数学建模

合集下载

什么是数学建模

什么是数学建模

什么是数学建模数学建模是指运用数学的理论、方法和技术,以模型为基础,通过对实际问题进行抽象、建模、求解和验证,为实际问题的研究和决策提供可靠依据的过程。

数学建模可以帮助我们更好地理解、分析、解决实际问题。

它是一种综合运用数学、物理、计算机科学和其他相关学科知识的跨学科研究领域,可以应用于各个领域的问题,包括自然科学、工程技术、社会科学、医学、金融等。

数学建模的过程一般包括以下几个步骤:1. 定义问题和目标。

在这个阶段,我们需要对实际问题进行全面的了解,明确研究的目标和需要解决的问题是什么,确定问题的限制和条件。

2. 建立模型。

在这个阶段,我们需要根据实际问题的特点和需要解决的问题,选择适当的模型类型,建立数学模型。

模型应该尽可能简明明了,能够比较好地描述实际问题,并且便于求解。

3. 求解模型。

在这个阶段,我们需要根据所建立的模型,采用数学和计算机科学等相关方法,对模型进行求解,得到具体的结果和解决方案。

4. 验证模型。

在这个阶段,我们需要根据模型的求解结果,进行模型的验证。

验证模型的正确性和可靠性,以及对模型的结果进行误差分析和敏感性分析,以保证模型的可行性和实用性。

5. 应用模型。

在这个阶段,我们需要将模型的结果应用于实际问题的解决中。

根据模型的结果,提出相应的决策和措施,实现问题的解决和优化。

数学建模具有广泛的应用领域和重要性。

在物理、化学、生物学和工程技术等领域,数学建模可以帮助我们解决复杂的系统问题,如气候模型、流体力学模型、生物进化模型等。

在社会科学领域,数学建模可以应用于经济学、管理学、社会学等领域,对社会现象进行建模和预测,如人口增长模型、市场模型、网络模型等。

在医学领域,数学建模可以帮助我们研究疾病的发展和治疗方法,如病毒传播模型、治疗模型等。

在金融领域,数学建模可以帮助我们分析风险和投资策略,如股票价格模型、期权评估模型等。

总之,数学建模是一种重要的跨学科研究领域,以模型为基础,运用数学和相关学科知识,对实际问题进行抽象、建模、求解和验证,为实际问题的研究和决策提供可靠依据,具有广泛的应用领域和重要性。

数学建模简介

数学建模简介

●模型求解和分析
在模型构成中建立的数学模型可以采用解方程、推理、图 解、计算机模拟、定理证明等各种传统的和现代的数学方法对 其进行求解,其中有些可以用计算机软件来做这些工作。建模 的目的是解释自然现象、寻找规律以解决实际问题。要达到此 目的,还要对获得结果进行数学上的分析,如分析变量之间的 依赖关系和稳定状况等,这一过程称为模型求解与分析。
( x y) 30 750 ( x y) 50 750
实际上方程组就是上述航行问题的数学模型。列 出方程组,原问题已转化为纯粹的数学问题。方程的 解x=20km/h、y=5km/h,最终给出了航行问题的答案。
大家都做过数学应用题,比如说“树上有十只鸟,开枪打死一 只,还剩几只?”,这样的问题就是一道数学应用题,正确答案应 该是0只。这样的题同样是数学建模题,不过答案就不重要了,重 要是过程。 真正的数学建模选手会这样回答这道题。 “是无声手枪吗?”“您确定那只鸟真的被打死啦?” “树上的鸟里有没有聋子?”“有没有关在笼子里的?” “边上还有没有其他的树,树上还有没有其他鸟?” “有没有残疾的或饿的飞不动的鸟?”“算不算怀孕肚子里的小 鸟?”“打鸟的人眼有没有花?保证是十只?” “有没有傻的不怕死的?”“会不会一枪打死两只?” “所有的鸟都可以自由活动吗?”“如果您的问题没有骗人,打死 的鸟要是挂在树上没掉下来,那么就剩一只,如果掉下来,就一只 不剩。”
分析:设甲桶中有x个红球,乙桶中有y个蓝球,因为对
甲桶来说,甲桶中的蓝球数加上乙桶中的蓝球
数等于10000,所以
10000-x+y=10000
即 x=y
故甲桶中的红球和乙桶中的蓝球一样多。
问题2、哥哥和妹妹分别在离家2km和1km且方向相反的两 所学校上学,每天同时放学后分别以4km/h和2km/h的速度 步行回家。一小狗以6km/h的速度由男孩处奔向女孩,又 从女孩处奔向男孩,如此往返直至回到家中,问小狗奔跑 了多少路程?

