自考高数经管类概率论与数理统计课堂笔记B

合集下载

自考 概率论与数理统计 重难点笔记资料

自考 概率论与数理统计 重难点笔记资料

高等教育自学考试《概率论与数理统计》重难点笔记资料 课程代码:04183第一章 随机事件与概率一.随机事件关系与运算1!0,)!(!!!,)!(!0===-==-=C C C A A n n n r n nn rn r n r n :,n r n n 组合排列二.概率P(A) 1.P(A)概率特征)()31)(,0)()21)(0)111∑∞=∞===Ω=≤≤K KK kA A P ,P(P P A P 事件互不相容时φ2. 古典概型3.概率加法公式P(A+B)=P(A)+P(B)- P(AB)当A 、B 互斥时, P(A+B)=P(A)+P(B) 事件的独立性:定义:P(AB)=P(A)P(B)性质:.P(A)>0,,则P(B)=P(B/A); P(B)>0则P(A)=P(A/B) P(B —A)=P(B)--P(AB)P (A--B )==P (AB )=P (A--AB )=P (A )--P (AB )基本事件总数所包含的基本事件数A A P =)(P(A+B+C)=1--P(A+B+C)=1--P(A)P(B)P(C) P(AB)=P(AUB)=1-P(AUB)=1-(P(A)+P(B)) P(A)=1-P(A4.条件概率公式5.概率的乘法公式6.全概率公式:从原因计算结果7.Bayes 公式:从结果找原因)()()|(B P AB P B A P =)|()()(B A P B P AB P =)|()(A B P A P =∑==nk k k B A P B P A P 1)|()()(∑==nk kki i k B A P B P B A P B P A B P 1)|()()|()()|()()()|(A P AB P A B P =)/()/()()(AB C P A B P A P ABC P =第二章随机变量及其概率分布4/ 13分布函数对离散型随机变量对连续型随机变量分布函数与密度函数的重要关系:“一般正态分布函数F(x)”转换为“标准正态分布函数)(x Φ”的关系 设X~N (δμ2,)则1.2.3.连续型随机变量函数的概率分布定理:记x=h(y)为y=g(x)的反函数,则Y=g(X)的概率密度:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<'=其他y y h y h y f f X Y ,0),())(()(βα1) 设X~U(-2,2ππ),令Y=tanX,求Y 的概率密度柯西分布:+∞<<-∞+='=y y h y h y y f f X Y ,111)())(()(2π 2)设X~N(σμ2,),求eX的概率密度对数正态分布:⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤>-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤>•=-0,00,2)(ln 210,0,0,1)(ln )(,22y y y y y y y y y e f fX Yσμσπ ∑≤==≤=xk k X P x X P x F )()()(⎰∞-=≤=x dtt f x X P x F )()()(⎰∞-=≤=xdt t f x X P x F )()()()()('x f x F =3直接变换法:[])()(21)()(y y yy y ff F fXXY Y-+='=e e yx x 的的反函数为y y 的反函数为反y 2ln 2,,,,,ln -=-===第三章多维随机变量及其概率分布 二元随机变量及其边缘分布 分布规律的描述方法联合密度函数联合分布函数离散联合分布函数的概率:{}0),(),(),(),(,112112222121≥+--=≤<≤<y x y x y x y x y y x x F F F F Y X P性质1),(,0),(),(),(=+∞+∞=-∞-∞=-∞=-∞F F x F y F 离散边缘分布律:{}{}∑∑===⋅===⋅ijji pijY P j p pij X P pi y x1...2,1,,0,0=⋅=⋅=≥⋅≥⋅∑∑jij p pi j i j p pi联合密度二维边缘密度二维连续随机变量的分布 1.均匀分布(X,Y)~U D1)设D 为平面上的有界区域,S 表面积⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤+−−→−⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤≤≤--−−→−⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈=其他,其他o d x c b x a c d a b 其他D y x S y x f R yx R 圆形矩形,01,,,))((1,0),(,1),(2222π),(y x f ),(y x F 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f 1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=+∞<<∞-=⎰+∞∞-x ,,dy y x f x f ),()(+∞<<-∞=⎰+∞∞-y dx y x f y f Y ,,),()(}{}{},{j Y P i X P j Y i X P =====2.正态分布),,,,(~),(222121ρσσμμN Y Xey y x f y x x ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧+--------=σμσσσρρσπσμμρμ222212121212)2(121),())((2)()1(21221离散型随机变量的独立性)()(),(y FY x Fx y x F =连续型随机变量的独立性第四章 随机变量的数字特征数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义期望性质:● E(a)=a ,其中a 为常数● E(a+bX)=a+bE(X),其中a 、b 为常数 , ● E(CX)=CE(X),其中C 为常数● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量 ● E(XY)=E(X)E(Y),X,Y 相互独立 方差的性质D(a)=0,其中a 为常数D(a+bX)=b 2(X),其中a 、b 为常数D(X+Y)=D(X)+D(Y) 当X 、Y 相互独立时随机变量g(X)的数学期望常用公式:二维随机变量的期望 离散)()(),(y f x f y x f Y X =∑+∞-∞=⋅=k kkP xX E )(⎰+∞∞-⋅=dxx f x X E )()(⎰∑+∞∞-=⇔=dx x fx x g X g E p x g X g E k k k )()()]([)())((ijji Jii i j ij i i i py j p y Y E p x pi x X E ∑∑∑∑∑∑=⋅==⋅=)()()()()(Y E X E Y X E +=+∑∑=i j ij j i p y x XY E )()()()(,Y E X E XY E Y X =独立时与当连续 g(X)∑⎰⎰∑=⇔=jij jiidxdy y x f y x g Y X G E p yx g Y X g E ,),(),()],([),()],([方差 定义式 离散:⋅-=∑=Pi X E xX D ni i21))(()(连续常用计算式常用公式协方差与相关系数⎰⎰--=dxdy y x f Y E Y X E x Y X Cov ),())())(((),(协方差Cov(X,Y)的性质当X 与Y 相互独立时,则Cov(X,Y)=0相关系数XY ρ的性质⎰⎰⎰⎰==dxdyy x yf Y E dxdy y x xf X E ),()(),()(dxdyy x xyf XY E ⎰⎰=),()(()⎰+∞∞-⋅-=dx x f X E x X D )()()(2[]22)()()(X E X E X D -=))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+)()()(Y D X D Y X D +=+)()()(),(Y E X E XY E Y X Cov -=)()(),(Y D X D Y X Cov XY=ρ[][]{})()()()()(Y E X E XY E Y E Y X E X E -=--())()()(),(22X D X E X E X X Cov =-=),(),(Y X abCov bY aX Cov =),(),(),(Z Y Cov Z X Cov Z Y X Cov +=+独立与相关独立必定不相关 相关必定不独立 不相关不一定独立标准正态分布的概率计算公式)()()(a a Z P a Z P Φ=<=≤)(1)()(a a Z P a Z P Φ-=>=≥)()()(a b b Z a P Φ-Φ=≤≤1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P一般正态分布的概率计算一般正态分布的概率计算公式第五章 大数定律及中心极限定理1.切比雪夫不等式:设随机变量X 的期望E(X)及方差D (X )存在,则对任意小正数a>0,{}{}22)(1)()()(aX D a X E X P a X D a X E X P -≥<-↔≤≥- 2.独立同分布序列的中心极限定理{})(21)(212lim lim lim x dt x n n X P x Y P x xt n i i n n n n n eF Φ==⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-=≤=⎰∑∞---∞→∞→∞→πσμ3.棣莫费-拉普拉斯中心极限定理)1,0(~),(~2N X Z N X σμσμ-=⇔()()(σμ-Φ=<=≤a a X P a X P )(1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P)(2122lim x dt x mpq np Z p e t x n n Φ==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--∞-∞→⎰ 第六章 统计量及其抽样分布 样本方差,)(11212∑=--=ni i x x n s样本标准差2s s = 统计量样本K样本K卡方分布t 分布F 分布正态总体条件下样本均值的分布:样本方差的分布:两个正态总体的方差之比)(~)1,0(~212n X N X ni i χ∑=,则若())(~1),,(~21222n Y N Y ni iχμσσμ∑=-则若),(~//),(~),(~21212212n n F n V n U n V n U 则若χχ),(~2n N X σμ)1,0(~/N nX σμ-)1(~)1(222--n S n χσ)1(~/--n t ns X μ则若),(~),1,0(~2n Y N X χ)(~/n t nY X第七章 参数估计点估计:参数的估计值为一个常数最大似然估计P147似然函数单个正态总体参数的置信区间第八章 假设检验假设检验的步骤① 根据具体问题提出原假设H0和备择假设H1② 根据假设选择检验统计量,并计算检验统计值③ 看检验统计值是否落在拒绝域,若落在拒绝域则拒绝原假设,否则就不拒绝原假设。

概率论与数理统计(二)笔记

概率论与数理统计(二)笔记

概率论与数理统计(二)笔记经济数学基础二(概率论与数理统计)课程教学大纲一、课程教学目的与基本要求概率论与数理统计是高等学校(专科)经济、管理类及计算机类专业最重要的基础理论课之一。

