高中数学 1.3.1单调性与最大(小)值课件2 新人教A版必修1
高中数学 1.3.1.2 第2课时 函数的最大值、最小值课件 新人教A版必修1
(2)存在x0∈I,使 _f_(x_0_)=__M__
结论
M是函数y=f(x)的最 大值
M是函数y=f(x)的 最小值
第五页,共42页。
1.函数 f(x)(-2≤x≤2) 的图象如图所示,则函数 的最大值、最小值分别为
()
A.f(2),f(-2) C.f(12),f(-32) 答案(dáàn): C
第二十页,共42页。
2.已知函数 f(x)=x-a 1(x∈[2,6])的 最大值为 2,求 a 的值. 解析: 首先讨论 f(x)在[2,6]上的单调性: 设 x1,x2∈[2,6],且 x1<x2,则 f(x1)-f(x2)=x1-a 1-x2-a 1 =x1a-x12-xx2-1 1. ∵2≤x1<x2≤6, ∴x2-x1>0,x1-1>0,x2-1>0.
当x=0
最小值
时,y=0是所有函数值中_______.而对于f(x)
=_最__-大__x值_2_来.说,x=0时,y=0是所有函数值中
第三页,共42页。
2.二次函数的最值 二次函数 y=ax2+bx+c(a≠0)的图象为抛物线, 当 a>0 时,ymin=4ac4-a b2, 当 a<0 时,ymax=4ac4-a b2.
第八页,共42页。
3.函数(hánshù)y=x2-4x+5,x∈[0,3]的最大 值为________. 解析: ∵y=(x-2)2+1,x∈[0,3], ∴原函数(hánshù)在[0,2]上为减函数(hánshù), 在[2,2]上为增函数(hánshù). ∴最大值为f(0)与f(3)中的最大者,而f(0)=5, f(3)=2, ∴最大值为5. 答案: 5
第二十八页,共42页。
②当 t≤1≤t+1, 即 0≤t≤1 时, f(x)在区间[t,t+1]上先减再增, 故当 x=1 时,f(x)取得最小值, 此时 g(t)=f(1)=2. ③当 t+1<1,即 t<0 时,f(x)在[t,t+1]上单 调递减,
新人教A版高中数学必修1 函数的最大(小)值
函数的基本性质1.3.1单调性与最大(小)值第二课时函数的最大(小)值[新知初探]函数的最大(小)值小值是0,有f (0)=0.[小试身手]1.判断(正确的打“√”,错误的打“×”) (1)任何函数都有最大值或最小值.( ) (2)函数的最小值一定比最大值小.( ) 答案:(1)× (2)√2.函数y =f (x )在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是( )A .-1,0B .0,2C .-1,2 D.12,2 答案:C3.设函数f (x )=2x -1(x <0),则f (x )( ) A .有最大值 B .有最小值C .既有最大值又有最小值D .既无最大值又无最小值 答案:D4.函数f (x )=2x ,x ∈[2,4],则f (x )的最大值为______;最小值为________.答案:112[例1] 如图为函数y =f (x ),x ∈[-4,7]的图象,指出它的最大值、最小值.[解] 观察函数图象可以知道,图象上位置最高的点是(3,3),最低的点是(-1.5,-2), 所以当x =3时,函数y =f (x )取得最大值,即y max =3;当x =-1.5时,函数y =f (x )取得最小值,即y min =-2.用图象法求最值的3个步骤[活学活用]1.求函数f (x )=⎩⎪⎨⎪⎧1x ,0<x <1,x ,1≤x ≤2的最值.解:函数f (x )的图象如图所示.由图象可知f (x )的最小值为f (1)=1,无最大值.[例2] 已知函数f (x )=x +1x .(1)证明:f (x )在(1,+∞)内是增函数; (2)求f (x )在[2,4]上的最值.[解] (1)证明:设对于任意x 1,x 2∈(1,+∞),且x 1<x 2.则f (x 1)-f (x 2)=x 1+1x 1-x 2-1x 2=(x 1-x 2)·⎝⎛⎭⎫1-1x 1x 2=(x 1-x 2)(x 1x 2-1)x 1x 2. ∵x 2>x 1>1,∴x 1-x 2<0, 又∵x 1x 2>1,∴x 1x 2-1>0,图象法求函数的最值利用单调性求函数的最值故(x 1-x 2)·(x 1x 2-1)x 1x 2<0,即f (x 1)<f (x 2),所以f (x )在(1,+∞)内是增函数. (2)由(1)可知f (x )在[2,4]上是增函数, ∴当x ∈[2,4]时,f (2)≤f (x )≤f (4). 又f (2)=2+12=52,f (4)=4+14=174,∴f (x )在[2,4]上的最大值为174,最小值为52.[活学活用] 2.已知函数f (x )=2x -1(x ∈[2,6]),求函数的最大值和最小值. 解:设x 1,x 2是区间[2,6]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=2x 1-1-2x 2-1=2[(x 2-1)-(x 1-1)](x 1-1)(x 2-1)=2(x 2-x 1)(x 1-1)(x 2-1).由2≤x 1<x 2≤6,得x 2-x 1>0,(x 1-1)(x 2-1)>0,于是f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 所以函数f (x )=2x -1是区间[2,6]上的减函数. 因此,函数f (x )=2x -1在区间[2,6]的两个端点处分别取得最大值与最小值,即在x =2时取得最大值,最大值是2,在x =6时取得最小值,最小值是0.4.[例3] 某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:实际应用中的最值R (x )=⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80 000,x >400.其中x 是仪器的月产量.(1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)[解] (1)设月产量为x 台,则总成本为20 000+100x ,从而 f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000,0≤x ≤400,60 000-100x ,x >400.(2)当0≤x ≤400时, f (x )=-12(x -300)2+25 000,∴当x =300时,[f (x )]max =25 000. 当x >400时,f (x )=60 000-100x 是减函数, f (x )<60 000-100×400<25 000. ∴当x =300时,[f (x )]max =25 000.