新定义和阅读理解型问题

合集下载

北京市中考数学复习专题:新定义阅读理解问题

北京市中考数学复习专题:新定义阅读理解问题

新定义阅读理解问题新定义学习型阅读理解题,是指题目中首先给出一个新定义(新概念或新公式),通过阅读题目提供的材料,理解新定义,再通过对新定义的理解来解决题目提出的问题。

其主要目的是通过对新定义的理解与运用来考查学生的自学能力,便于学生养成良好的学习习惯。

解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”; 归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。

一、基础练习部分★例1:【——海淀期末】对于正整数n ,定义210()=()10,,≥n n F n f n n ⎧<⎨⎩,其中f(n )表示n 的首位数字、末位数字的平方和.例如:F(6)=62=36,F(123)=f(123)=12+32=10.规定F 1(n )=F(n ),F k +1(n )=F(F K (n ))(K 为正整数).例如:F 1(123)=F(123)=10,F 2(123)=F(F 1(123))=F(10)=1.(1)求:F 2(4)= ,F(4)= ;(2)若F 3m (4)=89,则正整数m 的最小值是 . 答案:(1)37,26;(2)6. 练习①: 【通州一模】定义一种对正整数n 的“F 运算”:①当n 为奇数时,结果为31n +;②当n 为偶数时,结果为k n 2(其中k 是使得k n 2为奇数的正整数),并且运算重复进行.例如,取6n =,则:12363105F F F −−−→−−−→−−−→① ②②第次第次第次……,若1n =,则第2次“F 运算”的结果是 ;若13n =,则第次“F 运算”的结果是 . 答案:1,4练习②:【门头沟二模】我们知道,一元二次方程x 2=-1没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“i ”,使其满足i 2=-1 (即方程x 2=-1有一个根为i ),并且进一步规定: 一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i 1=i ,i 2=-1,i 3= i 2·i =(-1)(-1)·i =-i , i 4=( i 2)2=(-1) 2=1,从而对任意正整数n ,则i 6=______________;由于i 4n+1=i 4n ﹒i=(i 4)n ﹒i=i,同理可得i 4n+2=﹣1, i 4n+3=﹣i , i 4n =1那么i + i 2+ i 3+ i 4+…+ i+ i 的值为_____ 答案:-1,i★例2:【宣武一模】任何一个正整数n 都可以进行这样的分解:n =p ×q (p 、q 是正整数,且p ≤q ), 如果p ×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并规定:()p F n q =.例如18可以分解成1×18、2×9或3×6,这时就有31(18)62F ==.给出下列关于F(n )的说法:(1)1(2)2F =;(2)3(24)8F =;(3)(27)3F =;(4)若n 是一个完全平方数,则F(n )=1.其中正确说法的个数是 ( )A.1 B.2 C.3D.4 答案:B 练习①:【北京中考】在右表中,我们把第i 行第j 列的数记为a i ,j (其中i ,j 都是不大于5的正整数),对于表中的每个数a i ,j ,规定如下:当i ≥j 时,a i ,j =1;当i <j 时,a i ,j =0.例如:当i =2,j=1时,a i ,j =a 2,1=1.按此规定,a 1,3= ;表中的25个数中,共有 个1;计算a 1,1•a i ,1+a 1,2•a i ,2+a 1,3•a i ,3+a 1,4•a i ,4+a 1,5•a i ,5的值为 .答案:0;15;1. 练习②:【海淀二模】某种数字化的信息传输中,先将信息转化为数学0和1组成的数字串,并对数字串进行了加密后再传输.现采用一种简单的加密方法:将原有的每个1都变成10,原有的每个0变成01.我们用A 0表示没有经过加密的数字串.这样对A 0进行一次加密就得到一个新的数字串A 1,对A 1再进行一次加密又得到一个新的数学串A 2,依此类推,…,例如:A 0:10,则A 1:1001.若已知A 2:100101101001,则A 0: ,若数字串A 0共有4个数字,则数字串A 2中相邻两个数字相等的数对至少..有 对. 答案:101 ,4练习③:【燕山一模】若将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式.如在代数式a +b +c 中,把a 和b 互相替换,得b +a +c ;把a 和c 互相替换,得c +b +a ;把b 和c ……;a +b +c 就是完全对称式.下列三个代数式:① (a -b )2;② ab +bc +ca ;③ a 2b +b 2c +c 2a .其中为完全对称式的是A .① ②B .② ③C .① ③D .①②③ 答案:A练习④:【西城一模】在平面直角坐标系中,对于平面内任一点P (a ,b )若规定以下两种变换: ①f (a ,b )= (-a ,-b ).如f (1,2)= (-1,-2);②g (a ,b )= (b ,a ).如g (1,3)= (3,1)按照以上变换,那么f (g (a ,b ))等于A .(-b ,-a )B .(a ,b )C .(b ,a )D .(-a ,-b ) 答案:A★例3:【昌平二模】请阅读下列材料:我们规定一种运算:,例如:. 按照这种运算的规定,请解答下列问题:(1)直接写出 的计算结果;(2)若,直接写出和的值.(3)当取何值时, ; 答案:(1)3.5; (2)x=8,y=2. (3) ;a b ad bc c d=-2325341012245=⨯-⨯=-=-1220.5--0.517830.51x y xy --==--x y x 0.5012x xx -=15x -±=a 1,1 a 1,2 a 1,3 a 1,4 a 1,5 a 2,1 a 2,2 a 2,3 a 2,4 a 2,5 a 3,1 a 3,2a 3,3 a 3,4 a 3,5 a 4,1 a 4,2a 4,3 a 4,4 a 4,5 a 5,1 a 5,2 a 5,3 a 5,4 a 5,5变式练习:【宣武一模】对于实数d c b a ,,,规定一种运算:c a bc ad d b -=,如21=-20()21-⨯ 220-=⨯-,那么)3(2x -2554=-时,=x ( ).(A )413- (B )427 (C )423- (D )43- 答案:(D)练习:①【北京中考(课标卷)】用“☆”定义新运算: 对于任意实数a 、b , 都有a ☆b =b 2+1。

浙江省中考数学复习题型研究题型四新定义与阅读理解题类型二新概念学习型针对演练

浙江省中考数学复习题型研究题型四新定义与阅读理解题类型二新概念学习型针对演练

专题课件第二部分题型研究题型四新定义与阅读理解题类型二新概念学习型针对演练1. 若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2-6x-27=0,x2-2x-8=0,x2+3x-错误!=0,x2+6x-27=0,x2+4x+4=0都是“偶系二次方程”.(1)判断方程x2+x-12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.2. 设二次函数y1,y2的图象的顶点分别为(a,b)、(c,d),当a=-c,b=2d,且开口方向相同时,则称y1是y2的“反倍顶二次函数”.(1)请写出二次函数y=x2+x+1的一个“反倍顶二次函数”;(2)已知关于x的二次函数y1=x2+nx和二次函数y2=nx2+x;函数y1+y2恰是y1-y 2的“反倍顶二次函数”,求n.3. 函数y=错误!和y=-错误!(k≠0)的图象关于y轴对称,我们定义函数y=错误!和y=-错误!(k≠0)相互为“影像”函数:(1)请写出函数y=2x-3的“影像”函数:________;(2)函数________的“影像”函数是y=x2-3x-5;(3)若一条直线与一对“影像”函数y=错误!(x>0)和y=-错误!(x<0)的图象分别交于点A、B、C(点A、B在第一象限),如图,如果CB∶BA=1∶2,点C在函数y=-错误!(x<0)的“影像”函数上的对应点的横坐标是1,求点B的坐标.第3题图4. 如图,在平面直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1,又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2,如此下去,得到线段OP3,OP4…,OP n(为正整数).(1)求点P3的坐标;(2)我们规定:把点P n(xn,yn)(n=0,1,2,3…)的横坐标x n、纵坐标yn都取绝对值后得到的新坐标(|xn|,|y n|)称为点P n的“绝对坐标”,根据图中P n的分布规律,求出点Pn的“绝对坐标”.第4题图考向2) 几何类(杭州:2015.19;台州:2016.23,2015、2013.24;绍兴:2017.22,2013.22,2012.21)针对训练1. (2017绍兴)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图①,等腰直角四边形ABCD,AB=BC,∠ABC=90°.①若AB=CD=1,AB∥CD,求对角线BD的长;②若AC⊥BD,求证:AD=CD.(2)如图②,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形.求AE的长.第1题图2. 阅读下面的材料:如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”,如图①,▱ABEF即为△ABC的“友好平行四边形”.请解决下列问题:(1)仿照以上叙述,说明什么是一个三角形的“友好矩形”;(2)若△ABC是钝角三角形,则△ABC显然只有一个“友好矩形”,若△ABC是直角三角形,其“友好矩形”有______个;(3)若△ABC是锐角三角形,且AB<AC<BC,如图②,请画出△ABC的所有“友好矩形”,指出其中周长最小的“友好矩形”,并说明理由.第2题图)3. (2017常州)如图①,在四边形ABCD中,如果对角线AC和BD相交并且相等,那么我们把这样的四边形称为等角线四边形.(1)①在“平行四边形、矩形、菱形”中,________一定是等角线四边形(填写图形名称);②若M、N、P、Q分别是等角线四边形ABCD四边AB、BC、CD、DA的中点,当对角线AC、BD还需要满足________时,四边形MNPQ是正方形;(2)如图②,已知△ABC中,∠ABC=90°,AB=4,BC=3,D为平面内一点.①若四边形ABCD是等角线四边形,且AD=BD,则四边形ABCD的面积是________;②设点E是以C为圆心,1为半径的圆上的动点,若四边形ABED是等角线四边形,写出四边形ABED面积的最大值,并说明理由.第3题图4. (2017黄石)在现实生活中,我们经常会看到许多“标准”的矩形,如我们的课本封面、A4的打印纸等,其实这些矩形的长与宽之比都为错误!∶1,我们不妨就把这样的矩形称为“标准矩形”.在“标准矩形”ABCD中,P为DC边上一定点,且CP=BC,如下图所示.(1)如图①,求证:BA=BP;(2)如图②,点Q在DC上,且DQ=CP,若G为BC边上一动点,当△AGQ的周长最小时,求错误!的值;(3)如图③,已知AD=1,在(2)的条件下,连接AG并延长交DC的延长线于点F,连接BF,T为BF的中点,M、N分别为线段PF与AB上的动点,且始终保持PM=BN,请证明:△MNT 的面积S为定值,并求出这个定值.第4题图5.对于一个四边形给出如下定义:如一组对角相等且有一组邻边相等,则称这个四边形为奇特四边形,如图①中,∠B=∠D,AB=AD;如图②中,∠A=∠C,AB=AD则这样的四边形均为奇特四边形.(1)在图①中,若AB=AD=4,∠A=60°,∠C=120°,请求出四边形ABCD的面积;(2)在图②中,若AB=AD=4,∠A=∠C=45°,请直接写出四边形ABCD面积的最大值;(3)如图③,在正方形ABCD中,E为AB边上一点,F是AD延长线上一点,且BE=DF,连接EF,取EF的中点G,连接CG并延长交AD于点H,若EB+BC=m,问四边形BCGE的面积是否为定值?如果是,请求出这个定值(用含m的代数式表示);如果不是,请说明理由.第5题图6. 类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)如图①,在四边形ABCD中,添加一个条件使得四边形A B CD是“等邻边四边形”.请写出你添加的一个条件;(2)小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由;(3)如图②,小红作了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC 沿∠ABC的平分线BB′方向平移得到△A′B′C′,连接AA′,BC′.小红要使平移后的四边形ABC′A′是“等邻边四边形”,应平移多少距离(即线段BB′的长)?第6题图7. (2017江西)我们定义:如图①,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,我们称△AB′C′是△ABC的“旋补三角形”,△AB′C′边B′C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知(1)在图②,图③中,△AB′C′是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图②,当△ABC为等边三角形时,AD与BC的数量关系为AD=____BC;②如图③,当∠BAC=90°,BC=8时,则AD长为________.猜想论证(2)在图①中,当△AB C为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图④,在四边形ABCD中,∠C=90°,∠D=150°,BC=12,CD=2\r(3),DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.第7题图答案1. 解:(1)不是.理由如下:∵解方程x2+x-12=0,得x1=-4,x2=3,∴|x1|+|x2|=4+3=2×|3.5|,∵3.5不是整数,∴方程x 2+x -12=0不是“偶系二次方程”;(2)存在.理由如下:∵方程x 2-6x-27=0,x 2+6x -27=0是“偶系二次方程”,∴假设c =mb 2+n ,当b =-6,c =-27时,有-27=36m+n ,∵x 2=0是“偶系二次方程”,∴n=0,m =-错误!,∴c=-错误!b 2.又∵x 2+3x -274=0也是“偶系二次方程”, 当b =3时,c =-错误!=-错误!×32,∴可设c =-错误!b 2,对任意一个整数b ,当c=-错误!b2时,b 2-4ac=b2-4c =4b 2,∴x=\f(-b±2|b|,2),∴x 1=-错误!b ,x 2=错误!b,∴|x 1|+|x 2|=错误!|b |+错误!|b|=2|b |.∵b是整数,∴对于任意一个整数b ,存在实数c ,当且仅当c =-错误!b2时,关于x的方程,x 2+bx +c=0是“偶系二次方程”.2. 解:(1)∵y =x2+x+1,∴y =(x +错误!)2+错误!,∴二次函数y=x 2+x+1的顶点坐标为(-12,34), ∴二次函数y=x 2+x +1的一个“反倍顶二次函数”的顶点坐标为(\f(1,2),\f(3,2)),∴反倍顶二次函数的解析式为y=(x -12)2+\f(3,2)=x 2-x +错误!; (2)y 1+y2=x2+nx +nx 2+x=(n +1)x2+(n +1)x =(n+1)(x 2+x )=(n +1)(x +错误!)2-错误!,∴顶点的坐标为(-错误!,-错误!), y 1-y 2=x 2+nx -nx 2-x =(1-n )x 2+(n -1)x=(1-n )(x 2-x)=(1-n)(x-错误!)2-错误!,∴顶点的坐标为(错误!,-错误!),由于函数y 1+y2恰是y 1-y 2的“反倍顶二次函数”,则-2×错误!=-错误!,解得n =\f(1,3).3. 解:(1)y =-2x -3;【解法提示】令-x =x得y =-2x -3.(2)y =x 2+3x -5;【解法提示】令-x =x 得y =x 2+3x -5.(3) 如解图,作CC ′⊥x 轴,BB ′⊥x轴,AA ′⊥x 轴垂足分别为C′、B′、A′,第3题解图设点B (m,\f(2,m)),A (n ,\f(2,n)),其中m >0,n >0,由题意,将x =-1代入y =-错误!中解得y =2,∴点C (-1,2),∴CC ′=2,B B′= 错误!,AA ′=错误! ,又∵A′B′=n -m ,B ′C′=m+1,CC ′∥BB ′∥AA ′,CB ∶AB =1∶2, 则B′C′∶A′B′=1∶2,则错误!,消去n化简得到3m2-2m-3=0,解得m=错误!或错误!(舍弃),∴错误!=错误!=错误!,∴点B坐标为(错误!,错误!).4. 解:(1)根据题意,得OP3=2OP2=4OP1=8OP0=8,根据等腰直角三角形的性质,得P3(-42,42);(2)由题意知,旋转8次之后回到轴的正半轴,在这8次旋转中,点分别落在坐标象限的角平分线上或x轴或y轴上,但各点“绝对坐标”的横、纵坐标均为非负数,因此,各点的“绝对坐标”可分三种情况:①当P n的n=0,4,8,12…,则点在x轴上,则“绝对坐标”为(2n,0) ,②当P n的n=2,6,10,14…,则点在y轴上,则“绝对坐标”为(0,2n) ;③当Pn的n=1,3,5,7,9…,则点在各象限的角平分线上,则“绝对坐标”为(2n -1错误!,2n-1错误!).考向2 几何类针对演练1.解:(1)①∵AB=CD=1,AB∥CD,∴四边形ABCD是平行四边形,又∵AB=BC,∴▱ABCD是菱形.又∵∠ABC=90°,∴四边形ABCD为正方形,∴BD=\r(2);②如解图①,连接AC,BD,第1题解图①∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,又∵BD=BD,∴△ABD≌△CBD,∴AD=CD;(2)若EF与BC垂直,则AE≠EF,BF≠EF,∴四边形ABFE不是等腰直角四边形,不符合条件;若EF与BC不垂直,①当AE=AB时,如解图②,此时四边形ABFE是等腰直角四边形,第1题解图②∴AE=AB=5;②当BF=AB时,如解图③,此时四边形ABFE是等腰直角四边形,第1题解图③∴BF=AB=5.∵DE∥BF,∴△PED∽△PFB,∴EDFB=PDPB=12,∴DE=2.5,∴AE=9-2.5=6.5.综上所述,AE的长为5或6.5.2. 解:(1)三角形的一边与矩形的一边重合,三角形这边所对的顶点在矩形这边的对边上;(2)2;【解法提示】如解图①的矩形BCAF、矩形ABED为Rt△ABC的两个“友好矩形”;第2题解图(3)此时共有3个“友好矩形”,如解图②的矩形BCDE、矩形CAFG及矩形ABHK,其中的矩形ABHK的周长最小.理由如下:∵矩形BCDE、矩形CAFG及矩形ABHK均为△ABC的“友好矩形”,∴这三个矩形的面积相等,令其为S,设矩形BCDE,矩形CAFG及矩形ABHK的周长分别为L1,L2,L3,△ABC的边长BC=a,CA=b,AB=c,则L1=\f(2S,a)+2a,L2=错误!+2b,L3=错误!+2c,∴L1-L2=(错误!+2a)-(错误!+2b)=错误!(b-a)+2(a-b)=2(a-b)·错误!,而ab>S,a>b,∴L1-L2>0,即L1>L2,同理可得,L2>L3,∴L3最小,即矩形ABHK的周长最小.3.解:(1)①矩形;【解法提示】平行四边形和菱形的对角线不相等,矩形的对角线相等,故矩形一定是等角线四边形.②垂直;【解法提示】∵四边形A BCD 是等角线四边形,∴AC =B D,∵M 、N、P 、Q 分别是边AB 、B C、CD 、DA 的中点,∴MN =PQ=错误!A C,PN=MQ =错误!BD,∴MN=PQ=PN=MQ,∴四边形MNPQ 是菱形,根据“有一个角是直角的菱形是正方形”可知需要四边形MNPQ 有一个角是直角,又易知MN ∥P Q∥AC ,PN ∥QM∥BD ,∴要使四边形MNP Q是正方形需要A C⊥BD .(2)①3+2错误!; ∵AD =BD ,∴D 在A B的垂直平分线上, ∵四边形ABCD 是等角线四边形, ∴AC =BD,在R t△ABC 中,∠ABC =90°,AB =4,BC =3, ∴AC =5, ∴BD =5,如解图①,取AB 的中点为M,则D M⊥AB ,第3题解图①在Rt △ADM 中,AD =BD=5,AM =BM =2,由勾股定理得DM =21; ∴S 四边形A BCD =S △ABD +S △BCD =\f (1,2)AB ·D M+12BC ·BM=错误!×4×错误!+错误!×3×2=3+2错误!;②四边形ABED 面积最大值为18,理由如下: 如解图②,设A E与BD 交于点O ,夹角为α,则第3题解图②S 四边形AB ED =S △AED +S△ABE =错误!AE ·O Dsin α+错误!A E·O Bsin α=错误!AE ·B Dsinα,∵AE =BD ,∴S四边形A BE D=12AE 2si nα,∴当AE 最大,且α=90°时,四边形ABED 的面积最大, 此时延长AC 交圆C 于E,则AE 最大为5+1=6, ∴四边形ABE D的最大面积为\f (1,2)×62=18. 4. (1)证明:如解图①所示,第4题解图①∵PC=BC ,∠B CP =90°, ∴BP =\r (2)BC,又∵矩形ABCD 为“标准矩形”, ∴AB =错误!BC , ∴A B=BP ;(2)解:如解图②,作点Q 关于直线BC 对称的点F,连接AF 交BC 于点E ,连接QE 、GF,第4题解图②∵DQ =CP ,∴CQ =DP =CF 且AQ 为定值, ∴EQ =EF ,G Q=GF ,∵AQ 为定值,要使△A GQ 的周长最小时, ∴只需A G+GQ =AG +GF 最小, 显然AG +GF≥AF =AE +EF =AE +EQ , 即当点G 与点E重合时,△AGQ 的周长最小,此时CGG B=错误!=错误!=错误!, ∵DP AB =CD -CP AB =\f(AB-BC,AB)=1-B CAB=1-错误!, ∴当△AGQ 的周长最小时,CGGB=1-错误!; (3)证明:如解图③,MN 交AF 于点K ,连接KT ,第4题解图③由(2)可知,CF=DP , ∴PF=A B且PF∥AB, ∴四边形ABFP 为平行四边形, 又由PM =BN , ∴MF =AN ,∴△MFK≌△NAK,∴点K为AF与MN的中点,又∵点T为BF的中点,∴KT为△FAB的中位线,∴S△FKT=S△TMK=S△TKN,∴S△MNT=2S△FKT=\f(1,2)S△FAB=错误!S平行四边形ABFP=错误!×错误!=错误!,∴△MNT的面积S为定值,这个定值为\f(2,4).5.解:(1)如解图①,设AC与BD交于点O;第5题解图①∵AB=AD,∠A=60°,∴△ABD是等边三角形,∴AB=AD=BD=4,∠ABD=∠ADB=60°,∵∠ABC=∠ADC,∴∠CBD=∠CDB,∵∠BCD=120°,∴∠CBD=∠CDB=30°,∴CB=CD,∵AB=AD,∴AC⊥BD,∴BO=OD=2,OA=AB·sin60°=23,OC=OB·tan30°=错误!,∴S四边形ABCD=\f(1,2)·BD·OA+12·BD·OC=\f(1,2)·BD·(OA+OC)=错误!;【解法提示】如解图②,作DH⊥AB于H,过点B、D、C作圆,连接BD,第5题解图②∵∠C′=∠C=45°,∴当C′B=C′D时,△BDC′的面积最大,此时四边形ABC′D的面积最大,易证四边形ABC′D是菱形,在Rt△AHD中,∵∠A=45 °,∠AHD=90°,AD=4,∴AH=HD=2错误!,∴四边形ABC′D的面积=AB·DH=82,∴四边形ABCD的面积的最大值为8 2.(3)四边形BCGE的面积是定值,理由如下:如解图③,连接EC、CF,作FM⊥BC于M.第5题解图③在△BCE和△DCF中,错误!∴△BCE≌△DCF(SAS),∵EG=GF,∴S△ECG=S△FCG,∵四边形CDFM是矩形,∴BC=DC=MF,DF=BE=CM,∴BM=m,BE+FM=m,∴△FCM,△DCF,△BCE的面积相等,∴S四边形BCGE=\f(1,2)·S四边形BEFM=\f(1,2)·\f(1,2)·m·m=错误!m2.6.解:(1)AB=BC或BC=CD或CD=AD或AD=AB;(2)解:小红的结论正确.理由如下:∵四边形的对角线互相平分,∴这个四边形是平行四边形,∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等,∴这个“等邻边四边形”是菱形;(3)由∠ABC=90°,AB=2,BC=1,得:AC=\r(5),∵将Rt△ABC平移得到Rt△A′B′C′,∴BB′=AA′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC=\r(5),(Ⅰ)如解图①,当AA′=AB时,BB′=AA′=AB=2;第6题解图①(Ⅱ)如解图②,当AA′=A′C′时,BB′=AA′=A′C′ =\r(5);第6题解图②(Ⅲ)当A′C′=BC′=错误!时,如解图③,延长C′B′交AB 与点D ,则C′B′⊥AB ,第6题解图③∵BB ′平分∠ABC ,∴∠A BB ′=错误!∠ABC =45°, ∴∠BB ′D =∠ABB′=45°, ∴B′D=BD,设B′D=BD=x,则C′D =x +1,BB′=\r(2)x,∵根据在R t△BC ′D 中,B C′2=C′D 2+BD 2即x 2+(x+1)2=5, 解得:x=1或x =-2(不合题意,舍去), ∴BB ′=\r(2)x=错误!;第6题解图④(Ⅳ)当BC′=AB =2时,如解图④,与(Ⅲ)方法同理可得:x =\f (-1+\r (7),2)或x=-1-72(舍去), ∴B B′=2x=错误!.故应平移2或5或错误!或错误!的距离. 7. 解:(1)①12,②4;【解法提示】①如解图①中,第7题解图①∵△ABC 是等边三角形, ∴AB =BC=AC=AB′=AC′, ∵DB ′=DC′, ∴A D ⊥B ′C ′,∵∠BAC =60°,∠BAC +∠B′AC ′=180°,∴∠B′A C′=120°, ∴∠B ′=∠C′=30°, ∴A D=12AB ′=12BC .②如解图②中,第7题解图②∵∠BAC =90°,∠BAC +∠B′AC′=180°, ∴∠B ′AC ′=∠BA C=90°, ∵AB=A B′,AC =A C′, ∴△BAC ≌△B′AC ′, ∴BC=B′C ′,∵B ′D=DC′,∴AD =\f (1,2)B ′C ′=\f(1,2)BC =4; (2)猜想:AD =\f(1,2)BC .理由:如解图③中,延长AD 到M ,使得AD =DM ,连接B′M ,C ′M,第7题解图③∵B ′D=DC ′,AD =DM ,∴四边形AC′MB′是平行四边形, ∴AC′=B′M=AC ,∵∠BAC +∠B′AC′=180°, ∠B′AC ′+∠AB′M=180°, ∴∠BAC =∠MB ′A, ∵AB =AB ′,∴△BAC ≌△AB ′M , ∴BC =AM , ∴AD =12BC;(3)存在.理由:如解图④中,延长AD 交BC 的延长线于M ,作BE ⊥AD 于E,作线段BC 的垂直平分线交BE 于P ,交B C于F ,连接PA 、PD 、PC ,作△PC D的中线PN ,连接D F交PC 于O ,第7题解图④∵∠ADC=150°,∴∠MDC=30°,∴在Rt△DCM中,∵CD=2\r(3),∠DCM=90°,∠MDC=30°, ∴CM=2,DM=4,∠M=60°,在Rt△BEM中,∵∠BEM=90°,BM=BC+CM=14,∠MBE=30°,∴EM=\f(1,2)BM=7,∴DE=EM-DM=3,∵AD=6,∴AE=DE,∵BE⊥AD,∴PA=PD,PB=PC,在Rt△CDF中,∵CD=23,CF=6,∴∠CDF=∠CPE=60°,易证△FCP≌△CFD,∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC-∠CDP=60°,∴△ADP是等边三角形,∴∠APD=60°,∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△PAB的“旋补三角形”,在Rt△PDN中,∵∠PDN=90°,PD=AD=6,DN=3,∴PN=错误!=错误!=错误!.。

题型研究题型四新定义与阅读理解题类型三新解题方法型针对演练

题型研究题型四新定义与阅读理解题类型三新解题方法型针对演练

第二部分题型研究题型四新定义与阅读理解题类型三新解题方法型针对演练1.求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公数最大公约数的一种方法一一更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也•以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.例如:求91与56的最大公约数解:91 - 56 = 3556 - 35= 2135 - 21= 1421 - 14= 714 —7= 7所以,91与56的最大公约数是7.请用以上方法解决下列问题:(1)求108与45的最大公约数;(2)求三个数78、104、143的最大公约数.2.(2017 青岛节选)数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题•下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.探究:求不等式|x —1|< 2的解集(1)探究|x —1|的几何意义如图①,在以0为原点的数轴上,设点A'对应的数是x —1,由绝对值的定义可知,点A与点0的距离为| x —1|,可记为A'O = |x—1|.将线段A'O向右平移1个单位得到线段AB此时点A对应的数是x,点B对应的数是1.因为AB= A'O,所以AB= | x—1|. 因此,|x —1|的几何意义可以理解为数轴上x所对应的点A与1所对应的点B之间的距离ABA10-- 1 1——Ix-l 0 1 ...................... ....4 0 B -5-4-3-2-I Q 12^45*I d I ・工0 1图①團②第2题图(2)求方程| x —1| = 2的解因为数轴上3和一1所对应的点与1所对应的点之间的距离都为2,所以方程的解为3, —1.(3)求不等式| x—1|<2的解集因为|x —1|表示数轴上x所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数x的范围.请在图②的数轴上表示|x—1|<2的解集,并写出这个解集.3.(浙教八下第47页阅读材料改编)古希腊数学家丢番图(公元250年前后)在《算术》中提到了一元二次方程的问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解.在欧几里得的《几何原本》中,形如x2+ ax=b2(a> 0, b>0)的方程的a a图解法是:如图,以2和b为两直角边作Rt△ ABC再在斜边上截取BD= ?,则AD的长就是所求方程的解.(1)请用含字母a、b的代数式表示AD的长.(2)请利用你已学的知识说明该图解法的正确性,并说说这种解法的遗憾之处.4.请你阅读引例及其分析解答,希望能给你以启示,然后完成对探究一和探究二的解答.引例:设a, b, c 为非负实数,求证:a2+ b2+ , b2+ c2+ c2+ a2》2(a+ b+ c),分析:考虑不等式中各式的几何意义,我们可以试构造一个边长为a+ b+ c的正方形来研究.解:如图①,设正方形的边长为a + b+ c, 则AB= a2+ b2, BC= b2+ c2, CD= a2+ c2, 显然AB+ BC+ CD> AD•••a2+ b2+ b2+ c2+ c2+ a2> 2(a+ b+ c).探究一:已知两个正数x, y,满足x + y = 12,求.x + 4 + y + 9的最小值(图②仅供参考);探究二:若a, b为正数,求以a2+ b2, 4a2+ b2, a2+ 4b2为边的三角形的面积.第4题图答案1.解:(1)108 - 45= 6363 - 45= 1845 - 18= 2727 - 18= 918-9= 9所以,108与45的最大公约数是9;第3题图罔①圏②⑵①先求104与78的最大公约数,104-78 = 2678 - 26= 5252 - 26= 26所以,104与78的最大公约数是26;②再求26与143的最大公约数,143-26 = 117117-26 = 9191 - 26= 6565 - 26= 3939 - 26= 1326 - 13= 13所以,26与143的最大公约数是13.综上所述,78、104、143的最大公约数是13. 2.解:在数轴上表示如解图所示.第2题解图所以,不等式的|x- 1|<2的解集为一1<x<3.a3.解:(1)I/ C= 90°, BC= ^, AC= b,■.j4b + a —a2(2)用求根公式求得:故AD的长就是方程的正根,遗憾之处:图解法不能表示方程的负根.4.解:探究一:如解图①,构造矩形AECF并设矩形的两边长分别为12,5,第4题解图①则x + y= 12 , AB= x2+ 4,BC= y + 9,显然AB+ BO AC当A, B, C三点共线时,AB+ BC最小,即x2+ 4+ y2+ 9的最小值为AC••• AC= . 122+ 52= 13, /• x + 4+ y + 9的最小值为13;第4题解图②X i =—4b2+ a2—a2探究二:如解图②,设矩形ABCD勺两边长分别为2a, 2b, E, F分别为AB, AD的中点, 则CF= 4a2+ b2, CE^ a2+ 4b2,EF= a2+ b2,设以,a2+ b2, 4a2+ b2, a2+ 4b2为边的三角形的面积为&CEF,••• & CEF= S 矩形 ABCD—S\ CDF一S^ AEF一S A BCE1 1 1=4ab- 2X 2a X b—2ab— 2aX 2b3=2ab, •••以a2+ b2, - 4a2+ b2, • a2+ 4b2为边的三角形的面积为^ab-。

