2013年广州中考数学参考答案(含详细解答过程)

合集下载

2013年广州中考数学真题卷含答案解析

2013年广州中考数学真题卷含答案解析

2013年广州市初中毕业生学业考试数学试题(含答案全解全析)(满分150分时间120分钟)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.比0大的数是()C.0D.1A.-1B.-122.如图所示的几何体的主视图是()3.在6×6方格中,将图①中的图形N平移后的位置如图②所示,则图形N的平移方法中,正确的是()图①图②A.向下移动1格B.向上移动1格C.向下移动2格D.向上移动2格4.计算:(m3n)2的结果是()A.m6nB.m6n2C.m5n2D.m3n25.为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中每人必选且只能选一项)的调查问卷,现随机抽取50名中学生进行该问卷调查,根据调查结果绘制条形图如图.该调查方式和图中a的值是()A.全面调查,26B.全面调查,24C.抽样调查,26D.抽样调查,246.已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是()A.{x+y=10y=3x+2B.{x+y=10y=3x-2C.{x+y=10x=3y+2D.{x+y=10x=3y-27.实数a在数轴上的位置如图所示,则|a-2.5|=()A.a-2.5B.2.5-aC.a+2.5D.-a-2.58.若代数式√xx-1有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x>0D.x≥0且x≠19.若5k+20<0,则关于x的一元二次方程x2+4x-k=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断10.如图,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tan B=()A.2√3B.2√2C.114D.5√54第Ⅱ卷(非选择题,共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11.点P在线段AB的垂直平分线上,PA=7,则PB=.12.广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为.13.分解因式:x2+xy=.14.一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是.15.如图,Rt△ABC的斜边AB=16,Rt△ABC绕点O顺时针旋转后得到Rt△A'B'C',则Rt△A'B'C'的斜边A'B'上的中线C'D的长度为.16.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,☉P与x轴交于O,A两点,点A的坐标为(6,0),☉P的半径为√13,则点P的坐标为.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分)解方程:x2-10x+9=0.如图,四边形ABCD是菱形,对角线AC与BD相交于点O,AB=5,AO=4,求BD的长.19.(本小题满分10分)先化简,再求值:x2x-y -y2x-y,其中x=1+2√3,y=1-2√3.20.(本小题满分10分)已知四边形ABCD是平行四边形(如图),把△ABD沿对角线BD翻折180°得到△A'BD.(1)利用尺规作出△A'BD(要求保留作图痕迹,不写作法);(2)设DA'与BC交于点E,求证:△BA'E≌△DCE.在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:111061591613120828101761375731210711368141512(1)求样本数据中为A级的频率;(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数;(3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.22.(本小题满分12分)如图,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里.(1)求船P到海岸线MN的距离(精确到0.1海里);(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.23.(本小题满分12分)如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数y=k(x>0,k≠0)的图象经过线段BC的中点D.x(1)求k的值;(2)若点P(x,y)在该反比例函数的图象上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围.24.(本小题满分14分)已知AB是☉O的直径,AB=4,点C在线段AB的延长线上运动,点D在☉O上运动(不与点B 重合),连结CD,且CD=OA.(1)当OC=2√2时(如图),求证:CD为☉O的切线;(2)当OC>2√2时,CD所在直线与☉O相交,设另一交点为E,连结AE.①当D为CE中点时,求△ACE的周长;②连结OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE·ED的值;若不存在,请说明理由.25.(本小题满分14分)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限....(1)试用a、c表示b;(2)判断点B所在象限,并说明理由;(3)若直线y2=2x+m经过点B,且与该抛物线交于另一点C(c,b+8),求当x≥1时y1的取值范围.a答案全解全析:1.D 比0大的数是正数.2.A 主视图是从物体正面看到的物体的形状.3.C 图形的平移包括每一点,每一边的平移,只需判断其中一条边的平移方法即可.4.B (m3n)2=m6n2.5.D 通过随机抽取50名中学生进行问卷调查来了解中学生获取资讯的主要渠道,因此是抽样调查,由条形图可知选择A、B、D、E的人数为6+10+6+4=26,因此a的值为50-26=24.6.C x,y之和是10,x比y的3倍大2,可列出x+y=10和x=3y+2,因此答案为C.7.B 根据a在数轴上的位置可知a<2.5,因此|a-2.5|=2.5-a,答案为B.8.D 因为根号内的数非负,分式有意义必有分母不为0,因此x≥0且x-1≠0,即x≥0且x≠1.9.A 因为5k+20<0,所以k<-4.判别式Δ=16-4(-k)=16+4k<16+4×(-4)=0,因此原方程无实数根.10.B 作DE⊥AC于点E,因为AD∥BC,且CA平分∠BCD,所以∠DAC=∠ACB=∠DCA,所以AC,△DEC∽△BAC,且相似比为1∶2,所以BC=2CD=12,利用勾股定理求得AD=CD=6,则EC=12AC=8√2,因此tan B=8√2=2√2.411.答案7解析线段垂直平分线上的任意一点到线段两端点的距离相等,P在线段AB的垂直平分线上,因此PB=PA=7.12.答案 5.25×106解析一个数字表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫科学记数法.13.答案x(x+y)解析提公因式x,即可得x2+xy=x(x+y).14.答案m>-2解析一次函数y=kx+b(k≠0),当k>0时,y随x的增大而增大,因此m+2>0,即m>-2.15.答案8解析图形旋转后大小不变,对应线段长度不变,因此A'B'=AB=16,直角三角形斜边上的中线等于斜边的一半,因此C'D'=1A'B'=8.216.答案 (3,2)解析 过点P 作PB⊥AO 于点B,由垂径定理得OB=12AO=3,由勾股定理得PB=2,因此P(3,2).17.解析 由原方程得(x-1)(x-9)=0, 则x 1=1,x 2=9,∴原方程的解为x 1=1,x 2=9. 18.解析 ∵菱形对角线相互垂直平分, ∴AC⊥BD 且BO=OD,即△ABO 是直角三角形, 在Rt△ABO 中,BO 2=AB 2-AO 2,其中AO=4,AB=5, ∴BO=3,又∵BO=OD,∴BD=2BO=6, ∴BD 的长为6. 19.解析 原式=x 2-y 2x -y=(x -y )(x+y )x -y=x+y,把x=1+2√3,y=1-2√3代入,得x+y=2, ∴原式的值为2. 20.解析 (1)作图略.(2)证明:∵平行四边形ABCD 中有AB=CD,∠A=∠C, △ABD 翻折后有A'B=AB,∠A=∠A',∴A'B=CD,∠A'=∠C, 又∵∠A'EB=∠CED(对顶角相等), ∴△BA'E≌△DCE.21.解析 (1)由“日均发微博条数”样本的数据可得m≥10的有15人. 故样本数据中为A 级的频率P 1=1530=12.(2)1 000个18~35岁的青年人中“日均发微博条数”为A 级的约为1 000×12=500(人). (3)样本数据中为C 级的数据有:0,2,3,3,依题意可得下表:0 2 3 3 0 (0,2) (0,3) (0,3) 2 (2,0) (2,3) (2,3) 3 (3,0) (3,2) (3,3) 3(3,0)(3,2)(3,3)由上表可得抽得2个人的“日均发微博条数”都是3的概率P 2=212=16.22.解析 (1)过点P 作PC⊥AB 交AB 于点C,∠PAC=90°-58°=32°, 在Rt△PAC 中,sin∠PAC=PCPA ,∴PC=sin∠PAC·AP=30×sin 32°≈15.9(海里), 故船P 到海岸线MN 的距离约为15.9海里. (2)∵∠PBC=90°-35°=55°,sin∠PBC=PCPB ,∴PB=PCsin∠PBC=30×sin32°sin55°,∴t B =PB 15=30×sin32°15×sin55°≈1.3(小时), t A =PA 20=3020=1.5(小时).∵t A >t B ,∴B 船先到达船P 处.23.解析 (1)∵B(2,2),四边形OABC 是正方形, ∴C(0,2),∵D 是BC 的中点,∴D(1,2),∵点D(1,2)在反比例函数y=k x (k≠0)的图象上, ∴k=xy=1×2=2.(2)∵P 点在y=2x 的图象上,∴可设P 点坐标为(x ,2x), 则R (0,2x ).如图①,当0<x<1时,四边形CQPR 为矩形,Q 点坐标为(x,2),∴PR=x,PQ=2x -2, ∴四边形CQPR 的面积S=PR×PQ=x (2x -2)=-2x+2(0<x<1);如图②,当x>1时,四边形CQPR 为矩形,Q 点坐标为(x,2),∴PR=x,PQ=2-2x ,∴四边形CQPR 的面积S=PR×PQ=x (2-2x )=2x-2(x>1).综上可得,S={-2x +2(0<x <1),2x -2(x >1).24.解析 (1)证明:如图,连结OD,则OD=AB 2=2,∵CD=OA=2,OC=2√2,∴OD 2+CD 2=22+22=8=OC 2,即△OCD 是直角三角形,且∠ODC=90°,∴CD 为☉O 的切线.(2)①连结OD,OE,D为CE中点,则DE=CD=OA=OD=OE=2,故△AOE,△ODC均为等腰三角形,△ODE为等边三角形,△OCE为直角三角形,∴∠AOE=∠EOC=90°,故∠A=∠AEO=45°,∠OEC=60°,∠OCE=30°,∴AE=2√2,EC=2CD=4,OC=√3OE=2√3,∴△ACE的周长=AE+EC+AC=2√2+4+(2+2√3)=6+2√3+2√2.②存在梯形AODE,解答如下:∵AO、ED交于点C,∴只有AE∥OD,使得四边形AODE是梯形,其中上下半圆中各一个,共有两个.连结OE.∵CD=OA=OE=OD,∴∠DCO=∠DOC=∠A=∠AEO,∴△ODC≌△AOE(AAS),∴OC=AE,∵AE∥OD,∴CDOC =EDAO,即OC·ED=CD·AO=2×2=4,又∵OC=AE,∴AE·ED=OC·ED=4.(此时,可求得OC=AE=1+√5>2√2,满足条件)25.解析 (1)∵抛物线y 1=ax 2+bx+c 过点A(1,0), ∴0=a×12+b×1+c=a+b+c,∴b=-a-c.(2)∵抛物线y 1=ax 2+bx+c 不经过第三象限,显然有a>0, ∴点(0,c)一定在y 轴的非负半轴上,即c≥0, 又∵a+b+c=0,a≠c,∴a+c>0,b=-(a+c)<0,∴顶点B (-b 2a ,4ac -b 24a )中, 横坐标-b 2a =--a -c 2a =a+c 2a >0,纵坐标4ac -b 24a =4ac -(a+c )24a =-(a -c )24a <0,∴顶点B 一定在第四象限.(3)∵抛物线y 1=ax 2+bx+c 过点C (c a ,b +8), ∴b+8=a×(c a )2+b×c a +c=c a (a+b+c)=0,即b=-a-c=-8, ∵直线y 2=2x+m 过点B (-b 2a ,4ac -b 24a )和C (c a ,b +8), ∴{b +8=2×c a +m ,4ac -b 24a =2×(-b 2a )+m ,b =-a -c =-8,解得{a =2,b =-8,c =6,m =-6或{a =4,b =-8,c =4,m =-2(a≠c,舍去). ∴y 1=2x 2-8x+6=2(x-2)2-2,y 2=2x-6,此时B(2,-2),由二次函数的性质知,当x≥1时,y 1≥-2.。

2013广州中考数学荔湾一模及答案

2013广州中考数学荔湾一模及答案

2013年初中毕业班九校联考质量检测(数学科)--黄立宗已排版注意事项: 本试卷共三大题25小题,共4页,满分150分.考试时间120分钟.1.答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己的考号、姓名;再用2B 铅笔把对应考号的标号涂黑.2.选择题的每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.填空题和解答题都不要抄题,必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生可以..使用计算器.必须保持答题卡的整洁,考试结束后,交回答题卡和答卷.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、 3-的绝对值是(﹡). (A )3(B )3-(C )13(D )13-2、下列图形中既是轴对称图形又是中心对称图形的是(﹡)(A ) (B ) (C ) (D )3、不等式组 1021x x +≥⎧⎨-≤⎩ 的解集在数轴上的正确表示为(﹡)4、下列运算中,结果正确的是(﹡).(A )844a a a =+ (B )523a a a =∙ (C )428a a a =÷ (D )()63262a a-=-5、如果1x ,2x 是一元二次方程0262=--x x 的两个实数根,那么21x x +的值是(﹡). (A ).-2 (B ) 2 (C )-6 (D ) 6 6、下列各点中,在反比例函数6y x=图象上的是(﹡)(A )()23-, (B )()23-, (C )()16, (D )()16-, 7、如图所示,AB CD ∥,∠E =27°,∠C =52°, 则EAB ∠的度数为( ﹡ ).(A ) 25° (B )63° (C )79° (D )101°1 31 1 1 (A )(B )(C )(D )俯视图左视图正视图8、将4个红球和若干个白球放入不透明的一个袋子内,摇匀后随机摸出一球,若摸出红球的概率为23,那么白球的个数为(﹡ )(A )1个 (B )2个 (C )3个 (D )6个9、已知圆锥的母线长是5cm ,侧面积是15πcm 2,则这个圆锥底面圆的半径是(﹡).(A )32cm (B )3cm (C )4cm (D )6cm10、方程x 2+1 =2x的正根的个数为(﹡).(A )3个 (B ) 2个 (C )1个 (D )0个第二部分 非选择题(共120分)二、耐心填一填(本题有6个小题,每小题3分,共18分).11、如图是一个立体图形的三视图,则这个立体图形是 ﹡ .12、如图在⊙O 中,弦AB 长为8,OC ⊥AB 于C 且OC=3,则⊙O 的半径是 ﹡ .13、如图,在高为2m ,坡角为30的楼梯上铺地毯,地毯的长度至少应计划 ﹡ (结果保留根号)第11题图 第12题图 第13题图14、分解因式:224a ab -= ﹡ .15、已知:⊙1O 与⊙2O 外切,⊙1O 的半径为3,且128O O =,则⊙2O 的半径=R ﹡16、 正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置. 点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y kx b =+(k >0)和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是 ﹡ .三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)解分式方程:1311+=-x x18.(本小题满分9分)如图,已知,DCB ABC DC AB ∠=∠=,AC E 为、BD 的交点. ① 求证:△ABC ≌△DCB ;② 若的长求CE cm BE ,5=.19.(本小题满分10分)今年初,我省出台了一系列推进素质教育的新举措,提出了“三个还给”,即把时间还给学生,把健康还给学生,把能力还给学生.同学们利用课外活动时间积极参加体育锻炼,小东和小莉就本班同学“我最喜爱的体育项目”进行了一次调查统计,图1和图2是他们通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题: (1)求该班共有多少名学生?(2)补全条形图;(3)在扇形统计图中,求出“乒乓球”部分所对应的圆心角的度数; (4)若全校有1500名学生,请估计“其他”的学生有多少名?20.(本小题满分10分)如图,图形中每一小格正方形的边长为1,已知ABC △ (1) AC 的长等于_______.(结果保留根号)(2)将ABC △向右平移2个单位得到A B C '''△,则A 点的对应点A '的坐标是______; (3) 画出将ABC △绕点C 按顺时针方向旋转90后得到∆A 1B 1C 1,并写出A 点对应点A 1的坐标?21. (本小题满分l2分)九年级三班在召开期末总结表彰会前,班主任安排班长李小明去商店买奖品,下面是李小明与售货员的对话: 李小明:阿姨,您好!售货员:同学,你好,想买点什么?李小明:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见. 根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?22. (本小题满分l2分)如图7,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°. (1)求∠APB 的度数;(2)当OA =3时,求AP 的长.23. (本小题满分l2分) 已知函数2y x=和()10y kx k =+≠.(1)若这两个函数的图象都经过点()1a ,,求a 和k 的值; (2)当k 取何值时,这两个函数的图象总有公共点?24. (本小题满分14分)如图,在梯形ABCD中,AD∥BC,AD<BC,且AD=5,AB=DC=2,点P在线段AD上移动(点P与点A、D不重合),连接PB、PC.(1)当△ABP∽△PCB时,请写出图中所有与∠ABP相等的角,并证明你的结论;(2)求(1)中AP的长;(3)如果PE交线段BC于E、交DC的延长线...于点Q,当△ABP∽△PEB时,设AP=x,CQ=y,求y关于x的函数关系式,并写出x的取值范围.25.(本小题满分14分)如图1,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),OB =OC ,tan ∠ACO =31.(1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)若平行于x 轴的直线与该抛物线交于M 、N 两点,且以MN 为直径的圆与x 轴相切,求该圆半径的长度.(4)如图2,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大?求出此时P 点的坐标和△APG 的最大面积.图1 图22013年初中毕业班九校联考质量检测参考答案(数学科)一、选择题17.x+1=3(x-1) ----------------------------3’x-3x=-3-1 --------------------- 5’ -2x= -4 ------------------------------6’ x=2 --- ------------------------------7’检验:把2=x 代入0331)1)(1(≠=⨯=+-x x ----------8’∴2=x 是方程的根 ---------9’ 18. (1)证:在△ABC 与△DCB 中,∵AB DC ABC DCB BC CB=∠∠=⎧⎪⎨⎪⎩=, ………………………………………3’ ∴△ABC≌△DCB ……………………………………………………………………5’(2)解:∵△ABC ≌△DCB ,∴∠ACB =∠DBC , ………………………………………………………………7’ ∴EC =EB =5cm .……………………………………………………………………9’ 19. (1)15÷30% = 50 (名)……………2’(2)图略(条形高度不准确扣1分,徒手画图扣1分)………………………6’ (3)16÷50 × 360°=115.2°(直接用32%×360度,没有交代32%的来由扣1分)…………………8’ (4)乒乓球 占 16÷50=32%∴全校报“其他”项目的有 1500×(1-18%-32%-30%)=300 (名)(直接用20%×1500人,没有交代20%的来由扣1分)…………………10’ 3’ (2)(1,2)……………………………………………………………6’(3)图3分 点1分(3,0)………………………………………………………10’21. 解:设钢笔每支为x 元,笔记本每本y 元,据题意得------------------------1’ ⎩⎨⎧-=++=510015102y x y x ----------------------------------------6’解方程组得, ⎩⎨⎧==35y x -------------------------------------------11’答;钢笔每支5元,笔记本每本3元.----------------------------------12’ 22.解:(1)方法一:∵在△ABO 中,OA =OB ,∠OAB =30°∴∠AOB =180°-2×30°=120° ………………………3’ ∵PA 、PB 是⊙O 的切线∴OA ⊥PA ,OB ⊥PB .即∠OAP =∠OBP =90°………………………5’ ∴在四边形OAPB 中,∠APB =360°-120°-90°-90°=60°. ………………………6’ 方法二:∵PA 、PB 是⊙O 的切线∴PA =PB ,OA ⊥PA ………………………3’ ∵∠OAB =30°, OA ⊥PA∴∠BAP =90°-30°=60° ………………………5’ ∴△ABP 是等边三角形∴∠APB =60°. ………………………6’ (2)方法一:如图①,连结OP ………………………7’ ∵PA 、PB 是⊙O 的切线∴PO 平分∠APB ,即∠APO =12∠APB =30° ………………………9’又∵在Rt △OAP 中,OA =3, ∠APO =30°∴AP =tan 30OA°=………………………12’方法二:如图②,作OD ⊥AB 交AB 于点D ………………………7’∵在△OAB 中,OA =OB ∴AD =12AB …………9’∵在Rt △AOD 中,OA =3,∠OAD =30°∴AD =OA ·cos302 ………………………11’ ∴AP = AB=………………………12’22. 解:(1) 两函数的图象都经过点()1a ,,211a a k ⎧=⎪∴⎨⎪=+⎩,. ········· 4’ 21a k =⎧∴⎨=⎩,.······························ 6’ (2)将2y x=代入1y kx =+,消去y ,得220kx x +-=. ········· 9’0k ≠,∴要使得两函数的图象总有公共点,只要0∆≥即可.18k ∆=+ ,···························· 10’ 180k ∴+≥,解得18k -≥.18k ∴-≥且0k ≠. ···········12’ 24. (1) 解:有∠PCB 和∠DPC .……………………………………………………………2’∵△ABP ∽△PCB ,∴∠ABP =∠PCB , ∵AD ∥BC ,∴∠DPC =∠PCB ,∴∠DPC =∠ABP .…………………………………………5’(2) 解:梯形ABCD 中,∵AD ∥BC ,AB =DC ,∴∠A =∠D .∵∠DPC =∠ABP ∴△ABP ∽△DPC ∴=AP DC ABDP.……………8’图①图②设AP =x ,则DP =5- x ,∴=-225x x.………………………………9’解得x 1= 1,x 2= 4,∴AP = 1或 4 . ………………………………………………10’ (3) 解:∵△ABP ∽△PEB ,∴∠ABP =∠PEB∵AD ∥BC , ∴∠PEB =∠DPQ ∴∠ABP =∠DPQ . 在梯形ABCD 中,∵AB =DC ,∴∠D =∠A∴△ABP ∽△DPQ .……………………………12’ ∴DQAP PDAB =.∵AP =x ,CQ =y , ∴PD =5-x ,DQ =2 + y . ∴yx x+=-252.∴225212-+-=x x y . 令y >0,即2152022x x -+->.观察图象得1<x <4,又∵x >0,5-x >0,综上所述1<x <4;…………………………………………14’25.(本小题满分14分)解:(1)方法一:由已知得:C (0,-3),A (-1,0) …………………………1’将A 、B 、C 三点的坐标代入得⎪⎩⎪⎨⎧-==++=+-30390c c b a c b a …………………………2’解得:⎪⎩⎪⎨⎧-=-==321c b a …………………………3’所以这个二次函数的表达式为:322--=x x y ………………………4’ 方法二:由已知得:C (0,-3),A (-1,0) …………………………1’ 设该表达式为:)3)(1(-+=x x a y …………………………2’ 将C 点的坐标代入得:1=a …………………………3’ 所以这个二次函数的表达式为:322--=x x y …………………………4’ (注:表达式的最终结果用三种形式中的任一种都不扣分)(2)方法一:存在,F 点的坐标为(2,-3) …………………………5’理由:易得D (1,-4),所以直线CD 的解析式为:3--=x y∴E 点的坐标为(-3,0) …………………………5’ 由A 、C 、E 、F 四点的坐标得:AE =CF =2,AE ∥CF ∴以A 、C 、E 、F 为顶点的四边形为平行四边形∴存在点F ,坐标为(2,-3) …………………………7’ 方法二:易得D (1,-4),所以直线CD 的解析式为:3--=x y∴E 点的坐标为(-3,0) …………………………5’ ∵以A 、C 、E 、F 为顶点的四边形为平行四边形∴F 点的坐标为(2,-3)或(―2,―3)或(-4,3) 代入抛物线的表达式检验,只有(2,-3)符合∴存在点F ,坐标为(2,-3) …………………………7’ (3)如图,①当直线MN 在x 轴上方时,设圆的半径为R (R>0),则N (R+1,R ), 代入抛物线的表达式,解得2171+=R …………9’②当直线MN 在x 轴下方时,设圆的半径为r (r>0), 则N (r+1,-r ), 代入抛物线的表达式,解得2171+-=r ………10’∴圆的半径为2171+或2171+-. ……………11’(4)过点P 作y 轴的平行线与AG 交于点Q ,易得G (2,-3),直线AG 为1--=x y .……………12’ 设P (x ,322--x x ),则Q (x ,-x -1),PQ 22++-=x x .3)2(212⨯++-=+=∆∆∆x x S S S GPQ APQ APG …………………………13’当21=x 时,△APG 的面积最大此时P 点的坐标为⎪⎭⎫⎝⎛-415,21,827的最大值为APG S ∆. …………………………14’。