本课程是我院经济、管理类及计算机类专业继微积分课程之后的一门基础课。

通过本课程的学习,使学生获得概率论与数理统计的基本知识和基本运算技能。

教学中要贯彻“以应用为目的,以必需、够用为度”的原则,教学重点放在掌握概念,强化应用,培养技能上。

通过各教学环节逐渐培养学生具有比较熟练的分析问题和解决问题的能力,并为专业课程的定量分析打下基础。

1.要正确理解以下概念:随机试验,随机事件、概率的古典定义、事件的独立性、一元随机变量、分布函数、二元随机变量、联合分布及边缘分布、随机变量相互独立性、随机变量的数字特征、总体与样本、统计量、两类错误、回归的基本概念2. 要掌握下列基本理论、基本定理和公式:概率的基本性质。

概率加法定理、乘法定理、全概率公式和贝叶斯公式、贝努里概型。

切比雪夫大数定律与贝努里大数定律、中心极限定理。

常用的统计量的分布。

参数估计的基本思想。

小概率原理。

3.熟练掌握下列运算法则和方法:事件的关系与运算。

古典概型的概率计算。

一元随机变量的分布函数、二元随机变量的边缘分布计算。

标准正态分布表的查法。

随机变量的数学期望、方差、协方差计算。

4.应用方面:用数学期望、方差的概念及性质解决具体问题的计算。

利用正态分布的理论解决具体问题。

用区间估计正确解决实际问题,并能解释其结果。

运用小概率原理,对具体问题做假设检验。

用一元线性回归方程及相关性检验解决实际问题。

二、课程主要内容第一章随机事件及其概率(10学时)1. 理解随机试验、随机事件的概念,了解样本空间的概念,掌握事件的关系与运算并会能灵活表达。

2. 了解概率的统计定义,理解概率的古典定义,会计算简单的古典概率。

3. 了解概率的公理化定义。

掌握概率的基本性质及概率加法定理。

《概率论与数理统计》讲义笔记【高斯课堂】(页眉页脚已除)

《概率论与数理统计》讲义笔记【高斯课堂】(页眉页脚已除)

5. 某保险公司把被保险人分为 3 类:“谨慎的”、“一般的”、“冒失的”,统计资料表明,这 3 种人在一年内发生事故的概率依次为 0.05, 0.15, 0.30 ;如果“谨慎的”被保险人占 20% , “一般的占 50% ,“冒失的”占 30% ,问: (1) 一个被保险人在一年内出事故的概率是多大? (2) 若已知某被保险人出了事故,求他是“谨慎的”类型的概率。
P(B1
A)
P(B1) P(A P( A)
B1)
0.6 0.01 0.014
3 7
6
题 3.盒中有 4 个红球,6 个黑球,今随机地取出一球,观察颜色后放回,并加上同色球 2 个, 再从盒中第二次抽取一球,求:
⑴第二次取出的是黑球的概率; ⑵已知第二次取出的是黑球,求第一次取出的也是黑球的概率。 解:⑴设事件 A 为“第二次取出的是黑球” B1为第一次取出是红球, B2 为第一次取出是黑球
常见题型 大题
1. 条件概率、乘法公式
题 1.投一颗骰子,事件 A 为“点数大于 3 ”,事件 B 为“点数为 5 ”。则 P(B A) _______。
解: P(AB) P(B) 1 6
P(A) 1 2
1
P(B
A)
P( AB) P( A)
6 1
1 3
2
区别:
P(B)
样本空间为点数 1,
2,
A. A 是必然事件
B. P B A 0
C. A B
D. P A P B
4. 仓库中有10 箱同种规格的产品,其中 2 箱、3 箱、5 箱分别由甲、乙、丙三个厂生产,三 个厂的正品率分别为 0.7, 0.8, 0.9 ,现在从这10 箱产品中任取一箱,再从中任取一件

概率论与数理统计重点笔记

概率论与数理统计重点笔记

概率论与数理统计重点笔记
概率论与数理统计是数学中的重要分支,它涉及到随机现象的
规律性和统计规律的研究。

在学习概率论与数理统计时,重点笔记
可以包括以下内容:
1. 概率论的基本概念,包括样本空间、随机事件、事件的概率、事件的运算规律等内容。

重点理解事件的概率定义、概率的性质和
概率的运算法则。

2. 随机变量及其分布,重点掌握随机变量的定义、离散随机变
量和连续随机变量的概念,以及它们的分布律、密度函数、分布函
数等。

还要重点理解常见的离散分布(如二项分布、泊松分布)和
连续分布(如正态分布、指数分布)。

3. 大数定律和中心极限定理,重点掌握大数定律和中心极限定
理的表述和应用,理解随机变量序列的收敛性质,以及大样本时样
本均值的渐近正态性质。

4. 参数估计,包括点估计和区间估计的基本概念和方法,重点
理解最大似然估计、矩估计等常用的参数估计方法。

5. 假设检验,理解假设检验的基本思想、原理和步骤,掌握显著性水平、拒绝域、接受域等相关概念,重点理解假设检验的错误类别和势函数的概念。

6. 相关性和回归分析,重点理解相关系数、回归方程、残差分析等内容,掌握相关性和回归分析的基本原理和方法。

总之,在学习概率论与数理统计的过程中,重点笔记应该围绕着基本概念、常用分布、极限定理、参数估计、假设检验和回归分析展开,全面理解这些内容并掌握其应用是十分重要的。

希望以上内容能够帮助你更好地理解概率论与数理统计。

《概率论与数理统计》学习笔记

《概率论与数理统计》学习笔记

《概率论与数理统计》(19)电子科技大学应用数学学院,徐全智吕恕主编。

2004版第6章数理统计的基本概念概率论与数理统计是两个紧密联系的姊妹学科,概率论是数理统计学的理论基础,而数理统计学则是概率论的重要应用.数理统计学是使用概率论和数学的方法,研究如何用有效的方式收集带有随机误差的数据,并在设定的模型下,对收集的数据进行分析,提取数据中的有用信息,形成统计结论,为决策提供依据. 这就不难理解,数理统计应用的广泛性,几乎渗透到人类活动的一切领域! 如:农业、生物和医学领域的“生物统计”,教育心理学领域的“教育统计”,管理领域的“计量经济”,金融领域的“保险统计”等等,这些统计方法的共同基础都是数理统计.数理统计学的内容十分丰富,概括起来可以分为两大类:其一是研究如何用有效的方式去收集随机数据,即抽样理论和试验设计;其二是研究如何有效地使用随机数据对所关心的问题做出合理的、尽可能精确和可靠的结论,即统计推断.本书主要介绍统计推断的基本内容和基本方法. 在这一章中先给出数理统计中一些必要的基本概念,然后给出正态总体抽样分布的一些重要结论.6.1总体、样本与统计量一、总体在数理统计中,我们将研究对象的全体称为总体或母体,而把组成总体的每个基本元素称为个体.二、样本样本是按一定的规定从总体中抽出的一部分个体" 这里的“按一定的规定”,是指为保证总体中的每一个个体有同等的被抽出的机会而采取的一些措施" 取得样本的过程,称为抽样.三、统计量6.2抽样分布统计量是我们对总体的分布规律或数字特征进行推断的基础. 由于统计量是随机变量,所以在使用统计量进行统计推断时必须要知道它的分布. 统计量的分布称为抽样分布.一、三个重要分布二、抽样分布定理6.3应用一、顺序统计量及其应用二、极值的分布及其应用。

概率论与数理统计笔记(重要公式)

概率论与数理统计笔记(重要公式)

r = A 中样本点数 / Ω 中样本点总数 n
= A 所包含的基本事件数 / 基本事件总数 条件概率:
对偶律: A B = A B , P ( AB ) 设 A, B 是两个事件, 且 P(B)>0, 称 P(A|B)= 为 贝叶斯公式: P( B) 在事件 B 发生条件下事件 A 发生的条件概率。显然, 当 P(A)>0 时,P(B|A)=
二项分布 X ~ B(n, p): 指数分布 X ~ E(λ) 若随机变量 X 只取两个可能值 0, 1, …, n, 而 X 的分布律为 e x x 0 若随机变量 X 的概率密度为 f ( x) k k nk pk =P {X= xk }= Cn p q , k=0, 1, 2, …, n, x0 0

设 X 为离散型随机变量, 可能取值为 x1, x2, …, xk, … 且 P 概率密度的性质: (1) f(x)≥0 {X= xk }= pk, k=1, 2, …, 则称{pk}为 X 的分布律 表格形式: f ( x)dx =1 (2) X x1, x2, …, xk, … b P p1, p2, …, pk, … (3) P{a<X≤b}= F(b)-F(a)= f ( x)dx , a≤b a {pk}性质: (4) 设 x 为 f(x)的连续点,则 F’(x)存在,且 (1) pk≥0, k=1, 2, … F’(x)= f(x) (2) pk =1 均匀分布 X ~ U (a, b) k 1 若随机变量 X 的概率密度为 在求离散型随机变量的分布律时,首先要找出其所有可能 1 , a≤x≤b 的取值,然后再求出每个值相应的概率 ba f(x) = 在实际应用中,有时还要求“X 满足某一条件”这样事件的 概率, 求法就是把满足条件的 xk 所对应的概率 pk 相加可得 0, 其他 则称 X 服从区间[a,b]上的均匀分布,其分布函数为 其分布函数 F(x) = pk xk x 0, x≤a 0-1 分布: xa F(x) = , a<x<b 若随机变量 X 只取两个可能值 0, 1,且 ba P {X=1}=p, P{X=0}=q 1, x≥b 其中 0<p<1, q=1-p, 则称 X 服从 0-1 分布. X 的分布律为 设 X ~ U (a, b), a≤c<d≤b,即[a,b] [c,d],则 X 0 1 d c P{c≤X≤d}= P q p ba