中考数学复习《阅读理解及定义型问题》PPT考点归纳

中考数学复习《阅读理解及定义型问题》PPT考点归纳

【特别提醒】
(1)正确理解新定义运算的含义,认真分析题目中的定义,严 格按照新定义的运算顺序进行运算求解,切记不可脱离题目 要求. (2)在新定义的算式中,若遇有括号的也要先算括号里面的. (3)材料中的新概念、新运算与我们已学过的概念、运算有 着密切的联系,注意“新”“旧”知识之间的联系与转化.
考点03、新解题方法型阅读题
1.以例题的形式给出新方法:材料中首先给出一道例题及其 解题方法,然后仿照新的解题方法解决与例题类似的问题.这 类新方法型阅读题在中考中最为常见,值得关注. 2.以新知识的形式给出新方法:先给出体现一个新解题方法 的阅读材料,通过阅读体会新方法的实质,然后用新方法解决 相关的问题。
新解题方法型阅读题常见的两种类型
【特别提醒】
(1)认真阅读题目,理解掌握新的解题方法是解决新问题的关 键. (2)体会转化思想在解新方法型阅读题中的作用,理解新方法 并进行转化,用我们熟悉的知识来解决新问题。
【知识归纳】解答数字规律题的步骤
(1)计算前几项,一般算出四五项. (2)找出几项的规律,这个规律或是循环,或是成一定的数 列规律如等差,等比等. (3)用代数式表示出规律或是得出循环节(即几个数一个循 环). (4)验证你得出的结论.
【知识归纳】新公式应用 型阅读题的解题策略
1.通过对所给材料的阅读,从中获得新的数学公式或某种 新的变换法则. 2.分析新公式的结构特征及适用范围. 3.将新公式转化为已学知识,寻找解决问题的突破口,进 而利用新公式解决问题.
解一元一次不等式的注意事项
解一元一次不等式的步骤与解一元一次方程的步骤基 本类似,只是注意在不等式的两边同乘或同除一个负数时, 不等号的方向要发生改变.在数轴上表示不等式的解集时, 要注意“分界点”和“方向”,大于向右画,小于向左画, 含等于号的画成实心点,不含等于号的要画成空心圆圈.

新定义与阅读理解创新型问题(共31题)(解析版)--2023年中考数学真题分项汇编(全国通用)

新定义与阅读理解创新型问题(共31题)(解析版)--2023年中考数学真题分项汇编(全国通用)

新定义与阅读理解创新型问题(31题)一、单选题1(2023·湖北武汉·统考中考真题)皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积S=N+12L-1,其中N,L分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知A0,30,B20,10,O0,0,则△ABO内部的格点个数是()A.266B.270C.271D.285【答案】C【分析】首先根据题意画出图形,然后求出△ABO的面积和边界上的格点个数,然后代入求解即可.【详解】如图所示,∵A0,30,B20,10,O0,0,∴S△ABO=12×30×20=300,∵OA上有31个格点,OB上的格点有2,1,4,2,6,3,8,4,10,5,12,6,14,7,16,8,18,9,20,10,共10个格点,AB上的格点有1,29,2,28,3,27,4,26,5,25,6,24,7,23,8,22,9,21,10,20,11,19,12,18,13,17,16,14,15,15,16,14,17,13,18,12,19,11,共19个格点,∴边界上的格点个数L=31+10+19=60,∵S=N+12L-1,∴300=N+12×60-1,∴解得N=271.∴△ABO内部的格点个数是271.故选:C.【点睛】本题主要考查了坐标与图形的性质,解决问题的关键是掌握数形结合的数学思想.2(2023·湖南张家界·统考中考真题)“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边△ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”.若等边△ABC的边长为3,则该“莱洛三角形”的周长等于()A.πB.3πC.2πD.2π-3【答案】B【分析】根据等边三角形的性质及弧长公式l =n πr180求解即可.【详解】解:∵等边三角形ABC 的边长为3,∠ABC =∠ACB =∠BAC =60°,∴AB =BC =AC =60π⋅3180=π,∴该“莱洛三角形”的周长=3×π=3π,故选:B .【点睛】本题考查了等边三角形的性质,弧长公式,熟练掌握等边三角形的性质和弧长公式是解题的关键.3(2023·重庆·统考中考真题)在多项式x -y -z -m -n (其中x >y >z >m >n )中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x -y -|z -m |-n =x -y -z +m -n ,x -y -z -m -n =x -y -z -m +n ,⋯.下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0 B.1C.2D.3【答案】C【分析】根据给定的定义,举出符合条件的说法①和②.说法③需要对绝对操作分析添加一个和两个绝对值的情况,并将结果进行比较排除相等的结果,汇总得出答案.【详解】解:x -y -z -m -n =x -y -z -m -n ,故说法①正确.若使其运算结果与原多项式之和为0,必须出现-x ,显然无论怎么添加绝对值,都无法使x 的符号为负,故说法②正确.当添加一个绝对值时,共有4种情况,分别是x -y -z -m -n =x -y -z -m -n ;x -y -z -m -n =x -y +z -m -n ;x -y -|z -m |-n =x -y -z +m -n ;x -y -z -m -n =x -y -z -m +n .当添加两个绝对值时,共有3种情况,分别是x -y -z -m -n =x -y -z +m -n ;x -y -z -m -n =x -y -z -m +n ;x -y -z -m -n =x -y +z -m +n .共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C .【点睛】本题考查新定义题型,根据多给的定义,举出符合条件的代数式进行情况讨论;需要注意去绝对值时的符号,和所有结果可能的比较.主要考查绝对值计算和分类讨论思想的应用.4(2023·湖南岳阳·统考中考真题)若一个点的坐标满足k ,2k ,我们将这样的点定义为“倍值点”.若关于x 的二次函数y =t +1 x 2+t +2 x +s (s ,t 为常数,t ≠-1)总有两个不同的倍值点,则s 的取值范围是()A.s<-1B.s<0C.0<s<1D.-1<s<0【答案】D【分析】利用“倍值点”的定义得到方程t+1x2+tx+s=0,则方程的Δ>0,可得t2-4ts-4s>0,利用对于任意的实数s总成立,可得不等式的判别式小于0,解不等式可得出s的取值范围.【详解】解:由“倍值点”的定义可得:2x=t+1x2+t+2x+s,整理得,t+1x2+tx+s=0∵关于x的二次函数y=t+1x2+t+2x+s(s,t为常数,t≠-1)总有两个不同的倍值点,∴Δ=t2-4t+1s=t2-4ts-4s>0,∵对于任意实数s总成立,∴-4s2-4×-4s<0,整理得,16s2+16s<0,∴s2+s<0,∴s s+1<0,∴s<0s+1>0,或s>0s+1<0,当s<0s+1>0时,解得-1<s<0,当s>0s+1<0时,此不等式组无解,∴-1<s<0,故选:D.【点睛】本题主要考查了二次函数图象上点的坐标特征,一元二次方程根的判别式以及二次函数与不等式的关系,理解新定义并能熟练运用是解答本题的关键.5(2023·山东·统考中考真题)若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:A(1, 3),B(-2,-6),C(0,0)等都是三倍点”,在-3<x<1的范围内,若二次函数y=-x2-x+c的图象上至少存在一个“三倍点”,则c的取值范围是()A.-14≤c<1 B.-4≤c<-3 C.-14<c<5 D.-4≤c<5【答案】D【分析】由题意可得:三倍点所在的直线为y=3x,根据二次函数y=-x2-x+c的图象上至少存在一个“三倍点”转化为y=-x2-x+c和y=3x至少有一个交点,求Δ≥0,再根据x=-3和x=1时两个函数值大小即可求出.【详解】解:由题意可得:三倍点所在的直线为y=3x,在-3<x<1的范围内,二次函数y=-x2-x+c的图象上至少存在一个“三倍点”,即在-3<x<1的范围内,y=-x2-x+c和y=3x至少有一个交点,令3x=-x2-x+c,整理得:-x2-4x+c=0,则Δ=b2-4ac=-42-4×-1×c=16+4c≥0,解得c≥-4,x=--4±-42-4×-1c2×-1=-4±16+4c2,∴x1=-2+4+c,x2=-2-4+c∴-3<-2+4+c<1或-3<-2-4+c<1当-3<-2+4+c <1时,-1<4+c <3,即0≤4+c <3,解得-4≤c <5,当-3<-2-4+c <1时,-3<4+c <1,即0≤4+c <1,解得-4≤c <-3,综上,c 的取值范围是-4≤c <5,故选:D .【点睛】本题考查二次函数与一次函数交点问题,熟练掌握相关性质是关键.6(2023·福建·统考中考真题)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O 的面积,可得π的估计值为332,若用圆内接正十二边形作近似估计,可得π的估计值为()A.3B.22C.3D.23【答案】C【分析】根据圆内接正多边形的性质可得∠AOB =30°,根据30度的作对的直角边是斜边的一半可得BC=12,根据三角形的面积公式即可求得正十二边形的面积,即可求解.【详解】解:圆的内接正十二边形的面积可以看成12个全等的等腰三角形组成,故等腰三角形的顶角为30°,设圆的半径为1,如图为其中一个等腰三角形OAB ,过点B 作BC ⊥OA 交OA 于点于点C ,∵∠AOB =30°,∴BC =12OB =12,则S △OAB =12×1×12=14,故正十二边形的面积为12S △OAB =12×14=3,圆的面积为π×1×1=3,用圆内接正十二边形面积近似估计⊙O 的面积可得π=3,故选:C .【点睛】本题考查了圆内接正多边形的性质,30度的作对的直角边是斜边的一半,三角形的面积公式,圆的面积公式等,正确求出正十二边形的面积是解题的关键.二、填空题7(2023·甘肃武威·统考中考真题)如图1,我国是世界上最早制造使用水车的国家.1556年兰州人段续的第一架水车创制成功后,黄河两岸人民纷纷仿制,车水灌田,水渠纵横,沃土繁丰.而今,兰州水车博览园是百里黄河风情线上的标志性景观,是兰州“水车之都”的象征.如图2是水车舀水灌溉示意图,水车轮的辐条(圆的半径)OA 长约为6米,辐条尽头装有刮板,刮板间安装有等距斜挂的长方体形状的水斗,当水流冲动水车轮刮板时,驱使水车徐徐转动,水斗依次舀满河水在点A 处离开水面,逆时针旋转150°上升至轮子上方B 处,斗口开始翻转向下,将水倾入木槽,由木槽导入水渠,进而灌溉,那么水斗从A 处(舀水)转动到B 处(倒水)所经过的路程是米.(结果保留π)【答案】5π【分析】把半径和圆心角代入弧长公式即可;【详解】l =n πr 180=150×π×6180=5π故填:5π.【点睛】本题考查弧长公式的应用,准确记忆公式,并正确代入公式是解题的关键.8(2023·湖北随州·统考中考真题)某天老师给同学们出了一道趣味数学题:设有编号为1-100的100盏灯,分别对应着编号为1-100的100个开关,灯分为“亮”和“不亮”两种状态,每按一次开关改变一次相对应编号的灯的状态,所有灯的初始状态为“不亮”.现有100个人,第1个人把所有编号是1的整数倍的开关按一次,第2个人把所有编号是2的整数倍的开关按一次,第3个人把所有编号是3的整数倍的开关按一次,⋯⋯,第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几位同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律:乙:1号开关只被第1个人按了1次,2号开关被第1个人和第2个人共按了2次,3号开关被第1个人和第3个人共按了2次,⋯⋯丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的思维过程,可以得出最终状态为“亮”的灯共有盏.【答案】10【分析】灯的初始状态为“不亮”,按奇数次,则状态为“亮”,按偶数次,则状态为“不亮”,确定1-100中,各个数因数的个数,完全平方数的因数为奇数个,从而求解.【详解】所有灯的初始状态为“不亮”,按奇数次,则状态为“亮”,按偶数次,则状态为“不亮”;因数的个数为奇数的自然数只有完全平方数,1-100中,完全平方数为1,4,9,16,25,36,49,64,81,100;有10个数,故有10盏灯被按奇数次,为“亮”的状态;故答案为:10.【点睛】本题考查因数分解,完全平方数,理解因数的意义,完全平方数的概念是解题的关键.9(2023·湖南常德·统考中考真题)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图.AB是以O 为圆心,OA 为半径的圆弧,C 是弦AB 的中点,D 在AB上,CD ⊥AB .“会圆术”给出AB 长l 的近似值s 计算公式:s =AB +CD 2OA,当OA =2,∠AOB =90°时,l -s =.(结果保留一位小数)【答案】0.1【分析】由已知求得AB 与CD 的值,代入s =AB +CD 2OA得弧长的近似值,利用弧长公式可求弧长的值,进而即可得解.【详解】∵OA =OB =2,∠AOB =90°,∴AB =22,∵C 是弦AB 的中点,D 在AB上,CD ⊥AB ,∴延长DC 可得O 在DC 上,OC =12AB =2∴CD =OD -OC =2-2,∴s =AB +CD 2OA=22+2-2 22=3,l =90×2×2π360=π,∴l -s =π-3 ≈0.1.故答案为:0.1.【点睛】本题考查扇形的弧长,掌握垂径定理。

中考数学真题-新定义与阅读理解创新型问题

中考数学真题-新定义与阅读理解创新型问题

新定义与阅读理解创新型问题一、单选题1.(四川省雅安市2021年中考数学真题)定义:{}()min ,()a ab a b b a b ≤⎧=⎨>⎩,若函数()2min 123y x x x =+-++,,则该函数的最大值为( )A .0B .2C .3D .42.(广东省2021年中考真题数学试卷)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记2a b cp ++=,则其面积S =-秦九韶公式.若5,4p c ==,则此三角形面积的最大值为( )A B .4C .D .53.(内蒙古通辽市2021年中考数学真题)定义:一次函数y ax b =+的特征数为[],a b ,若一次函数2y x m =-+的图象向上平移3个单位长度后与反比例函数3y x=-的图象交于A ,B 两点,且点A ,B 关于原点对称,则一次函数2y x m =-+的特征数是( ) A .[]2,3B .[]2,3-C .[]2,3-D .[]2,3--4.(江苏省无锡市2021年中考数学真题)设1(,)P x y ,2(,)Q x y 分别是函数1C ,2C 图象上的点,当a x b≤≤时,总有1211y y -£-£恒成立,则称函数1C ,2C 在a x b ≤≤上是“逼近函数”,a x b ≤≤为“逼近区间”.则下列结论:①函数5y x =-,32y x =+在12x ≤≤上是“逼近函数”; ①函数5y x =-,24y x x =-在34x ≤≤上是“逼近函数”; ①01x ≤≤是函数21y x =-,22y x x =-的“逼近区间”; ①23x ≤≤是函数5y x =-,24y x x =-的“逼近区间”. 其中,正确的有( ) A .①①B .①①C .①①D .①①5.(2021·广西来宾市·中考真题)定义一种运算:,,a a ba b b a b≥⎧*=⎨<⎩,则不等式(21)(2)3x x +*->的解集是( ) A .1x >或13x <B .113x -<<C .1x >或1x <-D .13x >或1x <- 6.(2021·广西中考真题)如{}1,2,M x =,我们叫集合M ,其中1,2,x 叫做集合M 的元素.集合中的元素具有确定性(如x 必然存在),互异性(如1x ≠,2x ≠),无序性(即改变元素的顺序,集合不变).若集合{},1,2N x =,我们说M N =.已知集合{}1,0,A a =,集合1,,b B a a a ⎧⎫=⎨⎬⎩⎭,若A B =,则b a -的值是( ) A .-1B .0C .1D .27.(2021·湖北中考真题)定义新运算“※”:对于实数m ,n ,p ,q ,有[][],,m p q n mn pq =+※,其中等式右边是通常的加法和乘法运算,如:[][]2,34,5253422=⨯+⨯=※.若关于x 的方程[]21,52,0x x k k ⎡⎤⎣⎦+-=※有两个实数根,则k 的取值范围是( )A .54k <且0k ≠ B .54k ≤C .54k ≤且0k ≠ D .54k ≥8.(2021·甘肃武威市·中考真题)对于任意的有理数,a b ,如果满足2323a b a b++=+,那么我们称这一对数,a b为“相随数对”,记为(),a b .若(),m n 是“相随数对”,则()323[]21m m n ++-=( ) A .2- B .1- C .2 D .3二、填空题9.(广西贵港市2021年中考数学真题)我们规定:若()()1122,,,a x y b x y →→==,则1212a b x x y y →→⋅=+.例如(1,3),(2,4)a b →→==,则123421214a b →→⋅=⨯+⨯=+=.已知(1,1),(3,4)a x x b x →→=+-=-,且23x -……,则a b →→⋅的最大值是________.10.(辽宁省丹东市2021年中考数学试题)已知:到三角形3个顶点距离之和最小的点称为该三角形的费马点.如果ABC 是锐角(或直角)三角形,则其费马点P 是三角形内一点,且满足120APB BPC CPA ∠=∠=∠=︒.(例如:等边三角形的费马点是其三条高的交点).若AB AC BC ===P 为ABC 的费马点,则PA PB PC ++=_________;若2,4AB BC AC ===,P 为ABC 的费马点,则PA PB PC ++=_________.11.(浙江省宁波市2021年中考数学试卷)在平面直角坐标系中,对于不在坐标轴上的任意一点(),A x y ,我们把点11,B x y ⎛⎫⎪⎝⎭称为点A 的“倒数点”.如图,矩形OCDE 的顶点C 为()3,0,顶点E 在y 轴上,函数()20=>y x x的图象与DE 交于点A .若点B 是点A 的“倒数点”,且点B 在矩形OCDE 的一边上,则OBC 的面积为_________.12.(山东省菏泽市2021年中考数学真题)定义:[],,a b c 为二次函数2y ax bx c =++(0a ≠)的特征数,下面给出特征数为[],1,2m m m --的二次函数的一些结论:①当1m =时,函数图象的对称轴是y 轴;①当2m =时,函数图象过原点;①当0m >时,函数有最小值;①如果0m <,当12x >时,y 随x 的增大而减小,其中所有正确结论的序号是______.13.(2021·湖南娄底市·中考真题)弧度是表示角度大小的一种单位,圆心角所对的弧长和半径相等时,这个角就是1弧度角,记作1rad .已知1rad,60αβ==︒,则α与β的大小关系是α________β.14.(2021·上海中考真题)定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为2,中心为O ,在正方形外有一点,2P OP =,当正方形绕着点O 旋转时,则点P 到正方形的最短距离d 的取值范围为__________.15.(2021·湖北中考真题)对于任意实数a 、b ,定义一种运算:22a b a b ab ⊗=+-,若()13x x ⊗-=,则x 的值为________.三、解答题16.(江苏省南通市2021年中考数学试题)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数1122y x =+的图象的“等值点”. (1)分别判断函数22,y x y x x =+=-的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由; (2)设函数3(0),y x y x b x=>=-+的图象的“等值点”分别为点A ,B ,过点B 作BC x ⊥轴,垂足为C .当ABC 的面积为3时,求b 的值;(3)若函数22()y x x m =-≥的图象记为1W ,将其沿直线x m =翻折后的图象记为2W .当12,W W 两部分组成的图象上恰有2个“等值点”时,直接写出m 的取值范围.17.(江苏省常州市2021年数学中考真题)在平面直角坐标系xOy 中,对于A 、A '两点,若在y 轴上存在点T ,使得90ATA '∠=︒,且TA TA '=,则称A 、A '两点互相关联,把其中一个点叫做另一个点的关联点.已知点()2,0M-、()1,0N -,点(),Q m n 在一次函数21y x =-+的图像上.(1)①如图,在点()2,0B、()0,1C -、()22D ,--中,点M 的关联点是_______(填“B ”、“C ”或“D ”); ①若在线段MN 上存在点()1,1P 的关联点P ',则点P '的坐标是_______; (2)若在线段MN 上存在点Q 的关联点Q ',求实数m 的取值范围; (3)分别以点()4,2E 、Q 为圆心,1为半径作E 、Q .若对E 上的任意一点G ,在Q 上总存在点G ',使得G 、G '两点互相关联,请直接写出点Q 的坐标.18.(湖南省张家界市2021年中考数学真题试题)阅读下面的材料: 如果函数()y f x =满足:对于自变量x 取值范围内的任意1x ,2x , (1)若12x x <,都有12()()f x f x <,则称()f x 是增函数; (2)若12x x <,都有12()()f x f x >,则称()f x 是减函数. 例题:证明函数2()(0)f x x x =>是增函数. 证明:任取12x x <,且1>0x ,20x >则2212121212()()()()f x f x x x x x x x -=-=+- ①12x x <且1>0x ,20x > ①120x x +>,120x x -<①1212()()0x x x x +-<,即12())0(f x f x -<,12()()f x f x < ①函数2()(0)f x x x =>是增函数. 根据以上材料解答下列问题:(1)函数1()(0)f x x x =>,1(1)11f ==,1(2)2f =,(3)f =_______,(4)f =_______; (2)猜想1()(0)f x x x=>是函数_________(填“增”或“减”),并证明你的猜想.19.(山东省枣庄市2021年中考数学真题)小明根据学习函数的经验,参照研究函数的过程与方法,对函数()20x y x x-=≠的图象与性质进行探究.因为221x y x x-==-,即21y x =-+,所以可以对比函数2y x =-来探究. 列表:(1)下表列出y 与x 的几组对应值,请写出m ,n 的值:m = ,n = ;描点:在平面直角坐标系中,以自变量x 的取值为横坐标,以y x=相应的函数值为纵坐标,描出相应的点,如图所示:(2)请把y 轴左边各点和右边各点,分别用条光滑曲线顺次连接起来: (3)观察图象并分析表格,回答下列问题:①当0x <时,y 随x 的增大而 ;(填“增大”或“减小”) ①函数2x y x-=的图象是由2y x =-的图象向 平移 个单位而得到.①函数图象关于点 中心对称.(填点的坐标) 20.(内蒙古赤峰市2021年中考数学真题)阅读理解: 在平面直角坐标系中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且x 1≠x 1,y 2≠y 2,若M 、N 为某矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为M 、N 的“相关矩形”.如图1中的矩形为点M 、N 的“相关矩形”. (1)已知点A 的坐标为()2,0.①若点B 的坐标为()4,4,则点A 、B 的“相关矩形”的周长为__________;①若点C 在直线x =4上,且点A 、C 的“相关矩形”为正方形,求直线AC 的解析式; (2)已知点P 的坐标为()3,4-,点Q 的坐标为()6,2-, 若使函数ky x=的图象与点P 、Q 的“相关矩形 ”有两个公共点,直接写出k 的取值范围.21.(湖北省荆州市2021年中考数学真题)小爱同学学习二次函数后,对函数()21y x =--进行了探究,在经历列表、描点、连线步骤后,得到如 下的函数图像.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质:__________; ①方程()211x --=-的解为:__________;①若方程()21x a --=有四个实数根,则a 的取值范围是__________.(2)延伸思考:将函数()21y x =--的图象经过怎样的平移可得到函数()21213y x =---+的图象?写出平移过程,并直接写出当123y <≤时,自变量x 的取值范围.22.(2021·江西中考真题)二次函数22y x mx =-的图象交x 轴于原点O 及点A .感知特例(1)当1m =时,如图1,抛物线2:2L y x x =-上的点B ,O ,C ,A ,D 分别关于点A 中心对称的点为B ',O ',C ',A ',D ¢,如下表:①补全表格;①在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L '. 形成概念我们发现形如(1)中的图象L '上的点和抛物线L 上的点关于点A 中心对称,则称L '是L 的“孔像抛物线”.例如,当2m =-时,图2中的抛物线L '是抛物线L 的“孔像抛物线”. 探究问题(2)①当1m =-时,若抛物线L 与它的“孔像抛物线”L '的函数值都随着x 的增大而减小,则x 的取值范围为_______;①在同一平面直角坐标系中,当m 取不同值时,通过画图发现存在一条抛物线与二次函数22y x mx =-的所有“孔像抛物线”L ',都有唯一交点,这条抛物线的解析式可能是______.(填“2y ax bx c =++”或“2y ax bx =+”或“2y ax c =+”或“2y ax =”,其中0abc ≠);①若二次函数22y x mx =-及它的“孔像抛物线”与直线y m =有且只有三个交点,求m 的值. 23.(2021·北京中考真题)在平面直角坐标系xOy 中,O 的半径为1,对于点A 和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到O 的弦B C ''(,B C ''分别是,B C 的对应点),则称线段BC 是O 的以点A 为中心的“关联线段”.(1)如图,点112233,,,,,,A B C B C B C 的横、纵坐标都是整数.在线段112233,,B C B C B C 中,O 的以点A 为中心的“关联线段”是______________; (2)ABC 是边长为1的等边三角形,点()0,A t ,其中0t ≠.若BC 是O 的以点A 为中心的“关联线段”,求t 的值;(3)在ABC 中,1,2AB AC ==.若BC 是O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.24.(2021·四川中考真题)阅读以下材料,苏格兰数学家纳皮尔(J .Npler ,1550-1617年)是对数的创始人,他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler .1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地.若x a N =(0a >且1a ≠),那么x 叫做以a 为底N 的对数,记作log a x N =,比如指数式4216=可以转化为对数式24log 16=,对数式32log 9=可以转化为指数式239=.我们根据对数的定义可得到对数的一个性质:log ()log log (0,1,0,0)a a a M N M N a a M N ⋅=+>≠>>,理由如下:设log ,log a a M m N n ==,则,n m M a N a ==.m n m n M N a a a +∴⋅=⋅=.由对数的定义得log ()a m n M N +=⋅又log log a a m n M N +=+log ()log log a a a M N M N ∴⋅=+.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:①2log 32=___________;①3log 27=_______,①7log l =________; (2)求证:log log log (0,1,0,0)aa a MM N a a M N N=->≠>>; (3)拓展运用:计算555log 125log 6log 30+-.25.(2021·重庆中考真题)如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,并把数M 分解成M A B =⨯的过程,称为“合分解”. 例如6092129=⨯,21和29的十位数字相同,个位数字之和为10,609∴是“合和数”.又如2341813=⨯,18和13的十位数相同,但个位数字之和不等于10,234∴不是“合和数”.(1)判断168,621是否是“合和数”?并说明理由;(2)把一个四位“合和数”M 进行“合分解”,即M A B =⨯.A 的各个数位数字之和与B 的各个数位数字之和的和记为()P M ;A 的各个数位数字之和与B 的各个数位数字之和的差的绝对值记为()Q M .令()()()P M G M Q M =,当()G M 能被4整除时,求出所有满足条件的M .26.(2021·重庆中考真题)对于任意一个四位数m ,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m 为“共生数”例如:3507m =,因为372(50)+=⨯+,所以3507是“共生数”:4135m =,因为452(13)+≠⨯+,所以4135不是“共生数”; (1)判断5313,6437是否为“共生数”?并说明理由;(2)对于“共生数”n ,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记()3nF n =.求满足()F n 各数位上的数字之和是偶数的所有n . 27.(2021·四川中考真题)已知平面直角坐标系中,点P (00,x y )和直线Ax +By +C =0(其中A ,B 不全为0),则点P 到直线Ax +By +C =0的距离d可用公式d =来计算.例如:求点P (1,2)到直线y =2x +1的距离,因为直线y =2x +1可化为2x -y +1=0,其中A =2,B =-1,C =1,所以点P (1,2)到直线y =2x +1的距离为:5d ==== 根据以上材料,解答下列问题:(1)求点M (0,3)到直线9y =+的距离;(2)在(1)的条件下,①M 的半径r = 4,判断①M与直线9y =+的位置关系,若相交,设其弦长为n ,求n 的值;若不相交,说明理由.28.(2021·湖北中考真题)数学课外活动小组的同学在学习了完全平方公式之后,针对两个正数之和与这两个正数之积的算术平方根的两倍之间的关系进行了探究,请阅读以下探究过程并解决问题.猜想发现:由5510+==;112333+==;0.40.40.8+==;1525+>=;0.2 3.2 1.6+>=;111282+>= 猜想:如果0a >,0b >,那么存在a b +≥a b =时等号成立). 猜想证明:①20≥①①0=,即a b =时,0a b -=,①a b += ①0≠,即a b ¹时,0a b ->,①a b +>综合上述可得:若0a >,0b >,则a b +≥a b =时等号成立).猜想运用:(1)对于函数()10y x x x=+>,当x 取何值时,函数y 的值最小?最小值是多少? 变式探究:(2)对于函数()133y x x x =+>-,当x 取何值时,函数y 的值最小?最小值是多少? 拓展应用:(3)疫情期间、为了解决疑似人员的临隔离问题.高速公路榆测站入口处,检测人员利用检测站的一面墙(墙的长度不限),用63米长的钢丝网围成了9间相同的长方形隔离房,如图.设每间离房的面积为S (米2).问:每间隔离房的长、宽各为多少时,可使每间隔离房的面积S 最大?最大面积是多少?29.(2021·内蒙古中考真题)数学课上,有这样一道探究题. 如图,已知ABC 中,AB =AC =m ,BC =n ,()0180BAC αα∠=︒<<︒,点P 为平面内不与点A 、C 重合的任意一点,将线段CP 绕点P 顺时针旋转a ,得线段PD ,E 、F 分别是CB 、CD 的中点,设直线AP 与直线EF 相交所成的较小角为β,探究EFAP的值和β的度数与m 、n 、α的关系,请你参与学习小组的探究过程,并完成以下任务: (1)填空: (问题发现)小明研究了60α=︒时,如图1,求出了EFPA =___________,β=___________; 小红研究了90α=︒时,如图2,求出了EFPA=___________,β=___________; (类比探究)他们又共同研究了α=120°时,如图3,也求出了EFPA; (归纳总结)最后他们终于共同探究得出规律:EFPA=__________(用含m 、n 的式子表示);β=___________ (用含α的式子表示). (2)求出120α=︒时EFPA的值和β的度数.30.(2021·山东中考真题)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD 中,AB AD =,CB CD =,问四边形ABCD 是垂美四边形吗?请说明理由;(2)性质探究:如图1,垂美四边形ABCD 的对角线AC ,BD 交于点O .猜想:22AB CD +与22AD BC +有什么关系?并证明你的猜想.(3)解决问题:如图3,分别以Rt ACB △的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE ,连结CE ,BG ,GE .已知4AC =,5AB =,求GE 的长.31.(2021·湖北中考真题)已知等边三角形ABC ,过A 点作AC 的垂线l ,点P 为l 上一动点(不与点A 重合),连接CP ,把线段CP 绕点C 逆时针方向旋转60︒得到CQ ,连QB .(1)如图1,直接写出线段AP与BQ的数量关系;(2)如图2,当点P、B在AC同侧且AP AC时,求证:直线PB垂直平分线段CQ;(3)如图3,若等边三角形ABC的边长为4,点P、B分别位于直线AC异侧,且APQ求线段AP的长度.32.(2021·江苏中考真题)如图,在①O中,AB为直径,P为AB上一点,P A=1,PB=m(m为常数,且m>0).过点P的弦CD①AB,Q为BC上一动点(与点B不重合),AH①QD,垂足为H.连接AD、BQ.(1)若m=3.①求证:①OAD=60°;①求BQDH的值;(2)用含m的代数式表示BQDH,请直接写出结果;(3)存在一个大小确定的①O,对于点Q的任意位置,都有BQ2﹣2DH2+PB2的值是一个定值,求此时①Q 的度数.。

