2013高考训练题(函数,平面向量2012-12-22)

合集下载

2013高考数学试题分类汇编:专题08 平面向量(解析版)

2013高考数学试题分类汇编:专题08 平面向量(解析版)

专题08 平面向量一、选择题:1. (山东省济南市2013年1月高三上学期期末理10)非零向量,a b 使得||||||a b a b +=-成立的一个充分非必要条件是A. //a bB. 20a b +=C. ||||a ba b =D. a b =2.(山东省德州市2013年1月高三上学期期末校际联考理11)若12,e e是平面内夹角为60的两个单位向量,则向量12122,32a e e b e e =+=-+的夹角为( )A .30B .60C .90D .1203. (山东省烟台市2013年1月高三上学期期末理6)在△ABC 中,AB=3,AC=2,1,2BD BC =uu u r uu u r则AD BD ⋅uuu r uu u r的值为A.52-B.52C.54-D.54【答案】C【解析】因为1,2BD BC =uu u r uu u r 所以点D 是BC 的中点,则1()2AD AB AC =+,11()22BD BC AC AB ==- ,所以11()()22AD BD AB AC AC AB ⋅=+⋅-2222115()(23)444AC AB =-=-=- ,选C.4. (山东省济宁市2013届高三1月份期末测试理8)已知点P 是ABC ∆所在平面内一点,则PA PB PC AB ++=是点P 在线段AC 上的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.(山东省诸城市2013届高三12月月考理)已知a 、b 、c 是共起点的向量,a 、b不共线,且存在m ,n∈R 使c ma nb =+ 成立,若a 、b 、c的终点共线,则必有A .m+n=0B .m -n= 1C .m+n =1D .m+ n=-16. (山东省诸城市2013届高三12月月考理)若向量(1,2),(4,)a x b y =-= 相互垂直,则93x y +的最小值为 A .6B .23C .32D .127.(山东省青岛一中2013届高三1月调研理)已知两点(1,0),3),A B O 为坐标原点,点C 在第二象限,且120=∠AOC ,设2,(),OC OA OB λλλ=-+∈R则等于A .1-B .2C .1D .2-8.(山东省诸城市2013届高三12月月考理)已知各项均不为零的数列{a n },定义向量*1(,),(,1),n n n n c a a b n n n N +==+∈。

2013年理科全国各省市高考真题——圆锥曲线(带答案)

2013年理科全国各省市高考真题——圆锥曲线(带答案)

2013年全国各省市理科数学—圆锥曲线1、2013山东理T9.过点(3,1)作圆(x-1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 (A )2x+y-3=0 (B )2x-y-3=0 (C )4x-y-3=0 (D )4x+y-3=0 2、2013重庆理T7.已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为( )A 、4 B1 C 、6-3、2013全国理T8.椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是(A )1324⎡⎤⎢⎥⎣⎦, (B )3384⎡⎤⎢⎥⎣⎦, (C )112⎡⎤⎢⎥⎣⎦, (D )314⎡⎤⎢⎥⎣⎦,4、2013新课标I 理10.已知椭圆E :)0(12222>>=+b a by a x 的右焦点为)03(,F ,过点F 的直线交椭圆E 于A 、B 两点。

若AB 的中点坐标为)11(-,,则E 的方程为A1364522=+y x B 1273622=+y x C 1182722=+y x D 191822=+y x 5、2013浙江理T9.如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点。

若四边形21BF AF 为矩形,则2C 的离心率是A. 2B. 3C.23 D.266、2013辽宁理T15.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F C 与过原点的直线相交于,A B 两点,4,.10,6,cos ABF ,5AF BF AB AF C e ==∠=连接若则的离心率= .7、2013上海理T9.设AB 是椭圆Γ的长轴,点C 在Γ上,且4CBA π∠=,若AB=4,BC =Γ的两个焦点之间的距离为________8、2013福建理14. 椭圆()01:2222>>=+Γb a by a x 的左右焦点分别为21,F F ,焦距为c 2,若直线()c x y +=3与椭圆的一个交点满足12212F MF F MF ∠=∠,则该椭圆的离心率等于_____9、2013江苏T12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为 .10、2013新课标I 理T4.已知双曲线C :)0,0(12222>>=-b a b y a x 的离心率为25,则C的渐近线方程为(A )x y 41±= (B )x y 31±= (C ) x y 21±= (D )x y ±=11、2013北京理T6.若双曲线22221x y a b-=A. y =±2xB. y =C.12y x =±D.y x = 12、2013福建理T3.双曲线1422=-y x 的顶点到渐进线的距离等于( )A. 52B.54C. 552D.55413、2013广东理T7.已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是 ( )A . 2214x = B .22145x y -= C .22125x y -= D .2212x =14、2013天津理T5. 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 则p =(A) 1(B)32(C) 2 (D) 315、2013湖北理T5.已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的( )A.实轴长相等B.虚轴长相等C.焦距相等D. 离心率相等16、2013江苏T3.双曲线191622=-y x 的两条渐近线的方程为 . 17、2013陕西理T11. 双曲线22116x y m-=的离心率为54, 则m 等于 .18、2013湖南理T14.设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C上一点,若216,PF PF a +=且12PF F ∆的最小内角为30 ,则C 的离心率为___。

2013年高考真题理科数学解析分类汇编6平面向量

2013年高考真题理科数学解析分类汇编6平面向量

2013年高考真题理科数学解析分类汇编 6 平面向量一选择题1. 四川 12. 在平行四边形 ABCD 中, 对角线 AC 与 BD 交于点 O , AB AD AO λ+=, 则λ=_____2_______解析:所以λ=22. 安徽理(9在平面直角坐标系中, o 是坐标原点,两定点 , A B满足则点集 {P|=λ,所表示的区域的面积是(A(B(C(D【答案】 D【马老师解析】如图 :在三角形 OAB 内λ+μ<1, λ>0, μ>0同理在在三角形 OCD 内−λ− μ<1, − λ>0, − μ>0,在在三角形 OAD 内λ− μ<1, λ>0, − μ>0 在在三角形 OBC 内−λ+μ<1, − λ>0, μ>032cos 4cos ||||πθθθ=⇒==⋅⋅=⋅OB OA OB OA .所以符合条件的是矩形 ABCD面积为所以选 D3. 陕西 3. 设 a , b 为向量 , 则“ ||||||=a a b b ·”是“ a //b ”的 (A 充分不必要条件(B 必要不充分条件(C 充分必要条件 (D 既不充分也不必要条件【答案】 C【解析】。

θcos ||||⋅⋅=⋅若 1cos ||||||±=⇒⋅=⋅θ, //0,即或则向量π为真; 相反,若 b a //,则 ||||||0⋅=⋅,即或的夹角为与向量π。

所以“ ||||||=a a b b ·”是“ a //b ”的充分必要条件。

另:当或向量为零向量时,上述结论也成立。

所以选 C4.[湖南 ]6. 已知是单位向量, . 若向量 c 满足 , 则的取值范围是,A. ⎤⎦ B. ⎤⎦ C. 1⎡⎤⎣⎦ D. 1⎡⎤⎣⎦【答案】 A【解析】方法一: 因为是单位向量,⟹所以建立平面直角坐标系设, =, =由,得=1,利用两圆的位置关系易得方法二:因为==1+1+0=2 ⟹⟹⟹因为所以 +=⟹+≤ ⟹选 A5. 辽宁(3已知点 ((1,3, 4, 1,A B AB-则与向量同方向的单位向量为(A3455⎛⎫⎪⎝⎭, -(B4355⎛⎫⎪⎝⎭, -(C3455⎛⎫- ⎪⎝⎭(D4355⎛⎫- ⎪⎝⎭【答案】 A【解析】 ,所以 ||5AB =,这样同方向的单位向量是3455⎛⎫⎪⎝⎭, -选 A6. 辽宁(9已知点 (((30,0, 0, , , . ABC ,O A b B a a ∆若为直角三角形则必有 A . 3 b a= B. 31b aa=+C . (3310b a b aa⎛⎫---=⎪⎝⎭D. 331b a b aa-+--=【答案】 C【解析】若 A 为直角,则根据 A 、 B 纵坐标相等,所以 30b a-=;若 B 为直角,则利用 1OB ABK K =-或得 31b aa--=,所以选 C7. 全国(3已知向量((((1,1, 2,2, , =m n m n m n λλλ=+=++⊥-若则(A 4- (B -3 (C 2- (D − 1 答案 B 解析8.9. 福建 7. 在四边形 ABCD 2, 1(= 2, 4(-=, 则该四边形的面积为( A. B.52C.5D.1010. 重庆 10、在平面上, 12AB AB ⊥ 121OB OB == , 12AP AB AB =+ . 若 12 OP < ,则 OA 的取值范围是(A、⎛⎝⎦ B、⎝⎦ C、⎝ D、 2⎛⎝【答案】 :D11. 新课标 II (13已知正方形 ABCD 的边长为 2, E 为 CD 的中点,则 AE BD ⋅= _______。

2013年高考试题分类汇编(平面向量)

2013年高考试题分类汇编(平面向量)

2013年高考试题分类汇编(平面向量)考点1 平面向量基本定理1.(2013·广东卷·理科)设a 是已知的平面向量且0a ≠.关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量c ,使a b c =+;②给定向量b 和c ,总存在实数λ和μ,使a b c λμ=+;③给定向量b 和正数,总存在单位向量c ,使a b c λμ=+.④给定正数λ和μ,总存在单位向量b 和单位向量c ,使a b c λμ=+.上述命题中的向量b , c 和a 在同一平面内且两两不共线,则真命题的个数是A.1B.2C.3D.42.(2013·陕西卷·理科)设,a b 为向量,则“a b a b ⋅=”是“a b ∥”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(2013·北京卷·理科)向量,,a b c 在正方形网格中的位置如图所示, 若c a b λμ=+(,)R λμ∈,则λμ= .4.(2013·江苏卷)设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若21λλ+=(21λλ,为实数),则21λλ+的值为 . 考点2 平面向量基本运算1.(2013·安徽卷·理科)在平面直角坐标系中,O 是坐标原点,两定点,A B 满足2,OA OB OA OB ==⋅=则点集{},1,,|P OP OA OB R λμλμλμ=++≤∈所表示的区域的面积是a b cA.2.在平面上,12AB AB ⊥,121OB OB ==,12AP AB AB =+.若12OP <,则OA的取值范围是A.B.C.D. 3.(2013·安徽卷·文科)若非零向量,a b 满足32a b a b ==+,则a 与b 夹角的余弦值为 . 4.(2013·江西卷·理科)设12 e e ,为单位向量。

海南大学2012-2013《线性代数》 试题(A卷)

海南大学2012-2013《线性代数》 试题(A卷)