2013年中考数学专题复习第5讲:分式(含详细参考答案)

2013年中考数学专题复习第5讲:分式(含详细参考答案)

2013年中考数学专题复习第五讲:分式【基础知识回顾】一、分式的概念若A,B表示两个整式,且B中含有那么式子就叫做公式【名师提醒:①:若则分式AB无意义②:若分式AB=0,则应且】二、分式的基本性质分式的分子分母都乘以(或除以)同一个的整式,分式的值不变。

1、a ma m⋅⋅=a mb m÷÷= (m≠0)2、分式的变号法则ba-=b3、约分:根据把一个分式分子和分母的约去叫做分式的约分。

约分的关键是确保分式的分子和分母中的约分的结果必须是分式4、通分:根据把几个异分母的分式化为分母分式的过程叫做分式的通分通分的关键是确定各分母的【名师提醒:①最简分式是指②约分时确定公因式的方法:当分子、分母是多项式时,公因式应取系数的应用字母的当分母、分母是多项式时应先再进行约分③通分时确定最简公分母的方法,取各分母系数的相同字母分母中有多项式时仍然要先通分中有整式的应将整式看成是分母为的式子④约分通分时一定注意“都”和“同时”避免漏乘和漏除项】三、分式的运算:1、分式的乘除①分式的乘法:ba.dc=②分式的除法:ba÷dc= =2、分式的加减①用分母分式相加减:ba±ca=②异分母分式相加减:ba±dc= =【名师提醒:①分式乘除运算时一般都化为法来做,其实质是的过程②异分母分式加减过程的关键是】3、分式的乘方:应把分子分母各自乘方:即(ba)m =1、分式的混合运算:应先算再算最后算有括号的先算括号里面的。

2、分式求值:①先化简,再求值。

②由值的形式直接化成所求整式的值③式中字母表示的数隐含在方程的题目条件中【名师提醒:①实数的各种运算律也符合公式②分式运算的结果,一定要化成③分式求值不管哪种情况必须先 此类题目解决过程中要注意整体代入 】【重点考点例析】考点一:分式有意义的条件例1 (2012•宜昌)若分式21a +有意义,则a 的取值范围是( ) A .a=0 B .a=1 C .a≠-1 D .a≠0点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.对应训练1.(2012•湖州)要使分式1x有意义,x 的取值范围满足( ) A .x=0 B .x≠0 C .x >0 D .x <0考点二:分式的基本性质运用例2 (2012•杭州)化简216312m m --得 ;当m=-1时,原式的值为 . 对应训练2.(2011•遂宁)下列分式是最简分式的( )A .223a a bB .23a a a -C .22 a b a b ++D .222a ab a b -- 考点三:分式的化简与求值例3 (2012•南昌)化简:2211a a a a a --÷+.点评:本题考查的是分式的乘除法,即分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.例4 (2012•安徽)化简211x x x x+-- 的结果是( ) A .x+1 B .x-1 C .-x D .x点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.例5 (2012•天门)化简221(1)11x x -÷+- 的结果是( ) A .21(1)x + B .21(1)x - C .2(1)x + D .2(1)x - 点评:此题考查了分式的化简混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,同时注意最后结果必须为最简分式.例6 (2012•遵义)化简分式222()1121x x x x x x x x --÷---+,并从-1≤x≤3中选一个你认为合适的整数x 代入求值.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应先将多项式分解因式后再约分.对应训练3.(2012•河北)化简22111x x ÷--的结果是( ) A .21x - B .321x - C .21x - D .2(x+1) 4.(2012•绍兴)化简111x x --可得( ) A .21x x - B .21x x -- C .221x x x +- D .221x x x-- 5.(2012•泰安)化简22()2-24m m m m m m -÷+-= . 6.(2012•资阳)先化简,再求值:2221(1)11a a a a a --÷---+,其中a 是方程x 2-x=6的根.考点四:分式创新型题目例7 (2012•凉山州)对于正数x ,规定1()1f x x =+,例如:11(4)145f ==+,114()14514f ==+,则 111(2012)(2011)(2)(1)()()()220112012f f f f f f f ++⋅⋅⋅++++⋅⋅⋅++= .对应训练7.(2012•临沂)读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为1001n n =∑,这里“∑”是求和符号,通过对以上材料的阅读,计算201211(1)n n n ==+∑ .【聚焦山东中考】一、选择题1.(2012•潍坊)计算:2-2=( )A .14B .2C .14- D .4 2.(2012•德州)下列运算正确的是( ) A .42= B .(-3)2=-9C .2-3=8D .20=0 3.(2012•临沂)化简4(1)22a a a +÷--的结果是( ) A .2a a + B .2a a + C .2a a - D .2a a - 4.(2012•威海)化简的结果是( )A .B .C .D .二、填空题 5.(2012•聊城)计算:24(1)42a a a +÷=-- . 6.(2011•泰安)化简:22()224x x x x x x -÷+--的结果为 . 三、解答题7.(2012·济南)化简:2121224a a a a a --+÷--.8.(2012•烟台)化简:222844(1)442a a a a a a+--÷+++.9.(2012•青岛)化简:2211(1)12a a a a -+++。

2013广州中考数学萝岗一模及答案

2013广州中考数学萝岗一模及答案

2013年萝岗区初中毕业班综合测试(一)--黄立宗已排版数 学本试卷分选择题和非选择题两部分,共三大题25小题,共6页,满分150分.考试用时120分钟. 第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.3-的相反数是( ﹡ ). A .3- B .13- C .13D .32.下图是由5个相同的小正方体组成的立体图形,它的俯视图是( ﹡ ).A. B. C. D.3.若要对一射击运动员最近6次训练成绩进行统计分析,判断他的训练成绩是否稳定, 则需要知道他这6次训练成绩的( ﹡ ).A .中位数B .平均数C .众数D .方差4.ABC △的三条中位线围成的三角形的周长为15cm ,则ABC △的周长为( ﹡ ). A .60cm B .45cm C .30cm D .15cm 25.两圆的半径分别为2cm 和6cm ,圆心距为4cm ,则这两圆的位置关系是( ﹡ ). A .内含 B .内切 C .外切 D .外离 6.点(2,1)M -向上平移2个单位长度得到的点的坐标是( ﹡ ).A .(2,0)B .(2,1)C .(2,2)D .(2,3)- 7.下列命题中,为真命题的是( ﹡ )A .对角线相等的四边形是矩形B .一组对边平行的四边形是平行四边形C .若a b =,则22a b = D .若a b >,则22a b ->-8.反比例函数1y x=的图象上有两点(1,),(2,)A a B b --,则a 与b 的大小关系为( ﹡ ). A .a >bB .a <bC .a =bD .不能确定9.对原价为289元的某种药品进行连续两次降价后为256元,设平均每次降价的百分率为x , 则下面所列方程正确的是( ﹡ ).A .289(12)256x -=B .2256(1)289x -= C .2289(1)256x -= D .256(12)289x -=10.如图,在Rt ABO △中,斜边1AB =,若OC BA ∥,36AOC =∠,则( ﹡ ).A .点B 到AO 的距离为sin 54B .点B 到AO 的距离为0cos36C .点A 到OC 的距离为sin36sin54D .点A 到OC 的距离为0cos36sin 54第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.) 11.如图,已知,,160AB CD ∠=︒,则2∠= ﹡ 度. 12.化简(1)(1)(1)a a a a +-+-的结果是 ﹡ .13.一元二次方程032=-x x 的根是 ﹡ .14.菱形的两条对角线的长分别为6和8,则这个菱形的周长为 ﹡ . 15.已知反比例函数的图象与直线2y x =相交于点(1,),A a则这个反比例函数的解析式为 ﹡ .16.如图,在平行四边形ABCD 中,10,6,AD cm CD cm ==E 为AD 上一点,且BE BC CE CD ==,,则DE = ﹡ cm .三、解答题(本大题共9小题,满分102 分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分)解不等式组:23 1........(1)110.......(2)2x x -≤⎧⎪⎨+>⎪⎩ 并把解集在数轴上表示出来.CDB第16题B第10题B A CO18.(本小题满分9分)如图,已知,,,AC BC BD AD AC BD AC BD O 与交于⊥⊥=. 求证:(1);BC AD = (2)OAB 是等腰三角形.∆19.(本小题满分10分)九(1)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)求该小区用水量不超过15t 的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t 的家庭大约有多少户?月用水量(t)20.(本小题满分10分)如图,已知一次函数与反比例函数的图象交于点(42)A --,和(4)B a ,. (1)求反比例函数的解析式和点B 的坐标;(2)根据图象回答,当x 在什么范围内时,一次函数的值小于反比例函数的值?21.(本小题满分12分)某校要进行理、化实验操作考试,采取考生抽签方式决定考试内容,规定:每位考生必须在三个物理实验(用纸签A 、B 、C 表示)和三个化学实验(用纸签D 、E 、F 表示)中各抽取一个进行考试. (1)请列出所有可能出现的结果;(可考虑选用树形图、列表等方法) (2)某考生希望抽到物理实险A 和化学实验F ,他能如愿的概率是多少?22.(本小题满分12分)如图,点C 在以AB 为直径的半圆O 上,延长BC 到点D ,使得CD BC =,过点D 作DE AB ⊥于点E ,交AC 于点F ,点G 为DF 的中点,连接,,,.CG OF OC FB . (1)求证:CG 是O ⊙的切线;(2)若AFB △的面积是DCG △的面积的2倍,求证:OF BC ∥.第22题23.(本小题满分12分)某商店销售,A B 两种商品,已知销售一件A 种商品可获利润10元,销售一件B 种商品可获利润15元.(1)该商店销售,A B 两种商品共100件,获利润1350元,则,A B 两种商品各销售多少件?(2)根据市场需求,该商店准备购进,A B 两种商品共200件,其中B 种商品的件数不多于A 种商品件数的3倍.为了获得最大利润,应购进,A B 两种商品各多少件?可获得最大利润为多少元?24.(本小题满分14分)如图1,四边形,ABHC ADEF 都是正方形,D 、F 分别在AB 、AC 边上,此时BD CF =,BD CF ⊥成立.(1)当正方形ADEF 绕点A 逆时针旋转θ(090θ<<)时,如图2,BD CF =成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF 绕点A 逆时针旋转45时,如图3,延长BD 交CF 于点G ,设BG 交AC 于点M .①求证:BD CF ⊥;②当4AB AD ==,BG 的长.第24题图3图2图1F F AC H H HD25.(本小题满分14分)如图1,在平面直角坐标系中,A 、B 的坐标分别为(4,0),(0,3), 抛物线234y x bx c =++经过点B ,且对称轴是直线5.2x =- (1)求抛物线对应的函数解析式;(2)将图1中的ABO △沿x 轴向左平移得到DCE △(如图2),当四边形ABCD 是菱形时,请说明点C和点D 都在该抛物线上.(3)在(2)中,若点M 是抛物线上的一个动点(点M 不与点C D 、重合),过点M 作MN y ∥轴,交直线CD 于N ,设点M 的横坐标为t ,MN 的长度为l ,求l 与t 之间的函数解析式.并求当t 为何值时,以M N C E 、、、为顶点的四边形是平行四边形.(参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,,对称轴是直线.2b x a =- 第25题2013年萝岗区初中毕业班综合测试(一)数学试题参考答案及评分标准一、选择题:三、解答题(本大题共9小题,满分102 分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)解不等式①,得 2x ≤, ……………3分 解不等式②,得 x >-2. ……………6分不等式①,②的解集在数轴上表示如右图所示……………8分 所以原不等式组的解集为22x -<≤. ……………9分 18.(本小题满分9分) 证明:(1)∵AC ⊥BC ,BD ⊥AD∴ ∠D =∠C =90︒ …………………1分 在Rt △ACB 和 Rt △BDA 中,AB=BA ,AC =BD ,…………4分 ∴ △ACB ≌ △BDA (HL ) ………………………5分 ∴BC =AD ……………………………6分(2)由△ACB ≌ △BDA,得 ∠CAB =∠DBA ………………8分 ∴△OAB 是等腰三角形. ………………………9分 19.(本小题满分10分)解:(1)表中填12;0.08.补全的图形如下图. ………………………4分(2)解:0.120.240.320.68++=.即月均用水量不超过15t 的家庭占被调查的家庭总数的68%.………………………7分 (3)解:(0.080.04)1000120+⨯=.所以根据调查数据估计,该小区月均用水量超过20t 的家庭大约有120户. …………10分第18题BA解:(1)设反比例函数解析式为ky x=,……………1分 反比例函数图象经过点(42)A --,, 24k∴-=-,……………………………………3分 8k ∴=. ……………………………………4分∴反比例函数解析式是8y x=. ……………4分(4)B a ,在8y x=的图象上,842a a∴=∴=,.……………………………6分∴点B 的坐标为(24)B ,.……………………6分 (2)根据图象得,当02x <<………………8分或4x <-时,…………………………………10分 一次函数的值小于反比例函数的值.21.(本小题满分12分)(1)方法一 用树形图列出所有可能的结果如下:方法二 用列表法列出所有可能的结果如下:(2) 由(1)可以看出,每位考生可能抽取的结果有9个,它们出现的可能性相等所以P(A,F)=91…………12分 评分说明:直接写出“P(A,F)=91”,没有写“每位考生可能抽取的结果有9个,它们出现的可能性相等”不扣分.证明:(1)如图,∵AB 为O ⊙的直径, ∴90ACB ∠=°.………1分 在Rt DCF △中,DG FG =.∴CG DG FG ==,………………………………2分∴∠3=∠4. ………………………………………3分∵∠3=∠5,∴∠4=∠5. ………………………………………4分 ∵OA OC =,∴∠1=∠2.………………………5分又∵DE AB ⊥,∴ ∠1+∠5=90° …………………6分 ∴ ∠2+∠4=90°.………………………………7分 即90GCO ∠=°. …………………………………7分 ∴CG 为O ⊙的切线. ……………………………7分(2)∵DG FG =,∴2DCF DCG S S ∆∆=.……………………………8分 ∵DC CB =,∴DCF BCF S S ∆∆=,…………………………………9分∴2BCF DCG S S ∆∆=.……………………………………………………………9分 又∵2ABF DCG S S ∆∆=,∴ABF BCF S S ∆∆=………………………10分∴AF FC =.………………………………………………………………………11分 又∵OA OB =,∴OF BC ∥. …………………………………12分 23.(本小题满分12分) 解:(1)解法一:设A 种商品销售x 件,则B 种商品销售(100-x )件 ……………………1分 依题意,得1015(100)1350x x +-= …………………………………………………3分 解得x =30.∴100-x =70. ……………………………………………………………4分 答:A 种商品销售30件,B 种商品销售70件.…………………………………5分解法二:设A 种商品销售x 件,B 种商品销售y 件. ……………………………1分依题意,得100,10151350.x y x y +=⎧⎨+=⎩ ………………………………………………………3分解得30,70.x y =⎧⎨=⎩……………………………………………………………………………4分答:A 种商品销售30件,B 种商品销售70件. …………………………………5分(2)设A 种商品购进x 件,则B 种商品购进(200-x )件.…………………6分依题意,得0≤200-x ≤3x解得50≤x ≤200 ………………………………………………………………………7分 设所获利润为w 元,则有W =10x +15(200-x )=-5x +3000 ……………………8分 ∵-5<0,∴w 随x 的增大而减小. ∴当x =50时,所获利润最大第22题5503000w =-⨯+最大=2750元. ………………………………………………………9分200-x =150.答:应购进A 种商品50件,B 种商品150件,可获得最大利润为2750元.……………………………………………………………10分24.(本小题满分14分)解:(1)BD CF =成立.…………………………………………1分 理由:∵四边形,ABHC ADEF 都是正方形AB AC AD AF ∴==,90BAC DAF ∠=∠=°,……………2分 BAD BAC DAC ∠=∠-∠ ,CAF DAF DAC ∠=∠-∠, BAD CAF ∴∠=∠, …………………………………………3分 BAD CAF ∴△≌△.……………………………………………4分 BD CF ∴=. …………………………………………………4分(2)①证明:BAD CAF △≌△(已证),ABM GCM ∴∠=∠.………5分 BMA CMG BMA CMG ∠=∠∴ ,△∽△.…………………6分 90BGC BAC BD CF ∴∠=∠=∴⊥°.. ………………6分②过点F 作FN AC ⊥于点N . …………………………7分在正方形ADEF中,AD =112AN FN AE ∴===.………………………………8分 连接BC ,在等腰直角ABC △中, 4AB =,3CN AC AN ∴=-=,BC ==9分∴在Rt FCN △中,1tan 3FN FCN CN ∠==.…………………………10分 ∴在Rt ABM △中,1tan tan 3ABM FCN ∠=∠=.………………10分1433AM AB ∴=⨯=. …………………………………………………11分48433CM AC AM ∴=-=-=, ……………………………………11分BM CMBMA CMG BA CG∴= △∽△,. ………………………………12分833.4CG CG ∴=∴=. ………………………………13分∴在Rt BGC △中,5BG ==……………14分 F图3H11 25.(本小题满分14分)解:(1)由已知,得532243.b c ⎧-=-⎪⎪⨯⎨⎪=⎪⎩,解得1543.b c ⎧=⎪⎨⎪=⎩, ………………………………2分 ∴二次函数的解析式为2315 3.44y x x =++ ………………………………2分 (2)在Rt ABO △中,∵43OA OB ==,,∴ 5.AB = ………………………3分又∵四边形ABCD 是菱形,∴ 5.BC AD AB === ……………………………4分∵ABO △沿x 轴向左平移得到DCE △,∴ 3.CE OB ==∴()()5310.C D --,, …………………5分当5x =-时,()()2315553344y =⨯-+⨯-+=,…………6分 当1x =-时,()()3315113044y =⨯-+⨯-+=,…………7分 ∴C D 、在该抛物线上. …………………………………7分(3)设直线CD 的解析式为y kx b =+,则05 3.k b k b -+=⎧⎨-+=⎩,解得343.4k b ⎧=-⎪⎪⎨⎪=-⎪⎩,…………………………8分 ∴33.44y x =-- ………………………………………8分 ∵MN y ∥轴,∴M N 、的横坐标均为.t ………………9分当M 在直线CD 的上方时,有2231533391534444424l MN t t t t t ⎛⎫⎛⎫==++---=++ ⎪ ⎪⎝⎭⎝⎭;…………10分 当M 在直线CD 的下方时,有2233315391534444424l MN t t t t t ⎛⎫⎛⎫==---++=--- ⎪ ⎪⎝⎭⎝⎭. …………11分 ∴l 与t 之间的函数解析式为23915424l t t =++或23915.424l t t =--- ………11分 由于MN CE ∥,要使以点M N C E 、、、为顶点的四边形是平行四边形,只需3MN CE ==,………………………………………………………………12分 当23915424t t ++=3时,解得1233t t =-=,;…………………13分 当239153424t t ---=时,解得34 3.t t ==-…………………………………14分即当3t =-或3或3-时,以点M N C E 、、、为顶点的四边形是平行四边形. ……14分。

