数值分析2.5

合集下载

数值分析课后习题答案

数值分析课后习题答案

0 1
0 10 1 1 0 0 0 1
0 0 12 1 1 2 0 0 0

1 2
0 0 0 1 1 0
1 2

1 2


1 2
1
0 0 0 1 0

1 2

1 2


0
1 2

1 2
0
0
0
341 1 1
2-5.对矩阵A进行LDLT分解和GGT分解,并求解方程组
Ax=b,其中
16 4 8
1
A 4 5 4 , b 2
8 4 22
3

16 A 4
4 5
84
44 11
2-3(1).对矩阵A进行LU分解,并求解方程组Ax=b,其中
2 1 1 A1 3 2
4 ,b6
1 2 2
5

2 A 1
1 3
1 2


2 11
22
1
5 2
1

3 21来自,所以 A12
1
2 1 1



5 3
2-2(1).用列主元Gauss消元法解方程组
3 2 6x1 4 10 7 0x2 7 5 1 5x3 6

3 2 6 4 10 7 0 7 10 7 0 7

r1r2
消元

10 7 0 7 3 2 6 4 0 0.1 6 6.1
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623

数值分析习题

数值分析习题

1.1 求下列各数的具有四位有效数字的近似值, 并指出其绝对误差限和相对误差限)1.0ln(,121,1011,1014321====x x x x1.2 下列各数都是对准确值进行四舍五入得到的近似值, 指出它们的绝对误差限、相对误差限和有效数字的位数。

3*5*4*3*2*1100.5,5000,50.31,3015.0,0315.0⨯=====x x x x x1.3 为了使31的近似值的相对误差不超过0.1%, 问应取几位有效数字?1.4 怎样计算下列各题才能使得结果比较精确?(1) x x sin )sin(-+ε,其中ε充分小 (2) ⎰++121N Nx dx,其中N 是充分大的正数(3)xxsin cos 1-,其中x 充分小(4) o 1cos 1- (5) 1001.0-e(6) )11010ln(84--1.5 求方程01562=+-x x 的两个根, 使至少具有四位有效数字。

2.1 证明方程043=-+x x 在区间[1,2]内有且仅有一个根。

如果用二分法求它具有五位有效数字的根,试问需对分多少次?(不必求根)2.2 用二分法求方程0134=+-x x 在[0.3, 0.4]内的一个根, 精度要求21021-⨯=ε。

2.3 找出下列方程的有根区间,选择适当的初始点用二分法求方程的根,精度要求210-=ε。

(1) 02=--x x ;(2) 06cos 2=-++-x e x x ; (3) 01tan =--x x ; (4) 0sin 2=--x e x 。

2.4 考虑方程032=-x e x ,将其改写为3xex ±=,取00=x ,用两种迭代公式迭代,分别收敛到1.0和-0.5附近的两个根(取精度要求310-=ε)。

2.5 为求方程0123=--x x 在5.1=x 附近的一个根,建立下列形式的迭代公式:(1) 2121111kk x x xx +=⇒+=+,;(2) 3212311k k x x x x +=⇒+=+,;(3) 111112-=⇒-=+k k x x x x ,。

数值分析的所有知识点总结

数值分析的所有知识点总结

数值分析的所有知识点总结一、数值分析的基本概念1.1 数值分析的定义和作用数值分析是研究利用计算机对数学问题进行数值计算的一门学科。

它旨在发展和分析数值计算方法,以解决实际问题中出现的数学模型。

数值分析的主要作用在于加快科学研究和工程设计的速度,提高计算精度和可靠性,以及发现新的科学规律和工程技术。

1.2 数值计算的基本步骤数值计算通常包括以下基本步骤:建立数学模型、选择适当的数值方法、编写计算程序、进行计算和分析结果。

其中,建立数学模型是数值计算的基础,它将实际问题抽象为数学公式或方程组的形式;选择适当的数值方法是指根据具体问题的特点,选择合适的数值计算方法进行求解;编写计算程序是指将选择的数值方法用计算机程序的形式实现;进行计算和分析结果是指利用计算机进行数值计算,并分析计算结果的准确性和可靠性。

1.3 数值分析的应用范围数值分析广泛应用于科学、工程、经济、金融等领域。

在科学研究中,数值分析常用于数学建模、实验数据处理、科学计算等方面;在工程领域,数值分析常用于工程设计、结构分析、流体力学、传热传质等方面;在经济金融领域,数值分析常用于风险评估、金融工程、市场预测等方面。

二、数值计算方法2.1 插值法插值法是利用已知的离散数据(如实验数据、观测数据)推导出未知的数据值的一种数值计算方法。

常用的插值方法包括拉格朗日插值、牛顿插值、分段插值等。

2.2 数值微分与数值积分数值微分是指利用离散数据计算函数的导数值的数值计算方法。

常用的数值微分方法包括差商法、中心差商法等。

数值积分是指利用离散数据计算函数的积分值的数值计算方法。

常用的数值积分方法包括复合梯形法、复合辛普森法等。

2.3 数值线性代数数值线性代数是研究线性代数问题的数值计算方法。

它涉及到线性方程组的求解、线性方程组的特征值和特征向量的计算、矩阵的LU分解、矩阵的QR分解等内容。

2.4 非线性方程求解非线性方程求解是研究非线性方程的数值计算方法。

数值分析第五版课后答案2篇

数值分析第五版课后答案2篇

数值分析第五版课后答案2篇数值分析第五版课后答案(一)第一章1.1 机器精度的数值为2^-52 ≈2.22 × 10^-16。

1.2 Example 1.2设f(x) = (1 - cosx)/sinx,则f(0)的分母为0,无法进行数值计算。

1.3 Example 1.3设f(x) = (1 - cosx)/sinx,则f(0)的分子为0,因此有f(0) = 0。

1.4 Example 1.4(a) 将x的值从1.8改为1.799,则f(x)的值由-0.000000000000159为0.000000000000313,差值为0.000000000000472。

(b) 我们有f'(x) = sinx/(1 - cosx) - 1/sin^2x。

将x的值从1.8改为1.799,利用f(x)和f'(x)的值可以得到下面的近似式:f(x + Δx) ≈ f(x) + f'(x)Δx = -0.000000000000159 + 0.449787416887455×0.001 = -0.000000000000137。

与(a)中的结果相近。

1.5 Example 1.5(a) 当x很接近于0时,函数值的符号取决于cosx的符号,其中cosx接近于1。

因此,函数值为正。

(b) 当x很接近于π时,函数值的大小趋于无穷大,因为分母趋向于0,而分子不为0。

1.6 Example 1.6(a) 因为函数在x = 0处是奇函数,所以它的导数为偶函数。

(b) 首先,我们有f''(0) = -2,因此x = 0是最大值。

其次,我们有f''(x) = -2 - 8sin^2x。

由于-f''(x)在x = 0处是正的,我们有当x越接近0时,f''(x)越小,也就意味着函数在x = 0处是严格的最大值。

1.7 Example 1.7(a) 我们有f(x) = x^3 - 2x^2 - 5x + 6,f'(x) =3x^2 - 4x - 5和f''(x) = 6x - 4。

数值分析题库1

数值分析题库1
2010-2011数值分析
第一章 绪论 2 第二章 函数插值 3 第三章 函数逼近 6 第四章 数值积分与数值微分 10 第五章 解线性方程组的直接解法 13 第六章 解线性方程组的迭代解法 14 第七章 非线性方程求根 16 第九章 常微分方程初值问题的数值解法 19
第一章 绪论
1.1 要使的相对误差不超过0.1%,应取几位有效
解 对y=f(x)的反函数进行三次插值,插值多项式为
+ + + =, 于是有

第三章 函数逼近
3.1证明定义于内积空间H上的函数是一种范数。
证明: 正定性当且仅当时; 齐次性 设为数域K上任一数 三角不等式 ;
于是有 故是H上的一种范数。
3.2求,在空间上的最佳平方逼近多项式,并给出 误差。
解: 第一步:构造内积空间上的一组正交基,其中内积: 第二步:计算的二次最佳平方逼近多项式 从第一步已经知道,利用公式得: 误差为:
数字?
解:
的首位数字。 设有 n位有效数字,由定理知相对误差限 令, 解得,即需取四位有效数字.
1.2 序列满足关系式,若,计算到,误差有多
大?这个算法稳定吗?
解:,于是 ,一般地,因此计算到其误差限为,可见这个计算过程是不稳定的。
1.3 计算球的体积,要使相对误差限为1%,问测 量半径R时允许的相对误差限是多少?
4.1、计算积分,若用复化梯公式,问区间应分多 少等份才能使截断误差不超过?若改用复化辛普 森公式,要达到同样的精度,区间应分多少等 份?
解:由于,,,故对复化梯公式,要求 ,
即,.取,即将区间分为等份时,用复化梯公式计算,截断误差不超过. 用复化辛普森公式,要求 ,
即,.取,即将区间等分为8等份时,复化辛普森公式可达精度.