数学建模

数学建模
材料均匀,热传导系数为常数 Q ~单位时间单位面积传导的热量 T~温差, d~材料厚度, k~热传导系数 记双层玻璃窗传导的热量Q1 记单层玻璃窗传导的热量Q2 热量传播只有传导,没有对流
室 内 T1
d
l
d
室 外 T2
Q1

室 内 T1
2d
室 外 T2
Q2

Ta~内层玻璃的外侧温度 Tb~外层玻璃的内侧温度 k1~玻璃的热传导系数 k2~空气的热传导系数
乙安全线
y0 0 x
y1 y0 0
y=f ( x)
y0 y f ( x) y0 x
x0
P(xm,ym)甲 安 x=g(y) 全 区 x1 x
P~平衡点(双方最少导弹数)
精细 模型
x<y x=y
乙方残存率 s ~甲方一枚导弹攻击乙方一个 基地,基地未被摧毁的概率。 甲方以 x攻击乙方 y个基地中的 x个, sx个基地未摧毁,y–x个基地未攻击。 y0=sx+y–x y0=sy y= y0+(1-s)x y=y0 / s
• (4)模型求解:利用获取的数据资料,对模 型的所有参数做出计算(估计)。 • (5)模型分析:对所得结果进行数学的分析。 • (6)模型检验:将模型分析结果与实际情形 进行比较,以此来验证模型的准确性、合 理性和适用性。如果模型与实际较吻合, 则要对计算结果给出其实际含义,并进行 解释。如果模型与实际吻合较差,则应该 修改假设,再次重复建模过程。 • (7)模型应用:应用方式因问题的性质和建 模的目的而异
0
x0
x
甲方的被动防御也会使双方军备竞赛升级。
模型解释
• 甲方将固定核导弹基地改进为可移动发射架 乙安全线y=f(x)不变

数学建模介绍

数学建模介绍

数学建模介绍1.1 数学模型及其分类数学建模作为用数学方法解决问题的第一步,它与数学本身有着同样悠久的历史。

一个羊倌看着他的羊群进入羊圈,为了确信他的羊没有丢失,他在每只羊进入羊圈时,则在旁边放一颗小石子,如果每天羊全部入圈而他那堆小石子刚好全部放完,则表示他的羊和以前一样多。

究竟羊倌数的是石子还是羊,那是毫无区别的,因为羊的数目同石子的数目彼此相等。

这实际上就使石子与羊“联系”起来,建立了一个使石子与羊一一对应的数学模型。

(1)什么是数学模型人们在认识研究现实世界里的客观对象时,常常不是直接面对那个对象的原形,有些是不方便,有些甚至是不可能直接面对原形,因此,常常设计、构造它的各种各样的模型。

如各式各样的玩具模型、展览厅里的三峡大坝模型、化学上的分子结构模型等。

这些模型都是人们为了一定目的,对客观事物的某一部分进行简化、抽象、提炼出来的原形替代物,集中反映了原形中人们需要的那一部分特征,因而有利于人们对客观对象的认识。

数学模型也是反映客观对象特征的,只不过它刻画的是事物在数量方面的特征或数学结构及其变化规律。

数学模型是人们为了认识客观对象在数量方面的特征、定量地分析对象的内在规律、用数学的语言和符号去近似地刻画要研究的那一部分现象时,所得到的一个数学表述。

建立数学模型的过程称为数学建模。

(2) 数学模型的重要作用进入20世纪以来,数学以空前的广度和深度向一切领域渗透,作为数学的应用,数学建模也越来越受到人们的重视。

在一般工程技术领域,数学模型仍是工程技术人员定量研究有关工程技术问题的重要工具;而随着数学与其他学科领域诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生;计算机的发展给数学及作为数学应用的数学建模带来了前所未有的机遇和挑战。

计算机改变了人类的生活方式、思考方式和研究方式,极大地提高了人们的计算能力、搜索和分析海量数据和信息的能力。

数学专业的数学建模

数学专业的数学建模

数学专业的数学建模数学建模是数学专业中重要的一门课程,它通过数学的方法和技巧解决实际问题。

本文将介绍数学建模的定义、应用领域、建模过程以及数学专业学生在数学建模中的作用。

一、数学建模的定义数学建模是将实际问题转化为数学问题,并应用数学方法和工具解决这些问题的过程。

它是数学与现实世界之间的桥梁,通过数学的抽象和建模能力,解决现实问题,提高生产效益和科学研究水平。

二、数学建模的应用领域数学建模广泛应用于各个领域,包括经济、生态、环境、物理、工程等。

在经济领域,数学建模可以帮助企业分析市场需求,制定最优营销策略;在生态领域,数学建模可以评估生物多样性,分析环境问题;在物理领域,数学建模可以解释物质运动规律;在工程领域,数学建模可以优化工艺流程,提高工程效率。

三、数学建模的过程数学建模的过程一般包括问题的分析、建立数学模型、求解模型和对结果的验证。

首先,需要对实际问题进行充分的分析,明确问题的要求和限制条件;其次,根据问题的特点,运用数学知识建立数学模型,将实际问题抽象为数学符号和方程;然后,对建立的数学模型进行求解,可以使用数值计算、优化算法等方法得到解析结果;最后,对结果进行验证,比较实际情况和模型预测,评估模型的准确性和可行性。

四、数学专业学生在数学建模中的作用数学专业学生在数学建模中发挥着重要的作用。

首先,他们具备扎实的数学基础和数学思维能力,能够快速理解和应用数学方法解决问题;其次,数学专业学生熟练掌握常用的数学工具和软件,能够高效地进行数学计算和模型求解;此外,他们对数学理论有深入的研究,能够通过对数学模型的优化和改进提升模型的准确性和可靠性。