2013年广州市中考数学试卷及答案(解析版)

2013年广州市中考数学试卷及答案(解析版)

2013年广州市初中毕业生学业考试第一部分 选择题(共30分)一、选择题:1.(2013年广州市)比0大的数是( )A -1 B12-C 0D 1分析:比0的大的数一定是正数,结合选项即可得出答案 解:4个选项中只有D 选项大于0.故选D .点评:本题考查了有理数的大小比较,注意掌握大于0的数一定是正数 2.(2013年广州市)图1所示的几何体的主视图是( )(A )(B)(C)(D)正面分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解:从几何体的正面看可得图形.故选:A .点评:从几何体的正面看可得图形. 故选:A ..3.(2013年广州市)在6×6方格中,将图2—①中的图形N 平移后位置如图2—②所示,则图形N 的平移方法中,正确的是( )A 向下移动1格B 向上移动1格C 向上移动2格D 向下移动2格 分析:根据题意,结合图形,由平移的概念求解解:观察图形可知:从图1到图2,可以将图形N 向下移动2格.故选D .点评:本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后图形的位置.4.(2013年广州市)计算:()23m n 的结果是( )A 6m n B 62m n C 52m n D 32m n分析:根据幂的乘方的性质和积的乘方的性质进行计算即可解:(m 3n )2=m 6n 2.故选:B .点评:此题考查了幂的乘方,积的乘方,理清指数的变化是解题的关键,是一道基础题 5、(2013年广州市)为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a 的值是( )A 全面调查,26B 全面调查,24C 抽样调查,26D 抽样调查,24分析:根据关键语句“先随机抽取50名中学生进行该问卷调查,”可得该调查方式是抽样调查,调查的样本容量为50,故6+10+6+a+4=50,解即可解:该调查方式是抽样调查,a=50﹣6﹣10﹣6﹣4=24,故选:D .点评:此题主要考查了条形统计图,以及抽样调查,关键是读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据6.(2013年广州市)已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( )A 1032x y y x +=⎧⎨=+⎩B 1032x y y x +=⎧⎨=-⎩C 1032x y x y +=⎧⎨=+⎩D 1032x y x y +=⎧⎨=-⎩分析:根据等量关系为:两数x ,y 之和是10;x 比y 的3倍大2,列出方程组即可 解:根据题意列方程组,得:.故选:C .点评:此题主要考查了由实际问题抽象出二元一次方程组,要注意抓住题目中的一些关键性词语“x 比y 的3倍大2”,找出等量关系,列出方程组是解题关键.7.(2013年广州市)实数a 在数轴上的位置如图4所示,则2.5a -=()A 2.5a -B 2.5a -C 2.5a +D 2.5a --分析:首先观察数轴,可得a <2.5,然后由绝对值的性质,可得|a ﹣2.5|=﹣(a ﹣2.5),则可求得答案 解:如图可得:a <2.5,即a ﹣2.5<0,则|a ﹣2.5|=﹣(a ﹣2.5)=2.5﹣a .故选B .点评:此题考查了利用数轴比较实数的大小及绝对值的定义等知识.此题比较简单,注意数轴上的任意两个数,右边的数总比左边的数大.8.(2013年广州市)若代数式1xx -有意义,则实数x 的取值范围是( ) A 1x ≠ B 0x ≥ C 0x > D 01x x ≥≠且分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围 解:根据题意得:,解得:x≥0且x ≠1.故选D .点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数9.(2013年广州市)若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( ) A 没有实数根 B 有两个相等的实数根 C 有两个不相等的实数根 D 无法判断分析:根据已知不等式求出k 的范围,进而判断出根的判别式的值的正负,即可得到方程解的情况 解:∵5k+20<0,即k <﹣4,∴△=16+4k <0,则方程没有实数根.故选A点评:此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根. 10.(2013年广州市)如图5,四边形ABCD 是梯形,AD∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )A23 B 22 C 114 D 554分析:先判断DA=DC ,过点D 作DE ∥AB ,交AC 于点F ,交BC 于点E ,由等腰三角形的性质,可得点F 是AC 中点,继而可得EF 是△CAB 的中位线,继而得出EF 、DF 的长度,在Rt △ADF 中求出AF ,然后得出AC ,tanB 的值即可计算. 解:∵CA 是∠BCD 的平分线,∴∠DCA=∠ACB ,又∵AD ∥BC ,∴∠ACB=∠CAD ,∴∠DAC=∠DCA ,∴DA=DC , 过点D 作DE ∥AB ,交AC 于点F ,交BC 于点E , ∵AB ⊥AC ,∴DE ⊥AC (等腰三角形三线合一的性质),∴点F 是AC 中点,∴AF=CF ,∴EF 是△CAB 的中位线,∴EF=AB=2,∵==1,∴EF=DF=2, 在Rt △ADF 中,AF==4,则AC=2AF=8,tanB===2.故选B .点评:本题考查了梯形的知识、等腰三角形的判定与性质、三角形的中位线定理,解答本题的关键是作出辅助线,判断点F 是AC 中点,难度较大.第二部分 非选择题(共120分)二.填空题(本大题共6小题,每小题3分,满分18分)11. (2013年广州市)点P 在线段AB 的垂直平分线上,PA =7,则PB =______________ . 分析:根据线段垂直平分线的性质得出PA=PB ,代入即可求出答案解:∵点P 在线段AB 的垂直平分线上,PA=7,∴PB=PA=7,故答案为:7.点评:本题考查了对线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等12. (2013年广州市)广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为___________ .分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解:将5250000用科学记数法表示为:5.25×106.故答案为:5.25×106.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13. (2013年广州市)分解因式:=+xy x 2_______________. 分析:直接提取公因式x 即可解:x 2+xy=x (x+y )点评:本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解14. (2013年广州市)一次函数,1)2(++=x m y 若y随x 的增大而增大,则m 的取值范围是___________ .分析:根据图象的增减性来确定(m+2)的取值范围,从而求解解:∵一次函数y=(m+2)x+1,若y 随x 的增大而增大,∴m+2>0, 解得,m >﹣2.故答案是:m >﹣2.点评:本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <0;函数值y 随x 的CBC'DA A'B'O增大而增大⇔k >0.15. (2013年广州市)如图6,ABC Rt ∆的斜边AB =16, ABC Rt ∆绕点O 顺时针旋转后得到C B A Rt '''∆,则C B A Rt '''∆的斜边B A ''上的中线D C '的长度为_____________ .分析:根据旋转的性质得到A ′B ′=AB=16,然后根据直角三角形斜边上的中线性质求解即可 解:∵Rt △ABC 绕点O 顺时针旋转后得到Rt △A ′B ′C ′, ∴A ′B ′=AB=16,∵C ′D 为Rt △A ′B ′C ′的斜边A ′B ′上的中线, ∴C ′D=A ′B ′=8.故答案为8.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了直角三角形斜边上的中线性质. 16. (2013年广州市)如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________.分析:过点P 作PD ⊥x 轴于点D ,连接OP ,先由垂径定理求出OD 的长,再根据勾股定理求出PD 的长,故可得出答案.解:过点P 作PD ⊥x 轴于点D ,连接OP , ∵A (6,0),PD ⊥OA ,∴OD=OA=3, 在Rt △OPD 中, ∵OP=,OD=3, ∴PD===2,∴P (3,2). 故答案为:(3,2).点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分9分)(2013年广州市)解方程:09102=+-x x .分析:分解因式后得出两个一元一次方程,求出方程的解即可解:x 2﹣10x+9=0, (x ﹣1)(x ﹣9)=0, x ﹣1=0,x ﹣9=0, x 1=1,x 2=9.点评:本题啊扣除了解一元一次方程和解一元二次方程的应用,关键是能把解一元二次方程转化成解一元一次方程. 18.(本小题满分9分)(2013年广州市)如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB =5,AO =4,求BD 的长.分析:根据菱形的性质得出AC ⊥BD ,再利用勾股定理求出BO 的长,即可得出答案解:∵四边形ABCD 是菱形,对角线AC 与BD 相交于O , ∴AC ⊥BD ,DO=BO , ∵AB=5,AO=4, ∴BO==3, ∴BD=2BO=2×3=6.点评:此题主要考查了菱形的性质以及勾股定理,根据已知得出BO 的长是解题关键19.(本小题满分10分)(2013年广州市)先化简,再求值:yx y y x x ---22,其中.321,321-=+=y x 分析:分母不变,分子相减,化简后再代入求值 解:原式===x+y=1+2+1﹣2=2.点评:本题考查了分式的化简求值和二次根式的加减,会因式分解是解题的 题的关键 20.(本小题满分10分)(2013年广州市)已知四边形ABCD 是平行四边形(如图9),把△ABD 沿对角线BD 翻折180°得到△A ˊBD.(1) 利用尺规作出△A ˊBD .(要求保留作图痕迹,不写作法); (2)设D A ˊ 与BC 交于点E ,求证:△BA ˊE ≌△DCE . 分析:(1)首先作∠A ′BD=∠ABD ,然后以B 为圆心,AB 长为半径画弧,交BA ′于点A ′,连接BA ′,DA ′,即可作出△A ′BD .(2)由四边形ABCD 是平行四边形与折叠的性质,易证得:∠BA ′D=∠C ,A ′B=CD ,然后由AAS 即可判定:△BA ′E ≌△DCE . 解:(1)如图:①作∠A ′BD=∠ABD ,②以B 为圆心,AB 长为半径画弧,交BA ′于点A ′,③连接BA ′,DA ′, 则△A ′BD 即为所求;(2)∵四边形ABCD 是平行四边形, ∴AB=CD ,∠BAD=∠C ,由折叠的性质可得:∠BA ′D=∠BAD ,A ′B=AB , ∴∠BA ′D=∠C ,A ′B=CD , 在△BA ′E 和△DCE 中,,∴△BA ′E ≌△DCE (AAS ).点评:此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用. 21.(本小题满分12分)(2013年广州市)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当m ≥10时为A 级,当5≤m <10时为B 级,当0≤m <5时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 (1) 求样本数据中为A 级的频率;(2) 试估计1000个18~35岁的青年人中“日均发微博条数”为A 级的人数;(3) 从样本数据为C 级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.分析:(1)由抽取30个符合年龄条件的青年人中A级的有15人,即可求得样本数据中为A级的频率;(2)根据题意得:1000个18~35岁的青年人中“日均发微博条数”为A级的人数为:1000×=500;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽得2个人的“日均发微博条数”都是3的情况,再利用概率公式求解即可求得答案.解:(1)∵抽取30个符合年龄条件的青年人中A级的有15人,∴样本数据中为A级的频率为:=;(2)1000个18~35岁的青年人中“日均发微博条数”为A级的人数为:1000×=500;(3)C级的有:0,2,3,3四人,画树状图得:∵共有12种等可能的结果,抽得2个人的“日均发微博条数”都是3的有2种情况,∴抽得2个人的“日均发微博条数”都是3的概率为:=.点评:本题考查的是用列表法或画树状图法求概率、频数与频率的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比22.(本小题满分12分)(2013年广州市)如图10,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里. (1)求船P到海岸线MN的距离(精确到0.1海里);(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.分析:(1)过点P作PE⊥AB于点E,在Rt△APE中解出PE即可;(2)在Rt△BPF中,求出BP,分别计算出两艘船需要的时间,即可作出判断解:(1)过点P作PE⊥AB于点E,由题意得,∠PAE=32°,AP=30海里,在Rt△APE中,PE=APsin∠PAE=APsin32°≈15.9海里;(2)在Rt△PBE中,PE=15.9海里,∠PBE=55°,则BP=≈19.4,A船需要的时间为:=1.5小时,B船需要的时间为:=1.3小时,故B船先到达.点评:本题考查了解直角三角形的应用,解答本题的关键是理解仰角的定义,能利用三角函数值计算有关线段,难度一般.23.(本小题满分12分)(2013年广州市)如图11,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数kyx(x>0,k≠0)的图像经过线段BC的中点D.(1)求k的值;(2)若点P(x,y)在该反比例函数的图像上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围。