高等教育自学考试概率论与数理统计(经管类04183)复习资料

高等教育自学考试概率论与数理统计(经管类04183)复习资料

概率论与数理统计(经管类04183)第一章 随机事件与概率复习要点:一、事件的关系和运算 1.常用表示公式A ,B ,C .至少发生一个;都发生;都不发生;恰好发生一个;至多发生一个. 2.互不相容与对立 3.差的不同表示法 4.特殊关系事件间的运算(1),B A ⊂则.,,,不相容与B A ,A B B A B B A A AB ⊂=-=+=Φ (2)A ,B 互不相容,则.,,,,B A B A B A B A B A AB ⊂=+=-=-=ΩΦ 5.对偶律 画图.二、概率的性质 1.基本性质 2.推论(1)有限可加性 (2))(1)(A P A P -=;(3))()()(,A P B P A B P B A -=-⊂;(4))()()()(AB P B P A P B A P -+=+, )()()(AB P A P B A P -=-,)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=++ 三、古典概型注意:1.上下一致;2.不重复,不遗漏;3. 事件复杂时考虑对立事件. 四、条件概率 1.条件概率)()()|(A P AB P A B P =2.乘法公式)()()()(),|()()(AB |C P A |B P A P ABC P A B P A P AB P == 3.全概率公式和贝叶斯公式n A A ,,1 —原因,在先,B —结果,在后.时间上的先后,逻辑上的先后.五、事件的独立性 1.定义 2.等价条件 3.n 个事件 4.性质(1)B ,A B A,B A B A ;;;,,独立性等价;(2)n A A ,,1 相互独立.其中一部分必相互独立;若干个换成对立事件仍相互独立;分成几组,各组的运算结果间相互独立.5.利用独立性计算概率),(()()()()(1)(B A)P P B P A P B P A P B A P -+=-=+)()()(B P A P B A P =- )()1)(11n n A P A P(A A P -=++最终化为事件乘积的概率. 6.n 重贝努利试验概率的计算:1.推算题 独立性→条件概率→互不相容→包含→一般2.文字题 独立性→全、逆概公式→条件概率→古典概型第二章 随机变量及其概率分布复习要点: 一、分布函数 1.定义 2.性质3.计算概率二、离散型随机变量 1.概率分布 2.性质求概率分布:(1)先找X 的取值;(2)求X 取每个值的概率(可少求一个). 3.求概率利用概率的可加性. 4.分布函数三、连续型随机变量 1.密度 2.性质求密度中的参数. 3.求概率 4.分布函数 (1)求参数(2)与密度的关系 四、重要分布 1.0—1分布 2.二项分布 3.泊松分布 4.均匀分布6.正态分布对称性,概率的计算.五、随机变量函数的分布1.离散型Y=g(X).先找Y的取值,再利用X的分布律和可加性计算Y的分布概率.2.连续型了解分布函数法第三章多维随机变量及其概率分布复习要点:一、多维随机变量及其分布函数二、离散型随机变量1.概率分布2.性质求概率分布:(1)先找X、Y的取值,得(X,Y)的取值(交叉);(2)求(X,Y)取每个值的概率(可少求一个).3.求概率利用概率的可加性.三、连续型随机变量1.密度2.性质求密度中的参数.3.求概率四、边际分布与独立性1.离散型表上作业.2.连续型注意逆问题:由独立性及边际分布找联合分布.五、重要分布1.二维均匀分布知道何时两分量独立.2.二维正态分布知道边际分布.五、两个随机变量的函数的分布1.离散型Z=X+Y,Z=XY.先找Z的取值,再利用(X,Y)的分布律和可加性计算Z的分布概率.2.两个独立连续型随机变量之和的分布了解卷积公式独立的正态分布的线性组合仍为正态分布.第四章随机变量的数字特征复习要点:1.单个随机变量(1)离散型 (2)连续型n nn p x X E ∑=)( ⎰+∞∞-=xf(x)dx X E )(n nn p x g X g E )()]([∑= ⎰+∞∞-=dx x f x g X g E )()()]([n nnp x X E ∑=22)( ⎰+∞∞-=dx x f x X E )()(222.两个随机变量 (1)离散型ij ij i j p y x g Y X,g E ),()]([∑∑= ij ijij p yx XY E ∑∑=)(∙∑∑∑==i ii ijii jpx p x X E )(j j jij ij jp yp y E(Y ∙∑∑∑==)(2)连续型dy dx y x f y x g Y X,g E ⎰⎰+∞∞-+∞∞-=),(),()]([ dy dx y x f y x XY E ⎰⎰+∞∞-+∞∞-=),()(==⎰⎰+∞∞-+∞∞-dxdy y x xf X E ),()(⎰+∞∞-dx x xf X )( ==⎰⎰+∞∞-+∞∞-dxdy y x f y Y E ),()(⎰+∞∞-dy y f y Y )(建议:用边际分布求各分量的期望及其函数的期望. 3.性质 二、方差 1.定义2.等价公式3.性质随机变量的标准化.三、重要分布的期望、方差 四、协方差 1.定义Cov (X ,Y )=E [X -E (X )]E [Y -E (Y )]),(2)()()(Y X Cov Y D X D Y X D ++=+),(2)()()(Y X abCov Y D b X D a bY aX D 22++=+2.等价公式Cov (X ,Y )=E (XY )-E (X )E (Y )3.性质 五、相关系数 1.定义2.性质3.不相关独立⇒E (XY )=E (X )E (Y )⇔⇔+=±)()()(Y D X D Y X D Cov (X ,Y )=0⇔不相关二维正态分布的特殊性.第五章 大数定律与中心极限定理复习要点:一、切贝雪夫不等式二、大数定律 知道结论.三、中心极限定理1.独立同分布序列的中心极限定理).,(~2n1i i n n N X σμ∑=)()(21σμΦn n a a X P ni i -≈≤∑=2.棣—拉中心极限定理X ~B (n ,p ).X ~N (np ,np (1-p )).).)1(()(p np np a a X P --≈≤Φ第六章 统计量及其抽样分布复习要点:一、概念 1.总体与样本 2.统计量定义;样本均值、样本方差、样本标准差、样本矩(了解). 二、几种统计量的分布 1.2χ分布(1)构造;(2)可加性;(3)分位数. 2.t 分布(1)构造;(2)对称性;(3)分位数. 3.F 分布(1)构造;(2)倒数;(3)分位数. 三、正态总体的抽样分布 单正态总体第七章 参数估计本章重点: 一、点估计 1.矩估计一个参数θ.(1))(θμg EX ==;(2) )ˆ(ˆθμg =;(3)解出θˆ. 2.极大似然估计一个参数θ.(1));(θ∏==n1i i x p L ;(2) lnL ;(3)0d dlnL=θ;(4)解出θˆ. 3.评判标准(1)无偏性.2σμ与的无偏估计;(2)有效性;(3)相合性. 二、区间估计1.概念2.单个正态总体的置信区间第八章 假设检验复习要点: 一、概念 1.基本概念2.步骤3.两类错误二、单个正态总体的假设检验 1.已知方差,检验均值 (u ) (1)双边;(2)单边.2.未知方差,检验均值 (t ) (1)双边;(2)单边.3.未知均值,检验方差 (χ2) (1)双边;(2)单边.三、两个正态总体的假设检验 1.已知方差,检验均值 (u ) (1)双边;(2)单边.2.未知方差但相等,检验均值 (t ) (1)双边;(2)单边.3.未知均值,检验方差 (F ) (1)双边;(2)单边.四、大样本下任意总体的参数检验第九章 回归分析复习要点:回归系数和回归常数的估计公式,了解F 检验.。

《概率论与数理统计》笔记

《概率论与数理统计》笔记

《概率论与数理统计》笔记
概率论与数理统计是一门关注数学中模型与统计学之间关系的学科,它广泛应用于多
学科,如金融、制造业、社会研究、生物学等。

该学科通过训练统计学家,使他们能够正
确地估算、模拟、识别实际问题。

概率论的基本思维是发现或认识事件可能发生的概率。

它的概念源自古典概率论,尤
其是科学家蒙特马克的研究,利用统计抽样了解不完全知识的情况。

概率论用来描述不同
事件之间相互作用的关系和支配这些事件的规律。

概率论不仅涉及单个事件的概率,也包
括有关许多独立事件及其相关概率的多事件概率论。

数理统计主要用来收集、组织、分析数据,推断一般情况下的规律和趋势,其中使用
了广泛的数理方法。

它可以帮助人们做出有意义的结论,从而帮助他们把控不确定性的环境。

数理统计从双重意义上来看,既是一门理论学科,又是一门实践性学科,它融合了数学、统计学和计算机的优势,把这些优势应用于许多实际问题,如质量控制、流行病模型、社会研究等。