总结:数学建模作为数学专业中重要的课程,对于培养学生的数学思维和解决实际问题的能力具有重要意义。

通过数学建模,学生能够将所学的数学知识应用到实际中,提升自己的综合素质。

希望广大学生能够重视数学建模的学习,不断提高自己的数学建模能力,为社会的发展做出贡献。

什么是数学建模

什么是数学建模

什么是数学建模数学建模是指对现实世界的一特定对象,为了某特定目的,做出一些重要的简化和假设,运用适当的数学工具得到一个数学结构,用它来解释特定现象的现实性态,预测对象的未来状况,提供处理对象的优化决策和控制,设计满足某种需要的产品等。

一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。

例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。

今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。

特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。

因此数学建模被时代辅予更为重要的意义。

大学生数学建模竞赛自1985年由美国开始举办,竞赛以三名学生组成一个队,赛前有指导教师培训。

赛题来源于实际问题。

比赛时要求就选定的赛题每个队在连续三天的时间里写出论文,它包括:问题的适当阐述;合理的假设;模型的分析、建立、求解、验证;结果的分析;模型优缺点讨论等。

数学建模竞赛宗旨是鼓励大学师生对范围并不固定的各种实际问题予以阐明、分析并提出解法,通过这样一种方式鼓励师生积极参与并强调实现完整的模型构造的过程。

以竞赛的方式培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。

他还可以培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。

这项赛事自诞生起就引起了越来越多的关注,逐渐有其他国家的高校参加。

我国自1989年起陆续有高校参加美国大学生数学建模竞赛。

1992年起我国开始举办自己的大学生数学建模竞赛,并成为国家教育部组织的全国大学生四项学科竞赛之一竞赛简介:本竞赛每年9月下旬举行,竞赛面向全国大专院校的学生,不分专业。

什么是数学建模

什么是数学建模

数学建模与数学建模竞赛在说数学建模之前,首先来说一下什么是数学模型:数学模型,就是用数学语言(可能包括数学公式)去描述和模仿实际问题中的数量关系、空间形式等。

这种模仿当然是近似的,但又要尽可能逼真。

实际问题中有许多因素,在建立数学模型时你不可能、也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素。

数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具、数学方法去解答这个实际问题。

数学建模(Mathematical Modelling)简单的来说就是建立数学模型的一个过程。

是一种数学的思考方法,是“对现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示。

”从科学,工程,经济,管理等角度看数学建模就是用数学的语言和方法,通过抽象,简化建立能近似刻画并“解决”实际问题的一种强有力的数学工具。

顾名思义,modelling一词在英文中有“塑造艺术”的意思,从而可以理解从不同的侧面,角度去考察问题就会有不尽的数学模型,从而数学建模的创造又带有一定的艺术的特点。

而数学建模最重要的特点是要接受实践的检验,多次修改模型渐趋完善的过程。

把实践结果与仿真结果、理论结果做比较,再修改理论、仿真程序、论文,再做实验、做仿真,再比较,再修改,递归到时间的完结,这是数学建模的思想和方法。

建模是一种十分复杂的创造性劳动,现实世界中的事物形形色色,五花八门,不可能用一些条条框框规定出各种模型如何具体建立,这里只是大致归纳一下建模的一般步骤和原则:1)模型准备:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息.2)模型假设:为了利用数学方法,通常要对问题做必要的、合理的假设,使问题的主要特征凸现出来,忽略问题的次要方面。

3)模型构成:根据所做的假设以及事物之间的联系,构造各种量之间的关系把问题化4)模型求解:利用已知的数学方法来求解上一步所得到的数学问题,此时往往还要作出进一步的简化或假设。