2013年广东中考数学真题卷含答案解析

2013年广东中考数学真题卷含答案解析

2013年广东省初中毕业生学业考试数学试题(含答案全解全析)(满分120分时间100分钟)第Ⅰ卷(选择题,共30分)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.2的相反数是()A.-12B.12C.-2D.22.下列四个几何体中,俯视图为四边形的是()3.据报道,2013年第一季度,广东省实现地区生产总值约1260000000000元,用科学记数法表示为()A.0.126×1012元B.1.26×1012元C.1.26×1011元D.12.6×1011元4.已知实数a、b,若a>b,则下列结论正确的是()A.a-5<b-5B.2+a<2+bC.a3<b3D.3a>3b5.数据1、2、5、3、5、3、3的中位数是()A.1B.2C.3D.56.如图,AC∥DF,AB∥EF,点D、E分别在AB、AC上,若∠2=50°,则∠1的大小是()A.30°B.40°C.50°D.60°7.下列等式正确的是()A.(-1)-3=1B.(-4)0=1C.(-2)2×(-2)3=-26D.(-5)4÷(-5)2=-528.不等式5x-1>2x+5的解集在数轴上表示正确的是()轴对称图形的是()9.下列图形中,不是..的图象大致是()10.已知k1<0<k2,则函数y=k1x-1和y=k2x第Ⅱ卷(非选择题,共90分)二、填空题(本大题6小题,每小题4分,共24分)11.分解因式:x2-9=.12.若实数a、b满足|a+2|+√b-4=0,则a2=.b13.一个六边形的内角和是.14.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sin A=.15.如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E'位置,则四边形ACE'E的形状是.16.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是(结果保留π).17.解方程组{x=y+1,①2x+y=8.②18.从三个代数式:①a2-2ab+b2,②3a-3b,③a2-b2中任意选择两个代数式构造成分式,然后进行化简,并求当a=6,b=3时该分式的值.19.如图,已知▱ABCD.(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE,交CD于点F,求证:△AFD≌△EFC.20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如图所示的不完整的统计图表.(1)请你补全下列样本人数分布表和条形统计图;(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.样本人数分布表类别人数百分比排球36%乒乓球1428%羽毛球15篮球20%足球816%合计100%21.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?22.如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1S2+S3(用“>”“=”“<”填空);(2)写出图中的三对相似三角形,并选择其中一对进行证明.五、解答题(三)(本大题3小题,每小题9分,共27分)23.已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P 点不存在,请说明理由.24.如图,☉O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是☉O的切线.25.有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=4√3.将这副直角三角板按如图①所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上,现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图②,当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC=度;(2)如图③,在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x的取值范围.图①图②图③答案全解全析:1.C 由a的相反数是-a得2的相反数是-2,故选C.2.D 由三视图定义知,只有D项中几何体的俯视图是四边形,故选D.3.B 1 260 000 000 000=1.26×1012.4.D ∵a>b,∴a-5>b-5,故A项错误;∵a>b,∴2+a>2+b,故B项错误;∵a>b,3>0,∴a3>b3,故C项错误;∵a>b,3>0,∴3a>3b,故D项正确.故选D.5.C 先将数据按从小到大的顺序排列:1、2、3、3、3、5、5,所以这7个数的中位数为3,故选C.6.C ∵AC∥DF,∴∠1=∠A.∵AB∥EF,∴∠2=∠A,∴∠1=∠2,∵∠2=50°,∴∠1=50°,故选C.7.B A项,(-1)-3=1(-1)3=-1.B项,(-4)0=1.C项,(-2)2×(-2)3=(-2)5=-25.D项,(-5)4÷(-5)2=(-5)2=52.故选B.8.A ∵5x-1>2x+5,∴3x>6,∴x>2.故选A.9.C 由轴对称图形的定义知选C.10.A ∵k1<0,∴直线y=k1x-1经过第二、三、四象限;∵k2>0,∴双曲线y=k2x在第一、三象限.故选A.11.答案(x+3)(x-3)解析由平方差公式得x2-9=x2-32=(x+3)(x-3).12.答案 1解析∵|a+2|+√b-4=0,∴a+2=0,b-4=0,∴a=-2,b=4,∴a 2b =(-2)24=1.13.答案720°解析∵n边形的内角和为180°·(n-2),∴六边形的内角和为180°×(6-2)=720°.14.答案45解析∵AB=3,BC=4,∠ABC=90°,∴AC=√AB2+BC2=√32+42=5,∴sin A=45.15.答案平行四边形解析∵DE为Rt△ABC的中位线,∴DE 12CA.∵△BDE绕着CB的中点D逆时针旋转180°得到△CDE',∴E、D、E'三点共线,DE=DE',∴EE' AC.∴四边形ACE'E的形状是平行四边形.评析此题考查三角形的中位线的性质及平行四边形的判定.16.答案3π8解析 如图所示,Rt△ABC 中,AB=AC=1,∴∠ABC=45°,Rt△BDE 中,∠DBE+∠BDE=90°,∠ABC+∠DBE+∠BDE=135°, ∴S 阴影部分=135·π·12360=38π.评析 此题考查图形中阴影部分的面积的计算. 17.解析 把①代入②,得2(y+1)+y=8,(1分) 2y+2+y=8,(2分) 3y=6,y=2.(3分)把y=2代入①,得x=3,(4分) ∴原方程组的解是{x =3,y =2.(5分)18.解析 若选择a 2-2ab+b 2和3a-3b 两个代数式构造成分式, 则a 2-2ab+b 23a -3b(1分)=(a -b )23(a -b )=a -b 3,(4分)当a=6,b=3时,原式=a -b 3=6-33=1.(5分)或3a -3ba 2-2ab+b 2=3(a -b )(a -b )2=3a -b ,(4分)当a=6,b=3时,原式=3a -b =36-3=1.(5分) 19.解析 (1)作图正确(实线、虚线均可).结论:线段CE 即为所求.(2分)(考生没有结论,但作图正确给满分)(2)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠CEF=∠DAF,(3分)∵CE=BC,∴AD=CE,(4分)又∵∠CFE=∠DFA,∴△AFD≌△EFC.(5分)评析此题主要考查学生尺规作图能力和演绎推理能力.20.解析(1)30%;10;50.(3分)(5分) (2)920×30%=276(人).(7分)答:估计七年级学生最喜爱羽毛球运动项目的人数为276人.(8分)21.解析(1)设捐款增长率为x,(1分)根据题意,得10 000(1+x)2=12 100,(2分)解得x1=0.1,x2=-2.1(不合题意,舍去),(4分)∴x=0.1=10%.(5分)答:捐款增长率为10%.(6分)(2)12 100×(1+0.1)=13 310(元).(7分)答:第四天该单位能收到13 310元捐款.(8分)评析此题考查一元二次方程的应用.增长率或减少率的基本模型为a(1±x)2=b(a>0,b>0).要注意解的取舍:增长率为负数要舍去,减少率超过100%要舍去.22.解析(1)=.(2分)(2)△BFC∽△CED,△EDC∽△CBD,△BFC∽△DCB.(5分)(只要能够正确写出三对相似三角形都相应给分,写出全等的一对三角形也一样给分,每写正确一对给1分)选择△EDC∽△CBD来证明.(用其他相似三角形来进行证明,只要证明过程正确相应给分)证明:∵四边形ABCD是矩形,∴∠DCB=90°,∴∠DBC+∠BDC=90°.∵四边形BDEF是矩形,∴∠CDE+∠BDC=90°,∴∠DBC=∠CDE.(7分)∵∠DCB=∠CED,∴△EDC∽△CBD.(8分)23.解析(1)∵二次函数图象经过坐标原点O(0,0),∴m2-1=0,∴m=±1.(1分)∴二次函数的解析式为y=x2-2x或y=x2+2x.(3分)(2)当m=2时,y=x2-2mx+m2-1=x2-4x+3=(x-2)2-1.(4分)∴D(2,-1),(5分)当x=0时,y=3,∴C(0,3).(6分)(3)存在.(7分)根据“两点之间,线段最短”知,当点P 是直线CD 与x 轴的交点时,PC+PD=CD 最短. 设直线CD 的解析式为y=kx+b(k 、b 为常数,k≠0),则有{2k +b =-1,b =3,∴{k =-2,b =3.(8分) ∴y=-2x+3,当y=0时,x=32,∴P (32,0).(9分)评析 第(1)问考查二次函数解析式的求法;第(2)问考查顶点坐标及抛物线与y 轴交点坐标的计算.第(3)问考查“线段和最短”.24.解析 (1)证明:∵BD=BA,∴∠BDA=∠BAD,(1分)∵∠BCA=∠BDA,∴∠BCA=∠BAD.(2分)(2)在Rt△ABC 中,AC=√AB 2+BC 2=√122+52=13,(3分)∵BE⊥DC,∴∠DEB=90°.∵∠ABC=90°,∴∠DEB=∠ABC,∵∠BAC=∠BDC,∴△DEB∽△ABC,(4分)∴DE AB =BD AC ,∴DE 12=1213,∴DE=14413.(6分)(3)证明:连结BO,∵∠ABC=90°,∴AC 是☉O 的直径,∴∠ADC=90°,∴∠BAD+∠BCD=180°,∴∠BCO+∠BCD=180°.∵OB=OC,∴∠BCO=∠CBO,∴∠CBO+∠BCD=180°,∴OB∥DE,∴∠DEB+∠EBO=180°.(8分)∵∠DEB=90°,∴∠OBE=90°,∴EB⊥OB.(9分)∵OB 是☉O 的半径,∴BE 是☉O 的切线.评析 第(1)问考查圆、三角形中线段与角的关系转化;第(2)问考查圆中的相似三角形的判定及性质;第(3)问考查切线的判定,方法是“连半径,证垂直”.25.解析 (1)15.(2分)(2)如题图③,在Rt△AFC 中,AC=6,∠ACF=30°,cos 30°=AC FC ,(3分) ∴√32=6FC ,∴FC=4√3.(5分)(3)(i)当x=0时,y=12DF 2=12×42=8.当0<x<2时,如图a.设BC 分别与DE 、FE 的交点为M 、N,图a作NG⊥BA 于点G,设GF=a,在Rt△GFN 中,∠GFN=60°,∴NG=√3a,在Rt△GBN 中,∠GBN=45°,∴NG=GB,∴√3a=a+x,∴a=√3-1=√3+12x. ∵BF=x,DF=4,∴BD=4+x.在Rt△BDM 中,∠DBM=45°, ∴DM=4+x.∴y=S 四边形DFNM =S △BDM -S △BFN =12BD·DM -12BF·NG =12(x+4)(x+4)-12x [√3(√3+1)2x] =-√3+14x 2+4x+8.(6分)(ii)∴当0≤x<2时,y=-√3+14x 2+4x+8. 当2≤x<6-2√3时,如图b,图b设BC 与FE 的交点为N,作NG⊥BA 于点G,设GF=a,在Rt△GFN 中,∠GFN=60°,∴NG=√3a. 在Rt△GBN 中,∠GBN=45°,∴NG=GB.∴√3a=a+x,∴a=√3-1=√3+12x, ∴y=S 四边形ACNF =S △ABC -S △BFN =12AB·AC -12BF·NG=12×6×6-12x [√3(√3+1)2x]=-3+√34x 2+18.(7分)(iii)当6-2√3≤x<6时,如图c,设AC 与FE 的交点为P,图c在Rt△AFP 中,∠AFP=60°,∴AP=√3(6-x),∴y=S △APF =12AF·AP=12·(6-x)·√3(6-x)=√32(x-6)2,(8分)当x=6时,重叠部分的面积为0,即y=0.∴当6-2√3≤x≤6时,y=√32(x-6)2.综上所述,当0≤x<2时,y=-√3-14x 2+4x+8;当2≤x<6-2√3时,y=-3-√34x 2+18;当6-2√3≤x≤6时,y=√32(x-6)2.(9分)评析 此题考查学生综合运用三角形、锐角三角函数等知识分析问题,解决问题的能力.要求学生在三角形平移变换的过程中,理清变化的量、不变的量,恰当分类讨论,合理选用面积的计算方法,化动为静,化抽象为直观.。

2013广州中考数学黄埔一模及答案

2013广州中考数学黄埔一模及答案

2013年黄埔区初中毕业生综合测试--黄立宗已排版数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分.考试时间120分钟. 注意事项:1.答卷前,考生务必在答题卡第1面.第3面上用黑色字迹的钢笔或签字笔填写自己的考生号.姓名;填写座位号,再用2B 铅笔把对应号码的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔.圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将答题卡上交,本试卷自留.第一部分 选择题(共30分)一.选择题(每小题3分,共30分)1.实数-1,-3,0,2四个数中,最小的是( * ). (A )0 (B )-1 (C )2 (D )-3 2.如下左几何体的主视图是( * ).3.下列计算正确的是( * ).(A )ab b a 22=+ (B )1)-1--=a a ((C )523a a a =⋅ (D )326a a a =÷ 4.已知四组线段的长分别如下,以各组线段为边,能组成三角形的是( * ).(A)l ,2,3 (B)2,4,8 (C)3,7,9 (D)4,4,95.已知点A (-1,0)和点B (1,2),将线段AB 平移至A ’B ’,点A ’与点A 对应.若点A ’的坐标 为(1,-3),则点B ’的坐标为( * ).(A )(3,0) (B )(3,-1) (C )(3,0) (D )(-1,3)6.今年我国发现的首例H7N9禽流感确诊病例在上海某医院隔离观察,要掌握他在一周内的体温是否稳定, 则医生需了解这位病人7天体温的( * ).(A )众数 (B )方差 (C )平均数 (D )频数 7.某校为了了解九年级学生体育测试成绩情况, 以九年(1)班学生的体育测试成绩为样本,按 A B C D ,,,四个等级进行统计,并将统计结 果绘制如右两幅统计图,由图中所给信息知,扇形统计图中C 等级所在的扇形圆心角的度数为( * ). (A)72° (B )68° (C) 64° (D )60°第7题第2题8. 平面内,下列命题为真命题是( * ).A.经过半径外端点的直线是圆的切线B.经过半径的直线是圆的切线C.垂直于半径的直线是圆的切线D.经过半径的外端并且垂直于这条半径的直线是圆的切线 9.点M 、点N 均在双曲线xky =(k 为常数)上,点M 坐标为(2,3),点N 的坐标为(-6,m )则m =( * ). (A )-1 (B )-2 (C )3 (D )1 10.若实数a 、b 在数轴上的位置如图所示,A (1,1y )、B (2,2y )是函数b ax y +=图象上的两点,则( * ).(A )112<<y y (B )121y y << (C )121<<y y (D )21y 1<<y第二部分 非选择题(共120分)二.填空题(本大题共6题,每小题3分,满分18分) 11.化简3-= * .12有意义,则实数x 的取值范围是 * . 13.若0122=+-a a ,则3422+-a a = * .14.如图,在平行四边形ABCD 中,CE AB ⊥,E 为垂足.如果125A =∠,则BCE =∠ * °. 15. 如图,已知等边三角形ABC 的边长为1,按图中所示的规律,用5个这样的三角形镶嵌而成的四边形的周长是 * ,用n 个这样的三角形镶嵌而成的四边形的周长为 * .16. 已知点A 、B 、C 的坐标分别为(2,0)、(0,0)、(-1,3),则sin ∠ACB = * .三.解答题17.(本小题满分9分) 解不等式组:⎩⎨⎧-<-<-12532x x第10题CAB第15题┅┅A E BCD第14题18.(本小题满分9分)如图,在□ABCD 中, AE =CF .证明:BE =DF19.(本小题满分10分)已知a 、b 分别是方程0432=--x x 的两个实数根,求221()a ba b a b b a-÷-+-的值.20.(本小题满分10分)某班从2名男生、3名女生中随机抽取五月校园志愿者.求下列事件的概率: (1)抽取1名学生,恰好是女生; (2)抽取2名学生,恰好一男一女.第18题21.(本小题满分12分)已知抛物线)6(2)42+-++=m x m x y ((m 为常数,)8-≠m )与x 轴有两个不同的交点A 、B ,点A 、点B 关于直线1=x 对称,抛物线的顶点为C .(1)并此抛物线的解析式;(2)求点A 、B 、C 的坐标.22.(本小题满分12分)为方便市民低碳生活绿色出行,市政府计划改造如图所示的人行天桥:天桥的高是10米,原坡面倾斜角∠CAB =45°.(1)若新坡面倾斜角∠CDB =28°,则新坡面的长CD 长是多少?(精确到0.1米)(2)若新坡角顶点D 前留3米的人行道,要使离原坡角顶点A 处10米的建筑物不拆除,新坡面的倾斜角∠CDB 度数的最小值是多少 ?(精确到1°)23.(本小题满分12分)某市大力建设廉租房,2010年投资了24.5亿元人民币建了廉租房124万平方米.之后廉租房的总面积每年递增,且增长率相等,三年共建廉租房220万平方米. (1)用科学记数法表示:24.5亿= 万; (2)求廉租房建筑面积的年增长率;(3)若其中后两年的建房成本按每年10.7%的增长率上涨,该市后两年建廉租房共需投入约多少亿元人民币?(精确到0.1亿元)第22题 建筑物24.(本小题满分14分)如图(1),△ADE 可由△CAB 旋转而成,点B 的对应点 是E ,点 A 的对应点是D ,点B 、C 的坐标分别为(3,0),(1,4).(1)写出点E 的坐标,并利用尺规作图直接在图(1)中作出旋转中心Q (保留作图痕迹,不写作法); (2)求直线AE 对应的函数关系式;(3)将△ADE 沿垂直于x 轴的线段PT 折叠,(点T 在x 轴上,点P 在AE 上,P 与A 、E 不重合)如图(2),使点A 落在x 轴上,点A 的对应点为点F .设点T 的坐标为(x ,0),△PTF 与△ADE 重叠部分的面积为S .① 试求出S 与x 之间的函数关系式(包括自变量x 的取值范围); ② 当x 为何值时,S 的面积最大?最大值是多少?③ 是否存在这样的点T ,使得△PEF 为直角三角形?若存在,直接写出点T 的坐标;若不存在,请说有理由.y xEDCB A O第24题(1)25.(本小题满分14分)如图,AB 为⊙O 的直径,AB =4,P 为AB 上一点,过点P 作⊙O 的弦CD ,设∠BCD=m ∠ACD .(1) 已知221+=m m ,求m 的值,及∠BCD 、∠ACD 的度数各是多少? (2) 在(1)的条件下,且21=PB AP ,求弦CD 的长; (3) 当323-2+=PB AP 时,是否存在正实数m , 使弦CD 最短?如果存在,求出m 的值,如果不存在,说明理由.第25题2013年黄埔区初中毕业生综合测试数学参考答案及评分标准一.选择题(每小题3分,共30分) 1--10 DCCCBBADA二.填空题(本大题共6题,每小题3分,满分18分)11. 3;12. 3≥x ;13. 1;14. 26;15. 7,)1(3-+n ;16. 55 说明:第15题第1空1分,第1空2分 三.解答题 17.⎩⎨⎧-<-<-)()(2121532x x由(1)得4<x ……3分 由(2)得3>x ……6分 所以这个不等式组的解为43<<x ……9分 18.方法一:∵四边形ABCD 是平行四边形,∴ AD=BC ,且AD ∥BC .(平行四边形对边平行且相等) ……2分 又∵AE =CF ,(已知)∴ED=BF ,且ED ∥BF . ……4分 ∴四边形EDFB 是平行四边形(对边平行且相等的四边形是平行四边形) ……6分 ∴EB =DF (平行四边形对边相等) ……9分方法二:∵四边形ABCD 是平行四边形,∴ AB =CD ,∠A =∠C .(平行四边形对边相等,对角相等) ……2分 在△AEB 和△CFD 中, ∵AE =CF ,(已知) AB =CD ,∠A =∠C∴△AEB ≌△CFD (SAS ) ……6分 ∴EB =DF (全等三角形对应边相等) ……9分 19. 化简:221()a b a b a b b a -÷-+-=bab b a b a b a a -⨯+--+]1))(([ ……3分=ba b b a a b b b a a +-=+--+1)()(- ……7分∵a 、b 分别是方程0432=--x x 的两个实数根, ∴a +b =3 ……9分 ∴221()a b a b a b b a -÷-+-=31- ……10分第18题20.(1)抽取1名学生,恰好是女生的概率是52……2分 (2)分别用男1、男2、女1、女2、女3表示这五位同学,从中任意抽取2名,所有可能出现的结果有:(男1、男2),(男1、女1),(男1、女2),(男1、女3),(男2、女1),(男2、女2),(男2、女3),(女1、女2),(女1、女3),(女2、女3),共10种,它们出现的可能性相同, ……7分所有结果中,满足抽取2名学生,恰好一男一女(记为事件A )的结果共有6种, 所以P (A )=53106=. ……10分21.(1)∵抛物线)6(2)42+-++=m x m x y ((m 为常数,)8-≠m )的对称轴为24+=m x -……2分 而抛物线与x 轴有两个不同的交点A 、B ,点A 、点B 关于直线1=x 对称, ∴124=+m -,6-=m ∴所求抛物经的解析式为x x y 2-2= ……6分 (2)当0=y 时,02-2=x x ,解得01=x ,22=x当0=x 时,1)1(2-22--==x x x y ,解得01=x ,22=x∴点A 、B 、C 的坐标.分别为(0,0),(2,0),(1,-1) ……12分22.(1)∵CDCBCDB =∠sin ∴3.21sin2810sin ≈︒=∠=CDB CB CD ……5分答:新坡面的长为21.3米(2)∵∠CAB =45°,∴AB =CB =10, ……6分又建筑物离原坡角顶点A 处10米,即建筑物离天桥底点B 的距离为20米,……7分 当DB 取最大值时,CDB ∠达最小值,要使建筑物不被拆掉DB 的最大值为20-3=17 ……8分 又1710tan ==∠DB CB CDB ,︒≈∠31CDB ……12分 答,若新坡角顶点D 前留3米的人行道,要使离原坡角顶点A 处10米的建筑物不拆除,新坡面的倾斜角的最小值是31°第22题23. (1)用科学记数法表示:24.5亿= 5102.45⨯ 万; ……2分 (2)设该市后两年廉租房建筑面积的年增长率为x ,根据题意,得:220)1(1242=+x ……5分整理,得:024-62312=+x x , 解之,得:2122431431312⨯⨯⨯+±-=x ,∴0.331=x ,-2.332=x (舍去), ……7分答:该市后两年廉租房建筑面积的年增长率为33%.(3)2010年的建房成本为每平方米≈⨯1241000024.51976(元)2011年的建房成本为每平方米≈+)(10.7%119762187(元) 2012年的建房成本为每平方米≈+)(10.7%121872421(元) 2011年建房410.33124124124)1124≈⨯==-+x x ((万平方米) 2012年建房5541-124-220=(万平方米)后两年共投资22282213315589667552421412187=+=⨯+⨯(万元),即约22.3亿元……12分 答:后两年共需约投入22.3亿元人民币建廉租房..24.(1)E (5,2), ……1分图略,Q ……3分(2)设直线AE 对应的函数关系式为b kx y +=∵A (1,0)、E (5,2)∴⎩⎨⎧=+=+250b k b k ,解得⎪⎪⎩⎪⎪⎨⎧==21-21b k ∴直线AE 对应的函数关系式为21-21x y =……5分 (3)①当点F 在AD 之间时,重叠部分是△PTF .则2)1(41)2121)(1(212121S -=--=⋅=⋅=∆x x x PT AT PT TF PEF 当F 与D 重合时,AT =21AD=2,∴31≤<x .当点F 在点D 的右边时,重叠部分是梯形PTDH . ∵△FDH ∽△ADEyxEDCB A O第24题(1)∴21==AD ED DF HD ,HD =21DF =3]5)12[21-=--x x (则TD HD PT PTDH ⋅+=)(21S 梯形=)5()32121(21x x x -⋅-+-=43521143-2-+x x 当T 与D 重合时,点F 的坐标是(9,0),∴53≤<x . 综上,得⎪⎪⎩⎪⎪⎨⎧≤<-+≤<+-=5343521143-31412141S 22x x x x x x ……9分说明:分段函数对一段2分,没化简不扣分②⎪⎪⎩⎪⎪⎨⎧≤<+≤<=5334311-43-311-41S 22x x x x )()(i)由当31≤<x 时,S 随x 的增大而增大,得3=x 时,S 有取大值,且最大值是1;ii)当53≤<x 时,311=x ,S 有取大值,且最大值是34S =; 综上i)、ii)所求为当311=x ,S 有取大值,且最大值是34S = ……11分③存在,T 的坐标为(27,0)和(25,0) ……14分。