概率论与数理统计并不是一门独立的学科,它们是两个相互渗透和紧密相关的学科。

概率论提供了统计学家用来描述系统未来行为的模型,而数理统计则可以用来理解和控制
数据的变化和潜力。

这两门学科的知识和技术能够实现精确测量、预测和决策,进而实现
有效的事实分析。

概率论与数理统计笔记

概率论与数理统计笔记

第一章 概率论的基本概念随机试验:1.可以在相同的条件下重复进行2.每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果3.进行一次试验之前不能确定哪个结果会出现样本空间:随机试验E 的所有可能结果组成的集合称为E 的样本空间,记为S 随机事件:试验E 的样本空间S 的子集,简称事件基本事件:由一个样本点(E 的每个结果)组成的单点集 频率:事件A 发生次数和试验次数的比值n A /n ,记作f n (A)概率:对事件A 赋予实数,P(A) 非负性,规范性,可列可加性性质i P(∅)=0.性质ii(有限可加性) 若A1,A2,…,An 是两两互不相容的事件,则有P(A 1⋃A 2⋃…⋃A n )=P (A 1)+P (A 2)+⋯+P(A n ).性质iii 设A,B 是两个事件,若A ⊂B,则有P(B-A)=P(B)-P(A);P(B)≥P(A). 性质iv 对于任一事件A,P(A)≤1.性质v(逆事件的概率) 对于任一事件A,有P(A )=1-P(A).性质vi(加法公式) 对于任意两事件 A,B 有P(A ⋃B)=P(A)+P(B)-P(AB). 古典概型:样本空间只包含有限个元素,每个基本事件可能性相同A 的对立事件A̅及其概率:也称逆事件 两个互不相容事件的和事件的概率:两事件不能同时发生,概率的有限可加性 概率的加法定理:P(A ⋃B )=P(A)+P(B)-P(AB)条件概率:在事件A 发生的条件下事件B 发生的P(B|A)=P(AB)P(A).概率的乘法公式:P(ABC)=P(C|AB)P(B|A)P(A) 全概率公式:P (A )=∑P (A |B i )n i=1P(B i ) B i 是试验E 的S 的划分,A 为E 的事件 贝叶斯公式:P (B i |A )=P(A|B i )P(B i )∑P(A|B j )P(B j )nj=1,i=1,2,…,n.事件的独立性:P(AB)=P(A)P(B),互相独立与互不相容不能同时成立设n 个事件,如果对于其中任意2个,任意3个,…,任意n 个事件的积事件的概率都等于各事件概率之积,则称n 个事件相互独立实际推断原理:概率很小的事件在一次实验中实际上几乎是不发生的第二章 随机变量及其分布随机变量:设E 的样本空间S={e},X=X(e)是定义在样本空间S 上的单值函数,称随机变量分布函数:X 是随机变量,x 是任意实数,F (x )=P {X ≤x },−∞<x <∞称为X 的分布函数任意实数x 1,x 2(x 1<x 2),有 P {x 1<X ≤x 2}=P {X ≤x 2}−P {X ≤x 1}=F (x 2)−F(x 1) 基本性质:不减函数,0≤F(x)≤1且F(-∞)=0,F(∞)=1离散型随机变量:全部可能取到的值是有限个或可列无限多个其分布律: P {X =x k }=p k ,k =1,2,… 连续性随机变量:F (x )=∫f(t)dt x−∞ 非负可积函数f (x )概率密度:f(x)性质:f (x )≥0;∫f (x )dx ∞−∞=1伯努利试验:试验E 只有两个可能结果:A 及A(0−1)分布: P {X =k }=p k (1−p)1−k ,k =0,1 (0<p <1) 记为X ~b(1,p) n 重伯努利试验:将伯努利试验E 独立重复地进行n 次,以C i 为A 或A ,i=1,2,…,n.独立:P (C 1C 2…C n )=P (C 1)P (C 2)…P(C n )二项分布:P {X =k }=(n k )p k (1−p)n−k ,k =0,1,2,…,n. 记为X ~b(n,p) 泊松分布:P {X =k }=λk e −λk!,k =0,1,2,…,λ是常数,记为X ~π(λ)指数分布:f (x )={1θe −xθ,x >00,otherwise,记为X ~η(θ)均匀分布:f (x )={1b−a ,a <x <b,0,otherwise.,记为X ~U(a,b)正态分布:f (x )=√2πσ−(x−μ)22σ2,-∞<x<∞,其中μ,σ(σ>0)是常数,记作X ~N (μ,σ2)标准正态分布:X ~N(0,1),概率密度为φ(x),分布函数为Φ(x) 引理:若X ~N(μ,σ2),则Z =X−μσ~N(0,1)随机变量函数的分布:Y=g(X),分布函数法(先求分布函数,再对分布函数求导)第三章 多维随机变量及其分布二维随机变量(X ,Y ):设X=X(e),Y=Y(e)是定义在样本空间S 上的随机变量构成的向量 (X ,Y )的分布函数:联合分布函数:F (x,y )=P {(X ≤x )∩(Y ≤y )}≝P{X ≤x,Y ≤y}边缘分布函数:F X (x )=P {X ≤x }=P {X ≤x,Y <∞}=F(x,∞),F Y (y )=F(∞,y) 离散型随机变量(X ,Y )的分布律:P{X =x i ,Y =y j }=p ij ,i,j =1,2,… 联合分布律 连续型随机变量(X ,Y )的概率密度:f(x,y) 联合概率密度1. f (x,y )≥02. ∫∫f(x,y)dxdy ∞−∞=F (∞,∞)=1∞−∞3. 设G 是xOy 平面上的区域,点(X,Y)落在G 内的概率为∬f(x,y)dxdyG . 4. 若f(x,y)在点(x,y)连续,则有∂2yF(x,y)∂x ∂y=f(x,y)离散型随机变量(X ,Y )的边缘分布律:P {X =x i }=∑p ij ∞i=0,i =1,2,…, Y 一样 连续型随机变量(X ,Y )的边缘概率密度:f X (x )=∫f(x,y)dy ∞−∞,Y 一样 条件分布函数:F X|Y (x |y )=P {X ≤x |Y =y }=∫f(x,y)f X (x)dy y −∞ 在Y=y 条件下X 的条件分布函数条件分布律:P {X =x i |Y =y i }=P{X=x i ,Y=y i }P{Y=y i }=p ij p .j,i =1,2,… 在Y=y j 条件下X 的条件分布律条件概率密度:f X|Y (x |y )=f(x,y)f Y (y)在Y=y 的条件下X 的条件概率密度两个随机变量X ,Y 的独立性:F (x,y )=F X (x)F Y (y)对二维正态随机变量变量(X,Y),X 和Y 相互独立的充要条件是参数ρ=0 Z=X+Y 、Z=Y/X 、Z=XY 的概率密度:Z=X+Y:f X+Y (z )={∫f X (z −y)f Y (y)dy∞−∞∫f X (x)f Y (z −x)dx∞−∞ Z=Y/X:f Y X(z )=∫|x|f(x,xz)dx ∞−∞=∫|x|f X (x)f Y (xz)dx ∞−∞Z=XY:f XY (z )=∫1|x|f(x,z x)dx ∞−∞=∫1|x|f X (x)f Y (zx)dx ∞−∞M=max{X ,Y},N=min{X ,Y}的概率密度:分布函数:F max (z)=P{M≤z}=P{X≤z,Y≤z}=P{X≤z}P{Y≤z}=F X (z)F Y (z).F min (z)=P{N≤z}=1-P(N>z)=1-P{X>z,Y>z}=1-P{X>z}∙P{Y>z}=1-[1-F X (z)][1-F Y (z)].第四章 随机变量的数字特征数学期望:E (X )=∑x k p k ∞k=1E (X )=∫xf(x)∞−∞dx (积分绝对收敛)随机变量函数的数学期望:Y=g(X)(g 是连续函数)E(Y)=E[g(X)]=∑g(x k )∞k=1p k E(Y)=E[g(X)]=∫g(x)f(x)dx ∞−∞E(Z)=E[g(X,Y)]=∑∑g(x i ,y j )p ij ∞i=1∞j=1E(Z)=E[g(X,Y)]=∫∫g(x,y)f(x,y)∞−∞dxdy ∞−∞数学期望的性质:1.设C 是常数,则有E(C)=C.2.设X 是一个随机变量,C 是常数,则有E(CX)=CE(X).3.设X,Y 是两个随机变量,则有E(X+Y)=E(X)+E(Y).(可推广到任意有限个随机变量之和)4.设X,Y 是相互独立的随机变量,则有E(XY)=E(X)+E(Y).(可推广到任意有限个相互独立随机变量之积)方差:D(X)=Var(X)=E{[X-E(X)]2}. 标准差:σ(x)=√D(X)方差的性质:1.设C 是常数,则D(C)=0.2.设X 是随机变量,C 是常数,则有D(CX)=C 2D(X),D(X+C)=D(X).3.设X,Y 是两个随机变量,则有D(X+Y)=D(X)+D(Y)+2E{(X-E(X))(Y-E(X))}. 