海南大学2012-2013学年度第二学期试卷科目:(工科类)《线性代数》试题(A 卷)姓名: 学 号: 学院: 专业班级:时限: 120 分钟 考试形式:闭卷笔试所有试卷均配有答题纸,考生应将答案写在答题纸上,写在试卷上一律无效大题号 一 二 三 四 五 六 七 八 总分 得分一、选择题:(每题3分,共15分)1.行列式0100002000034000=_____-24_____2. 设4阶方阵A 的秩为2,则其伴随矩阵A *的行列式为0___3. 设A 为m n ⨯矩阵,B 为n m ⨯矩阵,若m n >,则AB =____0___4.若n 元齐次线性方程组AX O =有n 个线性无关的解向量,则A =O5. 设三阶方阵A 有三个特征值1232,3,λλλ==,若 A =24,则3λ=4二、填空题(每题3分,共15分)1. 设A 为n 阶方阵,且AX O =有非零解,则矩阵A 必有一个特征值为( C )(A) 1 (B) -1 (C) 0 (D) 无法确定得分 阅卷教师得分 阅卷教师2. 设矩阵A 、B 都为n 阶方阵A =2,B =-3,则13A B *-=( D )(A) 6 (B) 6n (C) -6 (D) 16n --3.若可逆方阵A 满足2A A = ,则 A =( A )(A)1 (B) 0 (C) -1 (D)无法确定4. 设三阶行列式D 的第三行元素依次是1、-1、1,它们的代数余子式依次是2、8、-5,则D =( B ) (A ) 11 (B) -11 (C) 5 (D)-55. n 元非齐次线性方程组AX β=有解,其中A 为(1)n n +⨯的矩阵,则A β=( A )(A) 0 (B) 1 (C) -1 (D) 无法确定三 、计算题(14分)求非齐次线性方程组1234123412343133445980x x x x x x x x x x x x +--=⎧⎪--+=⎨⎪+--=⎩的通解。

2013年高考真题2:函数 Word版含答案

2013年高考真题2:函数 Word版含答案

2013年高考解析分类汇编2:函数一、选择题错误!未指定书签。

.(2013年高考重庆卷(文1))函数21log (2)y x =-的定义域为( )A .(,2)-∞B .(2,)+∞C .(2,3)(3,)+∞D .(2,4)(4,)+∞【答案】C【命题立意】本题考查函数的定义域。

要使函数有意义则,220log (2)0x x ->⎧⎨-≠⎩,即2021x x ->⎧⎨-≠⎩,即2x >且3x ≠,所以选C. 错误!未指定书签。

.(2013年高考重庆卷(文9))已知函数3()s i n 4(,)f x a x b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =( )A .5-B .1-C .3D .4 【答案】C【命题立意】本题考查函数的奇偶性以及对数的运算性质。

因为22lg10lg(log 10)lg(lg 2)lg(log 10lg 2)lg(lg 2)lg1012g +=⋅=⨯==,所以2l g (lg 2)l g (l o g 10)=-。

设2lg(log 10),t =则lg(lg 2)t =-。

由条件可知()5f t =,即3()sin 45f t at b t =++=,所以2si n 1a tb t +=,所以3()s i n 4143f t a t b t -=--+=-+=,选C. 错误!未指定书签。

.(2013年高考大纲卷(文6))函数()()()-121log 10=f x x f x x ⎛⎫=+> ⎪⎝⎭的反函数( )A .()1021x x >- B .()1021xx ≠- C .()21x x R -∈ D .()210x x -> 【答案】A)0)(11(log )(2>+==y x x f y ,所以y x 211=+,所以121-=y x,所以)0(121>-=y x y ,所以)0(121>-=x y x ,即)0(121)(1>-=-x x f x ,故选A.错误!未指定书签。

2013年高考数学试题集(7)平面向量

2013年高考数学试题集(7)平面向量

2013年高考数学试题集(7)平面向量将2013年的全国及各省市的高考试题按高考考查知识点分类,有利于广大教师备课和学生系统复习,如有不足和遗漏之处请各位同仁批评指证。

1.(安徽理科第13题、文科14题)已知向量,a b 满足()()a b a b +2⋅-=-6,且1a =,2b =,则a 与b 的夹角为 .解:由向量等式得:6222-=-⋅+b b a a ,又12=a ,42=b 代入可得1=⋅b a所以,21||||),cos(=⋅=b a b a b a ,故a 与b 的夹角为3π2.(北京理科第10题)已知向量)1,3(=a ,)1,0(-=b ,)3,(k c =.若b a 2-与c 共线,则=k ___________________。

解:)3,3(2=-b a ,又b a 2-与c 共线,从而求得1=k3.(北京文科11)已知向量(3,1),(01),(,3)a b c k ==-=。

若2a b -与c 共线,则k = .答案:14.(福建理科第10题)已知函数x e x f x+=)(,对于曲线)(x f y =上横坐标成等差数列的三个点A,B,C ,给出以下判断:①△ABC 一定是钝角三角形 ②△ABC 可能是直角三角形 ③△ABC 可能是等腰三角形 ④△ABC 不可能是等腰三角形 其中,正确的判断是A.①③B.①④C. ②③D.②④ 解:设这三个点的坐标分别是))(,(),,(),,(321332211x x x y x C y x B y x A <<,2312x x x x -=-,),(),,(23232121y y x x BC y y x x BA --=--=,由于x e x f x+=)(为R上的增函数,所以,0<⋅BC BA ,故B ∠为钝角,所以①成立,②不成立,若为等腰三角形,只有可能是||||BC BA =,此时有2312y y y y -=-,即23131222x x x x x ee e e+>+=,与2312x x x x -=-矛盾,故④正确选B 。

平面向量训练题

平面向量训练题

平面向量的基本概念及线性运算一、选择题1.(2013·宁波模拟)若a +c 与b 都是非零向量,则“a +b +c =0”是“b ∥(a +c )”的( A )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.下列命题中是真命题的是( D )①对任意两向量a 、b ,均有:|a |-|b |<|a |+|b |; ②对任意两向量a 、b ,a -b 与b -a 是相反向量; ③在△ABC 中,AB →+BC →-AC →=0;④在四边形ABCD 中,(AB →+BC →)-(CD →+DA →)=0; ⑤AB →-AC →=BC →. A .①②③ B .②④⑤ C .②③④D .②③3.设P 是△ABC 所在平面内的一点,BC →+BA →=2BP →,则(B ) A.P A →+PB →=0 B.PC →+P A →=0 C.PB →+PC →=0 D.P A →+PB →+PC →=04.在▱ABCD 中,下列结论中错误的是( C ) A.AB →=DC → B.AB →+AD →=AC → C.AB →-AD →=BD → D.AD →+CB →=05.(2013·武汉模拟)已知e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,则a 与b 共线的条件是( D )A .λ=0B .e 2=0C .e 1∥e 2D .e 1∥e 2或λ=06.(2013·郑州模拟)已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m 使得AB →+AC →=mAM →成立,则m =( B )A .2B .3C .4D .5二、填空题7.如图4-1-2所示,向量a -b =____e 1-3e 2____(用e 1,e 2表示).图4-1-28.若|AB →|=8,|AC →|=5,则|BC →|的取值范围是_[3,13]_______.9.(2013·日照模拟)已知x ,y ∈R ,定义“⊙”运算:x ⊙y =x (x -y ),给出以下四个结论:①(ma )⊙b =m (a ⊙b ); ②a ⊙(b +c )=a ⊙b +a ⊙c ;③a ⊙b =0的一个充分不必要条件是a =0; ④a ⊙(b ⊙c )=(a ⊙b )⊙c .其中正确结论的序号有__③______.(写出所有正确结论的序号) 三、解答题图4-1-310.(2013·济南模拟)如图4-1-3所示,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,求实数m 的值.11.设a ,b 是不共线的两个非零向量.(1)若OA →=2a -b ,OB →=3a +b ,OC →=a -3b ,求证:A 、B 、C 三点共线. (2)若8a +k b 与k a +2b 共线,求实数k 的值.(3)若AB →=a +b ,BC →=2a -3b ,CD →=2a -k b ,且A 、C 、D 三点共线,求k 的值.12.设O 是平面上一定点,A ,B ,C 是平面上不共线的三点,动点P 满足OP →=OA →+λ(AB →|AB →|+AC →|AC →|),λ∈[0,+∞).求点P 的轨迹,并判断点P 的轨迹通过下述哪一个定点:①△ABC 的外心;②△ABC 的内心;③△ABC 的重心; ④△ABC 的垂心.平面向量的基本定理及坐标运算一、选择题1.(2013·佛山模拟)已知平面向量a =(x,1),b =(-x ,x 2),则向量a +b ( C ) A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线2.设向量a =(1,-3),b =(-2,4),若表示向量4a 、3b -2a 、c 的有向线段首尾相接能构成三角形,则向量c 为( D )A .(1,-1)B .(-1,1)C .(-4,6)D .(4,-6)3.(2013·济南模拟)若a =(1,2),b =(-3,0),(2a +b )∥(a -m b ),则m =( A ) A .-12 B.12 C .2D .-24.(2013·安庆模拟)△ABC 的三内角A 、B 、C 所对边的长分别为a ,b ,c ,设向量p =(a +c ,b ),q =(b -a ,c -a ),若p ∥q ,则角C 的大小为( B )A.π6B.π3C.π2D.2π35.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →等于( B )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)6.(2013·合肥模拟)设向量a ,b 满足|a |=25,b =(2,1),则“a =(4,2)”是“a ∥b ”成立的是( C )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件二、填空题7.已知同时作用于某物体同一点的三个力对应向量分别为f 1=(-2,-1),f 2=(-3,2),f 3=(4,-3),为使该物体处于平衡状态,现需在该点加上一个力f 4,则f 4=__(1,2)______.8.(2013·徐州模拟)在△ABC 中,若点D 是边AB 上靠近点B 的三等分点,若CB →=a ,CA →=b ,则CD →等于________.23a +13b9.(2013·南京模拟)已知A (-3,0),B (0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为________.1三、解答题10.设坐标平面上有三点A ,B ,C ,i ,j 分别是坐标平面上x 轴、y 轴正方向上的单位向量,若向量AB →=i -2j ,BC →=i +m j ,那么是否存在实数m ,使A ,B ,C 三点共线.11.已知点O (0,0),A (1,2),B (4,5),且OP →=OA →+tAB →(t ∈R ),问: (1)t 为何值时,点P 在x 轴上?点P 在二、四象限角平分线上?(2)四边形OABP 能否成为平行四边形?若能,求出相应的t 值;若不能,请说明理由.12.(2013·广东六校模拟)如图4-2-3,G 是△OAB 的重心,P ,Q 分别是边OA 、OB 上的动点,且P ,G ,Q 三点共线.图4-2-3(1)设PG →=λPQ →,将OG →用λ,OP →,OQ →表示; (2)设OP →=xOA →,OQ →=yOB →,证明:1x +1y 是定值.平面向量的数量积一、选择题1.(2012·福建高考)已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是( D )A .x =-12B .x =-1C .x =5D .x =02.(2013·潍坊模拟)已知平面上三点A 、B 、C 满足|AB →|=3,|BC →|=4,|CA →|=5,则AB →·BC →+BC →·CA →+CA →·AB →的值等于( C )A .25B .24C .-25D .-243.(2013·广州模拟)若向量a, b ,c 满足a ∥b 且a ⊥c ,则c ·(a +2b )=( D ) A .4 B .3 C .2D .04.(2012·重庆高考)设x ∈R ,向量a =(x,1),b =(1,-2),且a ⊥b ,则|a +b |=( B )A. 5B.10 C .2 5D .105.已知三个向量a 、b 、c 两两所夹的角都为120°,且|a |=1,|b |=2,|c |=3,则向量a +b 与向量c 的夹角θ的值为( D )A .30°B .60°C .120°D .150°6.(2013·哈尔滨模拟)已知两个单位向量a 与b 的夹角为135°,则|a +λb |>1的充要条件是( D )A .λ∈(0,2)B .λ∈(-2,0)C .λ∈(-∞,-2)∪(2,+∞)D .λ∈(-∞,0)∪(2,+∞) 二、填空题7.(2012·湖北高考)已知向量a =(1,0),b =(1,1),则(1)与2a +b 同向的单位向量的坐标表示为________;(31010,1010).(2)向量b -3a 与向量a 夹角的余弦值为________.-2558.(2013·合肥模拟)已知|a |=1,|b |=2,a 与b 的夹角为60°,则a +b 在a 方向上的投影为________. 29.(2013·青岛模拟)设i 、j 是平面直角坐标系(坐标原点为O )内分别与x 轴、y 轴正方向相同的两个单位向量,且OA →=-2i +j ,OB →=4i +3j ,则△OAB 的面积等于________ 5三、解答题10.已知a =(1,2),b =(1,1),且a 与a +λb 的夹角为锐角,求实数λ的取值范围.11.在平面直角坐标系xOy 中,已知点A (-1,-2),B (2,3),C (-2,-1). (1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(AB →-tOC →)·OC →=0,求t 的值.12.(2013·安阳模拟)已知点A (1,0),B (0,1),C (2sin θ,cos θ). (1)若|AC →|=|BC →|,求sin θ+2cos θsin θ-cos θ的值;(2)若(OA →+2OB →)·OC →=1,其中O 为坐标原点,求sin θ·cos θ的值.平面向量应用举例一、选择题1.(2013·烟台模拟)若M 为△ABC 所在平面内一点,且满足(MB →-MC →)·(MB →+MC →-2MA →)=0,则△ABC 为( B )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形2.平面上O ,A ,B 三点不共线,设OA →=a ,OB →=b ,则△OAB 的面积等于( C )A.|a |2|b |2-(a ·b )2B.|a |2|b |2+(a ·b )2C.12|a |2|b |2-(a ·b )2 D.12|a |2|b |2+(a ·b )23.设点M 是线段BC 的中点,点A 在直线BC 外,BC →2=16,|AB →+AC →|=|AB→-AC →|,则|AM →|=( C)A .8B .4C .2D .14.已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,且|OA →+OB →|=|OA →-OB →|,其中O 为原点,则实数a 的值为(C )A .2B .-2C .2或-2D.6或- 65.(2013·济南模拟)已知点A (-2,0),B (0,0),动点P (x ,y )满足P A →·PB →=x 2,则点P 的轨迹是( D )A .圆B .椭圆C .双曲线D .抛物线6.若函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图4-4-3所示,M ,N 分别是这段图象的最高点和最低点,且OM →·ON →=0(O 为坐标原点),则A 等于( )图4-4-3A.π6 B.712π C.76π D.73π【二、填空题7.已知A 、B 、C 是圆x 2+y 2=1上的三点,且OA →+OB →=OC →,其中O 为坐标原点,则▱OACB 的面积等于________. 328.在△ABC 中,∠A =2π3,BC =3,向量m =(-13,cos B ),n =(1,tan B ),且m ⊥n ,则边AC 的长为________. 239.(2012·湖南高考)如图4-4-4所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP →·AC →=________.18图4-4-4三、解答题10.已知平行四边形ABCD 中,M 为AB 中点,点N 在BD 上,且BN =13BD ,利用向量的方法证明:M 、N 、C 三点共线.11.(2013·厦门模拟)已知点A (2,0),B (0,2),C (cos α,sin α),且0<α<π. (1)若|OA →+OC →|=7,求OB →与OC →的夹角; (2)若AC →⊥BC →,求tan α的值.12.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ). (1)若A 、B 、C 不能构成三角形,求实数m 应满足的条件; (2)若△ABC 为直角三角形,求实数m 的值.。

