人教A版高中数学必修三3.1.1《随机事件的概率》目标导学
人教A版高中数学必修3《第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》_5
<<概率的意义>>说课稿一、教材分析1.教材所处的地位和作用《空间两点间的距离公式》是人教A版数学必修三的内容。
现实生活中存在着大量不确定事件,而概率正是研究不确定事件的一门学科。
学习概率,是在学生已经初步了解统计知识,掌握方差、频率等概念的基础上继续学习的,它在人们的生活和生产建设中有着广泛的应用,也是今后进一步学习概率的预备知识,所以这节课的学习,无论在教材中,还是以后的知识学习中,都起着十分重要的作用。
2.学情分析学习的主体是高二学生。
由于学生之前已经学习过有关概率的知识,对于本节课的知识有一定的基础,希望通过本节课的教学,能让学生在学习的过程中深刻地领悟到蕴涵其中的重要的数学思想和方法,学会由浅入深,由特殊到一般地研究数学问题,培养学生的发散思维。
3.教学目标:(1)知识与能力①正确理解概率的意义;②利用概率知识正确理解现实生活中的实际问题。
(2)过程与方法通过对现实生活中的“掷币”,“游戏的公平性”,“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法。
(3)情感、态度与价值观通过对概率的实际意义的理解,体会知识来源于实践并应用于实践的辩证唯物主义观,进而体会数学与现实世界的联系。
4、教学重点和难点(1)重点:对概率含义的正确理解及其在实际中的应用。
(2)难点:随机试验结果的随机性与规律性的联系。
二、教法与学法分析1、教法(1)用学生熟悉的主题活动将所学的知识有机的整合在一起;(2)引导学生通过对事件的分类来认识概率的意义;(3)在问题的思考、交流、解决中培养和发展学生的思维能力。
总之,教学中多采用引导探究合作交流的学习方法,利用多媒体课件、图片展示辅助教学。
预设情境问题,分组交流的学习模式,课堂围绕各小组对预习作业的成果展示进行教学,由学习小组选派代表阐述回答各个环节的问题,教师对学生的回答及时做出评价、分析、指导、给出正确答案和结论,突出重点,突破难点。
山东省高中数学《3.1.1 随机事件的概率》导学案 新人教A版必修3
3.课本p127 练习1 2 3
作业
布置
1.习题3-1 1,2
2. 教辅资料
3. 预习下一节内容
学习小结/教学
反思
3.思考:
(1)如果随机事件A在n次试验中发生了m次,则事件A的概率一定是 ?
(2)如何用频率来研究事件发生的概率?
(3)回答教材p124的“思考交流”
精讲互动
例1.判断下列事件哪些是必然事件,哪些是不肯能事件,哪些是随机事件?
(1)掷一枚骰子两次,所得点数之和大于12.
(2)如果 ,那么 ;
(3)掷一枚硬币,出现正面向上;
(3)随机事件:有些事件我们事先无法肯定其会不会发生;
2.随机事件的的记法:通常用来表示随机事件,随机事件简称为.
3. 思考:(1)如何判定一个事件是必然事件、不可能事件还是随机事件?
(2)随机事件说法中“同样的条件下”能否去掉?请举例说明
探索新知:
1.随机事件的有关概念的频率:
(1)频率是一个变化的量,但是在试验时,它又具有,——在一个附近摆动;
(4)从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签;
(5)某电话机在1分钟内接到2次呼叫;
(6)没有水分,种子能发芽.
例2.下列说法正确的是 ( ).
①频数和频率都反映一个对象在实验总次数中出现的频繁程度;
②每个实验结果出现的频数之和等于实验的总次数;
③每个实验结果出现的频率之和不一定等于1;
④概率就是频率.
A. ① B.①②④ C. ①② D,,10是的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:
人教版数学必修三3.1.1《随机事件的概率》配套导学案
人教版数学必修三3.1.1《随机事件的概率》配套导学案本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March随机事件的概率导学案学习目标:①了解随机事件、必然事件、不可能事件的概念②正确理解事件A出现的频率的意义③正确理解概率和频率的意义及其区别④运用概率知识正确理解生活中的实际问题【重点难点】理解频率和概率的关系【学法指导】小组合作交流探究学习过程与内容一、课前预习课前预习P108页完成下列问题判断下列事件是什么事件(1)导体通电时,发热(2)抛一石块,下落(3)在标准大气压下且温度低于00C时,冰融化(4)在常温下,铁熔化(5)掷一枚硬币,出现正面向上(6)科比投篮一次,进球知识梳理:1、随机事件:____________________________________________________2、必然事件:____________________________________________________3、不可能事件:__________________________________________________4、频数与频率:__________________________________________________5、事件:____________________________________________________二、知识的形成1、掷硬币实验:(自己动手操作)步骤:(1)每人取一枚硬币,掷20次,并且记录结果,填入表格中(2)各组学习组长统计本组实验次数和结果,填入表格中(3)学习委员统计全班实验次数和结果,填入表格中(4)画出条形图反思:(1)与其他同学的实验结果比较,你的结果和他们一致吗?与其小组的实验结果比较,各组结果一致吗?(2)如果同学们再重复一次上面的试验,汇总结果还会和这次汇总结果一致吗(3)条状图和折线图各有什么特点?(4)如果允许你做大量重复试验,你认为结果又如何呢?三、典例剖析例1.指出下列事件中,哪些是不可能事件哪些是必然事件哪些是随机事件(1)“某电话机在一分钟之内,收到三次呼叫”;(2)“当 x 是实数时,x2 ≥ 0”;(3)“没有水分,种子发芽”;(4)“打开电视,正在播放新闻”(5)抛一枚硬币,正面朝上。
人教A版高中数学必修3《第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》_28
