电力电子实验操作步骤

合集下载

电力电子技术实验报告全

电力电子技术实验报告全

电力电子技术实验报告全一、实验目的本次电力电子技术实验旨在加深学生对电力电子器件工作原理的理解,掌握其基本应用和设计方法,提高学生的动手能力和解决实际问题的能力。

二、实验原理电力电子技术是利用电子器件对电能进行高效转换和控制的技术。

通过电力电子器件,可以实现电能的变换、分配和控制,广泛应用于工业、交通、能源等领域。

常见的电力电子器件包括二极管、晶闸管、IGBT等。

三、实验设备和材料1. 电力电子实验台2. 晶闸管、IGBT等电力电子器件3. 电阻、电容、电感等基本电子元件4. 示波器、万用表等测量仪器5. 连接线、焊锡等辅助材料四、实验内容1. 晶闸管触发电路的搭建与测试2. 单相桥式整流电路的设计和测试3. 三相桥式整流电路的设计与测试4. PWM控制技术在电能转换中的应用5. IGBT驱动电路的设计与测试五、实验步骤1. 根据实验要求,设计电路图,并选择合适的电力电子器件和电子元件。

2. 在实验台上搭建电路,注意器件的连接方式和电路的布局。

3. 使用示波器和万用表等测量仪器,对电路进行测试,记录实验数据。

4. 分析实验数据,验证电路设计的正确性和性能指标。

5. 根据实验结果,调整电路参数,优化电路性能。

六、实验结果与分析通过本次实验,我们成功搭建了晶闸管触发电路、单相桥式整流电路、三相桥式整流电路,并对PWM控制技术在电能转换中的应用进行了测试。

实验结果表明,所设计的电路能够满足预期的性能要求,验证了电力电子器件在电能转换和控制方面的重要作用。

七、实验总结通过本次电力电子技术实验,我们不仅加深了对电力电子器件工作原理的理解,而且提高了实践操作能力和问题解决能力。

实验过程中,我们学会了如何设计电路、选择合适的器件和元件,以及如何使用测量仪器进行测试和数据分析。

这些技能对于我们未来的学习和工作都具有重要意义。

八、实验心得在本次实验中,我们体会到了理论与实践相结合的重要性。

通过亲自动手搭建电路,我们更加深刻地理解了电力电子技术的原理和应用。

电力电子技术实验指导书(1).docx

电力电子技术实验指导书(1).docx

《电力电子技术》实验指导书电力电子实验室编华北电力大学二00六年十月1. 实验总体目标《电力电子技术》是电气工程及其自动化专业必修的专业基础课。

本实验是《电力电子技术》课程内实验,实验的主要目的是使学生在学习的过程屮通过实验环节进一步加深对电力电子电路工作原理的认识和理解,掌握测试电力电子电路的技能和方法,为后续课程打好基础。

2. 适用专业电气工程及其自动化以及和关各专业本科3・先修课程模拟电子技术基础,数字电子技术基础4.实验课时分配5. 实验环境实验室要求配有电力电子专用实验台,示波器,万用表等实验设备。

6. 实验总体要求掌握电力电子电路的测试和实验方法,拿握双踪示波器的使用方法;通过对实验电路的波形分析加深对电力电子电路工作原理的理解,建立电力电子电路的整体概念。

7. 本实验的重点、难点及教学方法建议《电力电子技术》实验的重点是:熟悉各种电力电子器件的特性和使用方法;掌握常用电力电子电路的拓扑、工作原理、控制方法和实验方法。

《电力电子技术》实验的难点是:电力电子电路的工作原理的理解和示波器的使用方法。

教学方法建议:在开始实验之前,通过多媒体设备对实验原理及实验方法进行讲解,同时对示波器的使用方法进行详细的讲解,对以通过实验演示的形式加深学牛对于实验内容的理解。

实验一、电力电子器件特性实验 (4)实验二、整流电路实验 (8)实验三、直流斩波电路实验(一)11实验四、直流斩波电路实验(二)14实验五、SPWM逆变电路实验17实验一、电力电子器件特性实验一、实验目的1 •熟悉MOSFET主要参数与开关特性的测童方法2.熟悉IGBT主要参数与开关特性的测试方法。

二、实验类型(验证型)木实验为验证型实验,通过实验对MOSFET和IGBT的主要参数和特性的测量,验证其开关特性。

三、实验仪器1 • MCL-07电力电子实验箱中的MOSFET与IGBT器件及英驱动电路部分2.双踪示波器3.毫安表4.电流表5.电压表四.实验原理MOSFET主要参数的测量电路原理图如图所示。

《电力电子技术》实验 指导书

《电力电子技术》实验 指导书

《电力电子技术》实验指导书兰州工业高等专科学校电气工程系实验中心目录实验安全操作规程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄Ⅰ实验一单结晶体管触发电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 1 实验二正弦波同步移相触发电路实验┄┄┄┄┄┄┄┄┄┄ 3 实验三锯齿波同步移相触发电路实验┄┄┄┄┄┄┄┄┄┄ 5 实验四西门子TCA785集成触发电路实验┄┄┄┄┄┄┄┄┄┄ 7 实验五单相半波可控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 11 实验六单相桥式半控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 14 实验七单相桥式全控整流及有源逆变电路实验┄┄┄┄┄┄┄ 17 实验八三相半波可控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 20 实验九三相半波有源逆变电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 23 实验十三相桥式半控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 26 实验十一三相桥式全控整流及有源逆变电路实验┄┄┄┄┄┄ 29 实验十二单相交流调压电路实验(1) ┄┄┄┄┄┄┄┄┄┄┄ 33 实验十三单相交流调压电路实验(2) ┄┄┄┄┄┄┄┄┄┄┄ 36 实验十四单相交流调功电路实验┄┄┄┄┄┄┄┄┄┄┄┄┄ 39 实验十五三相交流调压电路实验┄┄┄┄┄┄┄┄┄┄┄┄┄ 42 实验十六直流斩波电路原理实验┄┄┄┄┄┄┄┄┄┄┄┄┄ 45实验十七单相正弦波脉宽调制(SPWM)逆变电路实验┄┄┄┄ 48实验十八全桥DC-DC变换电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 53 实验十九直流斩波电路的性能研究(六种典型线路)┄┄┄┄ 55 实验二十单相斩控式交流调压电路实验┄┄┄┄┄┄┄┄┄┄ 61实验安全操作规程为了顺利完成电力电子技术实验,确保实验时人身安全与设备可靠运行要严格遵守如下安全操作规程:(1)在实验过程时,绝对不允许实验人员双手同时接到隔离变压器的两个输出端,将人体作为负载使用。