数值分析期末考试题之经典例题

数值分析期末考试题之经典例题

题型一:有效数字1,确定113的首位数字x 1,要使113的近似值x *的相对误差不超过0.5×10-5,至少要保留几位有效数字.(2010-2011)1*1151211||10100.5102226n n r x n e x n ---=≤⨯=⨯≤⨯⨯≥=解答:设至少要保留位有效数字,则有解得, n 5.7取位有效数字.2,要使112的相对误差不超过0.5×10-4,至少要保留几位有效数字?(2009-2010) 3,已知21.787654为有效数,确定其绝对误差界与相对误差界.(2007-2008)*6*118711||102111||1010102224n r e e x ----=⨯=⨯=⨯=⨯⨯解答:4,已知30.49876为有效数,确定其绝对误差界.(2006-2007B)5,设有效数x=12.4567,确定x 的绝对误差界.(2004-2005)题型二:插值多项式1,已知f(x)的函数值:f(0)=-2, f(1)=1, f(2)=5, 用反插值法求f(x)=0在[0,2]内的近似根x *.(2010-2011)11111202012012010210122021()()()()()()()()()()()()()()()()()(2)(5)(2)(1)012(12)(15)(52)(51)2991422884y y y y y y y y y y y y y L y f y f y f y y y y y y y y y y y y y y y y y y ----------=⋅+⋅+⋅------+-+-=+⨯+⨯+-+-=+-解答:对y=f(x)的反函数x=f 进行二次插值2*229(0)42y x L ≈=故,2,已知f(x)的如下函数值及导数值:f(-1)=1, f(0)=2, f ’(0)=3, f(1)=7; (1),建立不超过3次的埃尔米特插值多项式H 3(x);(2),x ∈[-1,1], 确定用H 3(x)代替f(x)的误差界(已知|f (4)(x)|≤M 4,x ∈[-1,1]).(2010-2011)32001001201232233)),(0,1,2)()()[,]()[,,]()()1(1)2(1)(0)232()()(1)(0)(1)232()'(i i H x f x i N x f x f x x x x f x x x x x x x x x x x x H x N x k x x x x x k x x H ===+-+--=++++-=++=++--=+++-解答:(1),满足插值条件((的二次插值多项式为:也可用拉格朗日插值法满足题设插值条件的插值多项式为:2323(4)23443)43(31)'(0)'(0)3()232()(2),(1)(0)(1),(1,1)4!1||=4!496x x k x H f H x x x f R x x x M M R ζζ=++-===+++--∈-≤⨯由得:k=0故:误差(x)=则误差界(x)3,已知f(x)的函数值:f(0)=2, f(1)=4, f(2)=9, 写出二次拉格朗日插值多项式及余项.(2009-2010) 4,已知f(x)的如下函数值及导数值:f(1)=1, f(2)=2, f ’(1)=3, f(3)=9; (1),建立不超过3次的埃尔米特插值多项式;(2)计算f(1.6)的近似值;若M 4=0.5,估计f(1.6)的误差界.(已知|f (4)(x)|≤M 4).(2009-2010)5,写出满足条件H(0)=1, H(1)=0, H ’(1)=1, H(2)=1的三次插值多项式,并给出误差估计式.(2008-2009B)6,已知一组数据,求函数f(x)=0的根.(2008-2009B)x i -1 0 2 3 f(x i )-7-1177,已知f(x)的如下函数值及导数值:f(0)=1, f(1)=3, f ’(1)=1, f(2)=9, (1),建立不超过3次的埃尔米特插值多项式,写出误差估计式;(2),计算f(1.8)的近似值:若M 4=1,估计f(1.8)的误差界.(已知|f (4)(x)|≤M 4).(2007-2008) 8,已知f(x)的如下函数值及导数值:f(1)=2, f(2)=4, f ’(2)=5, f(3)=8, (1),建立不超过3次的埃尔米特插值多项式;(2),计算f(2.5)的近似值:若M 4=0.5,估计f(2.5)的误差界.(已知|f (4)(x)|≤M 4).(2006-2007) 9,已知f(x)的如下函数值表x i 0.1 0.2 0.3 0.4 f(x i )1.122.652.811.68选取合适的插值节点,用二次插值多项式计算f(0.35)的近似值.(2005-2006) 10,已知f(x)=sinx 的如下函数值表x i 1.0 1.5 2.0 sinx i0.84150.99750.9093用插值多项式计算sin1.8, 并估计误差界.(2004-2005)11,用f(x)的关于互异节点集112{}{}n ni i i i x x -==和的插值多项式g(x)和h(x)构造出关于节点集1{}ni i x =的插值多项式.(2005-2006)(课后习题)-11111121111{}(),()(){}(),()()()()))()())]()n n i i i i n n n n n n n n n n n n n n q x q x g x x x x x x x x x g A x x g x ==------=----=-解答:法一:设关于节点集x 的插值多项式为则与有共同插值节点x ,则设:q(x)=g(x)+Aw w f(x (x )由q(x )=f(x 得,w w 故:q(x)=g(x)+[f(x (x )w 法二:设q(x)=g(x)+1-122311111()()(){}()()()()(),01()=()[()()]()[()()]()()()()()()[()()]=-n n i i n n n n n n n n n n x g x h x B g x h x B x x x x x x B x x x g x h x BAx x g x h x Bq x f x h x Ah x g x x x g x h x BA B -=---=---≠----===+--Aw 由于和有共同插值节点x ,则存在常数,使得则,w 故:q(x)=g(x)+由得得1111()[()()]()n n x x x x h x g x x x ----则:q(x)=g(x)+12,(1),已知f(x)的如下函数值:f(0)=1,f(1)=3,f(3)=5,写出二次拉格朗日插值多项式L 2(x); (2),若同时已知:f ’(1)=1,用待定系数法求埃尔米特插值多项式H 3(x); (3),当(3)(4)1|()|2|()|4,[0,3]fx fx x ≤≤≤≤∈及3时,x 不取节点,[0,3]x ∈,求32()()||()()f x H x f x L x --的上界.(2011-2012)题型三:最佳平方逼近多项式及最小二乘法1,已知函数值表:x -2 -1 0 1 2 y121用二次多项式y=C 0+C 1X+C 2X 2按最小二乘法拟合改组数据,并求平方逼近误差.(2010-2011)(2005-2006)()000102030410111213142021222324012()()()()()11111()()()()()21012()()()()()4101401210,5010010010034T T T T x x x x x A x x x x x x x x x x y A AC A y c c c ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ⎛⎫⎛⎫ ⎪ ⎪==-- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭==⎛⎫⎛ ⎪ ⎪ ⎪⎝⎭⎝解答:法一:线性拟合的法方程组为:即()()01222*20000100011402583,0,3575833570581358||||=(y,y)-Y 01210402023531701(,)0,(,)(T c c y x C x xx δϕϕϕαϕαϕϕϕα⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎭⎝⎭===-=-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪=-=⎪ ⎪ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭====解得:c 则平方逼近误差:法二:构造首项系数为的正交多项式:(x)=1(x)=x-111211021100002*22022220,)0(,)(,)2,()()2(,)(,)46583()()0(2)(,)514357(,)8||||=(y,y)-(,)35i i i i i i i i i x x y x x x x y ϕϕϕϕϕβααϕβϕϕϕϕϕϕϕϕϕδϕϕ======----==++-=-=∑∑(x)(x)=x 则,平方逼近误差:2,求21()1f x x=+在区间[0,1]上的一次最佳平方逼近多项式及平方逼近误差(去权函数ρ(x)=x).(2009-2010) 3,通过实验获得以下数据:x i 0 1 2 3 y i13610请用最小二乘法求形如y=a+bx 2的经验公式.(2008-2009)T T A AC A y =解析:4,利用正交多项式的性质构造首项系数为1的正交多项式1{()}i i g x ∞=,有下列公式:010111()1()()()()(),(1,2,...)k k k k k g x g x x g x x g x g x k ααβ+--==-=--=其中:111(,),(0,1,2...)(,)(,),(1,2...)(,)k k k k k k k k k k xg g k g g g g k g g αβ---====(1),求[0,1]上首项系数为1的正交多项式(权函数ρ(x)=1),g 0(x),g 1(x),g 2(x)(2),以上述正交多项式为基,求sinx 在区间[0,1]上的二次最佳平方逼近多项式,并求平方逼近误差.(2008-2009B)(2004-2005)010000110001201111211021102110000*010001(1),()1(,)11,()(,)221()(,)121(,)2()2(,)11,()()()()(,)126(,)(,)(2),()(,)(g x xdx xg g g x x x g g dx x x dx xg g g g x dx g g g x x g x g x x x g g g f g f x g g g g αααβαβϕ=====-=--===-===--=-+=+⎰⎰⎰⎰解答:21212211120020111222000222*220(,),)(,)11()sin ()sin sin 11621()()1126()()260.00746 1.09130.23546(,)||||(,)0.000623.(,)i i i i g f g g g g g x x xdx x xdx xdx x x x dx x dx x x dx x x f g f f f g g ϕ=+-+-=⋅+⋅-+⋅-+--+=-+--=-=⎰⎰⎰⎰⎰⎰∑平方逼近误差:5,以正交多项式为基,求函数21()1f x x=+在区间[0,1]上的二次最佳平方逼近多项式,并求平方逼近误差.(2007-2008)(权函数ρ(x)=x,(2011-2012))20120122201201()1,(),(),111()2,()1,()2242211112234211113454111112224561.0656,0.503x x x x x f In f f In C F In c c c In ϕϕϕπϕϕϕπ=====-=-=⎛⎫⎛⎫⎪ ⎪⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⋅=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭==-解答:法一:取解得,,,正规方程组为:H 即:解得:c c 2*222*00001000111110110002,0.07423() 1.06560.503020.07423=(f,f)-F 0.000029041()11(,)223,()1(,)332(,)8(,)1,(,)15(,)T n p x x x C g x xg g g x x x g g xg g g g g g g g δαααβ=-=--======-=-====c 故二次最佳平方逼近多项式:平方逼近误差:法二:构造首项系数为的正交多项式:221100*201220120011222*1882163()()()()()()15318510(,)(,)(,)()()()() 1.06560.503020.07423(,)(,)(,)=(f,f)-F 0.00002904T n g x x g x g x x x x x f g f g f g p x g x g x g x x x g g g g g g C αβδ=--=---=-+=++=--=则:平方逼近误差:6,通过实验获得以下数据:u i 0 1 9 16 v i11/21/31/4请用最小二乘法求形如011v c c u=+的经验公式,并求平方误差.(2006-2007)011:c c u v=+解答转化题型四:代数精确度1,确定参数α,使求积公式20()[(0)()]['(0)'()]2hhf x dx f f h h f f h α≈++-⎰的代数精确度尽可能高,并求其代数精确度.(2010-2011)23322442320()1,,()1(),=121()()(0)(03)2121()()0+)(04)212()[(0)()]['(0)'()]2h h h f x x f x f x x h f x x f x dx h h h h f x x f x dx h h h hf x dx f f h h f f h αα====++-=≠+-≈++-⎰⎰⎰解答:令显然成立令得又时:时:(故具有三次代数精确度.2,确定参数A 1,A 2,使求积公式12()()(0)()3hhhf x dx A f h A f f h -≈-++⎰的代数精确度尽可能高,并求其代数精确度.(2009-2010) 3,建立高斯型求积公式1211221()()()x f x dx A f x A f x -≈+⎰.(2009-2010)231212113112211224112211335112211212000010001,23025031,53()1(,)0,()(,)x A A x dx A x A x x dx A x A x x dx A x A x x dx x A A g x xg g g x x xg g ααα----+==+==+==+===-=-======-=⎰⎰⎰⎰解答:法一:已知求积公式有3次代数精确度,令f(x)=1,x,x 得解上述方程组得:x 法二:构造二次正交多项式11110110022110021211222112111221121(,)(,)30,(,)(,)53()()()()53()0,511,33133()[()()]355xg g g g g g g g g x x g x g x x g x x x x x x A x dx A x dx x x x x x f x dx f f βαβρ---=====--=-==-=---=⋅==⋅=--≈-+⎰⎰⎰令得高斯点: x 故高斯型求积公式为:方法三:设[-1,1]上权(x)2221221122122121122221122331122212121().223()0,+0,5352()0,0,053().52:3250()()(),(g x x ax b b x g x dx b a x xg x dx a g x x A A A x A x A x A x A x A x x x x x x x c x c x ϕϕ--=++===-⋅====-+=+=+=+==--=++⎰⎰=x ,首项系数为1的二次正交多项式为则有:即即所以剩下步骤同法二.