高中数学必修3《3.1.1 随机事件的概率》教学设计一、整体设计思路和指导依据:由于在初中学生已经接触过随机事件、不可能事件和必然事件的概念,所以教科书以“北京的天气变化情况”“水稻种子发芽后生长情况”为例,简略叙述客观世界的必然与偶然的内在联系,给出了随机事件、不可能事件和必然事件的概念。
概率研究随机事件发生的可能性的大小问题,这里既有随机性、又有随机性中表现的规律性,这是学生理解的难点。
本节课通过学生们的亲手操作以及动画的现实,让他们形成对规律性的认知;另外,强调概率的实际应用,可以让学生体会概率的重要性。
二、教材背景分析本节课“随机事件的概率”是人教版数学必修3中第三章第一节第一课,“随机事件的概率”主要研究事件的分类,概率的意义,概率的定义及统计算法。
现实生活中存在大量不确定事件,而概率正是研究不确定事件的一门学科。
本节课的教学本质就是让学生通过自己的真正动手操作,理解概率以及频率的关系。
作为“概率统计”这个学习领域中的第一节课,它在人们的生活和生产建设中有着广泛的应用,也是今后学习概率统计的预备知识,所以它在教材中处于非常重要的位置。
三、教学目标分析1.知识与技能:本节课主要讲述了随机现象的概念,启发学生联系自身的生活和学习经历举出随机现象的例子。
2.过程与方法:采用了摸球的小游戏,引出了必然现象和随机现象的概念。
采用小组合作学习的方式,让同学们相互讨论,相互启发,举出身边熟悉的必然现象和随机现象的例子,为进一步深入学习研究随机事件的概率积累素材。
3.情感、态度、价值观:增加学生合作学习交流的机会。
让学生积极参与到数据的收集、分析、整理与描述的数学活动中。
在体会概率意义的同时,感受与他人合作的重要性。
四、教学重点难点分析重点:1.理解随机事件的概念并掌握随机事件发生可能性的变化规律。
2.通过试验,理解当试验次数较大时,试验频率稳定于理论概率,并据此估计某一事件发生的概率。
难点:1.探究随机事件可能性的变化规律。
人教版数学必修三3.1.1《随机事件的概率》导学案
随机事件的概率导学案【学习目标】1、学生理解并记忆必然事件、不可能事件、随机事件的特点并会判断。
2、学生经历分析、归纳、总结,进而了解并体会和了解随机事件发生的概率。
【学习重点】1、根据实际情况能判断出必然事件,随机事件,不可能事件.2、理解频率与概率与概率的关系.【学习难点】理解频率与概率的关系.问一问:1.守株待兔这个故事给了你什么样的启示?2.周杰伦投篮一次一定投中吗?3.遵义地区一年四季交替吗?4.小明高考数学想要考151分,可能么?归纳总结:1.在条件S下,一定会发生的事件,叫做______________,简称________.2.在条件S下,一定不会发生的事件,叫做__________________,简称__________.3.在条件S下可能发生也可能不发生的事件,叫做_______________,简称__________.4.必然事件和不可能事件统称________;确定事件和随机事件统称为_____.一般用大写字母A、B、C……表示。
试一试:指出下列事件是必然事件,不可能事件,还是随机事件:1、函数y=x2-2x在区间[1,+∞)上是增函数;2、水中捞月。
3、掷一枚硬币,出现正面。
4、标准大气压下,把生鸡蛋在沸水中煮15分钟,蛋白会凝固。
5、从分别标有1、2、3、4、5的5张标签中任取一张得4号签。
做一做:全班每人投掷硬币十次,每小组组长记录本组总的正反面出现次数。
定义:(一)频数,频率的定义:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的____,称事件A 出现的比例______)(=A n f 为事件A 出现的频率。
问题1:频率的取值范围是什么?(二)概率的定义:对于给定的随机事件A ,如果随着实验次数的增加,事件A 发生的频率)(A n f 稳定在某个常数上,把这个常数记作P(A),称为事件A 的_____,简称为A 的______。
人教A版高中数学必修三第三章概率3.1.1《随机事件的概率》导学案
湖南省邵阳市隆回二中高一数学导学案:第三章概率 3.1.1 随机事件的概率 (新人教A版必修3)【学习目标】知识目标:了解必然事件、不可能事件、随机事件的概念;理解和掌握概率的统计定义及其性质.能力目标:通过不断地提出问题和解决问题,培养学生猜测、验证等探究能力;情感目标:在探究过程中,鼓励学生大胆猜测,大胆尝试,培养学生勇于创新、敢于实践等良好的个性品质。
【自主学习】任务1:阅读教材P107—113,独立完成下列问题问题1:. 观察下列事件发生与否,各有什么特点?(1)地球不停地转动;(2)木柴燃烧,产生能量;(3)在常温下,石头风化;(4)某人射击一次,中靶;(5)掷一枚硬币,出现正面;(6)在标准大气压下且温度低于0℃时,雪融化。
.任务2 定义:叫随机事件叫必然事件;叫不可能事件确定事件和随机事件统称为事件,一般用大写字母A,B,C…表示。
练习.指出下列事件是必然事件,不可能事件,还是随机事件:x ”;(3)“没有(1)“某电话机在一分钟之内,收到三次呼叫”;(2)“当x是实数时,20水分,种子发芽”;(4)“打开电视机,正在播放新闻”.【合作探究】实验(1):把一枚硬币抛多次,观察其出现的结果,并记录各结果出现的频数,然后请同学们再以小组为单位,统计好数据,完成表格。
2概率的定义:一般地,在大量重复进行同一试验时,事件A发生的频率总是接近 ,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作 .注意以下几点:(1)只有当频率在某个常数附近摆动时,这个常数才叫做事件A 的概率;(2)概率与频率的区别:概率是频率的稳定值,而频率是概率的近似值;(3)概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;(4)概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为,必然事件和不可能事件看作随机事件的两个极端情形。