数学建模是什么

数学建模是什么

数学建模是什么
数学建模是指利用数学工具和方法分析和解决实际问题的过程,是一种跨学科的综合性应用科学研究方法。

数学建模的基本步骤包括:问题建模、假设、模型的构建、模型求解和模型评价。

在这个过程中,数学建模的核心是模型的构建和求解,其中模型的构建需要理解实际问题的基本特征和数学方法的应用,而模型求解则需要掌握数学分析、数值计算等技能和方法。

数学建模的应用范围非常广泛,包括但不限于自然科学、社会科学、经济学、工程学等领域的问题。

数学建模在现实生活中的应用包括:企业生产、物流配送、城市交通规划、自然资源评估、环境保护、金融、医学等各个领域。

数学建模的方法多种多样,常见的数学方法包括:微积分、线性代数、概率论、统计学、优化理论等。

通过对实际问题的建模、数学方法的应用和模型求解的计算和分析,数学建模可进一步为决策提供科学依据和参考。

数学建模的主要特点是模型化思维、跨学科交叉和创新性思维。

在这个过程中,数学建模要求研究者对问题进行深入的分析和研究,要对数学方法的应用有较大的理解和掌握,并且要结合实际考虑模型的可行性。

数学建模的创新性思维则要求研究者在模型的构建和求解中体现出一定的创新性和思维深度。

无论是学术界还是实际应用领域,数学建模的应用都已经深入到各个角落。

在数学建模中,数学是一种工具性语言,
而模型则是实际问题的一种映射。

数学建模不仅促进了数学研究和应用之间的相互促进和发展,还连接了传统学科和新兴学科之间的桥梁,推动了知识的跨领域传播和交流。

常见数学建模模型

常见数学建模模型

常见数学建模模型一、线性规划模型线性规划是一种常用的数学建模方法,它通过建立线性函数和约束条件,寻找最优解。

线性规划可以应用于各种实际问题,如生产调度、资源分配、运输问题等。

通过确定决策变量、目标函数和约束条件,可以建立数学模型,并利用线性规划算法求解最优解。

二、整数规划模型整数规划是线性规划的一种扩展形式,它要求决策变量为整数。

整数规划模型常用于一些离散决策问题,如旅行商问题、装箱问题等。

通过引入整数变量和相应的约束条件,可以将问题转化为整数规划模型,并利用整数规划算法求解最优解。

三、非线性规划模型非线性规划是一类目标函数或约束条件中存在非线性项的优化问题。

非线性规划模型常见于工程设计、经济优化等领域。

通过建立非线性函数和约束条件,可以将问题转化为非线性规划模型,并利用非线性规划算法求解最优解。

四、动态规划模型动态规划是一种通过将问题分解为子问题并以递归方式求解的数学建模方法。

动态规划常用于求解具有最优子结构性质的问题,如背包问题、最短路径问题等。

通过定义状态变量、状态转移方程和边界条件,可以建立动态规划模型,并利用动态规划算法求解最优解。

五、排队论模型排队论是一种研究队列系统的数学理论,可以用于描述和优化各种排队系统,如交通流、生产线、客户服务等。

排队论模型通常包括到达过程、服务过程、队列长度等要素,并通过概率和统计方法分析系统性能,如平均等待时间、系统利用率等。

六、图论模型图论是一种研究图结构和图算法的数学理论,可以用于描述和优化各种实际问题,如网络优化、路径规划、社交网络等。

图论模型通过定义节点、边和权重,以及相应的约束条件,可以建立图论模型,并利用图算法求解最优解。

七、随机模型随机模型是一种考虑不确定性因素的数学建模方法,常用于风险评估、金融建模等领域。

随机模型通过引入随机变量和概率分布,描述不确定性因素,并利用概率和统计方法分析系统行为和性能。

八、模糊模型模糊模型是一种用于处理模糊信息的数学建模方法,常用于模糊推理、模糊控制等领域。

数学建模简介及数学建模常用方法

数学建模简介及数学建模常用方法

数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。

简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。

随着社会的发展,生物、医学、社会、经济……各学科、各行业都涌现现出大量的实际课题,亟待人们去研究、去解决。

但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益。

他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学。

而且不止是要用到数学,很可能还要用到别的学科、领域的知识,要用到工作经验和常识。

特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机。

可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的。

你所能遇到的都是数学和其他东西混杂在一起的问题,不是“干净的”数学,而是“脏”的数学。

其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现。

也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型。

数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性。

通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究。

数学模型的另一个特征是经济性。

用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出。

数学建模(数学分支)

数学建模(数学分支)

建模背景
数学技术
建模应用
近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来 越重要的作用,而且以空前的广度和深度向经济、管理、金融、生物、医学、环境、地质、人口、交通等新的领 域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。
数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质 属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展 提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现 实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提 炼出数学模型的过程就称为数学建模(Mathematical Modeling)。
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立数学模 型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和 研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的 理论和方法去分析和解决问题。这就需要深厚扎实的数学基础、敏锐的洞察力和想象力、对实际问题的浓厚兴趣 和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学科学技术 转化的主要途径。数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代 科技工作者必备的重要能力之一。
为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内 外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等 院校的教学改革和培养高层次的科技人才的一个重要方面,许多院校正在将数学建模与教学改革相结合,努力探 索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具 有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、 不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学 建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。

数学建模

数学建模
模型建立
在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。
模型求解
利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。
模型分析
对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。
模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
建模应用
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性、结论的明确性和体系的完整性,而且在于它应用的广泛性。自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展、数学理论与方法的不断扩充,使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
第二条 竞赛内容
题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。
第三条 竞赛形式、规则和纪律
1.全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行。
2.竞赛每年举办一次,一般在某个周末前后的三天内举行。

什么叫数学建模:

什么叫数学建模:

什么叫数学建模:数学建模指的是,利用数学方法和理论对现实问题进行描述、分析和解决的过程。

这种过程需要数学、自然科学、工程技术等学科的知识和技能,同时需要对现实问题的深入理解和实地调查。

数学建模在解决现实问题方面起着非常重要的作用,尤其是涉及到科学、工程、经济和社会等各个领域。

数学建模可以帮助人们更好地理解问题的本质和特征,从而提供更精确和有效的解决方案。

数学建模的过程可以分为以下几个步骤:1.问题描述。

将现实问题转化为数学问题,确定问题的目标、限制条件、变量等。

2.建立模型。

通过分析问题的本质和特征,选择合适的数学方法和理论,建立数学模型。

3.求解模型。

采用数学计算方法和技术,对模型进行求解和优化,得出问题的解决方案。

4.模型验证。

将建立的模型与实际情况进行比较和验证,检验模型的有效性和可行性。

5.预测和应用。

根据问题的特点,应用建立好的模型进行预测和实际应用。

数学建模在现代科学技术和社会发展中扮演着至关重要的角色。

它可以帮助人们更好地理解复杂的现实问题,并提供科学有效的解决方案。

同时,数学建模也推动了数学学科的发展和应用。

在应用领域,数学建模被广泛应用于车辆运输、环境保护、金融投资、医疗卫生、城市规划等多个方面。

例如,在车辆运输领域,数学建模可以在路面拥堵、车辆行驶路径、节能减排等方面提供解决方案;在环境保护领域,数学建模可以针对大气污染、水质污染等问题提供有效的控制策略。