高考数学平面向量题型及全解

高考数学平面向量题型及全解

2013高考试题解析分类汇编(理数)5:平面向量一、选择题错误!未指定书签。

.(2013年高考上海卷(理))在边长为1的正六边形ABCDEF 中,记以A为起点,其余顶点为终点的向量分别为12345,,,,a a a a a ;以D 为起点,其余顶点为终点的向量分别为12345,,,,d d d d d .若,m M 分别为()()i j k r s t a a a d d d ++⋅++的最小值、最大值,其中{,,}{1,2,3,4,5}i j k ⊆,{,,}{1,2,3,4,5}r s t ⊆,则,m M 满足 ( )A .0,0m M =>B .0,0m M <>C .0,0m M <=D .0,0m M <<D .【解答】作图知,只有0AF DE AB DC ⋅=⋅>,其余均有0i r a d ⋅≤,故选D .错误!未指定书签。

.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为 ( )A .3455⎛⎫ ⎪⎝⎭,- B .4355⎛⎫ ⎪⎝⎭,-C .3455⎛⎫- ⎪⎝⎭,D .4355⎛⎫- ⎪⎝⎭,A(3,4)AB =-,所以||5AB =,所以同方向的单位向量是134(,)555AB =-,选A.错误!未指定书签。

.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设0,P ABC ∆是边AB 上一定点,满足AB B P410=,且对于边AB 上任一点P ,恒有C P B P 00∙≥∙.则( )A .090=∠ABCB .090=∠BAC C .AC AB =D .BC AC =D以AB 所在的直线为x 轴,以AB 的中垂线为y 轴建立直角坐标系,设AB=4,C (a ,b ),P (x ,0)则BP 0=1,A (﹣2,0),B (2,0),P 0(1,0) 所以=(1,0),=(2﹣x ,0),=(a ﹣x ,b ),=(a ﹣1,b )因为恒有所以(2﹣x )(a ﹣x )≥a ﹣1恒成立整理可得x 2﹣(a+2)x+a+1≥0恒成立所以△=(a+2)2﹣4(a+1)≤0即△=a 2≤0所以a=0,即C 在AB 的垂直平分线上所以AC=BC 故△ABC 为等腰三角形 故选D错误!未指定书签。

2013年理科全国各省市高考真题——函数(解答题带答案)

2013年理科全国各省市高考真题——函数(解答题带答案)

2013年全国各省市理科数学—函数1、2013大纲理T22.(本小题满分12分) 已知函数()()()1=ln 1.1x x f x x xλ++-+(I )若0x ≥时,()0f x ≤,求λ的最小值;(II )设数列{}211111,ln 2.234n n n n a a a a n n=+++⋅⋅⋅+-+>的通项证明:2、2013新课标I 理T21.(本小题满分12分)已知函数b ax x x f ++=2)(,)()(d cx e x g x+=若曲线)(x f y =和曲线)(x g y =都过点)2,0(P ,且在点P 处有相同的切线24+=x y . (Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若x ≥-2时,)()(x kg x f ≤,求k 的取值范围.3、2013新课标Ⅱ理T21.(本小题满分12分) 已知函数)ln()(m x e x f x +-=。

(Ⅰ)设0=x 是)(x f 的极值点,求m 并讨论)(x f 的单调性; (Ⅱ)当2≤m 时,证明)(x f >0。

4、2013辽宁理T21.(本小题满分12分)已知函数()()()[]321,12cos .0,12e xx f x x g x ax x x x -=+=+++∈当时,(I )求证:()11-;1x f x x≤≤+ (II )若()()f x g x ≥恒成立,a 求实数的取值范围.5、2013山东理T21.(本小题满分13分)(1)求()f x 的单调区间,最大值;(2)讨论关于x 的方程|ln |()x f x =根的个数.6、2013山东理T22.(本小题满分13分)(Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1、PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M (m ,0),求m 的取值范围;7、2013北京理T18. (本小题共13分)设l 为曲线C :ln xy x=在点(1,0)处的切线. (I)求l 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线l 的下方8、2013重庆理T17.设()()256ln f x a x x =-+,其中a R ∈,曲线()y f x =在点()()1,1f 处的切线与y 轴相交于点()0,6。

2013年高一年级《平面向量》综合试题

2013年高一年级《平面向量》综合试题

2013年高一年级《平面向量》综合训练题(2013.5.25)一、选择题:本大题共10小题,每小题5分,共50分.1.列火车从同一站台沿相反方向开去,走了相同的路程,设两列火车的位移向量分别为a和b,那么下列命题中错误的一个是A 、a 与b为平行向量 B 、a 与b为模相等的向量C 、a 与b 为共线向量D 、a 与b为相等的向量两2.如果a ,b 是两个单位向量,则下列结论中正确的是 ( )(A) a =b (B) 1⋅a b = (C) 22≠a b (D) =a b3.AB BC AD +-= A 、ADB 、CDC 、DBD 、DC4.已知正方形ABCD 的边长为1,AB = a ,BC = b ,AC = c , 则++a b c等于 ( )(A) 0 (B) 3 (D)5.下列各组的两个向量,平行的是 A 、(2,3)a =- ,(4,6)b = B 、(1,2)a =- ,(7,14)b =C 、(2,3)a = ,(3,2)b =D 、(3,2)a =- ,(6,4)b =-6.已知(6,0)a = ,(5,5)b =- ,则a 与b的夹角为A 、045B 、060C 、0135D 、01207.设3(,sin )2a α= ,1(cos ,)3b α= ,且//a b,则锐角α为( )A .030B .060C .075D .0458是△ABC 所在平面上一点,若⋅=⋅=⋅,则P 是△ABC 的( ) A. 外心 B. 内心C. 重心D. 垂心9.设点(2,0)A ,(4,2)B ,若点P 在直线AB 上,且AB = 2AP,则点P 的坐标为( )A .(3,1)B .(1,1)-C .(3,1)或(1,1)-D .无数多个10. 在平行四边形ABCD 中,E 、F 分别是BC 、CD 的中点,DE 交AF 于H ,记、分别为a 、b ,则=( )A .52a -54b B .52a +54b C .-52a +54b D .-52a -54b11.已知△ABC 的周长为9,且4:2:3s i n :s i n:s i n =C B A ,则cosC 的值为( )A .41-B .41C .32-D .3212.已知=(-3,-1), =(1,3),那么,的夹角θ=( )A 、30°B 、60°C 、120°D 、150°13.已知向量a = (2,1), a·b = 10,︱a + b ︱= b ︱=C.5D.2514.已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( ) A.(21)--,B.(21)-, C.(10)-, D.(12),15.平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b +=( )B. C. 4 D.2 16.已知向量与反向,下列等式中成立的是( ) A 、=|| B 、||=|| C 、||+||=||D 、||+||=||A .2(21)n -B .1(21)3n -C .41n -D .1(41)3n-17.已知平行四边形三个顶点的坐标分别为(﹣1,0),(3,0),(1,﹣5),则第四个点的坐标为( ) A 、(1,5)或(5,﹣5) B 、(1,5)或(﹣3,﹣5) C 、(5,﹣5)或(﹣3,﹣5) D 、(1,5)或(﹣3,﹣5)或(5,﹣5) 18.与向量=(12,5)平行的单位向量为( )A 、B 、ABCEFDHC 、或 D 、或19.若||=,||=4,||=5,则与的数量积为( )A 、10B 、﹣10C 、10D 、10 20.设k ∈R,下列向量中,与向量a=(1,-1)一定不平行的向量是( ) A .b=(k,k) B .c=(-k,-k) C .d=(k 2+2,k 2+1) D .e=(k 2-1,k 2-1) 21、已知,且,则向量与向量的夹角是( )A 、30°B 、45°C 、90°D 、135°22.在△ABC 中,D 、E 、F 分别BC 、CA 、AB 的中点,点M 是△ABC 的重心,则等于( ) A 、B 、C 、D 、二、填空题:本大题共4小题, 每小题5分,满分20分.23已知)2,3(-M ,)0,1(-N ,则线段MN 的中点P 的坐标是________。

2013年文科全国各省市高考真题——函数(解答题带答案)

2013年文科全国各省市高考真题——函数(解答题带答案)