2013年中考数学专题复习第18讲:等腰三角形与直角三角形(含详细参考答案)

2013年中考数学专题复习第18讲:等腰三角形与直角三角形(含详细参考答案)

2013年中考数学专题复习第十八讲等腰三角形与直角三角形【基础知识回顾】一、等腰三角形1、定义:有两边的三角形叫做等腰三角形,其中的三角形叫做等边三角形2、等腰三角形的性质:⑴等腰三角形的两腰等腰三角形的两个底角简称为⑵等腰三角形的顶角平分线、互相重合,简称为⑶等腰三角形是轴对称图形,它有条对称轴,是3、等腰三角形的判定:⑴定义法:有两边相等的三角形是等腰三角形⑵有两相等的三角形是等腰三角形,简称【名师提醒:1、等腰三角形的性质还有:等腰三角形两腰上的相等,两腰上的相等,两底角的平分线也相等2、同为等腰三角形腰和底角的特殊性,所以在题目中往常出现对边和角的讨论问题,讨论边时应注意保证讨论角时应主要底角只被围角】4、等边三角形的性质:⑴等边三角形的每个内角都都等于⑵等边三角形也是对称图形,它有条对称轴1、等边三角形的判定:⑴有三个角相等的三角形是等边三角形⑵有一个角是度的三角形是等边三角形【名师提醒:1、等边三角形具备等腰三角形的所有性质2、有一个角是直角的等腰三角形是三角形】二、线段的垂直平分线和角的平分线1、线段垂直平分线定义:一条线段且这条线段的直线叫做线段的垂直平分线2、性质:线段垂直平分线上的点到得距离相等3、判定:到一条线段两端点距离相等的点在角的平分线:1、性质:角平分线上的点到得距离相等2、判定:到角两边距离相等的【名师提醒:1、线段的垂直平分可以看作是的点的集合,角平分线可以看作是的点的2、要移用作一条已知线段的垂直平分线和已知角的角平分线】三、直角三角形:1、勾股定理和它的逆定理:勾股定理:若一个直角三角形的两直角边为a、b斜边为c则a、b、c满足逆定理:若一个三角形的三边a、b、c满足则这个三角形是直角三角形【名师提醒:1、勾股定理在几何证明和计算中应用非常广泛,要注意和二次根式的结合2、勾股定理的逆定理是判断一个三角形是直角三角形或证明线段垂直的主要依据,3、勾股数,列举常见的勾股数三组、、】2、直角三角形的性质:除勾股定理外,直角三角形还有如下性质:⑴直角三角形两锐角⑵直角三角形斜边的中线等于⑶在直角三角形中如果有一个锐角是300,那么它就对边是边的一半3、直角三角形的判定:除勾股定理的逆定理外,直角三角形还有如下判定方法:定义法:⑴有一个角是的三角形是直角三角形⑵有两个角是的三角形是直角三角形⑶如果一个三角形一边上的中线等于这边的这个三角形是直角三角形【名师提醒:直角三角形的有关性质在边形,中均有广泛应用,要注意这几条性质的熟练掌握和灵活运用】【重点考点例析】考点一:等腰三角形性质的运用例1 (2012•襄阳)在等腰△ABC中,∠A=30°,AB=8,则AB边上的高CD的长是.分析:此题需先根据题意画出当AB=AC时,当AB=BC时,当AC=BC时的图象,然后根据等腰三角形的性质和解直角三角形,分别进行计算即可.解:(1)当AB=AC时,∵∠A=30°,∴CD=12AC=12×8=4;(2)当AB=BC时,则∠A=∠ACB=30°,∴∠ACD=60°,∴∠BCD=30°,∴CD=cos∠BCD•BC=cos30°×8=43;(3)当AC=BC时,则AD=4,∴CD=tan∠A•AD=tan30°•4=433;故答案为:433或43或4。

2013年中考数学专题复习第27讲(30-27):相似图形(含详细参考答案)

2013年中考数学专题复习第27讲(30-27):相似图形(含详细参考答案)

2013年中考数学专题复习第二十七讲相似图形【基础知识回顾】一、成比例线段:1、线段的比:如果选用同一长度的两条线段AB,CD的长度分别为m、n则这两条线段的比就是它们的比,即:AB CD=2、比例线段:四条线段a、b、c、d如果ab=那么四条线段叫做同比例线段,简称3、比例的基本性质:ab=cd<=>4、平行线分线段成比例定理:将平行线截两条直线【名师提醒:1、表示两条线段的比时,必须示用相同的,在用了相同的前提下,两条线段的比值与用的无关即比值没有2、全分割:点C把线段AB分成两条,线段AC和BC(AC>BC)如果那么称线段AB被点C全分割AC与AB的比叫全比,即L ACAB= ≈ 】二、相似三角形:1、定义:如果两个三角形的各角对应各边对应那么这两个三角形相似2、性质:⑴相似三角形的对应角对应边⑵相似三角形对应点的比、对应角平分线的比、对应的比都等于⑶相似三角形周长的比等于面积的比等于1、判定:⑴基本定理:平行于三角形一边的直线和其它两边或两线相交,三角形与原三角形相似⑵两边对应且夹角的两三角形相似⑶两角的两三角形相似⑷三组对应边的比的两三角形相似【名师提醒:1、全等是相似比为的特殊相似2、根据相似三角形的性质的特质和判定,要证四条线段的比相等相等一般要先证判定方法中最常用的是三组对应边成比例的两三角形相似多用在点三角形中】三、相似多边形:1、定义:各角对应各边对应的两个多边形叫做相似多边形2、性质:⑴相似多边形对应角对应边⑵相似多边形周长的比等于面积的比等于【名师提醒:相似多边形没有专门的判定方法,判定两多边形相似多用在矩形中,一般用定义进行判定】一、位似:1、定义:如果两个图形不仅是而且每组对应点所在直线都经过那么这样的两个图形叫做位似图形,这个点叫做这时相似比又称为2、性质:位似图形上任意一点到位似中心的距离之比都等于【名师提醒:1、位似图形一定是图形,但反之不成立,利用位似变换可以将一个图形放大或2、在平面直角坐标系中,如果位似是以原点为位似中心,相似比位r,那么位似图形对应点的坐标的比等于或】【典型例题解析】考点一:比例线段例1 (2012•福州)如图,已知△ABC,AB=AC=1,∠A=36°,∠ABC的平分线BD交AC于点D,则AD的长是,cosA的值是.(结果保留根号)考点:黄金分割;相似三角形的判定与性质;锐角三角函数的定义.分析:可以证明△ABC∽△BDC,设AD=x,根据相似三角形的对应边的比相等,即可列出方程,求得x的值;过点D作DE⊥AB于点E,则E为AB中点,由余弦定义可求出cosA的值.解答:解:∵△ABC,AB=AC=1,∠A=36°,∴∠ABC=∠ACB=1802A-∠=72°.∵BD是∠ABC的平分线,∴∠ABD=∠DBC=12∠ABC=36°.∴∠A=∠DBC=36°,又∵∠C=∠C∴△ABC∽△BDC,∴ACBC=BCCD,设AD=x,则BD=BC=x.则11xx x =-,解得:x=152+(舍去)或152-.故x=152-.如右图,过点D作DE⊥AB于点E,∵AD=BD ,∴E 为AB 中点,即AE=12AB=12. 在Rt △AED 中,cosA=12512AEAD =-=514+. 故答案是:152-;514+. 点评:△ABC 、△BCD 均为黄金三角形,利用相似关系可以求出线段之间的数量关系;在求cosA时,注意构造直角三角形,从而可以利用三角函数定义求解. 对应训练2.(2012•孝感)如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于点D ,若AC=2,则AD 的长是( ) A .512- B .512+ C .51- D .51+考点:黄金分割.分析:根据两角对应相等,判定两个三角形相似.再用相似三角形对应边的比相等进行计算求出BD 的长.解答:解:∵∠A=∠DBC=36°,∠C 公共, ∴△ABC ∽△BDC ,且AD=BD=BC.设BD=x,则BC=x,CD=2-x.由于BC AC CD BC=,∴22xx x=-.整理得:x2+2x-4=0,解方程得:x=-1±5,∵x为正数,∴x=-1+5.故选C.点评:本题考查的是相似三角形的判定与性质,先用两角对应相等判定两个三角形相似,再用相似三角形的性质对应边的比相等进行计算求出BD的长.考点二:相似三角形的性质及其应用例2 (2012•重庆)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则ABC 与△DEF的面积之比为.考点:相似三角形的性质.专题:探究型.分析:先根据相似三角形的性质求出其相似比,再根据面积的比等于相似比的平方进行解答即可.解答:解:∵△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,∴三角形的相似比是3:1,∴△ABC与△DEF的面积之比为9:1.故答案为:9:1.点评:本题考查的是相似三角形的性质,即相似三角形(多边形)的周长的比等于相似比;相似三角形的面积的比等于相似比的平方.对应训练2.(2012•沈阳)已知△ABC∽△A′B′C′,相似比为3:4,△ABC的周长为6,则△A′B′C′的周长为.考点:相似三角形的性质.专题:应用题.分析:根据相似三角形周长的比等于相似比计算即可得解.解答:解:∵△ABC∽△A′B′C′,∴△ABC的周长:△A′B′C′的周长=3:4,∵△ABC的周长为6,∴△A′B′C′的周长=6×43=8.故答案为:8.点评:本题主要考查了相似三角形周长的比等于相似比的性质,是基础题,熟记性质是解题的关键.考点三:相似三角形的判定方法及其应用例3 (2012•徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=14 BC.图中相似三角形共有()A.1对B.2对C.3对D.4对考点:相似三角形的判定;正方形的性质.分析:首先由四边形ABCD是正方形,得出∠D=∠C=90°,AD=DC=CB,又由DE=CE,FC= 14BC,证出△ADE∽△ECF,然后根据相似三角形的对应边成比例与相似三角形的对应角相等,证明出△AEF∽△ADE,则可得△AEF∽△ADE∽△ECF,进而可得出结论.解答:解:图中相似三角形共有3对.理由如下:∵四边形ABCD是正方形,∴∠D=∠C=90°,AD=DC=CB,∵DE=CE,FC=14 BC,∴DE:CF=AD:EC=2:1,∴△ADE∽△ECF,∴AE:EF=AD:EC,∠DAE=∠CEF,∴AE:EF=AD:DE,即AD:AE=DE:EF,∵∠DAE+∠AED=90°,∴∠CEF+∠AED=90°,∴∠AEF=90°,∴∠D=∠AEF,∴△ADE∽△AEF,∴△AEF∽△ADE∽△ECF,即△ADE∽△ECF,△ADE∽△AEF,△AEF∽△ECF.故选C.点评:此题考查了相似三角形的判定与性质,以及正方形的性质.此题难度适中,解题的关键是证明△ECF∽△ADE,在此基础上可证△AEF∽△ADE.例4 16.(2012•资阳)(1)如图(1),正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD:GC:EB的结果(不必写计算过程);(2)将图(1)中的正方形AEGH绕点A旋转一定角度,如图(2),求HD:GC:EB;(3)把图(2)中的正方形都换成矩形,如图(3),且已知DA:AB=HA:AE=m:n,此时HD:GC:EB的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;等腰直角三角形;正方形的性质.分析:(1)首先连接AG,由正方形AEGH的顶点E、H在正方形ABCD的边上,易证得∠GAE=∠CAB=45°,AE=AH,AB=AD,即A,G,C共线,继而可得HD=BE,GC=2BE,即可求得HD:GC:EB的值;(2)连接AG、AC,由△ADC和△AHG都是等腰直角三角形,易证得△DAH∽△CAG与△DAH≌△BAE,利用相似三角形的对应边成比例与正方形的性质,即可求得HD:GC:EB的值;(3)由矩形AEGH的顶点E、H在矩形ABCD的边上,由DA:AB=HA:AE=m:n,易证得△ADC∽△AHG,△DAH∽△CAG,△ADH∽△ABE,利用相似三角形的对应边成比例与勾股定理即可求得HD:GC:EB的值.解答:解:(1)连接AG,∵正方形AEGH的顶点E、H在正方形ABCD的边上,∴∠GAE=∠CAB=45°,AE=AH,AB=AD,∴A ,G ,C 共线,AB-AE=AD-AH , ∴HD=BE , ∵AG=sin 45AE =2AE ,AC=sin 45AB=2AB ,∴GC=AC-AG=2AB-2AE=2(AB-AE )=2BE , ∴HD :GC :EB=1:2:1。

2013年广州市中考数学试题及答案

2013年广州市中考数学试题及答案

2013年广州市初中毕业生学业测试第一部分 选择题(共30分)一、选择题:1、比0大的数是( ) A -1 B 12-C 0D 1 2、图1所示的几何体的主视图是( )(A )(B)(C)(D)正面3、在6×6方格中,将图2—①中的图形N 平移后位置如图2—②所示,则图形N 的平移方法中,正确的是( )A 向下移动1格B 向上移动1格C 向上移动2格D 向下移动2格 4、计算:()23m n的结果是( )A 6m nB 62m nC 52m nD 32m n5、为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a 的值是( ) A 全面调查,26 B 全面调查,24 C 抽样调查,26 D 抽样调查,246、已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( )A 1032x y y x +=⎧⎨=+⎩B 1032x y y x +=⎧⎨=-⎩C 1032x y x y +=⎧⎨=+⎩D 1032x y x y +=⎧⎨=-⎩7、实数a 在数轴上的位置如图4所示,则 2.5a -=( )图4aA 2.5a -B 2.5a -C 2.5a +D 2.5a -- 8x有意义,则实数x 的取值范围是( ) A 1x ≠ B 0x ≥ C 0x > D 01x x ≥≠且9、若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( ) A 没有实数根 B 有两个相等的实数根 C 有两个不相等的实数根 D 无法判断10、如图5,四边形ABCD 是梯形,AD ∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )A 2322114 D 554图5AB第二部分 非选择题(共120分)二.填空题(本大题共6小题,每小题3分,满分18分)11.点P 在线段AB 的垂直平分线上,P A =7,则PB =______________ .12.广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为___________ . 13.分解因式:=+xy x 2_______________.14.一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ .15.如图6,ABC Rt ∆的斜边AB =16, ABC Rt ∆绕点O 顺时针旋转后得到C B A Rt '''∆,则C B A Rt '''∆的斜边B A ''上的中线D C '的长度为_____________ . 16.如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ和x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________. 三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分9分) 解方程:09102=+-x x .18.(本小题满分9分)如图8,四边形ABCD 是菱形,对角线AC 和BD 相交于O,AB =5,AO =4,求BD 的长.A O图7y x( 6, 0 )PC BC'D AA'B'OODB图819.(本小题满分10分)先化简,再求值:yx y y x x ---22,其中.321,321-=+=y x 20.(本小题满分10分)已知四边形ABCD 是平行四边形(如图9),把△ABD 沿对角线BD 翻折180°得到△A ˊBD.(1) 利用尺规作出△A ˊBD .(要求保留作图痕迹,不写作法);(2)设D A ˊ 和BC 交于点E ,求证:△BA ˊE ≌△DCE .21.(本小题满分12分)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当m ≥10时为A 级,当5≤m <10时为B 级,当0≤m <5时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下: 11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 (1) 求样本数据中为A 级的频率;(2) 试估计1000个18~35岁的青年人中“日均发微博条数”为A 级的人数;(3) 从样本数据为C 级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率. 22.(本小题满分12分)如图10, 在东西方向的海岸线MN 上有A 、B 两艘船,均收到已触礁搁浅的船P 的求救信号,已知船P 在船A 的北偏东58°方向,船P 在船B 的北偏西35°方向,AP 的距离为30海里. (1) 求船P 到海岸线MN 的距离(精确到0.1海里);(2) 若船A 、船B 分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P 处. 23.(本小题满分12分) 如图11,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(2,2),反比例函数ky x=(x >0,k ≠0)的图像经过线段BC 的中点D . (1)求k 的值;(2)若点P(x,y)在该反比例函数的图像上运动(不和点D 重合),过点P 作PR ⊥y 轴于点R,作PQ ⊥BC 所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的分析式并写出x 的取值范围。