若X,Y 相互独立,则有D(X+Y)=D(X)+D(Y).4.D(X)=0的充要条件是X 以概率1取常数E(X),即P{X=E(X)}=1. 标准化的随机变量:X ∗=X−μσ.(数学期望为0,方差为1)协方差:Cov(X,Y)=E{[X-E(X)][Y-E(Y)]}. 相关系数:ρXY =√D(X)D(Y)相关系数的性质:1.|ρXY |≤1.2.|ρXY |=1的充要条件是,存在常数a,b 使P{Y=a+bX}=1. X ,Y 不相关:当ρXY =0时.切比雪夫不等式:设随机变量X 具有E(X)=μ,方差D(X)=σ2,则对任意正数ε,不等式 P{|X −μ|≥ε}≤σ2ε2成立几种重要分布的数学期望和方差:(推导)矩:k 阶原点矩:E(X k ),k=1,2,…k 阶中心矩:E([X-E(X)]k ),k=2,3,… k+l 阶混合矩:E(X k Y l ),k,l=1,2,…k+l 阶混合中心矩:E([X-E(X)]k [Y-E(Y)]l ),k,l=1,2,…协方差矩阵:C =(c ij )=(Cov(X i ,Y j ))=E{[X i -E(X i )][X j -E(X j )]},i,j=1,2,…,n.第五章 大数定律及中心极限定理依概率收敛:设Y 1,Y 2,…,Y n ,…是一个随机变量序列,a 是一个常数.若对于任意正数ε,有lim n→∞P {|Y n −a |<ε}=1,则称序列Y 1,Y 2,…,Y n ,…依概率收敛于a,记为Y n P→a.伯努利大数定理:P(A)=P,频率nA n(n 次重复独立试验),对∀ε>0,lim n→∞P {|n A n−P|<ε}=1.辛钦大数定理:已知R.V . X 1,X 2,…,X n ,…相互独立且E(X i )=μ.(i=1,2,…)则∀ε>0,lim n→∞P {|1n ∑X k −μn k=1|<ε}=1.独立同分布的中心极限定理:设R.V .序列:X 1,X 2,…,X n ,…相互独立,并且E(X k )=μ, D(X k )=σ2,k=1,2,…则k n k=1√nσ2̃N(0,1) 标准正态分布(高斯分布)近似计算 李雅普诺夫中心极限定理:棣莫弗-拉普拉斯中心极限定理:设R.V. ηn ~B(n,p),则对任意x 有{η−np √np (1−p )≤x}≈Φ(x) 二项分布(n→∞)→ 正态分布第六章 样本及抽样分布总体:试验的全部可能的观察值.简单随机样本:设X 是具有分布函数F 的随机变量,若X 1,X 2,…,X n 是具有同一分布函数F 的、相互独立的随机变量,则称X 1,X 2,…,X n 为从分布函数F 得到的容量为n 的简单随机样本,简称样本.统计量:不含未知参数的样本的函数g(X 1,X 2,…,X n ).样本平均值:X̅=1n∑X i ni=1 样本方差:S 2=1n −1∑(X i −X ̅)2n i=1=1n −1(∑X i 2ni=1−nX̅2) 样本k 阶原点矩:A k =1n∑X i k ni=1,k =1,2,…样本k 阶中心矩:B k =1n∑(X i −X̅)k ni=1,k =1,2,… χ2分布:χ2=X 12+X 22+⋯+X n 2,服从自由度为n 的χ2分布,记为χ2~χ2(n).χ2(n)分布的概率密度为f (y )={12n 2Γ(n 2)yn 2−1e −y 2,y >0 0, otℎerwiseGamma 函数:Γ(x )=∫e −t t x−1dt +∞0,(x >0)t 分布:设X ~N(0,1),Y ~χ2(n),且X,Y 相互独立随机变量t=√n,服从自由度为n 的t 分布.记为t ~t(n).t(n)分布的概率密度函数为h (t )=Γ(n +12)√πnΓ(n 2)(1+t 2n )−n+12F 分布:设U ~χ2(n 1),V ~χ2(n 2),且U,V 相互独立随机变量F=Un 1V n 2,服从自由度为(n 1,n 2)的F 分布,记为F ~F(n 1,n 2). 密度函数为ψ(y).密度函数图形轮廓:χ2分布,F 分布类似,t 分布对称上α分位点:χα2(n),t α(n),F α(n 1,n 2) F 1-α(n 1,n 2)=1Fα(n 1,n 2):F 分布上分位点的重要性质,用来求表中未列出的常用上α分位点.关于样本均值、样本方差的重要结果1.设X 1,X 2,…,X n 是来自总体X(不管服从什么分布,只要它的均值和方差存在)的样本,且有E(X)=μ,D(X)=σ2n .2.设总体X~N(μ,σ2),X1,X2,…,X n是来自X的样本,则有);1)X̅~N(μ,σ2n~χ2(n−1);2)(n−1)S2σ23)X̅与S2相互独立;~t(n−1);4)X̅−μS√n3.对于两个正态总体X~N(μ1,σ12),Y~N(μ2,σ22),有定理四的重要结果.第七章 参数估计矩估计量:θ̂i =θi(A 1,A 2,…,A k ),i=1,2,…,k 作为θi 的估计量,A i 是样本矩. 最大似然估计量:θ̂(X 1,X 2,…,X n ),使L(x 1,x 2,…x n ;θ̂)=max θ∈ΘL(x 1,x 2,…,x n ;θ) 估计量的评选标准:无偏性:若估计量θ̂=θ̂(X 1,X 2,…,X n )的数学期望E(θ̂)存在,且对于任意θ∈~Θ有E(θ̂)=θ. 有效性:θ̂1=θ̂1(X 1,X 2,…,X n )与 θ̂2=θ̂2(X 1,X 2,…,X n )都是θ的无偏估计量,若对于任意θ∈Θ,有D(θ̂1)≤D(θ̂2)且至少对于某一个θ∈Θ上式中的不等号成立. 相合性:设θ̂(X 1,X 2,…,X n )为参数θ的估计量,若对与任意θ∈Θ,当n →∞时θ̂(X 1,X 2,…,X n )依概率收敛于θ.参数θ的置信水平为1-α的置信区间:θ的两个矩估计量θ=θ(X 1,X 2,…,X n )θ=θ(X 1,X 2,…,X n )给定的值α(0<α<1)有 P{θ<θ<θ}=1-α. 称(θ,θ)为置信水平为(1-α)的置信区间.枢轴量:一个样本和参数的函数W(X 1,X 2,…,X n ;θ),W 的分布不依赖于θ及其它未知参数. 参数θ的单侧置信上限和单侧置信下限P{θ>θ}≥1-α,即(θ,+∞)为θ的单侧置信区间,θ为单侧置信下限. P{θ<θ}≥1-α,即(θ,+∞)为θ的单侧置信区间,θ为单侧置信上限. 单个正态总体均值置信区间:若σ2已知,找U=X−μσ√n~N(0,1),得到μ的一个置信水平为1-α的置信区间为(X √nz α2)若σ2未知,E(S 2)=σ2,将σ换成S=√S 2找T=X−μS √n~t(n −1),得到μ的一个置信水平为1-α的置信区间为(X ±√nt α2(n −1))单个正态总体方差置信区间:σ2的无偏估计为S 2,(n −1)S 2σ2~χ2(n −1) P{χ1−α22(n −1)<(n −1)S 2σ2<χα22(n −1)}=1−α P {(n −1)S 2χα22(n −1)<σ2<(n −1)S 2χ1−α22(n −1)}=1−α 得到σ2的一个置信水平为1-α的置信区间为((n −1)S 2χα22(n −1),(n −1)S 2χ1−α22(n −1)) 单侧置信上限与单侧置信下限σ2已知,关于μ的单侧置信区间选U=X−μσ√n~N(0,1)单侧置信上限为μ=X √n α单侧置信下限为μ=X√nασ2未知,选T=X−μS√n~t(n−1)单侧置信上限为μ=X√nα(n−1)单侧置信下限为μ=X√nα(n−1)关于σ2,选(n−1)S 2σ2~χ2(n−1)单侧置信上限为σ2=(n−1)S 2χ1−α2(n−1)单侧置信下限为σ2=(n−1)S 2χα2(n−1)两个正态总体均值差、方差比的置信区间、单侧置信上限与单侧置信下限第八章 假设检验原假设:H 0:μ=μ0备择假设:H 1:μ≠μ0(原假设被拒绝后可供选择的假设) 检验统计量:Z =X−μ0σ√n单边检验:(右边检验)H 0:μ=μ0,H 1:μ>μ0(左边检验)H 0:μ=μ0,H 1:μ<μ0 双边检验:形如H 0:μ=μ0, H 1:μ≠μ0的检验显著性水平:关于x 与μ0有无差异的判断是在显著性水平α之下作出的. 拒绝域:区域C 中取某个值时拒绝原假设,如|z|>z α2.显著性检验:只对犯第I 类错误的概率加以控制,而不考虑犯第II 类错误的概率的检验. 一个正态总体的参数的检验:μ的检验σ2已知:利用统计量Z=X−μ0σ√n~N(0,1)确定拒绝域|Z|≥z α2σ2未知:|t|=|X−μ0S √n|~t(n-1)σ2的检验:χ2分布χ2=(n−1)S 2σ02~χ2(n −1)k 1=χ1−α22(n −1),k 2=χα22(n −1) 拒绝域为(n−1)S 2σ02≤k 1 或(n−1)S 2σ02≥k 2。