法四显然222221122111122212211221112221222332211122211221112221122112)()0()()()()()()()2230,535()()()()()20,053(),5x A x A x A x c x c A x c x c A x A x c A x A x c A A c c A x x A x x A x A x c A x A x c A x A x c c x x ϕϕϕϕϕϕ==+=+++++=+++++=+==-+=+++++====-剩下步骤同法二.4,确定求积公式()()(0)()hhf x dx Af h Bf Cf h -≈-++⎰中的参数A,B,C ,使其代数精度尽量高,并指出其代数精确度.(2008-2009B) 5,确定求积公式1211123()()()()343234f x dx f f f ≈-+⎰的代数精确度.(2006-2007B) 6,确定下列求积公式中的参数,使求积公式的代数精确度尽可能高,并求出代数精确度10120113()()()()424f x dx A f A f A f ≈++⎰.(2005-2006)7,确定下列求积公式中的参数,使求积公式的代数精确度尽可能高,并求出代数精确度101()()(0)()hhf x dx A f h A f A f h --≈-++⎰.(2004-2005)8,已知h>0,建立高斯型求积公式:21122()()()hhx f x dx A f x A f x -≈+⎰.(2011-2012)题型五:求积公式的最少节点数1,设定积分32x e dx -⎰,问用复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数为多少?(2010-2011)(4)2244(4)461(),()16301[]||()|101801801696017.0519.x xS f x e fx eb a h f h f h b ahη---==--=-≤⋅=<-=解答:复化辛普森公式截断误差:|R 解得:h<0.176,n>故应取个节点2,设定积分13x edx -⎰,问用复化梯形求积公式进行计算,要求误差小于10-6,所需要的最少节点数为多少?(2009-2010)(2)3322(2)261(),()9101[]||()|10121891622.8.x x T f x e f x e b a h f h f h b ahη---==--=-≤⋅=<-=解答:复化梯形公式截断误差:|R 解得:h<0.357,n>故应取4个节点3,给定积分2cos2xdx ⎰,问用复化梯形求积公式和复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数各为多少?(注:2(2)4(4)[](),[](),[,]122880T S b a b a R f h f R f h f a b ηηη--=-=-∈)(2008-2009B) 4,给定积分14x edx -⎰,问用复化梯形求积公式和复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数各为多少?(2007-2008) 5,给定积分21Inxdx ⎰,问用复化梯形求积公式和复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数各为多少? (已知:2(2)4(4)1212[](),[](),,(,)12180T S b a b a R f h f R f h f a b ηηηη--=-=-∈)(2006-2007) 6,用积分82122dx In x=⎰计算In2,要使所得近似值具有7位有效数字,问用复化辛普森求积公式至少需要取多少个节点?(2005-2006)4(4)8(4)52(4)-744(4)4-7[](),[2,8]18011122,(),()223|()|,[2,8]817[]102631[]||()|101801808802820.04472,S S S b a R f h f In dx f x f x x x xf x x R f b a h R f h f h h n hηηη-=-∈===≤∈≤⨯-=-≤⋅=≤⨯-≤≥=⎰解答:复化辛普森公式截断误差公式:则使所得的近似值具有位有效数字,即令:|134.2137故至少需要取个节点.7,用积分6213dx In x=⎰计算In3,要使所得近似值具有5位有效数字,问用复化梯形求积公式至少需要取多少个节点?(2004-2005) 8,对于定积分1()If x dx =⎰,当M 2=1/8,M 4=1/32,用11点的复化辛普森(Simpson)求积公式求I 的截断误差为R s [f],用n 个节点的复化梯形求积公式求I 的截断误差为R T [f],要使R T [f]≤R s [f],n 至少是多少?(M 2=max|f ”(x)|,M 4=max|f (4)(x)|,[0,1]x ∈).(2011-2012)题型六:Doolittle 分解及方程组求解1,求矩阵212454635⎛⎫ ⎪ ⎪ ⎪-⎝⎭的Doolittle 分解.(2010-2011) 212100212454210030635321001LU ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪== ⎪ ⎪⎪ ⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭解答:A=2,求矩阵114103241⎛⎫ ⎪- ⎪ ⎪⎝⎭的Doolittle 分解.(2009-2010) 3,设线性方程组123410135114152410162116x x x x ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪⋅= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ (1),对方程组的系数矩阵A 作Doolittle 分解;(2),用所得的Doolittle 分解求该线性方程组的解.(2007-2008&2005-2006)1234123410001013101311000132114124100013224101119162116210001313191,,,)(5,0,11,)13,,,)(1,1,1,1).T TT T A LU LY b y y y UX Y x x x --⎛⎫⎛⎫--⎛⎫ ⎪⎪- ⎪ ⎪⎪-⎪=== ⎪⎪--- ⎪ ⎪⎪ ⎪ ⎪⎪-- ⎪⎪⎝⎭⎝⎭⎝⎭==---==--解答:由得:(y 由得:(x4,设线性方程组123411415101312410762118x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪⎪ ⎪⋅=⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ (1),对方程组的系数矩阵A 作Doolittle 分解;(2),用所得的Doolittle 分解求该线性方程组的解.(2006-2007)5,设线性方程组:12312312323153478113x x x x x x x x x ++=+-=-++=-(1),对方程组的系数矩阵A 作Doolittle 分解;(2),利用上述分解结果求解该线性方程组.(2004-2005)6,用高斯顺序消去法求解线性方程组:13241234242532431737x x x x x x x x x x +=+=+++=+=.(2010-2011)432110205102051020*******101301013=124317022312002160103701037000242,2,1, 1.x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪→→⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭====解答:增广矩阵回代求解:x 7,用高斯顺序消去法求解线性方程组:1231231233472212320x x x x x x x x x -+=-+-=---=.(2009-2010)题型七:条件数及范数1,求线性方程组1212391078981510x x x x x --=+==的系数矩阵A 的条件数cond 1(A),并说明其含义.(2010-2011)1111191008900015910089010015()||||||||19193611A A cond A A A A b ----⎛⎫ ⎪= ⎪⎪⎝⎭⎛⎫ ⎪-- ⎪= ⎪⎪⎪⎝⎭==⨯=解答:系数矩阵条件数远大于,这说明当和有小扰动时会引起解的较大误差,即该方程组是病态的.2,设矩阵15000910089A ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭,求cond ∞(A).(2009-2010) 3,设三阶对称矩阵A 的特征值分别为:-2,1,3,求||A||2及cond 2(A).(2007-2008)222max max max 111-122-12max max max 1222||||()()()3||||(())()=()=1()|||||||| 3.T T A A A A A A A A A A cond A A A λλλλλλ----========解答:()则:4,若n 元线性方程组Ax=b 为病态的,可以得到关于系数矩阵A 的什么性质.(2006-2007)5,若111123124A ⎛⎫⎪= ⎪ ⎪⎝⎭,求cond 1(A).(2005-2006)求cond ∞(A).(2004-2005) 6,设1231032475A -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭,求1||||||||A A ∞与.(2007-2008)7,若1234A ⎛⎫= ⎪⎝⎭,求谱半径()A ρ.(2005-2006)5332ρ+解答:最大特征值:(A)=题型八:雅可比迭代与高斯-赛德尔迭代1,写出求解方程组1231231237321241021534818x x x x x x x x x -+=--=--=的雅可比迭代公式,并说明其收敛性.(2010-2011)(1)()()123(1)()()213(1)()()312(0)1(3212)71(4215)101(3418)87324102348.k k k k k k k k k J x x x x x x x x +++=-+=--++=--++-⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭解答:雅可比迭代公式为:x 雅可比迭代法迭代矩阵:B 严格对角占优,故求解该方程组的雅可比迭代法关于任意初始向量x 收敛2,设有方程组:132********2112212x x x x x x x -=+=-++=,讨论用雅可比迭代法和高斯-赛德尔迭代法解此方程组的收敛性.(2010-2011)112330200030000202100002000121221000200020031()002110211||0,=0=-=-12J J J L D U B D L U E B B λλλλρ---⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=++=++ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫ ⎪ ⎪⎪=-+=- ⎪ ⎪⎪- ⎪⎝⎭-=解答:A=雅可比迭代矩阵:得,()<1,故用雅可比迭代法解答此方程组对任意(0)1123(0)20031-()00211001211||0,=012-S S S B D L U E B B λλλλρ-⎛⎫ ⎪ ⎪⎪=-+=- ⎪ ⎪⎪ ⎪⎝⎭-===初始向量x 都收敛.高斯赛德尔迭代矩阵:得,()<1,故用高斯赛格尔迭代法解答此方程组对任意初始向量x 都收敛.3,写出求解方程组:123123123532124721535818x x x x x x x x x -+=--=--=的高斯-赛德尔迭代公式,并说明收敛性.(2009-2010)4,用雅可比迭代法求解以313132323A ⎛⎫⎪= ⎪ ⎪-⎝⎭为系数矩阵的线性方程组时,确定其收敛性.(2009-2010)5,设线性方程组123123123221162222x x x x x x x x x -+=-+-=--+=-,讨论分别用雅可比迭代法和高斯-赛德尔迭代法解此线性方程组的收敛性,若收敛,请给出迭代格式.(2008-2009B)6,设线性方程组:1231231232215202225x x x x x x x x x +-=-++=++=-(1),证明求解该方程组的雅可比迭代法关于任意初始向量收敛;相应的高斯-赛德尔迭代法不是关于任意初始向量收敛;(2),取(0)(0,0,0)T x =,用雅可比迭代法进行求解,要求(1)()5||||10k k xx +--<.(2007-2008)11231123022()101220||0,===0)1022()023002||0,0,2,)1-J J J S S S D L U E B D L U E λλλλρλλλλρ---⎛⎫ ⎪=-+=-- ⎪⎪--⎝⎭-=<-⎛⎫⎪=-+=- ⎪⎪⎝⎭-====>解答:(1):B B 解得:,(B B 解得:(B 所以用雅可比迭代法解此方程组对任意初始向量都收敛,而用高斯赛德尔迭代法解此方程组不是对任意初始向量都收敛.(2):(1)()()123(1)()()213(1)()()312(0)(1)(2)(3)(4)2215202225(0,0,0)(15,20,25)(105,60,35)(205,160,65)(205,160,65)k k k k k k k k k T T T TTx x x xx x x x x x x x x +++=-+-=--+=---==--=--=-=-雅可比迭代公式:x 当时,计算得:(精确解).7,设线性方程组:123123123821027325431111x x x x x x x x x ++=--++=-+=-(1),写出求解该方程组的雅可比迭代法的迭代公式和高斯-赛德尔迭代法的迭代公式,并确定其收敛性; (2),取(0)(0,0,0)T x=,用高斯-赛德尔迭代法计算x(3).(2006-2007)8,设线性方程组Ax=b 的系数矩阵232131t A t t ⎛⎫⎪= ⎪ ⎪-⎝⎭,其中t<0,问t 取何值时雅可比迭代法关于任意初始向量都收敛.(2006-2007)12122223021()0310422||()0=0=-,=)12||<1,t<-2,or t>20, 2.J J J t t D L U t t t t E B t t ttt t λλλλλλρ-⎛⎫-- ⎪ ⎪ ⎪=-+=-- ⎪ ⎪ ⎪- ⎪⎝⎭-=-=<<<-解答:雅可比迭代矩阵B 得,,雅可比迭代法对于任意初始向量都收敛,则(B 即:得又故9,1),设线性方程组:121232343243430424x x x x x x x +=+-=-+=-写出求解该方程组的雅可比迭代法的迭代公式,并确定该迭代法的收敛性;2),设线性方程组:123123123104413410811481025x x x x x x x x x ++=++=++=写出求解该方程组的高斯-赛德尔迭代法的迭代公式,并确定该迭代法的收敛性.(2004-2005)10,给定方程组:1231231232251223x x x x x x x x x +-=++=++=(1),用三角分解法解此方程组;(2),写出解此方程组的雅可比迭代公式,说明收敛性;取初始向量x 0=(0,0,0)T,当21||||10k kx x -+-<时,求其解.(2011-2012)11,设()21253sin 3421sincos 4134tan 5k k k k k k k Ak k k kkk⎛⎫- ⎪+ ⎪ ⎪= ⎪+ ⎪ ⎪+ ⎪⎝⎭,求()lim k k A →∞.(2007-2008)()020lim 021205K k A →∞⎛⎫⎪= ⎪ ⎪⎝⎭解答:12,若()()11,lim 1sin sin k k k k k k AA k k k k →∞⎛⎫⎪+=⎪ ⎪⎪⎝⎭求.(2004-2005)()01lim 10K k A→∞⎛⎫= ⎪⎝⎭解答: 题型九:非线性迭代1,设计一个算法求125的值.