2013年全国中考数学《一次函数》专项训练(含答案)

2013年全国中考数学《一次函数》专项训练(含答案)

《一次函数》中考题专项训练【陈老师的话】“一次函数”是中考必考内容之一,题型多样,形式灵活,综合性、就用性强,一般以选择题、填空题、解答题及综合题的形式考查一次函数的图象和性质。

并且在课程标准指导下,一次函数在中考中的命题趋势一般体现以下特点:1、考查函数自变量的取值范围,如2009年广州第7题,2011年广州第9题;2、画一次函数(正比例函数)的图象,并掌握其性质,如2009年佛山第14题;3、根据已知条件,得用待定系数法求一次函数解析式,如2012年湖南湘潭第21题;4、考查一次函数与方程(组)、不等式的关系,如2012年贵州贵阳第7题;5、正确利用一次函数解决实际问题,如2012年广州市第23题。

《广州市初中毕业生学习考试指导书》的目标要求也正对应着以上的几个特点,而且同学们在刚结束的期末考试第24题(内容为一次函数的应用)丢分过多,所以我们需要加强一些综合性题的训练,提高分析问题和解决问题的能力。

费话少说,同学们,开练吧!!【主要知识点】1、正比例函数的定义:形如y=kx(k≠0的)的函数是正比例函数。

2、一次函数的定义:形如y=kx+b(k≠0)的函数是一次函数。

3、正比例函数与一次函数的关系:当b=0时,一次函数变为正比例函数,也就是说正比例函数是一次函数的特殊情形。

4、一次函数y=kx+b的图象及性质:【真题特训】 一、变量与函数1、(2012四川成都,第2题,3分)函数12y x =- 中,自变量x 的取值范围是( ) A .2x > B . 2x < C .2x ≠ D . 2x ≠-2、(2009年广州市,第7题,3分)下列函数中,自变量x 的取值范围是x ≥3的是( )A 、31-=x y B 、31-=x y C 、3-=x y D 、3-=x y3、(2011广东广州市,9,3分)当实数x 的取值使得x -2有意义时,函数y =4x +1中y 的取值范围是( ).A .y ≥-7B .y ≥9C .y >9D .y ≤94、(2012浙江省绍兴,14,5分)小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家.父亲在报亭看了10分报纸后,用15分钟返回家.则表示父亲、母亲离家距离与时间之间的关系的图象分别是 ___ (只需填写序号).5、(2012四川省资阳市,7,3分)如图所示的球形容器上连接着两根导管,容器中盛满了不溶于水的比空气重的某种气体,现在要用向容器中注水的方法来排净里面的气体.水从左导管匀速地注入,气体从右导管排出,那么,容器内剩余气体的体积与注水时间的函数关系的大致图象是[来源:%@中~︿教*网]二、一次函数的图象6、(2012浙江省温州市,4,4分)一次函数24y x =-+的图象与y 轴的交点坐标是( ) A . (0,4) B .(4,0) C .(2,0) D .(0,2)7、(2009 年佛山市,14题)画出一次函数24y x =-+的图象,并回答:当函数值为正时,x 的取值范围是 .三、一次函数的性质8、(2012贵州贵阳,13,4分)在正比例函数y =-3mx 中,函数y 的值随x 的值的增大而增大,则P (m ,5)在第 象限.9、(2008年广州市,第6题,3分)一次函数34y x =-的图象不经过( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限四、一次函数与方程(组)、不等式10、(2012浙江省湖州市,15,4分)一次函数b kx +=y (k .b 为常数,且k ≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx +b =4的解为 。

2013年广东省广州市中考数学试卷及答案(word解析版)

2013年广东省广州市中考数学试卷及答案(word解析版)

2013年广州市初中毕业生学业考试第一部分选择题(共30分)一、选择题:1.(2013年广州市)比0大的数是()A -1 B12C 0D 1分析:比0的大的数一定是正数,结合选项即可得出答案解:4个选项中只有D选项大于0.故选D.点评:本题考查了有理数的大小比较,注意掌握大于0的数一定是正数2.(2013年广州市)图1所示的几何体的主视图是()(A)(B) (C) (D)正面分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解:从几何体的正面看可得图形.故选:A.点评:从几何体的正面看可得图形.故选:A..3.(2013年广州市)在6×6方格中,将图2—①中的图形N平移后位置如图2—②所示,则图形N的平移方法中,正确的是()A 向下移动1格B 向上移动1格C 向上移动2格D 向下移动2格分析:根据题意,结合图形,由平移的概念求解解:观察图形可知:从图1到图2,可以将图形N 向下移动2格.故选D .点评:本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后图形的位置.4.(2013年广州市)计算:()23m n 的结果是( )A 6m nB 62m nC 52m nD 32m n分析:根据幂的乘方的性质和积的乘方的性质进行计算即可解:(m 3n )2=m 6n 2.故选:B .点评:此题考查了幂的乘方,积的乘方,理清指数的变化是解题的关键,是一道基础题5、(2013年广州市)为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a 的值是( )A 全面调查,26B 全面调查,24C 抽样调查,26D 抽样调查,24分析:根据关键语句“先随机抽取50名中学生进行该问卷调查,”可得该调查方式是抽样调查,调查的样本容量为50,故6+10+6+a+4=50,解即可解:该调查方式是抽样调查,a=50﹣6﹣10﹣6﹣4=24,故选:D .点评:此题主要考查了条形统计图,以及抽样调查,关键是读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据6.(2013年广州市)已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( )A 1032x y y x +=⎧⎨=+⎩B 1032x y y x +=⎧⎨=-⎩C 1032x y x y +=⎧⎨=+⎩D 1032x y x y +=⎧⎨=-⎩分析:根据等量关系为:两数x ,y 之和是10;x 比y 的3倍大2,列出方程组即可 解:根据题意列方程组,得:.故选:C .点评:此题主要考查了由实际问题抽象出二元一次方程组,要注意抓住题目中的一些关键性词语“x 比y 的3倍大2”,找出等量关系,列出方程组是解题关键.图37.(2013年广州市)实数a 在数轴上的位置如图4所示,则 2.5a -=( )A 2.5a -B 2.5a -C 2.5a +D 2.5a --分析:首先观察数轴,可得a <2.5,然后由绝对值的性质,可得|a ﹣2.5|=﹣(a ﹣2.5),则可求得答案解:如图可得:a <2.5,即a ﹣2.5<0,则|a ﹣2.5|=﹣(a ﹣2.5)=2.5﹣a .故选B .点评:此题考查了利用数轴比较实数的大小及绝对值的定义等知识.此题比较简单,注意数轴上的任意两个数,右边的数总比左边的数大.8.(2013年广州市)若代数式1x x -有意义,则实数x 的取值范围是( ) A 1x ≠ B 0x ≥ C 0x > D 01x x ≥≠且分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围 解:根据题意得:,解得:x ≥0且x ≠1.故选D .点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数9.(2013年广州市)若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( )A 没有实数根B 有两个相等的实数根C 有两个不相等的实数根D 无法判断分析:根据已知不等式求出k 的范围,进而判断出根的判别式的值的正负,即可得到方程解的情况解:∵5k+20<0,即k <﹣4,∴△=16+4k <0,则方程没有实数根.故选A点评:此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.10.(2013年广州市)如图5,四边形ABCD 是梯形,AD ∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )A 23B 22C 114D 554分析:先判断DA=DC ,过点D 作DE ∥AB ,交AC 于点F ,交BC 于点E ,由等腰三角形的性质,可得点F 是AC 中点,继而可得EF 是△CAB 的中位线,继而得出EF 、DF 的长度,在Rt △ADF 中求出AF ,然后得出AC ,tanB 的值即可计算.解:∵CA 是∠BCD 的平分线,∴∠DCA=∠ACB ,又∵AD ∥BC ,∴∠ACB=∠CAD ,∴∠DAC=∠DCA ,∴DA=DC ,过点D 作DE ∥AB ,交AC 于点F ,交BC 于点E ,∵AB ⊥AC ,∴DE ⊥AC (等腰三角形三线合一的性质),∴点F 是AC 中点,∴AF=CF ,∴EF 是△CAB 的中位线,∴EF=AB=2,∵==1,∴EF=DF=2, 在Rt △ADF 中,AF==4,则AC=2AF=8,tanB===2.故选B .点评:本题考查了梯形的知识、等腰三角形的判定与性质、三角形的中位线定理,解答本题的关键是作出辅助线,判断点F 是AC 中点,难度较大.第二部分 非选择题(共120分)二.填空题(本大题共6小题,每小题3分,满分18分)11. (2013年广州市)点P 在线段AB 的垂直平分线上,P A =7,则PB =______________ .分析:根据线段垂直平分线的性质得出PA=PB ,代入即可求出答案解:∵点P 在线段AB 的垂直平分线上,PA=7,∴PB=PA=7,故答案为:7.点评:本题考查了对线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等12. (2013年广州市)广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为___________ . 分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解:将5250000用科学记数法表示为:5.25×106.故答案为:5.25×106.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13. (2013年广州市)分解因式:=+xy x 2_______________.分析:直接提取公因式x 即可解:x 2+xy=x (x+y )点评:本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解14. (2013年广州市)一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ . 分析:根据图象的增减性来确定(m+2)的取值范围,从而求解解:∵一次函数y=(m+2)x+1,若y 随x 的增大而增大,∴m+2>0,解得,m >﹣2.故答案是:m >﹣2.点评:本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <0;函数值y 随x 的增大而增大⇔k >0.15. (2013年广州市)如图6,ABC Rt ∆的斜边AB =16, ABC Rt ∆绕点O 顺时针旋转后得到C B A Rt '''∆,则C B A Rt '''∆的斜边B A ''上的中线D C '的长度为_____________ .分析:根据旋转的性质得到A ′B ′=AB=16,然后根据直角三角形斜边上的中线性质求解即可解:∵Rt △ABC 绕点O 顺时针旋转后得到Rt △A ′B ′C ′,∴A ′B ′=AB=16,∵C ′D 为Rt △A ′B ′C ′的斜边A ′B ′上的中线,∴C ′D=A ′B ′=8.故答案为8.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了直角三角形斜边上的中线性质.16. (2013年广州市)如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________.分析:过点P 作PD ⊥x 轴于点D ,连接OP ,先由垂径定理求出OD 的长,再根据勾股定理求出PD 的长,故可得出答案.解:过点P 作PD ⊥x 轴于点D ,连接OP ,∵A (6,0),PD ⊥OA , C B C'D A A'O∴OD=OA=3,在Rt △OPD 中,∵OP=,OD=3, ∴PD===2,∴P (3,2).故答案为:(3,2).点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分9分)(2013年广州市)解方程:09102=+-x x .分析:分解因式后得出两个一元一次方程,求出方程的解即可解:x 2﹣10x+9=0,(x ﹣1)(x ﹣9)=0,x ﹣1=0,x ﹣9=0,x 1=1,x 2=9.点评:本题啊扣除了解一元一次方程和解一元二次方程的应用,关键是能把解一元二次方程转化成解一元一次方程.18.(本小题满分9分)(2013年广州市)如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB =5,AO =4,求BD 的长.分析:根据菱形的性质得出AC ⊥BD ,再利用勾股定理求出BO 的长,即可得出答案解:∵四边形ABCD 是菱形,对角线AC 与BD 相交于O ,∴AC ⊥BD ,DO=BO ,∵AB=5,AO=4,∴BO==3, ∴BD=2BO=2×3=6.点评:此题主要考查了菱形的性质以及勾股定理,根据已知得出BO 的长是解题关键19.(本小题满分10分)(2013年广州市)先化简,再求值:y x y y x x ---22,其中.321,321-=+=y x 分析:分母不变,分子相减,化简后再代入求值解:原式===x+y=1+2+1﹣2=2.点评:本题考查了分式的化简求值和二次根式的加减,会因式分解是解题的 题的关键20.(本小题满分10分)(2013年广州市)已知四边形ABCD 是平行四边形(如图9),把△ABD 沿对角线BD 翻折180°得到△A ˊBD.(1) 利用尺规作出△A ˊBD .(要求保留作图痕迹,不写作法);(2)设D A ˊ 与BC 交于点E ,求证:△BA ˊE ≌△DCE .分析:(1)首先作∠A′BD=∠ABD,然后以B为圆心,AB长为半径画弧,交BA′于点A′,连接BA′,DA′,即可作出△A′BD.(2)由四边形ABCD是平行四边形与折叠的性质,易证得:∠BA′D=∠C,A′B=CD,然后由AAS即可判定:△BA′E≌△DCE.解:(1)如图:①作∠A′BD=∠ABD,②以B为圆心,AB长为半径画弧,交BA′于点A′,③连接BA′,DA′,则△A′BD即为所求;(2)∵四边形ABCD是平行四边形,∴AB=CD,∠BAD=∠C,由折叠的性质可得:∠BA′D=∠BAD,A′B=AB,∴∠BA′D=∠C,A′B=CD,在△BA′E和△DCE中,,∴△BA′E≌△DCE(AAS).点评:此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.21.(本小题满分12分)(2013年广州市)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 82 8 10 17 6 13 7 5 7 312 10 7 11 3 6 8 14 15 12(1)求样本数据中为A级的频率;(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数;(3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率. 分析:(1)由抽取30个符合年龄条件的青年人中A级的有15人,即可求得样本数据中为A级的频率;(2)根据题意得:1000个18~35岁的青年人中“日均发微博条数”为A级的人数为:1000×=500;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽得2个人的“日均发微博条数”都是3的情况,再利用概率公式求解即可求得答案.解:(1)∵抽取30个符合年龄条件的青年人中A级的有15人,∴样本数据中为A级的频率为:=;(2)1000个18~35岁的青年人中“日均发微博条数”为A级的人数为:1000×=500;(3)C级的有:0,2,3,3四人,画树状图得:∵共有12种等可能的结果,抽得2个人的“日均发微博条数”都是3的有2种情况,∴抽得2个人的“日均发微博条数”都是3的概率为:=.点评:本题考查的是用列表法或画树状图法求概率、频数与频率的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比22.(本小题满分12分)(2013年广州市)如图10,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里.(1)求船P到海岸线MN的距离(精确到0.1海里);(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.分析:(1)过点P作PE⊥AB于点E,在Rt△APE中解出PE即可;(2)在Rt△BPF中,求出BP,分别计算出两艘船需要的时间,即可作出判断解:(1)过点P作PE⊥AB于点E,由题意得,∠PAE=32°,AP=30海里,在Rt△APE中,PE=APsin∠PAE=APsin32°≈15.9海里;(2)在Rt△PBE中,PE=15.9海里,∠PBE=55°,则BP=≈19.4,A船需要的时间为:=1.5小时,B船需要的时间为:=1.3小时,故B船先到达.点评:本题考查了解直角三角形的应用,解答本题的关键是理解仰角的定义,能利用三角函数值计算有关线段,难度一般.23.(本小题满分12分)(2013年广州市)如图11,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数kyx(x>0,k≠0)的图像经过线段BC的中点D.(1)求k的值;(2)若点P(x,y)在该反比例函数的图像上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围。

2013广州中考数学南沙一模及答案

2013广州中考数学南沙一模及答案

- 1 -2013 年南沙区初中毕业班综合测试(一)试卷--黄立宗已排版数 学本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试用时120分钟.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的.)1.给出四个数,1,0,-A .1-B .0C . 5.0D .2. 点A (2,-3)关于y 轴对称的点的坐标是(※)A .(2,3)B .(-2,3)C .(-2,-3)D .(-3,2)3. 已知地球上海洋面积约为316 000 000 km 2,316 000 000这个数用科学记数法可表示为(※) A .81016.3⨯ B .71016.3⨯ C .61016.3⨯ D .91016.3⨯4. 一个多边形的内角和是720°,这个多边形的边数是( ※ )A .4B .5C .6D .7 5.下列运算正确..的是(※)A .-2(x -1)=-2x -1B .-2(x -1)=-2x +1C .-2(x -1)=-2x -2D .-2(x -1)=-2x +2 6.已知内含的两圆半径为6和2,则两圆的圆心距可以是(※)A .8B . 4C .2D . 5 7.已知样本数据 2,1, 4,4,3,下列说法不正确...的是(※)A .平均数是2.8B .中位数是4C .众数是4D .极差是38.某反比例函数的图象经过点(-2,3),则此函数图象也经过点(※)A .(2,-3)B .(-3,-3)C .(2,3)D .(-4,6) 9.下列命题是真.命题的是(※) A .若2a =2b ,则a =b B .若x >y ,则2-3x >2-3yC .若2x =2,则x =.若3x =8,则x = ±2图1- 2 -第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.) 11.2-的倒数是 * * * 。

2013年中考数学专题复习第十七讲:三角形与全等三角形(含详细参考答案)

2013年中考数学专题复习第十七讲:三角形与全等三角形(含详细参考答案)

2013年中考数学专题复习第十七讲三角形与全等三角形【基础知识回顾】三角形的概念:1、由直线上的三条线段组成的图形叫三角形2、三角形的基本元素:三角形有条边个顶点个内角二、三角形的分类:按边可分为三角形和三角形,按角可分为三角形三角形三角形注意:等边三角形属于特殊的三角形,锐角三角形和钝角三角形有事称为三角形。

三、三角形的性质:1、三角形的内角和是三角形的任意一个外角和它不相得两个内角的和三角形的一个外角任意一个和它不相邻的内角2、三角形任意两边之和第三边,任意两边之差第三边3、三角形具有性注意:1、三角形的外角是指三角形一边和另一边的组成的角,三角形有个外角,三角形的外角和事,是其中各外角的和2、三角形三边关系定理是确定三条线段否构成三角形和判断限度间不等关系的主要依据。

四、三角形中的主要线段:1、角平分线:三角形的三条角平分线都在三角形部且交于一点,这些是三角形的心它到得距离相等2、中线:三角形的三条中线都在三角形部,且交于一点3、高线:不同三角形的三条高线位置不同,锐角三角形三条高都连三角形直角三角形有一条高线在部,另两条河重合,钝角三角形有一条高线在三角形部,两条在三角形部4、中位线:连接三角形任意两边的线段叫做三角形的中位线。