概率论与数理统计笔记

概率论与数理统计笔记

第一章 概率论的基本概念1 随机试验1.对随机现象的观察、记录、试验统称为随机试验.2.随机试验E 的所有结果构成的集合称为E 的样本空间,记为{}S e =, 称S 中的元素e 为基本事件或样本点.3.可以在相同的条件下进行相同的实验;每次实验的可能结果不止一个,并且能事先明确试验的所有可能结果;进行一次试验之前不能确定哪一个结果会实现.2.样本空间、随机事件1.对于随机试验,尽管在每次试验之前不能预知试验结果,但试验的所有可能结果组成的集合是已知的.我们将随机试验E 的所有可能结果组成的集合称为E 的样本空间,记为S 样本空间的元素,即E 的每个结果称为样本点.2.一般我们称S 的子集A 为E 的随机事件A ,当且仅当A 所包含的一个样本点发生称事件A 发生.如果将S 亦视作事件,则每次试验S 总是发生,故又称S 为必然事件。

为方便起见,记φ为不可能事件,φ不包含任何样本点.3.若A B ⊂,则称事件B 包含事件A ,这指的是事件A 发生必导致事件的发生。

若A B ⊂且B A ⊂,即A B =,则称事件A 与事件B 相等.4.和事件{}AB x x A x A A B =∈∈或:与至少有一发生.5.当AB φ=时,称事件A 与B 不相容的,或互斥的.这指事件A 与事件B 不能同时发生.基本事件是两两互不相容的.,{,{,,A A S A A SA A AB AA AB ===∅=∅的逆事件记为若则称互逆,互斥.6.,A B A B A B AB 当且仅当同时发生时,事件发生.也记作.,A B A B A B AB 当且仅当同时发生时,事件发生,也记作.7. 事件 A 的对立事件:设 A 表示事件 “A 出现”, 则“事件 A 不出现”称为事件 A 的对立事件或逆事件. 事件间的运算规律:,,, A B C 设为事件则有,A B B A AB BA ==(1)交换律:()(),A B C A B C =(2)结合律:()()AB C A BC = ()()()A B C A C B C ACBC ==(3)分配律:,de Morgan AB AB AB AB ==(4)律:3.频率和概率1.记()An n f A n=()A n A f A A n --其中n 发生的次数(频数);n 总试验次数.称为在这次试验中发生的频率.频率 反映了事件A 发生的频繁程度. 2.频率的性质:10()12()1n n kkf A f S ≤≤=。

全国自学考试04183概率论与数理统计(经管类)-考试复习速记宝典

全国自学考试04183概率论与数理统计(经管类)-考试复习速记宝典

概率论与数理统计(经管类)(04183适用全国)速记宝典命题来源:围绕学科的基本概念、原理、特点、内容。

答题攻略:(1)不能像名词解释那样简单,也不能像论述题那样长篇大论,但需要加以简要扩展。

(2)答案内容要简明、概括、准确,即得分的关键内容一定要写清楚。

(3)答案表述要有层次性,列出要点,分点分条作答,不要写成一段;(4)如果对于考题内容完全不知道,利用选择题找灵感,找到相近的内容,联系起来进行作答。

如果没有,随意发挥,不放弃。

考点1:随机事件。

在随机试验中,产生的各种结果叫做随机事件(random Events),简称事件(Events).随机事件通常用大写英文字母A、B、C等表示.如观察马路交叉口可能遇上的各种颜色交通灯,这是随机试验,而“遇上红灯”则是一个随机事件。

例:投掷一个骰子,观察其朝上的点数。

A={朝上的点数为2}B={朝上的点数为偶数点}都是随机事件。

必然事件Certainty Events必然事件——样本空间Ω本身也是事件,它包含了所有可能的试验结果,因此不论在哪一次试验它都发生,称为必然事件。

也将它记为Ω。

如:“抛掷一颗骰子,出现的点数不大于6”不可能事件Impossible Event不可能事件——不包含任何样本点的事件,记为φ,每次试验必定不发生的事件.如:“抛掷一颗骰子,出现的点数大于6”考点2:古典概型。

设某随机试验具有如下特征:(1)试验的可能结果只有有限个;(2)各个可能结果出现是等可能的。

则称此试验为古典(等可能)概型。

古典概型中概率的计算:n=进行试验的样本点总数ΩK=所考察的事件A含的样本点数P(A)=k/n=A的样本点数/样本点总数P(A)具有如下性质:(1)0≤P(A)≤1;(2)P(Ω)=1;P(φ)=0(3)AB=φ,则P(A∪B)=P(A)+P(B)考点3:乘法公式。

若抽取是不放回地,求以上三问?设A、B∈Ω,P(A)>0,则P(AB)=P(A)P(B|A).(1)式(1)就称为事件A、B的概率乘法公式。

《概率论与数理统计》笔记

《概率论与数理统计》笔记

《概率论与数理统计》笔记一、课程导读“概率论与数理统计”是研究随机现象的规律性的一门学科在自然界,在人们的实践活动中,所遇到的现象一般可以分为两类:确定性现象随机现象➢确定性现象在一定的条件下,必然会出现某种确定的结果.例如,向上抛一枚硬币,由于受到地心引力的作用,硬币上升到某一高度后必定会下落.我们把这类现象称为确定性现象(或必然现象).同样,任何物体没有受到外力作用时,必定保持其原有的静止或等速运动状态;导线通电后,必定会发热;等等也都是确定性现象.➢随机现象在一定的条件下,可能会出现各种不同的结果,也就是说,在完全相同的条件下,进行一系列观测或实验,却未必出现相同的结果.例如,抛掷一枚硬币,当硬币落在地面上时,可能是正面(有国徽的一面)朝上,也可能是反面朝上,在硬币落地前我们不能预知究竟哪一面朝上.我们把这类现象称为随机现象(或偶然现象).同样,自动机床加工制造一个零件,可能是合格品,也可能是不合格品;射击运动员一次射击,可能击中10环,也可能击中9环8环……甚至脱靶;等等也都是随机现象.➢统计规律性对随机现象,从表面上看,由于人们事先不能知道会出现哪一种结果,似乎是不可捉摸的;其实不然.人们通过实践观察到并且证明了,在相同的条件下,对随机现象进行大量的重复试验(观测),其结果总能呈现出某种规律性.例如,多次重复抛一枚硬币,正面朝上和反面朝上的次数几乎相等;对某个靶进行多次射击,虽然各次弹着点不完全相同,但这些点却按一定的规律分布;等等.我们把随机现象的这种规律性称为统计规律性.●应用例子➢摸球游戏中谁是真正的赢家在街头巷尾常见一类“摸球游戏”.游戏是这样的:一袋中装有16个大小、形状相同,光滑程度一致的玻璃球.其中8个红色、8个白色.游戏者从中一次摸出8个,8个球中.当红白两种颜色出现以下比数时.摸球者可得到相应的“奖励”或“处罚”:注:表中“-2”表示受罚2元解: 此游戏(实为赌博),从表面上看非常有吸引力,5种可能出现的结果.有4种可得奖.且最高奖达10元.而只有一种情况受罚.罚金只是2元.因此就吸引了许多人特别是好奇的青少年参加.结果却是受罚的多,何以如此呢?其实.这就是概率知识的具体应用:现在是从16个球中任取8个.所有可能的取法为816C 种.即基本事件总数有限.又因为是任意抽取.保证了等可能性.是典型的古典概型问题.由古典概率计算公式.很容易得到上述5种结果.其对应的概率分别是:3807048730121800099460000155404848385828681878.C C C P(E);.C C 2C P(D);.C C 2C P(C);.C C 2C P(B);.C 2P(A)816816816816816==========假设进行了1000次摸球试验, 5种情况平均出现的次数分别为:0、10、122、487、381次,经营游戏者预期可得2×381-(10×0+1×10+0.5×122+0.2×487) =593.6(元). 这个例子的结论可能会使我们大吃一惊,然而正是在这一惊之中.获得了对古典概率更具体、更生动的知识.➢ 戏院设座问题乙两戏院在竞争500名观众,假设每个观众完全随意地选择一个戏院,且观众之间选择戏院是彼此独立的,问每个戏院至少应该设多少个座位才能保证观众因缺少座位而离开的概率小于5%?解 由于两个戏院的情况相同,故只需考虑甲戏院即可。

概率论与数理统计 笔记

概率论与数理统计 笔记

概率论与数理统计笔记概率论的公理化定义1. 相关基本概念:我们首先定义以下概念:至此,我们将试验、事件等概念与集合的概念相联系,显然,我们会有以下的运算性质:2. 事件之间的关系以及运算(本质为集合运算)经过简单的推导可以得出以下运算性质:3. 事件的运算性质经过以上铺垫,我们可以引出频率、概率的定义:4. 频率 (frequency)定义:设随机事件a在n次重复试验中发生了m次,则称比值为事件a在n次重复试验中发生的「频率」。

频率越大,事件a发生就越频繁,可以用频率来预测事件a的发生的可能性大小。

当重复试验次数越多,n越大时,频率越逐渐趋于稳定于某个常数。

5. 概率的公理化定义(前苏联柯尔莫哥洛夫首次提出)设是随机试验的样本空间,对于每个事件,赋予一个实数,记为,称为事件a的「概率」,如果集合函数满足一下三个条件:理解:概率的本质一种映射,是一种将每个事件映射给一个实数的映射。

并且满足以上三个性质。

另外,注意一个常记的技巧:由以上概率的公理化定义推导出的性质:1.不可能事件的概率为02.有限可加性3.逆事件有4.减法公式5.单调性6.容斥原理,可推广至多个事件古典概型与几何概型古典概型是概率论的经典研究内容。

古典概型是指,如果一个随机试验,其中包含有限个样本点,并且所有样本点的概率都相等,那么我们就称该随机试验为古典概型。

而几何概型与以上定义基本相同,只不过包含了无限个样本点(对于几何图形来说,一块区域也包含了无穷个点)我们很容易就能够得到古典概型的计算公式(由可列可加性)关于古典概型的具体例题与技巧在此不再赘述。