(1)某厂一批产品的次品率为,问任意抽取其中10件产品是否一定会发现一件次品?为什么? (2)10件产品中次品率为,问这10件产品中必有一件次品的说法是否正确?为什么?【目标检测】(1)判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?1)如果a >b ,那么a 一b >0;2)在标准大气压下且温度低于0°C 时,冰融化;3)从分别标有数字l ,2,3,4,5的5张标签中任取一张,得到4号签;4)某电话机在1分钟内收到2次呼叫;5)手电筒的的电池没电,灯泡发亮;6)随机选取一个实数x ,得|x |≥0.(2)某射手在同一条件下进行射击,结果如下表所示:1)填写表中击中靶心的频率;2)这个射手射击一次,击中靶心的概率约是多少?击中靶心的频率4551789244198击中靶心次数m500200*********射击次数n 0.80.950.880.920.890.91n m学习反思:本节课我学到了什么?本节课我的学习效率如何?本节课还有哪些没学懂?。
人教A版高中数学必修3第三章概率3.1随机事件的概率教案
问题与情境及教师活动学生活动骰子,结果都是出现1点•你认为这枚骰子的质地均匀吗?为什么?这三个事件在一定的条件下是或者发生或不一定发生的,是模棱两可的.2、活动做抛掷一枚硬币的试验,观察它落地时哪一个面朝上•通过学生亲自动手试验,突破学生理解的难点:“随机事件发生的随机性和随机性中的规律性” •通过试验,观察随机事件发生的频率,可以发现随着实验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义•在这个过程中,重视了掌握知识的过程,体现了试验、观察、探究、归纳和总结的思想方法具体如下:第一步每个人各取一枚硬币,做10次掷硬币试验,记录正面向上的次数和比例,填在下表:试验结果与其他同学比较,你的结果和他们一致吗?为什么?第二步由组长把本小组同学的试验结果统计一下思考:与其他小组试验结果比较,正面朝上的比例一致吗?为什么?通过学生的实验,比较他们实验结果,让他们发现每个人实验的结果、组与组之间实验的结果不完全相同,从而说明实验结果的随机性,但组与组之间的差别会比学生与学生之间的差别小,小组的结果一般会比学生的结果更接近0.5.第三步用横轴为实验结果,仅取两个值:1 (正面)和0 (反面),纵轴为实验结果出现的频率,画出你个人和所在小组的条形图,并进行比较,发现什么?第四步把全班实验结果收集起来,也用条形图表示• 思考:这个条形图有什么特点?引导学生在每组实验结果的基础上统计全班的实验结果,一般情况下,班级的结果应比多数小组的结果更接近0.5,从而让学生体会随着实验次数的增加,频率会稳定在0.5附近•并把实验结果用条形图表示,这样既直观易懂,又可以与第二章统计的内容相呼应,达到温故而知新的目的.学过程及方法第五步请同学们找出掷硬币时“正面朝上”这个事件发生的规律性思考:如果同学们重复一次上面的实验,全班汇总结果与这一次汇总结果一致吗?为什么?出现正面朝上的规律性:随着实验次数的增加,正面朝上的频率稳定在0.5附近.由特殊事件转到一般事件,得出下面一般化的结论:随机事件A在每次试验中是否发生是不能预知的,但是在大量重复实验后,随着次数的增加,事件A发生的频率会逐渐稳定在区间]0,1 ]中的某个常数上. 从而得出频率、概率的定义,以及它们的关系.3、讨论结果:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件(certain event ),简称必然事件.(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S 的不可能事件(impossible event ),简称不可能事件.(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件.(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件(random event ),简称随机事件;确定事件和随机事件统称为事件,用A,B,C,…表示.(5)频数与频率:在相冋的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数n a为事件A出现的频数(frequency );称事件A出现的比例f n(A)= —A为事件A出现的频率n(relative frequency );对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率f n(A)稳定在某个常数上,把这个常数记作P( A), 称为事件A的概率(probability ).(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A与试验总次数n的比值-A ,它具有一定的稳定性,总在某个常数附近n摆动,且随着试验次数的不断增多,这种摆动幅度越来越小.我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小.频率在大量重复试验的前提下可以近似地作为这个事件的概率.频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率.在实际问题中,通常事件的概率未知,常用频率作为它的估计值.教师课时教案。
人教A版高中数学必修3《第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》_57
《随机事件的概率》教学设计一、教材分析本节课《随机事件的概率》是人教A版数学必修3中第三章第一节第一课时,是学生学习《概率》的入门课,也是一堂概念课。
《随机事件的概率》主要研究事件的分类,概率的意义,概率的定义及统计算法。
现实生活中存在大量不确定事件,而概率正是研究不确定事件的一门学科。
作为“概率统计”这个学习领域中的第一节课它直接反映了数学源于生活而又应用于生活。
同时,概率也是高考内容之一,都是学生今后的学习、工作与生活中必备的数学素养。
所以它在教材中处于非常重要的位置。