阅读理解及定义型问题(解析版)-中考数学重难点题型专题汇总

阅读理解及定义型问题(解析版)-中考数学重难点题型专题汇总

阅读理解及定义型问题--中考数学重难点题型专题汇总1.(2021·甘肃武威市·中考真题)对于任意的有理数,a b ,如果满足2323a b a b ++=+,那么我们称这一对数,a b 为“相随数对”,记为(),a b .若(),m n 是“相随数对”,则()323[]21m m n ++-=()A.2-B.1-C.2D.3【答案】A 【分析】先根据新定义,可得9m+4n=0,将整式()21]2[33m m n ++-去括号合并同类项化简得942m n +-,然后整体代入计算即可.【详解】解:∵(),m n 是“相随数对”,∴2323m n m n ++=+,整理得9m+4n=0,()323213642942[]2m m n m m n m n ++-=++-=+-=-.故选择A.【点睛】本题考查新定义相随数对,找出数对之间关系,整式加减计算求值,掌握新定义相随数对,找出数对之间关系,整式加减计算求值是解题关键.2.(山东省菏泽市2021年中考数学真题)定义:[],,a b c 为二次函数2y ax bx c =++(0a ≠)的特征数,下面给出特征数为[],1,2m m m --的二次函数的一些结论:①当1m =时,函数图象的对称轴是y 轴;②当2m =时,函数图象过原点;③当0m >时,函数有最小值;④如果0m <,当12x >时,y 随x 的增大而减小,其中所有正确结论的序号是______.【答案】①②③.【分析】利用二次函数的性质根据特征数[],1,2m m m --,以及m 的取值,逐一代入函数关系式,然判断后即可确定正确的答案.【详解】解:当1m =时,把1m =代入[],1,2m m m --,可得特征数为[]1,0,1∴1a =,0b =,1c =,∴函数解析式为21y x =+,函数图象的对称轴是y 轴,故①正确;当2m =时,把2m =代入[],1,2m m m --,可得特征数为[]2,1,0-∴2a =,1b =-,0c =,∴函数解析式为22y x x =-,当0x =时,0y =,函数图象过原点,故②正确;函数()()212y mx m x m =+-+-当0m >时,函数()()212y mx m x m =+-+-图像开口向上,有最小值,故③正确;当0m <时,函数()()212y mx m x m =+-+-图像开口向下,对称轴为:1121112222m m m x m m --=-==->∴12x >时,x 可能在函数对称轴的左侧,也可能在对称轴的右侧,故不能判断其增减性,故④错误;综上所述,正确的是①②③,故答案是:①②③.【点睛】本题考查了二次函数的图像与性质,二次函数的对称轴等知识点,牢记二次函数的基本性质是解题的关键.3.(四川省雅安市2021年中考数学真题)定义:{}()min ,()a a b a b b a b ≤⎧=⎨>⎩,若函数()2min 123y x x x =+-++,,则该函数的最大值为()A.0B.2C.3D.4【答案】C 【分析】根据题目中所给的运算法则,分两种情况进行求解即可.【详解】令(),y min a b =,当2123x x x +≤-++时,即220x x --≤时,1y x =+,令22w x x =--,则w 与x 轴的交点坐标为(2,0),(-1,0),∴当0w ≤时,12x -≤≤,∴1y x =+(12x -≤≤),∵y 随x 的增大而增大,∴当x=2时,3y =最大;当2123x x x +>-++时,即220x x -->时,2y x 2x 3=-++,令22w x x =--,则w 与x 轴的交点坐标为(2,0),(-1,0),∴当0w >时,2x >或1x <-,∴2y x 2x 3=-++(2x >或1x -),∵2y x 2x 3=-++的对称轴为x=1,∴当2x >时,y 随x 的增大而减小,∵当x=2时,2y x 2x 3=-++=3,∴当2x >时,y<3;当1x <-,y 随x 的增大而增大,∴当x=-1时,2y x 2x 3=-++=0;∴当1x <-时,y<0;综上,()2min 123y x x x =+-++,的最大值为3.故选C.【点睛】本题是新定义运算与二次函数相结合的题目,解题时要注意分情况讨论,不要漏解.4.(内蒙古通辽市2021年中考数学真题)定义:一次函数y ax b =+的特征数为[],a b ,若一次函数2y x m =-+的图象向上平移3个单位长度后与反比例函数3y x=-的图象交于A,B 两点,且点A,B 关于原点对称,则一次函数2y x m =-+的特征数是()A.[]2,3B.[]2,3-C.[]2,3-D.[]2,3--【答案】D 【分析】先求出平移后的直线解析式为23y x m =-++,根据与反比例函数3y x=-的图象交于A,B 两点,且点A,B 关于原点对称,得到直线23y x m =-++经过原点,从而求出m,根据特征数的定义即可求解.【详解】解:由题意得一次函数2y x m =-+的图象向上平移3个单位长度后解析式为23y x m =-++,∵直线23y x m =-++与反比例函数3y x=-的图象交于A,B 两点,且点A,B 关于原点对称,∴点A,B,O 在同一直线上,∴直线23y x m =-++经过原点,∴m+3=0,∴m=-3,∴一次函数2y x m =-+的解析式为23y x =--,∴一次函数2y x m =-+的特征数是[]2,3--.故选:D 【点睛】本题考查了新定义,直线的平移,一次函数与反比例函数交点,中心对称等知识,综合性较强,根据点A,B 关于原点对称得到平移后直线经过原点是解题关键.5.(2021·广西来宾市·中考真题)定义一种运算:,,a a b a b b a b ≥⎧*=⎨<⎩,则不等式(21)(2)3x x +*->的解集是()A.1x >或13x <B.113x -<<C.1x >或1x <-D.13x >或1x <-【答案】C 【分析】根据新定义运算规则,分别从212x x +≥-和212x x +<-两种情况列出关于x 的不等式,求解后即可得出结论.【详解】解:由题意得,当212x x +≥-时,即13x ≥时,(21)(2)21x x x +*-=+,则213x +>,解得1x >,∴此时原不等式的解集为1x >;当212x x +<-时,即13x <时,(21)(2)2x x x +*-=-,则23x ->,解得1x <-,∴此时原不等式的解集为1x <-;综上所述,不等式(21)(2)3x x +*->的解集是1x >或1x <-.故选:C.【点睛】本题主要考查解一元一次不等式,解题的关键是根据新定义运算规则列出关于x 的不等式.6.(2021·湖北中考真题)定义新运算“※”:对于实数m ,n ,p ,q ,有[][],,m p q n mn pq =+※,其中等式右边是通常的加法和乘法运算,如:[][]2,34,5253422=⨯+⨯=※.若关于x 的方程[]21,52,0x x k k ⎡⎤⎣⎦+-=※有两个实数根,则k 的取值范围是()A.54k <且0k ≠B.54k ≤C.54k ≤且0k ≠D.54k ≥【答案】C 【分析】按新定义规定的运算法则,将其化为关于x 的一元二次方程,从二次项系数和判别式两个方面入手,即可解决.【详解】解:∵[x 2+1,x]※[5−2k,k]=0,∴()()21520k x k x ++-=.整理得,()2520kx k x k +-+=.∵方程有两个实数根,∴判别式0≥ 且0k ≠.由0≥ 得,()225240k k --≥,解得,54k ≤.∴k 的取值范围是54k ≤且0k ≠.故选:C 【点睛】本题考查了新定义运算、一元二次方程的根的判别等知识点,正确理解新定义的运算法则是解题的基础,熟知一元二次方程的条件、根的不同情况与判别式符号之间的对应关系是解题的关键.此类题目容易忽略之处在于二次项系数不能为零的条件限制,要引起高度重视.7.(广西贵港市2021年中考数学真题)我们规定:若()()1122,,,a x y b x y →→==,则1212a b x x y y →→⋅=+.例如(1,3),(2,4)a b →→==,则123421214a b →→⋅=⨯+⨯=+=.已知(1,1),(3,4)a x x b x →→=+-=-,且23x -,则a b →→⋅的最大值是________.【答案】8【分析】根据平面向量的新定义运算法则,列出关于x 的二次函数,根据二次函数最值的求法解答即可.【详解】解:根据题意知:2(1)(3)4(1)(1)8a b x x x x ⋅=+-+-=+-.因为23x -≤≤,所以当3x =时,2(31)88a b ⋅=+-=.即a b ⋅的最大值是8.故答案是:8.【点睛】本题主要考查了平面向量,解题时,利用了配方法求得二次函数的最值.8.(2021·湖北中考真题)对于任意实数a、b,定义一种运算:22a b a b ab ⊗=+-,若()13x x ⊗-=,则x 的值为________.【答案】1-或2【分析】根据新定义的运算得到()()()221113x x x x x x ⊗-=+---=,整理并求解一元二次方程即可.【详解】解:根据新定义内容可得:()()()221113x x x x x x ⊗-=+---=,整理可得220x x --=,解得11x =-,22x =,故答案为:1-或2.【点睛】本题考查新定义运算、解一元二次方程,根据题意理解新定义运算是解题的关键.9.(2019·常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M、N 的坐标分别为(0,1),(0,-1),P 是二次函数y=14x 2的图象上在第一象限内的任意一点,PQ 垂直直线y=-1于点Q,则四边形PMNQ 是广义菱形.其中正确的是.(填序号)【答案】①④【解析】正方形和菱形满足一组对边平行,一组邻边相等,故都是广义菱形,故①正确;平行四边形虽然满足一组对边平行,但是邻边不一定相等,因此不是广义菱形,故②错误;对角线互相垂直,且两组邻边分别相等的四边形的对边不一定平行,邻边也不一定相等,因此不是广义菱形,故③错误;④中的四边形PMNQ 满足MN∥PQ,设P(m,0)(m>0),∵PM==214m +1,PQ=214m -(-1)=214m +1,∴PM=PQ,故四边形PMNQ 是广义菱形.综上所述正确的是①④.10.(2019·陇南)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A=80°,则它的特征值k=.【答案】85或14.【解析】当∠A 是顶角时,底角是50°,则k=808505= ;当∠A 是底角时,则底角是20°,k=201804= ,故答案为:85或14.11.(2019•济宁)阅读下面的材料:如果函数y=f(x)满足:对于自变量x 的取值范围内的任意x 1,x 2,(1)若x 1<x 2,都有f(x 1)<f(x 2),则称f(x)是增函数;(2)若x 1<x 2,都有f(x 12f(x)是减函数.例题:证明函数f(x)=6x(x>0)是减函数.证明:设0<x 1<x 2,f(x 1)–f(x 2)=()212112121266666x x x x x x x x x x ---==.∵0<x 1<x 2,∴x 2–x 1>0,x 1x 2>0.∴()21126x x x x ->0.即f(x 1)–f(x 2)>0.∴f(x 1)>f(x 2),∴函数f(x)═6x(x>0)是减函数.根据以上材料,解答下面的问题:已知函数f(x)=21x+x(x<0),f(–1)=21(1)-+(–1)=0,f(–2)=21(2)-+(–2)=–74.(1)计算:f(–3)=__________,f(–4)=__________;(2)猜想:函数f(x)=21x +x(x<0)是__________函数(填“增”或“减”);(3)请仿照例题证明你的猜想.【答案】(1)–269,–6316;(2)增;(3)见解析.【解析】(1)∵f(x)=21x+x(x<0),∴f(–3)=21(3)-–3=–269,f(–4)=21(4)-–4=–6316,故答案为:–269,–6316;(2)∵–4<–3,f(–4)>f(–3),∴函数f(x)=21x +x(x<0)是增函数,故答案为:增;(3)设x 1<x 2<0,∵f(x 1)–f(x 2)=12221211x x x x +--=(x 1–x 2)(1–122212x x x x +)∵x 1<x 2<0,∴x 1–x 2<0,x 1+x 2<0,∴f(x 1)–f(x 2)<0,∴f(x 1)<f(x 2),∴函数f(x)=21x+x(x<0)是增函数.【名师点睛】本题考查反比例函数图象上的坐标特征、反比例函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答.12.(2022·四川凉山)阅读材料:材料1:若关于x 的一元二次方程ax 2+bx+c=0(a≠0)的两个根为x 1,x 2,则x 1+x 2=b a-,x 1x 2=c a材料2:已知一元二次方程x 2-x-1=0的两个实数根分别为m,n,求m 2n+mn 2的值.解:∵一元二次方程x 2-x-1=0的两个实数根分别为m,n,∴m+n=1,mn=-1,则m 2n+mn 2=mn(m+n)=-1×1=-1根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x 2-3x-1=0的两个根为x 1,x 2,则x 1+x 2=;x 1x 2=.(2)类比应用:已知一元二次方程2x 2-3x-1=0的两根分别为m、n,求n mm n+的值.(3)思维拓展:已知实数s、t 满足2s 2-3s-1=0,2t 2-3t-1=0,且s≠t,求11s t-的值.【答案】(1)32;12-(2)132-或【分析】(1)根据一元二次方程根与系数的关系直接进行计算即可;(2)根据根与系数的关系先求出32m n +=,12mn =-,然后将n mm n +进行变形求解即可;(3)根据根与系数的关系先求出32s t +=,12st =-,然后求出s-t 的值,然后将11s t -进行变形求解即可.【解析】(1)解:∵一元二次方程2x 2-3x-1=0的两个根为x 1,x 2,∴123322b x x a -+=-=-=,1212c x x a ⋅==-.故答案为:32;12-.(2)∵一元二次方程2x 2-3x-1=0的两根分别为m、n,∴3322b m n a -+=-=-=,12c mn a ==-,∴22n m m n m n mn ++=()22m n mn mn +-=23122212⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭=-132=-(3)∵实数s、t 满足2s 2-3s-1=0,2t 2-3t-1=0,∴s、t 可以看作方程2x 2-3x-1=0的两个根,∴3322b s t a -+=-=-=,12c st a ==-,∵()()224t s t s st -=+-231422⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭924=+174=∴2t s -=或2t s -=-,当2t s -=时,11212t s s t st --===-当2t s -=时,11212t s s t st --===-11s t -或【点睛】本题主要考查了一元二次方程根与系数的关系,完全平方公式的变形计算,根据根与系数的关系求出2t s -=或2t s -=-,是解答本题的关键.13.(2019•随州)若一个两位数十位、个位上的数字分别为m,n,我们可将这个两位数记为mn ,易知mn =10m+n;同理,一个三位数、四位数等均可以用此记法,如abc =100a+10b+c.【基础训练】(1)解方程填空:①若2x +3x =45,则x=__________;②若7y –8y =26,则y=__________;③若93t +58t =131t ,则t=__________;【能力提升】(2)交换任意一个两位数mn 的个位数字与十位数字,可得到一个新数nm ,则mn +nm 一定能被__________整除,mn –nm 一定能被__________整除,mn •nm –mn 一定能被__________整除;(请从大于5的整数中选择合适的数填空)【探索发现】(3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532–235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.①该“卡普雷卡尔黑洞数”为__________;②设任选的三位数为abc (不妨设a>b>c),试说明其均可产生该黑洞数.【答案】(1)①2.②4.③7.(2)11;9;10.【解析】(1)①∵mn =10m+n,∴若2x +3x =45,则10×2+x+10x+3=45,∴x=2,故答案为:2.②若7y–8y=26,则10×7+y–(10y+8)=26,解得y=4,故答案为:4.③由abc=100a+10b+c,及四位数的类似公式得若93t+58t=131t,则100t+10×9+3+100×5+10t+8=1000×1+100×3+10t+1,∴100t=700,∴t=7,故答案为:7.(2)∵mn+nm=10m+n+10n+m=11m+11n=11(m+n),∴则mn+nm一定能被11整除,∵mn–nm=10m+n–(10n+m)=9m–9n=9(m–n),∴mn–nm一定能被9整除.∵mn•nm–mn=(10m+n)(10n+m)–mn=100mn+10m2+10n2+mn–mn=10(10mn+m2+n2)∴mn•nm–mn一定能被10整除.故答案为:11;9;10.(3)①若选的数为325,则用532–235=297,以下按照上述规则继续计算,972–279=693,963–369=594,954–459=495,954–459=495,…故答案为:495.②当任选的三位数为abc时,第一次运算后得:100a+10b+c–(100c+10b+a)=99(a–c),结果为99的倍数,由于a>b>c,故a≥b+1≥c+2,∴a–c≥2,又9≥a>c≥0,∴a–c≤9,∴a–c=2,3,4,5,6,7,8,9,∴第一次运算后可能得到:198,297,396,495,594,693,792,891,再让这些数字经过运算,分别可以得到:981–189=792,972–279=693,963–369=594,954–459–495,954–459=495…,故都可以得到该黑洞数495.【名师点睛】本题是较为复杂的新定义试题,题目设置的问题较多,但解答方法大同小异,总体中等难度略大.14.(2021·北京中考真题)在平面直角坐标系xOy 中,O 的半径为1,对于点A 和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到O 的弦B C ''(,B C ''分别是,B C 的对应点),则称线段BC 是O 的以点A 为中心的“关联线段”.(1)如图,点112233,,,,,,A B C B C B C 的横、纵坐标都是整数.在线段112233,,B C B C B C 中,O 的以点A 为中心的“关联线段”是______________;(2)ABC 是边长为1的等边三角形,点()0,A t ,其中0t ≠.若BC 是O 的以点A 为中心的“关联线段”,求t 的值;(3)在ABC 中,1,2AB AC ==.若BC 是O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.【答案】(1)22B C ;(2)t =min 1OA =时,此时BC =;当max 2OA =时,此时2BC =.【分析】(1)以点A 为圆心,分别以112233,,,,,AB AC AB AC AB AC 为半径画圆,进而观察是否与O 有交点即可;(2)由旋转的性质可得AB C ''△是等边三角形,且B C ''是O 的弦,进而画出图象,则根据等边三角形的性质可进行求解;(3)由BC 是O 的以点A 为中心的“关联线段”,则可知,B C ''都在O 上,且1,2AB AB AC AC ''====,然后由题意可根据图象来进行求解即可.【详解】解:(1)由题意得:通过观察图象可得:线段22B C 能绕点A 旋转90°得到O 的“关联线段”,1133,B C B C 都不能绕点A 进行旋转得到;故答案为22B C ;(2)由题意可得:当BC 是O 的以点A 为中心的“关联线段”时,则有AB C ''△是等边三角形,且边长也为1,当点A 在y 轴的正半轴上时,如图所示:设B C ''与y 轴的交点为D,连接OB ',易得B C y ''⊥轴,∴12B D DC ''==,∴2OD ==,2AD ==,∴OA =∴t =;当点A 在y 轴的正半轴上时,如图所示:同理可得此时的OA =∴t =;(3)由BC 是O 的以点A 为中心的“关联线段”,则可知,B C ''都在O 上,且1,2AB AB AC AC ''====,则有当以B '为圆心,1为半径作圆,然后以点A 为圆心,2为半径作圆,即可得到点A 的运动轨迹,如图所示:由运动轨迹可得当点A 也在O 上时为最小,最小值为1,此时AC '为O 的直径,∴90AB C ''∠=︒,∴30AC B ''∠=︒,∴cos30BC B C AC '''==⋅︒=;由以上情况可知当点,,A B O '三点共线时,OA 的值为最大,最大值为2,如图所示:连接,OC B C ''',过点C '作C P OA '⊥于点P,∴1,2OC AC OA ''===,设OP x =,则有2AP x =-,∴由勾股定理可得:22222C P AC AP OC OP '''=-=-,即()222221x x --=-,解得:14x =,∴4C P '=,∴34B P OB OP ''=-=,在Rt B PC '' 中,2B C ''==,∴2BC =;综上所述:当min 1OA =时,此时BC =;当max 2OA =时,此时2BC =.【点睛】本题主要考查旋转的综合、圆的基本性质、三角函数及等边三角形的性质,熟练掌握旋转的性质、圆的基本性质、三角函数及等边三角形的性质是解题的关键.15.(江苏省南通市2021年中考数学试题)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数1122y x =+的图象的“等值点”.(1)分别判断函数22,y x y x x =+=-的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数3(0),y x y x b x=>=-+的图象的“等值点”分别为点A,B,过点B 作BC x ⊥轴,垂足为C.当ABC 的面积为3时,求b 的值;(3)若函数22()y x x m =-≥的图象记为1W ,将其沿直线x m =翻折后的图象记为2W .当12,W W 两部分组成的图象上恰有2个“等值点”时,直接写出m 的取值范围.【答案】(1)函数y=x+2没有“等值点”;函数2y x x =-的“等值点”为(0,0),(2,2);(2)b =-;(3)98m <-或12m -<<..【分析】(1)根据定义分别求解即可求得答案;(2)根据定义分别求),B(2b ,2b ),利用三角形面积公式列出方程求解即可;(3)由记函数y=x 2-2(x≥m)的图象为W 1,将W 1沿x=m 翻折后得到的函数图象记为W 2,可得W 1与W 2的图象关于x=m 对称,然后根据定义分类讨论即可求得答案.【详解】解:(1)∵函数y=x+2,令y=x,则x+2=x,无解,∴函数y=x+2没有“等值点”;∵函数2y x x =-,令y=x,则2x x x -=,即()20x x -=,解得:1220x x ==,,∴函数2y x x =-的“等值点”为(0,0),(2,2);(2)∵函数3y x=,令y=x,则23x =,解得:x =(负值已舍),∴函数3y x =的“等值点”为);∵函数y x b =-+,令y=x,则x x b =-+,解得:2b x =,∴函数y x b =-+的“等值点”为B(2b ,2b );ABC 的面积为11•••32222B A b b BC x x -=,即2240b --=,解得:b =-;(3)将W 1沿x=m 翻折后得到的函数图象记为W 2.∴W 1与W 2两部分组成的函数W 的图象关于x m =对称,∴函数W 的解析式为()()22222()y x x m y m x x m ⎧=-≥⎪⎨=--<⎪⎩,令y=x,则22x x -=,即220x x --=,解得:1221x x ==-,,∴函数22y x =-的“等值点”为(-1,-1),(2,2);令y=x,则2(2)2m x x --=,即()2241420x m x m -++-=,当2m ≥时,函数W 的图象不存在恰有2个“等值点”的情况;当12m -<<时,观察图象,恰有2个“等值点”;当1m <-时,∵W 1的图象上恰有2个“等值点”(-1,-1),(2,2),∴函数W 2没有“等值点”,∴()()224141420m m ⎡⎤=-+-⨯⨯-<⎣⎦ ,整理得:890m +<,解得:98m <-.综上,m 的取值范围为98m <-或12m -<<.【点睛】本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.解答本题的关键是明确题意,找出所求问题需要的条件.16.(2019·衢州)定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满是x=3a c +,y=3b d +,那么称点T是点A,B的融合点。

2021年中考数学复习专题6 新定义与阅读理解型问题(教学课件)

2021年中考数学复习专题6 新定义与阅读理解型问题(教学课件)

(1)特例感知:如图(一),已知边长为 2 的等边△ABC 的重心为 点 O,求△OBC 与△ABC 的面积. (2)性质探究:如图(二),已知△ABC 的重心为点 O,请判断OODA ,
S△OBC 是否都为定值?如果是,分别求出这两个定值;如果不是, S△ABC 请说明理由.
重点题型
题题组组训训练练
9≥2x+4,4x≥13,∴x≥143 ,∴x 的取值范围为 x≥143 .
重重点点题题型型
题组训练
例2.(2020·益阳)定义:若四边形有一组对角互补,一组邻边相等, 且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四 边形,简称“直等补”四边形.
根据以上定义,解决下列问题: (1)如图1,正方形ABCD中,E是CD上的点,将△BCE绕B点旋转, 使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形 BEDF为“直等补”四边形,为什么? (2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=5, CD=1,AD>AB,点B到直线AD的距离为BE. ①求BE的长; ②若M,N分别是AB,AD边上的动点,求△MNC周长的最小值.
设函数 y=x+ax (a>0,x>0),由上述结论可知:当 x= a 时,
该函数有最小值为 2 a .
应用举例
已知函数为 y1=x(x>0)与函数 y2=4x (x>0),则当 x= 4 =2 时,
y1+y2=x+4x 有最小值为 2 4 =4.
重点题型
题题组组训训练练
解决问题 (1)已知函数为 y1=x+3(x>-3)与函数 y2=(x+3)2+9(x>-3),当 x 取何值时,yy21 有最小值?最小值是多少? (2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试 费用,共 490 元;二是设备的租赁使用费用,每天 200 元;三是设 备的折旧费用,它与使用天数的平方成正比,比例系数为 0.001.若 设该设备的租赁使用天数为 x 天,则当 x 取何值时,该设备平均每 天的租赁使用成本最低?最低是多少元?