(2008-2009B)101125(),0.2k k kx x x +=+>解答:牛顿迭代公式:x2,给出用牛顿法求6170的近似值的迭代公式,并确定初值的取值范围.(2010-2011)6661556'5"4"*600066601050517017001701170[5]66()170,()60,()300170()()0,.1170170170(5)17061170()(5)6k k k k k kx x x x x x x x f x x f x x f x x x f x f x x x x x x g x x x +=-=-=-=+=-=>=>>⋅><-=+-=+-解答:转化为方程的正根.由牛顿迭代法得迭代公式:当时,故此时收敛到当0<时,设66'6666611*60170,(0,170)1850()(5)0,(0,170),()(170)0,6:1700,170,(0,170),.0.x g x x g x g xx x x x x ∈=-<∈>=->>∈>故故回到前段.所以当迭代公式也收敛到综上:3,给出用牛顿法求5140近似值的迭代公式,并给出初值的取值范围.(2009-2010)解答:方法同上.4,设φ(x)=x+c(x 2-5),当c 为何值时,x k+1=φ(x k ),(k=0,1,2…)产生的序列{x k }收敛于5;又c 为何值时收敛最快?(2010-2011)2''**1**'*5),||<1,||<1110,=50;51.25k k cx x c ϕϕϕϕϕ+-=-<<-<<解答:(x)=x+c(x (x)=1+2cxx (x )收敛,则有(x )即1+2cx 又,则当(x )=0,即c=-时,收敛最快5,设2()(3)x x c x ϕ=+-,应如何选取常数c 才能使迭代1(),(0,1,2)k k x x k ϕ+==具有局部收敛性?C 取何值时,这个迭代收敛最快?取x 0=2,123c =-计算()x ϕ的不动点,要求当61||10k k x x -+-<时结束迭代.(2004-2005)****21*2'****'**1(),(3)3,()(3)()|133|12|1,11,3,-0,,0.333(2),()0+0,636(3),k k k x x x x c x x x x c x x cx cx x c or c x x ϕϕϕϕ++==+-=±=+-<+<-<<=±<<<<==±±解答:(1),令x 收敛于则故要局部收敛,即|又得根据收敛阶定理,当时,迭代至少二阶收敛,即12cx 得c=故c=时,迭代收敛最快.迭代公式为:2012346*431(3)2321.7113248651.7319268031.7320508041.732050808|10,: 1.732050808.k k x x x x x x x x x x -=--=====-<=又因为|故6,方程x 3-3x-1=0在x=2附近有一根,构造一个局部收敛的不动点迭代法,并说明收敛的理由.(2009-2010)3'3223132(1.5) 1.765174168,(2.5) 2.040827551[1.5,2.5]()[1.5,2.5]11()|||0.33,(13) 5.5xx x x x x ϕϕϕϕϕ+===∈∈=≤<+解答:(x)=取的邻域[1.5,2.5]当时,又因为|故迭代在[1.5,2.5]上整体收敛.7,已知方程42()440f x x x =-+=有一个两重根02x =,请以初值x 0=1.5,用m 重根的牛顿迭代法计算其近似值,要求51||10k k x x -+-<.(2008-2009B)(P204例7.7)8,(1),已知方程240xex +-=在0.6附近有一根x ,迭代法214,0,1,2kx k x ek +=-=是否局部收敛?如果不收敛,试构造一个局部收敛的不动点迭代法,并说明收敛的理由.(2),取x 0=0.6,用你所构造的不动点迭代法求解该方程,迭代至x 5. (3),给出牛顿法求120的近似值的迭代公式,并给出初值的取值范围.(2007-2008)2'2'**1'''1(1):()4,()2|()|1,(0),1(4)211(4),()22(4)1(0)2,(1)3()[0,1]21()||(1)|161(4)2x xk k k k x e x e x x x In x In x x x In In x x x In x ϕϕϕϕϕϕϕϕϕϕ++=-=->>=---=-==∈≤=<=-解答:故该迭代公式不是局部收敛的.构造:理由:取邻域[0,1](x)=故又|故迭代式在[0,1]上整体收敛11021324354101(2),(4),21(4)0.61188771521(4)0.61013645921(4)0.61039483321(4)0.61035672221(4)0.61036234421120(3),(),0.2k k k k kx In x x In x x In x x In x x In x x In x x x x x ++=-=-==-==-==-==-==+>.则9,给定方程x 2+x-2=0,[0,2]x ∈,采用迭代公式xk+1=x k +c(x k 2+x k -2),(k=0,1,2…)求其根,问当c 为何值时,迭代法收敛?又当c 为何值时,迭代法收敛最快?(2011-2012)*2'''1,()(2)()1(21)2(1)||1(21)|1,-0.31(1)=03x x x c x x x c x c c ϕϕϕϕ==++-=++=++<<<解答:当|即时,线性收敛当,即c=-时收敛最快.10,给定方程230x xe -=,[3,4]x ∈(1),构造一种线性收敛的不动点迭代公式求该方程的根(含迭代公式,初值取何值或何区间,迭代法收敛的原因); (2),构造一种二次收敛的不动点迭代公式求该方程的根(含迭代公式,初值取何值或何区间,迭代法收敛的原因).(2011-2012)21111'12102'"0(1),()(3),3.29(3)()(4) 3.8712(),[3,4]23(3),(0,1,2,)[3,4].(2),()3,[3,4](3)0,(4)0()60,()60,[3,4]3k k x x x x In x x x x In x k x f x x e x f f f x x e f x e x x ϕϕϕϕϕ+==≤≤=≤≤∈==∈=-∈><=-<=-<∈=解答:故不动点迭代公式:x 对于任意初值收敛取初值时,牛顿213.6kkx kk k x k x ex x x e+-=--迭代法:收敛,且二次收敛11,方程x 3-x 2-1=0在x=1.5附近有根,建立一个收敛的迭代公式,并证明其收敛性.(2004-2005)122''33312111.51()1(1.3) 1.591715976,(1.6) 1.390625[1.3,1.6]()[1.3,1.6]222(),|()|||0.921.311k k k kx x x x x x x x x x x x x ϕϕϕϕϕϕ++=+==+==∈∈=-=-≤<=+解答:取的邻域[1.3,1.6]故当时,又故迭代公式:在[1.3,1.5]上整体收敛.12,(1),已知方程1020x e x +-=在0.09附近有一根x,迭代法1(210),(0,1,2)k k x In x k +=-=是否局部收敛?如果不收敛,请构造一个局部收敛的不动点迭代法,并说明收敛的理由;(2),取x 0=0.09,用局部收敛的迭代法计算x 5; (3),用牛顿法求3234的近似值,并给出初值的取值.(2006-2007)'''*1''5(1),()(210),()15|()|1,[0,1],|()|>1.11510111(),()51010(0)0.1,(0.12)0.087250323[0,0.12]()[0,0.12]()|kx k x xx In x x xx x x x e x e x e x x x ϕϕϕϕϕϕϕϕϕϕ+-=-=->∈=-=-=-==∈∈≤解答:显然故该迭代公式不是局部收敛的构造:因为取[0,0.12]邻域考察故当时,又|'0.12110.09010.09058257820.09051881530.0905241|(0.12)|||0.1131101151011(2),510110.09,0.090582578510110.090518815510110.09052579651011510k kx k x k e x e x e x x e x e x e x e ϕ++=-<<=-=-==-==-==-==-故迭代公式:在[0,0.12]上整体收敛.57960.09052503151200.090525031110.0905251155102117(3),()30.k k k x e x x x +==-==+>使用迭代公式:进行求解.初值:x13,设方程x 3-3x-1=0在x=2附近有根;1),证明该方程在区间[1.5,2.5]内有唯一根x *;2),确定迭代函数φ(x).当初始值x 0在何区间取值时,迭代公式x k+1=φ(x k ),(k=0,1,2…)收敛到x *,并说明理由. 3),写出求解该方程组的牛顿法迭代公式,当初始值x 0在何区间取值时,牛顿法迭代公式收敛到x,并说明理由.取x 0=1.8,用牛顿法迭代公式计算x,要求(1)()4||||10k k x x +--<.4),写出求解该方程的弦截法迭代公式,当初始值在何区间取值时,弦截法迭代公式收敛到x,并说明理由.(2005-2006)3'2'331223(1),()31,()33(1.5) 2.125,(2.5)7.125(1.5)(2.5)0,()0()0,[1.5,2.5][1.5,2.5].(2),3121(3),,3333()3k k k k k k k f x x x f x x f f f f f x f x x x x x x x x x f x x +=--=-=-=⋅<=>∈--+=-=--=-解答:证明:故在[1.5,2.5]内有根.又故方程在区间内有唯一根牛顿法迭代公式:'2"1,()33,()6x f x x f x x-=-=题型十:稳定算法1,对给定的x ,下列两式能否直接计算,说明理由;如果不能,请给出变换算式:(1)21x x +-,x 很大;(2)311x +-,|x|很小.(2010-2011)223331(1):1111=.1+1x x x x x x x +-=+++-+解答:不能直接计算,因为两个相近的数相减,会产生较大的误差:;2,为了提高计算精度,当正数x 很大时,计算1x x +-时应转化成什么形式.(2005-2006)3,给出计算积分1,(0,1,2,10)10nnx I dx n x ==+⎰的递推稳定算法和初值.(2010-2011) 1111111000-11110002010101101010101=101011111)11101010(1)11121[].2111)101)220(1)n n n n n n n n n n x x dx x dx x dx I I x x nn n x x x dx dx dx n x n n n n ----+-===-=-++-=<<=+++=+=+++⎰⎰⎰⎰⎰⎰解:I 该算法不稳定,变形得:I 因为(取初值I ((4,设计一种求1x n nI e x dx =⎰(n 为非负整数)稳定的递推算法,包括递推公式,初值的确定;当初值201221e I =⋅时,利用上述稳定的递推公式计算三个连续的积分值.(2011-2012)题型十一:部分证明题1,利用差分的性质证明:12+22+…n 2=n(n+1)(2n+1)/6222()12,g n n n =++证明:设函数对任意的建立差分表:g(n)(n+1)22n+3 2 g(n+1) (n+2)2 2n+5 2 g(n+2) (n+3)2 2n+7 g(n+3) (n+4)2 g(n+4)函数g(n)的三阶差分是与n 无关的非零常数,故g(n)是n 的三次多项式:3(1)1,(2)5,(3)14,(4)30111()()14521231(1)(2)(1)(2)(3)(1)(21)14521!2!3!6g g g g n n n g n N n n n n n n n n n n ====---⎛⎫⎛⎫⎛⎫==+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭------++=+⋅+⋅+⋅=按等距节点牛顿向前插值公式建立三次插值多项式,则2,证明:n+1个互异节点的插值型求积公式的代数精确度至少为n.(2010-2011)(1)0()(),.(1)!n nbi ai f x x dx n ζ+=-+∏⎰证明:截断误差R[f]=易证 3,若0{()}ni i l x =是关于互异节点0{}ni i x =的拉格朗日插值基函数组,函数0011()()()(),(1)n n f x x l x x l x x l x n =++≥,证明:f(x)≡x.(2009-2010)00110()()()()()()()()n n i i n n i f x L x f x l x x l x x l x x l x f x x=≈==+++≡∑证明:故:4,证明:0101'()[()()]"()2hf x f x f x f h ζ=--,其中h=x 1-x 0,01(,)x x ζ∈.(2009-2010)"'20000"'211001010'"010())()()()2!(),())()()()2!1()[()()]()2f f x x x x x f x x f x f x x x x x hf x f x f x f h ζζζ+-+-==+-+-=--证明:由泰勒公式得f(x)=f(x 令则f(x 整理得: 5,证明:关于互异节点0{}ni i x =的拉格朗日插值基函数0{()}ni i l x =满足恒等式012()()()()1n l x l x l x l x +++≡.(2008-2009B)(2006-2007B)(2004-2005)120(1)(1)1010()1,(),,1=L ()()()()()()()1,()0,()()0(1)!()()()()1n n n n i n i n n n n ni n i f x f x x x x x R x l x f x R x f f x fx R x W x n l x l x l x l x ζ=+++==+=+=≡==+=+++≡∑∑证明:令对在上进行拉格朗日插值,有因故故:6,证明求积公式()[()()]2bab af x dx f a f b -≈+⎰的截断误差:3"()[](),12f R f b a ηη=--∈其中:(a,b).(2007-2008) (1)001(2)(2)(2)33()()(1)!1,,()()()1"()()()()()()()2!2!2!612n nb i ai b b aa f x x dx n n x a xb f f f f x a x b dx x a x b dx a b b a ζζηηη+=-+===--=--=⋅-=--∏⎰⎰⎰证明:插值型求积公式截断误差R[f]=R[f]=7,设矩阵A 为可逆上三角阵,证明A -1仍为上三角阵,并导出求逆算法.(2006-2007B)8,设x k =a+kh(k=0,1,2;h>0),f(x)的三阶导数连续,证明:2(3)102021'()[()()](),(,)26h f x f x f x f x x h ζζ=-+-∈其中为中值.(2011-2012)001122120201201201021012202112020101222,),,),,)()()()()()()()()()()()()()()()()()()()()()()()()(22x y x y x y x x x x x x x x x x x x x f x f x f x x x x x x x x x x x x x x x x x x x x x x x x x f x f x f x h h h ------=++------------=-+证明:过(((的拉格朗日插值多项式为:L 12'2102(3)201202(3)'''1210122'(3)10202)1()[()()]2()()()()()(),(,)3!()()()[()()()]3!1()[()()](),(,)26x x L x f x f x hf f x L x x x x x x x x x f f x L x x x x x x x h f x f x f x f x x h ηηηζζ==-+-=---∈-=---=-+-∈又故:。