总之,数学建模是一种非常有价值的方法,它能够帮助人们更好地理解问题、提供科学有效的解决方案,是现代科学技术和社会发展中不可或缺的重要工具。

什么是数学建模

什么是数学建模

什么是数学建模数学建模是一种通过数学方法解决实际问题的过程。

它结合数学理论与实际问题,将抽象的数学模型与具体的实际情况相结合,通过计算机模拟、优化算法等手段,对问题进行分析和求解,从而得到实际问题的答案或者有效的解决方案。

数学建模可以应用于各个领域,如物理学、生物学、经济学、化学、环境科学、社会学等。

在实际问题中,通常会涉及到大量的变量、约束条件和目标函数。

数学建模的过程一般包括以下几个步骤:问题的建立、模型的建立、模型的求解、模型的验证和结果的分析与应用。

首先,问题的建立是数学建模的起点。

在这一步骤中,需要明确问题的目标、所处环境以及问题的限制条件。

具体来说,要确定需要解决的问题是什么、为什么需要解决这个问题、解决这个问题对应的适用范围等。

接下来,模型的建立是数学建模的关键步骤。

在这一步骤中,需要确定适用的数学模型和假设,并将实际问题转化为数学形式。

根据实际问题的性质,常见的数学模型包括线性规划模型、非线性规划模型、随机模型等。

通过数学模型的建立,可以对问题进行抽象和简化,提高问题的可计算性和可解性。

然后,模型的求解是数学建模的核心步骤。

在这一步骤中,需要用数学方法和计算机技术对建立的模型进行求解。

根据不同的数学模型,常见的求解方法包括数值计算方法、优化算法、随机模拟等。

通过模型的求解,可以得到问题的解答、最优解或者有效的解决方案。

模型的验证是数学建模的重要步骤。

在这一步骤中,需要对模型的求解结果进行验证和分析。

对模型的验证可以通过与实际数据的对比、灵敏性分析、误差分析等方法进行。

通过验证结果,可以判断建立的模型是否准确可靠,并根据需要进行调整和优化。

最后,结果的分析与应用是数学建模的最终目标。

在这一步骤中,需要对模型的求解结果进行分析和解释,从而得出实际问题的结论或者决策依据。

根据实际问题的需求,可以通过模型的结果进行业务分析、评估和预测等。

总之,数学建模是一种结合数学理论和实际问题的求解方法。

数学建模是什么

数学建模是什么

数学建模是什么1. 什么是数学建模?:数学建模是一种以数学方法描述和分析实际问题的方法。

它是一种将实际问题的复杂性转化为数学模型,以便更好地理解和解决实际问题的方法。

数学建模的过程包括描述实际问题,建立数学模型,求解模型,验证模型,以及分析模型的结果。

数学建模的目的是提出有效的解决方案,以解决实际问题,并且可以更好地控制和管理实际问题。

数学建模的应用非常广泛,可以用于科学研究,经济分析,社会研究,工程设计,管理决策,以及其他各种实际问题的分析和解决。

2. 数学建模的基本步骤:数学建模是一种将实际问题转换为数学模型,以便利用数学方法来解决实际问题的方法。

它是一种以数学抽象的方式来描述实际问题的过程,是一种将实际问题转换为数学模型的过程,是一种将实际问题转换为数学模型的过程。

数学建模的基本步骤包括:首先,要确定问题的范围和目标,明确问题的描述,确定变量和参数,构建数学模型,解决模型,分析模型的结果,并将模型的结果应用到实际问题中。

确定问题的范围和目标时,要明确问题的描述,以便确定问题的范围和目标,以及确定变量和参数。