定理:三角形的中位线第三边且等于第三边的注意:三角形的平分线、中线、高线、中位线都是且都有条】五、全等三角形的概念和性质:1、的两个三角形叫做全等三角形2、性质:全等三角形的、分别相等,全等三角形的对应线段(角平分线、中线、高线)周长、面积分别对应注意:全等三角形的性质是证明线段、角等之间数量关系的最主要依据。

一、全等三角形的判定:1、一般三角形的全等判定方法:①边角边,简记为②角边角:简记为③角角边:简记为④边边边:简记为2、直角三角形的全等判定除可用一般三角形全等判定的所有方法以外,还可以用来判定注意:1、判定全等三角形的条件中,必须至少有一组对应相等,用SAS判定全等,切记角为两边的2、判定全等三角形的有关条件要特别注意对应两个字。

2013广州中考数学从化一模及答案

2013广州中考数学从化一模及答案

2013年从化市初三综合测试试卷数 学 黄立宗已排版第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.实数5的相反数是( * ) A.15 B. 15- C. -5 D. 5 2.据从化市政府网的数据显示,2013年春节黄金周期间,我市商贸经济交易活跃,实现消费额约59 600 000元,用科学记数法表示这个消费额为( * )A. 5.96710⨯ B. 59.6610⨯ C. 0.596710⨯ D. 5.96810⨯ 3. 下面的几何体中,主(正)视图为三角形的是( * )A. B. C. D. 4.下列计算正确的是( * )A. 549a a a +=B. 54a a a -=C. 5420⋅=a a aD.54a a a ÷=5.如果两圆的半径长分别为5和2,圆心距为3,那么这两个圆的位置关系是( * ) A. 相交 B. 内切 C. 外切 D. 内含6. 某校九年级(3)班“环保小组”的5位同学在一次活动中捡废弃塑料袋的个数分别为:4,6,8,16,16.这组数据的中位数、众数分别为( * )A. 16,16B. 10,16C. 8,8D. 8,167.关于x 的一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是( * ) A. 1k < B. 1k > C. 1k <- D.1k >- 8.直线2y x =-不经过( * )A .第一象限B .第二象限C .第三象限D .第四象限9. 若一圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是( * ) A. 40° B. 80° C. 120° D.150°10.如图,直线l 和双曲线kyx=(0k >)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足 分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积为1S 、△BOD 的 面积为2S 、△POE 的面积为3S ,则有( ) A.123S S S << B .S 1= S 2= S 3 C .123S S S => D .123S S S =<二、填空题(本题共6小题,每小题3分,共18分,请把正确答案填在试卷的空格上)11. 若函数23y x =-有意义,则x 的取值范围为 * . 12. .31962++-x x = * . 13. 若一个多边形的内角和为1080°,则这个多边形的边数是 * . 14.分解因式222a b ab -= * .15.某品牌手机经过三、四月份连续两次降价,每部售价由3 200元降到2 500元. 设平均每月降价的百分率为x ,根据题意列出的方程是 * .16.如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB 连续作旋转变换,依次得到三角形 (1)、(2)、(3)、(4)、…,那么第(7)个三角形的直角顶点的坐标是 * , 第(2013)的直角顶点的坐标是____* __..三、解答题(本题有9个小题, 共102分。

2013年广东省广州市中考数学试卷-答案

2013年广东省广州市中考数学试卷-答案

广东省广州市2013年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】4个选项中只有D 选项大于0.故选D .【提示】比0的大的数一定是正数,结合选项即可得出答案. 【考点】有理数的大小比较 2.【答案】A【解析】从几何体的正面看可得图形.故选:A .【提示】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【考点】三视图 故选:A . 3.【答案】D【解析】观察图形可知:从图1到图2,可以将图形N 向下移动2格.故选D . 【提示】根据题意,结合图形,由平移的概念求解. 【考点】平移的基本概念,平移规律 4.【答案】B【解析】3262()m n m n =.故选:B .【提示】根据幂的乘方的性质和积的乘方的性质进行计算即可. 【考点】幂的乘方,积的乘方 5.【答案】D【解析】该调查方式是抽样调查,506106424a =----=,故选:D .【提示】根据关键语句“先随机抽取50名中学生进行该问卷调查”,可得该调查方式是抽样调查,调查的样本容量为50,故6106450a ++++=,解即可. 【考点】条形统计图,抽样调查, 6.【答案】C【解析】根据题意列方程组,得:1032x y x y +=⎧⎨=+⎩.故选:C .【提示】根据等量关系为:两数x ,y 之和是10;x 比y 的3倍大2,列出方程组即可. 【考点】由实际问题抽象出二元一次方程组 7.【答案】B【解析】如图可得: 2.5a <,即 2.50a -<,则 2.5(| 2.5) 2.5|a a a -=--=-.故选B .【提示】首先观察数轴,可得 2.5a <,然后由绝对值的性质,可得 2.5(| 2.5) 2.5|a a a -=--=-,则可求得答案.【考点】利用数轴比较实数的大小,绝对值的定义 8.【答案】D【解析】根据题意得:010x x ≥⎧⎨-≠⎩,解得:01x x ≥≠且.故选D .【提示】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围. 【考点】分式的意义,二次根式 9.【答案】A【解析】∵5200k +<,即4k <-,∴1640k ∆=+<,则方程没有实数根.故选A .【提示】根据已知不等式求出k 的范围,进而判断出根的判别式的值的正负,即可得到方程解的情况. 【考点】一元二次方程根的判别式 10.【答案】B【解析】∵CA 是BCD ∠的平分线, ∴DCA ACB ∠=∠, 又∵AD BC ∥, ∴ACB CAD ∠=∠, ∴DAC DCA ∠=∠,∴DA DC =,过点D 作DE AB ∥,交AC 于点F ,交BC 于点E , ∵AB AC ⊥,∴DE AC ⊥(等腰三角形三线合一的性质), ∴点F 是AC 中点, ∴AF CF =,∴EF 是CAB △的中位线, ∴2EF AB ==,4 AB故答案为:(3,2).DA',则A BD'△即为所求;∴.(3)C 级的有:0,2,3,3,画树状图得:由题意得,32PAE ∠=︒,30AP =海里,在Rt APE △中,sin sin3215.9PE AP PAE AP =∠=︒≈海里;AE DE=42+=CD OC综上所述,存在四边形AODE 为梯形,这样的梯形有2个,此时4AE DE =g4a。

2013年广州市中考数学试卷附答案(求解答供)

2013年广州市中考数学试卷附答案(求解答供)

2013年广州市初中毕业生学业考试数学本试卷分选择和非选择题两部分,共三大题25小题,共4页,满分150分,考试时间120分钟注意事项:1.答卷前,考生务必在答题卡第一面,第三面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写座位号、再用2B铅笔把对应号码的标号涂黑.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题的答案标号涂黑:如需改动,用橡皮擦干净后,再选涂其他答案标号:不能打在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答题卡各题指定区域内的相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案:改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题:1.比0大的数是()A -1 B12- C 0 D 1答案:1.D1-1012<-<<2.图1所示的几何体的主视图是答案:2.A 主视图3.在6×6方格中,将图2-①中的图形N平移后位置如图2-②所示,则图形N的方法中,正确的是()A.向下移动1格B.向上移动1格C.向上移动2格D.向下移动2格答案: 3.D4.计算:32()m n 的结果是()A. 32()m nB. 62m n C. 52m n D. 32m n 答案: 4.B3262m m n =(n )5. 为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查方式是(),图3中的a 的值是() A 全面调查,26 B 全面调查,24 C 抽样调查,26 D 全面调查,24答案: 5.D6.已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是() A 1032x y y x +=⎧⎨=+⎩ B1032x y y x +=⎧⎨=-⎩ C 1032x y x y +=⎧⎨=+⎩ D 1032x y x y +=⎧⎨=-⎩ 答案: 6.C x+y=10;x=3y+2.7.实数a 在数轴上的位置如图4所示,则|a-2.5|=()答案: 7.B 0<a<2.5 |a-2.5|=2.5-a8.x 的取值范围是()A x ≠1B x ≥0C x>0D x ≥0且x ≠1 答案:8.D1x - x 01x ≥⎧⎨≠⎩9.若5k+20<0,则关于x 的一元二次方程240x x k +-=的根的情况是()A 没有实数根B 有两个相等的实数根是C 有两个不相等的实数根D 无法判断 答案: 9.A=16+4k 4(4)5205(4)k K K =++=+ 0⇒<10.如图5,四边形ABCD 是梯形,AD ∥BC ,CA 是BCD ∠的平分线且AB ⊥AC,AB=4,AD=6,则tanB=( )ABC114答案: 10.B解析:作DE ∥AB,DE AC ⊥,AD=DC ⇒M 为AC 的中点,角平分线+垂线⇒中线 ∴M 为DE 中点,ME=MD=2∴⇒第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分) 11.点P 在线段AB 的垂直平分线上,PA=7,则PB=________. 答案: 11.PB=712.广州某慈善机构全年共募集善款5250000元,将5250000用科学计数法表示为________. 答案: 12. 65.2510⨯13.分解因式:2x xy +=_________. 答案: 13.x (x+y )14.一次函数y=(m+2)x+1,若y 随x 的增大而增大,则m 的取值范围是_______. 答案: 14.m>-215.如图6,Rt △ABC 的斜边AB=16,Rt △ABC 绕点O 顺时针旋转后得到Rt A B C ''' 则Rt A B C ''' 的斜边A B ''上的中线C D '的长度为_________.答案: 15. 8 旋转不改变形状,依然是Rt16.如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,⊙P 与X 轴交于O,A两点,点A 的坐标为(6,0),⊙P P 的坐标为_______.答案: 16.P(3,2)三、解答题17.解方程:21090x x -+=. 答案: 17.21090(1)(9)0x=1x=9x x x x -+=⇒--=⇒或18.如图8,四边形ABCD 是菱形,对角线AC 与BD 相较于O ,AB=5,AO=4,求BD 的长.答案:18. 菱形ABCD 中,AC BD ⊥R t AOB 中,AB=5,AO=4⇒BO=3 DB 26BO ∴==19.先化解,再求值:22x y x y x y---,其中答案:19. 2222()()x y x y x y x y x y x y x y x y x y -+--===+----1x ==y 1=-112x y +=+-= 20.已知四边形ABCD 是平行四边形(如图9),把ABD 沿对角线BD 翻折180得到'A BD . (1)利用尺规作出'A BD .(要求保留作图很痕迹,不写作法); (2)设DA ’与BC 交于点E,求证:BA 'E DCE ≅.答案:(1)如图;(2)翻折得A'BD=ADB=DBC ∠∠∠ 'A BD ABD BDC ∠=∠=∠ A ''BE A BD DBC ∴∠=∠-∠A 'D ''E BDC A DB A BD DBC ∠=∠-∠=∠-∠ A ''BE A DE ∴∠=∠BA'=DC 'BA E DCE ∴≅21.在某项针对18~35岁的年轻人发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当m 10≥时为A 级,当5m 10≤≤时为B 级,当0m 5≤≤时为C 级,现随机抽取30个符合年龄条件的年轻人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:(1)求样本数据中为A 级的频率;(2)试估计1000个18~35岁的年轻人中“日均发微博条数” 为A 级的人数;(3)从样本数据为C 级的人中随机抽取2人,用列举法求丑得2个人的“日均发微博条数”都是3的概率。

2013广东广州中考数学真题及答案

2013广东广州中考数学真题及答案

2013年广州市初中毕业生学业考试数学本试卷共5页,分二部分,共25小题,满分150分。

考试用时120分钟。

第一部分选择题(共30分)一、选择题:1、比0大的数是()A -1 B12- C 0 D 12、图1所示的几何体的主视图是()(A)(B) (C) (D)正面3、在6×6方格中,将图2—①中的图形N平移后位置如图2—②所示,则图形N的平移方法中,正确的是()A 向下移动1格B 向上移动1格C 向上移动2格D 向下移动2格4、计算:()23m n的结果是()A 6m n B 62m n C 52m n D32m n5、为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是(),图3中的a的值是()A全面调查,26B全面调查,24C抽样调查,26D全面调查,246、已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是()A 1032x y y x +=⎧⎨=+⎩B 1032x y y x +=⎧⎨=-⎩C 1032x y x y +=⎧⎨=+⎩D 1032x y x y +=⎧⎨=-⎩7、实数a 在数轴上的位置如图4所示,则 2.5a -=( )图42.5aA 2.5a -B 2.5a -C 2.5a +D 2.5a -- 8、若代数式1xx -有意义,则实数x 的取值范围是( ) A 1x ≠ B 0x ≥ C 0x > D 01x x ≥≠且9、若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( ) A 没有实数根 B 有两个相等的实数根 C 有两个不相等的实数根 D 无法判断10、如图5,四边形ABCD 是梯形,AD ∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )A 23B 22 C114 D 554图5ADBC第二部分 非选择题(共120分)二.填空题(本大题共6小题,每小题3分,满分18分)11.点P 在线段AB 的垂直平分线上,P A =7,则PB =______________ .12.广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为___________ .13.分解因式:=+xy x 2_______________.14.一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ . 15.如图6,ABC Rt ∆的斜边AB =16, ABC Rt ∆绕点O 顺时针旋转后得到C B A Rt '''∆,则C B A Rt '''∆的斜边B A ''上的中线D C '的长度为_____________ .16.如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),C'图6ACB O A'B'A Oyx( 6, 0 )PP Θ的半径为13,则点P 的坐标为 ____________.三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分9分) 解方程:09102=+-x x .18.(本小题满分9分)如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB =5,AO =4,求BD 的长.CODAB图819.(本小题满分10分)先化简,再求值:yx y y x x ---22,其中.321,321-=+=y x20.(本小题满分10分)已知四边形ABCD 是平行四边形(如图9),把△ABD 沿对角线BD 翻折180°得到△A ˊBD.(1) 利用尺规作出△A ˊBD .(要求保留作图痕迹,不写作法);(2)设D A ˊ 与BC 交于点E ,求证:△BA ˊE ≌△DCE .AD图9BC21.(本小题满分12分)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当m ≥10时为A 级,当5≤m <10时为B 级,当0≤m <5时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 (1) 求样本数据中为A 级的频率;(2) 试估计1000个18~35岁的青年人中“日均发微博条数”为A 级的人数; (3) 从样本数据为C 级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.22.(本小题满分12分)如图10, 在东西方向的海岸线MN 上有A 、B 两艘船,均收到已触礁搁浅的船P 的求救信号,已知船P 在船A 的北偏东58°方向,船P 在船B 的北偏西35°方向,AP 的距离为30海里.(1) 求船P 到海岸线MN 的距离(精确到0.1海里); (2) 若船A 、船B 分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P 处.23.(本小题满分12分)如图11,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(2,2),反比例函数ky x(x >0,k ≠0)的图像经过线段BC 的中点D .(1)求k 的值;(2)若点P(x,y)在该反比例函数的图像上运动(不与点D 重合),过点P 作PR ⊥y 轴于点R,作PQ ⊥BC 所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的解析式并写出x 的取值范围。