即每月生产300台仪器时利润最大,最大利润为25 000元.[活学活用]3.将进货单价为40元的商品按50元一个出售时,能卖出500个,已知这种商品每涨价1元,其销售量就减少10个,为得到最大利润,售价应为多少元?最大利润为多少?解:设售价为x 元,利润为y 元,单个涨价(x -50)元,销量减少10(x -50)个,销量为500-10(x -50)=(1 000-10x )个,则y =(x -40)(1 000-10x )=-10(x -70)2+9 000≤9 000.故当x =70时,y max =9 000.即售价为70元时,利润最大值为9 000元.[例4] 求二次函数f (x )=x 2-2ax +2在[2,4]上的最小值. [解] ∵函数图象的对称轴是x =a , ∴当a <2时,f (x )在[2,4]上是增函数, ∴f (x )min =f (2)=6-4a .当a >4时,f (x )在[2,4]上是减函数, ∴f (x )min =f (4)=18-8a .当2≤a ≤4时,f (x )min =f (a )=2-a 2. ∴f (x )min =⎩⎪⎨⎪⎧6-4a ,a <2,2-a 2,2≤a ≤4,18-8a ,a >4.[一题多变]1.[变设问]在本例条件下,求f (x )的最大值. 解:∵函数图象的对称轴是x =a , ∴当a ≤3时,f (x )max =f (4)=18-8a , 当a >3时,f (x )max =f (2)=6-4a .∴f (x )max =⎩⎪⎨⎪⎧18-8a ,a ≤3,6-4a ,a >3.2.[变设问]在本例条件下,若f (x )的最小值为2,求a 的值. 解:由本例解析知f (x )min =⎩⎪⎨⎪⎧6-4a ,a <2,2-a 2,2≤a ≤4,18-8a ,a >4.当a <2时,6-4a =2,a =1; 当2≤a ≤4时,2-a 2=2,a =0(舍去); 当a >4时,若18-8a =4,a =74(舍去).∴a 的值为1.3.[变条件,变设问]本例条件变为,若f (x )=x 2-2ax +2,当x ∈[2,4]时,f (x )≤a 恒成立,求实数a 的取值范围.解:在[2,4]内,f (x )≤a 恒成立, 即a ≥x 2-2ax +2在[2,4]内恒成立, 即a ≥f (x )max ,x ∈[2,4].二次函数的最大值,最小值由本例探究1知f (x )max =⎩⎪⎨⎪⎧18-8a ,a ≤3,6-4a ,a >3.(1)当a ≤3时,a ≥18-8a ,解得a ≥2,此时有2≤a ≤3. (2)当a >3时,a ≥6-4a ,解得a ≥65,此时有a >3.综上有实数a 的取值范围是[2,+∞).层级一 学业水平达标1.函数y =f (x )(-2≤x ≤2)的图象如下图所示,则函数的最大值、最小值分别为( )A .f (2),f (-2)B .f ⎝⎛⎭⎫12,f (-1)C .f ⎝⎛⎭⎫12,f ⎝⎛⎭⎫-32D .f ⎝⎛⎭⎫12,f (0)解析:选C 根据函数最值定义,结合函数图象可知,当x =-32时,有最小值f ⎝⎛⎭⎫-32;当x =12时,有最大值f ⎝⎛⎭⎫12. 2.函数y =x 2-2x +2在区间[-2,3]上的最大值、最小值分别是( ) A .10,5 B .10,1 C .5,1D .以上都不对解析:选B 因为y =x 2-2x +2=(x -1)2+1,且x ∈[-2,3],所以当x =1时,y min =1,当x =-2时,y max =(-2-1)2+1=10.故选B.3.设函数f (x )=2x x -2在区间[3,4]上的最大值和最小值分别为M ,m ,则m 2M =( )A.23B.38C.32D.83解析:选D 易知f (x )=2x x -2=2+4x -2,所以f (x )在区间[3,4]上单调递减,所以M =f (3)=2+43-2=6,m =f (4)=2+44-2=4,所以m 2M =166=83.4.若函数y =ax +1在[1,2]上的最大值与最小值的差为2,则实数a 的值是( ) A .2 B .-2 C .2或-2D .0解析:选C 由题意知a ≠0,当a >0时,有(2a +1)-(a +1)=2,解得a =2;当a <0时,有(a +1)-(2a +1)=2,解得a =-2.综上知a =±2.5.当0≤x ≤2时,a <-x 2+2x 恒成立,则实数a 的取值范围是( ) A .(-∞,1] B .(-∞,0] C .(-∞,0)D .(0,+∞)解析:选C 令f (x )=-x 2+2x , 则f (x )=-x 2+2x =-(x -1)2+1. 又∵x ∈[0,2],∴f (x )min =f (0)=f (2)=0. ∴a <0.6.函数y =-1x ,x ∈[-3,-1]的最大值与最小值的差是________. 解析:易证函数y =-1x 在[-3,-1]上为增函数,所以y min =13,y max =1,所以y max -y min =1-13=23.答案:237.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为________.解析:函数f (x )=-x 2+4x +a =-(x -2)2+4+a ,x ∈[0,1],且函数有最小值-2. 故当x =0时,函数有最小值, 当x =1时,函数有最大值.∵当x =0时,f (0)=a =-2,∴f (x )=-x 2+4x -2, ∴当x =1时,f (x )max =f (1)=-12+4×1-2=1. 答案:18.函数y =f (x )的定义域为[-4,6],若函数f (x )在区间[-4,-2]上单调递减,在区间(-2,6]上单调递增,且f (-4)<f (6),则函数f (x )的最小值是________,最大值是________.解析:作出符合条件的函数的简图(图略),可知f (x )min =f (-2),f (x )max =f (6). 答案:f (-2) f (6)9.求函数f (x )=xx -1在区间[2,5]上的最大值与最小值. 解:任取2≤x 1<x 2≤5, 则f (x 2)-f (x 1)=x 2x 2-1-x 1x 1-1=x 1-x 2(x 2-1)(x 1-1). 因为2≤x 1<x 2≤5,所以x 1-x 2<0,x 2-1>0,x 1-1>0. 所以f (x 2)-f (x 1)<0. 所以f (x 2)<f (x 1). 所以f (x )=xx -1在区间[2,5]上是单调减函数. 所以f (x )max =f (2)=22-1=2,f (x )min =f (5)=55-1=54. 10.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,求a 的值. 