确定变量和参数时,要确定变量的类型,变量的取值范围,参数的取值,以及变量和参数之间的关系。

构建数学模型时,要根据问题的描述,确定变量和参数,构建一个恰当的数学模型,以表达问题的特征。

解决模型时,要根据模型的特征,利用数学方法来解决模型,求出模型的解。

分析模型的结果时,要分析模型的结果,分析模型的有效性,并对模型的结果进行评价。

最后,将模型的结果应用到实际问题中,以解决实际问题。

3. 数学建模的应用领域数学建模的应用领域十分广泛,从社会科学到工程科学,从经济学到生物学,都可以使用数学建模来解决问题。

在社会科学领域,数学建模可以用来研究社会系统中的结构和行为,以及社会系统中的社会经济、政治、文化等因素之间的关系。

在工程科学领域,数学建模可以用来研究和设计工程系统,比如电力系统、燃气系统、水利系统等,以及这些系统中的各种参数和变量之间的关系。

数学建模基本要素

数学建模基本要素

问题定义不清
总结词
数据是数学建模的基础,数据不足或不准确会导致模型无法准确反映实际情况。
详细描述
在数学建模过程中,需要收集大量相关数据作为输入。如果数据量不足或数据质量不高,会导致模型精度下降,甚至得出错误的结论。解决这个问题的方法是尽可能多地收集高质量的数据,同时采用合适的数据处理方法对数据进行清洗和预处理,提高数据的质量和准确性。
详细描述
05
CHAPTER
数学建模的常见问题与解决方案
总结词
问题定义不清是数学建模中常见的问题,它可能导致模型建立偏离实际需求。
详细描述
在数学建模过程中,首先需要对问题进行清晰、准确的定义。如果问题定义模糊或过于宽泛,会导致建模过程中出现偏差,甚至得出错误的结论。解决这个问题的方法是仔细分析问题,明确问题的边界和约束条件,确保模型能够准确反映实际需求。
通过代数方程和不等式来描述和解决问题的方法。
详细描述
代数法是数学建模中最基本的方法之一,它通过建立代数方程或不等式来描述和解决各种实际问题。例如,在解决几何问题时,可以通过代数法找到未知数,进而求出问题的解。
代数法
利用微积分的基本概念和定理来建模的方法。
总结词
微积分法是数学建模中常用的一种方法,它利用微积分的基本概念和定理来描述和解决实际问题。例如,在经济学中,可以通过微积分法建立需求和供给函数,进而求出市场的均衡价格。
详细描述
变量选择需要考虑与问题相关的各种因素,并确定哪些因素对模型输出有显著影响。参数设定则需要根据已知数据和经验进行合理估计,以确保模型的有效性和准确性。
变量选择与参数设定
总结词
假设条件是数学建模中不可或缺的一部分,它们限制了模型的可能解的范围,有助于简化模型并提高预测精度。

数学建模简介

数学建模简介

图. 地貌示意图
进一步问题: 你怎样使你的模型适合于下面两个限制 条件的情况呢? 1.当道路转弯时,角度至少为140度; 2.道路必须通过一个已知地点(如P)。
其他例子:
• 关于肥猪的最佳销售时机问题 • 中国男女人口失衡问题研究与对策
谢谢大家!
据标本的主要制作者辽宁大学生命科 学系刘明玉教授介绍,这头猪体长2.5米, 腰围2.23米,体重900公斤,獠牙长144毫米, 属于长白与梅山杂交品种。这头猪能长到 如此重的 程度,主要是由于猪的主人精心 饲养以及生长年限较长所致。
在我国饲养猪主要是用来食用,很少 有人能将猪养至3年以上,而这头猪的主人 徐长金老人5年多来,一直将猪养在室内, 精心地饲喂,直至猪由于躯体过于庞大, 无法正常活动而死亡。
数学建模入门简介