中考数学复习考点知识与题型归类解析45---新定义型、阅读理解型问题

中考数学复习考点知识与题型归类解析45---新定义型、阅读理解型问题

中考数学复习考点知识与题型归类解析45---新定义型、阅读理解型问题一、选择题10.(2020·遵义)构建几何图形解决代数问题“数形结合“思想的重要性,在计算tan15°时,如图,在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,所以tan15° =AC CD2类比这种方法,计算tan22.5°的值为( )A .+1 B .- 1 C .D . 127.(2020·河南)定义运算:m ☆n =21mn mn .例如: 4☆2=4×22-4×2-1=7.则1☆x =0方程的根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根9.(2020·枣庄)对于实数a 、b ,定义一种新运算“⊗”为:21a b a b ⊗=-,这里等式右边是实数运算.例如:21113138⊗==--.则方程()2214⊗-=--x x 的解是( ) A .x =4 B .x =5 C .x =6 D .x =78.(2020·淮安)如果一个数等于两个连续奇数的平方差,那么我们称这个数为"幸福数".下列数中为"幸福数"的是A.205B.250C.502D.5209.(2020·随州)将关于x 的一元二次方程0=q +px -x 2变形为q -px x 2=,就可以将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,又如=-=⋅=)(23q px x x x x …,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:0=1-x -x 2,且x >0,则3x +2x -x 34的值为( ) A.51- B.53- C.51+ D.53+ 12.(2020·潍坊)若定义一种新运算:(2)6(2)a b a b a bab ab 例如:31312⊗=-=;545463⊗=+-=.则函数(2)(1)y x x =+⊗-的图象大致是( )A. B. C. D.7.(2020·恩施)在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是( ). A. 1- B. 1C. 0D. 2二、填空题12.(2020·衢州)定义(1)a b a b =+※,例如232(31)248=⨯+=⨯=※,则(1)x x -※的结果为 .18.(2020·枣庄)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S 可用公式S =a +21b -1(a 是多边形内的格点数,b 是多边形边界上的格点数)计算,这个公式称为“皮克(Pick )定理”.如图给出了一个格点五边形,则该五边形的面积S =________.16.(2020·乐山)我们用符号[x ]表示不大于x 的最大整数.例如:[1.5]=1,[-1.5]=-2,那么:(1)当-1<[x ]≤2时,x 的取值范围是________;(2)当-1≤x <2时,函数y =x 2-2a [x ]+3的图象始终在函数y =[x ]+3的图象下方,则实数a 的范围是________.11.(2020·青海)对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下: a ⊕b,如:3⊕212⊕4=______.17.(2020·宜宾)定义:分数nm (m ,n 为正整数且互为质数)的连分数123111a a a +++(其中a 1,a 2,a 3,…,为整数,且等式右边的每个分数的分子都为1),记作nm△11a +21a +31a +…, 例如:719=1197=1527+=11275+=112215++=1121152++=11211122+++,719的连分数为11211122+++,记作719△12+11+12+12,则 △11+12+13.三、解答题24.(2020·宁波)(本题14分)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角,若∠A =a ,请用含a 的代数式表示∠E .(2)如图2,四边形ABCD 内接于⊙O ,AD =BD ,四边形ABCD 的外角平分线DF 交⊙O 于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.22.(2020·黔西南州)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是________;A.矩形 B.正五边形C.菱形 D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:________(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形,其中真命题的个数有()个;A.0 B.1 C.2 D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.22.(2020·重庆B 卷)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数——“好数”.定义:对于三位自然数n ,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n 为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除; 643不是“好数”,因为6+4=10,10不能被3整除. (1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.28.(2020·北京)在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB =1.给出如下定义:平移线段AB ,得到⊙O 的弦A ´B ´(A´,B´分别为点A ,B 的对应点),线段AA ´长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12P P 和34P P ,则这两条弦的位置关系是 ;xyP 2P 1P 3P 41BOA在点1234,,,P P P P 中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y +上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值;(3)若点A 的坐标为32,2⎛⎫⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围.27.(2020·常州)(10分)如图1,⊙I 与直线a 相离,过圆心I 作直线a 的垂线,垂足为H ,且交⊙I 于P 、Q 两点(Q 在P 、H 之间).我们把点P 称为⊙I 关于直线a 的“远点”,把PQ ·PH 的值称为⊙I 关于直线a 的“特征数”.(1)如图2,在平面直角坐标系xOy 中,点E 的坐标为(0,4),半径为1的⊙O 与两坐标轴交于点A 、B 、C 、D .①过点E 画垂直于y 轴的直线m ,则⊙O 关于直线m 的“远点”是点________(填“A ”“B ”“C ”或“D ”),⊙O 关于直线m 的“特征数”为________;②若直线n 的函数表达式为y =3x +4,求⊙O 关于直线n 的“特征数”;(2)在平面直角坐标系xOy ,直线l 经过点M (1,4),点F 是坐标平面内一点,以F 为圆心,2为半径作⊙F .若⊙F 与直线l 相离,点N (-1,0)是⊙F 关于直线l 的“远点”,且⊙F 关于直线l 的“特征数”是45,求直线l 的函数表达式.(2020·山西)20.阅读与思考下面是小宇同学的数学日记,请仔细阅读,并完成相应的任务.任务:(1)填空:“办法一”依据的一个数学定理是 ; (2) 根据“办法二”的操作过程,证明∠RCS =90°;(3)①尺规作图:请在图③的木板上,过点C 作出AB 的垂线( 在木板上保留作图痕迹,不写作法);②说明你的作法所依据的数学定理或基本事实(写出一个即可) .x 年x 月x 日 星期日 没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB ,现根据木板的情况,要过AB 上的一点C ,作出AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB 上量出CD = 30cm ,然后分别以D ,C 为圆心,以50cm 与40cm 为半径画圆弧,两弧相交于点E ,作直线CE ,则∠DCE 必为90°.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M ,N 两点,然后把木棒斜放在木板上,使点M 与点C 重合,用铅笔在木板上将点N 对应的位置标记为点Q ,保持点N 不动,将木棒绕点N 旋转,使点M 落在AB 上,在木板上将点M 对应的位置标记为点R .然后将RQ 延长,在延长线上截取线段QS =MN ,得到点S ,作直线SC ,则∠RCS =90°.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也第20题图①50cm40cm 30cmEABDC第20题图②N MQ SABRC{解析} ({答案}18.(2020·湖北荆州)阅读下列“问题”与“提示”后,将解方程的过程补充完整,求出x 的值.【问题】解方程:2224250x x xx 【提示】可以用“换元法”解方程. 解:设t (t ≥0),则有222x x t , 原方程可化为:2450t t 【续解】229t21.(2020·怀化)定义:对角线互相垂直且相等的四边形叫做垂等四边形. (1)下面四边形是垂等四边形的是 ;(填序号) ①平行四边形;②矩形;③菱形;④正方形(2)图形判定:如图1,在四边形ABCD 中,AD ∥BC ,AC ⊥BD ,过点D 作BD 垂线交第20题图③第20题图④BC 的延长线于点E ,且∠DBC =45°,证明:四边形ABCD 是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD 内接于⊙O 中,∠BCD =60°.求⊙O 的半径.20. (2020·张家界)阅读下面材料:对于实数,a b ,我们定义符号min{,}a b 的意义为:当a b <时,min{,}a b a =;当a b 时,min{,}a b b =,如:min{4,2}2,min{5,5}5-=-=.根据上面的材料回答下列问题: (1)min{1,3}-=______; (2)当2322min ,233x x x -++⎧⎫=⎨⎬⎩⎭时,求x 的取值范围. (1)﹣1 ;(2)x≥13424.(2020·长沙)我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图像上关于原点对称的两点叫做一对“H 点”,根据该约定,完成下列各题(1)在下列关于x 的函数中,是“H 函数”的,请在相应题目后面的括号中打“√”,不是“H 函数”的打“×”①x y 2=( ) ②()0≠m xmy =( ) ③13-=x y ( ) (2)若点A (1,m )与点B (n ,-4)关于x 的“H 函数”()02≠a c bx ax y ++=的一对“H 点”,且该函数的对称轴始终位于直线x =2的右侧,求a ,b ,c 的值或取值范围;的(3)若关于x 的“H 函数”c bx ax y 322++=(a ,b ,c 是常数)同时满足下列两个条件:①0=++c b a ,②()()0322<++-+a b c a b c ,求该“H 函数”截x 轴得到的线段长度的取值范围.25. (2020·湘潭)阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.(1)特例感知:如图(一),已知边长为2的等边△ABC 的重心为点O ,求△OBC 与△ABC 的面积.(2)性质探究:如图(二),已知△ABC 的重心为点O ,请判断OD OA 、OBC ABCS S 是否都为定值?如果是,分别求出这两个定值:如果不是,请说明理由.(3)性质应用:如图(三),在正方形ABCD 中,点E 是CD 的中点,连接BE 交对角线AC 于点M .①若正方形ABCD 的边长为4,求EM 的长度; ②若1CMES=,求正方形ABCD 的面积.26.(2020·内江)我们知道,任意一个正整数x 都可以进行这样的分解:x m n =⨯(m ,n 是正整数,且m n ≤),在x 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m n ⨯是x 的最佳分解.并规定:()mf x n=. 例如:18可以分解成118⨯,29⨯或36⨯,因为1819263->->-,所以36⨯是18的最佳分解,所以()311862f ==. (1)填空:()6________f =;()9_________f =;(2)一个两位正整数t (10t a b =+,19a b ≤≤≤,a ,b 为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求()f t 的最大值;(3)填空:①()22357_____________f ⨯⨯⨯=;②()32357_____________f ⨯⨯⨯=;③()42357_____________f ⨯⨯⨯=;④()52357_____________f ⨯⨯⨯=.20.(2020·通辽)用※定义一种新运算:对于任意实数m 和n ,规定m ※n =m 2n ﹣mn ﹣3n , 如:1※2=12×2﹣1×2﹣3×2=﹣6.(1)求(﹣2(2)若3※m ≥﹣6,求m 的取值范围,并在所给的数轴上表示出解集.22.(7分)(2020•呼和浩特)“通过等价变换,化陌生为熟悉,化未知为已知”是数学学习中解决问题的基本思维方式,例如:解方程x ﹣=0,就可以利用该思维方式,设=y ,将原方程转化为:y 2﹣y =0这个熟悉的关于y 的一元二次方程,解出y ,再求x ,这种方法又叫“换元法”.请你用这种思维方式和换元法解决下面的问题.已知实数x ,y 满足,求x 2+y 2的值.21.(9分)(2020•遂宁)阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y =a 1x 2+b 1x +c 1(a 1≠0,a 1、b 1、c 1是常数)与y =a 2x 2+b 2x +c 2(a 2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数,小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y=x2﹣4x+3的旋转函数.(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为旋转函数,求(m+n)2020的值.(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y =2(x﹣1)(x+3)互为“旋转函数”.。

中考数学专题51新定义及阅读理解型问题含解析.doc

中考数学专题51新定义及阅读理解型问题含解析.doc

2019-2020 年中考数学专题51新定义和阅读理解型问题(含解析)新定义和阅读理解型问题在近年的全国各地的中考试题中频频出现,特别引人注目,这些试题不再囿于教材的内容及其方法,以新颖别致的取材、富有层次和创造力的设问独树一帜.这些试题中还常常出现新的概念和方法,不仅要求学生理解这些新的概念和方法,而且要灵活运用这些新的概念和方法去分析、解决一些简单的问题。

在新定义和阅读理解型问题中,除了考查学生的分析分析、综合、抽象、概括等演绎推理能力,即逻辑推理能力外,还经常考查学生的观察、猜想、不完全归纳、类比、联想等合情推理能力,考查学生的直觉思维。

因此,这类问题需要学生通过对阅读材料的阅读理解,然后进行合情推理,就其本质进行归纳加工、猜想、类比和联想,作出合情判断和推理,前面诸专题对存在性探究问题型进行了命题,后面将有专题对规律探究型问题进行命题。

本专题原创编写新定义和阅读理解型问题模拟题。

1.阅读下面的材料:小明在数学课外小组活动中遇到这样一个“新定义”问题:ab>0 ;b定义运算“※”为: a※ b 求1※ 2 的值 .ab<0 .b1小明是这样解决问题的:由新定义可知a=1, b=-2 ,又 b< 0,所以 1※( -2 )= 2 .请你参考小明的解题思路,回答下列问题:( 1)计算: 2※ 3= ;5( 2)若 5※ m=6,则 m= .( 3)函数 y=2※ x(x≠0)的图象大致是()y y y y2【答案】解:() 3O xOx O xO 1 x ( 2)± 6( 3) D【解析】考点:规律探索应用,反比例函数的图像2.我们新定义一种三角形:两边平方和等于第三边平方的两倍的三角形叫做奇异三角形.(1)根据“奇异三角形”的定义,请你判断命题“等边三角形一定是奇异三角形”是真命题还是假命题( 2)在 Rt△ ABC中,∠ ACB=90°, AB=c, AC=b, BC=a,且 b>a,若 Rt △ ABC是奇异三角形,求? a: b:c;( 3)如图, AB 是⊙ O的直径, C 是⊙ O 上一点(不与点 A, B 重合), D 是半圆ADB的中点, C, D 在直径AB的两侧,若在⊙ O内存在点 E,使 AE=AD, CB=CE.①求证:△ ACE是奇异三角形;②当△ ACE是直角三角形时,求∠AOC的度数.【答案】(1)真命题.( 2) a: b: c=1:2:3.(3)①见解析②60°或120°.【解析】2: 1 .然后分两种情况讨论 .试题解析:解:( 1)真命题.( 2 分)( 3)在 Rt ABC中, a2+b2=c2,①证明:∵ AB 是⊙ O的直径,∴∠ ACB=∠ ADB=90°,在 Rt2 2 2 ACB中, AC+BC=AB;在 Rt2 2 2 ADB中, AD+BD=AB.∵ D 是半圆ADB的中点,∴AD BD ,∴ AD=BD,( 6 分),2 2 2 2( 7 分)∴ AB =AD+BD=2AD,2 2 2又∵ CB=CE. AE=AD,∴ AC+ CE=2AE.∴ ACE是奇异三角形.( 8 分)考点: 1. 命题; 2. 勾股定理; 3. 圆周角定理及推论;4. 直角三角形的性质 .3. 阅读理解:对于任意正实数a 、 ,∵ ( a- b ) 2 ≥ 0,∴a - 2 ab + ≥ 0,∴ + ≥ 2 ab ,只有当abb a b= b 时,等号成 立 .结论:在 a + b ≥2 ab( a 、b 均为正实数)中,若ab 为定值 p ,则 a+b ≥2p,只有当 a = b 时, a + b 有最小值 2 p.根据上述内容,回答下列问题:( 1)若 m > 0,只有当 m =时, m + m 有最小值;若 > 0,只有当 =时, 2 + m 有最小值.m mm1( 2)如图,已知直线 L 1: y = 2 x + 1 与 x 轴交于点 A ,过点 A 的另一直 线 L 2 与双曲线 y = x( x >0)相交于点 B (2, m ),求直线 L 2 的解析式 .( 3)在( 2)的条件下,若点C 为双曲线上任意一点,作∥y 轴交直线L1 于点 ,试CDD求当线段最短时,点 、 、 、 D 围成的四边形面积 .CD A B Cm18【答案】(1)当m m有最小值为 2;当m 2时,2m1时,m有最小值为 8( 2)yx2( 3) 23∴A( -2 ,0)y 8(x 0)又点 B( 2, m)在x 上,∴ m4, B(2, 4)设直线L2的解析式为:y kx b ,则有,解得:2k b0 2k b 4k 1b 2∴直线L2的解析式为:y x 2;1 6 4 1(5 6) 22 2 12 11234.如图是一组密码的一部分.为了保密,许多情况下可采用不同的密码,请你运用所学知识找到破译的“钥匙”。

类型一 新定义型(解析版)

类型一 新定义型(解析版)

类型一 新定义型“新定义”型问题,指的是命题老师用下定义的方式,给出一个新的运算、符号、概念、图形或性质等,要求同学们“化生为熟”、“现学现用”,能结合已有知识、能力进行理解,进而进行运算、推理、迁移的一种题型,这类题型往往是教材中一些数学概念的拓展、变式,是近几年中考数学命题的热点。

“新定义”型试题主要考查同学们学习新知识的能力,具体而言,就是考查大家的阅读理解能力、数学规则的选择与运用能力、综合运用数学知识分析问题解决问题的能力,有较强的数学抽象,旨在引导、培养大家在平时的数学学习中,能养成自主学习、主动探究的学习方式。

“定义新运算”是指用一个符号和已知运算表达式表示一种新的运算. 解决这类问题的关键是理解新运算规定的规则,明白其中的算理算法. 运算时,要严格按照新定义的运算规则,转化为已学过的运算形式,然后按正确的运算顺序进行计算.“定义新符号”试题是定义了一个新的数学符号,要求同学们要读懂符号,了解新符号所代表的意义,理解试题对新符号的规定,并将新符号与已学知识联系起来,将它转化成熟悉的知识,而后利用已有的知识经验来解决问题.【典例1】对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b=2a+b .例如3⊗4=2×3+4=10.(1)求2⊗(-5)的值;(2)若x ⊗(-y )=2,且2y ⊗x=-1,求x+y 的值.【解析】(1)依据关于“⊗”的一种运算:a ⊗b=2a+b ,即可得到2⊗(﹣5)的值; (2)依据x ⊗(﹣y )=2,且2y ⊗x=﹣1,可得方程组,即可得到x+y 的值. 【典例2】对于实数x ,规定[]x 表示不小于x 的最小整数,例如[]1.2=2,[]3=3,[]-2.5=-2,则(1)填空:①[]-=π ;②若[]x =-2,则x 的取值范围是 .(2)已知x 为正整数,且x 132+⎡⎤=⎢⎥⎣⎦,求x 的值.【解析】(1)①[﹣π]=﹣3;②x 的取值范围是﹣3<x ≤﹣2; (2)由x 132+⎡⎤=⎢⎥⎣⎦知2<x 12+ ≤3,解得:3<x ≤5,∵x 取正整数, ∴x 的值为4或5.【典例3】在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”. (1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么? 【解析】(1)设这一对“互换点”的坐标为M(m ,n) 和N(n ,m) . ① 当mn=0时,它们不可能在反比例函数的图像上; ② 当mn ≠0 时,M 、N 两点均在反比例函数的图像上. 于是得到结论“不一定”.(2)M ,N 是一对“互换点”,若点M 的坐标为(m ,n),求直线MN 的表达式(用含m ,n 的代数式表示);【解析】(2)设直线 MN 的表达式为 y = kx + b( k ≠0) . 把 M( m,n) ,N( n ,m) 代入 y = kx + b ,解得 k=-1,b=m + n ,∴ 直线 MN 的表达式为y=-x+m+n . (3)在抛物线y =x 2+bx +c 的图象上有一对“互换点”A ,B ,其中点A 在反比例函数2y x=-的图象上,直线AB 经过点P1122⎛⎫ ⎪⎝⎭,,求此抛物线的表达式.【解析】 ( 3)因为点A 在反比例函数2y x=-的图象上, 故设A(m ,2m -) ,则B(2m-,m) . 由(2)的结论可得,直线AB 的表达式为y=-x+m2m-.将P 点坐标1122⎛⎫ ⎪⎝⎭,代入可得2m 10m--=, 解得m=2或-1. 【典例4】对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6. (1)计算:F (243),F (617);(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:k =F (s )F (t ),当F (s )+F (t )=18时,求k 的最大值. 【解析】解:(1)F (243)=(423+342+234)÷111=9;F (617)=(167+716+671)÷111=14.(2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F (s )=(302+10x +230+x +100x +23)÷111=x +5,F (t )=(510+y +100y +51+105+10y )÷111=y +6. ∵F (t )+F (s )=18,∴x +5+y +6=x +y +11=18, ∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数, ∴⎩⎨⎧x =1y =6或⎩⎨⎧x =2y =5或⎩⎨⎧x =3y =4或⎩⎨⎧x =4y =3或⎩⎨⎧x =5y =2或⎩⎨⎧x =6y =1. ∵s 是“相异数”, ∴x ≠2,x ≠3. ∵t 是“相异数”, ∴y ≠1,y ≠5. ∴⎩⎨⎧x =1y =6或⎩⎨⎧x =4y =3或⎩⎨⎧x =5y =2, ∴⎩⎨⎧F (s )=6F (t )=12或⎩⎨⎧F (s )=9F (t )=9或⎩⎨⎧F (s )=10F (t )=8,∴k =F (s )F (t )=12或k =F (s )F (t )=1或k =F (s )F (t )=54, ∴k 的最大值为54.(1) 若矩形的两边长分别是2和3,当这两边长分别增加x 和y 后,得到的新矩形的面积为8 ,求y 与x 之间的函数关系式,并判断这个函数是否为“奇特函数”;(2) 如图,在平面直角坐标系中,点O 为原点,矩形OABC 的顶点A ,C 的坐标分别为(9,0)、(0,3).点D 是OA 的中点,连结OB ,CD 交于点E ,“奇特函数”6ax ky x +=-的图象经过B ,E 两点.①求这个“奇特函数”的解析式; ②把反比例函数3y x=的图象向右平移6个单位,再向上平移 个单位就可得到①中所得“奇特函数”的图象.过线段BE 中点M 的一条直线l 与这个“奇特函数”的图象交于P ,Q 两点,若以B 、E 、P 、Q 为顶点组成的四边形面积为16103,请直接写出点P 的坐标.【解析】 (1)322x y x -+=+,是 “奇特函数”;(2)①296x y x -=-;②(7,5)或53,3⎛⎫- ⎪⎝⎭或715,3⎛⎫ ⎪⎝⎭或(5,1)-.试题分析:(1)根据题意列式并化为322x y x -+=+,根据定义作出判断. (2)①求出点B ,D 的坐标,应用待定系数法求出直线OB 解析式和直线CD 解析式,二者联立即可得点E 的坐标,将B (9,3),E (3,1)代入函数6ax ky x +=-即可求得这个“奇特函数”的解析式.②根据题意可知,以B 、E 、P 、Q 为顶点组成的四边形是平行四边形BPEQ 或BQEP ,据此求出点P 的坐标.试题解析:(1)根据题意,得,∵,∴.∴.根据定义,是“奇特函数”.(2)①由题意得,.易得直线OB解析式为,直线CD解析式为,由解得.∴点E(3,1).将B(9,3),E(3,1)代入函数,得,整理得,解得.∴这个“奇特函数”的解析式为.②∵可化为,∴根据平移的性质,把反比例函数的图象向右平移6个单位,再向上平移2个单位就可得到.∴关于点(6,2)对称.∵B(9,3),E(3,1),∴BE中点M(6,2),即点M是的对称中心.∴以B、E、P、Q为顶点组成的四边形是平行四边形BPEQ或BQEP.由勾股定理得,.设点P到EB的距离为m,∵以B、E、P、Q为顶点组成的四边形面积为,∴.∴点P在平行于EB的直线上.∵点P在上,∴或.解得.∴点P的坐标为或或或.考点:1.新定义和阅读理解型问题;2.平移问题;3.反比例函数的性质;4.曲线上点的坐标与方程的关系;5.勾股定理;6.中心对称的性质;7.平行四边形的判定和性质;8.分类思想的应用.【典例6】定义[a,b,c]为函数y=a x2+bx c+的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是(18,33);②当m>0时,函数图象截x轴所得的线段长度大于32;③当m<0时,函数在x>14时,y随x的增大而减小;④当m≠0时,函数图象经过同一个点.其中正确的结论有___________【解析】解:根据定义可得函数y=2m x2+(1﹣m)x+(﹣1﹣m),①当m=﹣3时,函数解析式为y=﹣6x2+4x+2,∴224144(6)248,22(6)344(6)3 b ac ba a-⨯-⨯--=-===⨯-⨯-,∴顶点坐标是(18,33),正确;②函数y =2m x 2+(1﹣m )x +(﹣1﹣m )与x 轴两交点坐标为(1,0),(﹣12m m+,0), 当m >0时,1﹣(﹣12m m +)=313222m +>,正确; ③当m <0时,函数y =2m x 2+(1﹣m )x +(﹣1﹣m )开口向下,对称轴111444x m =->,错误;④当m ≠0时,x =1代入解析式y =0,则函数一定经过点(1,0),正确. 故选:①②④【典例7】通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。

专题16 新定义和阅读理解型问题-决胜中考数学压轴题全揭秘精品(学生版)九年级数学中考复习训练讲义

专题16 新定义和阅读理解型问题-决胜中考数学压轴题全揭秘精品(学生版)九年级数学中考复习训练讲义

《中考压轴题全揭秘》专题16 新定义和阅读理解型问题一、单选题1.已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元50年)给出求其面积的海伦公式S=,其中p=;我国南宋时期数学家秦九韶(约1202-1261)曾提出利用三角形的三边求其面积的秦九韶公式S=,若一个三角形的三边长分别为2,3,4,则其面积是()A. B. C. D.2.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距5的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13 B.14 C.15 D.163.对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+3},则该函数的最大值为()A.23B.1 C.43D.534.已知点A在函数11yx=-(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B 两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对B.只有1对C.只有2对D.有2对或3对5.根据如图所示的程序计算函数y 的值,若输入的x 值是4或7时,输出的y 值相等,则b 等于( )A .9B .7C .﹣9D .﹣7 6.已知:表示不超过的最大整数,例:,令关于的函数(是正整数),例:=1,则下列结论错误..的是( ) A . B .C .D .或17.设a ,b 是实数,定义@的一种运算如下:()()22@a b a b a b =+--,则下列结论: ①若@0a b =,则a =0或b =0; ②()@@@a b c a b a c +=+;③不存在实数a ,b ,满足22@5a b a b =+;④设a ,b 是矩形的长和宽,若矩形的周长固定,则当a =b 时,@a b 最大. 其中正确的是( )A .②③④B .①③④C .①②④D .①②③8.在△ABC 中,若O 为BC 边的中点,则必有:AB 2+AC 2=2AO 2+2BO 2成立.依据以上结论,解决如下问题:如图,在矩形DEFG 中,已知DE=4,EF=3,点P 在以DE 为直径的半圆上运动,则PF 2+PG 2的最小值为( )A .B .C .34D .109.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20 B.24 C. D.10.阅读理解:,,,是实数,我们把符号称为阶行列式,并且规定:,例如:.二元一次方程组的解可以利用阶行列式表示为:;其中,,.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A. B. C. D.方程组的解为11.已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()A.﹣<m<3 B.﹣<m<2 C.﹣2<m<3 D.﹣6<m<﹣212.如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是()A.6<t≤8 B.6≤t≤8 C.10<t≤12 D.10≤t≤1213.如图,抛物线与x轴交于点A、B,把抛物线在x轴及其下方的部分记作,将向左平移得到,与x轴交于点B、D,若直线与、共有3个不同的交点,则m的取值范围是A. B. C. D.14.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1 B.4 C.2018 D.4201815.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是()A. B. C. D.a2014﹣1二、填空题16.对于实数a,b,定义运算“◆”:a◆b=,例如4◆3,因为4>3.所以4◆3==5.若x,y满足方程组,则x◆y=_____________.17.观察下列运算过程:S=1+3+32+33+…+32017+32018①,①×3得3S=3+32+33+…+32018+32019②,②﹣①得2S=32019﹣1,S=.运用上面计算方法计算:1+5+52+53+…+52018=____.18.对于任意实数a、b,定义:a◆b=a2+ab+b2.若方程(x◆2)﹣5=0的两根记为m、n,则m2+n2= .19.规定:,如:,若,则=__.20.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为_____.21.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为______.22.对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该矩形的高.如图2,菱形ABCD的边长为1,边AB水平放置.如果该菱形的高是宽的,那么它的宽的值是_____.23.如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y 轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平行线,交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P 的斜坐标,在某平面斜坐标系中,已知θ=60°,点M′的斜坐标为(3,2),点N与点M关于y轴对称,则点N的斜坐标为_____.24.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是_____.25.如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而=45是360°(多边形外角和)的,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是_____;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是_____.26.若为实数,则表示不大于的最大整数,例如,,等. 是大于的最小整数,对任意的实数都满足不等式. ①,利用这个不等式①,求出满足的所有解,其所有解为__________.27.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.28.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH 为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_____(不包括5).29.刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S=_____.(结果保留根号)30.定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=_____.31.设双曲线与直线交于,两点(点在第三象限),将双曲线在第一象限的一支沿射线的方向平移,使其经过点,将双曲线在第三象限的一支沿射线的方向平移,使其经过点,平移后的两条曲线相交于点,两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,为双曲线的“眸径”.当双曲线的眸径为6时,的值为__________.32.如图,若△ABC内一点P满足∠PAC=∠PCB=∠PBA,则称点P为△ABC的布罗卡尔点,三角形的布罗卡尔点是法国数学家和数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知△ABC中,CA=CB,∠ACB=120°,P为△ABC的布罗卡尔点,若PA=,则PB+PC=_____.三、解答题33.综合与实践折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习.在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.实践操作如图1,将矩形纸片ABCD沿对角线AC翻折,使点B′落在矩形ABCD所在平面内,B′C和AD相交于点E,连接B′D.解决问题(1)在图1中,①B′D和AC的位置关系为;②将△AEC剪下后展开,得到的图形是;(2)若图1中的矩形变为平行四边形时(AB≠BC),如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为;拓展应用(4)在图2中,若∠B=30°,AB=4,当△AB′D恰好为直角三角形时,BC的长度为.34.如图①,在Rt△ABC中,以下是小亮探究与之间关系的方法:∵sinA=,sinB=,∴c=,c=,∴=,根据你掌握的三角函数知识.在图②的锐角△ABC中,探究、、之间的关系,并写出探究过程.35.如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y0≤9时,直接写出L的取值范围.36.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;①=;②=;③“十字形”ABCD的周长为12.37.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.已知是比例三角形,,,请直接写出所有满足条件的AC的长;如图1,在四边形ABCD中,,对角线BD平分,求证:是比例三角形.如图2,在的条件下,当时,求的值.38.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD 是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为2,求FH的长.39.对于三个数a,b,c,用M{a,b,c}表示这三个数的中位数,用max{a,b,c}表示这三个数中最大数,例如:M{﹣2,﹣1,0}=﹣1,max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=解决问题:(1)填空:M{sin45°,cos60°,tan60°}=__________,如果max{3,5﹣3x,2x﹣6}=3,则x的取值范围为__________;(2)如果2•M{2,x+2,x+4}=max{2,x+2,x+4},求x的值;(3)如果M{9,x2,3x﹣2}=max{9,x2,3x﹣2},求x的值.40.阅读短文,解决问题如果一个三角形和一个菱形满足条件:三角形的一个角与菱形的一个角重合,且菱形的这个角的对角顶点在三角形的这个角的对边上,则称这个菱形为该三角形的“亲密菱形”.如图1,菱形AEFD为△ABC的“亲密菱形”.如图2,在△ABC中,以点A为圆心,以任意长为半径作弧,交AB、AC于点M、N,再分别以M、N为圆心,以大于MN的长为半径作弧,两弧交于点P,作射线AP,交BC于点F,过点F作FD//AC,FE//AB.(1)求证:四边形AEFD是△ABC的“亲密菱形”;(2)当AB=6,AC=12,∠BAC=45°时,求菱形AEFD的面积.41.小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验(1)已知抛物线经过点(-1,0),则= ,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线的表达式是 .抽象感悟我们定义:对于抛物线,以轴上的点为中心,作该抛物线关于点对称的抛物线 ,则我们又称抛物线为抛物线的“衍生抛物线”,点为“衍生中心”.(2)已知抛物线关于点的衍生抛物线为,若这两条抛物线有交点,求的取值范围.问题解决(3) 已知抛物线①若抛物线的衍生抛物线为,两抛物线有两个交点,且恰好是它们的顶点,求的值及衍生中心的坐标;②若抛物线关于点的衍生抛物线为 ,其顶点为;关于点的衍生抛物线为,其顶点为;…;关于点的衍生抛物线为,其顶点为;…(为正整数).求的长(用含的式子表示).42.结果如此巧合!下面是小颖对一道题目的解答.题目:如图,的内切圆与斜边相切于点,,,求的面积.解:设的内切圆分别与、相切于点、,的长为.根据切线长定理,得,,.根据勾股定理,得.整理,得.所以.小颖发现恰好就是,即的面积等于与的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:的内切圆与相切于点,,.可以一般化吗?(1)若,求证:的面积等于.倒过来思考呢?(2)若,求证.改变一下条件……(3)若,用、表示的面积.43.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。