解:f (x )=-(x -a )2+a 2-a +1, 当a ≥1时,f (x )max =f (1)=a ; 当0<a <1时,f (x )max =f (a )=a 2-a +1; 当a ≤0时,f (x )max =f (0)=1-a .根据已知条件得,⎩⎪⎨⎪⎧ a ≥1,a =2或⎩⎪⎨⎪⎧ 0<a <1,a 2-a +1=2或⎩⎪⎨⎪⎧a ≤0,1-a =2,解得a =2或a =-1.层级二 应试能力达标1.下列函数在[1,4]上最大值为3的是( ) A .y =1x +2B .y =3x -2C .y =x 2D .y =1-x解析:选A B 、C 在[1,4]上均为增函数,A 、D 在[1,4]上均为减函数,代入端点值,即可求得最值,故选A.2.函数f (x )=⎩⎪⎨⎪⎧2x +6,x ∈[1,2],x +7,x ∈[-1,1],则f (x )的最大值与最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对解析:选A ∵x ∈[1,2]时,f (x )max =2×2+6=10,f (x )min =2×1+6=8;x ∈[-1,1]时,f (x )max =1+7=8,f (x )min =-1+7=6, ∴f (x )max =10,f (x )min =6.3.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是( )A .[1,+∞)B .[0,2]C .(-∞,2]D .[1,2]解析:选D f (x )=(x -1)2+2,∵f (x )min =2,f (x )max =3,且f (1)=2,f (0)=f (2)=3,∴1≤m ≤2,故选D.4.某公司在甲、乙两地同时销售一种品牌车,销售x 辆该品牌车的利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x .若该公司在两地共销售15辆,则能获得的最大利润为( )A .90万元B .60万元C .120万元D .120.25万元解析:选C 设公司在甲地销售x 辆,则在乙地销售(15-x )辆,公司获利为L =-x 2+21x +2(15-x )=-x 2+19x +30=-⎝⎛⎭⎫x -1922+30+1924, ∴当x =9或10时,L 最大为120万元.5.已知-x 2+4x +a ≥0在x ∈[0,1]上恒成立,则实数a 的取值范围是________. 解析:法一:-x 2+4x +a ≥0,即a ≥x 2-4x ,x ∈[0,1],也就是a 应大于或等于f (x )=x 2-4x 在[0,1]上的最大值,函数f (x )=x 2-4x 在x ∈[0,1]的最大值为0,∴a ≥0.法二:设f (x )=-x 2+4x +a ,由题意知⎩⎪⎨⎪⎧f (0)=a ≥0,f (1)=-1+4+a ≥0,解得a ≥0.答案:[0,+∞)6.已知函数f (x )=x 2-6x +8,x ∈[1,a ],并且f (x )的最小值为f (a ),则实数a 的取值范围是________.解析:如图可知f (x )在[1,a ]内是单调递减的, 又∵f (x )的单调递减区间为(-∞,3], ∴1<a ≤3.答案:(1,3]7.某商场经营一批进价是每件30元的商品,在市场试销中发现,该商品销售单价x (不低于进价,单位:元)与日销售量y (单位:件)之间有如下关系:(1)确定x 与y (2)若日销售利润为P 元,根据(1)中的关系式写出P 关于x 的函数关系式,并指出当销售单价为多少元时,才能获得最大的日销售利润?解:(1)因为f (x )是一次函数,设f (x )=ax +b ,由表格得方程组⎩⎪⎨⎪⎧ 45a +b =27,50a +b =12, 解得⎩⎪⎨⎪⎧a =-3,b =162, 所以y =f (x )=-3x +162.又y ≥0,所以30≤x ≤54,故所求函数关系式为y =-3x +162,x ∈[30,54].(2)由题意得,P =(x -30)y =(x -30)(162-3x )=-3x 2+252x -4 860=-3(x -42)2+432,x ∈[30,54].当x =42时,最大的日销售利润P =432,即当销售单价为42元时,获得最大的日销售利润.8.已知函数f (x )对任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23. (1)求证:f (x )是R 上的单调减函数.(2)求f (x )在[-3,3]上的最小值.解:(1)证明:设x 1,x 2是任意的两个实数,且x 1<x 2,则x 2-x 1>0,因为x >0时,f (x )<0,所以f (x 2-x 1)<0,又因为x 2=(x 2-x 1)+x 1,所以f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1),所以f (x 2)-f (x 1)=f (x 2-x 1)<0,所以f (x 2)<f (x 1).所以f (x )是R 上的单调减函数.(2)由(1)可知f (x )在R 上是减函数, 所以f (x )在[-3,3]上也是减函数, 所以f (x )在[-3,3]上的最小值为f (3).而f (3)=f (1)+f (2)=3f (1)=3×⎝⎛⎭⎫-23 =-2. 所以函数f (x )在[-3,3]上的最小值是-2.。
人教版高中数学必修1(A版) 函数的单调性 PPT课件
思考:用单调性的定义证明函数单调性的步骤是什 么?需注意哪些问题?
第一步:设区间上任意两点
x1 , x2 ,且 x1 < x2 。
自变量的值x1 , x2 ,当x1 x2时, 都有f ( x1 ) f ( x2 ),
你能类比地给出减函数的定义吗?
一般地, 设函数的定义域为I : 如果对于定义域内的某个区间D上的任意两个 自变量的值x1 , x2 ,当x1 x2时, 都有f ( x1 ) f ( x2 ), 那么就说函数f ( x)在区间D上是
其中y f ( x)在区间[5, 2),[1,3)上是减函数, 在区间[2,1),[3,5]上是增函数. 函数y f ( x)的增区间是[2,1),[3,5]; 减区间是[5, 2),[1,3).
思考:
函数y f ( x)的增区间能写成"[2,1) [3,5]"吗? 增区间能写成"[2,1)或[3,5]"吗?
第二步:作差 f ( x1 ) f ( x2 ) 整理化简。 第三步:判断 f ( x1 ) f ( x2 ) 的符号。 第四步:根据 f ( x1 )与 f ( x2 )的大小关系下结论。Βιβλιοθήκη 判断并证明函数 f ( x)
x 在定义域内的单调性。
小 结
2.利用定义证明函数单调性的步骤.