2013年全国各省市文科数学—函数1、2013大纲文T21.(本小题满分12分)已知函数()32=33 1.f x x ax x +++(I )求()f ;a x =的单调性;(II )若[)()2,0,.x f x a ∈+∞≥时,求的取值范围2、2013新课标1文T20.(本小题满分共12分)已知函数2()()4x f x e ax b x x =+--,曲线()y f x =在点(0,(0))f 处切线方程为44y x =+。

(Ⅰ)求,a b 的值;(Ⅱ)讨论()f x 的单调性,并求()f x 的极大值。

3、2013新课标Ⅱ文T21.(本小题满分12分)已知函数2()xf x x e -=。

(Ⅰ)求()f x 的极小值和极大值;(Ⅱ)当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围。

4、2013辽宁文T21.(本小题满分12分)(I )证明:当[]0,1sin ;2x x x x ∈≤≤时, (II )若不等式()[]3222cosx 40,12x ax x x x a ++++≤∈对恒成立,求实数的取值范围.5、2013山东文T21.(本小题满分12分)已知函数2()ln (,)f x ax bx x a b R =+-∈(Ⅰ)设0a ≥,求)(x f 的单调区间(Ⅱ) 设0a >,且对于任意0x >,()(1)f x f ≥。

试比较ln a 与2b -的大小6、2013北京文T18.(本小题共13分)已知函数2()sin cos f x x x x x =++(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值。

(2)若曲线()y f x =与直线y b =有两个不同的交点,求b 的取值范围。

7、2013重庆文T20.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(Ⅰ)将V 表示成r 的函数()V r ,并求该函数的定义域;(Ⅱ)讨论函数()V r 的单调性,并确定r 和h 为何值时该蓄水池的体积最大.8、2013天津文T20. (本小题满分14分)设[2,0]a ∈-, 已知函数332(5),03,0(,).2x f a x x a x x x x x a -+≤+-+>⎧⎪=⎨⎪⎩ (Ⅰ) 证明()f x 在区间(-1,1)内单调递减, 在区间(1, + ∞)内单调递增;(Ⅱ) 设曲线()y f x =在点(,())(1,2,3)i i i x f x i P =处的切线相互平行, 且1230,x x x ≠ 证明12313x x x ++>.9、2013浙江文T21.已知a∈R,函数f(x)=2x 3-3(a+1)x 2+6ax(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.10、2013上海文T20.(本题满分14分)本题共有2个小题,第1小题满分5分,第2小题满分9分.甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得的利润是100⎪⎭⎫ ⎝⎛-+x x 315元. (1)求证:生产a 千克该产品所获得的利润为100a ⎪⎭⎫ ⎝⎛-+2315x x 元; (2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.11、2013福建文T22.(本小题满分14分) 已知函数()1xa f x x e =-+(a R ∈,e 为自然对数的底数). (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值;(2)求函数()f x 的极值;(3)当1a =的值时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.12、2013广东文T21.(本小题满分14分)设函数x kx x x f +-=23)( ()R k ∈. (1) 当1=k 时,求函数)(x f 的单调区间;(2) 当0<k 时,求函数)(x f 在[]k k -,上的最小值m 和最大值M .13、2013陕西文T21. (本小题满分14分)已知函数()e ,x f x x =∈R .(Ⅰ) 求f (x )的反函数的图象上图象上点(1,0)处的切线方程;(Ⅱ) 证明: 曲线y = f (x) 与曲线2112y x x =++有唯一公共点. (Ⅲ) 设a <b , 比较2a b f +⎛⎫ ⎪⎝⎭与()()f b f a b a --的大小, 并说明理由.14、2013湖南文T21.(本小题满分13分)已知函数f (x )=x e x 21x 1+-. (Ⅰ)求f (x )的单调区间;(Ⅱ)证明:当f (x 1)=f (x 2)(x 1≠x 2)时,x 1+x 2<0.参考答案:2、4、【解析】(I)记F,则当∈时,记H,则当∈时,<0,所以H在上是减函数,则H,即综上,≤,∈(II)解法一因为当∈时≤=所以,当时,不等式对∈恒成立下面证明,当时,不等式对∈不恒成立因为∈时,≥=≥=所以存在(例如取和中的较小值)满足即当a>−2时,≤0对∈不恒成立。

2013年全国各省市高考真题——平面向量(带答案)

2013年全国各省市高考真题——平面向量(带答案)

2013年全国各省市文科数学—平面向量1、2013大纲文T3.已知向量()()()()1,1,2,2,,=m n m n m n λλλ=+=++⊥-若则(A )4- (B )3- (C )-2 (D )-12、2013辽宁文T3.已知点()()1,3,4,1,A B AB - 则与向量同方向的单位向量为(A )3455⎛⎫ ⎪⎝⎭,- (B )4355⎛⎫ ⎪⎝⎭,- (C )3455⎛⎫- ⎪⎝⎭, (D )4355⎛⎫- ⎪⎝⎭, 3、2013福建文T10.在四边形ABCD 中,)2,4(),2,1(-==,则该四边形的面积为( )A .5B .52C .5D .104、2013广东文T10.设 a 是已知的平面向量且≠0 a ,关于向量 a 的分解,有如下四个命题:①给定向量 b ,总存在向量 c ,使=+ a b c ;②给定向量 b 和 c ,总存在实数λ和μ,使λμ=+ a b c ;③给定单位向量 b 和正数μ,总存在单位向量 c 和实数λ,使λμ=+ a b c ;④给定正数λ和μ,总存在单位向量 b 和单位向量 c ,使λμ=+ a b c ;上述命题中的向量 b , c 和 a 在同一平面内且两两不共线,则真命题的个数是A .1B .2C .3D .4 5、2013陕西文T2. 已知向量 (1,),(,2)a m b m ==, 若a //b , 则实数m 等于(A) (D) 06、2013湖南文T8.已知a,b 是单位向量,a·b=0.若向量c 满足|c-a-b|=1,则|c|的最大值为1127、2013湖北文T7.已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为A B C .D .8、2013新课标文T13.已知两个单位向量a ,b 的夹角为60 ,(1)=+-c ta t b ,若0⋅=b c ,则t =_____。

高考数学平面向量多选题复习训练题(含答案解析)

高考数学平面向量多选题复习训练题(含答案解析)