数值分析第5版

数值分析第5版

数值分析第5版简介数值分析是研究利用计算机进行数值计算的一门学科。

它包括了近似计算、数值解法、误差分析等内容,广泛应用于科学计算、工程计算以及其他领域。

《数值分析第5版》是数值分析领域的经典教材,由Richard L. Burden和J. Douglas Faires共同撰写。

内容概述本教材共分为12个章节,从基础概念开始,逐步介绍各种数值计算方法和技术。

以下是每个章节的简要介绍。

第1章:导论本章介绍了数值分析的基本概念和应用领域。

阐述了数值计算的重要性,并介绍了课程所涉及的主要内容和学习方法。

第2章:误差分析本章讲解了数值计算中的误差类型和误差分析方法。

包括绝对误差和相对误差的定义与计算、舍入误差、截断误差等。

第3章:插值与多项式逼近本章介绍了数值计算中的插值和多项式逼近方法。

包括拉格朗日插值、牛顿插值、三次样条插值等。

讲解了这些方法的原理和实现过程。

第4章:数值积分与数值微分本章讲解了数值计算中的数值积分和数值微分方法。

包括梯形法则、辛普森法则、数值微分的定义和计算过程。

第5章:非线性方程的数值解本章介绍了求解非线性方程的数值解法。

包括二分法、牛顿法、割线法等。

讲解了这些方法的原理和应用。

第6章:线性代数方程组的数值解法本章讲解了求解线性代数方程组的数值解法。

包括高斯消元法、LU分解法、迭代法等。

详细讲解了这些方法的原理和计算过程。

第7章:矩阵特征值问题本章介绍了求解矩阵特征值问题的数值解法。

包括幂法、反幂法、QR方法等。

讲解了这些方法的原理和实现过程。

第8章:常微分方程的数值解本章介绍了求解常微分方程的数值解法。

包括欧拉法、龙格-库塔法、多步法等。

讲解了这些方法的原理和应用。

第9章:偏微分方程的数值解本章讲解了求解偏微分方程的数值解法。

包括有限差分法、有限元法等。

详细讲解了这些方法的原理和实现过程。

第10章:函数逼近与数据拟合本章介绍了函数逼近和数据拟合的方法。

包括最小二乘法、曲线拟合等。

数值分析课后答案(4)