1.函数的单调性. (局部概念、应首先确定函数的定义域)
第一章 集合与函数概念
1.3.1函数的单调性
问题:下图是某地一天内的气温变化图,观察图形,你能指出该 天的气温是如何变化的吗?
人教版高中数学必修1(A版) 1.3.1 函数的基本性质-单调性与最值 PPT课件
课后思考:函数y=f(x)在区间D上具有 单调性,那么在区间D的子区间(即区 间D的子集)上是否具有相同的单调 性?
回到目录
回到目录
二、自主学习
自学辅导教材50页§1.3.1 时间20分钟 (完成所有探究与练习) 集中全部精力!提升自学能力!
回到目录
三、教师点拨 y
yx
2
f (x1 )
x1
O
x
回到目录
三、教师点拨 y
yx
2
f (x1 )
x1 O
x
回到目录
三、教师点拨 y
yx
2
f (x1 )
x1 O
x
回到目录
yx
2
f (x1 )
O
x1
x
函数f(x)=x2在区间[0,+∞)上,随着x的增大,相应 的f(x)值也随着增大 在区间(-∞,0)上,随着x的增大,相应的f(x) 值反而随着减小.
回到目录
三、教师点拨
如何利用函数解析式y=f(x)描述 “随着x的增大,相应的f(x)随着 减小”,“随着x的增大,相应的f (x)也随着增大”?
标题
§1.3.1函数的基本性质—单调性
§1.3.1函数的基本性质——单调性
一、问题情景 二、自主学习 三、教师点拨 四、课堂小结
本课结束
一、问题情景
大家是否记得这样精彩的瞬间:烟花在绽放 的刹那、高台跳水运动员纵身起跳至入水的 一瞬、陨星划过长空坠落的时刻,上述场景 多么美丽壮观啊!让我们闭上眼睛想一想: 烟花绽放后的轨迹、运动员跳入水中的过程 的身影、陨星坠落的弧线,这些曲线有的上 升、有的下降,这与我们研究的函数的单调 性有关.
自变量的值x x2 , 当x1 x 2时,都有f x1 f x2 1,
高中数学 1.3.1 单调性与最大(小)值 第2课时 函数的最值课件 新人教A版必修1
第三十四页,共48页。
(3)求解:选择合适的数学方法求解函数. (4)评价:对结果进行验证或评估,对错误加以改正,最后 将结果应用于现实,做出解释或预测. 也可认为分成“设元——列式——求解——作答”四个步
第三十三页,共48页。
3
某工厂生产一种机器的固定成本为 5 000 元,且每生产 1 部,需要增加投入 25 元,对销售市场进行调查后得知,市场对 此产品的需求量为每年 500 部,已知销售收入的函数为 N(x)= 500x-12x2,其中 x 是产品售出的数量(0≤x≤500).
(3)最大(小)值定义中的“存在”是说定义域中至少有一个 实数(shìshù)满足等式,也就是说y=f(x)的图象与直线y=M至 少有一个交点.
第十一页,共48页。
2.最值 定义 函数的__最__大__值__和__最__小_值___统称为函数的最值 几何 函数y=f(x)的最值是图象_最__高__点___或_最__低__点___的 意义 纵坐标 说明 函数的最值是在整个定义域内的性质
第二十三页,共48页。
②由①知,f(x)在(0,+∞)上是增函数,所以若函数 f(x)的 定义域与值域都是[12,2],则ff122==122,,
即1a1a--212==122,, 解得 a=25.
第二十四页,共48页。
规律总结:1.利用单调性求最值 的一般步骤
(1)判断函数的单调性.(2)利用单调性写出最值. 2.利用单调性求最值的三个常用结论 (1)如果函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间 [a,b]的左、右端点(duān diǎn)处分别取得最小(大)值和最大 (小)值. (2)如果函数f(x)在区间(a,b]上是增函数,在区间[b,c)上 是减函数,则函数f(x)在区间(a,c)上有最大值f(b). (3)如果函数f(x)在区间(a,b]上是减函数,在区间[b,c)上 是增函数,则函数f(x)在区间(a,c)上有最小值f(b).
函数的单调性与最大(小)值课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册
f(x1)-f(x2)=(2x1+1)-(2x2+1)=2x1-2x2
=2(x1-x2)
∵x1<x2 ∴x1 -x2<0 ∴2(x1-x2)<0
∴f(x1)-f(x2)<0
即f(x1) < f(x2)
∴函数f(x)=2x+1在其定义域上是增函数.
取值
作差变形
定号
下结论
探究三
那么,我们称M为函数y = f ( x)的最大值
图1
1
2
3
x
f ( x) = x 2
y
通过观察图2,可以发现二次函数 f ( x) =
的图像上有一个最低点(0,0)即
x2
x R, 都有f ( x) f (0)
5
当一个函数f(x)的图像有最低点时,我们就
说函数f(x)有最小值。
4
3
2
1
-3
A.f(x)=x
2
C.f(x)=|x|
答案:B
(
1
B.f(x)=
x
D.f(x)=2x+1
)
2
5.函数 f(x)= ,x∈[2,4],则 f(x)的最大值为______;最小值为
x
________.
答案:1
1
2
题型一 利用图象确定函数的单调区间
例1 求下列函数的单调区间,并指出其在单调区间上是
增函数还是减函数:
∴x1x2>0,x1x2-1<0,x1-x2<0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2).
1
故函数f(x)=x+ 在区间(0,1)内为减函数.
单调性与最大(小)值(第2课时)课件-高一上学期数学人教A版(2019)必修第一册
那么,称M是函数y=f(x)的最小值
思考2:若函数f(x)≤M,则M一定是函数的最大值吗?
提示:不一定,只有定义域内存在一点x0,使f(x0)=M时,M才
是函数的最大值,否则不是.
函数的最值与值域有怎样的关系?