初中数学中考复习 第6关 以新定义与阅读理解问题为背景的选择填空题(原卷版)

初中数学中考复习 第6关 以新定义与阅读理解问题为背景的选择填空题(原卷版)

第6关 以新定义与阅读理解问题为背景的选择填空题【考查知识点】所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力. 阅读理解型问题在近几年的全国中考试题中频频“亮相”,特别引起我们的重视.这类问题一般文字叙述较长,信息量较大,各种关系错综复杂,考查的知识也灵活多样,既考查学生的阅读能力,又考查学生的解题能力的新颖数学题.【解题思路】“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.【典型例题】【例1】(2019·湖南中考真题)从1-,1,2,4四个数中任取两个不同的数(记作,k k a b )构成一个数组{},K k k M a b =(其中1,2,,k S =,且将{},k k a b 与{},k k b a 视为同一个数组),若满足:对于任意的{},i i i M a b =和{},(,1,1)j i j M a b i j i S j S =≠≤≤≤≤都有i i j j a b a b +≠+,则S 的最大值( )A .10B .6C .5D .4【名师点睛】本题考查了规律型:数字的变化类,找出i i a b +共有几个不同的值是解题的关键.【例2】(2020·四川绵阳实中、绵阳七中初三月考)阅读材料:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位,把形如a bi +(a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似. 例如计算:(4)(62)(46)(12)10i i i i ++-=++-=-;2(2)(3)6326(1)7i i i i i i i -+=-+-=---=-; 2(4)(4)1616(1)17i i i +-=-=--=;22(2)4444134i i i i i +=++=+-=+根据以上信息,完成下面计算:2(12)(2)(2)i i i +-+-=_______.【名师点睛】本题考查有理数的混合运算,解题的关键是读懂题意,掌握有理数的混合运算.【例3】(2019·湖南中考真题)规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,1),-P 是二次函数214y x =的图象上在第一象限内的任意一点,PQ 垂直直线1y =-于点Q ,则四边形PMNQ 是广义菱形.其中正确的是_____.(填序号) 【名师点睛】本题考查新定义,二次函数的性质,特殊四边形的性质;熟练掌握平行四边形,菱形,二次函数的图象及性质,将广义菱形的性质转化为已学知识是求解的关键.【例4】(2018新疆中考)如图,已知抛物线y 1=﹣x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M=y 1=y 2.①当x >2时,M=y 2;②当x <0时,M 随x 的增大而增大;③使得M 大于4的x 的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).【名师点睛】本题考查了一次函数的性质、二次函数的性质、一次函数图象上点的坐标特征以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.【方法归纳】阅读试题提供新定义、新定理,根据所给的内容类比解决新问题 ;阅读相关信息,通过归纳探索,发现规律,得出结论阅读试题信息,借助已有数学思想方法解决新问题;阅读理解型问题是指通过阅读材料,理解材料中所提供新的方法或新的知识,并灵活运用这些新方法或新知识,去分析、解决类似的或相关的问题。

中考数学全面突破《新定义及阅读理解型问题》练习题含答案

中考数学全面突破《新定义及阅读理解型问题》练习题含答案

题型4 新定义及阅读理解型问题题型解读1.考查题型:①新定义计算型;②阅读理解型;③新定义与阅读理解结合题. 2.考查内容:①新定义下的实数运算;②涉及“新定义”的阅读理解及材料分析;③与函数、多边形、圆结合,通过材料或定义进行相关证明或计算.3.在做此类题型时,首先要理解新定义的运算方式,提升从材料阅读中提取信息的能力,结合已知条件中的推理方法,学以致用,便可得以解决.1.对于实数a,b,定义一种新运算“⊗”为:a⊗b=1a-b2,这里等式右边是实数运算.例如:1⊗3=11-32=-18,则方程x⊗(-2)=2x-4-1的解是( )A. x=4B. x=5C. x=6D. x=72.对于实数a、b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b;如max{4,-2}=4,max{3,3}=3.若关于x 的函数为y=max{x+3,-x+1},则该函数的最小值是( )A. 0B. 2C. 3D. 43.我们根据指数运算,得出了一种新的运算,下表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 212=-1.其中正确的是( )A . ①②B . ①③C . ②③D . ①②③4.设a ,b 是实数,定义关于@的一种运算如下:a@b =(a +b)2-(a -b)2,则下列结论:( )①若a@b =0,则a =0或b =0; ②a@(b +c)=a@b +a@c ;③不存在实数a ,b ,满足a@b =a 2+5b 2;④设a ,b 是矩形的长和宽,若该矩形的周长固定,则当a =b 时,a@b 的值最大.其中正确的是( )A . ②③④B . ①③④C . ①②④D . ①②③5.对于实数a ,b ,定义运算“*”:a*b =⎩⎪⎨⎪⎧a 2-ab (a ≥b )a -b (a<b ),例如:因为 4>2,所以4*2=42-4×2=8,则(-3)*(-2)=________. 6.规定:log a b(a>0,a ≠1,b>0)表示a ,b 之间的一种运算.现有如下的运算法则:log a a n=n ,log N M =log a Mlog a N(a>0,a ≠1,N>0,N ≠1,M>0),例如:log 223=3,log 25=log 105log 102,则log 1001000=________.第7题图7.实数a ,n ,m ,b 满足a<n<m<b ,这四个数在数轴上对应的点分别是A ,N ,M ,B(如图).若AM 2=BM ·AB ,BN 2=AN ·AB ,则称m 为a ,b 的“黄金大数”,n 为a ,b 的“黄金小数”,当b -a =2时,a ,b 的黄金大数与黄金小数之差m -n =________.8.请阅读下列材料,并完成相应的任务: 阿基米德折弦定理阿基米德(Archimedes ,公元前287~公元前212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al -Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理.阿基米德折弦定理:如图①,AB 和BC 是⊙O 的两条弦(即折线ABC 是圆的一条折弦),BC>AB ,M 是ABC ︵的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +BD.下面是运用“截长法”证明CD =AB +BD 的部分证明过程. 证明:如图②,在CB 上截取CG =AB ,连接MA ,MB ,MC 和MG. ∵M 是ABC ︵的中点, ∴MA =MC. …图① 图②任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图③,已知等边△ABC 内接于⊙O ,AB =2,D 为AC ︵上一点,∠ABD =45°,AE ⊥BD 于点E ,则△BDC 的周长是________.图③9.如果三角形三边的长a 、b 、c 满足a +b +c3=b ,那么我们就把这样的三角形叫做“匀称三角形”.如:三边长分别为1,1,1或3,5,7,…的三角形都是“匀称三角形”.(1)如图①,已知两条线段的长分别为a 、c(a<c),用直尺和圆规作一个最短边、最长边的长分别为a 、c 的“匀称三角形”(不写作法,保留作图痕迹); (2)如图②,△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作⊙O 的切线交AB 延长线于点E ,交AC 于点F.若BE CF =53,判断△AEF 是否为“匀称三角形”?请说明理由.10.我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q(p ,q 是正整数,且p ≤q),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并规定:F(n)=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=34. (1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数.求证:对任意一个完全平方数m ,总有F(m)=1;(2)如果一个两位正整数t ,t =10x +y(1≤x ≤y ≤9,x ,y 是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”.求所有“吉祥数”中F(t)的最大值.11.已知点P(x 0,y 0)和直线y =kx +b ,则点P 到直线y =kx +b 的距离d 可用公式d =|kx 0-y 0+b|1+k2计算. 例如:求点P(-1,2)到直线y =3x +7的距离. 解:因为直线y =3x +7,其中k =3,b =7, 所以点P(-1,2)到直线y =3x +7的距离为d =|kx 0-y 0+b|1+k2=|3×(-1)-2+7|1+32=210=105. 根据以上材料,解答下列问题:(1)求点P(1,-1)到直线y=x-1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=3x+9的位置关系并说明理由;(3)已知直线y=-2x+4与y=-2x-6平行,求这两条直线之间的距离.12.【图形定义】如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.【探究证明】(1)请在图①和图②中选择其中一个证明:“叠弦三角形”(即△AOP)是等边三角形;(2)如图②,求证:∠OAB=∠OAE′.【归纳猜想】(3)图①、图②中“叠弦角”的度数分别为__________,__________;(4)图中,“叠弦三角形”__________等边三角形(填“是”或“不是”);(5)图中,“叠弦角”的度数为__________(用含n的式子表示).13.若抛物线L :y =ax 2+bx +c(a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系.此时直线l 叫做抛物线L 的“带线”,抛物线L 叫做直线l 的“路线”.(1)若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值;(2)若某“路线”L 的顶点在反比例函数y =6x 的图象上,它的“带线”l 的解析式为y =2x -4,求此“路线”L 的解析式;(3)当常数k 满足12≤k ≤2时,求抛物线L :y =ax 2+(3k 2-2k +1)x +k 的“带线”l 与x 轴,y 轴所围成的三角形面积的取值范围.1. B【解析】根据题意a⊗b=1a-b2,则x⊗(-2)=1x-(-2)2=1x-4,又∵x⊗(-2)=2x-4-1,∴1x-4=2x-4-1,解得x=5,经检验x=5是原方程的根,∴原方程x⊗(-2)=2x-4-1的解是x=5.2. B【解析】当x+3≥-x+1时,max{x+3,-x+1}=x+3,此时x ≥-1,∴y≥2;当x+3<-x+1时,max{x+3,-x+1}=-x+1,此时x<-1,∴y>2.综上y的最小值为2.3. B【解析】①∵24=16,∴log216=4,故①正确;②∵52=25,∴log525=2,故②不正确;③∵2-1=12,∴log212=-1,故③正确.4. C【解析】∵a@b=(a+b)2-(a-b)2,若a@b=0,则(a+b)2-(a-b)2=0,∴(a+b)2=(a-b)2, ∴a+b=±(a-b),∴a=0或b=0,∴①正确;∵a@b=(a+b)2-(a-b)2,∴a@(b+c)=[a+(b+c)]2-[a-(b+c)]2=[a+(b +c)+a-(b+c)][a+(b+c)-(a-b-c)]=4ab+4ac,∵a@b+a@c=(a+b)2-(a-b)2+(a+c)2-(a-c)2=a2+2ab+b2-a2+2ab-b2+a2+2ac+c2-a2+2ac-c2=4ab+4ac,∴a@(b+c)=a@b+a@c,∴②正确;∵a@b=(a+b)2-(a -b)2=a2+2ab+b2-a2+2ab-b2=4ab,当a=b=0时,满足a@b=a2+5b2,∴③错误;若矩形的周长固定,设为2c,则2c=2a+2b,b=c-a,a@b=(a+b)2-(a-b)2=4ab=4a(c-a)=-4(a-12c)2+c2,∴当a=12c时,4ab有最大值是c2,即a=b时,a@b的值最大,∴④正确.综上,正确结论有①②④.5. -1 【解析】根据新定义,当a<b 时,a*b =a -b 列出常规运算,进行计算便可.∵-3<-2,∴由定义可知,原式=-3-(-2)=-1.6. 32 【解析】根据新运算法则,得log 1001000=log 101000log 10100=log 10103log 10102=32.7. 25-4 【解析】设AN =y ,MN =x ,由题意可知:AM 2=BM ·AB ,∴(x +y)2=2(2-x -y),解得x +y =5-1(取正),又BN 2=AN ·AB ,∴(2-y)2=2y ,解得y =3-5(y <2),∴m -n =MN =x =5-1-(3-5)=25-4,故填25-4.8. 解:(1)又∵∠A =∠C ,CG =AB. ∴△MBA ≌△MGC(SAS ), ∴MB =MG. 又∵MD ⊥BC , ∴BD =GD ,∴CD =CG +GD =AB +BD. (2)2+2 2.【解法提示】折线BDC 为⊙O 的一条折弦,由题意知A 为BDC ︵中点,由材料中折弦定理易得BE =DE +CD ,在Rt △ABE 中可得BE =2,所以△BCD 周长为BC +CD +DE +BE =2+2 2.9. 解:(1)作图如解图①.第9题解图①(2)△AEF 是“匀称三角形”. 理由如下:如解图②,第9题解图②连接AD 、OD , ∵AB 是⊙O 直径, ∴AD ⊥BC , ∵AB =AC , ∴D 是BC 中点, ∵O 是AB 中点, ∴OD 是△ABC 的中位线, ∴OD ∥AC.∵DF 切⊙O 于D 点, ∴OD ⊥DF , ∴EF ⊥AF ,过点B 作BG ⊥EF 于点G ,易证Rt △BDG ≌Rt △CDF(AAS ), ∴BG =CF , ∵BE CF =53, ∴BE BG =53, ∵BG ∥AF(或Rt △BEG ∽Rt △AEF), ∴BE BG =AE AF =53.在Rt △AEF 中,设AE =5k ,则AF =3k , 由勾股定理得,EF =4k ,∴AF +EF +AE 3=3k +4k +5k 3=4k =EF ,∴△AEF 是“匀称三角形”.10. (1)证明:∵m 是一个完全平方数,∴m =p ×q ,当p =q 时,p ×q 就是m 的最佳分解, ∴F(m)=p q =pp=1.(2)解:由题意得,(10y +x)-(10x +y)=18, 得y =x +2(y ≤9),∴t =10x +y =10x +x +2=11x +2(1≤x ≤7),则所有的“吉祥数”为:13,24,35,46,57,68,79共7个, ∵13=1×13,24=1×24=2×12=3×8=4×6,35=1×35=5×7,46=1×46=2×23,57=1×57,68=1×68=2×34=4×17,79=1×79,∴F(13)=113,F(24)=46=23,F(35)=57,F(46)=223,F(57)=157,F(68)=417,F(79)=179, ∴“吉祥数”中F(t)的最大值为:F(35)=57.11. 解:(1)∵直线y =x -1,其中k =1,b =-1, ∴点P(1,-1)到直线y =x -1的距离为: d =|kx 0-y 0+b|1+k 2=|1-(-1)-1|1+12=12=22. (2)相切.理由如下:∵直线y =3x +9,其中k =3,b =9,∴圆心Q(0,5)到直线y =3x +9的距离为d =|kx 0-y 0+b|1+k 2=|3×0-5+9|1+(3)2=42=2, 又∵⊙Q 的半径r 为2,∴⊙Q 与直线y =3x +9的位置关系为相切. (3)在直线y =-2x +4上任意取一点P , 当x =0时,y =4, ∴P(0,4),∵直线y =-2x -6,其中k =-2,b =-6,∴点P(0,4)到直线y =-2x -6的距离为d =|kx 0-y 0+b|1+k 2=|-2×0-4-6|1+(-2)2=105=25, ∴这两条直线之间的距离为2 5. 12. (1)选择图①.证明:依题意得∠DAD ′=60°,∠PAO =60°.∵∠DAP =∠DAD ′-∠PAD ′=60°-∠PAD ′,∠D ′AO =∠PAO -∠PAD ′=60°-∠PAD ′,∴∠DAP =∠D ′AO. ∵∠D =∠D ′,AD =AD ′, ∴△DAP ≌△D ′AO(ASA ), ∴AP =AO ,又∵∠PAO=60°,∴△AOP是等边三角形.选择图②.证明:依题意得∠EAE′=60°,∠PAO=60°. ∵∠EAP=∠EAE′-∠PAE′=60°-∠PAE′,∠E′AO=∠PAO-∠PAE′=60°-∠PAE′,∴∠EAP=∠E′AO(ASA).∵∠E=∠E′,AE=AE′,∴△EAP≌△E′AO,∴AP=AO,又∵∠PAO=60°,∴△AOP是等边三角形.第12题解图(2)证明:如解图,连接AC,AD′,CD′.∵AE′=AB,∠E′=∠B=180°×(5-2)=108°,E′D′=BC,5∴△AE′D′≌△ABC(SAS),∴AD′=AC,∠AD′E′=∠ACB,∴∠AD′C=∠ACD′,∴∠OD ′C =∠OCD ′, ∴OC =OD ′,∴BC -OC =E ′D ′-OD ′,即BO =E ′O. ∵AB =AE ′,∠B =∠E ′, ∴△ABO ≌△AE ′O(SAS ), ∴∠OAB =∠OAE ′. (3)15°,24°.【解法提示】∵由(1)得,在图①中,△AOP 是等边三角形, ∴∠DAP +∠OAB =90°-60°=30°, 在△OAB 和△OAD ′中,⎩⎪⎨⎪⎧OA =OA BA =D ′A, ∴△ABO ≌△AD ′O(HL ), ∴∠OAB =∠D ′AO , 由(1)知∠D ′AO =∠DAP , ∴∠OAB =∠DAP , ∴∠OAB =12×30°=15°;∵由(1)得,在图②中,△PAO 为等边三角形, ∴∠PAE +∠BAO =∠EAB -∠PAO , ∵∠EAB =15×180°×(5-2)=108°,∴∠PAE +∠BAO =48°, 同理可证得∠OAB =∠PAE ,∴∠OAB =12×48°=24°.(4)是.【解法提示】由(1)(2)可知,“叠弦”AO 所在的直线绕点A 逆时针旋转60°后,AO =AP ,且∠PAO =60°,故△AOP 是等边三角形.(5)60°-180°n(n ≥3).【解法提示】由(1)(2)(3)可知,“叠弦角”的度数为正n 边形的内角度数减去60°之后再除以2,即∠OAB =180°(n -2)n-60°2,化简得∠OAB =60°-180°n(n ≥3).13. 解:(1)由题意得n =1, ∴抛物线y =x 2-2x +1=(x -1)2,顶点为Q(1,0),将(1,0)代入y =mx +1,得m =-1, ∴m =-1,n =1.(2)由题意设“路线”L 的解析式为y =a(x -h)2+k , ∵顶点Q 的坐标在y =6x 和y =2x -4上,∴⎩⎪⎨⎪⎧k =6hk =2h -4, 解得h =-1或3,∴顶点Q 的坐标为(-1,-6)或(3,2), ∴y =a(x +1)2-6或y =a(x -3)2+2, 又∵“路线”L 过P(0,-4),代入解得a =2(顶点为(-1,-6)), a =-23(顶点为(3,2)),∴y =2(x +1)2-6或y =-23(x -3)2+2,即y =2x 2+4x -4或y =-23x 2+4x -4.(3)由题可知抛物线顶点坐标为(-3k 2-2k +12a ,4ak -(3k 2-2k +1)24a ),设带线l :y =px +k ,代入顶点坐标得p =3k 2-2k +12,∴y =3k 2-2k +12x +k ,令y =0,则带线l 交x 轴于点(-2k3k 2-2k +1,0),令x =0,则带线l 交y轴于点(0,k),∵k ≥12>0,∴3k 2-2k +1=3(k -13)2+23>0,∴带线l 与坐标轴围成三角形面积为S =12·2k 3k 2-2k +1·k =k 23k 2-2k +1=11k 2-2·1k+3,令t =1k ,∵12≤k ≤2,∴12≤t ≤2, ∴S =1t 2-2t +3,∴1S=t 2-2t +3=(t -1)2+2, 故当t =2时,(1S )max =3;当t =1时,(1S )min =2.∴13≤S ≤12.。