(2)为了提高学生的安全用电常识,任何接线和拆线都必须在切断主电源后方可进行。

(整理)电力电子实验指导书完全版

(整理)电力电子实验指导书完全版

电力电子技术实验指导书目录实验一单相半波可控整流电路实验 (1)实验二三相桥式全控整流电路实验 (4)实验三单相交流调压电路实验 (7)实验四三相交流调压电路实验 (9)实验装置及控制组件介绍 (11)实验一单相半波可控整流电路实验一、实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用;2.对单相半波可控整流电路在电阻负载及电阻电感负载时的工作做全面分析;3.了解续流二极管的作用;二、实验线路及原理熟悉单结晶体管触发电路的工作原理及线路图,了解各点波形形状。

将单结晶体管触发电路的输出端“G”和“K”端接至晶闸管的门极和阴极,即构成如图1-1所示的实验线路。

图1-1 单结晶体管触发的单相半波可控整流电路三、实验内容1.单结晶体管触发电路的调试;2.单结晶体管触发电路各点电压波形的观察;=f(α)特性的测定;3.单相半波整流电路带电阻性负载时Ud/U24.单相半波整流电路带电阻电感性负载时续流二极管作用的观察;四、实验设备1.电力电子实验台2.RTDL09实验箱3.RTDL08实验箱4.RTDL11实验箱5.RTDJ37实验箱6.示波器;7.万用表;五、预习要求1.了解单结晶体管触发电路的工作原理,熟悉RTDL09实验箱;2.复习单相半波可控整流电路的有关内容,掌握在接纯阻性负载和阻感性负载时,电路各部分的电压和电流波形;3.掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。

六、思考题1.单相桥式半波可控整流电路接阻感性负载时会出现什么现象?如何解决?七、实验方法1.单相半波可控整流电路接纯阻性负载调试触发电路正常后,合上电源,用示波器观察负载电压Ud、晶闸管VT两端电压波形U VT,调节电位器RP1,观察α=30o、60o、90o、120o、150o、180o时的Ud、U VT,记录于下表1-1中。

波形,并测定直流输出电压Ud和电源电压U22.单结晶体管触发电路的调试RTDL09的电源由电源电压提供(下同),打开实验箱电源开关,按图1-1电路图接线,负载为RTDJ37实验箱,选择最大的电阻值,调节移相可变电位器RP1,用示波器观察单结晶体管触发电路的输出电压波形(即用于单相半波可控整流的触发脉冲)。

电力电子实验操作步骤

电力电子实验操作步骤

实验一锯齿波同步移相触发电路实验实验方法和操作步骤:1.将NMCL-36面板上左上角的同步电压输入接NMCL—32的U、V端,NMCL-36为锯齿波触发电路。

2.打开漏电断路器电源,闭合主电路电源开关,并打开NMCL-31面板上右上角的低压电源开关,用示波器观察锯齿波触发电路各观察孔的电压波形,示波器的地线接于“7”端。

同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。

观察“3”~“6”孔波形及输出电压U G1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。

3.调节脉冲移相范围将NMCL—31的U g连线接入NMCL-36面板上的U ct ,将NMCL—31的“G”输出电压调至0V,即将控制电压U ct调至零,用示波器观察U1电压(即“1”孔)及U5的波形,调节偏移电压U b(即调RP2),使α=180O。

调节NMCL—31的给定电位器RP1,增加U c t,观察脉冲的移动情况,要求U ct=0时,α=180O,U ct=U max时,α=30O,以满足移相范围α=30O~180O的要求。

4.调节U c t,使α=60O,观察并记录U1~U5及输出脉冲电压U G1K1,U G2K2的波形,并标出其幅值与宽度。

用导线连接“K1”和“K3”端,用双踪示波器观察U G1K1和U G3K3的波形,调节电位器RP3,使U G1K1和U G3K3间隔1800。

各点波形参考如下:实验二三相半波可控整流电路的研究实验方法和操作步骤:1.按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。

图1-5 三相半波可控整流电路(1)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,幅度相同的双脉冲(2)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1” 脉冲超前“2” 脉冲600,则相序正确,否则,应调整输入电源。

(3)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V—2V的脉冲。

电力电子技术实验报告南邮

电力电子技术实验报告南邮

电力电子技术实验报告南邮一、实验目的本次实验旨在使学生深入了解电力电子技术的基本理论,掌握电力电子器件的工作原理及其在实际电路中的应用。

通过实践操作,培养学生的动手能力和解决实际问题的能力。

二、实验原理电力电子技术是研究利用电子技术对电能进行高效转换和控制的科学。

它涉及到半导体器件、电路设计、控制策略等多个方面。

在本次实验中,我们将重点研究整流器、逆变器等电力电子基本电路的工作原理和设计方法。

三、实验设备与材料1. 整流器模块2. 逆变器模块3. 直流电源4. 交流电源5. 电阻负载6. 示波器7. 万用表8. 连接线及工具四、实验步骤1. 检查实验设备是否完好,确保安全。