(1)函数的值域一定存在,函数的最值不一定存在.
x1 x2 x1 x2
由2 x1 x2 6,得x2 x1 0,x1 x2 0,于是
f ( x1 ) f ( x2 ) 0,即f ( x1 ) f ( x2 )
∴ 函数f(x) =
是区间[2,6]上的单调递减.
x
求函数的最大(小)值的方法总结:
1.利用二次函数的性质(配方法)求函数的最大(小)值;
1.求函数
f(x)=x+ x在[
1
2
1)
1
2
1
2
x 1x 2
1x 2 1,4] 上的最值.
x
x
x
1x 2
1
2
.
x
4x 2-x 1
x 1x 2-4
x
x
4
4
4x
-x
x
x
1
2
2
1
1 2-4
=(x
=
1-x 2)
4
4
-f(x
)=x
+
-x
-
=x
-x
+
=+
12-4
1
2x 1-x 2=(x
2)
2x 1x
x
-4
∵1≤x
1 1-x
2 2)1 2
1<x 2<2,∴x 1-x 2<0,
人教A版必修一第一章1.3.1 第1课时单调性与最大(小)值
k≠0)与一次函数(y= kx+b,k≠0)
k<0
无
R
反比例函数 (y=kx,k≠0)
k>0
无
k<0 (-∞,0)和 (0,+∞)
(-∞,0)和 (0,+∞)
无
二次函数 (y=ax2+bx+c,
a≠0)
a>0 a<0
[-2ba,+∞) (-∞,-2ba]
(-∞,-2ba] [-2ba,+∞)
• 1.函数y=f(x)在区间(a,b)上是减函数,x1,x2∈(a,b),
• 『规律方法』 利用函数的单调性解函数值的不等式就是 利用函数在某个区间内的单调性,去掉对应关系“f”,转
化为自变量的不等式,此时一定要注意自变量的限制条件, 以防出错.
• 〔跟踪练习3〕 • 已知函数g(x)是定义在R上为增函数,且g(t)>g(1-2t),求
实数t的取值范围.
[解析] ∵g(x)在R上为增函数,且g(t)>g(1-2t), ∴t>1-2t,∴t>13,即所求t的取值范围为(13,+∞).
• 『规律方法』 1.函数单调性的证明方法——定义法 • 利用定义法证明或判断函数单调性的步骤是:
• 2.用定义证明函数单调性时,作差f(x1)-f(x2)后,若f(x)为 多项式函数,则“合并同类项”,再因式分解;若f(x)是 分式函数,则“先通分”,再因式分解;若f(x)解析式是 根式,则先“分子有理化”再分解因式.
(2)设x1>x2>-1, 则x1-x2>0,x1+1>0, x2+1>0, y1-y2=x12+x11-x22+x21 =x12+x11-xx2+2 1>0, ∴y1>y2, ∴函数y=x+2x1在(-1,+∞)上为增函数.
高中数学人教A版必修1课件:1.3函数的基本性质
(2)函数单调性的刻画: ①图形刻画,对于给定区间上的函数y=f(x), 它的图象若从左向右连续上升(下降),则称函 数在该区间上是单调递增(减)的; ②定性刻画,对于给定区间上的函数y=f(x), 若函数值随自变量的增大而增大(减小),则称 函数在该区间上是单调递增(减)的.
间应是定义域的子集.
2.画出函数 f(x)=-x2+2|x|+3 的 图象,并指出函数的单调区间.
解析: y=-x2+2|x|+3 -x2+2x+3=-x-12+4
=-x2-2x+3=-x+12+4 函数图象如图所示:
x≥0 x<0 .
函数在(-∞,-1],[0,1]上是增函数, 函数在[-1,0],[1,+∞)上是减函数. ∴函数的单调增区间是(-∞,-1]和[0,1], 单调减区间是[-1,0]和[1,+∞).
[0,1]
4.求证:函数 y=x-1 1在区间(1,+∞)上为单 调减函数.
证明: 设 1<x1<x2,
y1-y2=x1-1 1-x2-1 1 =x1-x21-xx21-1 ∵1<x1<x2 ∴x1-1>0,x2-1>0,x2-x1>0 ∴x1-x21-xx21-1>0. 即 y1>y2,
∴函数 y=x-1 1在区间(1,+∞)上为单调减函数.
解析: ∵f(x)在R上递减,且3<5,
∴f(3)>f(5).故选C.
答案: C
3.如图所示,函数y= f(x)的单调递增区间有 ________,递减区间有 ________.
数学人教A版(2019)必修第一册3.2.1单调性与最大(小)值 课件(共31张PPT)
y
一个最低点(0,0),即对任意x∈R,都有f(x)≥f(0).由此可得
该用“和”或“,”来连接.
1
例如:函数f ( x) 的定义域(,0)(0,),但它的单调减区间就
x
不能写成(,0)(0,).只能写成单调减区间为(,0),
(0,),或说
成在区间(,0),
(0,)单调递减.
(5)不是所有函数都具有单调性,如y=x+1 (x∈Z),y=1等函数不具有单
二 、全面感知,深化性质
观察f(x)=x2
y
的图象:
f ( x1 )
在y轴左侧,从左至右图像是下降的, 如何用数学符
号语言描述?
随着x的增大,f(x)的值随着减小.
f ( x2 )
任意取x1 ,x2 (,0],得到f ( x1 ) x12 ,f ( x2 ) x22 ,
当x1 x2时,有f ( x1 ) f ( x2 ),这时我们就说函数f ( x) x
结论
方法小结:
用定义证明函数的单调性的步骤:
(1)取值:设x1,x2是某个区间上任意两个值,且x1< x2;
(2)作差:作差f(x1)-f(x2);
(3)变形:向有利于判断差的符号的方向变形,一般化为积
的形式 ;
(4)定号:确定 f(x1)-f(x2)的符号;
(5)结论:确定函数的增减性.
k
例2 物理学中的玻意耳定律p (k为正常数)告诉我们,对于一定量
结论
作差,化简
P79练习2 根据定义证明函数f(x)=3x+2是增函数.