知识点46 新定义型、阅读理解型问题2021

知识点46  新定义型、阅读理解型问题2021

一、选择题5.(2021·绥化)定义一种新的运算:如果a≠0.则有a▲b=a-2+ab+|-b|,那么(-12)▲2的值是()A.-3 B.5 C.-34D.325.B7.(2021·包头7题) 定义新运算“⨂”,规定:a⨂b=a-2b.若关于x的不等式x⨂m>3的解集为x>-1,则m 的值是()A.-1 B.-2 C.1 D.2{答案}B【解析】∵a⨂b=a-2b,x⨂m>3,∴x-2m>3,∴x>2m+3.又∵x⨂m>3的解集为x>-1,∴2m+3=-1,解得m=-2.12.(2021·贺州)如M={1,2,x},我们叫集合M,其中1,2,x叫做集合M的元素.集合中的元素具有确定性(如x必然存在),互异性(如x≠1,x≠2),无序性(即改变元素的顺序,集合不变).若集合N={x,1,2},我们说M=N.已知集合A={1,0,a},集合B={1a,|a|,ba},若A=B,则b-a的值是()A.-1 B.0 C.1 D.2C{解析}∵集合A=B,∴集合B中必有元素0和1.∵分母a不能为0,∴b=0.①若1a=1,则a=1,此时不满足“互异性”,舍去;②|a|=1,则a=-1(舍去a=1).∴b-a=0-(-1)=1.故选C.10.(2021·永州)定义:若10x=N,则x=log10N,x称为以10为底的N的对数,简记为lgN,其满足运算法则:lgM+lgN=lg(M•N)(M>0,N>0).例如:因为102=100,所以2=lg100,亦即lg100=2;lg4+lg3=lg12.根据上述定义和运算法则,计算(lg2)2+lg2•lg5+lg5的结果为()A.5 B.2 C.1 D.0{答案}C{解析}(lg2)2+lg2•lg5+lg5=lg2(lg2+lg5)+lg5=lg2+lg5=1g10=1.8.(2021•常德)阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即m=a2+b2,那么称m为广义勾股数,则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是()A.②④B.①②④C.①②D.①④B【解析】①∵7不能表示为两个正整数的平方和,∴7不是广义勾股数,故①结论正确;②∵13=22+32,∴13是广义勾股数,故②结论正确;③两个广义勾股数的和不一定是广义勾股数,如5和10是广义勾股数,但是它们的和不是广义勾股数,故③结论错误;④两个广义勾股数的积是广义勾股数,故④结论正确,∴依次正确的是①②④.10.(2021•杭州)已知y1和y2均是以x为自变量的函数,当x=m时,函数值分别是M1和M2,若存在实数m,使得M1+M2=0,则称函数y1和y2具有性质P.以下函数y1和y2具有性质P的是()A.y1=x2+2x和y2=﹣x﹣1 B.y1=x2+2x和y2=﹣x+1C.y1=−1x和y2=﹣x﹣1 D.y1=−1x和y2=﹣x+1A【解析】A.令y1+y2=0,则x2+2x﹣x﹣1=0,解得x=−1+√52或x=−1−√52,即函数y1和y2具有性质P,符合题意;B.令y1+y2=0,则x2+2x﹣x+1=0,整理得,x2+x+1=0,方程无解,即函数y1和y2不具有有性质P,不符合题意;C.令y1+y2=0,则−1x−x﹣1=0,整理得,x2+x+1=0,方程无解,即函数y1和y2不具有有性质P,不符合题意;D.令y1+y2=0,则−1x−x+1=0,整理得,x2﹣x+1=0,方程无解,即函数y1和y2不具有有性质P,不符合题意;故选A.9.(2021•甘肃省卷9题)对于任意的有理数a,b,如果满足a2+b3=a+b2+3,那么我们称这一对数a,b为“相随数对”,记为(a,b).若(m,n)是“相随数对”,则3m+2[3m+(2n﹣1)]=()A.﹣2 B.﹣1 C.2 D.3A【解析】∵(m,n)是“相随数对”,∴m2+n3=m+n2+3,∴3m+2n6=m+n5,即9m+4n=0,∴3m+2[3m+(2n﹣1)]=3m+2[3m+2n﹣1]=3m+6m+4n﹣2=9m+4n﹣2=0﹣2=﹣2.10.(2021•长沙10题)在一次数学活动课上,某数学老师将1~10共十个整数依次写在十张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲,乙,丙,丁,戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:16;丁:7;戊:17.根据以上信息,下列判断正确的是()A.戊同学手里拿的两张卡片上的数字是8和9B.丙同学手里拿的两张卡片上的数字是9和7C.丁同学手里拿的两张卡片上的数字是3和4D.甲同学手里拿的两张卡片上的数字是2和9A 解析:由题意可知,一共十张卡片十个数,五个人每人两张卡片,∴每人手里的数字不重复.由甲:11,可知甲手中的数字可能是1和10,2和9,3和8,4和7,5和6;由乙:4,可知乙手中的数字只有1和3;由丙:16,可知丙手中的数字可能是6和10,7和9;由丁:7,可知丁手中的数字可能是1和6,2和5,3和4;由戊:17,可知戊手中的数字可能是7和10,8和9;∴丁只能是2和5,甲只能是4和7,丙只能是6和10,戊只能是8和9.∴各选项中,只有A是正确的.8.(2021•岳阳)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC中,点A(0,2),点C(2,0),则互异二次函数y=(x﹣m)2﹣m与正方形OABC 有交点时m的最大值和最小值分别是()A .4,﹣1B .5−√172,﹣1 C .4,0 D .5+√172,﹣1 D 【解析】如图,由题意可得,互异二次函数y =(x ﹣m )2﹣m 的顶点(m ,﹣m )在直线y =﹣x 上运动,在正方形OABC 中,点A (0,2),点C (2,0),∴B (2,2),从图象可以看出,当函数从左上向右下运动时,当跟正方形有交点时,先经过点A ,再逐渐经过点O ,点B ,点C ,最后再经过点B ,且在运动的过程中,两次经过点A ,两次经过点O ,点B 和点C ,∴只需算出当函数经过点A 及点B 时m 的值,即可求出m 的最大值及最小值.当互异二次函数y =(x ﹣m )2﹣m 经过点A (0,2)时,m =0,或m =﹣1;当互异二次函数y =(x ﹣m )2﹣m 经过点B (2,2)时,m =5−√172或m =5+√172.∴互异二次函数y =(x ﹣m )2﹣m 与正方形OABC 有交点时m 的最大值和最小值分别是5+√172,﹣1.8.(2021•达州)生活中常用的十进制是用0~9这十个数字来表示数,满十进一,例:12=1×10+2,212=2×10×10+1×10+2;计算机也常用十六进制来表示字符代码,它是用0~F 来表示0~15,满十六进一,它与十进制对应的数如表: 十进制 0 1 2 … 8 9 10 11 12 13 14 15 16 17 …十六进制0 1 2 … 8 9 A B C DEF 10 11 …例:十六进制2B 对应十进制的数为2×16+11=43,10C 对应十进制的数为1×16×16+0×16+12=268,那么十六进制中14E 对应十进制的数为( ) A .28B .62C .238D .334D 【解析】由题意得14E =1×16×16+4×16+14=334.10.(2021•荆州)定义新运算“※”:对于实数m ,n ,p ,q .有[m ,p ]※[q ,n ]=mn +pq ,其中等式右边是通常的加法和乘法运算,例如:[2,3]※[4,5]=2×5+3×4=22.若关于x 的方程[x 2+1,x ]※[5﹣2k ,k ]=0有两个实数根,则k 的取值范围是( ) A .k <54且k ≠0B .k ≤54C .k ≤54且k ≠0D .k ≥54C 【解析】根据题意得k (x 2+1)+(5﹣2k )x =0,整理得kx 2+(5﹣2k )x +k =0, 因为方程有两个实数解,所以k ≠0且△=(5﹣2k )2﹣4k 2≥0,解得k ≤54且k ≠0.8.(2021·通辽) 定义:一次函数y ax b =+的特征数为,a b ,若一次函数2y x m =-+的图象向上平移3个单位长度后与反比例函数3y x=-的图象交于A ,B 两点,且点A ,B 关于原点对称,则一次函数2y x m =-+的特征数是( )A. []2,3B. []2,3-C. []2,3-D. []2,3--D{解析}由点A 、B 关于原点对称,可得平移后的直线经过原点,也就是y=-2x+m 向上平移3个单位经过原点,m=-3,一次函数的特征数为[]2,3--,故选D .二、填空题16.(2021•北京16题)某企业有A ,B 两条加工相同原材料的生产线.在一天内,A 生产线共加工a 吨原材料,加工时间为(4a +1)小时;在一天内,B 生产线共加工b 吨原材料,加工时间为(2b +3)小时.第一天,该企业将5吨原材料分配到A ,B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到A 生产线的吨数与分配到B 生产线的吨数的比为 .第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A 生产线分配了m 吨原材料,给B 生产线分配了n 吨原材料.若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则mn 的值为 .2:3 12 解析:设分配到 生产线的吨数为x 吨,则分配到B 生产线的吨数为(5﹣x )吨,依题意可得:4x+1=2(5﹣x)+3,解得:x=2,∴分配到B生产线的吨数为5﹣2=3(吨),∴分配到生产线的吨数与分配到生产线的吨数的比为2:3;∴第二天开工时,给生产线分配了(2+m)吨原材料,给生产线分配了(3+n)吨原材料,∵加工时间相同,∴4(2+m)+1==2(3+n)+3,解得:m=12n,∴mn=12,故答案为:2:3;12.18.(2021·上海)定义:平面上一点到图形的最短距离为d,如图,OP=2,正方形ABCD的边长为2,O为正方形中心,当正方形ABCD绕O旋转时,d的取值范围是.22【解析】如图2,设AD的中点为E,那么点O与正方形上所有点的连线中,OE最短,等于1,OA2∵OP=2为定值,∴当OP经过点E时,d最大为1;当OP经过点A时,d最小为222216.(2021•自贡)如图,某学校“桃李餐厅”把WIFI密码做成了数学题.小红在餐厅就餐时,思索了一会儿,输入密码,顺利地连接到了“桃李餐厅”的网络.那么她输入的密码是.244872【解析】由三个等式,得到规律:5*3⊕6=301848可知:5×6 3×6 6×(5+3),2*6⊕7=144256可知:2×7 6×7 7×(2+6),9*2⊕5=451055可知:9×5 2×5 5×(9+2),∴4*8⊕6=4×6 8×6 6×(4+8)=244872.25.(2021•凉山州)阅读以下材料:苏格兰数学家纳皮尔(J.Npler,1550﹣1617年)是对数的创始人.他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N,比如指数式24=16可以转化为对数式4=log216,对数式2=log39可以转化为指数式32=9.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0),理由如下:设log a M=m,log a N=n,则M=a m,N=a n,∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N).又∵m+n=log a M+log a N,∴log a(M•N)=log a M+log a N.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:①log232=,②log327=,③log71=;(2)求证:log a MN=log a M﹣log a N(a>0,a≠1,M>0,N>0);(3)拓展运用:计算log5125+log56﹣log530.解:(1)5 3 0 【解析】log232=log225=5,log327=log333=3,log71=log770=0.(2)证明:设log a M=m,log a N=n,则M=a m,N=a n,∴MN =a ma n=a m﹣n,由对数的定义得m﹣n=log a MN,又∵m﹣n=log a M﹣log a N,∴log a MN=log a M﹣log a N(a>0,a≠1,M>0,N>0).(3)原式=log5(125×6÷30)=log525=5.13.(2021•菏泽)定义:[a,b,c]为二次函数y=ax2+bx+c(a≠0)的特征数,下面给出特征数为[m,1﹣m,2﹣m]的二次函数的一些结论:①当m=1时,函数图象的对称轴是y轴;②当m=2时,函数图象过原点;③当m>0时,函数有最小值;④如果m<0,当x>12时,y随x的增大而减小.其中所有正确结论的序号是.①②③【解析】由特征数的定义可得:特征数为[m,1﹣m,2﹣m]的二次函数的表达式为y=mx2+(1﹣m)x+2﹣m.∵此抛物线的的对称轴为直线x=−b2a=−1−m2m=m−12m,∴当m=1时,对称轴为直线x=0,即y轴.故①正确;∵当m=2时,此二次函数表达式为y=2x2﹣x,令x=0,则y=0,∴函数图象过原点,故②正确;∵当m>0时,二次函数图象开口向上,函数有最小值,故③正确;∵m<0,∴对称轴x=m−12m=12−12m,抛物线开口向下,∴在对称轴的右侧,y随x的增大而减小,即x>12−12m时,y随x的增大而减小.故④错误.故答案为:①②③.14.(2021•十堰)对于任意实数a、b,定义一种运算:a⊗b=a2+b2﹣ab,若x⊗(x﹣1)=3,则x的值为.2或﹣1【解析】由题意得x2+(x﹣1)2﹣x(x﹣1)=3.整理得x2﹣x﹣2=0,即(x﹣2)(x+1)=0.解得x1=2,x2=﹣1.16.(2021·呼和浩特)若把第n个位置上的数记为x n,则称x1,x2,x3,…,x n有限个有序放置的数为一个数列A.定义数列A的“伴生数列”B是:y1,y2,y3,…,y n,其中y n是这个数列中第n个位置上的数,n=1,2,…,k且y n={0,x n−1=x n+11,x n−1≠x n+1并规定x0=x n,x n+1=x1.如果数列A只有四个数,且x1,x2,x3,x4依次为3,1,2,1,则其“伴生数列”B是.0,1,0,1 解析:当n =1时,x 0=x 4=1=x 2,∴y 1=0,当n =2时,x 1≠x 3,∴y 2=1,当n =3时,x 2=x 4,∴y 3=0,当n =4时,x 3≠x 5=x 1,∴y 4=1,∴“伴生数列”B 是:0,1,0,118.(2021·贵港)我们规定:若1(a x =,1)y ,2(b x =,2)y ,则1212a b x x y y ⋅=+.例如(1,3)a =,(2,4)b =,则123421214a b ⋅=⨯+⨯=+=.已知(1,1)a x x =+-,(3,4)b x =-,且23x -,则a b ⋅的最大值是 . 8[解析】根据题意知:2(1)(3)4(1)(1)8a b x x x x ⋅=+-+-=+-.因为23x -,所以当3x =时,2(31)88a b ⋅=+-=,即a b ⋅的最大值是8.三、解答题28.(2021•北京28题)在平面直角坐标系xOy 中,⊙O 的半径为1.对于点A 和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到⊙O 的弦B ′C ′(B ′,C ′分别是B ,C 的对应点),则称线段BC 是⊙O 的以点A 为中心的“关联线段”.(1)如图,点A ,B 1,C 1,B 2,C 2,B 3,C 3的横、纵坐标都是整数.在线段B 1C 1,B 2C 2,B 3C 3中,⊙O 的以点A 为中心的“关联线段”是 ;(2)△ABC 是边长为1的等边三角形,点A (0,t ),其中t ≠0.若BC 是⊙O 的以点A 为中心的“关联线段”,求t 的值;(3)在△ABC 中,AB =1,AC =2.若BC 是⊙O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.解:(1)B 2C 2 解析:由旋转的旋转可知:AB =AB ′,AC =AC ′,∠BAB ′=∠CAC ′, 由图可知点A 到圆上一点的距离d 的范围为√2−1≤d ≤√2+1,∵AC1=3>d,∴点C1′不可能在圆上,∴B1C1不是⊙O的以A为中心的“关联线段”,∵AC2=1,AB2=√5,∴C2′(0,1),B2′(1,0),∴B2C2是⊙O的以A为中心的“关联线段”,∵AC3=2,AB3=√5,∴当B3′在圆上时,B3′(1,0)或(0,﹣1),由图可知此时C3′不在圆上,∴B3C3不是⊙O的以A为中心的“关联线段”.故答案为;B2C2.(2)∵△ABC是边长为1的等边三角形,根据旋转的性质可知△AB′C′也是边长为1的等边三角形,∵A(0,t),∴B′C′⊥y轴,且B′C′=1,∴AO为B′C′边上的高,且此高的长为√3,∴t=√3或−√3.(3)由旋转的性质和“关联线段”的定义,可知AB′=AB=OB′=OC′=1,AC′=AC=2,如图1,利用四边形的不稳定性可知,当A,O,C′在同一直线上时,OA最小,最小值为1,如图2,此时OA=OB′=OC′,∴∠AB′C=90°,∴B′C′=√AC′2−AB′2=√22−12=√3.当A,B′,O在同一直线上时,OA最大,如图3,此时OA =2,过点A 作AE ⊥OC ′于E ,过点C ′作C ′F ⊥OA 于F . ∵AO =AC ′=2,AE ⊥OC ′,∴OE =EC ′=12, ∴AE =√AO 2−OE 2=√22−(12)2=√152, ∵S △AOC ′=12•AO •C ′F =12•OC ′•AE ,∴C ′F =√154, ∴OF =√OC ′2−C ′F 2=√12−(√154)2=14,∴FB ′=OB ′﹣OF =34,∴B ′C ′=√FB ′2+FC ′2=(34)(√154)=√62. 综上OA 的最小值为1时,此时BC 的长为√3,OA 的最大值为2,此时BC 的长为√62.23.(2021·赤峰)阅读理解:在平面直角坐标系中,点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2),且x 1≠x 1,y 2≠y 2,若M 、N 为某矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为M 、N 的“相关矩形”.如图1中的矩形为点M 、N 的“相关矩形”. (1)已知点A 的坐标为(2,0).①若点B 的坐标为(4,4),则点A 、B 的“相关矩形”的周长为 ;②若点C 在直线x =4上,且点A 、C 的“相关矩形”为正方形,求直线AC 的解析式;(2)已知点P 的坐标为(3,﹣4),点Q 的坐标为(6,﹣2)若使函数y =的图象与点P 、Q 的“相关矩形”有两个公共点,直接写出k 的取值20.(2021·山西20题)阅读与思考请阅读下列科普材料,并完成相应的任务.图算法图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系:F=95C+32得出,当C=10时,F=50.但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种利用特制的线条进行计算的方法就是图算法.再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?我们可以利用公式1R =1R1+1R2求得R的值,也可以设计一种图算法直接得出结果:我们先来画出一个120°的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性.任务:(1)请根据以上材料简要说明图算法的优越性;(2)请用以下两种方法验证第二个例子中图算法的正确性:①用公式1R =1R1+1R2计算:当R1=7.5,R2=5时,R的值为多少;②如图,在△AOB中,∠AOB=120°,OC是△AOB的角平分线,OA=7.5,OB=5,用你所学的几何知识求线段OC的长.解:(1)图算法方便、直观,不用公式计算即可得出结果;(答案不唯一).(2)①当R1=7.5,R2=5时,1 R =1R1+1R2=17.5+15=5+7.57.5×5=13,∴R=3.②过点A作AM∥CO,交BO的延长线于点M,如图∵OC是∠AOB的角平分线,∴∠COB=∠COA=12∠AOB=12×120°=60°.∵AM∥CO,∴∠MAO=∠AOC=60°,∠M=∠COB=60°.∴∠MAO=∠M=60°.∴OA=OM.∴△OAM为等边三角形.∴OM=OA=AM=7.5.∵AM∥CO,∴△BCO∽△BAM.∴OCAM =BOBM.∴OC7.5=57.5+5.∴OC=3.综上,通过计算验证第二个例子中图算法是正确的.24.(2021•重庆A 卷)如果一个自然数M 的个位数字不为0,且能分解成A ×B ,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,并把数M 分解成M =A ×B 的过程,称为“合分解”. 例如∵609=21×29,21和29的十位数字相同,个位数字之和为10, ∴609是“合和数”. 又如∵234=18×13,18和13的十位数相同,但个位数字之和不等于10, ∴234不是“合和数”.(1)判断168,621是否是“合和数”?并说明理由; (2)把一个四位“合和数”M 进行“合分解”,即M =A ×B .A 的各个数位数字之和与B 的各个数位数字之和的和记为P (M );A 的各个数位数字之和与B 的各个数位数字之和的差的绝对值记为Q (M ).令G (M )=P(M)Q(M),当G (M )能被4整除时,求出所有满足条件的M .解:(1)∵168=12×14,2+4≠10,∴168不是“合和数”. ∵621=23×27,十位数字相同,且个位数字3+7=10,∴621是“合和数”.(2)设A 的十位数字为m ,个位数字为n ,(m ,n 为自然数,且3≤m ≤≤9,1≤n ≤9), 则A =10m +n ,B =10m +10﹣n ,∴P (M )=m +n +m +10﹣n =2m +10,Q (M )=|(m +n )﹣(m +10﹣n )|=|2n ﹣10|. ∴G (M )=P(M)Q(M)=2m+10|2n−10|=m+5|n−5|=4k (k 是整数).∵3≤m ≤9,∴8≤m +5≤14,∵k 是整数,∴m +5=8或m +5=12,①当m +5=8时,{m +5=8|n −5|=1或{m +5=8|n −5|=2,∴M =36×34=1224或M =37×33=1221,②当m +5=12时,{m +5=12|n −5|=1或{m +5=12|n −5|=3,∴M =76×74=5624或M =78×72=5616.综上,满足条件的M 有:1224,1221,5624,5616.24.(2021•重庆B 卷)对于任意一个四位数m ,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m 为“共生数”.例如:m =3507,因为3+7=2×(5+0),所以3507是“共生数”;m =4135,因为4+5≠2×(1+3),所以4135不是“共生数”. (1)判断5313,6437是否为“共生数”?并说明理由;(2)对于“共生数”n ,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记F (n )=n3.求满足F (n )各数位上的数字之和是偶数的所有n .解:(1)∵5+3=2×(3+1),∴5313是“共生数”,∵6+7≠2×(3+4),∴6437不是“共生数”; (2)∵n 是“共生数”,根据题意,个位上的数字要大于百位上的数字, 设n 的千位上的数字为a ,则十位上的数字为2a ,(1≤a ≤4),设n 的百位上的数字为b , ∵个位和百位都是0﹣9的数字,∴个位上的数字为9﹣b ,且9﹣b >b ,∴0≤b ≤4 ∴n =1000a +100b +20a +9﹣b ;∴F (n )=1000a+100b+20a+9−b3=340a +33b +3,由于n 是“共生数”,∴a +9﹣b =2×(2a +b ),即a +b =3,可能的情况有:{a =1b =2,{a =2b =1,{a =3b =0,∴n 的值为1227或2148或3069,各位数和为偶数的有2148和3069,∴n 的值是2148或3069.20.(2021•遂宁)已知平面直角坐标系中,点P (x 0,y 0)和直线Ax +By +C =0(其中A ,B 不全为0),则点P 到直线Ax +By +C =0的距离d 可用公式d =00√A 2+B 2来计算.例如:求点P(1,2)到直线y=2x+1的距离,因为直线y=2x+1可化为2x﹣y+1=0,其中A=2,B=﹣1,C=1,所以点P(1,2)到直线y=2x+1的距离为:d=00√A2+B2=√22+(−1)2=√5=√55.根据以上材料,解答下列问题:(1)求点M(0,3)到直线y=√3x+9的距离;(2)在(1)的条件下,⊙M的半径r=4,判断⊙M与直线y=√3x+9的位置关系,若相交,设其弦长为n,求n的值;若不相交,说明理由.解:(1)∵y=√3x+9可变形为√3x﹣y+9=0,则其中A=√3,B=﹣1,C=9,由公式得,点M(0,3)到直线y=√3x+9的距离d=√3×0−3+9|√(√3)2+(−1)2=3,∴点M到直线y=√3x+9的距离为3.(2)如图,由(1)可知:圆心到直线的距离d=3,∵圆的半径r=4,∴d<r,∴直线y=√3x+9与⊙M相交,两交点记作E,F,连接EM,过点M作MH⊥EF于H,则EF=2EH,在Rt△EHM中,EM=4,MH=3,根据勾股定理得,EH=√EM2−MH2=√42−32=√7,∴弦长n=EF=2EH=2√7.24.(2021•长沙24题)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y 轴对称,则把该函数称之为“T函数”,其图象上关于y轴对称的不同两点叫做一对“T点”.根据该约定,完成下列各题.(1)若点A(1,r)与点B(s,4)是关于x的“T函数”y={−4x(x<0)tx2(x≥0,t≠0,t是常数)的图象上的一对“T点”,则r=,s=,t=(将正确答案填在相应的横线上);(2)关于x的函数y=kx+p(k,p是常数)是“T函数”吗?如果是,指出它有多少对“T点”如果不是,请说明理由;(3)若关于x的“T函数”y=ax2+bx+c(a>0,且a,b,c是常数)经过坐标原点O,且与直线l:y =mx+n(m≠0,n>0,且m,n是常数)交于M(x1,y1),N(x2,y2)两点,当x1,x2满足(1﹣x1)﹣1+x2=1时,直线l是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.解:(1)4 -1 4 解析:∵A,B关于y轴对称,∴s=﹣1,r=4,∴A的坐标为(1,4),把A(1,4)代入是关于x的“T函数”中,得t=4,故答案为r=4,s=﹣1,t=4.(2)当k=0时,有y=p,此时存在关于y轴对称得点,∴y=kx+p是“T函数”,当k≠0时,不存在关于y轴对称的点,∴y=kx+p不是“T函数”.(3)∵y=ax2+bx+c过原点,∴c=0,∵y =ax 2+bx +c 是“T 函数”,∴b =0,∴y =ax 2, 联立直线l 和抛物线得{y =ax 2,y =mx +n ,即ax 2﹣mx ﹣n =0,x 1+x 2=m a ,x 1x 2=−na. 又∵(1−x 1)−1+x 2=1,化简得:x 1+x 2=x 1x 2, ∴m a=−n a,即m =﹣n ,∴y =mx +n =mx ﹣m ,当x =1时,y =0,∴直线l 必过定点(1,0).26.(2021·常州)【阅读】通过构造恰当的图形,可以对线段长度、图形面积大小等进行比较,直观地得到一些不等关系或最值,这是“数形结合”思想的典型应用. 【理解】(1)如图1,AC ⊥BC ,CD ⊥AB ,垂足分别为C 、D ,E 是AB 的中点,连接CE ,已知AD=a ,BD=b (0<a <b ).①分别求线段CE 、CD 的长(用含a 、b 的代数式表示); ②比较大小:CE CD (填“<”、“=”或“>”),并用含a 、b 的代数式表示该大小关系. 【应用】(2)如图2,在平面直角坐标系xOy 中,点M 、N 在反比例函数()01>=x xy 的图象上,横坐标分别为m 、n .设n m p +=,n m q 11+=,记pq l 41=. ①当m =1,n =2时,l = ;当m =3,n =3时,l = ;②通过归纳猜想,可得l 的最小值是 .请利用图2构造恰当的图形,并说明你的猜想成立.{答案}解:(1)①∵∠A+∠AC D=90°,∠BCD+∠AC D=90°,∴∠A=∠BCD ,又∵∠ADC =∠BDC =90°,∴△ACD ∽△CBD ,∴CDAD BD CD =,∴ab CD =2,∴ab CD =(ab CD -=不合题意,舍去); ∵∠AC D=90°,AD=a ,BD=b ,点E 是AB 边中点,∴CE=21AB=()b a +21;②∵CD ⊥AB ,∴CD <CE ,∵ab CD =,CE=()b a +21,∴()b a +21>ab ,即ab b a 2>+;(2)①∵n m p +=,n m q 11+=,记pq l 41=,∴pq l 41==()()()mn n m mn n m n m n m 441114122+=+⋅=⎪⎭⎫ ⎝⎛++, ∴当m =1,n =2时,l =89;当m =3,n =3时,l =1; ②1,构图如下:如图,分别在反比例函数()01>=x x y 的图象上取点M (m ,m 1)、N (n ,n1),再取MN 的中点P ,则22p n m x P =+=,21121qn m y P =⎪⎭⎫ ⎝⎛+=,即P (2p ,2q),过点P 分别作x 轴、y 轴的垂线段,垂足依次为G 、H ,设PG 与反比例函数()01>=x x y 的图象交于点Q ,再作QK ⊥y 轴于点K ,则l pq S PGOH ==41矩形,1=Q GO K S 矩形,由PGOH S 矩形≥QGOKS 矩形,可得l ≥1,当且仅当m =n 时,(即点M 与点N 重合时)l 取得最小值1.27.(2021·常州)在平面直角坐标系xOy 中,对于A 、A ′两点,若在y 轴上存在点T ,使得∠A TA ′=90°,且TA=TA ′,则称A 、A ′两点互相关联,把其中一个点叫做另一个点的关联点.已知点M (-2,0)、N (-1,0),点Q (m ,n )在一次函数12+-=x y 的图象上.(1)①如图,在点B (2,0)、C (0,-1)、D (-2,-2)中,点M 的关联点是 (填“B ”、“C ”或“D ”);②若在线段MN 上存在点P (1,1)的关联点P ′,则点P ′的坐标是 ; (2)若在线段MN 上存在点Q 的关联点Q ′,求实数m 的取值范围;(3)分别以点E (4,2)、Q 为圆心,1为半径作⊙E ,⊙Q ,若对⊙E 上的任意一点G ,在⊙Q 上总存在点G ′,使得G 、G ′两点互相关联,请直接写出点Q 的坐标.{解析}本题考查了新定义问题,解题的关键是读懂题意,准确找出关联点所在直线的解析式. {答案}解:(1)①点M 的关联点是B ;设A (a ,b ),其中a ≠0,作点A 关于y 轴的对称点(- a ,b ),则y 轴上必存在点1T ,使11A AT ∆为以1T 直角顶点的等腰直角三角形,且这样的点1T 存在两个,如图所示,即点1A (-a ,b )必定是点A (a ,b )的一个关联点; 在y 轴上再任取一个异于1T 的点2T ,以2T 为直角顶点作相应的等腰22A AT Rt ∆,则点2A 为A (a ,b )的另一个关联点,易证22T AT ∆∽21A AA ∆,则2121T AT A AA ∠=∠=45°;设直线21A A 与x 轴交于点B ,则=∠BO A 145°或135°,故点A 的关联点都在两条互相垂直的直线上,且这两条直线恰好都经过点A 关于y 轴的对称点1A ,并且与x 轴正半轴成45°或135°;由此可设关联点所在直线的解析式为t x y +=或t x y +-=,代入1A (-a ,b ),可得t a b +-=或t a b +=,解得a b t+=或a b t -=,故关联点所在直线的解析式为a b x y ++=或a b x y -+-=,即a b x y +=-或a b x y -=+;②点P ′的坐标是(-2,0).理由如下:由前可知,点P (1,1)的关联点所在的直线解析式为11+=-x y 或11-=+x y ,即2+=x y 或x y -=;显然直线x y -=与线段MN 无交点,而直线2+=x y 与线段MN 的交点坐标为(-2,0),故点P ′的坐标为(-2,0);(2)设Q (m ,-2m +1),由前可知,点Q 的关联点所在的直线解析式为()m m x y ++-=-12或()m m x y -+-=+12,即1+-=m x y 或13+--=m x y ;令y=0,可得x =m -1或x =-3m +1,则112-≤-≤-m 或1132-≤+-≤-m ,解得01≤≤-m 或132≤≤m ,即m 的取值范围为01≤≤-m 或132≤≤m ; (3)如图5,在⊙E 上任取点G ,作点G 关于y 轴的对称点1G ,再过点1G 作与x 轴正方向成45°或135°的两条互相垂直的直线1l 与2l ,由前可知,点G 的关联点G ′必落在直线1l 或2l 上.当点G 在⊙E 上运动一周时,点1G 也在一个圆上运动,且此圆即为1G E 关于y 轴的对称圆⊙E ′,如图6,过⊙E ′上的每一点都作与x 轴正方向成45°或135°的两条互相垂直的直线,则这些“直线簇”会形成两块矩形区域,则点G 的关联点全部都会落在这两块矩形区域内(含边界);要使⊙Q 上总存在点G 的关联点G ′,⊙Q 必须都要在这两个矩形区域内(含边界);又这两个矩形区域的宽为2,⊙Q 的直径也为2,故圆心Q 必然恰好落在这两个矩形区域的对称轴上,即过点E ′且与x 轴正方向成45°或135°的两条互相垂直的直线上,否则不可能保证⊙Q 落在这两个矩形区域内(含边界); 设t x y +=或t x y +-=,将E ′(-4,2)代入得t +-=42或t +=42,解得t =6或-2,故有6+=x y 或2--=x y ,将其与直线12+-=x y 联立,即可求得符合题意的点Q (35-,313)或(3,-5)。