1. 数学建模的基本概念 2. 数学建模竞赛 3. 数学建模技术与数学方法 4. 学习建议 5. 建模案例
1. 数学建模的基本概念
1.1 数学模型 1.2 数学建模目的 1.3 数学建模一般过程 1.4 数学建模综合技能
1.1数学模型
数学模型(E.A.Bendar 定义):关于部分 现实世界为一定目的而做的抽象、简化 的数学结构。
数学模型是现实世界的简化而本质的描述, 是用数学符号、数学公式、程序、图、表 等刻画客观事物的本质属性与内在联系的 理想化表述.
1.2数学建模目的
• 优化决策及控制 • 预测目的 • 解释现象
1.3数学建模一般过程
Step1:问题分析:明确目标,分析条件与数据 Step2:建立模型:简化及假设,总体任务设计, 模型建立 Step3:模型求解:借助软件(包括数学软件), 编写程序求解(直接调用或自己设计算法) Step4:结果分析与检验 Step5:如果发现结果有问题或不满意,从上面 某些步骤开始重新操作(自己分析再定) Step6:回答实际问题、模型评价与改进方向
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2组队和分工
数学建模竞赛是三个人的活动,参加竞赛首要是要组队,而怎么样组队是有讲究的。此外还需要分工等等。一般的组队情况是和同学组队,很多情况是三个人都是同一系,同一专业以及一个班的,这样的组队是不合理的。让三人一组参赛一是为了培养合作精神,其实更为重要的原因是这项工作需要多人合作,因为人不是万能的,掌握知识不是全面的,当然不排除有这样的牛人存在,事实上也是存在的,什么都会,竞赛可以一个人独立搞定。但既然允许三个人组队,有人帮忙总是好的,至少不会太累。而三个人同系同专业甚至同班的话大家的专业知识一样,如果碰上专业知识以外的背景那会比较麻烦的。所以如果是不同专业组队则有利的多。
众所周知,数学建模特别需要数学和计算机的能力,所以在组队的时候需要优先考虑队中有这方面才能的人,根据现在的大学专业培养信息与计算科学,应用数学专业的较为有利,尤其是信息与计算科学可以说是数学和计算机专业的结合,两方面都有兼顾,虽然说这个专业的出路不是很好,数学和计算机都涉及点但是都没有真正的学通这两门专业的,但对于弄数学建模来说是再合适不过了。应用数学则偏重于数,但是一般来讲玩计算机的时间不会太少,尤其是在科学计算和程序设计都会设计到比较多,又有深厚的数学功底,也是很不错的选择。
文献查找主要有三个模式:
A.书
B.书+中外文期刊数据库
C.书+中外文期刊数据库+学位论文
D.书+中外文期刊数据库+学位论文+c模式:中外文期刊数据库+学位论文
对于美赛则要改为Da模式:外文期刊数据库+搜索引擎。
在此要解释下为何如此推荐,对于参加建模的来说一般书基本上是用不上了的,没必要去查了,直接查找数据库即可了,全国赛的题目大多是研究了很多年的东西了,这个也是和国内学术环境相关的,虽然近几年的赛题是体现最新形式的,但是相关的研究还是有的,还是可以参考的,要知道国内鲜有几个教授牛的站在国际前沿还给本科生出个数模题玩玩的,一般都是老东西新面孔的。也就是可以归类为学术研究类的新面孔老方法类。所以查数据库是最有效率的方法,并且查学位论文是尤其推荐的,要知道查找学位论文是最高效率得到信息的途径。虽然学位论文很长,很吓人,没有七八十页也有个一百多页,其实看多了学位论文就知道真正有用的东西页就那么个十多页最多二十多页,直接翻到那个部分看就可以了,为什么篇幅这么大就和中国的教育中的一些硬性指标相关了,每个级别的学位论文都有一个规定的字数范围,虽然大部分是垃圾,但为了达到这个字数要求也得凑足这个数字,水了,中国高等教育的悲哀啊。
(3).写论文:
论文是很关键的一步,写到这里已经写了很多“关键”的词了,事实也如此,步步关键,其中一步做的不好都对结果有很大的影响,论文是所有工作的体现,如果论文写的不好就功亏于溃,在这里偶就吃过很大的亏的。因此多写写多练练绝对是有好处的,并且不是写完就算了,要不断的修改,修改到自己非常满意,修改到象所发表在数学期刊中的论文那样才可以。
综上所述,组队要根据分工而来的,三个人要具备一个数学功底深厚,理论扎实,一个擅长算法实践,另一个是写作(弥补专业知识不足),如果一个组能有这样的人员配置是比较合理的。但是往往事事不能如意,所以不能满足这种人员配置的时候就尽量往这样人员配置靠。
3培训
很多刚接触数模的朋友都会碰到一个问题,那就是什么都不会做,看着题目不知道咱们下手,干着急,然后,一旦经过指导之后就知道该怎么做了,同时在做的过程中会碰到各种各样的问题,发现不是算法不了解就是软件不会使用。假使一个题目会做了,但是如果碰到另一个题目又不会了,又不知道该怎么办了。如何使新手尽快的成长是个大家很关心的问题,讨论的也很广泛。各个学校都又不同的方法,有的是开数学建模培训班,有的是以题带连,有的是通过协会普及教育...,各个学校都已形成自己的风格和方法。纵观这些方法,个人感觉有很多不是太科学的地方,有的学校投入很多但是出不了成绩,这时就需要调整下培训方法了。检验数模学的成果如何是每年的全国赛和美国赛,形式都一样是以通讯的方式完成给定的选题。而做课题的一般进程就是建模型,解模型,写论文这三步。所以从这三个方面去培训是最有效的,因此个人认为最有效提高自己的水平就是以题带练,在实践中提高自己。
所以一般来讲做优化问题简单的时候,做优化的比做非优化的人数要多。但是涉及到比较复杂的时候那就要颠倒下了。就得奖人数来说A,B两题的各级得奖人数是相仿的,这时如果做A的人数少则得奖率就高了多了,所以在选题人数比较悬殊的时候则要选选做的人数相对少的那个题做,而当选题人数比较平均的时候,就选自己拿手的做了。当然要知道这个选题比例那是不可能的,所以要实现小范围的互动了,由于一开始是赛区内评价所以在小范围内互动是有必要的,在自己的学校内尽量做到平均,不然就是自相惨杀了:)。