证明: ∀x1, x2∈R,不妨设x1<x2,
取值
则f(x1)-f(x2)=(3x1+2)-(3x2+2)
高中数学1.3.1函数的单调性与最大小值第2课时教学设计新人教A版必修1
1.3.1单调性与最大(小)值(第二课时)教学设计一、学情分析本节课是人教版《数学》(必修Ⅰ)第一章第3节函数的单调性与最大(小)值的第二课时,次要学惯用符号言语刻画函数的的最大(小)值,并能用函数的单调性和函数的图象进行一些常见函数最值的求值.在此之前,先生对函数曾经有了一个初步的了解,同时,由于上一节曾经学习函数单调性的定义,先生能初步理解用数学言语抽象概括函数概念的必要性和表达方式,为函数最值概念的构成提供极大帮助.因而本节课经过函数的图象,先生容易找出相应的最大值和最小值.但这只是感性上的认识.为了让先生有一个从具体到抽象、特殊到普通的认识过程,本节课经过设计成绩串,逐渐让先生用数学言语描述函数最值的概念,并利用对概念的辨析深化了解最值的内涵.二、教学目标:1.知识与技能(1)理解函数的最大(小)值的概念及其几何意义.理解函数的最大(小)值是函数的全体性质.(2)能解决与二次函数有关的最值成绩,和利用函数的单调性和函数的图象求函数的最值,掌握用函数的思想解决一些理论成绩.2.过程与方法经过日常生活实例,引导先生进行分析、归纳、概括函数最值的概念.并借助函数的单调性,从数到形,以形助数,逐渐浸透、培养先生数形结合思想、分类讨论思想、优化思想.3.情感、态度与价值观以丰富的实例背景引入,让先生领会数学与日常生活毫不相关.在概念的构成过程中,培养先生从特殊到普通、从直观到抽象的思想提升过程,让先生感知数学成绩求解途径与方法,享用成功的快乐.三、重点、难点:重点:建构函数最值的概念过程,利用函数的单调性和函数的图象求函数的最值.难点:函数最值概念的构成.高一先生的逻辑思想和抽象概括能力较弱,面对抽象的方式化定义,容易产生思想妨碍.对此,本课紧紧捉住新旧知识间的内在联系,设置一系列成绩,让先生充分参与定义的符号化过程,从图形言语和自然言语向数学符号言语转化,逐渐打破难点.四、教学过程:(一)提出成绩,引入目标背景1:成绩1:求函数2)(x x f -=的最大值.意图:从熟习的二次函数动手,将求函数的最大值转化为研讨函数图象的最高点,引导先生经过图象分析.背景2:请看下图,这是某气象观测站某日00:00—24:00这24小时内的气温变化图.(图)成绩2:.(1)我们常说昼夜温差大,是指一天当中的最高温度和最低温度之差.请问,该天的最高气温是多少?(2)该图象能否建立一个函数关系?如何定义自变量?意图:明确是在函数背景下研讨成绩.回顾函数的定义和函数的表示法(图象法) 师:我们称此时该函数的最大值是32.意图:启发先生明确函数图象中存在最高点与函数存在最大值之间是分歧的,即明确函数图象和函数解析式是反映函数关系的不同表现方式,从而无认识地培养先生以形助数解决成绩的认识,并引出课题——《函数的最大(小)值》(二)层层深化,概念建构成绩3:经过这两个成绩,我们能否用数学言语给出普通函数最大值的定义? 意图:以具体实例为背景,让先生用数学言语来进行归纳表达,引导先生过渡到任意化的符号化表示,呈现知识的自然生成,领会从特殊到普通的思想.定义:普通地,设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≤)(成立;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最大值.(预设:函数最大值定义中的第(1)点成绩不大,第(2)点容易被忽略。
高中数学人教版A版必修一课件:第一章 《集合与函数概念》 1.3.1 第2课时 函数的最大值、最小值
(1) 解析
作出函数 f(x) 的图象 ( 如图 ) .由图象可知,当 x =±1
时,f(x)取最大值为f(±1)=1.当x=0时,f(x)取最小值f(0)=0,
故f(x)的最大值为1,最小值为0. 答案 1 0
(2)解
任取 2≤x1<x2≤5,
x1 x2 则 f(x1)= ,f(x2)= , x1-1 x2-1 x1-x2 x2 x1 f(x2)-f(x1)= - = , x2-1 x1-1 x2-1x1-1 ∵2≤x1<x2≤5,∴x1-x2<0,x2-1>0,x1-1>0, ∴f(x2)-f(x1)<0,∴f(x2)<f(x1). x ∴f(x)= 在区间[2,5] 上是单调减函数. x-1 2 5 5 ∴f(x)max=f(2)= =2,f(x)min=f(5)= =4. 2-1 5-1
解
(1)设月产量为 x 台,则总成本为 20 000+100x,
1 2 - x +300x-20 0000≤x≤400, 从而 f(x)= 2 60 000-100xx>400. 1 (2)当 0≤x≤400 时,f(x)=-2(x-300)2+25 000; ∴当 x=300 时,f(x)max=25 000, 当 x>400 时,f(x)=60 000-100x 是减函数, f(x)<60 000-100×400<25 000. ∴当 x=300 时 ,f(x)max=25 000. 即每月生产 300 台仪器时利润最大,最大利润为 25 000 元.
规律方法
求解实际问题的四个步骤
(1)读题:分为读懂和深刻理解两个层次,把“问题情景” 译为数学语言,找出问题的主要关系(目标与条件的关系).
(2)建模:把问题中的关系转化成函数关系,建立函数解析
新教材高中数学第三章函数概念与性质 单调性与最大小值课件新人教A版必修第一册
3.函数的最值与值域、单调性之间的联系 (1)对一个函数来说,其值域是确定的,但它不一定有最值,如函数y= .如果有最值, 则最值一定是值域中的一个元素. (2)若函数f(x)在闭区间[a,b]上单调,则f(x)的最值必在区间端点处取得.即最大值是 f(a)或f(b),最小值是f(b)或f(a). 4.二次函数在闭区间上的最值 探求二次函数在给定区间上的最值问题,一般要先作出y=f(x)的草图,然后根据图 象的增减性进行研究.特别要注意二次函数的对称轴与所给区间的位置关系,它是 求解二次函数在已知区间上最值问题的主要依据,并且最大(小)值不一定在顶点处 取得.
(3)区间A一定是连续的,如果中间有断裂,则无法称 作单调递增或者单调递减.如图示的函数.