专题31新定义与阅读理解创新型问题-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】

专题31新定义与阅读理解创新型问题-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】

备战2023年中考数学必刷真题考点分类专练(全国通用)专题31新定义与阅读理解创新型问题一.选择题(共3小题)1.(2022•娄底)若10x=N,则称x是以10为底N的对数.记作:x=lgN.例如:102=100,则2=lg100;100=1,则0=lg1.对数运算满足:当M>0,N>0时,lgM+lgN=lg(MN).例如:lg3+lg5=lg15,则(lg5)2+lg5×lg2+lg2的值为()A.5B.2C.1D.02.(2022•重庆)在多项式x﹣y﹣z﹣m﹣n中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n =x﹣y﹣z+m﹣n,….下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A.0B.1C.2D.33.(2022•常德)我们发现:=3,=3,=3,…,=3,一般地,对于正整数a,b,如果满足=a时,称(a,b)为一组完美方根数对.如上面(3,6)是一组完美方根数对,则下面4个结论:①(4,12)是完美方根数对;②(9,91)是完美方根数对;③若(a,380)是完美方根数对,则a=20;④若(x,y)是完美方根数对,则点P(x,y)在抛物线y=x2﹣x上,其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共1小题)4.(2022•内江)对于非零实数a,b,规定a⊕b=﹣.若(2x﹣1)⊕2=1,则x的值为.三.解答题(共23小题)5.(2022•遵义)新定义:我们把抛物线y=ax2+bx+c(其中ab≠0)与抛物线y=bx2+ax+c称为“关联抛物线”.例如:抛物线y=2x2+3x+1的“关联抛物线”为:y=3x2+2x+1.已知抛物线C1:y=4ax2+ax+4a﹣3(a≠0)的“关联抛物线”为C2.(1)写出C2的解析式(用含a的式子表示)及顶点坐标;(2)若a>0,过x轴上一点P,作x轴的垂线分别交抛物线C1,C2于点M,N.①当MN=6a时,求点P的坐标;②当a﹣4≤x≤a﹣2时,C2的最大值与最小值的差为2a,求a的值.6.(2022•长沙)若关于x的函数y,当t﹣≤x≤t+时,函数y的最大值为M,最小值为N,令函数h=,我们不妨把函数h称之为函数y的“共同体函数”.(1)①若函数y=4044x,当t=1时,求函数y的“共同体函数”h的值;②若函数y=kx+b(k≠0,k,b为常数),求函数y的“共同体函数”h的解析式;(2)若函数y=(x≥1),求函数y的“共同体函数”h的最大值;(3)若函数y=﹣x2+4x+k,是否存在实数k,使得函数y的最大值等于函数y的“共同体函数“h的最小值.若存在,求出k的值;若不存在,请说明理由.7.(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m 整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若为整数,求出满足条件的所有数A.8.(2022•常州)第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME﹣14的举办年份.(1)八进制数3746换算成十进制数是;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.9.(2022•盐城)【发现问题】小明在练习簿的横线上取点O为圆心,相邻横线的间距为半径画圆,然后半径依次增加一个间距画同心圆,描出了同心圆与横线的一些交点,如图1所示,他发现这些点的位置有一定的规律.【提出问题】小明通过观察,提出猜想:按此步骤继续画圆描点,所描的点都在某二次函数图象上.【分析问题】小明利用已学知识和经验,以圆心O为原点,过点O的横线所在直线为x轴,过点O且垂直于横线的直线为y轴,相邻横线的间距为一个单位长度,建立平面直角坐标系,如图2所示.当所描的点在半径为5的同心圆上时,其坐标为.【解决问题】请帮助小明验证他的猜想是否成立.【深度思考】小明继续思考:设点P(0,m),m为正整数,以OP为直径画⊙M,是否存在所描的点在⊙M上.若存在,求m的值;若不存在,说明理由.10.(2022•遂宁)在平面直角坐标系中,如果一个点的横坐标与纵坐标互为相反数,则称该点为“黎点”.例如(﹣1,1),(2022,﹣2022)都是“黎点”.(1)求双曲线y=上的“黎点”;(2)若抛物线y=ax2﹣7x+c(a、c为常数)上有且只有一个“黎点”,当a>1时,求c的取值范围.11.(2022•兰州)在平面直角坐标系中,P(a,b)是第一象限内一点,给出如下定义:k1=和k2=两个值中的最大值叫做点P的“倾斜系数”k.(1)求点P(6,2)的“倾斜系数”k的值;(2)①若点P(a,b)的“倾斜系数”k=2,请写出a和b的数量关系,并说明理由;②若点P(a,b)的“倾斜系数”k=2,且a+b=3,求OP的长;(3)如图,边长为2的正方形ABCD沿直线AC:y=x运动,P(a,b)是正方形ABCD上任意一点,且点P的“倾斜系数”k<,请直接写出a的取值范围.12.(2022•北京)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P′,点P′关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上.若点P(﹣2,0),点Q为点P的“对应点”.①在图中画出点Q;②连接PQ,交线段ON于点T,求证:NT=OM;(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t(<t<1),若P为⊙O外一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时,直接写出PQ长的最大值与最小值的差(用含t的式子表示).13.(2022•青岛)【图形定义】有一条高线相等的两个三角形称为等高三角形、例如:如图①,在△ABC和△A'B'C'中,AD,A'D'分别是BC和B'C'边上的高线,且AD=A'D'、则△ABC 和△A'B'C'是等高三角形.【性质探究】,S△A'B'C′分别表示△ABC和△A′B′C′的面积,如图①,用S△ABC=BC•AD,S△A'B'C′=B′C′•A′D′,则S△ABC∵AD=A′D′:S△A'B'C′=BC:B'C'.∴S△ABC【性质应用】:S△ADC=;(1)如图②,D是△ABC的边BC上的一点.若BD=3,DC=4,则S△ABD(2)如图③,在△ABC中,D,E分别是BC和AB边上的点.若BE:AB=1:2,CD:BC=1:3,S=1,则S△BEC=,S△CDE=;△ABC(3)如图③,在△ABC中,D,E分别是BC和AB边上的点.若BE:AB=1:m,CD:BC=1:n,S=a,则S△CDE=.△ABC14.(2022•常州)在四边形ABCD中,O是边BC上的一点.若△OAB≌△OCD,则点O叫做该四边形的“等形点”.(1)正方形“等形点”(填“存在”或“不存在”);(2)如图,在四边形ABCD中,边BC上的点O是四边形ABCD的“等形点”.已知CD=4,OA=5,BC=12,连接AC,求AC的长;(3)在四边形EFGH中,EH∥FG.若边FG上的点O是四边形EFGH的“等形点”,求的值.15.(2022•青海)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若△ABC和△ADE是顶角相等的等腰三角形,BC,DE分别是底边.求证:BD=CE;(2)解决问题:如图2,若△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一条直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系并说明理由.16.(2022•嘉兴)小东在做九上课本123页习题:“1:也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1:.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造△DPE,使得△DPE∽△CPB.①如图3,当点D运动到点A时,求∠CPE的度数.②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.17.(2022•兰州)如图,在Rt△ABC中,∠ACB=90°,AC=3cm,BC=4cm,M为AB边上一动点,BN ⊥CM,垂足为N.设A,M两点间的距离为xcm(0≤x≤5),B,N两点间的距离为ycm(当点M和B 点重合时,B,N两点间的距离为0).小明根据学习函数的经验,对因变量y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.(1)列表:下表的已知数据是根据A,M两点间的距离x进行取点、画图、测量,分别得到了y与x的几组对应值:x/cm00.51 1.5 1.82 2.53 3.54 4.55y/cm4 3.96 3.79 3.47a 2.99 2.40 1.79 1.230.740.330请你通过计算,补全表格:a=;(2)描点、连线:在平面直角坐标系中,描出表中各组数值所对应的点(x,y),并画出函数y关于x 的图象;(3)探究性质:随着自变量x的不断增大,函数y的变化趋势:;(4)解决问题:当BN=2AM时,AM的长度大约是cm.(结果保留两位小数)18.(2022•深圳)二次函数y=2x2,先向上平移6个单位,再向右平移3个单位,用光滑的曲线画在平面直角坐标系上.y=2x2y=2(x﹣3)2+6(0,0)(3,m)(1,2)(4,8)(2,8)(5,14)(﹣1,2)(2,8)(﹣2,8)(1,14)(1)m的值为;(2)在坐标系中画出平移后的图象并写出y=﹣x2+5与y=x2的交点坐标;(3)点P(x1,y1),Q(x2,y2)在新的函数图象上,且P,Q两点均在对称轴同一侧,若y1>y2,则x1x2.(填不等号)19.(2022•潍坊)某市在盐碱地种植海水稻获得突破性进展,小亮和小莹到海水稻种植基地调研.小莹根据水稻年产量数据,分别在直角坐标系中描出表示2017﹣2021年①号田和②号田年产量情况的点(记2017年为第1年度,横轴表示年度,纵轴表示年产量),如图.小亮认为,可以从y=kx+b(k>0),y=(m>0),y=﹣0.1x2+ax+c中选择适当的函数模型,模拟①号田和②号田的年产量变化趋势.(1)小莹认为不能选y=(m>0).你认同吗?请说明理由;(2)请从小亮提供的函数模型中,选择适当的模型分别模拟①号田和②号田的年产量变化趋势,并求出函数表达式;(3)根据(2)中你选择的函数模型,请预测①号田和②号田总年产量在哪一年最大?最大是多少?20.(2022•潍坊)为落实“双减”,老师布置了一项这样的课后作业:二次函数的图象经过点(﹣1,﹣1),且不经过第一象限,写出满足这些条件的一个函数表达式.【观察发现】请完成作业,并在直角坐标系中画出大致图象.【思考交流】小亮说:“满足条件的函数图象的对称轴一定在y轴的左侧.”小莹说:“满足条件的函数图象一定在x轴的下方.”你认同他们的说法吗?若不认同,请举例说明.【概括表达】小博士认为这个作业的答案太多,老师不方便批阅,于是探究了二次函数y=ax2+bx+c的图象与系数a,b,c的关系,得出了提高老师作业批阅效率的方法.请你探究这个方法,写出探究过程.21.(2022•临沂)杠杆原理在生活中被广泛应用(杠杆原理:阻力×阻力臂=动力×动力臂),小明利用这一原理制作了一个称量物体质量的简易“秤”(如图1).制作方法如下:第一步:在一根匀质细木杆上标上均匀的刻度(单位长度1cm),确定支点O,并用细麻绳固定,在支点O左侧2cm的A处固定一个金属吊钩,作为秤钩;第二步:取一个质量为0.5kg的金属物体作为秤砣.(1)图1中,把重物挂在秤钩上,秤砣挂在支点O右侧的B处,秤杆平衡,就能称得重物的质量.当重物的质量变化时,OB的长度随之变化.设重物的质量为xkg,OB的长为ycm.写出y关于x的函数解析式;若0<y<48,求x的取值范围.(2)调换秤砣与重物的位置,把秤砣挂在秤钩上,重物挂在支点O右侧的B处,使秤杆平衡,如图2.设重物的质量为xkg,OB的长为ycm,写出y关于x的函数解析式,完成下表,画出该函数的图象.x/kg……0.250.5124……y/cm…………22.(2022•赤峰)阅读下列材料定义运算:min|a,b|,当a≥b时,min|a,b|=b;当a<b时,min|a,b|=a.例如:min|﹣1,3|=﹣1;min|﹣1,﹣2|=﹣2.完成下列任务(1)①min|(﹣3)0,2|=;②min|﹣,﹣4|=.(2)如图,已知反比例函数y1=和一次函数y2=﹣2x+b的图象交于A、B两点.当﹣2<x<0时,min|,﹣2x+b|=(x+1)(x﹣3)﹣x2,求这两个函数的解析式.23.(2022•赤峰)【生活情境】为美化校园环境,某学校根据地形情况,要对景观带中一个长AD=4m,宽AB=1m的长方形水池ABCD 进行加长改造(如图①,改造后的水池ABNM仍为长方形,以下简称水池1).同时,再建造一个周长为12m的矩形水池EFGH(如图②,以下简称水池2).【建立模型】如果设水池ABCD的边AD加长长度DM为x(m)(x>0),加长后水池1的总面积为y1(m2),则y1关于x的函数解析式为:y1=x+4(x>0);设水池2的边EF的长为x(m)(0<x<6),面积为y2(m2),则y2关于x的函数解析式为:y2=﹣x2+6x(0<x<6),上述两个函数在同一平面直角坐标系中的图象如图③.【问题解决】(1)若水池2的面积随EF长度的增加而减小,则EF长度的取值范围是(可省略单位),水池2面积的最大值是m2;(2)在图③字母标注的点中,表示两个水池面积相等的点是,此时的x(m)值是;(3)当水池1的面积大于水池2的面积时,x(m)的取值范围是;(4)在1<x<4范围内,求两个水池面积差的最大值和此时x的值;(5)假设水池ABCD的边AD的长度为b(m),其他条件不变(这个加长改造后的新水池简称水池3),则水池3的总面积y3(m2)关于x(m)(x>0)的函数解析式为:y3=x+b(x>0).若水池3与水池2的面积相等时,x(m)有唯一值,求b的值.24.(2022•鄂州)某数学兴趣小组运用《几何画板》软件探究y=ax2(a>0)型抛物线图象.发现:如图1所示,该类型图象上任意一点M到定点F(0,)的距离MF,始终等于它到定直线l:y=﹣的距离MN(该结论不需要证明),他们称:定点F为图象的焦点,定直线l为图象的准线,y=﹣叫做抛物线的准线方程.其中原点O为FH的中点,FH=2OF=.例如:抛物线y=x2,其焦点坐标为F(0,),准线方程为l:y=﹣.其中MF=MN,FH=2OH =1.【基础训练】(1)请分别直接写出抛物线y=2x2的焦点坐标和准线l的方程:,.【技能训练】(2)如图2所示,已知抛物线y=x2上一点P到准线l的距离为6,求点P的坐标;【能力提升】(3)如图3所示,已知过抛物线y=ax2(a>0)的焦点F的直线依次交抛物线及准线l于点A、B、C.若BC=2BF,AF=4,求a的值;【拓展升华】(4)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C将一条线段AB分为两段AC和CB,使得其中较长一段AC是全线段AB与另一段CB的比例中项,即满足:==.后人把这个数称为“黄金分割”数,把点C称为线段AB的黄金分割点.如图4所示,抛物线y=x2的焦点F(0,1),准线l与y轴交于点H(0,﹣1),E为线段HF的黄金分割点,点M为y轴左侧的抛物线上一点.当=时,请直接写出△HME的面积值.25.(2022•贵阳)小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.如图,在▱ABCD中,AN为BC边上的高,=m,点M在AD边上,且BA=BM,点E是线段AM上任意一点,连接BE,将△ABE沿BE翻折得△FBE.(1)问题解决:如图①,当∠BAD=60°,将△ABE沿BE翻折后,使点F与点M重合,则=;(2)问题探究:如图②,当∠BAD=45°,将△ABE沿BE翻折后,使EF∥BM,求∠ABE的度数,并求出此时m的最小值;(3)拓展延伸:当∠BAD=30°,将△ABE沿BE翻折后,若EF⊥AD,且AE=MD,根据题意在备用图中画出图形,并求出m的值.26.(2022•呼和浩特)下面图片是八年级教科书中的一道题.如图,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF 于点F.求证AE=EF.(提示:取AB的中点G,连接EG.)(1)请你思考题中“提示”,这样添加辅助线的意图是得到条件:;(2)如图1,若点E是BC边上任意一点(不与B、C重合),其他条件不变.求证:AE=EF;(3)在(2)的条件下,连接AC,过点E作EP⊥AC,垂足为P.设=k,当k为何值时,四边形ECFP是平行四边形,并给予证明.27.(2022•潍坊)【情境再现】甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处.将甲绕点O顺时针旋转一个锐角到图②位置.小莹用作图软件Geogebra按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC交OG于F,通过证明△OBE≌△OAF,可得OE=OF.请你证明:AG=BH.【迁移应用】延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.【拓展延伸】小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.。

新定义与阅读理解题类型一新法则运算学习型针-中考数学题型训练

新定义与阅读理解题类型一新法则运算学习型针-中考数学题型训练

第二部分 题型研究题型四 新定义与阅读理解题 类型一 新法则、运算学习型针对演练1. (2017潍坊)定义[x ]表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y =[x ]的图象如图所示,则方程[x ]=12x 2的解为( )第1题图A. 0或 2B. 0或2C. 1或- 2D. 2或- 22. (2016杭州)设a ,b 是实数,定义关于@的一种运算如下:a @b =(a +b )2-(a -b )2,则下列结论:①若a @b =0,则a =0或b =0; ②a @(b +c )=a @b +a @c ;③不存在实数a ,b ,满足a @b =a 2+5b 2;④设a ,b 是矩形的长和宽,若该矩形的周长固定,则当a =b 时,a @b 的值最大. 其中正确的是( )A. ②③④B. ①③④C. ①②④D. ①②③3. 定义符号min{a ,b }的含义为:当a≥b 时,min{a ,b }=b ;当a<b 时,min{a ,b}=a,如:min{1,-3}=-3,min{-4,-2}=-4,则min{-x2+1,-x}的最大值是( )A. 5-12B.5+12C. 1D. 04. 我们根据指数运算,得出了一种新的运算,下表是两种运算对应关系的一组实例:指数根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log212=-1.其中正确的是( )A. ①②B. ①③C. ②③D. ①②③5. 对于任意实数m、n,定义一种运算m※n=mn-m-n+3,等式的右边是通常的加减和乘法运算.例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是________.第6题图6. 用“♥”定义一种新运算:对于任意实数m,n和抛物线y=ax2,当y=ax2♥(m,n)后都可以得到y=a(x-m)2+n,例如:当y=2x2♥(3,4)后都可以得到y=2(x-3)2+4.函数y=x2♥(1,n)后得到的函数图象如图所示,则n=________.7. 在平面直角坐标系中,对平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(-a,b);②O(a,b)=(-a,-b);③Ω(a,b)=(a,-b).按照以上变换有:△(O(1,2))=(1,-2),那么O (Ω(3,4))=________.8. (2017乐山)对于函数y =x n+x m,我们定义y ′=nxn -1+mxm -1(m 、n 为常数).例如y =x 4+x 2,则y ′=4x 3+2x .已知:函数y =13x 3+(m -1)x 2+m 2x (m 为常数).(1)若方程y ′=0有两个相等实数根,则m 的值为________; (2)若方程y ′=m -14有两个正数根,则m 的取值范围为________.9. P 为正整数,现规定P !=P (P -1)(P -2)…×2×1,若m !=24,则正整数m =________.10. 定义)为二阶行列式.规定它的运算法则为)=ad -bc .那么当x =1时,二阶行列式))的值为________.11. 对于任意的自然数a ,b ,定义:f (a )=a ×a -1,g (b )=b ÷2+1. (1)求f (g (6))-g (f (3))的值; (2)已知f (g (x ))=8,求x 的值.12. (2017张家界)阅读理解题:定义:如果一个数的平方等于-1,记为i 2=-1,这个数i 叫做虚数单位,把形如a +bi (a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫做这个复数的虚部.它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2-i )+(5+3i )=(2+5)+(-1+3)i =7+2i ; (1+i )×(2-i )=1×2-i +2×i -i 2=2+(-1+2)i +1=3+i ; 根据以上信息,完成下列问题: (1)填空:i 3=________,i 4=________; (2)计算:(1+i )×(3-4i ); (3)计算:i +i 2+i 3+…+i2017.13. 定义一种对正整数n 的运算“F ”: (1)当n 为奇数时,结果为3n +5;(2)当n 为偶数时,结果为n2k (其中k 是使n 2k为奇数的正整数),并且运算可以重复进行.例如n =26时,则26――→F (2)第一次13――→F (1)第二次44――→F (2)第三次11―→…那么,当n =1796时,第2010次“F”运算的结果是多少?答案1. A 【解析】由图象可知,y 的取值为-2,-1,0,1,代入方程易得x 的取值为0,±2,经检验,-2不符合.故选A.2. C 【解析】∵a @b =(a +b )2-(a -b )2=(a +b +a -b )(a +b -a +b )=4ab ,若a @b =0,则4ab =0,∴a =0或b =0,∴①正确;a @(b +c )=4a (b +c )=4ab +4ac ,a @b +a @c =4ab +4ac ,∴a @(b +c )=a @b +a @c ,即②正确;∵a @b =4ab ,假设a @b =a 2+5b 2,那么4ab = a 2+5b 2,即 a 2-4ab +5b 2=0,化简得(a -2b )2+b 2=0,当a =b =0时等式成立,∴③是错误的;∵设a ,b 是矩形的长和宽,若矩形的周长固定,设为2c ,则2c =2a +2b ,b =c -a ,a @b =4ab =4a (c -a )=-4(a -12c )2+c2,∴当a =12c 时,4ab 有最大值是c 2,即a =b 时,a @b 的值最大,∴选项④正确;综上所述,正确的有①②④.3. A 【解析】由-x 2+1=-x ,解得x =1-52 或x =5+12.故min{-x 2+1,-x }=⎩⎪⎨⎪⎧-x 2+1(x≤1-52或x≥5+12)-x (1-52≤x≤5+12),由上面解析式可知:①当1-52≤x ≤5+12时,min{-x 2+1,-x }=-x ,其最大值为5-12 ;②当x ≤1-52 或x ≥5+12时,min{-x 2+1,-x }=-x 2+1,其最大值为5-12.综上可知,min{-x 2+1,-x }的最大值是5-12. 4. B 【解析】①∵24=16,∴log 216=4,故①正确;②∵52=25,∴log 525=2,故②错误;③∵2-1=12,∴log 212=-1,故③正确.故式子正确的是①③.5. 4≤a <5 【解析】根据题意得:2※x =2x -2-x +3=x +1,∵a <x +1<7,即a -1<x <6解集中有两个整数解,∴3≤a -1<4,即a 的取值范围为4≤a <5.6. 2 【解析】根据题意得y =x 2♥(1,n )是函数y =(x -1)2+n ;由图象得,此函数的顶点坐标为(1,2),所以此函数的解析式为y =(x -1)2+2,∴n =2.7. (-3,4) 【解析】∵Ω(3,4)=(3,-4),∴O (Ω(3,4))=O(3,-4)=(-3,4).8. (1)12;(2)m ≤34且m ≠12.【解析】(1)因为y =13x 3+(m -1)x 2+m 2x ,则y ′=x 2+2(m -1)x +m 2,由题可知方程x 2+2(m -1)x +m 2=0有两个相等实数根,则Δ=[2(m -1)]2-4×1×m 2=0,解得m =12;(2)由题可知x 2+2(m -1)x +m 2=m -14有两个正数根,整理得x 2+2(m -1)x +m 2-m +14=0有两个正数根,则⎩⎪⎨⎪⎧Δ≥0x 1+x 2>0x 1x 2>0,即⎩⎪⎨⎪⎧[2(m -1)]2-4(m 2-m +14)≥0-2(m -1)>0m 2-m +14>0,解得m ≤34且m ≠12.9. 4 【解析】∵P !=P (P -1)(P -2)…×2×1=1×2×3×4×…×(P -2)(P -1)P ,∴m !=1×2×3×4×…×(m -1)×m =24,∵1×2×3×4=24,∴m =4.10. 0 【解析】根据题意得当x =1时,原式=(x -1)2=0.11. 解:(1)f (g (6))-g (f (3))=f (6÷2+1)-g (3×3-1)=f (4)-g (8)=4×4-1-(8÷2+1)=15-5=10;(2)∵f(g (x ))=f (x ÷2+1)=8,f (3)=3×3-1=8, ∴x ÷2+1=3,∴x =4. 12. 解:(1)-i ;1; 【解法提示】∵i 2=-1, ∴i 3=i 2·i =-i ,i 4=i 2·i 2=1. (2)原式=3-4i +3i -4i 2=3-i +4 =7-i ;(3)根据题意可得i =i ,i 2=-1,i 3=-i ,i 4=1,i 5=i ,i 6=-1,…,i 2016=1,i2017=i ,∵i +i 2+i 3+i 4=0,且2016÷4=504, ∴i +i 2+i 3+i 4+…+i2017=i . 13. 解:根据题意得,当n =1796时, 第一次运算,179622=449;第二次运算,3n +5=3×449+5=1352; 第三次运算,135223=169;第四次运算,3×169+5=512; 第五次运算,51229=1;第六次运算,3×1+5=8; 第七次运算,82=1;可以看出:从第五次开始,结果就只是1,8两个数轮流出现,且当次为偶数时,结果是8,次数是奇数时,结果是1,而2010是偶数,因此最后结果是8.。

2023中考数学真题汇编30 新定义与阅读理解创新性问题(含答案与解析)

2023中考数学真题汇编30 新定义与阅读理解创新性问题(含答案与解析)