二、教学目标分析在素质教育背景下的数学教学应以学生的发展为本,学生的能力培养为重,同时从知识教学,技能训练等方面,根据学生已有的认知结构及教材的地位、作用,依据新课标确定本课的教学目标如下:1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义;(3)正确理解概率的概念和意义,明确事件A发生的频率f(A)与事件A发生的概率P(A)的区别与联系;(4)利用概率知识正确理解现实生活中的实际问题.2、过程与方法:(1)发现法教学,经历计算机抛硬币试验获取数据及绘制频率折线图的过程,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过三种事件的区分及用统计算法计算随机事件的概率,提高学生分析问题、解决问题的能力;(3)通过概念的提炼和小结的归纳提高学生的语言表达和归纳能力。
3、情感态度与价值观:(1)通过师生、生生的合作学习,培养学生团结协作的精神和主动与他人合作交流的意识.(2)培养学生观察和思考问题的能力,提高综合运用知识的能力和分析解决问题的能力.同时,从生活中感受数学的乐趣。
4、教学重点:事件的分类;了解随机事件发生的不确定性和概率的稳定性;正确理解概率的定义。
5、教学难点:理解频率与概率的关系;对概率含义的正确理解。
三、教法分析1、以学生的“三点一线”为主轴,即:切入点,兴趣点和思考点,贯穿课堂思想;2、用身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;3、教学用具:硬币,幻灯片,计算机及多媒体教学设备。
高中数学 3.1.1随机事件的概率导学案 新人教A版必修3
精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。
人教A版高中数学《随机事件的概率》导学案
必修三《3.1.1 随机事件的概率》导学案【学习目标】1.由日常生活中的事件,理解必然事件、随机事件、确定事件、不可能事件;2.通过抛掷硬币试验,体会频率、概率的概念以及它们之间的关系。
【知识清单】 1.⎧⎧⎪⎨⎨⎩⎪⎩ 确定事件事件 2.在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的 ,称事件A 出现的比例()n f A = 为事件A 出现的频率,频率的取值范围是 。
3.对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率()n f A 稳定在上,把这个 记作 ,称为事件A 的概率,简称为A 的概率。
4.任何事件的概率是 之间的一个确定的数,它度量该事件发生的 ,事件很少发生,而 事件则经常发生。
【活动探究】随机事件的“可能发生也可能不发生”是不是没有任何规律地随意发生呢?——让事实来说话!试验:【问题探究】思考:同学们!通过前面的试验,你能总结出频率与概率的区别和联系吗?结论:【典例精析】1.指出下列事件是必然事件、不可能事件、还是随机事件:(1) 中国体操运动员杨威将在20XX 年奥运会上获得全能冠军;(2) 同一门炮向同一目标发射多枚炮弹,其中50%的炮弹击中目标;(3) 三角形的内角和是180;(4)技术充分发达后,不需要任何能量的永动机将会出现。
方法总结:1、在10各同类产品中,有8个正品,2个次品,从中任意抽出3个检验,判断是否是随机现象,并据此列出一些不可能事件、必然事件、随机事件。
方法总结:2、做同时掷两枚硬币的试验,观察试验结果。
(1)试验可能出现的结果有几种?分别把它们表示出来;(2)做60次试验,每种结果出现的频数、频率各是多少?你能估计每种结果出现的概率吗?(组内合作,课前完成!)方法总结:(2)这一地区男婴出生的概率约是多少?方法总结:【知能达标】1、下列事件中,随机事件的个数为()=+是增函数;(3){正方体}⊂{长方体};(4)方程(1)明天是晴天;(2)函数f(x)ax b2-有两个不相等的实根。
高中数学 第3章 概率 3.1.1 随机事件的概率学案 新人教A版必修3
学习资料3。
1 随机事件的概率3。
1.1随机事件的概率学习目标核心素养1。
了解随机事件、必然事件、不可能事件的含义.(重点)2.会初步列出重复试验的结果.(重点) 3.理解频率与概率的区别与联系.(难点、易混点)通过对概率概念的学习,培养数学抽象素养.1.必然事件、不可能事件与随机事件事件类型定义必然事件在条件S下,一定会发生的事件,叫做相对于条件S的必然事件,简称必然事件不可能事件在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件,简称不可能事件确定事件必然事件与不可能事件统称为相对于条件S的确定事件,简称确定事件随机事件在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件,简称随机事件事件确定事件与随机事件统称为事件,一般用大写字母A,B,C……表示(1)频数与频率在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数n A为事件A出现的频数,称事件A出现的比例f n(A)=错误!为事件A出现的频率.(2)概率随机事件发生可能性的大小用概率来度量,概率是客观存在的.对于给定的随机事件A,事件A发生的频率f n(A)随着试验次数的增加稳定于概率P(A),因此可用频率f n(A)来估计概率P(A),即P(A)≈错误!。
思考:频率与概率有什么关系?[提示]频率是随机的,在试验之前无法确定,大多会随着试验次数的改变而改变.做同样次数的重复试验,得到的频率值也可能会不同.概率是一个事件的固有属性,是一个在0与1之间的确定值,不随试验结果的改变而改变.频率是概率的近似值.概率是频率的稳定值.随着试验次数的增加,频率会越来越接近概率.在实际问题中,通常事件的概率是未知的,常用频率估计概率.1.事件“经过有信号灯的路口,遇上红灯”是()A.必然事件B.不可能事件C.随机事件D.以上均不正确[答案]C2.下列说法正确的是()A.任何事件的概率总是在(0,1]之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定C[由频率与概率的有关概念知,C正确.]3.“同时抛掷两枚质地均匀的硬币,记录正面向上的枚数”,该试验的结果共有________种.3[正面向上的枚数可能为0,1,2,共3种结果.]4.某人射击10次,恰有8次击中靶子,则该人击中靶子的频率是________.0.8[错误!=0。
人教A版高二数学:必修三3.1.1必修三3.1.1随机事件的概率教学系教学学案
§3.1.1随机事件的概率
一.学习目标
1.了解随机事件、必然事件、不可能事件的概念.