数值分析课后答案(4)

数值分析课后答案(4)习题四1.已知ln(2.0)=0.6931;ln(2.2)=0.7885,ln(2.3)=0.8329, 试用线性插值和抛物插值计算.ln2.1的值并估计误差解:线形插值:取02.0x = 00.6931y = 12.2x = 10.7885y = 22.3x = 20.8329y = 110 2.1 2.3 2.1 2.0(0)(1)0.69310.832901102.0 2.32.3 2.0x x x x L f x f x x x x x ----=+=+----=0.7410抛物线插值:12200102()()()()x x x x l x x x x --=-- 02211012()()()()x x x x l x x x x --=-- 01222021()()()()x x x x l x x x x --=--2200211222L l y l y l y =++=0.7422.已知x=0,2,3,5对应的函数值分别为y=1,3,2,5.试求三次多项式的插值解:解:取00x = 12x = 23x = 35x = 12330010203()()()()()()x x x x x x l x x x x x x ---=--- 023********()()()()()()x x x x x x l x x x x x x ---=---01332202123()()()()()()x x x x x x l x x x x x x ---=--- 01233303132()()()()()()x x x x x x l x x x x x x ---=---3300311322333L l y l y l y l y =+++=1156261310323++-x x x3.设函数f(x)在[a,b]上具有直到二阶的连续导数,且f(a)=f(b)=0, 求证:2"1m ax |()|()m ax |()|8a x ba x bf x b a f x ≤≤≤≤≤-解:取01;x a x b ==,1()()0x a x b L f a f b a bb a--=+=--''''211()()()|()()||()()|||||224f f b a R f x L x x a x b εε-=-≤--≤∴''21()()|()||()|||||24f b a f x L x ε-≤+''1()|()||||()|8f L x b a ε=+-|||8)("|a b f -=ε4.证明n 次Lagrange 插值多项式基函数满足∑==ni ki n ki x x l x 0,)(, n k ≤≤0解:取()kf x x = 则n 0()nki i Ln lx x ==∑(1)()()()!n nii fx f x Ln Rn x x n +=-==-∑(1)0()()!k n nii x x x n +==-∑=0所以()()f x Ln x = 即证 5.证明 )(')()()(,xi x x x x l n i n i n ωω-=证明:、01110111()()()()()ln ()()()()()i i n i i i i i i i n x x x x x x x x x x i x x x x x x x x x x -+-+-----= -----01110111()()()()()()()()()()i i ni i ii i i i i nix x x x x x x x x x x x x x x x x x x x x x x x -+-+------=------取 0111()()()()()()n i ii n x x xx xxxx x x x x ω-+=------则 '1020111011()()()())()()()()()()()()()n nn i in n x x x x x x x x x x x x x xx xx x x x x x x x x xxω-+-=--+---+-----++--- ('0111()()()()()()n i i i i i i i i n x x x x x x x x x x x ω-+=-----所以,'()ln ()()n i n i x i x x x ωω=-6.设nn x a x a a x f ++=10)(有n 个不同的实根.,,21n x x x证明:=-=∑11,0)('n ni i kia x f x证明:取()kx x ?= 1()()n n x x xx ω=-- 而,0()nn f x a a x =++ 有n 个不同的实根。

数值分析实验报告5篇

数值分析实验报告5篇

误差分析实验1.1(问题)实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。

对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。

通过本实验可获得一个初步体会。

数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。

病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。

问题提出:考虑一个高次的代数多项式)1.1()()20()2)(1()(201∏=-=---=k k x x x x x p显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。

现考虑该多项式的一个扰动)2.1(0)(19=+x x p ε其中ε是一个非常小的数。

这相当于是对(1.1)中19x 的系数作一个小的扰动。

我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。

实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。

roots(a)u =其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。

设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程01121=+++++-n n n n a x a x a x a的全部根;而函数poly(v)b =的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。

可见“roots ”和“poly ”是两个互逆的运算函数。

;000000001.0=ess );21,1(zeros ve = ;)2(ess ve =))20:1((ve poly roots +上述简单的Matlab 程序便得到(1.2)的全部根,程序中的“ess ”即是(1.2)中的ε。

实验要求:(1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。

数值分析第五版章PPT学习教案

数值分析第五版章PPT学习教案

ex xn n0 n!
I0 1 e1, In 1 nIn1
(
A)
I~I~0n
1 0.3679 1 nI~n1
0.6321
e1 1 (1) (1)2 (1)7
2!
7!
truncation error
R7 e1 0.3679 0.000025
I~0 0.6321, I~1 0.3679, I~2 0.2642, I~3 0.2074, I~4 0.1704, I~5 0.1480,
概率分析法 向后误差分析法 区间分析法
1. 病态问题与条件数 病态问题 输入(微小的扰动)
输出(相对误差很大)
条件数 C p
对于f (x), x有微小的扰动x x x*
er* ( f (x* ))
f (x) f (x*) f (x)
er*
x x
f (x) f (x*)
C p
f (x)
数值分析第五版章
会计学
1
研 究 对 象 作 用特点
数值计算误差
误 差 分 析 避 免危害
数 值 计 算 算 法设计
数学软件
1.1 数值分析的对象、作用与特点
1 研究对象
用计算机求解数学问题的数值计算方法、理论及软件实现
实际问题 数学模型
应用数学
数值计算方法
程序设计(数学软件 )
计算数学即数值分析
数 的值 研分 究析 对( 象上计机算计方算法求)出插结值果与函数逼近(2、3)数值微分与数值积分(4)
( x1* / x2* )
x2* ( x1* ) x1* ( x2* )
x2* 2
2.一元函数误差限(利用Taylor 展开)

数值分析第五版

数值分析第五版

1 , ( 2 1)6
(3 2 2)3 ,
6
1 , 99 70 2 。 (3 2 2)3
解:设 y ( x 1) , 若x
1 2 , x* 1.4 ,则 x* 101 。 2
若通过
1 计算 y 值,则 ( 2 1)6
5
y*
设 u 899, y f (30) 则 u
*
1 u* 4 2

6
y*
u * * u
1 u * 0.0167 3
若改用等价公式
ln( x x 2 1) ln( x x 2 1)
1 x* 7 ( x 1)
*
6 y* x* 7 ( x 1)
*
y* x*
若通过 (3 2 2)3 计算 y 值,则
y* (3 2 x* ) 2 x* 6 y* x* * 3 2x y* x*
则二次拉格朗日插值多项式为
L2 ( x) yk lk ( x)
k 0
2
3l0 ( x) 4l2 ( x) 1 4 ( x 1)( x 2) ( x 1)( x 1) 2 3 5 3 7 x2 x 6 2 3
2.给出 f ( x) ln x 的数值表
x0 1, x1 1, x2 2, f ( x0 ) 0, f ( x1 ) 3, f ( x2 ) 4; l0 ( x) l1 ( x) l2 ( x ) ( x x1 )( x x2 ) 1 ( x 1)( x 2) ( x0 x1 )( x0 x2 ) 2 ( x x0 )( x x2 ) 1 ( x 1)( x 2) ( x1 x0 )( x1 x2 ) 6 ( x x0 )( x x1 ) 1 ( x 1)( x 1) ( x2 x0 )( x2 x1 ) 3

数值分析

数值分析

数值分析第一章 绪论 ................................................................................................................................... 1 第二章 函数插值 ............................................................................................................................. 2 第三章 函数逼近 ............................................................................................................................. 5 第四章 数值积分与数值微分 ....................................................................................................... 11 第五章 解线性方程组的直接解法 ............................................................................................... 13 第六章 解线性方程组的迭代解法 ............................................................................................... 17 第七章 非线性方程求根 ............................................................................................................... 20 第九章 常微分方程初值问题的数值解法 .. (22)第一章 绪论1.1的相对误差不超过0.1%,应取几位有效数字?解:14a =。

考研数二内容范围有哪些

考研数二内容范围有哪些

引言:考研数二是指考研数学二科目的内容范围,它是考生在数学方面的能力综合测试。

本文将详细介绍考研数二的内容范围,包括线性代数、概率论与数理统计、常微分方程、数值分析和离散数学五个大点的内容细节。

概述:考研数二是考研数学科目中的一部分,主要考察考生对于数学基础知识的理解、分析和解题能力。

涉及的内容相对较广,包括线性代数、概率论与数理统计、常微分方程、数值分析和离散数学等方面。

正文:一、线性代数1.1矩阵与向量的基本概念1.2线性方程组与矩阵的求解1.3行列式与特征值特征向量1.4线性空间与子空间1.5线性变换与矩阵的相似与对角化二、概率论与数理统计2.1概率论基本概念与性质2.2随机变量与随机向量2.3概率分布与密度函数2.4数理统计基本概念与方法2.5参数估计与假设检验三、常微分方程3.1常微分方程的基本概念与分类3.2一阶常微分方程的解法3.3高阶常微分方程的解法3.4变系数与常系数线性微分方程3.5常微分方程的数值解法四、数值分析4.1插值与逼近4.2数值微积分4.3数值代数方程的求解4.4数值常微分方程的求解4.5数值线性代数的基本算法五、离散数学5.1集合与命题逻辑5.2代数系统与关系5.3图论基础5.4布尔代数与逻辑门电路5.5离散随机变量与排列组合总结:考研数二的内容范围包括了线性代数、概率论与数理统计、常微分方程、数值分析以及离散数学。