高考数学平面向量多选题复习训练题(含答案解析)1.(2022·河北廊坊·模拟预测)已知实数m 、n 和向量a 、b ,下列结论中正确的是( ) A .()m a b ma mb −=− B .()m n a ma na −=−C .若ma mb =,则a b =D .若()0ma na a =≠,则m n =【答案】ABD 【解析】 【分析】利用平面向量的线性运算可判断ABCD 选项. 【详解】对于A 选项,()m a b ma mb −=−,A 对; 对于B 选项,()m n a ma na −=−,B 对;对于C 选项,若ma mb =,则()0m a b −=,所以,0m =或a b =,C 错;对于D 选项,若()0ma na a =≠,则()0m n a −=,所以,0−=m n ,即m n =,D 对. 故选:ABD.2.(2021·全国·模拟预测)如图,在ABC 中,6BC =,D ,E 是BC 的三等分点,且4AD AE ⋅=,则( )A .2133AE AB AC =+ B .1122AD AB AE =+ C .4⋅=−AB AC D .2228AB AC +=【答案】BCD 【解析】 【分析】由向量的线性运算即可判断A ,B,取DE 的中点G ,由6BC =,D ,E 是BC 的三等分点得G 是BC 的中点,计算可得2214AD AE AG DE ⋅=−,进而得出25AG =,计算可判断选项C,由C 可知2AB AC AG +=,两边平方,化简计算可判断选项D .【详解】对于A ,()11123333AE AC CE AC CB AC AB AC AB AC =+=+=+−=+,故选项A 不正确;对于B ,由题意得D 为BE 的中点,所以1122AD AB AE =+,故选项B 正确; 对于C ,取DE 的中点G ,由6BC =,D ,E 是BC 的三等分点得G 是BC 的中点,且2DE =,所以221114224AD AE AG DE AG DE AG DE ⎛⎫⎛⎫⋅=−⋅+=−= ⎪ ⎪⎝⎭⎝⎭,所以25AG =,22111594224AB AC AG BC AG BC AG BC ⎛⎫⎛⎫⋅=−⋅+=−=−=− ⎪ ⎪⎝⎭⎝⎭,故选项C 正确;对于D ,由G 是BC 的中点得2AB AC AG +=,两边平方得22224AB AB AC AC AG +⋅+=,所以2220828AB AC +=+=,故选项D 正确.故选:BCD.3.(2021·山东·二模)若,,a b c 均为单位向量,且0,()()0a b a c b c ⋅=−⋅−≤,则||a b c +−的值可能为( )A 1B .1CD .2【答案】AB 【解析】 【分析】由0,()()0a b a c b c ⋅=−⋅−≤,得到()1c a b +≥r r r ,再由a b c +−=r r r.【详解】因为,,a b c 均为单位向量,且0,()()0a b a c b c ⋅=−⋅−≤,所以2()0a b c a b c ⋅−++≤r r r r r r ,即()1c a b +≥r r r,所以a b c +−r r r1,故选:AB4.(2021·黑龙江·密山市第一中学模拟预测)在ABC 中,有如下四个命题正确的有( ) A .若0AC AB ⋅>,则ABC 为锐角三角形B .若BA BC AC +=,则ABC 的形状为直角三角形C .ABC 内一点G 满足0GA GB GC ++=,则G 是ABC 的重心D .若PA PB PB PC PC PA ⋅=⋅=⋅,则点P 必为ABC 的外心 【答案】BC 【解析】 【分析】对于A ,由0AC AB ⋅>可得角A 为锐角,从而可判断,对于B ,对BA BC AC +=两边平方化简,再结合余弦定理可得结论,对于C ,由向量加法和共线及三角形重心概念判断,对于D ,由向量运算性质和三角形垂心概念可判断 【详解】解:对于A ,由0AC AB ⋅>,得s 0co AC AB A >,所以cos 0A >,所以角A 为锐角,但不能判断三角形为锐角三角形,所以A 错误,对于B ,因为BA BC AC +=,所以2222BA BA BC BC AC +⋅+=,即2222cos BA BA BC B BC AC +⋅+=,所以222cos cos 2BA BC ACB B BA BC+−−==,得cos 0B =,因为(0,)B π∈,所以2B π=,所以三角形为直角三角形,所以B 正确,对于C ,因为0GA GB GC ++=,所以GA GB GC +=−,所以2GD GC =−(D 为BA 的中点),所以,,G C D 三点共线,所以点G 在BA 边的中线CD 上,同理,可得点G 在其它两边的中线上,所以G 是ABC 的重心,所以C 正确,对于D ,因为PA PB PB PC ⋅=⋅,所以0PA PB PB PC ⋅−⋅=,()0PB PA PC PB CA ⋅−=⋅=,所以PB CA ⊥,所以点P 在边CA 的高上,同理可得点 P 也在其它两边的高上,所以点P 为ABC 的垂心,所以D 错误, 故选:BC5.(2021·全国·模拟预测)下列说法正确的是( ) A .若,,a b c 为平面向量,//,//a b b c ,则//a c B .若,,a b c 为平面向量,,a b b c ⊥⊥,则//a cC .若1,2a b ==r r ,()a b a +⊥r r r ,则a 在b 方向上的投影为12−D .在ABC 中,M 是AB 的中点,AC =3AN ,BN 与CM 交于点P ,AP =AB λ+AC μ,则λ=2μ 【答案】CD 【解析】 【分析】利用向量共线的概念判断A 、B ,;利用向量数量积的定义可判断C ;利用向量共线的推论即可判断D. 【详解】A ,若0b =,则0与任意向量共线,所以a 与c 不一定平行,故A 错误;B ,若,a b b c ⊥⊥,则0a b ⋅=,0b c ⋅=,当,,a b c 共面时,//a c , 若,,a b c 不共面时,a 与c 不平行,故B 错误;C ,若()a b a +⊥r r r ,则()0a b a +⋅=r r r ,所以21a b a ⋅=−=−,a 在b 方向上的投影为12a b b⋅=−r r r ,故C 正确; D ,AP AN NP =+,设NP aNB =, 则()1133AP AC aNB AC a NC CB =+=++ ()112333AC aNC aCB AC aAC a CA AB =++=+++ 1233AC aAC aCA aAB =+++1133a AC aAB ⎛⎫=−+ ⎪⎝⎭, 设a λ=,则1133μλ=−,即31μλ=−,①12AP AM MP AB MP =+=+,设MP bMC =, 1111122222AP AB bMC AB b AB BA AC b AB bAC ⎛⎫⎛⎫=+=+++=−+ ⎪ ⎪⎝⎭⎝⎭, 1122λμ=−,即21λμ=−,②由①②可得25λ=,15μ=,即2λμ=,故D 正确. 故选:CD6.(2021·江苏南京·一模)设()0,0O ,()1,0A ,()0,1B ,点Р是线段AB 上的一个动点,AP AB λ=uu u r uu u r,若OP AB PA PB ⋅⋅≥,则实数λ的值可以为( ) A .1 B .12C .13D .14【答案】ABC 【解析】 【分析】设出P 点的坐标,结合OP AB PA PB ⋅⋅≥求得λ的取值范围. 【详解】设(),P x y ,由()01AP AB λλ=≤≤得()()()1,1,1,x y λλλ−=−=−, 所以()11,x P y λλλλ−=−⎧⇒−⎨=⎩, 由OP AB PA PB ⋅⋅≥得()()()()1,1,1,1,1λλλλλλ−⋅−≥−⋅−−,()()111λλλλλλ−+≥−−−,222122,241011λλλλλλ−≥−−+≤⇒≤≤由于01λ≤≤,所以11λ≤≤.111,,123⎡⎤∈⎢⎥⎣⎦,所以ABC 正确,D 错误.故选:ABC7.(2022·江苏·海安高级中学二模)关于平面向量a b c ,,,下列说去不正确的是( ) A .若··a c b c =,则a b = B .·(··)a b c a c b c =++ C .若22a b =,则··a c b c = D .()()····a b c b c a = 【答案】ACD 【解析】 【分析】令0=c 时可判断A ;利用()a b c a c b c +⋅=⋅+⋅,可判断B ;由22=a b 可知a 与b 的模长相等,但()−⋅a b c 不一定为0可判断C ;()⋅⋅a b c 与c 共线的向量,()·b c a ⋅与a 共线,可判断D . 【详解】0=c 时,0⋅=⋅=a c b c ,a 与b 可任取,故A 错;()a b c a c b c +⋅=⋅+⋅,故B 对;22=a b 可知a 与b 的模长相等,()−⋅a b c 不一定为0,∴⋅≠⋅a c b c ,故C 错;()⋅⋅a b c 与c 共线的向量,()·b c a ⋅与a 共线的向量. ∴()()⋅⋅≠⋅⋅a b b c a c ,D 错. 故选:ACD.8.(2022·山东潍坊·一模)已知向量()1,2OP =,将OP 绕原点O 旋转﹣30°,30°,60°到123,,OP OP OP的位置,则( ). A .130OP OP ⋅= B .12PP PP =C .312OP OP OP OP ⋅=⋅D .点1P 坐标为⎝⎭【答案】ABC 【解析】 【分析】根据向量的夹角判断A ,再由全等三角形可判断B ,根据向量的数量积的定义判断C ,根据向量的模相等判断D. 【详解】因为OP 绕原点O 旋转﹣30°,30°,60°到123,,OP OP OP , 所以1OP →与3OP →的夹角为90︒,故130OP OP ⋅=,A 选项正确; 由题意知,12△△OPP OPP ≅,所以12PP PP =,即12PP PP =,故B 正确; 因为312,60,,60OP OP OP OP →→→→<>=︒<>=︒,312||||||||OP OP OP OP →→→→===, 所以由数量积的定义知312OP OP OP OP ⋅=⋅,故C 正确;若点1P 坐标为⎝⎭,则1||||OP OP →→=≠D 不正确. 故选:ABC9.(2022·辽宁·育明高中一模)“圆幂定理”是平面几何中关于圆的一个重要定理,它包含三个结论,其中一个是相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.如图,已知圆O 的半径为2,点P 是圆O 内的定点,且OP =AC 、BD 均过点P ,则下列说法正确的是( )A .PA PC ⋅为定值B .OA OC ⋅的取值范围是[]2,0−C .当AC BD ⊥时,AB CD ⋅为定值 D .AC BD ⋅的最大值为12【答案】AC 【解析】 【分析】根据题设中的圆幂定理可判断AC 的正误,取AC 的中点为M ,连接OM ,利用向量的线性运算可判断B 的正误,根据直径的大小可判断D 的正误. 【详解】如图,设直线PO 与圆O 于E ,F .则()()222PA PC PA PC EP PF OE PO OE PO PO EO ⋅=−=−=−−+=−=−,故A 正确.取AC 的中点为M ,连接OM ,则()()22OA OC OM MA OM MC OM MC ⋅=+⋅+=−()222424OM OMOM =−−=−,而2202OM OP ≤≤=,故OA OC ⋅的取值范围是[]4,0−,故B 错误.当AC BD ⊥时,()()AB CD AP PB CP PD AP CP PB PD ⋅=+⋅+=⋅+⋅ 24AP CP PB PD EP PF =−−=−=−,故C 正确.因为4,4AC BD ≤≤,故16AC BD ⋅≤,故D 错误. 故选:AC10.(2022·江苏苏州·模拟预测)在ABC 中,AB c =,BC a =,CA b =,下列命题为真命题的有( )A .若a b >,则sin sin AB >B .若0a b ⋅>,则ABC 为锐角三角形C .若0a b ⋅=,则ABC 为直角三角形D .若()()0b c a b a c +−⋅+−=r r r r r r,则ABC 为直角三角形 【答案】ACD 【解析】 【分析】利用正弦定理判断选项A ,利用数量积的性质判断选项B 和C ,利用数量积的性质和余弦定理判断选项D . 【详解】解:A :若a b >,由正弦定理得2sin 2sin R A R B >, sin sin A B ∴>,则 A 正确;B :若0a b ⋅>,则cos()0ACB π−∠>, cos 0ACB ∴∠<,即ACB ∠为钝角, ABC ∴为钝角三角形,故 B 错误;C :若0a b ⋅=,则AC BC ⊥,ABC ∴为直角三角形,故 C 正确;D :若()()0b c a b a c +−⋅+−=r r r r r r ,则22()0b a c −−=r r r,2222a c b a c ∴+−=⋅r r r r r ,222cos 2a c b Ba c +−=−r r r r r , 由余弦定理知222cos 2a c bB a c +−=r r r r r, cos cos B B ∴=−,则cos 0B =,(0,)B π∈,2B π∴=,ABC 为直角三角形,故 D 正确.故选:ACD .11.(2022·全国·模拟预测)如图,直角三角形ABC 中,D ,E 是边AC 上的两个三等分点,G 是BE 的中点,直线AG 分别与BD , BC 交于点F ,H 设AB a =,AC b =,则( )A .1123AG a b =+B .1136AF a b =+C .1123EG a b =− D .3255AH a b =+【答案】ACD 【解析】 【分析】以A 为坐标原点,分别以AC ,AB 的方向为x 轴,y 轴的正方向建立平面直角坐标系,分别写出各点坐标,特别联立方程组解得H ,再根据选项一一判断即可. 【详解】以A 为坐标原点,分别以AC ,AB 的方向为x 轴,y 轴的正方向建立平面直角坐标系,设AB a =,AC b =,则()0,0A ,,03b D ⎛⎫ ⎪⎝⎭,2,03b E ⎛⎫ ⎪⎝⎭,(),0C b ,()0,B a ,,32b a G ⎛⎫⎪⎝⎭.又F 为ABE △的重心,则2,93b a F ⎛⎫⎪⎝⎭,直线AG 的方程为32a y x b =,直线BC 的方程为1x y b a +=,联立解得23,55H b a ⎛⎫ ⎪⎝⎭,则,32b a AG ⎛⎫= ⎪⎝⎭,2,93b a AF ⎛⎫= ⎪⎝⎭,,32b a EG ⎛⎫=− ⎪⎝⎭,23,55AH b a ⎛⎫= ⎪⎝⎭因为()0,a AB a ==,(),0b AC b ==,所以1123AG a b =+,1239AF a b =+,1123EG a b =−,3255AH a b =+.