2. 根据实验要求,连接整流器和逆变器电路。

3. 调整直流电源,提供稳定的直流电压。

4. 将示波器连接到电路的输入和输出端,观察波形。

5. 改变负载电阻,记录不同负载下的输出电压和电流。

6. 根据实验数据,分析整流器和逆变器的工作特性。

7. 完成实验后,整理实验设备,确保实验室整洁。

五、实验结果在本次实验中,我们观察到了整流器和逆变器在不同负载条件下的输出波形。

通过调整负载电阻,我们发现输出电压和电流随着负载的变化而变化。

实验数据表明,整流器能够有效地将交流电转换为直流电,而逆变器则能够将直流电转换回交流电。

六、实验分析通过本次实验,我们对电力电子技术有了更深入的理解。

整流器和逆变器作为电力电子技术中的基本电路,其性能直接影响到整个系统的稳定性和效率。

在实验过程中,我们注意到了器件的选型、电路设计和控制策略对系统性能的影响。

此外,我们还学习了如何使用示波器和万用表来测量和分析电路参数。

七、实验结论本次电力电子技术实验成功地完成了预定的教学目标。

学生通过实际操作,加深了对电力电子技术的理解,并提高了解决实际问题的能力。

实验结果表明,整流器和逆变器在实际应用中具有良好的性能,能够有效地实现电能的转换和控制。

八、实验心得通过本次实验,我们不仅学习了电力电子技术的基本理论和应用,还锻炼了实际操作能力。

电力电子技术实验实验指导书.docx

电力电子技术实验实验指导书.docx

电力电子技术实验实验指导书南京工程学院电力工程学院2008年12月注:本实验指导书分为两个部分,一部分实验设备为浙江求是科教设备冇限公司生产的NMCL-III型电力电子及电气传动教学实验台(19套),另一部分设备为浙江大学方圆科技产业冇限公司生产DKSZ-1 (2)型电机控制系统实验装置(6套), 请根据不同的实验装置参考指导书的不同部分。

第一章电力电子技术实验概述《电力电子技术》是电气工程及其自动化、自动化等专业的三人电子技术基础课程之一, 涉及面广,包括了电力、电了、控制、计算机等,实验环节是这门课程的垂要组成部分。

通过实验,可加深对理论的理解,培养和提高实际动手能力,分析和解决实际问题的独立工作能力。

1.1实验的特点和要求具体来说,学生在完成指定的实验厉,应具备以下能力:1、掌握电力电子变流装置的主电路、触发或驱动电路的构成及调试方法,能初步设计和应用这些电路;2、熟悉并掌握基木实验设备、测试仪器(示波器、万用表等)的性能和使用方法;3、能够运用理论知识对实验现象、结果进行分析和处理,解决实验中遇到实际的问题;4、能够综合实验数据,合理解释实验现彖,编写完整的实验报告。

本指导书介绍了《电力电子技术》人纲要求的四个实验。

1. 2实验准备实验准备亦即实验的预习工作,是保证实验能否顺利进行的必要步骤。

每次实验前都应先进行预习,从而提高实验的质量和效率,否则很冇可能在实验时不知如何下手,浪费时间, 完成不了实验的要求,其至损坏实验装置,更严重的造成人身伤害。

因此,实验前的准备工作要做到:1、复习教材中与实验冇关的内容,熟悉与本次实验相关的理论知识;2、阅读木指导书中的相关内容,了解本次实验的目的和内容;掌握本次实验的工作原理和实验方法;3、根据1和2写出本次实验的预习报告,其中应该包括实验系统的详细接线图、实验步骤、数据记录的表格等,为实验的顺利进行做好充分的准备;预习报告点实验成绩的30%;4、熟悉木次实验所涉及到的实验装置、测试仪器等;5、以班级为单位进行实验分组,一般情况下,1—2人一纟R最好。

电力电子技术实验指导书最新版

电力电子技术实验指导书最新版

电力电子技术实验指导书第一章概述一、电力电子技术实验内容与基本实验方法电力电子技术是20世纪后半叶诞生和发展的一门新技术,广泛应用于工业领域、交通运输、电力系统、通讯系统、计算机系统、能源系统及家电、科研领域。

电力电子技术课程既是一门技术基础课程,也是一门实用性很强的应用型课程,因此实验在教学中占有十分重要的位置。

电力电子技术实验课的主要内容为:电力电子器件的特性研究,重点是开关特性的研究;电力电子变换电路的研究,包括:三相桥式全控整流电路(AC/DC 变换)、SPWM逆变电路(DC/AC变换)、直流斩波电路(DC/DC变换)、单相交流调压电路(AC/AC变换)四大类基本变流电路。

电力电子技术实验借助于现代化的测试仪器与仪表,使学生在实验的同时熟悉各种仪器的使用,以进一步提高实验技能。

波形测试方法是电力电子技术实验中基本的、常用的实验方法,电力电子器件的开关特性依据波形测试而确定器件的工作状态及相应的参数;电力电子变换电路依据波形测试来分析电路中各种物理量的关系,确定电路的工作状态,判断各个器件的正常与否。

因此,掌握不同器件、不同电路的波形测试方法,可以使学生进一步掌握电力电子电路的工作原理以及工程实践的方法。

本讲义参考理论课的内容顺序编排而成,按照学生掌握知识的规律循序渐进,旨在加强学生实验基本技能的训练、实现方法的掌握;培养和提高学生的工程设计与应用能力。

由于编者水平有限,难免有疏漏之处,恳请各位读者提出批评与改进意见。

二、实验挂箱介绍与使用方法(一)MCL—07挂箱电力电子器件的特性及驱动电路MCL—07挂箱由GTR驱动电路、MOSFET驱动电路、IGBT驱动电路、PWM 发生器、主电路等部分组成。