通过对每个大点的详细阐述,我们可以看出,这些内容涉及的数学知识非常广泛,涵盖了数学的基础概念、方法和应用。

掌握了这些内容,考生就可以具备较为扎实的数学基础,为考研数学科目的学习打下坚实的基础。

因此,考生需要认真学习和理解这些内容,并通过练习题和题目的解析来提高自己的解题能力。

数值分析课后习题答案

数值分析课后习题答案

x2 6.6667x2 8.205
再解
1
15 56
x31.785,7得 x35.769
1 25069x4 0.47847x4 1.4872
1 x5 5.3718 x5 5.3718
2-10.证明下列不等式:
(1)x-yx-z+z-y; (2)|x-y|x-y;
证明 (1)x-y=(x-z)+(z-y)x-z+z-y
b.用Gauss消元法
102 x y 1 x y 2
回代得解: y=1, x=0.
102 x Байду номын сангаасy 1
100y 100
再用列主元Gauss消元法
102 x y 1 x y 2
回代得解: y=1, x=1.
x y
y 1
2
2-8.用追赶法求解方程组:
4 1
x1 100
1 4 1
x2 0
3-8.判定求解下列方程组的SOR方法的收敛性.
2 1 0 0 x1 1
1
0 0
2 1 0
1 2 1
0 12
x2 x3 x4
0 00
解 直接可验证系数矩阵A是负定矩阵,所以-A是对称
1-3.为了使101/2的相对误差小于0.01%,试问应取几位 有效数字?
解 因为101/2=3.162…=0.3162…10,若具有n位有效 数字,则其绝对误差限为0.5 101-n ,于是有
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623
1 2
0
12 1,
1 2
1 2
0
12

数值分析第五版

数值分析第五版

数值分析第五版1. 简介数值分析是一门研究如何用数值方法来求解数学问题的学科。

它主要关注数值计算方法的设计、分析和实现。

《数值分析第五版》是一本经典的数值分析教材,由Richard L. Burden 和J. Douglas Fres合著,已经出版了多个版本。

2. 内容概述《数值分析第五版》的内容主要涵盖以下几个方面:2.1 数值计算的基础•数值计算的误差与收敛性•计算舍入误差分析•稳定性与条件数2.2 数值线性代数•线性方程组与矩阵运算•泛函与内积空间•最小二乘问题•特征值与特征向量2.3 非线性方程求根•近似求解法•迭代法和收敛性•多项式插值2.4 数值微积分•数值积分•微分方程初值问题的数值解•边值问题与本征值问题2.5 优化问题•无约束优化•线性规划3. 主要特点《数值分析第五版》具有以下几个主要特点:3.1 理论与实践相结合本书在理论讲解的,也会介绍实际问题的求解方法,并通过具体的例子帮助读者理解和运用数值计算方法。

3.2 算法深入浅出书中详细介绍了各种数值计算方法的算法原理和实现细节,并提供了众多算法的伪代码和MATLAB代码。

3.3 常用数值工具的介绍本书介绍了常用的数值计算工具,如MATLAB、等,以及相应的数值计算库和函数。

3.4 实例与习题丰富书中包含了大量实例和习题,帮助读者巩固所学知识,并通过实践提高数值计算的能力。

4. 资源推荐除了《数值分析第五版》这本教材外,还有一些相关的推荐资源:•《数值分析》(高级)王天浩,郭中杰•《数值计算方法》(第3版)何书进•网课资源:Coursera、edX等平台提供了一些优秀的数值分析课程5.《数值分析第五版》是一本全面而深入的数值分析教材。

它不仅覆盖了数值计算的基础知识,还介绍了数值线性代数、非线性方程求根、数值微积分和优化问题的相关内容。

这本教材以理论与实践相结合的方式呈现,通过丰富的实例和习题帮助读者理解和应用数值计算方法。

如果你对数值计算感兴趣或者需要用数值方法解决实际问题,《数值分析第五版》是一本值得推荐的书籍。

数值分析57节

数值分析57节

j (x) ( k (x)
xx
x
j )l xk
2j(
x). x xk 1 xk xk 1
2 ,
2
k 1(x)
x xk 1
x xk xk 1 xk
.
(5.5) (5.9)
11
于是满足条件(5.7)的插值多项式是
H3 (x) ykk (x) yk1k1(x) mk k (x) mk 1 k1(x),
H3 (xk ) ynk ,
H3 (xk 1) yk 1;
H2n1(x) [ y j j (x) m j j (x)].
H 3 ( xk
)
mj 0 k
,
H3 (xk1) mk1.
(5.(35).7)
相应的插值基函数为 k (x),k1(x), k (x), k1(x), 它们满足条件
26
设已知节点 a x0 x1 上的函xn数 值b
f0,
f1,,
fn,

hk
xk 1
xk
,h
max k
hk
,
求一折线函数 Ih (,x) 满足:
1. Ih (x) C[a,b],
2. Ih (xk ) fk (k 0,1,, n), 3. Ih (x在) 每个小区间 [xk 上, x是k1线] 性函数.
k
b)l0j (,1x,j )] , n0),.
(5.2)
4
整理得 解出
ax j b 1; a 2lj (x j ) 0.
由于
a 2lj (x j ), b 1 2x jlj (x j ).
l j (x)
(x x0 )(x (x j x0 )(x j

数值分析部分课后答案第二版朱晓临

数值分析部分课后答案第二版朱晓临

数值分析第二版朱晓临第一章习题3.324.045≈324.060.0876≈60.090.00035167≈0.00035172.00043≈2.0006.①**x xx≤51441111111010100.005%222a a (1≤1a ≤9)故它的相对误差限为0.005%②∵*12120 (10)0....10nnn n xa a a a a a <10.110na 相对误差限=0.03%***3311*n n n x xx xx x<0.03%0.(a +1)10=0.3(0.a +1)10<0.510∴至少有3位有效数字。

7.6*(21),2 1.4,0.004096A A 取则2 1.4取时,⑴610.0052327821⑵33220.008⑶310.005125261322⑷997021所以利用第三个得到的计算结果的绝对误差最小。

8.由函数的绝对误差公式:***(())'()()e f x f x e x ①令2**2*(),()(),100f x x f x x xcm由题目得,*(())1e f x ,**'()2f x x②把②代入①,得:1**2()x e x 1*2100()e x *()e x 0.005cm边长的测量误差不超过0.005cm 时,才能使其面积的误差不超过12cm 。

11.**()ln ,()ln f x x f x x令则由公式***(())'()()e f x f x e x ,得:***1(())0.510e f x x x lx又***()rx xx x,由此可知,*()0.510lrx 所以*x 的相对误差限为0.510l,有l 位有效数字。

14.111111*1111101111*1111515511,10,9,...,1,05511655116n+15n+1116125120.01388890.01666670.01388890.01666670.07777852nn n n nnn nnnnxx I I dxxdxx nI I nnI x x dxdxx dxxI I I II其中为初值()()把*111,10,9,...,1,055nn n I I nI n代入即可得到的近似值。

(完整word版)数值分析报告-二分法和牛顿法方程求根(word文档良心出品)

(完整word版)数值分析报告-二分法和牛顿法方程求根(word文档良心出品)

《数值分析》实验报告一**: **学号: PB********实验一一、实验名称方程求根二、实验目的与要求:通过对二分法和牛顿法作编程练习和上机运算,进一步体会它们在方程求根中的不同特点;比较二者的计算速度和计算精度。

三、实验内容:通过对二分法和牛顿迭代法作编程练习和上机运算,进一步体会它们在方程求根中的不同特点 。

(一)二分法算法:给定区间[a,b],并设f (a )与f (b )符号相反,取δ为根的容许误差,ε为值的容许误差。

(1)令c=(a+b)/2(2)如果(c-a)< δ或)(c f <ε,则输出c ,结束;否则执行(3)(3)如果f(a)f(c)<0,则令)()(,c f b f c b ←←;否则,则令)()(,c f a f c a ←←,重复(1),(2),(3)。

(二)牛顿迭代法:给定初值0x ,ε为根的容许误差,η为)(x f 的容许误差,N 为迭代次数的容许值。

(1)如果)(x f <η或迭代次数大于N ,则算法结束;否则执行(2)。

(2)计算)('/)(0001x f x f x x -=(3)若 < 或 < ,则输出 ,程序结束;否则执行(4)。

(4)令 = ,转向(1)。

四、实验题目与程序设计1、二分法3.1.1、用二分法求方程a. f(x)= x x tan 1--在区间[0,π/2]上的根,c. f(x)=6cos 22-++-x e x x 在区间[1,3]上的根。