美国赛则为MCM和ICM两种,MCM为A,B两题,ICM为C题。每年参加美赛的队数都在逐步增长,增长的速度还相当的快。获奖比率却年年在变化,但是从总体上看ICM的获奖率则比MCM要高出不少,所以一般来讲,选C题获奖几率则比A,B两题要高出50%了。
这样讲功利了,不过既然是去参加比赛,则就是要去拿奖了,不是讲风格讲什么的时候了。刺到见红,见真章的时候了。并且这样也是符合优化原理的,成功率最优化嘛,呵呵。但要注意的是所选的题一定要能保证做的出来,不然连个成功参赛奖都很难保证。
有不少的人会认为第一人选是数学方面的那第二人选就应该考虑计算机了,因为学计算机的会程序,其实这个概念可以说是对也可以说是不对的。之所以需要计算机方面的人是为了弥补数学方面的人在算法实践方面的不足,但是不是所有的计算机方面专业人都擅长算法实践的,如果要选的话就选擅长算法分析实践的,因为学计算机的不一定会程序,并且会程序的不一定会算法。拿出一个算法,让学计算机的编写程序实践不一定能行,不是小看计算机的,但是这种情况还是比较多的,不然可以看到参加ACM的数学系的居多,比学计算机的搞的好。因此一定要弄清这个概念,不是计算机的就适合的。
5文献资料查找
在数学建模中文献资料的查找是十分关键,其实不仅是在数学建模中,在学习和做研究就是如此,不阅读文献资料就相当于闭门造车,什么都弄不出来,现在的工作几乎都可以说是站在前人的肩膀上,从出生开始就是站在前人的肩膀上了,所学的任何书本知识都是前人总结出来的。
通过文献资料的阅读可以知道别人在这个方面做了多少工作了,怎么做的工作,取得了哪些进展,还存在什么问题没解决,难点在哪里,热点在哪里,哪里是关键,哪些是有价值的,哪些是无意义的等等等等......,并且可以通过查找文献得到一些很有用的信息,比如某个教授的牛的程度,所擅长的领域等等,呵呵,翻教授老底了,比较好玩,选导师的时候强烈推荐。
所以在组队中有两种人是必需的,一个是对建模很熟悉的,对各类算法理论熟悉,在了解背景后对此背景下的各类问题能建立模型,设计求解算法。一个是能将算法编制程序予以实现,求得解。当然有可能是一个人就将这两种都具备了,这样的话再找个任意具备上述两种能力的人就可以了,以减轻工作量,不然非累死不可。第三个就是专门需要写作的拉,从专业角度看是需要别的专业,比较适合的有生物、土木、机电、电信或机械等专业。在数学建模中各种背景的问题都会出现,所以有其他专业同学的话可以弥补专业知识方面的不足。
还有需要注意的是看起来入手容易的不一定好做,一般到一定地方后很难深入,运筹优化的很大一部分属于这类。而看起来无从下手的题目一旦找到突破口后那就是世外桃源了,就有很多东西可做。
所以选题的时候一定要慎重,先把题目的意思搞懂搞透,然后根据自己的优势和能力在互动的情况下选择一个最有利于自己得奖的题做。
(2).解模型:
模型建好了,该怎么解是个常常令人头痛的问题,这个不仅时新手,而且一般是令绝大多数同学头痛的问题,辛辛苦苦把模型建了,但是解不出结果来,这个时候往往时间很紧了,常常另人无奈,所以培训的时候多做这些方面的训练是十分必要的。解模型实质上就是算法的实践。一般来讲是用matlab,mathematica,lingo,lindo,spss等等数学软件来求解,当然有的时候c/c++是很实用的工具。在这里推荐几本数学软件的书《精通matlab6.5》(北航张志涌所著)、飞思工作室出的那套matlab6.5的书、《数学运算大师mathematica4》、万保成老师所写的电子版的《lingo8 for windows》、《最优化模型与实验》,这几本书都是很好的,对掌握这些数学软件是十分合适的。而有些算法数学软件往往无能为力,需要用c/c++来编制程序来解决,对于c/c++个人掌握程度不同,不过如果多看些算法方面的书,多做些ACM类的练习是十分必要的。
来源: 张勇的日志
1国赛和美赛
要在全国赛中取得好成绩经验第一,运气第二,实力第三,这种说法是功利了点,但是在现在中国这种科研浮躁的大环境中要在全国赛中取得好成绩经验是首要的。这并不说明美赛中经验不重要,在美赛中经验也是首位的,但是较之全国赛就差的远多了,这是由于两种比赛的不同性质造成的。全国赛注重\稳",与参考答案越接近,文章通顺就可以有好成绩了,美赛则注重\活",只要有道理,有思想就会有不错的成绩,这个也体现了两个国家的教育现状,这个就不扯开去了。
在数模竞赛中经验会告诉我们该怎么选题,怎么安排时间,怎么控制进度,知道什么是最重要的,该怎么写论文......,或许有人会认为选题也需要经验吗?经过参加了多次比赛后觉的是有技巧的,选个好题成功的机会就大的多,选题不能一味的根据自己的兴趣或能力去选,还要和全体参赛队互动下(这个开玩笑了,不大容易做到,只能是在极小的范围内做到),分析下选这个题的利弊后决定选哪个题,这里面道道也不少,后面会详细的展开谈谈。
综上可得,最快最有效的提高水平的方法就是通过做题来发现自己的不足,通过学习弥补自己的不足,这样就查漏补缺,提高了自己的水平了,并且最大程度上取得了经验。
4选题
在序中提到过如何选题,现在就具体展开讲讲。
全国赛分为本科组和大专组,每组A,B两题,A为连续的,B为离散的。就我来讲只有运筹优化和非运筹优化两类,运筹优化的题目只要题意理解正确,模型正确,能正常求解,有参考答案,只要解在参考答案附近那基本就能得奖了。而对于非运筹优化类则要麻烦的多了,各式各样的问题都有,并且好些非常不好入手,并且一般来讲没有参考答案,只要有思想有方法就会得到好的结果。
相关文档
最新文档