2013年广东省中考数学试卷及答案

2013年广东省中考数学试卷及答案

2013年广东省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2013•广东)2的相反数是()A.B.C.﹣2 D.22.(3分)(2013•广东)下列四个几何体中,俯视图为四边形的是()A.B.C.D.3.(3分)(2013•广东)据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为()A.0.126×1012元B.1.26×1012元C.1.26×1011元D.12.6×1011元4.(3分)(2013•广东)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.D.3a>3b5.(3分)(2013•广东)数学1、2、5、3、5、3、3的中位数是()A.1B.2C.3D.56.(3分)(2013•广东)如图,AC∥DF,AB∥EF,点D、E分别在AB、AC上,若∠2=50°,则∠1的大小是()A.30°B.40°C.50°D.60°7.(3分)(2013•广东)下列等式正确的是()A.(﹣1)﹣3=1 B.(﹣4)0=1 C.(﹣2)2×(﹣2)3=﹣26D.(﹣5)4÷(﹣5)2=﹣528.(3分)(2013•广东)不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.9.(3分)(2013•广东)下列图形中,不是轴对称图形的是()A.B.C.D.10.(3分)(2013•广东)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上.11.(4分)(2013•平凉)分解因式:x2﹣9=_________.12.(4分)(2013•广东)若实数a、b满足|a+2|,则=_________.13.(4分)(2013•广东)一个六边形的内角和是_________.14.(4分)(2013•广东)在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sinA=_________.15.(4分)(2013•广东)如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是_________.16.(4分)(2013•广东)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是_________(结果保留π).三、解答题(一)(本大题3小题,每小题5分,共15分)17.(5分)(2013•广东)解方程组.18.(5分)(2013•广东)从三个代数式:①a2﹣2ab+b2,②3a﹣3b,③a2﹣b2中任意选两个代数式构造分式,然后进行化简,并求出当a=6,b=3时该分式的值.19.(5分)(2013•广东)如图,已知▱ABCD.(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE,交CD于点F,求证:△AFD≌△EFC.四、解答题(二)(本大题3小题,每小题8分,共24分)20.(8分)(2013•广东)某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如图和所示的不完整统计图表.(1)请你补全下列样本人数分布表和条形统计图(如图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.样本人数分布表类别人数百分比排球 3 6%乒乓球14 28%羽毛球15篮球20%足球8 16%合计100%21.(8分)(2013•广东)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?22.(8分)(2013•广东)如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1_________ S2+S3(用“>”、“=”、“<”填空);(2)写出如图中的三对相似三角形,并选择其中一对进行证明.四、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2013•广东)已知二次函数y=x2﹣2mx+m2﹣1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P 点的坐标;若P点不存在,请说明理由.24.(9分)(2013•广东)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.25.(9分)(2013•广东)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D到点A重合时,设EF与BC交于点M,则∠EMC= _________度;(2)如图3,当三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.2013年广东省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2013•广东)2的相反数是()A.B.C.﹣2 D.2考点:相反数.分析:根据相反数的概念解答即可.解答:解:2的相反数是﹣2,故选:C.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2013•广东)下列四个几何体中,俯视图为四边形的是()A.B.C.D.考点:简单几何体的三视图.分析:俯视图是从物体上面看,所得到的图形.解答:解:A、五棱柱的俯视图是五边形,故此选项错误;B 、三棱锥的俯视图是,故此选项错误;C、球的俯视图是圆,故此选项错误;D、正方体俯视图是正方形,故此选项正确;故选:D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.(3分)(2013•广东)据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为()A.0.126×1012元B.1.26×1012元C.1.26×1011元D.12.6×1011元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1260 000 000 000有13位,所以可以确定n=13﹣1=12.解答:解:1260 000 000 000=1.26×1012.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(2013•广东)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.D.3a>3b考点:不等式的性质.分析:以及等式的基本性质即可作出判断.解答:解:A、a>b,则a﹣5>b﹣5,选项错误;B、a>b,则2+a>2+b,选项错误;C、a>b,则>,选项错误;D、正确.故选D.点评:主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.(3分)(2013•广东)数学1、2、5、3、5、3、3的中位数是()A.1B.2C.3D.5考点:中位数.分析:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.解答:解:将数据从大到小排列为:1,2,3,3,3,5,5,则中位数是3.故选C.点评:本题考查了中位数的知识,属于基础题,掌握中位数的定义及计算方法是关键.6.(3分)(2013•广东)如图,AC∥DF,AB∥EF,点D、E分别在AB、AC上,若∠2=50°,则∠1的大小是()A.30°B.40°C.50°D.60°考点:平行线的性质.分析:由AC∥DF,AB∥EF,根据两直线平行,同位角相等,即可求得∠1=∠A=∠2=50°.解答:解:∵AB∥EF,∴∠A=∠2=50°,∵AC∥DF,∴∠1=∠A=50°.故选C.点评:此题考查了平行线的性质.此题比较简单,注意掌握两直线平行,同位角相等订立的应用,注意掌握数形结合思想的应用.7.(3分)(2013•广东)下列等式正确的是()A.(﹣1)﹣3=1 B.(﹣4)0=1 C.(﹣2)2×(﹣2)3=﹣26D.(﹣5)4÷(﹣5)2=﹣52考点:负整数指数幂;同底数幂的乘法;同底数幂的除法;零指数幂.分析:根据负整数指数幂:a﹣p=(a≠0,p为正整数),零指数幂:a0=1(a≠0),同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.同底数幂的除法法则:底数不变,指数相减分别进行计算,可得答案.解答:解:A、(﹣1)﹣3=﹣1,故此选项错误;B、(﹣4)0=1,故此选项正确;C、(﹣2)2×(﹣2)3=﹣25,故此选项错误;D、(﹣5)4÷(﹣5)2=52,故此选项错误;故选:B.点评:此题主要考查了负整数指数幂、零指数幂、同底数幂的乘除法,关键是熟练掌握各运算的计算法则,不要混淆.8.(3分)(2013•广东)不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.专题:存在型.分析:先求出不等式的解集,再在数轴上表示出来即可.解答:解:移项得,5x﹣2x>5+1,合并同类项得,3x>6,系数化为1得,x>2,在数轴上表示为:故选A.点评:本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.(3分)(2013•广东)下列图形中,不是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念对各选项分析判断即可得出答案.解答:解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选C.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.(3分)(2013•广东)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.分析:根据反比例函数的图象性质及正比例函数的图象性质可作出判断.解答:解:∵k1<0<k2,b=﹣1<0∴直线过二、三、四象限;双曲线位于一、三象限.故选A.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上.11.(4分)(2013•平凉)分解因式:x2﹣9=(x+3)(x﹣3).考点:因式分解-运用公式法.分析:本题中两个平方项的符号相反,直接运用平方差公式分解因式.解答:解:x2﹣9=(x+3)(x﹣3).点评:主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.12.(4分)(2013•广东)若实数a、b满足|a+2|,则=1.考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.解答:解:根据题意得:,解得:,则原式==1.故答案是:1.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.(4分)(2013•广东)一个六边形的内角和是720°.考点:多边形内角与外角.分析:根据多边形内角和公式进行计算即可.解答:解:由内角和公式可得:(6﹣2)×180°=720°.故答案为:720°.点评:此题主要考查了多边形内角和公式,关键是熟练掌握计算公式:(n﹣2).180°(n≥3)且n为整数).14.(4分)(2013•广东)在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sinA=.考点:锐角三角函数的定义;勾股定理.分析:首先由勾股定理求得斜边AC=5;然后由锐角三角函数的定义知sinA=,然后将相关线段的长度代入计算即可.解答:解:∵在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC==5(勾股定理).∴sinA==.故答案是:.点评:本题考查了锐角三角函数定义,勾股定理.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.15.(4分)(2013•广东)如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是平行四边形.考点:图形的剪拼.分析:四边形ACE′E的形状是平行四边形;首先根据三角形中位线的性质可得DE∥AC,DE=AC,再根据旋转可得DE=DE′,然后可根据一组对边平行且相等的四边形是平行四边形进行判定即可.解答:解:四边形ACE′E的形状是平行四边形;∵DE是△ABC的中线,∴DE∥AC,DE=AC,∵将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,∴DE=DE′,∴EE′=2DE=AC,∴四边形ACE′E的形状是平行四边形,故答案为:平行四边形.点评:此题主要考查了图形的剪拼,以及平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.16.(4分)(2013•广东)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是(结果保留π).考点:扇形面积的计算.分析:阴影部分可看成是圆心角为135°,半径为1是扇形.解答:解:根据图示知,∠1+∠2=180°﹣90°﹣45°=45°,∴图中阴影部分的圆心角的和是90°+90°﹣∠1﹣∠2=135°,∴阴影部分的面积应为:S==.故答案是:.点评:本题考查学生的观察能力及计算能力.求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.三、解答题(一)(本大题3小题,每小题5分,共15分)17.(5分)(2013•广东)解方程组.考点:解二元一次方程组.专题:计算题.分析:将方程组中的第一个方程代入第二个方程消去x求出y的值,进而求出x的值,即可得到方程组的解.解答:解:,将①代入②得:2(y+1)+y=8,去括号得:2y+2+y=8,解得:y=2,将y=2代入①得:x=2+1=3,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(5分)(2013•广东)从三个代数式:①a2﹣2ab+b2,②3a﹣3b,③a2﹣b2中任意选两个代数式构造分式,然后进行化简,并求出当a=6,b=3时该分式的值.考点:分式的化简求值.专题:开放型.分析:选②与③构造出分式,再根据分式混合运算的法则把原式进行化简,把a、b的值代入进行计算即可.解答:解:选②与③构造出分式,,原式==,当a=6,b=3时,原式==.点评:本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.19.(5分)(2013•广东)如图,已知▱ABCD.(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE,交CD于点F,求证:△AFD≌△EFC.考点:作图—复杂作图;全等三角形的判定;平行四边形的性质.分析:(1)根据题目要求画出图形即可;(2)首先根据平行四边形的性质可得AD∥BC,AD=BC,进而得到AD=CE,∠DAF=∠CEF,进而可利用AAS证明△AFD≌△EFC.解答:(1)解:如图所示:(2)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵BC=CE,∴AD=CE,∵AD∥BC,∴∠DAF=∠CEF,∵在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).点评:此题主要考查了平行四边形的性质,以及全等三角形的判定,关键是正确画出图形,掌握平行四边形的性质.四、解答题(二)(本大题3小题,每小题8分,共24分)20.(8分)(2013•广东)某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如图和所示的不完整统计图表.(1)请你补全下列样本人数分布表和条形统计图(如图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.样本人数分布表类别人数百分比排球 3 6%乒乓球14 28%羽毛球15篮球20%足球8 16%合计100%考点:条形统计图;用样本估计总体;统计表.专题:计算题.分析:(1)由排球的人数除以所占的百分比求出总人数,乘以篮球所占的百分比即可求出篮球的人数,补全条形统计图,如图所示,求出羽毛球所占的百分比,补全人数分布图,如图所示;(2)用人数乘以羽毛球所占的百分比即可求出人数.解答:解:(1)3÷6%=50人,则篮球的人数为50×20%=10人,则补全条形统计图如下:羽毛球占总数的百分比为:15÷50=30%,补全人数分布表为:类别人数百分比排球 3 6%乒乓球14 28%羽毛球15 30%篮球10 20%足球8 16%合计50 100%(2)920×30%=276人.则七年级学生喜爱羽毛球运动项目的人数为276人.点评:此题考查了条形统计图,扇形统计图,中位数,以及众数,弄清题意是解本题的关键.21.(8分)(2013•广东)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?考点:一元二次方程的应用.专题:增长率问题.分析:(1)解答此题利用的数量关系是:第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数,设出未知数,列方程解答即可;(2)第三天收到捐款钱数×(1+每次降价的百分率)=第四天收到捐款钱数,依此列式子解答即可.解答:解:(1)设捐款增长率为x,根据题意列方程得,10000×(1+x)2=12100,解得x1=0.1,x2=﹣2.1(不合题意,舍去);答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.点评:本题考查了一元二次方程的应用,列方程的依据是:第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数.22.(8分)(2013•广东)如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1=S2+S3(用“>”、“=”、“<”填空);(2)写出如图中的三对相似三角形,并选择其中一对进行证明.考点:相似三角形的判定;矩形的性质.分析:(1)根据S1=S矩形BDEF,S2+S3=S矩形BDEF,即可得出答案.(2)根据矩形的性质,结合图形可得:△BCD∽△CFB∽△DEC,选择一对进行证明即可.解答:(1)解:∵S1=BD×ED,S矩形BDEF=BD×ED,∴S1=S矩形BDEF,∴S2+S3=S矩形BDEF,∴S1=S2+S3.(2)答:△BCD∽△CFB∽△DEC.证明△BCD∽△DEC;证明:∵∠EDC+∠BDC=90°,∠CBD+∠BDC=90°,∴∠EDC=∠CBD,又∵∠BCD=∠DEC=90°,∴△BCD∽△DEC.点评:本题考查了相似三角形的判定,注意掌握相似三角形的判定定理,最经常用的就是两角法,此题难度一般.四、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2013•广东)已知二次函数y=x2﹣2mx+m2﹣1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P 点的坐标;若P点不存在,请说明理由.考点:二次函数综合题.分析:(1)根据二次函数的图象经过坐标原点O(0,0),直接代入求出m的值即可;(2)根据m=2,代入求出二次函数解析式,进而利用配方法求出顶点坐标以及图象与y轴交点即可;(3)根据当P、C、D共线时PC+PD最短,利用平行线分线段成比例定理得出PO 的长即可得出答案.解答:解:(1)∵二次函数的图象经过坐标原点O(0,0),∴代入二次函数y=x2﹣2mx+m2﹣1,得出:m2﹣1=0,解得:m=±1,∴二次函数的解析式为:y=x2﹣2x或y=x2+2x;(2)∵m=2,∴二次函数y=x2﹣2mx+m2﹣1得:y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点为:D(2,﹣1),当x=0时,y=3,∴C点坐标为:(0,3);(3)当P、C、D共线时PC+PD最短,过点D作DE⊥y轴于点E,∵PO∥DE,∴=,∴=,解得:PO=,∴PC+PD最短时,P点的坐标为:P(,0).点评:此题主要考查了二次函数的综合应用以及配方法求二次函数顶点坐标以及最短路线问题等知识,根据数形结合得出是解题关键.24.(9分)(2013•广东)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.考点:切线的判定;圆周角定理;相似三角形的判定与性质.分析:(1)根据BD=BA得出∠BDA=∠BAD,再由∠BCA=∠BDA即可得出结论;(2)判断△BED∽△CBA,利用对应边成比例的性质可求出DE的长度.(3)连接OB,OD,证明△ABO≌△DBO,推出OB∥DE,继而判断OB⊥DE,可得出结论.解答:(1)证明:∵BD=BA,∴∠BDA=∠BAD,∵∠BCA=∠BDA(圆周角定理),∴∠BCA=∠BAD.(2)解:∵∠BDE=∠CAB(圆周角定理),∠BED=∠CBA=90°,∴△BED∽△CBA,∴=,即=,解得:DE=.(3)证明:连结OB,OD,在△ABO和△DBO中,∵,∴△ABO≌△DBO,∴∠DBO=∠ABO,∵∠ABO=∠OAB=∠BDC,∴∠DBO=∠BDC,∴OB∥ED,∵BE⊥ED,∴EB⊥BO,∴OB⊥BE,∴BE是⊙O的切线.点评:本题考查了切线的判定及圆周角定理的知识,综合考查的知识点较多,解答本题要求同学们熟练掌握一些定理的内容.25.(9分)(2013•广东)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D到点A重合时,设EF与BC交于点M,则∠EMC= 15度;(2)如图3,当三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.考点:相似形综合题.分析:(1)如题图2所示,由三角形的外角性质可得;(2)如题图3所示,在Rt△ACF中,解直角三角形即可;(3)认真分析三角板的运动过程,明确不同时段重叠图形的变化情况:(I)当0≤x≤2时,如答图1所示;(II)当2<x≤6﹣时,如答图2所示;(III)当6﹣<x≤6时,如答图3所示.解答:解:(1)如题图2所示,∵在三角板DEF中,∠FDE=90°,DF=4,DE=,∴tan∠DFE==,∴∠DFE=60°,∴∠EMC=∠FMB=∠DFE﹣∠ABC=60°﹣45°=15°;(2)如题图3所示,当EF经过点C时,FC====;(3)在三角板DEF运动过程中,(I)当0≤x≤2时,如答图1所示:设DE交BC于点G.过点M作MN⊥AB于点N,则△MNB为等腰直角三角形,MN=BN.又∵NF==MN,BN=NF+BF,∴NF+BF=MN,即MN+x=MN,解得:MN=x.y=S△BDG﹣S△BFM=BD•DG﹣BF•MN=(x+4)2﹣x•x=x2+4x+8;(II)当2<x≤6﹣时,如答图2所示:过点M作MN⊥AB于点N,则△MNB为等腰直角三角形,MN=BN.又∵NF==MN,BN=NF+BF,∴NF+BF=MN ,即MN+x=MN,解得:MN=x.y=S△ABC﹣S△BFM=AB•AC ﹣BF•MN=×62﹣x •x=x2+18;(III)当6﹣<x≤6时,如答图3所示:由BF=x,则AF=AB﹣BF=6﹣x,设AC与EF交于点M,则AM=AF•tan60°=(6﹣x).y=S△AFM =AF•AM=(6﹣x)•(6﹣x)=x2﹣x+.综上所述,y与x的函数解析式为:y=.点评:本题是运动型综合题,解题关键是认真分析三角板的运动过程,明确不同时段重叠图形形状的变化情况.在解题计算过程中,除利用三角函数进行计算外,也可以利用三角形相似,殊途同归.21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的周长 =
(2-2)解:存在。两个,D 点分别位于上半圆和下半圆。 假设这样的梯形存在,则: ∥ 由 = = 2,可知 = = 2,于是∠ = ∠ 又 ∥ ,于是∠ = ∠ 连接 ,易证∆ 与∆ 相似 设 = , = ,则 = =2+ 2 = 4+ 2+ +2 = +4 2 +2
=

= 2 = 2 = 4
= 8,
即: = + ,故∆ 是直角三角形,即∠ = 90° ∴ 是⨀O 的切线 (2-1)解: 为 CE 的中点,故 =2 = 4,设 = ,由圆幂定理得: ∙ = ∙ ,其中 = , = + 4 2 × 4 = ( + 4),解得 = 2√3 − 2 取正根 ,即 = 2 + 2√3 连接 , = 2, = 2 + √3, =2 = 4,易证 EO ⊥ OC 故 ∆ = + = 2√2 + + = 2√2 + 4 + 2 + 2√3 = 6 + 2√2 + 2√3
= 4,又 + = − = 8,解得 = 6, = 2 = −2
+4 4
得 =1×2 =2 = − 2,故 = ∙ 2− 2 ∙ −2 = 2−2
< 1 时,
2 = 2 − ,故 = 2 − 2 ,当 0 <
= 2 − 2
综上所述, = 24. 解题如下: (1) 证明:
<1时
2 − 2 , 当 > 1 时
连接 在∆
,∵ 中,
= 4 ∴ = 2√2
=
=
= 2 ,又 = 2 = 4,
一、选择题 1. D 2. A 3. D 4. B 5. 6. 7. 8. D(需修改答案为:抽样调查,24) C B D
9. A(∆= − 4 = 4 + 4 = 16 + 4 < 0) 10. B(过 D 作 DE 垂直于 AC 交 AC 于 E,可解得 DE=2) 二、填空题 11. 7 12. 5.25 × 10 13. ( + ) 14. > −2 15. 8 16. (3,2) 三、解答题 17. 解: ∵ − 10 + 9 = ( − 9)( − 1) = 0 = 9 , =1 ∴ 原方程的解为: 18. 解: ∵ 四边形 是菱形 ∴ AC ⊥ BD,即∠ = 90° 在 ∆ 中, = + ,即5 = 4 + 于是 = 3,又 ∵ 菱形的对角线互相垂直平分 ∴ =2 =6 19. 解: 原式 = − − = ( + )( − ) = − + , 显然 ≠
解得 = √5 − 1, = √5 − 1 (还可以从 D 是弧 EB 的中点直接得出 = ) ∙ 25. 解题如下: (1)解:将 点坐标代入抛物线表达式有:0 = + + ,故 = − − (2)解:B 位于第四象限,如果抛物线开口朝下,则必经过第三象限,故抛物线开口朝上, 又抛物线与 x 轴有交点 A,且抛物线不经过第三象限,故其顶点 B 必定在第四象限。 (3)显然 C 在直线 上,于是: + 8 = 又 C 在抛物线 上,于是: + 8 = 将 、C 两点代入直线解析式易得 − 当 ≥ 1 时,由图像可知: ≥ − + + − − + ,解得 b = −8,即 C ,0 = ∙ = √5 + 1 √5 − 1 = 4
翻折且平行四边形对边相等 翻折且平行四边形对角相等 ∴ ∆ ≅∆ ( )
21. 解: (1)有 15 个数据符合 A 级定义,故 A 级的频率为:15 ÷ 30 = 0.5 (2)大约是:1000 × 0.5 = 500(人) (3)符合 C 级的有:0,2,3,3,共计 4 人 从这 4 人中随机抽取两人的方法共有 12 种,列表如下,其中符合两人日均发微博条数 都是 3 的有 2 种,故其概率为:2 ÷ 12 = 1 6 0 0 2 3 3 22. 解: (1)过 P 点作 ⊥ 交 AB 于 C 点,则 PC 的长度即为 P 到 MN 的距离 在 ∆ 中, = × sin ∠ = 30 × sin(90° − 58°) ≈ 15.9(海里) (2)在 ∆ 中, = ÷ sin ∠ ≈ 15.9 ÷ sin(90° − 35°) ≈ 19.4(海里) 船 A 到达 P 点的时间为: = 30 ÷ 20 = 1.5(小时) 船 B 到达 P 点的时间为: = 19.4 ÷ 15 = 1.3(小时) ∵ < ∴ 船先到达船 P 处 23. 解: (1) 是 BC 的中点,由 B(2,2)及 将 D 点坐标代入 = (2)当 0 < 当 > 1 时, ∥ 轴可知 D 点的坐标为(1,2) 0,2 0,3 0,3 2 2,0 2,3 2,3 3 3,0 3,2 3,3 3 3,0 3,2 3,3 -
将 = 1 + 2√3, = 1 − 2√3代入原式,得: 原式 = 1 + 2√2 + 1 − 2√3 = 2 20. 解: (1)以 B 为圆心,BA 的长为半径画圆弧 m;以 D 为圆心,DA 的长为半径画圆弧 n;圆 弧 m 与圆弧 n 的交点即为点 A’,连接 A’B、A’D 即得到∆ ∠ (2)∵ ∠ = =∠ = =∠ =∠ 对顶角
相关文档
最新文档