源程序:3.1.1.a#include<stdio.h>#include<math.h>void main(){float a,b;double c,y,z;printf("plese input two number a and b:\n");scanf("%f%f",&a,&b);c=(a+b)/2;y=1/c-tan(c);printf("a=%f,b=%f,b-a=%f,c=%f,f(c)=%f\n",a,b,b-a,c,y);while(fabs(b-a)>0.00001|| fabs(y)>0.00001){z=1/a-tan(a);if(z*y<0)b=c;elsea=c;c=(a+b)/2;y=1/c-tan(c);printf("a=%f,b=%f,b-a=%f,c=%f,f(c)=%f\n",a,b,b-a,c,y);}x x 01-ε)(1x f ηx 1x 0x 1}输入0 1.5707563( /2~1.5705563)得到下表:由上表可以看出刚开始时f(c)取值幅度很大,但是经过一段历程之后,幅度变得平缓甚至基本接近与零,我们认为,x=0.8603是方程的根,结果与实际想要得到的值相当接近。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
用多项式拟合表2-7中的离散数据 中的离散数据。 例 2.13 用多项式拟合表 中的离散数据。
表2-7
i xi yi
0 0.00 0.10
1 0.25 0.35
2 0.50 0.81
3 0.75 1.09
4 1.00 1.96
第二章 插值与拟合
作数据点的图形如图2-2,从图形看出用二次多项式拟合比较合适。 解 作数据点的图形如图 ,从图形看出用二次多项式拟合比较合适。这 2 时n=2,子空间Φ 的基函数 ϕ 0 ( x ) = 1 , ϕ 1 ( x ) = x , ϕ 2 ( x ) = x 。数据中没有给 , 出权数,不妨都取为1, 出权数,不妨都取为 ,即 ω i = 1, i = 0,1,L ,4 。
x ϕ ( x ) = αe β , (2)从数据的图形看,可以选用指数函数进行拟合。设 从数据的图形看, 从数据的图形看 可以选用指数函数进行拟合。
对说函数 ϕ ( x ) = α e β x的两边取之然对数,得 lnϕ(x) = lnα + β x 。 的两边取之然对数, 若令 t = 1 x , z = ln ϕ ( x ), A = ln α ,则有z=A+βt。这是一个线性模型。 则有 。这是一个线性模型。 将本题离散数据作相应的转换,见表2-9。 将本题离散数据作相应的转换,见表 。 表2-9

n
k=0
i=0
ω i [ y i − ϕ ( x )] = min
* 2
ϕ ( x )∈ Φ

n
i=0
ω i [ y i − ϕ ( x )] 2
(2.5.1)
* m 最小二乘拟合。 则称ϕ ( x )为离散数据{ x i , y i } i = 0在子空间 Φ 中带权 {ω i } m= 0 的最小二乘拟合。 i
* * * 从而, 解此方程组得 a0 = 0.1214, a1 = 0.5726, a2 = 1.2114 。从而,拟合多项式为
ϕ * ( x ) = 0 . 1214 x + 0 . 5726 x + 1 . 2114 x 2 ,
第二章 插值与拟合
其平方误差 δ
2 2
* 的图形见图2-2。 = 0.0337。拟合曲线 ϕ ( x ) 的图形见图 。
函数ϕ ( x )在离散点处的值为
ϕ ( xi ) =
∑a
k =0
n
k
ϕ k ( x ) , i = 0 ,1 , L , m .
第二章 插值与拟合
因此,( 因此,(2.5.1)右边的和式是参数 a 0 , a 1 , L a n 的函数,记作 ) 的函数, ,(
I (a 0 , a1 ,L a n ) =
n 它们可以作为子空间φ=span { , x, L , x }的 它们可以作为子空间 {ϕ k (x )}n =0,它们可以作为子空间 1 k 一组基。 一组基。求出多项式序列 { k ( x )}n 后,可以建立拟合模型 ϕ k =0
中至少有n+1个互异,那么可用三项递推公式 个互异, 若点集 {xi }m 中至少有 个互异 那么可用三项递推公式(2.4.4)和(2.4.5) 和 i =0
i 0 1 2 3 4 5 6 7 8 9
ti 1.0000 0.5000 0.33333 0.2500 0.1667 0.1250 0.1000 0.0833 0.0714 0.0625 zi 1.3863 1.8575 2.0807 2.1736 2.2544 2.2885 2.3351 2.3437 2.3542 2.3681
按内积的定义, 按内积的定义,上式可写为
∑a
k=0
n
k
(ϕ k , ϕ j ) = ( y , ϕ j ), j = 0 ,1 , L , n .
(2.5.3) )
第二章 插值与拟合
这方程称为法方程 或正规方程)。这里, 这方程称为法方程(或正规方程 。这里,y ( x i ) = y i , i = 0 ,1 , L n . 法方程 线性无关, 由于 ϕ 0 , ϕ 0 , L , ϕ n , 线性无关,故(2.5.3)的系数矩阵非奇异,方程 )的系数矩阵非奇异, * 组(2.5.3)存在唯一的解 a k = a k , k = 0,1, L , n, 从而得 )
2 *
*
y 11
* * * * * * *
* *
3
o1
*
16 T
第二章 插值与拟合
这是一个非线性模型, 不能直接用上面讨论的方法求解。 其中 α > 0, β > 0。这是一个非线性模型, 不能直接用上面讨论的方法求解。 对于一般的非线性最小二乘问题.,用常规方法求解的难度较大。 对于一般的非线性最小二乘问题 ,用常规方法求解的难度较大。这里的非 线性模型比较简单,可以把它转化成线性模型, 线性模型比较简单,可以把它转化成线性模型,然后用上面讨论的方法求 解。
小得多, = 3 . 9486 小得多,拟
第二章 插值与拟合
2.5.3 正交多项式拟合
一般地,用最小二乘法得到的方程组( ),其系数矩阵是病态的 一般地,用最小二乘法得到的方程组(2.5.3),其系数矩阵是病态的。实用 ),其系数矩阵是病态的。 的曲线拟合办法是采用正交函数作φ的基。 的曲线拟合办法是采用正交函数作 的基。 的基
在许多实际问题中, 在许多实际问题中,变量之间的关系不一定能用多项式很好的拟 合。如何找到更符合实际情况的数据拟合,一方面要根据专业知识和 如何找到更符合实际情况的数据拟合, 经验来确定拟合曲线的形式, 经验来确定拟合曲线的形式,另一方面要根据数据点的图形性状及特 点来选择适当的曲线拟合这些数据。 点来选择适当的曲线拟合这些数据。 例 2.14 已知函数 已知函数y=f(x)的数据如表 。试选择适当的数学模型进行拟合。 的数据如表2-8。试选择适当的数学模型进行拟合。 的数据如表 表2-8 i 9 x 0 1 1 2 6.41 2 3 8.01 3 4 8.79 4 6 9.53 5 8 9.86 6 10 7 12 8 14
中作曲线拟合,称为多项式拟合。 即在多项是空间 Φ = span {1, x , L , x } 中作曲线拟合,称为多项式拟合。 这是一种特定的线性模型,因此可用上面讨论的方法求解。 这是一种特定的线性模型,因此可用上面讨论的方法求解。子空间 Φ 得基 k 函数为 ϕ k ( x ) = x , k = 0 ,1,⋅ ⋅ ⋅, n 。
ϕ * ( x) = 4.1490 + 1.1436 x − 0.048320 x 2
的图形见图2-3。 平方差 δ 2 = 3 .9486 , ϕ ( x ) 的图形见图 。有平方误差和 ϕ ( x ) 的 图形可见,拟合的效果不佳。因此,不宜直接选用多项式作拟合。 图形可见,拟合的效果不佳。因此,不宜直接选用多项式作拟合。
y 1.96 * * *
o*
按(2.5.3)有 ) 图2-2
1
x
2.5 1.875 a0 4.31 5 1.875 1.5625 a1 = 3.27 2.5 1.875 1.5625 1.3828 a 2.7975 2
解得A=2.4284,β=-1.0579,从而 α 从而 解得
= e A = 11.3411 于是,所求的拟合函数为 。于是,
2 2
ϕ * ( x ) = 11 . 3411 e − 1 .0579 x ,
平方误差为 δ 合效果较好。 合效果较好。
2 2
它比方法( ) = 0 . 1109 。它比方法(1)的 δ
i
16 yi 4.00 10.61
10.33 10.42 10.53
第二章 插值与拟合
观察数据点的图形(见图 选择二次多项式作为拟合模型。 解 (1)观察数据点的图形 见图 观察数据点的图形 见图2-3),选择二次多项式作为拟合模型。 选择二次多项式作为拟合模型 取所有权数为1, 取所有权数为 ,按(2.5.3)有 )
第二章 插值与拟合
ϕ1 ( x) = x。易得发方程
对表2-9种的数据,作线性拟合,这时 对表 种的数据,作线性拟合,这时n=1,子空间 的基函数为ϕ 0 ( x ) 种的数据 ,子空间Φ的基函数为
= 1,
2.6923 A 21 .4362 10 2.6923 1.49302 β = 4.9586 .
第二章 插值与拟合
§2.5 离散数据的曲线拟合
2.5.1 最小二乘拟合 2.5.2 多项式的拟合 2.5.3 正交多项式拟合 总结
第二章 插值与拟合
2.5 离散数据的曲线拟合
学习目标: 学习目标: 了解曲线拟合最小二乘法的意义。 了解曲线拟合最小二乘法的意义。掌握线 性拟合和二次多项式拟合的方法。 性拟合和二次多项式拟合的方法。

m
i=0
ω i[ yi −

n
k=0
a kϕ k ( x i )]2 .
(2.5.2) )
* 这样,求极小值问题( 这样,求极小值问题(2.5.1)的解 ϕ ( x ) ,就是求多元二次函数 ) 就是求多元二次函数
* * * I ( a 0 , a 1 , L a n ) 的极小点 ( a 0 , a 1 , L a n ), 使得
ϕ ( x) =
*

k =0
n
* a kϕ k ( x ) ∈ Φ .
* 可以证明, 可以证明,这样得到的 ϕ ( x ),对于任何 ϕ ( x ) ∈ Φ ,都有
∑ω [y
i=0 i
n
i
− ϕ ( x )] ≤
* 2
∑ω [y
i=0 i
n
相关文档
最新文档