单调性的定义
函数单调性定义的等价形式(对于任意的
):
【1】
在D上为增函数;
【2】
在D上为减函数;
【3】
在D上为增函数;
【4】
在D上为减函数.
即自变量之差与函数值之差的乘积同号,函数为增函数; 自变量之差与函数值之差的乘积同号,函数为减函数;
反之,函数在区间端点处无定义时,书写单调区间时就 不能包括端点.
单调性的应用 【例题1】根据定义,研究函数
的单调性.
【解】函数 ,
的定义域是R,对于任意的
且
由
知
,所以:
①当
时,
人教版高中数学必修1(A版) 1.3.1函数的单调性 PPT课件
第二步:作差 第三步:变形
由V1 V2 , 得V2 V1 0. 又k 0, 于是p(V1 ) p(V2 ) 0
即
第四步:判断 p(V1) p(V2 ) k 所以,函数p ,V (0, )是减函数. V 第五步 :结论 也就是说,当体积V 减小时, 压强p增大 .
怎么办呢?
回答几个问 题吧!
k 1. p (k是常数)是函数吗 ? V k 2.你能画出p (k是常数)的图象吗? V k 3.能过图象观察函数p (k是常数)是否 V 具有单调性 ? 你能作出猜想吗 ? 4.如果具有单调性, 你能用单调性的定义加以证明吗?
证明 : 根据函数单调性的定义, 设V1,V2是定义域(0, )上的任意两个实数, 且V1 V2 , 则 k k 第一步:设值 p(V1 ) p(V2 ) V1 V2
思考: 类比上面的结论, 对于函数y x , 我们能得到怎样的结论呢?
2
函数y x 是增函数?减函数?
2
y
函数y x2在区间(0, )上是增函数! 函数y x 在区间(,0]上是减函数!
2
f ( x)
O O
x
y x2
结合下面的函数的图象, 你能给增函数
下一个严格的定义吗?
当x1 0时, y1 0;
3
所以, f ( x) x 3x是减函数!
当x1 0时, y1 0;
当x2 2时, y2 2; 由此可以推断 : 当x增大时, y随之增大.
3
显然0 2,0 2.
所以, f ( x) x 3x是增函数!
【同步课堂】人教A版高中数学必修1第一章1.3.1 单调性与最大(小)值—函数的最大(小)值课件(共12张PPT)
存在实数M满足:
(1)对于任意的x∈I,都有f(x)≥M; (2)存在x0∈I,使得f(x0) = M 那么,称M是函数y=f(x)的最小值
注意:
1、函数最大(小)值首先应该是某一个函数值, 即存在x0∈I,使得f(x0) = M;
2、函数最大(小)值应该是所有函数值中最大 (小)的,即对于任意的x∈I,都有f(x)≤M (f(x)≥M).
最小值.
x 1
例3:画出函数y | x 1| | 2x 4 |的图像, 写出它们的单调区间和最值。
例4:求函数f (x) x2 2ax 1在区间[1, 2]内的最值。
(二)利用函数单调性判断函数的最大(小)值的 方法
1.利用二次函数的性质(配方法)求函数的最大(小)值 2. 利用图象求函数的最大(小)值
1、函数f(x)=x2+4ax+2在区间(-∞,6]内递减,
则a的取值范围是( ) D
A、a≥3
B、a≤3
C、a≥-3
D、a≤-3
2、在已知函数f(x)=4x2-mx+1,在(-∞,-2]上 递减,在[-2,+∞)上递增,则f(x)在[1,2]上的 值域__[2_1_,_3_9_] _____.
3、常用初等函数的最值求法.
例1、“菊花”烟花是最壮观的烟花之一.制造时 一般是期望在它达到最高点时爆裂. 如果在距地 面高度h m与时间t s之间的 关系为:h(t)= -4.9t2+14.7t+18 , 那么烟花冲出后什么时候是
它的爆裂的最佳时刻?这时
距地面的高度是多少(精确
到1m)
解:作出函数h(t)= -4.9t2+14.7t+18的图象(如图).显然, 函数图象的顶点就是烟花上升的最高点,顶点的横坐 标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面 的高度.
单调性与最大(小)值课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册
(2)( x1 x2 )[ f ( x1 ) f ( x2 )] 0
增函数
f ( x1 ) f ( x2 )
(3)
0
x1 x2
探究新知
y
析
(1 )
0
一般地,设函数()的定义域为,区间为 ⊆ :
如果∀1 , 2 ∈ ,当1 < 2 时,都有(1 ) > (��2 ),
那么就称函数()在区间上单调递减.
(2 )
1 2
x
叫做函数()的单调递增区间,简称减区间.
(1) x1 x2 f ( x1 ) f ( x2 )
(2)( x1 x2 )[ f ( x1 ) f ( x2 )] 0
f ( x1 ) f ( x2 )
(3)
0
x1 x2
减函数
形成概念
y
析
一般地,设函数()的定义域为,区间为 ⊆ :
如果∀1 , 2 ∈ ,当1 < 2 时,都有(1 ) < (2 ),
(2 )
(1 )
0
那么就称函数()在区间上单调递增.
2
1
x
叫做函数()的单调递增区间,简称增区间.
3.2 函数的基本性质
引入
前面我们学习了函数的定义及表示方法,知道函数 = ()( ∈ )描述了客
观世界中变量之间的一种对应关系. 接着我们就可以通过研究函数的变化规律(函数
的性质)来把握客观世界中事物的变化规律.
函数的性质:单调性、对称性、奇偶性、周期性、有界性、收敛性、……。
3.2 函数的基本性质
y
如果∀1 , 2 ∈ ,当1 < 2 时,都有(1 ) > (2 ),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精选ppt
3
探究点1 函数的最大值 观察下列两个函数的图象:
y
B
M
o
x0
x
图2
精选ppt
4
思考点A,第二个函数图
象有最高点B,也就是说,这两个函数的图象都有最高
点.
思考2 设函数y=f(x)图象上最高点的纵坐标为M,则
对函数定义域内任意自变量x,f(x)与M的大小关系如
(2)存在 x 0 I ,使得_f_(_x_0)_=_N_.