1、GTR驱动电路:内含光电耦合器、比较器、贝克箝位电路、GTR功率器件、串并联缓冲电路、保护电路等。

可对光耦特性(延迟时间、上升时间、下降时间),贝克电路对GTR导通关断特性的影响,不同的串、并联电路对GTR开关特性的影响以及保护电路的工作原理进行分析和研究。

电工电子实训安全操作规程

电工电子实训安全操作规程

电工电子实训安全操作规程
《电工电子实训安全操作规程》
为了保障学生在电工电子实训中的安全, 确保实训工作的顺利
开展,制定以下操作规程:
1. 严格遵守实训场所的安全规定,不得擅自更改电源线路、拔掉保险或随意操作设备。

2. 在进行操作前,应仔细阅读设备操作说明书和实训指导书,掌握设备的使用方法和注意事项。

3. 操作人员应穿戴符合安全标准的个人防护装备,如安全帽、防护眼镜、手套等。

4. 操作人员应保持清醒的头脑,不得在操作时饮酒或服用药物。

5. 在进行电气设备操作时,应确保设备处于断电状态,并拉下主电源开关。

6. 操作完成后,应将电源开关关闭,断开电源插头,并清理工作场地,防止发生意外。

7. 实训过程中,不得随意接触设备内部有电部分,严禁触摸裸露的电线和电源插头。

8. 操作时严格按照实训指导书指导的步骤进行,不得擅自瞎弄、
调试或更改设备参数。

9. 如发现设备故障或异常情况,应及时向实训指导老师汇报,不得私自维修。

10. 在实训过程中,如发生意外或紧急情况,应立即停止操作,报告实训指导老师并及时采取安全措施。

以上就是《电工电子实训安全操作规程》,希望所有参与实训的同学能严格遵守规定,保障实训过程中的安全,确保实训工作的顺利进行。

高压电气实验操作规程范文

高压电气实验操作规程范文

高压电气实验操作规程范文
在高压电气实验中,操作规程是非常重要的,它能指导实验过程,保障实验的顺利进行,同时也能保障实验人员的安全。

以下是一份高压电气实验操作规程的范文:
一、实验前的准备工作
1、确认高压电源已经正确接线,地线接地良好;
2、检查实验设备是否完好,确保没有损坏和松动;
3、将工作场地清理整齐,确保没有杂物或障碍物存在;
4、穿戴好绝缘手套、绝缘靴等防护装备。

二、实验操作步骤
1、按照实验指导书上的要求对实验设备进行正确连接;
2、确保高压电源关闭状态下接通电源,保持实验设备中没有积水或潮湿;
3、进行实验操作前先进行电压调试,在期间操作过程中对电流、电压进行监控;
4、实验操作时如有异常情况发生,要立即停止实验操作,排除故障。

三、实验结束后的工作
1、将实验设备进行清理,确保无杂物残留;
2、关闭高压电源,断开电源线;
3、检查实验设备和工作场地是否完好;
4、收拾整理好实验器材,放回指定位置。

四、实验注意事项
1、严禁在未接地或接地不良的情况下进行实验操作;
2、操作人员要做好安全防护工作,确保自身安全;
3、实验中出现问题及时处理,避免造成损坏;
4、实验结束后要做好清理工作,保持实验环境整洁。

以上就是对高压电气实验操作规程的一份范文,希望对实验操作有所帮助。

电力电子实验指导书(东华大学)

电力电子实验指导书(东华大学)

东华大学信息学院电力电子技术实验指导书2014年4月目录实验一晶闸管触发电路研究实验二单相桥式半控整流电路实验三三相桥式整流电路实验四三相有源逆变电路附录一固纬GRS-6032A示波器使用简介附录二固纬GRS-6032A示波器面板图片《电力电子实验》一般注意事项:1.每次合、分主回路电源前要将各高、低压调压器(如:三相交流调压器、G给定Ug电位器)旋至最小位置,电阻器置最大值。

2.晶闸管控制极内部已连线至触发电路,面板上插孔禁止连接导线。

3. 使用双踪示波器时两个探头的接地线要共点,以免因电压差造成过流。

测量Ud时示波器探头的正极(红线)置晶闸管共阴极,负极(黑线)置晶闸管共阳极;UVT是晶闸管阳极对阴极的电压,测量时探头红线置阳极,黑线置阴极。

4. 交直流表要分清,选择量程要符合要求。

5.“主电源送电”的含义是:按下交流电源“闭合“的绿色按钮。

6. 数字表计的读数显示滞后于调节进程,因此相应的操作宜缓。

固纬GRS-6032A示波器的使用1.示波器调节的主要目标显示为:屏幕上方显示信息:“ smpl ”屏幕下方显示信息:“DC 2V(或5V) 2 mS (或5mS) LINEf AC”2.测量前扫描线居中校准:对“CH1”/ “CH2”通道选择“GND”方式后,调节“POSITION”使扫描线居中。