2.了解随机事件发生的不确定性和概率的稳定性.
3.理解概率的含义以及频率与概率的区别与联系.
二.学习过程
1.课前准备:
在n 次重复试验中事件A 发生的次数n A 叫做 ,事件A 出现的次数n A 与总实验次数n 的比例叫做事件A 出现的频率()n f A .即()n f A = 。
2. 新课探究:
(1)连续抛一枚硬币10次完成下表:
例1 判断下列事件哪些是必然事件?哪些是不可能事件?哪些是随机事件?
⑴在地球上,抛出的篮球会下落;
⑵瓮中捉鳖;
(3)黄老师煮熟了一只鸭子放在桌上,飞啦;
⑷随意翻一下日历,翻到的日期为2月30日;
(5)守株待兔;
(6)明天,我买一注彩票,得500万大奖;
例2 对某电视机厂生产的电视机进行抽样检测的数据如下:
(1)计算表中优等品的各个频率;
(2)该厂生产的电视机优等品的概率是多少?
例3 天气预报说明天下雨的概率为95%,周六下雨的概率为5%, 于是有位同学说:“明天肯定下雨,周六肯
定不下雨.”这个说法正确吗?
4.当堂练习:
回答下列问题
(1)掷一枚硬币,连续出现5次正面向上,我认为下次出现正面向上的概率小于0.5.
(2)你在美团外卖上点了一份午餐,下单的时候给出了预计送达的时间是12点30分,请问你一定能在这个时间拿到外卖吗?
5.课堂小结:
6.课后作业:。
高中数学人教A版必修3第三章3.1.1随机事件的概率 教案
在条件S下,一定会发生的事件,叫做相对于条件S的必然事件,简称必然事件;
在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件,简称不可能事件;
在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件,简称随机事件;
注:(1) 必然事件与不可能事件统称为确定事件.
教学难点
用概率的知识解释现实生活中的具体问题.
课型
新课
主要教学方法
自主学习、思考、交流、讨论、讲解
教学模式
合作探究,归纳总结
教学手段与教具
智慧黑板.
教学过程设计
各环节教学反思
一、导入
同学们,看我手里拿着什么?(彩票)对了,这是我早上刚买的彩票,大家说我一定能中奖吗?(不一定)那就是可能中也可能不中,也就是说买彩票中奖这个事件可能发生也可能不发生,在数学中我们把这类事件称为随机事件。
4.发现法教学,通过在抛硬币的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高.
5.在探究过程中,鼓励学生大胆尝试,培养学生勇于创新,敢于实践等良好的个性品质;
6.通过对概率的学习,渗透偶然寓于必然,事物之间既对立又统一的辩证唯物主义.
教学重点
事件的分类;概率的统计定义以及和频率的区别与联系.
随机事件在一次试验中是否发生是不能事先确定的,那么在大量重复试验的情况下,它的发生ቤተ መጻሕፍቲ ባይዱ否会有规律性呢?
三、实验观察归纳
I试验
下面我们通过做一个抛掷硬币的试验,来了解“抛掷一枚硬币,正面向上”这个随机事件发生的可能性大小.