故选:ACD .12.(2022·广东·二模)如图,已知扇形OAB 的半径为1,2AOB π∠=,点C 、D 分别为线段OA 、OB 上的动点,且1CD =,点E 为AB 上的任意一点,则下列结论正确的是( )A .OE AB ⋅的最小值为0 B .EA EB ⋅的最小值为1C .⋅EC ED 的最大值为1 D .⋅EC ED 的最小值为0【答案】BCD 【解析】 【分析】以O 为原点建立如图所示的直角坐标系,得()01,B ,()10,A ,设EOA θ∠=,则()cos sin 0,2,πθθθ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭E ,求出2sin 4πθ⎛⎫⋅=− ⎪⎝⎭AB OE ,利用θ的范围可判断A ;求出EA 、EB 的坐标,由14πθ⎛⎫⋅=+ ⎪⎝⎭EA EB ,利用θ的范围可判断B ;设()[](),00,1∈C t t ,可得(D ,求出EC 、ED ,由⋅EC ED ()1sin θϕ=−+,利用 t 、ϕ、θ,的范围可判断CD. 【详解】以O 为原点建立如图所示的直角坐标系,所以()01,B ,()10,A , 设EOA θ∠=,则()cos sin 0,2,πθθθ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭E ,()cos sin ,θθ=OE , ()11,=−AB ,所以sin cos 4πθθθ⎛⎫⋅=−=− ⎪⎝⎭AB OE ,因为0,2πθ⎡⎤∈⎢⎥⎣⎦,所以,444πππθ⎡⎤−∈−⎢⎥⎣⎦,所以sin 4πθ⎡⎛⎫−∈⎢ ⎪⎝⎭⎣⎦,所以[]1,1⋅∈−AB OE ,OE AB ⋅的最小值为1−,故A 错误; ()1cos ,sin θθ=−−EA ,()cos ,1sin θθ=−−EB ,所以22cos cos sin sin 14πθθθθθ⎛⎫⋅=−+−+=+ ⎪⎝⎭EA EB ,因为0,2πθ⎡⎤∈⎢⎥⎣⎦,所以3,444πππθ⎡⎤+∈⎢⎥⎣⎦,所以sin 4πθ⎤⎛⎫+∈⎥ ⎪⎝⎭⎣⎦,所以114πθ⎛⎫⎡⎤+∈ ⎪⎣⎦⎝⎭,1⎡⎤⋅∈⎣⎦EA EB ,EA EB ⋅的最小值为1B 正确;设()[](),00,1∈C t t ,又1=CD ,所以OD (D ,()cos ,sin θθ=−−EC t ,()cos sin θθ=−ED ,所以()22cos cos sin 1cos θθθθθθ⋅=++=−EC ED t t()1sin θϕ=−+,其中cos ϕϕ==t ,又[]0,1t ∈,所以[]cos ,sin 0,1ϕϕ∈,所以0,2πϕ⎡⎤∈⎢⎥⎣⎦,[]0,ϕθπ+∈,()[]sin 0,1ϕθ+∈,()[]sin 1,0ϕθ−+∈−,所以[]0,1⋅∈EC ED , ⋅EC ED 的最小值为0,故CD 正确.故选:BCD.13.(2022·辽宁·东北育才学校二模)对于非零向量m ,n ,定义运算“⊗”,||||sin ,m n m n m n ⊗=〈〉.已知两两不共线的三个向量a ,b ,c ,则下列结论正确的是( ) A .若a b ⊥,则⊗=a b a b B .()()a b c a b c ⊗=⊗ C .()a b a b ⊗=−⊗ D .()()()a b c a c b c +=+⊗⊗⊗【答案】AC 【解析】 【分析】A. 由运算“⊗”,||||sin ,m n m n m n ⊗=〈〉求解判断;B.举例()()()1,0,0,1,0,1===−a b c 求解判断;C.设,a b 的夹角为θ,则,−a b 的夹角为πθ−,由运算“⊗”,||||sin ,m n m n m n ⊗=〈〉求解判断;D.举例()()()1,0,0,1,1,1===a b c ,由运算“⊗”,||||sin ,m n m n m n ⊗=〈〉求解判断; 【详解】A. 因为a b ⊥,所以,90=a b ,则sin ,⊗==a b a b b a b a ,故正确;B. 若()()()1,0,0,1,0,1===−a b c ,则()()0,1,()0⊗=−⊗=a b c a b c ,所以()()⊗≠⊗a b c a b c ,故错误;C.设,a b 的夹角为θ,则,−a b 的夹角为πθ−,所以()sin ,()sin sin θπθθ⊗=−⊗=−−=a b a b a b a b a b ,则()a b a b ⊗=−⊗,故正确; D. 若()()()1,0,0,1,1,1===a b c ,则()0()()2,+=+=⊗⊗⊗a b c a c b c ,所以()()()+≠+⊗⊗⊗a b c a c b c ,故错误;故选:AC14.(2022·山东·模拟预测)已知在△ABC 中,AB =,2AB AM =uu u r uuu r,2CM CN =,若0AN BC ⋅=,则( )A .23AB AC AN += B .()2AB ACCM −C .AB AC ⊥D .45ACM ∠=︒【答案】BC 【解析】根据条件先推出,M N 是中点,利用中线向量的表达式可判断AB 选项,利用0AN BC ⋅=可以判断C 选项,根据C 选项和题目条件可判断D 选项.【详解】因为2AB AM =uu u r uuu r,2CM CN =,所以,M N 分别为,AB CM 的中点, 所以()1122AN AM AC =+=111242AB AC AB AC ⎛⎫+=+ ⎪⎝⎭,所以24AB AC AN +=,故选项A 错误;由222AB AC AM AC −=−=2CM ,得()2AB AC CM −,故选项B 正确;因为AB =,()()12AN BC AC AM AC AB ⋅=+⋅− ()221111*********AC AB AC AB AC AB AB AC AB AC ⎛⎫⎛⎫=+⋅−=−−⋅=−⋅= ⎪ ⎪⎝⎭⎝⎭,所以AB AC ⊥,故选项C 正确;由AB AC ⊥,得tan 2AM AB ACM AC AC ∠== 则45ACM ∠≠︒,故选项D 错误. 故选:BC.15.(2022·全国·模拟预测)如图,在等腰梯形ABCD 中,222AB AD CD BC ===,E 是BC 的中点,连接AE ,BD 相交于点F ,连接CF ,则下列说法正确的是( )A .3142AE AB AD →→→=+B .3255AF AB AD →→→=+C .1255BF AB AD →→→=−+ D .13105CF AB AD →→→=− 【答案】ABD 【解析】 【分析】根据平面向量的线性运算并结合平面向量共线定理即可判断答案.对于A 选项,1122AE AB BE AB BC AB AB AD DC →→→→→→→→→⎛⎫=+=+=+−++ ⎪⎝⎭11312242AB AB AD AB AB AD →→→→→→⎛⎫=+−++=+ ⎪⎝⎭,故A 选项正确;对于B 选项,因为B ,F ,D 三点共线,设()1AF x AB x AD →→→=+−,由AF AE →→∥,所以存在唯一实数λ,使得AF AE λ→→=,结合A 可知,()3131114242x AB x AD AB AD x AB x AD λλλ→→→→→→⎛⎫⎛⎫⎛⎫+−=+⇒−=−+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为,AB AD →→不共线,所以303415102x x x λλ⎧−=⎪⎪⇒=⎨⎪−+=⎪⎩,所以3255AF AB AD →→→=+,故B 选项正确; 对于C 选项,结合B ,2255BF AF AB AB AD →→→→→=−=−+,故C 选项错误;对于D 选项,结合B ,132********CF CD DA AF AB AD AB AD AB AD →→→→→→→→→→=++=−−++=−,故D 选项正确. 故选:ABD.16.(2021·全国·模拟预测)已知ABC 的重心为G ,点E 是边BC 上的动点,则下列说法正确的是( ) A .AG BG CG +=− B .若2133AE AB AC =+,则EAC 的面积是ABC 面积的13C .若2AB AC ==,3BC =,则76AB AG ⋅=D .若2AB AC ==,3BC =,则当EA EB ⋅取得最小值时,37||2EA =【答案】AC 【解析】 【分析】利用平面向量的基底表示,结合重心的性质,判断选项AB ,利用余弦定理计算角,根据平面向量的基底表示计算向量的数量积,从而判断选项CD.设AB 的中点为D ,则2GA GB GD +=,则2AG BG GD CG +=−=−,即2CG GD =,由重心性质可知成立,故A 正确;32AE AB AC =+,则22AE AC AB AE −=−,即2CE EB =,所以E 为边BC 上靠近点B 的三等分点,则EAC 的面积是ABC 面积的23,故B 错误;在ABC 中,由余弦定理得1cos 8A =−,则()211()33AB AG AB AB AC AB AB AC ⋅=⋅+=+⋅=117422386⎡⎤⎛⎫+⨯⨯−= ⎪⎢⎥⎝⎭⎣⎦,故C 正确; 由余弦定理得3cos 4ABC ∠=,所以2()EA EB EB EB BA EB EB BA ⋅=⋅+=+⋅=2||||EB EB BA +⋅22339cos()||||2416ABC EB EB EB π⎛⎫−∠=−=−− ⎪⎝⎭,则当3||4EB =时,EA EB ⋅取得最小值916−,此时()229337||422cos 16416=−=+−⨯⨯⨯∠=EA EB AB ABC ,37||4=EA ,故D 错误. 故选:AC【点睛】一般计算平面向量的数量积时,如果不能采用定义或者坐标公式运算时,可利用向量的基底表示,根据向量的线性运算法则将所求向量表示为已知向量的和或差进行计算.17.(2022·广东茂名·一模)已知点A 是圆C :()2211x y ++=上的动点,O 为坐标原点,OA AB ⊥,且||||OA AB =,O ,A ,B 三点顺时针排列,下列选项正确的是( )A .点B 的轨迹方程为()()22112x y −+−= B .||CB的最大距离为1C .CA CB ⋅1 D .CA CB ⋅的最大值为2 【答案】BD 【解析】 【分析】如图,过O 点作//,OD AB OD AB =且,设点(),B x y ,利用相关点代入法,可求得轨迹方程为()()22112x y ++−=,可判断A ;根据点到圆上距离的最值求解,可判断B ;设[0,90]CAO ,∠=θθ∈,将向量的数量积表示成关于θ的函数,可判断C ,D ;【详解】如图,过O 点作//,OD AB OD AB =且则点()1,0C −,设点()00,A x y ,设xOA α∠=,则2xOD πα∠=−,设||OA a =,所以,0cos x a α=,0sin y a α=,所以,0cos sin 2D x a a y παα⎛⎫=−== ⎪⎝⎭,0sin cos 2D y a a x παα⎛⎫=−=−=− ⎪⎝⎭,即点()00,D y x −,因为()0000,OB OA OD x y y x =+=+−,设点(),B x y ,可得0000x x y y y x =+⎧⎨=−⎩,解得0022x y x x y y −⎧=⎪⎪⎨+⎪=⎪⎩, 因为点A 在圆()2211x y ++=上,所以()220011x y ++=,将0022x y x x y y −⎧=⎪⎪⎨+⎪=⎪⎩代入方程()220011x y ++=可得221122x y x y −+⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭, 整理可得()()22112x y ++−=,所以A 是错的, 所以CB的最大距离为1B 是对的, 设,090CAO θθ︒∠=≤≤,2o ()1||||cos(90)CA CB CA CA AB CA CA AB CA AB ⋅=⋅+=+⋅=+⋅−θ 1|OA |sin 12cos sin 1sin 22=+=+=+≤θθθθ所以CA CB ⋅的最大值为2,D 是对的. 故选:BD18.(2021·全国·模拟预测)在ABC 中,D ,E 分别是线段BC 上的两个三等分点(D ,E 两点分别靠近B ,C 点),则下列说法正确的是( ) A .AB AC AD AE +=+ B .若F 为AE 的中点,则1344BF AC AB =− C .若0AB AC ⋅=,1AB =,2AC =,则109AD AE ⋅=D .若3AB AC AB AC +=−,且AB AC =,则60CAB ∠=︒ 【答案】ACD 【解析】 【分析】取BC 的中点M ,则M 也是DE 的中点,根据向量的加法运算即可判断A ;根据平面向量基本定理及线性运算即可判断B ;根据平面向量数量积的运算律即可判断C ;根据平面向量基本定理及线性运算结合等腰三角形的性质即可判断D. 【详解】解:对于A ,取BC 的中点M ,则M 也是DE 的中点, 则有()()1122AM AB AC AD AE =+=+,所以AB AC AD AE +=+,故A 正确; 对于B ,若F 为AE 的中点,则111251223363BF BA AF AB AE AB AB AC AB AC ⎛⎫=+=−+=−++=−+ ⎪⎝⎭,故B 错误;对于C ,因为D ,E 分别为线段BC 上的两个三等分点,所以()()()111333AD AE AB BD AC CE AB BC AC BC AB AC AB ⎛⎫⎛⎫⎡⎤⋅=+⋅+=+−=+− ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦,()221212122533333999AC AC AB AB AC AC AB AB AC AB ⎡⎤⎛⎫⎛⎫−−=+⋅+=++ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭,()21014099AC =⨯++=,故C 正确;对于D ,由A 选项得,2AB AC AM +=, 由AB AC CB −=,因为3AB AC AB AC +=−,所以32AM CB =,即AM CM = 因为AB AC =,所以AM BC ⊥,AM 平分BAC ∠,在Rt AMC 中,tan AM ACB CM∠=60ACB ∠=︒,所以ABC 为等边三角形,所以60CAB ∠=︒,故选:D. 故选:ACD.19.