3. TIME/DIV一般选择5mS,正弦波一个周期在水平方向占4格(90°/格)4.测试过程LEVEL、POSITION、TIME/DIV、X1/MAG等功能键钮均不能随意操作,以免引起波形在水平、垂直方向的移动,影响测量结果。

实验一锯齿波同步移相触发电路实验一.实验目的1.锯齿波同步移相触发电路的工作原理。

2.掌握锯齿波同步触发电路的调试方法。

3.测试锯齿波同步触发电路各点波形及移相特性。

二.实验内容1.锯齿波同步触发电路的调试。

2.锯齿波同步触发电路各点波形观察,分析。

三.实验线路及原理锯齿波同步移相触发电路主要由同步电源、同步信号、锯齿波形成、脉冲移相、脉冲形成、脉冲放大、脉冲输出七个环节。

电气试验操作步骤

电气试验操作步骤

110kV氧化锌避雷器绝缘电阻测量1、检查确认被试品与引线的连接已断开,有明显断开点,具备试验条件。

2、在背阴、通风的地方摆放合格的温、湿度计。

3、对试品高压端充分放电,放电要带绝缘手套先通过电阻放电后直接放电。

把被试品低压端和底座接地。

4、用干燥清洁柔软的布擦去被试品外绝缘表面的脏污,必要时用适当的清洁剂洗净。

5、抄写被试品铭牌并记录天气情况,环境温、湿度。

6、根据被试品电压等级选择合适的兆欧表(2500V或5000V),检查兆欧表的合格证和有效期。

7、检查兆欧表(以3121为例):把功能旋钮旋到“BATT CHECK”,按下“PRESS TO TEST”按钮,兆欧表指针应该在“BA TT GOOD”右侧说明电量充足;将兆欧表水平放稳,把功能旋钮旋到“MΩ”,按下“PRESS TO TEST”按钮,用导线瞬时短接“LINE”和“EARTH”端子,其指针应指零,开路时兆欧表指针应指“∞”,说明兆欧表合格。

8、将兆欧表的“EARTH”端与被试品的地线连接,把功能旋钮旋到“MΩ”,按下“PRESS TO TEST”按钮,将兆欧表的“LINE”端接到被试品高压端,同时开始计时,60S后读取绝缘电阻值。

读取绝缘电阻后,先断开接至被试品高压端的连接线,然后再松开“PRESS TO TEST”按钮,把功能旋钮旋到“OFF”。

湿度较大的条件下测量,可在被试品表面加等电位屏蔽,被试品的屏蔽环应接近加压的火线而远离接地部分,减少屏蔽对地面泄漏,以避免兆欧表过载。

屏蔽环可用保险丝或软铜线紧缠几圈做成。

9、拆除被试品低压端接地线,按上面步骤测量底座绝缘电阻。

10、带绝缘手套,用有良好接地的放电棒对被试品充分放电。

11、记录试验数据、试验人、试验日期以及所用仪器名称、型号、编号、厂家。

12、拆除所有接线,恢复被试品原状,把试验仪器放回原处。

13、检查接地线是否拆除、现场是否有遗留物品。

110kV氧化锌避雷器直流参考电压及泄漏电流测试1、检查确认被试品与引线的连接已断开,有明显断开点,具备试验条件。

电力电子技术实验指导书(2013[1][1].8)

电力电子技术实验指导书(2013[1][1].8)

电力电子技术实验指导书蒋鸿飞席惠李冠一编写适用专业:电气工程及其自动化上海应用技术学院2013年8月实验须知1.预习实验者须事先预习,以保证实验顺利进行,预习内容一般包括:1)本次实验有关的实验装置介绍,仪器的使用方法等。

尽可能在实验室对照设备熟悉。

2)实验指导书中及课本中与本次实验有关的章节、有关原理、计算方法、操做等。

3)预习后应作出简要的预习报告,包括拟出的实验大致步骤,并列出实验数据记录、表格等。

2.实验1)实验前由指导老师检查预习情况,经提问后方可参加实验。

2)按图接线,力求简单明了,主回路导线应用粗导线,接线完成后先相互检查,然后请指导老师检查无误后方可通电。

3)认真观察,记录实验现象和数据。

4)实验完毕,应将数据交指导老师检查认可后再拆线,并照原样整理好仪器和设备。

3.实验报告实验报告用规范的实验报告纸书写,正文包括实验名称、实验目的、主要设备、简要原理、实验内容、实验线路、简要步骤、实验数据、波形、实验现象的记录与讨论、思考题的解答等,字迹工整,语言简练,应体现学生独立的风格,反对照抄实验指导书。

4.安全操做1)接线、拆线都必须在切断电源情况下进行。

2)在接通电源前,应招呼同组同学引起注意后方可合上电源。

若实验中发生事故,应及时断电并报告老师。

实验时应注意衣服、发辫、实验导线等不要卷入电机旋转部分目录实验一单结晶体管触发电路及单相半波可控整流电路实验 (4)实验二TCA785触发电路 (7)实验三单相桥式全控整流电路实验 (9)实验四TC787三相移相触发电路 (12)实验五三相桥式全控整流 (14)实验六单相交流调压电路实验 (17)实验七单相交流调功电路实验 (19)实验八直流斩波电路(设计性)的性能研究 (21)实验九单相SPWM逆变电路实验 (24)实验一单结晶体管触发电路及单相半波可控整流电路实验一.实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用。

