a <3. 答案 (0,3) 13.有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;③“若x 2<4,则-2<x <2”的逆否命题. 其中真命题的序号是________.解析 ①原命题的否命题为“若a ≤b ,则a 2≤b 2”错误.②原命题的逆命题为:“若x ,y 互为相反数,则x +y =0”正确.③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”正确. 答案 ②③能力提升题组 (建议用时:15分钟)14.(2016·四川卷)设p :实数x ,y 满足x >1且y >1,q :实数x ,y 满足x +y >2,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 若x >1且y >1,则x +y >2.所以p ⇒q ;反之x +y >2 x >1且y =1,例如x=3,y =0,所以qp .因此p 是q 的充分不必要条件. 答案 A15.(2017·南昌十所省重点中学联考)已知m ∈R ,“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 由y =2x +m -1=0,得m =1-2x ,则m <1. 由于函数y =log m x 在(0,+∞)上是减函数, 所以0<m <1.因此“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的必要不充分条件. 答案 B16.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析 A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<2x <8,x ∈R ={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2. 答案 (2,+∞)17.(2017·绍兴调研)把下面不完整的命题补充完整,并使之成为真命题. 若函数f (x )=3+log 2x 的图象与g (x )的图象关于________对称,则函数g (x )=________(注:填上你认为可以成为真命题的一种情形即可,不必考虑所有可能的情形).解析 ①∵点P (x 0,y 0)关于x 轴对称的点P ′(x 0,-y 0),∴f (x )=3+log 2x 关于x 轴对称的函数解析式为g (x )=-3-log 2x ;②点M (x 0,y 0)关于y 轴对称的点是M ′(-x 0,y 0),故f (x )=3+log 2x 关于y 轴对称的函数解析式为g (x )=3+log 2(-x ).其他情形,类似可得.答案 (不唯一)如①x 轴 -3-log 2x ;②y 轴 3+log 2(-x );③原点 -3-log 2(-x );④直线y =x 2x -3等18.已知a +b ≠0,证明a 2+b 2-a -b +2ab =0成立的充要条件是a +b =1. 证明 先证充分性:若a +b =1, 则b =1-a ,所以a 2+b 2-a -b +2ab=a 2+(1-a )2-a -(1-a )+2a (1-a ) =a 2+1-2a +a 2-a -1+a +2a -2a 2 =0.即a 2+b 2-a -b +2ab =0,充分性得证, 再证必要性:若a 2+b 2-a -b +2ab =0, 即(a +b )2-(a +b )=0, (a +b -1)(a +b )=0, 因为a +b ≠0, 所以a +b -1=0, 即a +b =1,必要性得证,综上可得,a 2+b 2-a -b +2ab =0成立的充要条件是a +b =1.第1讲 函数及其表示最新考纲 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念;2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;3.了解简单的分段函数,并能简单地应用(函数分段不超过三段).知 识 梳 理1.函数与映射的概念(1)在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域. (2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法. 4.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.诊 断 自 测1.判断正误(在括号内打“√”或“×”) (1)函数y =1与y =x 0是同一个函数.( )(2)与x 轴垂直的直线和一个函数的图象至多有一个交点.( ) (3)函数y =x 2+1-1的值域是{y |y ≥1}.( )(4)若两个函数的定义域与值域相同,则这两个函数相等.( )解析 (1)函数y =1的定义域为R ,而y =x 0的定义域为{x |x ≠0},其定义域不同,故不是同一函数.(3)由于x 2+1≥1,故y =x 2+1-1≥0,故函数y =x 2+1-1的值域是{y |y ≥0}. (4)若两个函数的定义域、对应法则均对应相同时,才是相等函数. 答案 (1)× (2)√ (3)× (4)×2.(必修1P25B2改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析 A 中函数定义域不是[-2,2],C 中图象不表示函数,D 中函数值域不是[0,2]. 答案 B3.(2017·舟山一模)函数y =1-x 22x 2-3x -2的定义域为( )A.(-∞,1]B.[-1,1]C.[1,2)∪(2,+∞)D.⎣⎢⎡⎭⎪⎫-1,-12∪⎝ ⎛⎦⎥⎤-12,1 解析 由题意,得⎩⎨⎧1-x 2≥0,2x 2-3x -2≠0.解之得-1≤x ≤1且x ≠-12.答案 D4.(2015·陕西卷)设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))等于( )A.-1B.14C.12D.32解析 因为-2<0,所以f (-2)=2-2=14>0,所以f (f (-2))=f ⎝ ⎛⎭⎪⎫14=1-14=1-12=12,故选C. 答案 C5.(2015·全国Ⅱ卷)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________. 解析 由题意知点(-1,4)在函数f (x )=ax 3-2x 的图象上,所以4=-a +2,则a =-2. 答案 -26.(2017·丽水调研)设函数f (x )=⎩⎨⎧-2x 2+1 (x ≥1),log 2(1-x ) (x <1),设函数f (f (4))=________.