(2021·全国·模拟预测)如图,已知点G 为ABC 的重心,点D ,E 分别为AB ,AC 上的点,且D ,G ,E 三点共线,AD mAB =,AE nAC =,0m >,0n >,记ADE ,ABC ,四边形BDEC 的面积分别为1S ,2S ,3S ,则( )A .113m n+= B .12S mn S = C .1345S S ≥ D .1345S S ≤ 【答案】ABC 【解析】 【分析】连接AG 并延长交BC 于点M ,由三角形重心结合向量运算探求m ,n 的关系, 再借助三角形面积公式及均值不等式即可逐项判断作答. 【详解】连接AG 并延长交BC 于点M ,如图,因G 为ABC 的重心,则M 是BC 边的中点,且23AG AM =uuu r uuu r,又D ,G ,E 三点共线,即(01)DG tDE t =<<,则有(1)AG t AD t AE =−+,而AD mAB =,AE nAC =,又()12AM AB AC =+uuu r uu u r uuu r ,于是得11(1)33t mAB tnAC AB AC −+=+,而AB 与AC 不共线,因此,11(1),33t m tn −==,113(1)33t t m n+=−+=,A 正确;ADE 边AD 上的高为sin AE BAC ∠,ABC 边AB 上的高为sin AC BAC ∠,则121sin 2·1sin 2AD AE BAC S AD AEmn S AB ACAB AC BAC ⋅∠===⋅∠,B 正确;由A可知,11133m n =+≥23m n ==时取“=”,则有49mn ≥,即1249S S ≥,而121S S <,于是得11213212121141145119S S S S S S S S S S ==−=−≥=−−−−,C 正确,D 错误. 故选:ABC20.(2021·全国·模拟预测)已知向量()3,2a =−,()2,1b =r,(),1c λ=−,R λ∈,则( )A .若()2a b c +⊥,则4λ= B .若a tb c =+,则6t λ+=− C .a b μ+的最小值为D .若向量a b +与向量2b c +的夹角为锐角,则λ的取值范围是(),1−∞− 【答案】ABC 【解析】 【分析】对于A ,根据两向量垂直时其数量积为0可求得λ的值;对于B ,根据向量相等建立方程组可求得λ、t 的值,即可得t λ+的值;对于C ,由模的计算公式求出a b μ+,然后利用二次函数的性质求解即可;对于D ,由两向量的夹角为锐角时其数量积大于0且两向量不共线即可求出λ的范围. 【详解】对于A ,因为()21,4a b +=,(),1c λ=−,()2a b c +⊥, 所以()()21410a b c λ+⋅=⨯+⨯−=,解得4λ=,所以A 正确; 对于B ,由a tb c =+,得()()()()3,22,1,12,1t t t λλ−=+−=+−, 则3221t t λ−=+⎧⎨=−⎩,解得93t λ=−⎧⎨=⎩,故6t λ+=−,所以B 正确;对于C ,因为()()()3,22,123,2a b μμμμ+=−+=−+, 所以(2a b μμ+=− 则当45μ=时,a b μ+取得最小值为C 正确;对于D ,因为()1,3a b +=−,()24,1b c λ+=+,因为向量a b +与向量2b c +的夹角为锐角, 所以()()()214310a b b c λ+⋅+=−⨯++⨯>,解得1λ<−;由题意知向量a b +与向量2b c +不共线,()11340λ−⨯−⨯+≠,解得133λ≠−. 所以λ的取值范围是1313,,133⎛⎫⎛⎫−∞−⋃−− ⎪ ⎪⎝⎭⎝⎭,所以D 不正确.综上可知,选ABC . 故选:ABC.21.(2021·全国·模拟预测)已知ABC 是半径为2的圆O 的内接三角形,则( ) A .若π3C =,则6AB AO ⋅=uu u r uuu r B .若()2BC BA AC AC +⋅=,则AB 为圆O 的一条直径C .若OA OB OA OB −=⋅uu r uu u r uu r uu u r ,则OA ,OB 的夹角π3θ=D .若20OA AB AC ++=,则22BC =【答案】AC 【解析】 【分析】对于A ,结合正弦定理求出AB ,过点O 作⊥OD AB 于D ,得0DO AB ⋅=,然后将AB AO ⋅转化为()AB AD DO ⋅+uu u r uuu r uuu r 即可求解;对于B ,根据平面向量运算法则可由()20BC BA AC AC +⋅−=uu u r uu r uu u r uu u r 得到20BA AC ⋅=uu r uu u r,由此可作出判断;对于C ,将OA OB OA OB −=⋅uu r uu u r uu r uu u r 两边平方,利用向量的数量积运算求出cos θ的值,从而结合0OA OB ⋅>求得角θ;对于D ,由题设条件并结合平面向量的线性运算得到0OB OC +=,由此可作出判断. 【详解】对于A ,由正弦定理,得π2sin 22sin3AB R C ==⨯=过点O 作⊥OD AB 于D ,则0DO AB ⋅=,所以()AB AO AB AD DO AB AD AB DO ⋅=⋅+=⋅+⋅uu u r uuu r uu u r uuu r uuu r uu u r uuu r uu u r uuu r(22110622AB =+=⨯=uu u r ,故A 正确;对于B ,()()()220BC BA AC AC BC BA AC AC BC BA CA AC BA AC +⋅−=+−⋅=++⋅=⋅=uu u r uu r uu u r uu u r uu u r uu r uu u r uu u r uu u r uu r uu r uu u r uu r uu u r ,所以AB AC ⊥,所以BC 为圆O 的一条直径,故B 不正确; 对于C ,由OA OB OA OB −=⋅uu r uu u r uu r uu u r ,两边平方,得288cos 16cos θθ−=,解得1cos 2θ=或cos 1θ=−,易知,0OA OB ⋅>,则π0,2θ⎛⎫∈ ⎪⎝⎭,所以π3θ=,故C 正确;对于D ,由20OA AB AC ++=,得0OA AB OA AC OB OC +++=+=,所以点O 是线段BC 的中点,所以4BC =,故D 不正确.综上可知,选AC. 故选:AC22.(2021·全国·模拟预测)已知向量a ,b 满足2=a ,()2,2b =,且26a b +=,则下列结论正确的是( ) A .a b ⊥ B .23a b +=C .(2,a =或(2,a =−D .a 与2a b +的夹角为45°【答案】ABC 【解析】 【分析】对于A ,由26a b +=,两边平方求解判断;对于B ,由a b +平方求解;对于C ,设(),a x y =,由26a b +=求解判断;对于D ,利用夹角公式求解判断. 【详解】对于A ,由()2,2b =,得22b =,因为26a b +=,所以224436a b b a ⋅+=+,又2=a ,所以0a b ⋅=,a b ⊥,故A 正确;对于B ,因为22224812a b b a b a +⋅=+++==,所以23a b +=,故B 正确;对于C ,设(),a x y =,则2(4,4)a b x y +=++,22(4)(4)36x y +++=,解得0x y +=,从而(2,a =或(2,a =−,故C 正确;对于D ,()241cos ,22632a a ba ab a a b⋅++===⨯⋅+,故D 错误. 故选:ABC23.(2021·山东泰安·模拟预测)如图,在直角三角形ABC 中,90,A AB AC ===点P 在以A 为圆心且与边BC 相切的圆上,则( )A .点P 所在圆的半径为2B .点P 所在圆的半径为1C .PB PC ⋅的最大值为14D .PB PC ⋅的最大值为16【答案】AC 【解析】 【分析】Rt ABC 斜边BC 上的高即为圆的半径;把求PB PC ⋅的最大值通过向量加法的三角形法则转化为求42PA PM +⋅的最大值,从而判断出P ,M ,A 三点共线,且P ,M 在点A 的两侧时取最大值. 【详解】设AB 的中点为M ,过A 作AH 垂直BC 于点H ,因为90,A AB AC ===所以5BC =,52AM =,所以由1122AB AC BC AH =,得2AB AC AH BC ==,所以圆的半径为2,即点P 所在圆的半径为2,所以选项A 正确,B 错误;因为PB PA AB =+,PC PA AC =+,0AC AB ⋅=, 所以()()2·PB PC PA AB PA AC PA PA AC AB PA ⋅=++=+⋅+⋅ ()242AC A PA PA PA B PM =+⋅+=+⋅ ,所以当P ,M ,A 三点共线,且P ,M 在点A 的两侧时,2P PA M ⋅取最大值,且最大值为()max52222102PA P PM A PM ⋅=⋅=⨯⨯=, 所以PB PC ⋅的最大值为41014+=,所以选项C 正确,D 错误.故选:AC.24.(2022·重庆·模拟预测)重庆荣昌折扇是中国四大名扇之一,始于1551年明代嘉靖年间,明末已成为贡品人朝,产品以其精湛的工业制作而闻名于海内外.经历代艺人刻苦钻研、精工创制,荣昌折扇逐步发展成为具有独特风格的中国传统工艺品,其精雅宜士人,其华灿宜艳女,深受各阶层人民喜爱.古人曾有诗赞曰:“开合清风纸半张,随机舒卷岂寻常;金环并束龙腰细,玉栅齐编凤翅长,偏称游人携袖里,不劳侍女执花傍;宫罗旧赐休相妒,还汝团圆共夜凉”图1为荣昌折扇,其平面图为图2的扇形COD ,其中2,333COD OC OA π∠===,动点P 在CD 上(含端点),连接OP 交扇形OAB 的弧AB 于点Q ,且OQ xOC yOD =+,则下列说法正确的是( )图1 图2 A .若y x =,则23x y += B .若2y x =,则0OA OP ⋅= C .2AB PQ ⋅≥− D .112PA PB ⋅≥【答案】ABD 【解析】 【分析】建立平面直角系,表示出相关点的坐标,设2(cos ,sin ),[0,]3Q πθθθ∈ ,可得(3cos ,3sin )P θθ,由OQ xOC yOD =+,结合题中条件可判断A,B;表示出相关向量的坐标,利用数量积的运算律,结合三角函数的性质,可判断C ,D. 【详解】如图,作OE OC ⊥ ,分别以,OC OE 为x ,y 轴建立平面直角坐标系,则13(1,0),(3,0),((22A C B D −− ,设2(cos ,sin ),[0,]3Q πθθθ∈ ,则(3cos ,3sin )P θθ,由OQ xOC yOD =+可得3cos 3,sin 2x y y θθ=−= ,且0,0x y >> ,若y x =,则22223cos sin (3))12x x θθ+=−+=,解得13x y == ,(负值舍去),故23x y +=,A 正确;若2y x =,则3cos 302x y θ=−=,(1,0)(0,1)0OA OP ⋅=⋅=,故B 正确;3((2cos ,2sin )3cos )23AB PQ πθθθθθ⋅=−⋅=−=− ,由于[0,]3θ2π∈,故[,]333πππθ−∈−,故)33πθ−≥−,故C 错误;由于1(3cos 1,3sin ),(3cos ,3sin 2PA PB θθθθ=−=+,故1(3cos 1,3sin )(3cos ,3sin 2PA PB θθθθ⋅=−⋅+173sin()26πθ=−+ ,而5[,]666πππθ+∈, 故173sin(17)2611322PA PB πθ⋅=−+≥−=,故D 正确, 故选:ABD25.(2022··一模)平面向量,,a b c →→→,满足1a →=,2b →=且a a b →→→⎛⎫⊥− ⎪⎝⎭,20→→→→⎛⎫⎛⎫−⋅−= ⎪ ⎪⎝⎭⎝⎭c a c b ,则下列说法正确的是( )A .2→→+=a b B .a →在b →方向上的投影是1C .c →1 D .若向量m →满足2→→⋅=m a ,则→→→⎛⎫⋅− ⎪⎝⎭m m b 的最小值是54【答案】ACD 【解析】 【分析】结合题意,直接根据两向量垂直和向量的数量积运算,即可判断A 选项;根据a →在b →方向上的投影是cos a b a bθ→→→→⋅=进行计算,即可判断B 选项;设,,OA a OB b OC c →→→→→→===,根据题意可知OA BA ⊥,并取2→→=OD OA ,从而得出动点C 在以BD 为直径的圆上,设BD 的中点为E ,从而得出max 1=+OC OE ,即可判断C 选项;设→→=OM m ,由2→→⋅=m a 可知故M 在垂线l 上,根据向量的加减法运算得出22→→→→→⎛⎫⋅−=− ⎪⎝⎭m m b MF OF ,过F 作l 的垂线,垂足为1M ,可知2221924+⎛⎫≥== ⎪⎝⎭OD AD MF M F ,即可求出→→→⎛⎫⋅− ⎪⎝⎭m m b 的最小值,从而可判断D 选项. 【详解】解:因为1a →=,2b →=且a a b →→→⎛⎫⊥− ⎪⎝⎭,则20a a b →→→−⋅=,所以1a b →→⋅=,又221,4→→==a b ,则22224412→→→→→→+=+⋅+=a b a a b b ,则2→→+=a b A 正确;由于a →在b →方向上的投影是1cos 2θ→→→→⋅==a ba b,故B 错误;设,,OA a OB b OC c →→→→→→===,由于a a b →→→⎛⎫⊥− ⎪⎝⎭,即→→→⎛⎫⊥− ⎪⎝⎭OA OA OB ,故OA BA ⊥,因为20→→→→⎛⎫⎛⎫−⋅−= ⎪ ⎪⎝⎭⎝⎭c a c b ,取2→→=OD OA ,则0→→→→⎛⎫⎛⎫−⋅−= ⎪ ⎪⎝⎭⎝⎭OC OD OC OB ,所以0→→⋅=DC BC ,所以动点C 在以BD 为直径的圆上,如图, 1,2==OA OB ,则2OD =,2BD =,设BD 的中点为E ,OB 的中点为F ,过D 作OD 的垂线l ,则max 1=+OC OE ,因为OE =c →1,故C 正确; 设→→=OM m ,因为2→→⋅=m a ,即2→→⋅=OM OA ,则cos 2→→⋅∠=OM OA AOM , 所以cos 2→∠==OM AOM OD ,故M 在垂线l 上,而→→→→→→→→→⎛⎫⎛⎫⎛⎫⋅−=⋅=+⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭m m b OM BM MF FO MF FB ,又F 是OB 的中点,所以→→=−FB FO ,则22→→→→→⎛⎫⋅−=− ⎪⎝⎭m m b MF OF ,过F 作l 的垂线,垂足为1M ,则2221924+⎛⎫≥== ⎪⎝⎭OD AD MF M F ,又1OF =,所以2295144→→→→→⎛⎫⋅−=−≥−= ⎪⎝⎭m m b MF OF ,所以→→→⎛⎫⋅− ⎪⎝⎭m m b 的最小值是54,故D 正确.故选:ACD.。