2.掌握单结晶体管触发电路的调试步骤和方法。

电工电子实验报告模板

电工电子实验报告模板

电工电子实验报告模板
一、实验目的
本实验旨在探究电工电子领域相关知识,并通过实际操作验证理论的正确性和可行性。

二、实验原理
1. 实验原理一:介绍第一个实验原理。

2. 实验原理二:介绍第二个实验原理。

3. 实验原理三:介绍第三个实验原理。

三、实验器材
1. 实验器材一:列举使用的器材一及其详细参数。

2. 实验器材二:列举使用的器材二及其详细参数。

四、实验步骤
1. 实验步骤一:详细说明第一个实验步骤。

2. 实验步骤二:详细说明第二个实验步骤。

3. 实验步骤三:详细说明第三个实验步骤。

五、实验数据与结果
1. 实验数据:将实验测得的数据按照表格形式呈现,并确保数据准确无误。

2. 实验结果分析:对实验数据进行分析解读,结合实验原理进行合理的推断和解释。

六、实验讨论
1. 实验讨论一:对实验中遇到的问题以及解决方法进行讨论。

2. 实验讨论二:对实验结果的合理性和可靠性进行探讨。

七、结论
根据实验数据和讨论结果,得出实验结论,并确保结论准确无误。

八、实验总结
撰写对本次实验的总结,包括实验中的收获、经验以及对实验结果的思考等内容。

九、参考文献
列举对本实验有参考意义的文献,准确注明文献的来源及作者。

十、附录
1. 附录一:列举实验中使用的公式、图表等补充材料。

2. 附录二:列举实验过程中拍摄的照片或相关资料。

本模板可根据具体实验的要求进行适当修改,确保报告内容全面准确,并符合实验报告撰写的规范要求。

以上仅为参考,具体内容请根据实际需要进行修改。

《电力电子技术仿真实验》指导书

《电力电子技术仿真实验》指导书

.. 《电力电子技术实验》指导书合肥师范学院电子信息工程学院实验一电力电子器件仿真过程:进入MATLAB环境,点击工具栏中的Simulink选项。

进入所需的仿真环境,如图1.1所示。

点击File/New/Model新建一个仿真平台。

点击左边的器件分类,找到Simulink和SimPowerSystems,分别在他们的下拉选项中找到所需的器件,用鼠标左键点击所需的元件不放,然后直接拉到Model平台中。

图1.1实验一的具体过程:第一步:打开仿真环境新建一个仿真平台,根据表中的路径找到我们所需的器件跟连接器。

元件名称提取路径触发脉冲Simulink/Sources/Pulse Generator电源Sim Power Systems/Electrical Sources/ DC Voltage Source接地端子Simulink/Sinks/Scope示波器Sim Power Systems/Elements/Ground信号分解器Simulink/Signal Routing/Demux电压表Sim Power Systems/Measurements/ Voltage Measurement电流表Sim Power Systems/Measurements/Current Measurement负载RLC Sim Power Systems/Elements/ Series RLC BranchGTO器件Sim Power Systems/Power Electronics/Gto 提取出来的器件模型如图1.2所示:图1.2第二步,元件的复制跟粘贴。

有时候相同的模块在仿真中需要多次用到,这时按照常规的方法可以进行复制跟粘贴,可以用一个虚线框复制整个仿真模型。

还有一个常用方便的方法是在选中模块的同时按下Ctrl键拖拉鼠标,选中的模块上会出现一个小“+”好,继续按住鼠标和Ctrl键不动,移动鼠标就可以将模块拖拉到模型的其他地方复制出一个相同的模块,同时该模块名后会自动加“1”,因为在同一仿真模型中,不允许出现两个名字相同的模块。

电力电子实验指导书(XXXX1011)

电力电子实验指导书(XXXX1011)

电力电子实验室规范1.确保人身安全。

注意通电前人体避免和电路相关裸线接触。

不得在实验室内开玩笑,以免发生意外。

严禁穿拖鞋进入实验室。

2.确保设备安全。

详细阅读设备的使用说明,方可上机操作设备。

一般情况下,不随意调整设备运行参数,以免给设备带来损坏。

3.确保接线安全。

(1)弱电的线不能插在强点线的插孔上;(2)线不够长时, 不能相接,以确保人身和设备安全。

4 .实验指导:同学们在实验过程中遇到问题时,首先要通过查阅相关资料。

如果问题仍无法解决,可以找本班同学交流探讨。

若问题依然存在,再找相关的指导老师。

5.工位“三包”实验过程中最好将示波器摆放到实验桌的顶部以方便使用并保持实验工位附近的整洁。

各工位的同学离开实验室前(或实验结束后),必须整理好工位。

具体包括:切断各自工位设备的电源,整理导线、摆放桌椅,处理垃圾等等。

6.实验班级注意事项:1)每次实验前各班必须指定一个同学作为当日的值日生,该同学协助实验室老师组织和管理好本次实验,值日生必须提前联系相关实验室老师以便师生都做好相应的准备。

2)值日生必须在该次实验完毕后在相应的实验项目管理卡上签名确认3)值日生必须督导全体同学做好工位三包。

4)值日生离开实验室的时候之前应切断总电源(含动力电源和照明电源以及风扇、空调等),并将实验室门反锁。

5)值日生必须最后走。

电子信息与电气工程系电力电子技术实验室电力电子与伺服控制系统实验装置部分挂箱说明一.NMCL — 31A 挂箱NMCL — 31A 由G (给定),零速封锁器(DZS ),它的作用是得到下列几个阶跃的给定信号:(1) 0V 突跳到正电压,正电压突跳到 0V ; (2) 0V 突跳到负电压,负电压突跳到 0V ; (3,正电压突跳到负电压,负电压突跳到正电压。