第一步:每人各取一枚同样的硬币,做10次抛掷硬币试验,记录正面向上的次数,并计算正面向上的频率,将试验结果填入表中:
2014人教A版高中数学必修三 3.1.1《随机事件的概率》导学案
3.1.1《随机事件的概率》教材分析在现实世界中,随机现象是广泛存在的,而随机现象中存在着数量规律性,从而使我们可以运用数学方法来定量地研究随机现象;本节课正是引导学生从数量这一侧面研究随机现象的规律性。
随机事件的概率在实际生活中有着广泛的应用,诸如自动控制、通讯技术、军事、气象、水文、地质、经济等领域的应用非常普遍;通过对这一知识点的学习运用,使学生了解偶然性寓于必然之中的辩证唯物主义思想,学习和体会数学的奇异美和应用美.【学习目标】1.(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系2.发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高。
3.(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.【重点难点】重点:事件的分类;概率的定义以及和频率的区别与联系;难点:随机事件发生存在的统计规律性.【学法指导】求随机事件的概率主要要用到排列、组合知识,学生没有基础,但学生在初中已经接触个类似的问题,所以在教学中学生并不感到陌生,关键是引导学生对“随机事件的概率”这个重点、难点的掌握和突破,以及如何有具体问题转化为抽象的概念。
教学方法1.引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→【学习反思】、【基础达标】→发导学案、布置预习课前准备多媒体课件,硬币数枚课时安排:1课时【知识链接】(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
2014人教A版高中数学必修三3.1.1《随机事件的概率》目标导学
3.1.1 随机事件的概率1.理解必然事件、不可能事件、确定事件、随机事件的概念,能对事件进行分类. 2.掌握概率和频率的定义以及它们的区别与联系,会用频率来估计概率.1.事件(1)确定事件:在条件S 下,一定________的事件,叫做相对于条件S 的必然事件,简称为必然事件;在条件S 下,一定____________的事件,叫做相对于条件S 的不可能事件,简称为不可能事件.______事件和________事件统称为相对于条件S 的确定事件,简称为确定事件.(2)随机事件:在条件S 下可能______也可能________的事件,叫做相对于条件S 的随机事件,简称为随机事件.(3)事件:______事件和______事件统称为事件,一般用大写字母A ,B ,C ,…表示. (4)分类:事件⎩⎨⎧确定事件⎩⎪⎨⎪⎧不可能事件必然事件随机事件随机事件和确定事件都是相对的,如果改变条件,那么随机事件有可能变成确定事件,确定事件也有可能变成随机事件.【做一做1】 下列事件是确定事件的是( ) A .2014年世界杯足球赛期间不下雨 B .没有水,种子发芽C .对任意x ∈R ,有x +1>2xD .抛掷一枚硬币,正面向上 2.频率在相同的条件S 下重复n 次试验,观察事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的______,称事件A 出现的比例f n (A )=______为事件A 出现的频率,其取值范围是________.【做一做2】 某射击运动员射击20次,恰有18次击中目标,则该运动员击中目标的频率是__________.3.概率(1)定义:一般来说,随机事件A 在每次试验中是否发生是不可预知的,但是在大量重复试验后,随着试验次数的增加,事件A 发生的频率会逐渐稳定在区间______中某个常数上.这个常数称为事件A 的概率,记为______,其取值范围是[0,1].通常情况下,用概率度量随机事件发生的可能性______.(2)求法:由于事件A 发生的频率随着试验次数的增加稳定于______,因此可以用______来估计概率.(3)说明:任何事件发生的概率都是区间______上的一个确定的数,用来度量该事件发生的可能性.小概率(接近于0)事件不是不发生,而是______发生,大概率(接近于1)事件不是一定发生,而是______发生.对于一个随机事件而言,其频率是在[0,1]内变化的一个数,并且随着试验次数的增加,随机事件发生的频率逐渐稳定在某个常数附近,这个常数就是概率.因此可以说,频率是变化的,而概率是不变的,是客观存在的.【做一做3】 不可能事件发生的概率是__________,必然事件发生的概率是__________,随机事件的概率的范围是__________.答案:1.(1)会发生 不会发生 必然 不可能 (2)发生 不发生 (3)确定 随机 【做一做1】 B 选项A ,C ,D 均是随机事件,选项B 是不可能事件,所以也是确定事件.2.频数n An[0,1] 【做一做2】 0.9 设击中目标为事件A ,则n =20,n A =18,则f 20(A )=1820=0.9.3.(1)[0,1] P (A ) 大小 (2)概率 频率 (3)[0,1] 很少 经常 【做一做3】 0 1 (0,1)频率与概率的联系剖析:对于随机事件而言,不同的结果出现的可能性一般是不同的,既然事件发生的可能性有大小之分,我们如何进行定量的描述呢?根据经验,可以用事件发生的频率来进行刻画,频率在一定程度上可以反映事件发生可能性的大小,但频率又不是一个完全确定的数,随着试验次数的不同,产生的频率也可能不同,所以频率无法从根本上来刻画事件发生的可能性的大小.频率虽然不能很准确地反映出事件发生的可能性的大小,但从大量的重复试验中发现,随着试验次数的增多,频率就稳定于某一固定值.即频率具有稳定性,这时就把这一固定值称为概率.由此可见:(1)概率是频率的稳定值,随着试验次数的增加,频率会越来越接近概率;(2)频率本身是随机的,在试验前不能确定;(3)概率是一个确定的常数,是客观存在的,在试验前已经确定,与试验的次数无关.题型一 对事件分类【例题1】 在10个同类产品中,有8个正品,2个次品,从中任意抽出3个检验,据此列出其中的不可能事件、必然事件、随机事件.分析:从10个产品中任意抽出3个检验,共出现以下三种可能结果:“抽出3个正品”,“抽出2个正品,1个次品”,“抽出1个正品,2个次品”.