【备战2013年】历届高考数学真题汇编专题7_平面向量最新模拟_理

【备战2013年】历届高考数学真题汇编专题7_平面向量最新模拟_理

【备战2013 年】历届高考数学真题汇编专题7 平面向量最新模拟理BA BC =_1、(2012滨州二模)在△ABC 中,若AB= 1, AC= 3 , | AB AC | | BC |,则| BC |__x y 502、(2012 德州一模)已知在平面直角坐标系xOy 上的区域D由不等式组y x确定,x 1若 M( x, y ) 为区域D上的动点,点 A 的坐标为 (2 , 3) ,则z OA OM 的最大值为( )A.5 B.10 C.14 D. 2523、( 2012 济南 3 月模拟)在△ABC中,E、F分别为AB,AC中点.P为EF上任一点 , 实数x,满足PA+x PB+y PC=0. 设△ABC PBC PCA PAB S S1, S2, S3,记,△,△,△的面积分别为,S1,S2S33 , 则 3 取最大值时,2x+y的值为S1S2,2S33 A. -1 B. 1 C. -2D.24、( 2012 济南三模)已知非零向量 a 、b满足向量a b 与向量 a b的夹角为,那么下列2结论中一定成立的是A.a b B.|a| |b|C.a b D.a b答案: B解析:因为向量 a b 与向量 a b 的夹角为,所以 (a b) ( a b) ,即222(a b) (a b)0 ,所以 ab0 ,即 a b ,选B.5、( 2012 莱芜 3 月模拟)已知向量a(1,2) ,b(0,1),设u a kb, v2a b ,若u //v,则实数 k 的值是(A)7(B)1(C)4(D)8 2233【答案】 B【解析】 v2(1,2)(0,1)( 2,3) , u (1,2)k(0,1)(1,2k) ,因为u //v,所以2(2k) 1 3 0,解得 k 1,选 B.2的函数 y f (x) 图像的两个端点为A、B, M(x, y)6、( 2012莱芜 3 月模拟)定义域为[a,b]是 f (x)图象上任意一点,其中 x a(1)b [ a, b] ,已知向量ON OA (1)OB ,若不等式| MN |k 恒成立,则称函数 f (x)在[ a, b]上“k 阶线性近似”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 .(2012山东文)
函数1
()ln(1)f x x =++ ( )
A .[2,0)(0,2]-
B .(1,0)(0,2]-
C .[2,2]-
D .(1,2]-
2 .(2012江西文)设函数211
()2
1x x
f x x x ⎧+≤⎪=⎨>⎪⎩,则((3))f f =( )
A .1
5 B .3 C .23 D .13
9
3 .(2012陕西文)下列函数中,既是奇函数又是增函数的为 ( )
A .1y x =+
B .2y x =-
C .1
y x = D .||y x x =
4.(2012安徽文)23log 9log 4⨯= ( )
A .14
B .1
2 C .2 D .4
5.(2012朝阳区高三期末)函数⎪⎩⎪⎨⎧≥-
<=)0(12)
0(2x x x y x 的图象大致是( )
6、(2012唐山市高三上学期期末)设()4x f x e x =+-,则函数()f x 的零点位于区间( )
A .(-1,0)
B .(0,1)
C .(1,2)
D .(2,3)
7
、设323log ,log log a b c π=== )
A. a b c >>
B. a c b >>
C. b a c >>
D. b c a >>
8.若函数()y f x =是函数(0,1)x y a a a =>≠且
的反函数,其图像经过点)a ,则()f x =
A.2log x B.12log x C.12
x D.2
x
9.已知函数f (x )=x 2+ax +b -3(x ∈R )图象恒过点(2,0),则a 2+b 2的最小值为( )
A .5 B.15 C .4 D.14
10.下列函数()f x 中,满足“对任意1x ,2x ∈(0,+∞),当1x <2x 时,都有1()f x >2()f x 的是
A .()f x =1
x B. ()f x =2(1)x - C .()f x =x e D ()ln(1)f x x =+
11.已知函数f (x )=2x +ln x ,若a n =0.1n (其中n ∈N *),则使得|f (a n )-2012|取得最小值的n 的值是(
) A .100 B .110 C .11 D .10
12.(2012湖北文)已知定义在区间[0,2]上的函数 ()y f x =的图象如图所示,则(2)y f x =--的图象为
A B C D
二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)
13、(2011江苏2)函数)12(log )(5+=x x f 的单调增区间是__________
14、已知函数3,1,(),1,
x x f x x x ⎧≤=⎨->⎩若()2f x =,则x = .
15.(2012上海文)已知)(x f y =是奇函数. 若2)()(+=x f x g 且1)1(=g .,则=-)1(g _______ .
16.(2012重庆文)函数()()(4)f x x a x =+- 为偶函数,则实数a =________ 1 .(2012重庆文)设x R ∈ ,向量(,1),(1,2),a x b ==- 且a b ⊥ ,则||a b += ( )
A B C .D .10
2、(2012厦门市高三上学期期末质检)已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( )
A.2-
B.31-
C.1-
D.3
2- 3.(2012广东文)(向量)若向量()1,2AB = ,()3,4BC = ,则AC = ( )
A .()4,6
B .()4,6--
C .()2,2--
D .()2,2 4、(江西省泰和中学2012届高三12月)已知平面向量a ,b 满足||1,||2,a b == a 与b 的夹角为60︒,则“m=1”
是“()a mb a -⊥ ”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件 5、(2012黄冈市高三上学期期末)若20AB BC AB ⋅+= ,则ABC ∆必定是( )
A .锐角三角形
B .直角三角形
C .钝角三角形
D .等腰直角三角形
6、(2012金华十校高三上学期期末联考)设向量a ,b 满足||1,||a a b =-=
()0a a b ⋅-= ,则|2|a b + = ( )
A .2
B .
C .4
D .7 .(2012浙江文)设a ,b 是两个非零向量.
( ) A .若|a +b |=|a |-|b |,则a ⊥b B .若a ⊥b ,则|a +b |=|a |-|b |
C .若|a +b |=|a |-|b |,则存在实数λ,使得b =λa
D .若存在实数λ,使得b=λa ,则|a +b |=|a |-|b |
8.若O 为平面内任一点且(OB →+OC →-2OA →)·(AB →-AC →)=0,则△ABC 是( )
A .直角三角形或等腰三角形
B .等腰直角三角形
C .等腰三角形但不一定是直角三角形
D .直角三角形但不一定是等腰三角形 9.(2011四川)如图,正六边形ABCDEF 中,BA CD EF ++
= A .0 B .BE C .AD D .CF 10、(2012唐山市高三上学期期末)在边长为1的正三角形ABC 中,13
BD BA = ,E 是CA 的中点,则CD BE ⋅ = ( )
6
1.31.21.32,----D C B A
11 .(2012天津文)在ABC ∆中,90A ∠=︒,1AB =,设点,P Q 满足,(1),AP AB AQ AC R λλλ==-∈ .若2BQ CP ⋅=- ,则λ=
( ) A .13 B .23 C .43
D .2 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13、(2012江西文)设单位向量(,),(2,1)m x y b ==- 。

若m b ⊥ ,则|2|x y +=___________。

14.已知向量a =(3,1),b =(1,3),c =(k,7),若(a -c )∥b ,则k =________. 15、(2012粤西北九校联考)已知向量a =),2,1(-x b =),4(y ,若a ⊥b ,则y x 39+的最小值为
14.(2012湖南文)如图4,在平行四边形ABCD 中 ,AP ⊥BD,垂足为P,3AP =且AP AC = _____.
16. (本小题满分12分) 已知函数()2sin cos cos 2f x x x x =+(x ∈R ).
(1) 求()f x 的最小正周期和最大值;
(2) 若θ为锐角,且83f πθ⎛⎫+
= ⎪⎝⎭,求tan 2θ的值.
已知()4sin ,0,52ππαα⎛⎫-=∈ ⎪⎝⎭
(1)求2sin 2cos
2αα-的值 (2)求函数()51cos sin 2cos 262
f x x x α=
-的单调递增区间。

如图5所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,AB ∥CD ,PD AD =,E 是PB 的中点,F 是DC 上的
12
DF AB =,PH 为PAD ∆中AD 边上的高. (Ⅰ)证明:PH ⊥平面ABCD ;
(Ⅱ)
若1PH =,AD 1FC =,求三棱锥E BCF -的体积;
(Ⅲ)证明
:EF ⊥平面PAB .。

相关文档
最新文档