那么,我们就称N是函数y=f(x)的最小值.
精选ppt
11
函数图象最低点处的函数值的刻画:函数图象在最低 点处的函数值是函数在整个定义域上最小的值.对于 函数f(x)=x2而言,即对于函数定义域中任意的x∈R, 都有f(x)≥f(0). 最小值的“形”的定义:当一个函数的图象有最低点 时,我们就说这个函数有最小值.当一个函数的图象 没有最低点时,我们就说这个函数没有最小值.
精选ppt
15
由二次函数的知识,对于函数
h(t)4.9t21 我4们.7t有:18
当t 14.7 1.5时,函数有最大值 2(4.9)
h4(4.9)1814.72 29. 4(4.9)
于是,烟花冲出后1.5s是它爆裂的最佳时刻, 这时距地面的高度约为29m.
精选ppt
16
例4.已知函数 f(x) 2 (x[2,6]) ,求函数的最大
精选ppt
13
例3.“菊花”烟花是最壮观的烟花之一.制造时一般 是期望在它达到最高点时爆裂.如果烟花距地面的高 度h m与时间t s之间的关系为h(t)=-4.9t2+14.7t+18, 那么烟花冲出后什么时候是它爆裂的最佳时刻?这时 距地面的高度是多少(精确到1 m)?
精选ppt
14
分析:烟花的高度h是时间t的二次函数,根据题 意就是求出这个二次函数在什么时刻达到最大值 ,以及这个最大值是多少. 解:画出这个函数h(t)=-4.9t2+14.7t+18的图象. 显然,函数图象的顶点就是烟花上升的最高点,顶 点的横坐标就是烟花爆裂的最佳时刻,纵坐标就是 这时距地面的高度.
【证明】因为当x∈[a,c]时,f(x)是增函数,所以 对于任意x∈[a,c],都有f(x)≤f(c).又因为当 x∈[c,b]时,f(x)是减函数,所以对于任意x∈[c, b],都有f(x)≤f(c).因此对于任意x∈[a,b],都有 f(x)≤f(c),即f(x)在x=c时取得最大值.
精选ppt
7
探究点2 函数的最小值 观察下列两个函数的图象:
y y
m
m
o
x0
x
x0 o
x
图1
图2
精选ppt
8
思考1:这两个函数图象各有一个最低点,函数图象 上最低点的纵坐标叫什么名称? 提示:函数图象上最低点的纵坐标是所有函数值中 的最小值,即函数的最小值.
精选ppt
9
思考2:仿照函数最大值的定义,怎样定义函数的最小值?
第2课时 函数的最大值、最小值
精选ppt
1
喷泉喷出的抛物线型水柱到达“最高点”后便下落,
经历了先“增”后“减”的过程,从中我们发现单调
性与函数的最值之间似乎有着某种“联系”,让我们
来研究—— 函数的最大值与最小值.
精选ppt
2
1.理解函数的最大(小)值及其几何意义;(重点) 2.学会运用函数图象理解和研究函数的性质;(难点)
精选ppt
18
【提升总结】函数在定义域上是减函数必需进行证明, 然后再根据这个单调性确定函数取得最值的点.因此 解题过程分为两个部分,先证明函数在[2,6]上是减 函数,再求这个函数的最大值和最小值.
精选ppt
19
例5 已知函数y=f(x)的定义域是[a,b],a<c<b.当 x∈[a,c]时,f(x)是增函数;当x∈[c,b]时,f(x)是 减函数,试证明f(x)在x=c时取得最大值.
精选ppt
12
对函数最值的理解
1.函数最大值首先应该是某一个函数值,即存在 x 0 I ,
使得 f x0M.并不是所有满足 f (x)M 的函数都有 最大值M.如函数 f(x)x,x (1,1),虽然对定义域上
的任意自变量都有 f (x) 1,但1不是函数的最大值.
2.函数的最值是函数在定义域上的整体性质,即这个函 数值是函数在整个定义域上的最大的函数值或者是最小 的函数值.
于 是 f( x 1 ) f( x 2 ) 0 ,即 f( x 1 ) f( x 2 ) .
所以,函数 f( x)=是2区间[2,6]上的减函数.
x-1
因此,函数 f( x)=在2区间[2,6]的两个端点上分
x-1
别取得最大值与最小值,即在x=2时取得最大值,最
大值是2,在x=6时取得最小值,最小值是0.4.
提示:一般地,设函数y=f(x)的定义域为A,如果存在 x0∈A,使得对于任意的x∈A,都有f(x)≥f(x0) ,那么称 f(x0)为函数y=f(x)的最小值,记为ymin=f(x0).
精选ppt
10
函数最小值的定义:一般地,设函数y=f(x)的定 义域为I,如果存在实数N满足:
(1)对任意的 x I ,都有_f_(_x_)_≥__N_;
何?
【解答】 f(x)≤M
最高点的纵坐标即 是函数的最大值!
精选ppt
5
函数最大值定义:一般地,设函数y=f(x)的定义 域为I,如果存在实数M满足: (1)对于任意的x∈I,都有_f_(_x_)_≤__M_; (2)存在x0∈I,使得_f_(_x_0)_=_M_。 那么,我们称M是函数y=f(x)的最大值.
x1
值和最小值。
解:设x1,x2是区间[2,6]上的任意两个实数,且x1<x2
则f
(x1)
f
(x2)
2 x1 1
2 x2 1
2[(x2 1)(x1 1)] 2(x2 x1) .
(x1 1)(x2 1)
(x1 1)(x2 1)
单调性求 最值
精选ppt
17
由 2 x 1 x 2 6 , 得 x 2 x 1 0 , ( x 1 1 ) ( x 2 1 ) 0 ,
请同学们仿此给
出函数最小值的
定义
精选ppt
6
函数图象最高点处的函数值的刻画:函数图象在最高 点处的函数值是函数在整个定义域上最大的值.对于函 数f(x)=-x2而言,即对于函数定义域中任意的x∈R, 都有f(x)≤f(0) 函数最大值的“形”的定义:当一个函数的图象有最高 点时,我们就说这个函数有最大值.当一个函数的图象无 最高点时,我们就说这个函数没有最大值.