反思:在对事件分类时,应注意:(1)条件的不同以及条件的变化都可能影响事件发生的结果,要注意从问题的背景中体会条件的特点.(2)必然事件和不可能事件具有确定性,它在一定条件下能确定其是否发生,随机事件的随机性可作以下解释:在相同的条件下进行试验,观察试验结果发现每一次的试验结果不一定相同,且无法预测下一次的试验结果是什么.题型二 利用频率估计概率【例题2】 某射击运动员进行飞碟射击训练,七次训练的成绩记录如下:(1)求各次击中飞碟的频率.(保留三位小数) (2)该射击运动员击中飞碟的概率约为多少?分析:(1)频率=频数试验次数;(2)利用(1)来估计频率的趋近值即概率.反思:利用频率估计概率的步骤: (1)依次计算各个频率值;(2)观察各个频率值的稳定值即为概率的估计值,有时也可用各个频率的中位数来作为概率的估计值.题型三 易错辨析【例题3】 把一枚质地均匀的硬币连续抛掷1 000次,其中有498次正面朝上,502次反面朝上,求掷一次硬币正面朝上的概率.错解:由题意,根据公式f n (A)=n A n =4981 000=0.498,故掷一次硬币正面朝上的概率是0.498.错因分析:错解混淆了频率与概率的概念,0.498仅是正面朝上的概率的估计值,不能把0.498看成概率.答案:【例题1】 解:不可能事件是“抽到3个次品”; 必然事件是“至少抽到1个正品”;随机事件是“抽到3个正品”,“抽到2个正品,1个次品”,“抽到1个正品,2个次品”.【例题2】 解:(1)计算n An得各次击中飞碟的频率依次约为0.810,0.792,0.800,0.810,0.793,0.794,0.807.(2)由于这些频率非常地接近0.800,且在它附近摆动,所以运动员击中飞碟的概率约为0.800.【例题3】 正解:通过做大量的试验可以发现,正面朝上的频率在常数0.5附近摆动,故掷一次硬币,正面朝上的概率为0.5.1.下列事件中,是随机事件的为( ) A .向区间(0,1)内投点,点落在(0,1)区间 B .向区间(0,1)内投点,点落在(1,2)区间 C .向区间(0,2)内投点,点落在(0,1)区间 D .向区间(0,2)内投点,点落在(-1,0)区间 2.下列事件:①对任意实数x ,有x 2<0; ②三角形的内角和是180°; ③骑车到十字路口遇到红灯; ④某人购买福利彩票中奖;其中是随机事件的为__________.3.从某自动包装机包装的白糖中,随机抽取20袋,测得各袋的质量分别为(单位:g):492 496 494 495 498 497 501 502 504 496497 503 506 508 507 492 496 500 501 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装白糖质量在497.5~501.5 g之间的概率约为__________..下表是某灯泡厂某车间生产的灯泡质量检查表:填写合格品频率表,估计这批灯泡合格品的概率是多少?(保留两位小数)答案:1.C2.③④当x∈R时,x2≥0,则①是不可能事件;由三角形内角和定理知,②是必然事件;路口遇红灯和买彩票中奖都是随机的,则③④是随机事件.3.0.25 样本中白糖质量在497.5~501.5 g之间的有5袋,所以该自动包装机包装的袋装白糖质量在497.5~501.5 g之间的频率为520=0.25,则概率约为0.25.4.解:合格品频率依次为0.98,0.97,0.985,0.984,0.981,0.982.估计灯泡合格品的概率是0.98.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.1 随机事件的概率
1.理解必然事件、不可能事件、确定事件、随机事件的概念,能对事件进行分类. 2.掌握概率和频率的定义以及它们的区别与联系,会用频率来估计概率.
1.事件
(1)确定事件:在条件S 下,一定________的事件,叫做相对于条件S 的必然事件,简称为必然事件;在条件S 下,一定____________的事件,叫做相对于条件S 的不可能事件,简称为不可能事件.______事件和________事件统称为相对于条件S 的确定事件,简称为确定事件.
(2)随机事件:在条件S 下可能______也可能________的事件,叫做相对于条件S 的随机事件,简称为随机事件.
(3)事件:______事件和______事件统称为事件,一般用大写字母A ,B ,C ,…表示. (4)分类:
事件⎩⎨⎧
确定事件⎩⎪⎨
⎪⎧
不可能事件
必然事件
随机事件
随机事件和确定事件都是相对的,如果改变条件,那么随机事件有可能变成确定事件,确定事件也有可能变成随机事件.
【做一做1】 下列事件是确定事件的是( ) A .2014年世界杯足球赛期间不下雨
B .没有水,种子发芽
C .对任意x ∈R ,有x +1>2x
D .抛掷一枚硬币,正面向上
2.频率
在相同的条件S 下重复n 次试验,观察事件A 是否出现,称n 次试验中事件A 出现的次数
n A 为事件A 出现的______,称事件A 出现的比例f n (A )=______为事件A 出现的频率,其取值范
围是________.
【做一做2】 某射击运动员射击20次,恰有18次击中目标,则该运动员击中目标的频率是__________.
3.概率
(1)定义:一般来说,随机事件A 在每次试验中是否发生是不可预知的,但是在大量重复试验后,随着试验次数的增加,事件A 发生的频率会逐渐稳定在区间______中某个常数上.这个常数称为事件A 的概率,记为______,其取值范围是[0,1].通常情况下,用概率度量随机事件发生的可能性______.
(2)求法:由于事件A 发生的频率随着试验次数的增加稳定于______,因此可以用______来估计概率.
(3)说明:任何事件发生的概率都是区间______上的一个确定的数,用来度量该事件发生的可能性.小概率(接近于0)事件不是不发生,而是______发生,大概率(接近于1)事件不是一定发生,而是______发生.
对于一个随机事件而言,其频率是在[0,1]内变化的一个数,并且随着试验次数的增加,随机事件发生的频率逐渐稳定在某个常数附近,这个常数就是概率.因此可以说,频率是变化的,而概率是不变的,是客观存在的.
【做一做3】 不可能事件发生的概率是__________,必然事件发生的概率是__________,随机事件的概率的范围是__________.