正负电压可分别由RP1、RP2两多圈电位器调节大小(调节范围为 0 数值由面板右边的数显窗读出。

只要依次扳动S1、S2的不同位置即能达到上述要求。

电力电子技术实验报告

电力电子技术实验报告

电力电子技术实验报告实验目的,通过本次实验,掌握电力电子技术的基本原理和实验操作,提高学生对电力电子技术的理论和实践能力。

实验仪器设备,电力电子技术实验箱、直流电源、交流电源、示波器、电流表、电压表等。

实验原理,电力电子技术是指利用电子器件对电能进行调节、变换和控制的技术。

常见的电力电子器件有二极管、晶闸管、场效应管、三相全控桥等,它们可以实现电能的变换、调节和控制。

实验步骤:1. 实验一,单相半波可控整流电路。

a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。

b. 接通电源,观察示波器波形,记录电流和电压的变化。

c. 改变触发脉冲宽度,观察输出波形的变化。

2. 实验二,单相全波可控整流电路。

a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。

b. 接通电源,观察示波器波形,记录电流和电压的变化。

c. 改变触发脉冲宽度,观察输出波形的变化。

3. 实验三,三相半波可控整流电路。

a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。

b. 接通电源,观察示波器波形,记录电流和电压的变化。

c. 改变触发脉冲宽度,观察输出波形的变化。

4. 实验四,三相全波可控整流电路。

a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。

b. 接通电源,观察示波器波形,记录电流和电压的变化。

c. 改变触发脉冲宽度,观察输出波形的变化。

实验结果与分析:通过本次实验,我们成功搭建了单相和三相可控整流电路,并观察到了不同触发脉冲宽度下的输出波形变化。

实验结果表明,在不同触发脉冲宽度下,电压和电流的变化规律不同,进一步验证了电力电子技术的原理和应用。

结论:本次实验通过实际操作,使我们更加深入地理解了电力电子技术的原理和应用,提高了我们的实践能力和动手能力。

同时,也为今后的学习和科研工作打下了坚实的基础。

总结:电力电子技术在现代电力系统中具有重要的应用价值,通过本次实验,我们不仅掌握了电力电子技术的基本原理和实验操作,还提高了我们的实践能力和动手能力。

双电源配电室高压实验操作流程

双电源配电室高压实验操作流程

双电源配电室高压实验操作流程1.打开配电室门,进入工作区域。

Open the distribution room door and enter the working area.2.首先检查高压设备的工作状态,确保安全可靠。

Firstly, check the working condition of the high-voltage equipment to ensure safety and reliability.3.关闭所有电气设备,确保配电室处于安全状态。

Turn off all electrical equipment to ensure the distribution room is in a safe condition.4.确认所有人员已经撤离,没有人员留在配电室内。

Confirm that all personnel have evacuated and no one is left inside the distribution room.5.穿戴好绝缘手套和绝缘鞋,做好个人防护。

Wear insulated gloves and shoes for personal protection.6.打开高压电源开关,准备开始实验操作。

Turn on the high-voltage power switch to prepare for experimental operation.7.检查电压表和电流表的读数是否正常,确保准确性。

Check the readings of the voltage meter and current meter to ensure accuracy.8.确认连接线路的绝缘情况,避免漏电和短路。

Confirm the insulation of the connection lines to avoid leakage and short circuit.9.在指定设备上进行高压实验,按照操作规程进行操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一锯齿波同步移相触发电路实验实验方法和操作步骤:1.将NMCL-36面板上左上角的同步电压输入接NMCL—32的U、V端,NMCL-36为锯齿波触发电路。

2.打开漏电断路器电源,闭合主电路电源开关,并打开NMCL-31面板上右上角的低压电源开关,用示波器观察锯齿波触发电路各观察孔的电压波形,示波器的地线接于“7”端。

同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。

观察“3”~“6”孔波形及输出电压U G1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。

3.调节脉冲移相范围将NMCL—31的U g连线接入NMCL-36面板上的U ct ,将NMCL—31的“G”输出电压调至0V,即将控制电压U ct调至零,用示波器观察U1电压(即“1”孔)及U5的波形,调节偏移电压U b(即调RP2),使α=180O。

调节NMCL—31的给定电位器RP1,增加U c t,观察脉冲的移动情况,要求U ct=0时,α=180O,U ct=U max时,α=30O,以满足移相范围α=30O~180O的要求。

4.调节U c t,使α=60O,观察并记录U1~U5及输出脉冲电压U G1K1,U G2K2的波形,并标出其幅值与宽度。

用导线连接“K1”和“K3”端,用双踪示波器观察U G1K1和U G3K3的波形,调节电位器RP3,使U G1K1和U G3K3间隔1800。

各点波形参考如下:实验二 三相半波可控整流电路的研究实验方法和操作步骤:1.按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。

(1)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,幅度相同的双脉冲(2)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1” 脉冲超前“2” 脉冲600,则相序正确,否则,应调整输入电源。

(3)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V —2V 的脉冲。

2.研究三相半波可控整流电路供电给电阻性负载时的工作合上主电源,接上电阻性负载:(零位调整,U ct =0,调NMCL-33的偏移电压,使U d =0,α=150°) (a )改变控制电压U ct ,观察在不同触发移相角α时,可控整流电路的输出电压U d =f (t )与输出电流波形i d =f (t ),并记录相应的U d 、I d 、U ct 值。

(b )记录α=90°时的U d =f (t )及i d =f (t )的波形图。

(c )求取三相半波可控整流电路的输入—输出特性U d /U 2=f (α)。

(d )求取三相半波可控整流电路的负载特性U d =f (I d )图1-5 三相半波可控整流电路主电源输出,位于NMCL-32I 组晶闸管,位于NMCL-33直流电流表,量程为5A负载电阻,可选用NMEL-03(900欧并联)平波电抗器,位于NMCL-331上R DAUVWG 给定NMCL-31N VNMCL-333.研究三相半波可控整流电路供电给电阻—电感性负载时的工作接入NMCL —331的电抗器L=700mH ,可把原负载电阻R D 调小,监视电流,不宜超过0.8A (若超过0.8A ,调大R D ),操作方法同电阻负载,零位调整时, 90°<α<150° 。

(a )观察不同移相角α时的输出U d =f (t )、i d =f (t ),并记录相应的U d 、I d 值,记录α=90°时的U d =f (t )、i d =f (t ),U vt =f (t )波形图。