如何定性认识古典概型的概率?我们可以认为,这种概率代表了一个试验中事件发生的可能性,可以认为是“ 进行无穷次试验之后事件发生频率的趋近值”。

利用这种可能性,我们可以最优化实际的决策。

条件概率与乘法公式条件概率的引入,是为了解决在某事件已经发生(或者指定某条件)的情况下具体事件的概率。

概率论与数理统计复习笔记

概率论与数理统计复习笔记

概率论与数理统计复习 第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(?):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A∪B (和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A-B(差事件)事件A 发生而B 不发生.5. AB=? (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=?且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德?摩根律 B A B A I Y = B A B A Y I = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(?) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B-A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0)3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P ∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立? P(B)= P (B|A) .(2)若A 与B,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P ΛΛ2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~?(?)参数为?的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (?>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为?的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (?>0).(3)X~N (?,?2)参数为?,?的正态分布 222)(21)(σμσπ--=x e x f -?<x<?, ?>0.特别, ?=0, ?2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, ?(-x)=1-Φ(x) .若X ~N ((?,?2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z ?}= P{Z<-z ?}= P{|Z|>z ?/2}= ?,则点z ?,-z ?, ?z ?/ 2分别称为标准正态分布的上,下,双侧?分位点. 注意:?(z ?)=1-? , z 1- ?= -z ?. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , ?= min (g (-?),g (?)) ?= max (g (-?),g (?)) .如果 f (x)在有限区间[a,b]以外等于零,则 ?= min (g (a),g (b)) ?= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ?)=0, F(-?,y)=0, F(-?,-?)=0, F(?,?)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 . (2)归一性 ∑∑=i jij p 1 . 3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<?}= F (x , ?) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<?, Y ≤y}= F (?,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称,}{},{jj i j j i p p y Y P y Y x X P •=====P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称P{Y=y j |X=x i } 为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量 连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛) ⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差?(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n p n p (1- p) 3.X~ ?(?) ? ?,}{},{•=====i ji i j i p p x X P y Y x X P4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为?的指数分布 ? ?26.X~ N (?,?2) ? ?2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i iX X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (?,?2 ) ,则 X ~ N (?, ?2 /n) .2.?2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ ?2(n)自由度为n 的?2分布.(2)性质 ①若Y~ ?2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ ?2(n 1) Y 2~ ?2(n 2) ,则Y 1+Y 2~ ?2(n 1 + n 2). ③若X~ N (?,?2 ), 则22)1(σS n -~ ?2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ ?2(n),0< ? <1 ,则满足的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为?2分布的上、下、双侧?分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ ?2(n),且X,Y 相互独立,则t=nY X ~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (?,?2 )时, nS X μ-~ t (n-1) . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N (?1,?12 ) 且?12=?22=?2 X 1 ,X 2 ,…,X n1 X S 12 Y~ N (?2,?22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < ?<1 , 则满足的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧?分位点. 注意: t 1- ? (n) = - t ? (n).4.F 分布 (1)定义 若U~?2(n 1), V~ ?2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< ? <1,则满足的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧?分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数?1, ?2,…, ?k .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμΛΛΛ解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθΛΛΛ,以样本矩A l 取代总体矩? l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A ΛΛΛθθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, ?1, ?2,…, ?k ),称样本X 1 ,X 2 ,…,X n的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθΛΛ为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21Λ,称为参数?1, ?2,…,?k 的最大似然估计值,代入样本得到最大似然估计量.若L(?1, ?2,…, ?k )关于?1, ?2,…, ?k 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=?,则估计量∧θ称为参数?的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=?k =E(X k ),即样本均值X ,样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩?k 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= ?, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP→∧,则称估计量∧θ是参数?的相合估计量. 二.区间估计1.求参数?的置信水平为1-?的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,?),其中只有一个待估参数?未知,且其分布完全确定.(2)利用双侧?分位点找出W 的区间(a,b),使P{a<W <b}=1-?.(3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间? ?2已知 n X σμ-~N (0,1) (2/ασz n X ±) ? ?2未知n S X μ-~ t (n-1) )1((2/-±n t n S X α ?2 ?未知22)1(σS n -~ ?2(n-1) ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体(1)均值差? 1-? 2 其它参数 W 及其分布 置信区间已知2221,σσ 22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±- 未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w +-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③. (2) ? 1,? 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比?12/?22的置信区间为 注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标?/2改为?,另外的下(上)限取为-? (?)即可.。

概率论与数理统计总结笔记

概率论与数理统计总结笔记

概率论与数理统计总结笔记
以下是概率论与数理统计的总结笔记:
1 .概率论与数理统计是研究随机现象及其规律的一门数学学科。

2 .随机现象是指在相同条件下进行多次试验或观察,结果不确定的
现象。

3 .概率论与数理统计的主要内容包括概率空间、随机变量、分布函数、
概率密度函数、边缘分布、条件概率、独立性、随机变量的函数等。

4 .概率论与数理统计的应用范围包括金融、统计、物理、化学、工程
等领域。

5 .概率论与数理统计常用的方法包括数学期望、方差、协方差、相关
系数、回归分析、假设检验等。

6 .概率论与数理统计的基本原则是公理化原则,即要满足一定的数
学条件,如非负性、规范性、可列可加性等。

7 .概率论与数理统计的主要特点是研究随机现象的不确定性和复杂
性,以及在不确定性和复杂性下的决策和推断问题。

8 .概率论与数理统计的发展历史可以追溯到17世纪,这个学科的发
展不仅推动了数学的发展,也对其他学科的发展产生了重要的影响。

9 .概率论与数理统计的学习方法包括掌握基本概念和公式,多做练
习题,结合实际例子进行理解和应用,以及进行综合性和设计性实验。

自考经管类概率论与数理统计课堂笔记经典

自考经管类概率论与数理统计课堂笔记经典

自考经管类概率论与数理统计课堂笔记前言概率论与数理统计是经管类各专业的基础课,概率论研究随机现象的统计规律性,它是本课程的理论基础,数理统计那么从应用角度研究如何处置随机数据,成立有效的统计方式,进行统计推断。

概率论包括随机事件及其概率、随机变量及其概率分布、多维随机变量及其概率分布、随机变量的数字特征及大数定律和中心极限定理。

共五章,重点第一、二章,数理统计包括样本与统计量,参数估计和假设检验、回归分析。

重点是参数估计。

预备知识(一)加法原那么引例一,从北京到上海的方式有两类:第一类坐火车,假设北京到上海有早、中、晚三班火车别离记作火1、火2、火3,那么坐火车的方式有3种;第二类坐飞机,假设北京到上海的飞机有早、晚二班飞机,别离记作飞1、飞2。

问北京到上海的交通方式共有多少种。

解:从北京到上海的交通方式共有火1、火2、火3、飞1、飞2共5种。

它是由第一类的3种方式与第二类的2种方式相加而成。

一般地有下面的加法原则:办一件事,有m类办法,其中:第一类办法中有n1种方式;第二类办法中有n2种方式;……第m类办法中有n m种方式;则办这件事共有种方式。

(二)乘法原那么引例二,从北京经天津到上海,需分两步抵达。

第一步从北京到天津的汽车有早、中、晚三班,记作汽1、汽2、汽3第二步从天津到上海的飞机有早、晚二班,记作飞1、飞2问从北京经天津到上海的交通方式有多少种?解:从北京经天津到上海的交通方式共有:①汽1飞1,②汽1飞2,③汽2飞1,④汽2飞2,⑤汽3飞1,⑥汽3飞2。

共6种,它是由第一步由北京到天津的3种方式与第二步由天津到上海的2种方式相乘3×2=6生成。

一般地有下面的乘法原则:办一件事,需分m个步骤进行,其中:第一步骤的方法有n1种;第二步骤的方法有n2种;……第m步骤的方法有n m种;则办这件事共有种方式。

(三)排列(数):从n个不同的元素中,任取其中m个排成与顺序有关的一排的方式数叫排列数,记作或。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自考高数经管类概率论与数理统计课堂笔记2 事件{Z=3}={X=1,Y=2},所以从而得出Z的分布律为3.3.2两个连续型随机变量之和的概率分布例3-23 设X与Y独立,且求(1)(X,Y)的概率密度。

f(X,Y)。

(2)P(X+Y≤1)【答疑编号:10030402针对该题提问】解:(1)∵X,Y独立(2)P(X+Y≤1)两个独立连续型随机变量X,Y的和函数Z=X+Y的概率密度的计算公式为:若X,Y独立,X~f X(X),Y~f Y(Y)则有(不证)上面公式叫独立随机变量和的卷积公式例3-24设X,Y独立,且X~N(0,1),Y~N(0,1),求Z=X+Y的概率密度。

解:已知所以令∴Z~N(0,2)相似地,可以证明下面的结果:定理:若X,Y独立,(不证)【答疑编号:10030403针对该知识点提问】例如在上例中,X~N(0,1),Y~N(0,1),X,Y独立,则X+Y~N(0,2)X-Y~N(0,2)2X+3Y~N(0,13)又例如X~N(3,4), Y~N(1,1),X,Y独立则2X-Y~N(2×3-1,4×4+(-1)2×1)=N(5,17)本章内容小结(一)知道二维随机变量的分布函数的概念和性质。