答案:1.(1)会发生 不会发生 必然 不可能 (2)发生 不发生 (3)确定 随机 【做一做1】 B 选项A ,C ,D 均是随机事件,选项B 是不可能事件,所以也是确定事件. 2.频数
n A
n
[0,1] 【做一做2】 0.9 设击中目标为事件A ,则n =20,n A =18,则f 20(A )=18
20=0.9.
3.(1)[0,1] P (A ) 大小 (2)概率 频率 (3)[0,1] 很少 经常 【做一做3】 0 1 (0,1)
频率与概率的联系
剖析:对于随机事件而言,不同的结果出现的可能性一般是不同的,既然事件发生的可能性有大小之分,我们如何进行定量的描述呢?根据经验,可以用事件发生的频率来进行刻画,频率在一定程度上可以反映事件发生可能性的大小,但频率又不是一个完全确定的数,随着试验次数的不同,产生的频率也可能不同,所以频率无法从根本上来刻画事件发生的可能性的大小.频率虽然不能很准确地反映出事件发生的可能性的大小,但从大量的重复试验中发现,随着试验次数的增多,频率就稳定于某一固定值.即频率具有稳定性,这时就把这一固定值称为概率.
由此可见:(1)概率是频率的稳定值,随着试验次数的增加,频率会越来越接近概率;(2)频率本身是随机的,在试验前不能确定;(3)概率是一个确定的常数,是客观存在的,在试验前已经确定,与试验的次数无关.
题型一 对事件分类
【例题1】 在10个同类产品中,有8个正品,2个次品,从中任意抽出3个检验,据此列出其中的不可能事件、必然事件、随机事件.
分析:从10个产品中任意抽出3个检验,共出现以下三种可能结果:“抽出3个正品”,“抽出2个正品,1个次品”,“抽出1个正品,2个次品”.
反思:在对事件分类时,应注意:
(1)条件的不同以及条件的变化都可能影响事件发生的结果,要注意从问题的背景中体会条件的特点.
(2)必然事件和不可能事件具有确定性,它在一定条件下能确定其是否发生,随机事件的随机性可作以下解释:在相同的条件下进行试验,观察试验结果发现每一次的试验结果不一定相同,且无法预测下一次的试验结果是什么.
题型二 利用频率估计概率
【例题2】 某射击运动员进行飞碟射击训练,七次训练的成绩记录如下:
(1)求各次击中飞碟的频率.(保留三位小数) (2)该射击运动员击中飞碟的概率约为多少? 分析:(1)频率=
频数
试验次数
;(2)利用(1)来估计频率的趋近值即概率.
反思:利用频率估计概率的步骤:
(1)依次计算各个频率值;(2)观察各个频率值的稳定值即为概率的估计值,有时也可用各个频率的中位数来作为概率的估计值.
题型三 易错辨析
【例题3】 把一枚质地均匀的硬币连续抛掷1 000次,其中有498次正面朝上,502次反面朝上,求掷一次硬币正面朝上的概率.
错解:由题意,根据公式f n (A)=n A n =4981 000=0.498,
故掷一次硬币正面朝上的概率是0.498.
错因分析:错解混淆了频率与概率的概念,0.498仅是正面朝上的概率的估计值,不能把0.498看成概率.
答案:
【例题1】 解:不可能事件是“抽到3个次品”; 必然事件是“至少抽到1个正品”;
随机事件是“抽到3个正品”,“抽到2个正品,1个次品”,“抽到1个正品,2个次品”.
【例题2】 解:(1)计算
n A
n
得各次击中飞碟的频率依次约为0.810,0.792,0.800,0.810,0.793,0.794,0.807.
(2)由于这些频率非常地接近0.800,且在它附近摆动,所以运动员击中飞碟的概率约为0.800.
【例题3】 正解:通过做大量的试验可以发现,正面朝上的频率在常数0.5附近摆动,故掷一次硬币,正面朝上的概率为0.5.
1.下列事件中,是随机事件的为( ) A .向区间(0,1)内投点,点落在(0,1)区间 B .向区间(0,1)内投点,点落在(1,2)区间 C .向区间(0,2)内投点,点落在(0,1)区间 D .向区间(0,2)内投点,点落在(-1,0)区间 2.下列事件:
①对任意实数x ,有x 2
<0; ②三角形的内角和是180°; ③骑车到十字路口遇到红灯; ④某人购买福利彩票中奖; 其中是随机事件的为__________.
3.从某自动包装机包装的白糖中,随机抽取20袋,测得各袋的质量分别为(单位:g): 492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499
根据频率分布估计总体分布的原理,该自动包装机包装的袋装白糖质量在497.5~501.5 g 之间的概率约为__________.
4.下表是某灯泡厂某车间生产的灯泡质量检查表:
填写合格品频率表,估计这批灯泡合格品的概率是多少?(保留两位小数)
答案:1.C
2.③④当x∈R时,x2≥0,则①是不可能事件;由三角形内角和定理知,②是必然事件;路口遇红灯和买彩票中奖都是随机的,则③④是随机事件.
3.0.25 样本中白糖质量在497.5~501.5 g之间的有5袋,所以该自动包装机包装的袋装
白糖质量在497.5~501.5 g之间的频率为5
20
=0.25,则概率约为0.25.
4.解:合格品频率依次为0.98,0.97,0.985,0.984,0.981,0.982.估计灯泡合格品的概率是0.98.。