(b )求取整流电路的输入—输出特性U d /U 2=f (α)。

b )c)d)e) f)u 2u au b u cα=0 O ω t 1 ω t 2 ω t 3u GO u dO OuabuacOi V T1u V T1ω tω tω tω t ω三相半波可控整流电路共阴极接法电阻负载a =0︒时的波形u di a u a u b u ci b i c i du a cOω tO ω tO Oω t OOω tα ω tωt三相半波可控整流电路,阻感负载时α =60︒时的波形实验三 直流斩波电路的性能研究实验方法和操作步骤:1.SG3525的调试。

原理框图见图2—6。

将扭子开关S 1打向“直流斩波”侧,S 2电源开关打向“ON”,将“3”端和“4”端用导线短接,用示波器观察“1”端输出电压波形应为锯齿波,并记录其波形的频率和幅值。

扭子开关S 2扳向“OFF”,用导线分别连接“5”、“6”、“9”,用示波器观察“5”端波形,并记录其波形、频率、幅度,调节“脉冲宽度调节”电位器,记录其最大占空比和最小占空比。

Dmax=Dmin=2.实验接线图见图2—7。

(1)切断NMCL-16主电源,分别将“主电源2”的“1”端和“直流斩波电路”的“1”端相连,“主电源2”的“2”端和“直流斩波电路”的“2”端相连,将“PWM 波形发生”的“7”、“8”端分别和直流斩波电路VT 1的G 1S 1 端相连,“直流斩波电路”的“4”、“5”端串联NMEL-03电阻箱 (将两组900Ω/0.41A 的电阻并联起来,逆时针旋转调至阻值最大约450Ω),和直流安培表(见图2—8)。

(2)检查接线正确后,接通控制电路和主电路的电源(注意:先接通控制电路电源后接通主电路电源 ),改变脉冲占空比,每改变一次,分别观察PWM 信号的波形,MOSFET 的7+15v56811ONVcS2+15VA >1基准Q QTQ 欠压锁定OFF 1516 5.1V 36537R241S1R12C2C1R3半桥电源直流斩波振荡器5.1V +15v11141012B 地>112S5.1V50uASG3525关闭12108软起动4R55.1VRP R4脉冲宽度调节图2—6 PWM波形发生R 99栅源电压波形,输出电压u0波形(3-5),输出电流i0的波形(4-5),记录PWM信号占空比D,ui (1-2)、u0 (3-5)的平均值Ui和U0。

(3)改变负载R的值(注意:负载电流不能超过1A),重复上述内容2(4)切断主电路电源,断开“主电路2”和“降压斩波电路”的连接,断开“PWM波形发生”与VT1的连接,分别将“直流斩波电路”的“6”和“主电路2”的“1”相连,“直流斩波电路”的“7”和“主电路2”的“2”端相连,将VT2的G2S2分别接至“PWM波形发生”的“7”和“8”端,直流斩波电路的“10”、“11” 端,分别串联NMEL-03电阻箱(两组分别并联,然后串联在一起顺时针旋转调至阻值最大约900Ω)和直流安培表(将量程切换到2A挡)(见图2—8)。

检查接线正确后,接通主电路和控制电路的电源。

改变脉冲占空比D,每改变一次,分别:观察PWM信号的波形,MOSFET的栅源电压波形,输出电压u0波形(8-11),输出电流i0的波形(10-11),记录PWM信号占空比D,ui (8-11)、u0的平均值Ui和U0。

(5)改变负载R的值(注意:负载电流不能超过1A),重复上述内容4。

(6)实验完成后,断开主电路电源,拆除所有导线。

实验五单相交流调压电路实验.实验方法1.单相交流调压器带电阻性负载将NMCL-33上的两只晶闸管VT1,VT4反并联而成交流电调压器,将触发器的输出脉冲端G1、K1,G3、K3分别接至主电路相应VT1和VT4的门极和阴极。

接上电阻性负载(可采用两只900Ω电阻并联),并调节电阻负载至最大。

NMCL-31的给定电位器RP1逆时针调到底,使U ct=0。

调节锯齿波同步移相触发电路偏移电压电位器RP2,使α=150°。

合上主电源,用示波器观察负载电压u=f(t),晶闸管两端电压u VT= f(t)的波形,调节U ct,观察不同α角时各波形的变化,并记录α=60︒,90︒,120︒时的波形。

2.单相交流调压器接电阻—电感性负载(1)在做电阻—电感实验时需调节负载阻抗角的大小,因此须知道电抗器的内阻和电感量。

可采用直流伏安法来测量内阻,电抗器的内阻为R L =U L /I电抗器的电感量可用交流伏安法测量,由于电流大时对电抗器的电感量影响较大,采用自耦调压器调压多测几次取其平均值,从而可得交流阻抗。

Z L =U L /I 电抗器的电感量为NMCL-05A NMCL-36NMCL-31G 给定~220V 同 步 电 压 输 入+15VG 1K 1G 2K 2674-15V5-15VRP 13RP 3RP 2UctK 4G 4K 3G 312锯齿波触发电路WVUAR D平波电抗器,位于NMCL-331上负载电阻,可选用NMEL-03(900欧并联)交流电流表,量程为3AI 组晶闸管,位于NMCL-33主电源输出,位于NMCL-32图1-8 单相交流调压电路NMCL-35A)2/(22f R Z L L L L π-=这样即可求得负载阻抗角Ld R R L tg +=-11ωϕ在实验过程中,欲改变阻抗角,只需改变电阻器的数值即可。

(2)断开电源,接入电感(L=700mH )。

调节U ct ,使α=450。

合上主电源,用二踪示波器同时观察负载电压u 和负载电流i 的波形。

调节电阻R 的数值(由大至小),观察在不同α角时波形的变化情况。

记录α>φ,α=φ,α<φ三种情况下负载两端电压u 和流过负载的电流i 的波形。

也可使阻抗角φ为一定值,调节α观察波形。

注:调节电阻R 时,需观察负载电流,不可大于0.8A 。

相关文档
最新文档