(1)(X,Y)~F(X,Y)=P(X≤X,Y≤Y)=P(-∞<X≤X, -∞<Y≤Y)(2)F(X,Y)的性质(ⅰ)F(+∞,+∞)=1(ⅱ)F(-∞,Y)=0,F(X,-∞)=0F(-∞,-∞)=0(3)X~F X(X)=F(X,+ ∞)Y~F Y(Y)=F(+∞,Y)【答疑编号:10030404针对分布函数提问】(二)离散型二维随机变量(1)(X,Y)的分布律性质(2)X的边缘分布证明P1·=P11+P12+…P1N,P2·=P21+P22+…P2N,… p m·=p m1+p m2+…p mn (3)Y的分布律证P·1=P11+P21+…p m1,P·2=P21+P22+…p m2,… P·N= P1N+P2N+…+p mnX,Y独立P(X=x i,Y=y j)=P(X=x i)P(Y=y j)(i=1,2,…,M;j=1,2,…,N)判断离散性随机变量X,Y是否独立。

(三)二维连续型随机变量(1)若已知f(X,Y)时,会用上式求F(X,Y)性质(2)已知F(X,Y)时,会用上式求f(X,Y)(3)会用公式求(X,Y)在区域D上取值的概率。

(4)会用公式分别求X,Y的概率密度(边缘密度)(5)会根据X,Y独立判断连续型随机变量X,Y的独立性。

(6)知道两个重要的二维连续随机变量①(X,Y)在D上服从均匀分布S是D的面积则X,Y独立(7)若X,Y独立,且本章作业教材72页习题3.11、2、3、4、5、6、7、8、10教材79页习题3.21、2、3 提示4教材83页习题3.31、2、3、484页自测题第一章随机变量的数字特征随机变量的概率分布完整地描述了随机变量统计规律,但是在实际问题中求得随机变量的概率分布并不容易,而且对某些问题来说,只需知道它的某些特征,我们把刻画随机变量某些方面特征的数值称为随机变量的数字特征。

本章主要研究随机变量的期望、方差、协方差、相关系数等数字特征。

4.1 随机变量的期望4.1.1 离散型随机变量的期望引例10人参加考试,1人得100分,6人得80分,3人得60分,求10人考度的平均分。

【答疑编号:10040101针对该题提问】解:平均分为:从本例看:平均分并不等于60、80、100的平均值80。

这是由于60分出现的机会多于100分,上面方法出现了60分出现的频率多。

100分的频率小,能正确计算平均值。

定义若X的分布律为P(X=x i)=p i,i=1,2…当级数绝对收敛时(即收敛)就说是离散型随机变量X的期望。

记作EX,即说明:(1)若X取值为有限个x1,x2,…,x n则(2)若X取值为可列无限多个x1,x2,…,x n…则这时才要求无穷级数绝对收敛。

很明显,X的期望EX体现随机变量X取值的平均概念,所以EX也叫X的均值。

【例4-1】设随机变量X的分布律为求E(X)解E(X)=(-1)×0.3+0×0.2+1×0.5=0.2【例4-2】甲乙两人进行打靶,所得分数分别记为X,Y,它们的分布律分别为试比较他们成绩的好坏。

【答疑编号:10040102针对该题提问】解我们分别计算X和Y的数学期望:EX=0×0+1×0.2+2×0.8=1.8(分)。

EY=0×0.1+1×0.8+2×0.1=1(分)。

这意味着,如果进行多次射击,甲所得分数的平均值接近于1.8分,而乙得分的平均值接近1分。

很明显乙的成绩远不如甲。

4.1.2 下面介绍几种重要离散型随机变量的数学期望。

1.两点分布随机变量X的分布律为其中0<p<1,有EX=0×(1-p)+1×p=p。

2.二项分布设X~B(n,p),即可以证明它的期望EX=np二项分布的数学期望np,有着明显的概率意义。

比如掷硬币试验,设出现正面概率若进行100次试验,则可以“期望”出现次正面,这正是期望这一名称的来由。

3.泊松分布设其分布律为则X 数学期望为EX=今后在上面三种情形下,期望EX 不必用定义计算,可以直接套用公式。

例如 若 X ~B (10,0.8),则EX=10×0.8=8 若 X ~P (3),则EX=3。

4.1.3 下面介绍离散型随机变量函数的数学期望。

定理4-1 设离散型随机变量X 的分布律为P{X=x k }=p k ,k=1,2,…。

令Y=g (X ),若级数绝对收敛,则随机变量Y 的数学期望为特别情形【例4-5】设随机变量X 的分布律为令Y=2X+1,求E (Y )。

【答疑编号:10040103针对该题提问】 解EY=(2×(-1)+1)×0.3+(2×0+1)×0.2+(2×1+1)×0.4+(2×2+1)×0.1 =(-1)×0.3+1×0.2+3×0.4+5×0.1=1.6。

【例4-6】设随机变量X 的分布律为且Y=X 2,求EY 。

【答疑编号:10040104针对该题提问】 解 =(-1)2×0.3+02×0.2+0.52×0.1+12×0.1+22×0.3 =0.3+0.025+0.1+1.2=1.625。

4.1.4 连续型随机变量的期望对于连续型随机变量的期望,形式上可类似于离散型随机变量的期望给予定义,只需将和式中的x i改变x,p i改变为f(x)dx(其中f(x)为连续型随机变量的概率密度函数)以及和号“Σ”演变为积分号“∫”即可。

定义4-2 设连续型随机变量X的概率密度为f(x),若广义积分绝对收敛,则称该积分为随机变量X的数学期望(简称期望或均值),记为EX,即【例4-7】设随机变量X的概率密度为求E(X)。

【答疑编号:10040105针对该题提问】解【例4-8】设随机变量X的概率密度函数为求E(X)。

【答疑编号:10040106针对该题提问】解因为f(x)只在有限区间上不为零,且在该区间上为连续函数,所以E(X)存在,且根据奇函数的性质知道E(X)=0。

下面介绍几种重要连续型随机变量的期望。

1.均匀分布设随机变量X在[a,b]上服从均匀分布,其概率密度为则在区间[a,b]上服从均匀分布的随机变量的期望是该区间中点。

2.指数分布设随机变量X 服从参数为λ>0的指数分布,其概率密度为解:在微积分中有即指数分布的数学期望为参数λ的倒数。

3.正态分布设其概率密度为则X 的期望 E (X )=μ。

(不证)上面三种情况列表如下(可以作为公式使用)例如 X ~U (0,10) 则 X ~E (2) 则下面介绍连续型随机变量函数的数学期望。

定理4-2 设X 为连续型随机变量,其概率密度为f X (x ),又随机变量Y=g (X ),则 当收敛时,有证明略。

这一公式的好处是不必求出随机变量Y 的概率密度f Y (x ),而可由随机变量X 的概率密度f X (x )直接计算E (Y ),应用起来比较方便。

特别情形例4-9求EX2【答疑编号:10040107针对该题提问】解4.1.5二维随机变量函数的期望定理4-3 (1)若(X,Y)为离散型随机变量,若其分布律为p ij=P{X=x i,Y=y i},边缘分布律为则(2)其(X,Y)为二维连续型随机变量,f(x,y),f x(x),f Y(y)分别为(X,Y)的概率密度与边缘概率密度,则证明略。

定理4-4 设g(X,Y)为连续函数,对于二维随机变量(X,Y)的函数g(X,Y),(1)若(X,Y)为离散型随机变量,级数收敛,则(2)若(X,Y)为连续型随机变量,且积分收敛,则证明略。

【例4-10】已知(X,Y)的分布律为求:(1)E(2X+3Y);(2)E(XY)。

【答疑编号:10040108针对该题提问】解(1)由数学期望定义知【例4-11】设二维随机变量(X,Y)的概率密度为求:(1)E(X+Y);(2)E(XY);(3)P{ X+Y≤1}。

【答疑编号:10040109针对该题提问】解:4.1.6期望的性质期望有许多重要性质,利用这些性质可以进行期望的运算。

下面列举的这些性质对离散型随机变量和连续型随机变量而言,都可以利用随机变量函数的期望与二维随机变量函数的期望公式加以证明。

性质4-1 常数的期望等于这个常数,即E(C)=C,其中C为常数。

证明常数C作为随机变量,它只可能取一个值C,即P{X=C}=1,所以E(C)=C·1=C性质4-2 常数与随机变量X乘积的期望等于该常数与随机变量X的期望的乘积,即E(CX)=C·E(X)。

证明设X是连续型随机变量,其概率密度为f(x),则有当X为离散型随机变量时,请读者自证。

∴有E(CX+b)=CEX+b性质4-3随机变量和的期望等于随机变量期望之和,即E(X+Y)=E(X)+E(Y)。

证明不妨设(X,Y)为二维随机变量,其概率密度为f(x,y),Z=X+Y是(X,Y)的函数,有=E(X)+E(Y)。

这一性质可作如下推广:E(C1X+C2Y)=C1E(X)+C2E(Y),其中C1,C2为常数。

结合性质4-2与性质4-3可证此性质。

一般地,设X1,X2,…,X n为n个随机变量,则有E(X1+X2+…+X n)= EX1+ EX2+…+ EX nE(C1X1+C2X2+…+C n X n)=C1EX1+C2EX2+…+ C n EX n性质4-4两个相互独立的随机变量乘积的期望等于期望的乘积,即若X,Y是相互独立的随机变量,则E(XY)=E(X)E(Y)。

相关文档
最新文档