若f (a )=-1,则a =________.解析 ∵f (x )=⎩⎨⎧-2x 2+1 (x ≥1),log 2(1-x ) (x <1),∴f (4)=-2×42+1=-31,f (f (4))=f (-31)=log 232=5;当a ≥1时,由f (a )=-2a 2+1=-1,得a =1(a =-1舍去);当a <1时,由f (a )=log 2(1-a )=-1,得1-a =12,即a =12. 答案 5 1或12考点一 求函数的定义域【例1】 (1)(2017·杭州调研)函数f (x )=ln xx -1+x 12的定义域为( )A.(0,+∞)B.(1,+∞)C.(0,1)D.(0,1)∪(1,+∞)(2)若函数y =f (x )的定义域是[1,2 017],则函数g (x )=f (x +1)x -1的定义域是____________.解析 (1)要使函数f (x )有意义,应满足⎩⎪⎨⎪⎧x x -1>0,x ≥0,解得x >1,故函数f (x )=ln x x -1+x 12的定义域为(1,+∞).(2)∵y =f (x )的定义域为[1,2 017], ∴g (x )有意义,应满足⎩⎨⎧1≤x +1≤2 017,x -1≠0.∴0≤x ≤2 016,且x ≠1.因此g (x )的定义域为{x |0≤x ≤2 016,且x ≠1}. 答案 (1)B (2){x |0≤x ≤2 016,且x ≠1} 规律方法 求函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域可由a ≤g (x )≤b 求出;若已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 【训练1】 (1)(2015·湖北卷)函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为( )A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6](2)若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________. 解析(1)要使函数f (x )有意义,应满足⎩⎨⎧4-|x |≥0,x 2-5x +6x -3>0,∴⎩⎨⎧|x |≤4,x -2>0且x ≠3,则2<x ≤4,且x ≠3. 所以f (x )的定义域为(2,3)∪(3,4].(2)因为函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,则x 2+2ax -a ≥0恒成立.因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0. 答案 (1)C (2)[-1,0] 考点二 求函数的解析式【例2】 (1)已知f⎝ ⎛⎭⎪⎫2x +1=lg x ,则f (x )=________;(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________; (3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f⎝ ⎛⎭⎪⎫1x ·x -1,则f (x )=________.解析 (1)令t =2x +1(t >1),则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=x -1, 则2ax +a +b =x -1, ∴⎩⎨⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32.∴f (x )=12x 2-32x +2. (3)在f (x )=2f⎝ ⎛⎭⎪⎫1x ·x -1中,将x 换成1x ,则1x 换成x ,得f⎝ ⎛⎭⎪⎫1x =2f (x )·1x -1,由⎩⎪⎨⎪⎧f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1,f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x -1,解得f (x )=23x +13. 答案 (1)lg2x -1(x >1) (2)12x 2-32x +2 (3)23x +13 规律方法 求函数解析式的常用方法(1)待定系数法:若已知函数的类型,可用待定系数法.(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围.(3)构造法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f (x ).(4)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式.【训练2】 (1)已知f (x +1)=x +2x ,则f (x )=________.(2)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.(3)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )=__________. 解析 (1)令x +1=t ,则x =(t -1)2(t ≥1),代入原式得 f (t )=(t -1)2+2(t -1)=t 2-1, 所以f (x )=x 2-1(x ≥1).(2)当-1≤x ≤0时,0≤x +1≤1, 由已知f (x )=12f (x +1)=-12x (x +1). (3)当x ∈(-1,1)时, 有2f (x )-f (-x )=lg(x +1).① 将x 换成-x ,则-x 换成x , 得2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x )得,f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1). 答案 (1)x 2-1(x ≥1) (2)-12x (x +1) (3)23lg(x +1)+13lg(1-x )(-1<x <1) 考点三 分段函数(多维探究) 命题角度一 求分段函数的函数值【例3-1】 (2015·全国Ⅱ卷)设函数f (x )=⎩⎨⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( ) A.3B.6C.9D.12解析 根据分段函数的意义,f (-2)=1+log 2(2+2)=1+2=3.又log 212>1 ∴f (log 212)=2(log 212-1)=2log 26=6,。

相关文档
最新文档