2023中考数学真题汇编·30新定义与阅读理解创新型问题一、单选题1.(2023·重庆)在多项式x y z m n (其中)x y z m n 中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:||x y z m n x y z m n ,x y z m n x y z m n , .下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A .0B .1C .2D .32.(2023·福建)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率 的近似值为3.1416.如图,O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计O 的面积,可得 的估计值为332,若用圆内接正十二边形作近似估计,可得 的估计值为()AB .C .3D .3.(2023·湖北武汉)皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积112S N L ,其中,N L 分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知 0,30A , 20,10,0,0B O ,则ABO 内部的格点个数是()A .266B .270C .271D .2854.(2023·湖南张家界)“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边ABC 的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”.若等边ABC 的边长为3,则该“莱洛三角形”的周长等于()A .B .3C .2D .25.(2023·山东)若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:(1,3),(2,6),(0,0)A B C 等都是“三倍点”,在31x 的范围内,若二次函数2y x x c 的图象上至少存在一个“三倍点”,则c 的取值范围是()A .114c B .43c C .154c D .45c 6.(2023·湖南岳阳)若一个点的坐标满足 ,2k k ,我们将这样的点定义为“倍值点”.若关于x 的二次函数 212y t x t x s (,s t 为常数,1t )总有两个不同的倍值点,则s 的取值范围是()A .1sB .0sC .01sD .10s 二、填空题7.(2023·北京)学校组织学生参加木艺艺术品加工劳动实践活动.已知某木艺艺术品加工完成共需A ,B ,C ,D ,E ,F ,G 七道工序,加工要求如下:①工序C ,D 须在工序A 完成后进行,工序E 须在工序B ,D 都完成后进行,工序F 须在工序C ,D 都完成后进行;②一道工序只能由一名学生完成,此工序完成后该学生才能进行其他工序;③各道工序所需时间如下表所示:工序A B C D E F G 所需时间/分钟99797102在不考虑其他因素的前提下,若由一名学生单独完成此木艺艺术品的加工,则需要______分钟;若由两名学生合作完成此木艺艺术品的加工,则最少需要______分钟.8.(2023·湖南常德)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图. AB 是以O 为圆心,OA 为半径的圆弧,C 是弦AB 的中点,D 在 AB 上,CD AB .“会圆术”给出 AB 长l 的近似值s 计算公式:2CD s AB OA,当2OA ,90AOB 时,l s __________.(结果保留一位小数)9.(2023·重庆)如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足ab bc cd ,那么称这个四位数为“递减数”.例如:四位数4129,∵411229 ,∴4129是“递减数”;又如:四位数5324,∵53322124 ,∴5324不是“递减数”.若一个“递减数”为a312,则这个数为___________;若一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,则满足条件的数的最大值是___________.10.(2023·重庆)对于一个四位自然数M ,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M 为“天真数”.如:四位数7311,∵716 ,312 ,∴7311是“天真数”;四位数8421,∵816 ,∴8421不是“天真数”,则最小的“天真数”为________;一个“天真数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,记 3P M a b c d , 5Q M a ,若P M Q M 能被10整除,则满足条件的M 的最大值为________.11.(2023·浙江绍兴)在平面直角坐标系xOy 中,一个图形上的点都在一边平行于x 轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数 2(2)03y x x 的图象(抛物线中的实线部分),它的关联矩形为矩形OABC .若二次函数 21034y x bx c x图象的关联矩形恰好也是矩形OABC ,则b ________.12.(2023·四川乐山)定义:若x ,y 满足224,4x y t y x t 且x y (t 为常数),则称点(,)M x y 为“和谐点”.(1)若(3,)P m 是“和谐点”,则m __________.(2)若双曲线(31)k y x x存在“和谐点”,则k 的取值范围为__________.三、解答题13.(2023·内蒙古通辽)阅读材料:材料1:关于x 的一元二次方程 200ax bx c a 的两个实数根12x x ,和系数a ,b ,c 有如下关系:12b x x a,12c x x a .材料2:已知一元二次方程210x x 的两个实数根分别为m ,n ,求22m n mn 的值.解:∵m ,n 是一元二次方程210x x 的两个实数根,∴1,1m n mn .则 22111m n mn mn m n .根据上述材料,结合你所学的知识,完成下列问题:(1)应用:一元二次方程22310x x 的两个实数根为12x x ,,则12x x _______,12x x _______;(2)类比:已知一元二次方程22310x x 的两个实数根为m ,n ,求22m n 的值;(3)提升:已知实数s ,t 满足2223102310s s t t ,且s t ,求11s t的值.14.(2023·湖南张家界)阅读下面材料:将边长分别为a ,a ,a a 1S ,2S ,3S ,4S .则2221(S S a a((a a a a(2a2b例如:当1a ,3b 时,213S S 根据以上材料解答下列问题:(1)当1a ,3b 时,32S S ______,43S S ______;(2)当1a ,3b 时,把边长为a 1n S ,其中n 是正整数,从(1)中的计算结果,你能猜出1n n S S 等于多少吗?并证明你的猜想;(3)当1a ,3b 时,令121t S S ,232t S S ,343t S S ,…,1n n n t S S ,且12350T t t t t ,求T 的值.15.(2023·云南)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性、形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数2(42)(96)44y a x a x a (实数a 为常数)的图象为图象T .(1)求证:无论a 取什么实数,图象T 与x 轴总有公共点;(2)是否存在整数a ,使图象T 与x 轴的公共点中有整点?若存在,求所有整数a 的值;若不存在,请说明理由.16.(2023·江苏徐州)两汉文化看徐州,桐桐在徐州博物馆“天工汉玉”展厅参观时了解到;玉壁,玉环为我国的传统玉器,通常为正中带圆孔的扇圆型器物,据《尔雅·释器》记载:“肉倍好,谓之璧;肉好若一,调之环.”如图1,“肉”指边(阴影部分),“好”指孔,其比例关系见图示,以考古发现看,这两种玉器的“肉”与“好”未必符合该比例关系.(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为;(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法).①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.17.(2023·内蒙古赤峰)定义:在平面直角坐标系xOy 中,当点N 在图形M 的内部,或在图形M 上,且点N 的横坐标和纵坐标相等时,则称点N 为图形M 的“梦之点”.(1)如图①,矩形ABCD 的顶点坐标分别是 1,2A , 1,1B , 3,1C , 3,2D ,在点 11,1M , 22,2M , 33,3M 中,是矩形ABCD “梦之点”的是___________;(2)点 2,2G 是反比例函数1k y x图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H 的坐标是__________,直线GH 的解析式是2y _________.当12y y 时,x 的取值范围是___________.(3)如图②,已知点A ,B 是抛物线21922y x x 上的“梦之点”,点C 是抛物线的顶点,连接AC ,AB ,BC ,判断ABC 的形状,并说明理由.18.(2023·北京)在平面直角坐标系xOy 中,O 的半径为1.对于O 的弦AB 和O 外一点C 给出如下定义:若直线CA ,CB 中一条经过点O ,另一条是O 的切线,则称点C 是弦AB 的“关联点”.(1)如图,点 1,0A ,122B ,222B①在点 11,1C ,20()C , 3C 中,弦1AB 的“关联点”是______.②若点C 是弦2AB 的“关联点”,直接写出OC 的长;(2)已知点 0,3M ,,05N.对于线段MN 上一点S ,存在O 的弦PQ ,使得点S 是弦PQ 的“关联点”,记PQ 的长为t ,当点S 在线段MN 上运动时,直接写出t 的取值范围.19.(2023·四川凉山)阅读理解题:阅读材料:如图1,四边形ABCD 是矩形,AEF △是等腰直角三角形,记BAE 为 、FAD 为 ,若1tan 2,则1tan 3.证明:设BE k ,∵1tan 2,∴2AB k ,易证AAS AEB EFC △≌△∴2,EC k CF k ,∴,3FD k AD k∴1tan 33DF k AD k ,若45 时,当1tan 2 ,则1tan 3.同理:若45 时,当1tan 3,则1tan 2 .根据上述材料,完成下列问题:如图2,直线39y x 与反比例函数(0)m y x x的图象交于点A ,与x 轴交于点B .将直线AB 绕点A 顺时针旋转45 后的直线与y 轴交于点E ,过点A 作AM x 轴于点M ,过点A 作AN y 轴于点N ,已知5OA .(1)求反比例函数的解析式;(2)直接写出tan tan BAM NAE 、的值;(3)求直线AE 的解析式.20.(2023·山西)问题情境:“综合与实践”课上,老师提出如下问题:将图1中的矩形纸片沿对角线剪开,得到两个全等的三角形纸片,表示为ABC 和DFE △,其中90,ACB DEF A D .将ABC 和DFE △按图2所示方式摆放,其中点B 与点F 重合(标记为点B ).当ABE A 时,延长DE 交AC 于点G .试判断四边形BCGE 的形状,并说明理由.(1)数学思考:请你解答老师提出的问题;(2)深入探究:老师将图2中的DBE 绕点B 逆时针方向旋转,使点E 落在ABC 内部,并让同学们提出新的问题.①“善思小组”提出问题:如图3,当ABE BAC 时,过点A 作AM BE 交BE 的延长线于点,M BM 与AC 交于点N .试猜想线段AM 和BE 的数量关系,并加以证明.请你解答此问题;②“智慧小组”提出问题:如图4,当CBE BAC 时,过点A 作AH DE 于点H ,若9,12BC AC ,求AH 的长.请你思考此问题,直接写出结果.21.(2023·广西)【探究与证明】折纸,操作简单,富有数学趣味,我们可以通过折纸开展数学探究,探索数学奥秘.【动手操作】如图1,将矩形纸片ABCD 对折,使AD 与BC 重合,展平纸片,得到折痕EF ;折叠纸片,使点B 落在EF 上,并使折痕经过点A ,得到折痕AM ,点B ,E 的对应点分别为B ,E ,展平纸片,连接AB ,BB ,BE .请完成:(1)观察图1中1 ,2 和3 ,试猜想这三个角的大小关系....;(2)证明(1)中的猜想;【类比操作】如图2,N 为矩形纸片ABCD 的边AD 上的一点,连接BN ,在AB 上取一点P ,折叠纸片,使B ,P 两点重合,展平纸片,得到折痕EF ;折叠纸片,使点B ,P 分别落在EF ,BN 上,得到折痕l ,点B ,P 的对应点分别为B ,P ,展平纸片,连接,P B .请完成:(3)证明BB 是NBC 的一条三等分线.22.(2023·河南)李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点 4,0M 的直线l y 轴,作ABC 关于y 轴对称的图形111A B C △,再分别作111A B C △关于x 轴和直线l 对称的图形222A B C △和333A B C △,则222A B C △可以看作是ABC 绕点O 顺时针旋转得到的,旋转角的度数为______;333A B C △可以看作是ABC 向右平移得到的,平移距离为______个单位长度.(2)探究迁移:如图2,ABCD Y 中, 090BAD ,P 为直线AB 下方一点,作点P 关于直线AB 的对称点1P ,再分别作点1P 关于直线AD 和直线CD 的对称点2P 和3P ,连接AP ,2AP ,请仅就图2的情形解决以下问题:①若2PAP ,请判断 与 的数量关系,并说明理由;②若AD m ,求P ,3P 两点间的距离.(3)拓展应用:在(2)的条件下,若60 ,AD 15PAB ,连接23P P .当23P P 与ABCD Y 的边平行时,请直接写出AP 的长.23.(2023·浙江宁波)定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.(1)如图1,在四边形ABCD 中,,90AD BC A ∥,对角线BD 平分ADC .求证:四边形ABCD 为邻等四边形.(2)如图2,在6×5的方格纸中,A ,B ,C 三点均在格点上,若四边形ABCD 是邻等四边形,请画出所有符合条件的格点D .(3)如图3,四边形ABCD 是邻等四边形,90DAB ABC ,BCD 为邻等角,连接AC ,过B 作BE AC ∥交DA 的延长线于点E .若8,10AC DE ,求四边形EBCD 的周长.24.(2023·湖北荆州)如图1,点P 是线段AB 上与点A ,点B 不重合的任意一点,在AB 的同侧分别以A ,P ,B 为顶点作123 ,其中1 与3 的一边分别是射线AB 和射线BA ,2 的两边不在直线AB 上,我们规定这三个角互为等联角,点P 为等联点,线段AB 为等联线.(1)如图2,在53 个方格的纸上,小正方形的顶点为格点、边长均为1,AB 为端点在格点的已知线段.请用三种不同连接格点........的方法,作出以线段AB 为等联线、某格点P 为等联点的等联角,并标出等联角,保留作图痕迹;(2)如图3,在Rt APC △中,90A ,AC AP ,延长AP 至点B ,使AB AC ,作A 的等联角CPD 和PBD .将APC △沿PC 折叠,使点A 落在点M 处,得到MPC ,再延长PM 交BD 的延长线于E ,连接CE 并延长交PD 的延长线于F ,连接BF .①确定PCF 的形状,并说明理由;②若:1:2AP PB ,BF ,求等联线AB 和线段PE 的长(用含k 的式子表示).25.(2023·甘肃兰州)在平面直角坐标系中,给出如下定义:P 为图形M 上任意一点,如果点P 到直线EF的距离等于图形M 上任意两点距离的最大值时,那么点P 称为直线EF 的“伴随点”.例如:如图1,已知点 1,2A , 3,2B , 2,2P 在线段AB 上,则点P 是直线EF :x 轴的“伴随点”.(1)如图2,已知点()1,0A , 3,0B ,P 是线段AB 上一点,直线EF 过 1,0G ,0,3T两点,当点P 是直线EF 的“伴随点”时,求点P 的坐标;(2)如图3,x 轴上方有一等边三角形ABC ,BC y 轴,顶点A 在y 轴上且在BC 上方, OC 点P 是ABC 上一点,且点P 是直线EF :x 轴的“伴随点”.当点P 到x 轴的距离最小时,求等边三角形ABC 的边长;(3)如图4,以()1,0A , 2,0B , 2,1C 为顶点的正方形ABCD 上始终存在点P ,使得点P 是直线EF :y x b 的“伴随点”.请直接写出b 的取值范围.【参考答案与解析】1.【答案】C 【详解】解:x y z m n x y z m n ,故说法①正确.若使其运算结果与原多项式之和为0,必须出现x ,显然无论怎么添加绝对值,都无法使x 的符号为负,故说法②正确.当添加一个绝对值时,共有4种情况,分别是x y z m n x y z m n ;x y z m n x y z m n ;||x y z m n x y z m n ;x y z m n x y z m n .当添加两个绝对值时,共有3种情况,分别是x y z m n x y z m n ;x y z m n x y z m n ;x y z m n x y z m n .共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C .2.【答案】C【详解】解:圆的内接正十二边形的面积可以看成12个全等的等腰三角形组成,故等腰三角形的顶角为30 ,设圆的半径为1,如图为其中一个等腰三角形OAB ,过点B 作BC OA 交OA 于点于点C ,∵30AOB ,∴1122BC OB ,则1111224OAB S ,故正十二边形的面积为1121234OAB S ,圆的面积为113 ,用圆内接正十二边形面积近似估计O 的面积可得3 ,故选:C .3.【答案】C【详解】如图所示,∵ 0,30A , 20,10,0,0B O ,∴130203002ABO S V ,∵OA 上有31个格点,OB 上的格点有 2,1, 4,2, 6,3, 8,4, 10,5, 12,6, 14,7, 16,8, 18,9, 20,10,共10个格点,AB 上的格点有 1,29,2,28, 3,27, 4,26, 5,25, 6,24, 7,23, 8,22, 9,21, 10,20, 11,19, 12,18, 13,17, 16,14, 15,15, 16,14, 17,13, 18,12, 19,11,共19个格点,∴边界上的格点个数31101960L ,∵112 S N L ,∴13006012N ,∴解得271N .∴ABO 内部的格点个数是271.故选:C .4.【答案】B【详解】解:∵等边三角形ABC 的边长为3,60ABC ACB BAC ,∴ 603180AB BC AC ,∴该“莱洛三角形”的周长33 ,故选:B .5.【答案】D【详解】解:由题意可得:三倍点所在的直线为3y x ,在31x 的范围内,二次函数2y x x c 的图象上至少存在一个“三倍点”,即在31x 的范围内,2y x x c 和3y x 至少有一个交点,令23x x x c ,整理得:240x x c ,则 22444116+40b ac c c ===,解得4c ,x ,∴12x 22x ∴321 或321当321 时,13 ,即03 ,解得45c ,当321 时,31 ,即01 ,解得43c ,综上,c 的取值范围是45c ,故选:D .6.【答案】D【详解】解:由“倍值点”的定义可得: 2212x t x t x s ,整理得, 210t x tx s ∵关于x 的二次函数 212y t x t x s (,s t 为常数,1t )总有两个不同的倍值点,∴ 22=41440,t t s t ts s ∵对于任意实数s 总成立,∴ 24440,s s 整理得,216160,s s ∴20,s s ∴ 10s s ,∴010s s ,或010s s ,当010s s 时,解得10s ,当010s s 时,此不等式组无解,∴10s ,故选:D .7.【答案】53;28【详解】解:由题意得:9979710253 (分钟),即由一名学生单独完成此木艺艺术品的加工,需要53分钟;假设这两名学生为甲、乙,∵工序C ,D 须在工序A 完成后进行,工序E 须在工序B ,D 都完成后进行,且工序A ,B 都需要9分钟完成,∴甲学生做工序A ,乙学生同时做工序B ,需要9分钟,然后甲学生做工序D ,乙学生同时做工序C ,乙学生工序C 完成后接着做工序G ,需要9分钟,最后甲学生做工序E ,乙学生同时做工序F ,需要10分钟,∴若由两名学生合作完成此木艺艺术品的加工,最少需要991028 (分钟),故答案为:53,28;8.【答案】0.1【详解】∵290OA OB AOB ,,∴AB ,∵C 是弦AB 的中点,D 在 AB 上,CD AB ,∴延长DC 可得O 在DC 上,12OC AB∴2CD OD OC ∴ 22232CD s AB OA,9022360l ,∴30.1l s .故答案为:0.1.9.【答案】4312;8165【详解】解:∵a312是递减数,∴1033112a ,∴4a ,∴这个数为4312;故答案为:4312∵一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,∴101010a b b c c d ,∵1001010010abc bcd a b c b c d ,∴110010110100110001abc bcd a b c b b a b a b c ,∵ 11010199112a b a b a b ,能被9整除,∴112a b 能被9整除,∵各数位上的数字互不相等且均不为0,∴12345678,,,,,,,87654321a a a a a a a a b b b b b b b b,∵最大的递减数,∴8,1a b ,∴1089110c c d ,即:1171c d ,∴c 最大取6,此时5d ,∴这个最大的递减数为8165.故答案为:8165.10.【答案】6200;9313【详解】解:根据题意,只需千位数字和百位数字尽可能的小,所以最小的“天真数”为6200;根据题意,6a d ,2b c ,69a ,29b ,则 8c d a b ,∴ 348P M a b c d a b ,∴ 485P M M a Q b a ,若M 最大,只需千位数字a 取最大,即9a ,∴498795b P Q b M M ,∵ P M Q M 能被10整除,∴3b ,∴满足条件的M 的最大值为9313,故答案为:6200,9313.11.【答案】712或2512 【详解】由 2(2)03y x x ,当0x 时,4y ,∴ 0,4C ,∵ 3,0A ,四边形ABCO 是矩形,∴ 3,4B ,①当抛物线经过O B ,时,将点 0,0, 3,4B 代入 21034y x bx c x,∴019344c b c ,解得:712b ②当抛物线经过点,A C 时,将点 3,0A , 0,4C 代入 21034y x bx c x,∴419304c b c ,解得:2512b 综上所述,712b 或2512b ,故答案为:712或2512 .12.【答案】7 ;34k 【详解】解:(1)若(3,)P m 是“和谐点”,则224,433m t m t ,则22,3412m t m t ,∴223124m m ,即24210m m ,解得2137,m m (不合题意,舍去),∴7m ,故答案为:7(2)设点 ,a b 为双曲线(31)k y x x上的“和谐点”,∴224,4b t b a t a ,(31)k b a a,即2244a a b b ,∴ 40a b a b a b ,则 40a b a b ,∵a b ¹,∴40a b ,即4b a ,∵(31)k b a a,∴ 224424k ab a a a a a ,且31a ,对抛物线 224k a 来说,∵10 ,∴开口向下,当1a 时, 21243k ,当3a 时, 23243k ,∵对称轴为2a ,31a ,∴当2a 时,k 取最大值为4,∴k 的取值范围为34k ,故答案为:34k 13.【答案】(1)32 ,12 (2)解:∵一元二次方程22310x x 的两根分别为m 、n ,∴32b m n a,12c mn a ,∴ 2222m n m n mn 213222 914 134 ;(3)解:∵实数s 、t 满足2223102310s s t t ,,∴s 、t 可以看作方程22310x x 的两个根,∴32b s t a,12c st a ,∵ 224t s t s st 231422 17=4,∴t s或t s 当172t s时,11212t s s t st当t s1711212t s s t st综上分析可知,11s t【分析】(1)直接利用一元二次方程根与系数的关系求解即可;∵一元二次方程22310x x 的两个根为1x ,2x ,∴1232b x x a ,1212c x x a .(2)利用一元二次方程根与系数的关系可求出32m n ,12mn ,再根据 2222m n m n mn ,最后代入求值即可;(3)由题意可将s 、t 可以看作方程22310x x 的两个根,即得出32s t,12st ,从而由224t s t s st ,求得2t s或2t s ,最后分类讨论分别代入求值即可.14.【答案】(1)9 15(2)猜想结论:163n n S S n证明:221(11(n n S S n 2(2n3(21)n 63n(3)12350T t t t t 2132435150S S S S S S S S 511S S 2(11 7500 .【分析】(1)根据题意,直接代入然后利用完全平方公式展开合并求解即可;2232((S S a a 2244(2)a b a b 22442a b a b 23b当1a ,3b 时,原式9 ;2243((S S a a 2269(44)a b a b 226944a b a b 25b当1a ,3b 时,原式15 ;(2)根据题意得出猜想,然后由完全平方公式展开证明即可;(3)结合题意利用(2)中结论求解即可.15.【答案】(1)解:当12a 时,420a ,函数2(42)(96)44y a x a x a 为一次函数126y x ,此时,令0y ,则1260x ,解得12x ,∴一次函数126y x 与x 轴的交点为102;当12a 时,420a ,函数2(42)(96)44y a x a x a 为二次函数,∵2(42)(96)44y a x a x a ,∴ 2(96)(42)444a a a 228110836643232a a a a 214049100a a 20107a ,∴当12a 时,2(42)(96)44y a x a x a 与x 轴总有交点,∴无论a 取什么实数,图象T 与x 轴总有公共点;(2)解:当12a 时,不符合题意,当12a 时,对于函数2(42)(96)44y a x a x a ,令0y ,则2(42)(96)440a x a x a ,∴ 2144210a x a x ,∴ 21440a x a 或210x ,∴4421a x a 或12x ,∵6221x a,整数a ,使图象T 与x 轴的公共点中有整点,即x 为整数,∴211a 或211a 或212a 或212a 或213a 或213a 或216a 或216a ,解得0a 或1a 或12a(舍去)或32a (舍去)或1a 或2a 或52a (舍去)或72a (舍去),∴0a 或1a 或1a 或2a .【分析】(1)分12a 与12a 两种情况讨论论证即可;(2)当12a 时,不符合题意,当12a 时,对于函数2(42)(96)44y a x a x a ,令0y ,得2(42)(96)440a x a x a ,从而有4421a x a或12x ,根据整数a ,使图象T 与x 轴的公共点中有整点,即x 为整数,从而有211a 或211a 或212a 或212a 或213a 或213a 或216a 或216a ,解之即可.16.【答案】(1)32:27(2)解:①在该圆环任意画两条相交的线,且交点在外圆的圆上,且与外圆的交点分别为A 、B 、C ,则分别以A 、B 为圆心,大于12AB 长为半径画弧,交于两点,连接这两点,同理可画出线段AC 的垂直平分线,线段,AB AC 的垂直平分线的交点即为圆心O ,过圆心O 画一条直径,以O 为圆心,内圆半径为半径画弧,看是否满足“肉好若一”的比例关系即可由作图可知满足比例关系为1:2:1的关系;②按照①中作出圆的圆心O ,过圆心画一条直径AB ,过点A 作一条射线,然后以A 为圆心,适当长为半径画弧,把射线三等分,交点分别为C 、D 、E ,连接BE ,然后分别过点C 、D 作BE 的平行线,交AB 于点F 、G ,进而以FG 为直径画圆,则问题得解;如图所示:【分析】(1)根据圆环面积可进行求解;由图1可知:璧的“肉”的面积为 22318 ;环的“肉”的面积为223 1.5 6.75 ,∴它们的面积之比为8:6.7532:27 ;(2)①先确定该圆环的圆心,然后利用圆规确定其比例关系即可;②先确定好圆的圆心,然后根据平行线所截线段成比例可进行作图.17.【答案】(1)1M ,2M (2) 2,2H ,2y x ,<2x 或02x (3)ABC 是直角三角形,理由见解析【详解】(3)ABC 是直角三角形,理由如下:∵点A ,B 是抛物线21922y x x上的“梦之点”,∴联立21922y x x y x,解得33x y 或33x y ,∴ 3,3A , 3,3B ,∵ 2219115222y x x x ,∴顶点 1,5C ,∴ 22231358AC , 222333372AB , 222313580BC ,∴222BC AC AB ,∴ABC 是直角三角形.【分析】(1)根据“梦之点”的定义判断这几个点是否在矩形内部或边上即可;∵矩形ABCD 的顶点坐标分别是 1,2A , 1,1B , 3,1C , 3,2D ,∴矩形ABCD “梦之点” ,x y 满足13x ,12y ,∴点 11,1M , 22,2M 是矩形ABCD “梦之点”,点 33,3M 不是矩形ABCD “梦之点”,(2)把 2,2G 代入1ky x求出解析式,再求与y x 的交点即为H ,最后根据函数图象判断当12y y 时,x 的取值范围;∵点 2,2G 是反比例函数1k y x图象上的一个“梦之点”,∴把 2,2G 代入1k y x 得4k ,∴14y x,∵“梦之点”的横坐标和纵坐标相等,∴“梦之点”都在直线y x 上,联立14y x y x,解得22x y 或22x y ,∴ 2,2H ,∴直线GH 的解析式是2y x ,函数图象如图:由图可得,当12y y 时,x 的取值范围是<2x 或02x ;故答案为: 2,2H ,2y x ,<2x 或02x ;(3)根据“梦之点”的定义求出点A ,B 的坐标,再求出顶点C 的坐标,最后求出AC ,AB ,BC ,即可判断ABC 的形状.18.【答案】(1)1C ,2C;OC (2)2313t或263t 【详解】(1)解:①由关联点的定义可知,若直线CA CB ,中一经过点O ,另一条是O 的切线,则称点C 是弦AB 的“关联点”,∵点 1,0A,1B, 11,1C,20()C, 3C ,∴直线2AC 经过点O ,且2BC 与O 相切,∴2C 是弦1AB 的“关联点”,又∵ 11,1C 和 1,0A横坐标相等,与122B都位于直线y x 上,∴1AC 与O 相切,11B C 经过点O ,∴1C 是弦1AB 的“关联点”.②∵ 1,0A ,222,22B,设 C a b ,,如下图所示,共有两种情况,a 、若12C B 与O 相切,AC 经过点O ,则12C B 、1AC 所在直线为:0y x y,解得:1C ,∴1OC b 、若2AC 与O 相切,22C B 经过点O ,则22C B 、2AC 所在直线为:1x y x,解得: 211C ,,∴2OC ,综上,OC (2)解:∵线段MN 上一点S ,存在O 的弦PQ ,使得点S 是弦PQ 的“关联点”,又∵弦PQ 随着S 的变动在一定范围内变动,且 0,3M ,N,OM ON ,∴S 共有2种情况,分别位于点M 和经过点O 的MN 的垂直平分线上,如图所示,①当S 位于点 0,3M 时,MP 为O 的切线,作PJ OM ,∵ 0,3M ,O 的半径为1,且MP 为O 的切线,∴OP MP ,∵PJ OM ,∴MPO POJ ∽ ,∴OP OMOJ OP ,即13OJ ,解得13OJ ,∴根据勾股定理得,PJ 123Q J根据勾股定理,1PQ2PQ ,∴当S 位于点 0,3M 时,1PQ .②当S 位于经过点O 的MN 的垂直平分线上即点K 时,∵点 0,3M ,655N,∴5MN ,∴2OK OM ON MN ,又∵O 的半径为1,∴30OKZ ,∴三角形OPQ 为等边三角形,∴在此情况下,1PQ ,PQ ∴当S 位于经过点O 的MN 的垂直平分线上即点K 时,1PQ 的临界值为1∴在两种情况下,PQ 的最小值在13t 内,最大值在3t综上所述,t 的取值范围为1tt 19.【答案】(1)将0y 代入39y x 得,3x ,∴ 3,0B ,∵直线39y x 与反比例函数(0)my x x的图象交于点A ,∴设 ,39A a a ,∵AM x ,5OA ,∴在Rt AOM △中,222OM AM AO ,∴ 222395a a ,∴解得14a ,275a,∵点A 的横坐标要大于点B 的横坐标,∴275a 应舍去,∴4a ,∴ 4,3A ,∴将 4,3A 代入(0)my x x,解得12m ;∴反比例函数的解析式为12(0)y x x;(2)1tan 3BAM ,1tan 2NAE(3)112y x【分析】(1)首先求出点 3,0B ,然后设 ,39A a a ,在Rt AOM △中,利用勾股定理求出4a ,得到 4,3A ,然后代入(0)my x x求解即可;(2)∵ 4,3A , 3,0B ,∴4MO ,3BO ,∴1MB ,3AM ,∵AM x ,∴1tan 3BM BAM AM,∵AN y ,90NOM ,∴四边形NOMA 是矩形,∴90NAM ,∵将直线AB 绕点A 顺时针旋转45 后的直线与y 轴交于点E ,∴45BAE ,∴45BAM NAE ,∵1tan 3BAM ,∴1tan 2NAE ;(3)∵四边形NOMA 是矩形,∴4AN OM ,3NO AM ,∵AN y ,1tan 2NAE,∴12NE AN ,即142NE ,∴解得2NE ,∴1OE ON NE ,∴ 0,1E ,∴设直线AE 的解析式为y kx b ,∴将 0,1E 和 4,3A 代入得,143b k b ,∴解得112b k,∴直线AE 的解析式为112y x .20.【答案】(1)解:四边形BCGE 为正方形.理由如下:∵90BED ,∴18090BEG BED .∵ABE A ,∴AC BE ∥.∴90CGE BED .∵90C ,∴四边形BCGE 为矩形.∵ACB DEB ,∴BC BE .∴矩形BCGE 为正方形.(2):①AM BE .证明:∵ABE BAC ,∴AN BN .∵90C ,∴BC AN .∵AM BE ,即AM BN ,∴1122ABN S AN BC BN AM △.∵AN BN ,∴BC AM .由(1)得BE BC ,∴AM BE .②275【分析】(1)先证明四边形BCGE 是矩形,再由ACB DEB 可得BC BE ,从而得四边形BCGE 是正方形;(2)①由已知ABE BAC 可得AN BN ,再由等积方法1122ABN S AN BC BN AM △,再结合已知即可证明结论;②解:如图:设,AB DE 的交点为M ,过M 作MG BD 于G ,∵ACB DEB ,∴9,12BE BC DE AC ,A D ABC DBE ,,∴CBE DBM ;∵CBE BAC ,∴D BAC ,∴MD MB ,∵MG BD ,∴点G 是BD 的中点;由勾股定理得15AB ,∴11522DG BD;∵cos DG DE D DM BD,∴1515752128DG BD DM DE ,即758BM DM ;∴75451588AM AB BM;∵,AH DE BE DE ,AMH BME ,∴AMH BME ,∴35AH AM BE BM ,∴33279555AH BE,即AH 的长为275.21.【答案】(1)解:由题意可知123 ;(2)证明:由折叠的性质可得:AB BB ,AB AB ,AE AE ,AE BE ,∴AB BB AB ,AE B E ,∴ABB 是等边三角形,∵AE B E ,60ABB ,∴1302ABE B BE ABB,∵四边形ABCD 是矩形,∴90ABC ,∴330 ,∴123 ;(3)证明:连接PB,如图所示:由折叠的性质可知:BB PB ,PB P B ,PBB P B B ∠∠,∵折痕B E AB ,BB PB ,∴12PB E BB E BB P ∠∠∠,∵四边形ABCD 为矩形,∴90EBC ,∴CB AB ,∵B E AB ,∴B E BC ∥,∴12BB E CBB BB P∠∠,∵在PBB △和P B B 中,PB P B PBB P B B BB B B,∴ SAS PBB P B B ≌,∴P BB PB B ∠∠,∴12CBB NBB ∠∠,∴13CBB CBN ∠∠,∴BB 是NBC 的一条三等分线.【分析】(1)根据题意可进行求解;(2)由折叠的性质可知AB BB ,AB AB ,然后可得AB BB AB ,则有ABB 是等边三角形,进而问题可求证;(3)连接PB ,根据等腰三角形性质证明12PB E BB E BB P ∠∠∠,根据平行线的性质证明12BB E CBB BB P∠∠∠,证明 SAS PBB P B B ≌,得出P BB PB B ∠∠,即可证明13CBB CBN ∠∠.22.【答案】(1)180 ,8(2)①2 ,理由如下,连接1AP,由对称性可得,112PAB P AB P AD P AD ,,2112PAP PAB P AB P AD P AD 1122P AB P AD 112P AB P AD 2BAD∴2 ,②连接113,PP P P 分别交,AB CD 于,E F 两点,过点D 作DG AB ,交AB 于点G ,由对称性可知:113PE PE PF P F ,且113PP AB P P CD ,,∵四边形ABCD 为平行四边形,∴AB CD∥∴13P P P ,,三点共线,∴311311222PP PE PE PF P F PE PF EF ,∵113,,PP AB PP CD DG AB ,∴1190P FD P EG DGE ,∴四边形EFDG 是矩形,∴DG EF ,在Rt DAG △中,DAG ,AD m ∵sin DGDAG DA,∴sin sin DG AD DAG m ,∴3222sin PP EF DG m(3)【详解】(1)∵ABC 关于y 轴对称的图形111A B C △,111A B C △与222A B C △关于x 轴对称,∴222A B C △与ABC 关于O 点中心对称,则222A B C △可以看作是ABC 绕点O 顺时针旋转得到的,旋转角的度数为180 ∵ 1,1A ,∴12AA ,∵ 4,0M ,13,A A 关于直线4x 对称,∴131248A A AA ,即38AA ,333A B C △可以看作是ABC 向右平移得到的,平移距离为8个单位长度.故答案为:180 ,8.(2)①连接1AP ,由对称性可得,112PAB P AB P AD P AD ,,进而可得22PAP BAD ,即可得出结论;②连接113,PP P P 分别交,AB CD 于,E F 两点,过点D 作DG AB ,交AB 于点G ,由对称性可知:113PE PE PF P F ,且113PP AB P P CD ,,得出32PP EF ,证明四边形EFDG 是矩形,则DG EF ,在Rt DAG △中,根据sin DG DAG DA,即可求解;(3)解:设AP x ,则12AP AP x ,依题意,12PP AD ,当23P P AD ∥时,如图所示,过点P 作1PQ AP 于点Q ,∴12390PP P∵15PAB ,60 ,∴1320P PAP AB ,1245DAP DAP∴2190P AP ,则12PP ,在1APP 中, 111180752AP P PAP ,∴213180457560P PP ,则13230PP P ,∴13212PP P P在Rt APQ △中,30PAQ ,则1122PQ AP x,2AQ ,在1Rt PQP 中,11PQ AP AQ x x ,1PP ,∴311322PP PP PP x x x 由(2)②可得32sin PP AD ,∵AD ∴326PP ,6 ,解得:x 如图所示,若23P P DC ∥,则13290PP P ,∵21360P PP ,则32130P P P ,则13121222PP PP x ,∵1622PP ,36226222PP x ,∵36PP ,∴62x ,解得:x ,综上所述,AP 的长为.23.【答案】(1)解:∵,90AD BC A ∥,∴18090ABC A ,ADB CBD ,∵对角线BD 平分ADC ,∴ADB CDB ,∴CBD CDB ,∴CD CB ,∴四边形ABCD 为邻等四边形.(2)解:1D ,2D ,3D 即为所求;(3)如图,过C 作CQ AD 于Q ,∵90DAB ABC ,∴四边形ABCQ 是矩形,∴,AQ BC AB CQ ,AD BC ∥,∵BE AC ∥,∴四边形ACBE 为平行四边形,∴8BE AC ,AE BC ,设BC AE x ,而10DE ,∴10AD x , 10210DQ x x x ,由新定义可得CD CB x ,由勾股定理可得: 22222108x x x ,整理得:220820x x ,解得:110x 210x (不符合题意舍去),∴10CB CD ∴四边形EBCD 的周长为 10821038 【分析】(1)先证明18090ABC A ,ADB CBD ,再证明CD CB ,即可得到结论;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题11:新定义和阅读理解型问题
新定义和阅读理解型问题在近年的全国各地的中考试题中频频出现,特别引人注目,这些试题不再囿于教材的内容及其方法,以新颖别致的取材、富有层次和创造力的设问独树一帜.这些试题中还常常出现新的概念和方法,不仅要求学生理解这些新的概念和方法,而且要灵活运用这些新的概念和方法去分析、解决一些简单的问题。

在新定义和阅读理解型问题中,除了考查学生的分析分析、综合、抽象、概括等演绎推理能力,即逻辑推理能力外,还经常考查学生的观察、猜想、不完全归纳、类比、联想等合情推理能力,考查学生的直觉思维。

因此,这类问题需要学生通过对阅读材料的阅读理解,然后进行合情推理,就其本质进行归纳加工、猜想、类比和联想,作出合情判断和推理,前面诸专题对存在性探究问题型进行了命题,后面将有专题对规律探究型问题进行命题。

本专题原创编写新定义和阅读理解型问题模拟题。

原创模拟预测题1.阅读下面的材料:
小明在数学课外小组活动中遇到这样一个“新定义”问题:
小明是这样解决问题的:由新定义可知a=1,b=-2,又b<0,所以1※(-2)
请你参考小明的解题思路,回答下列问题:
(1)计算:2※3= ;
(2)若5※
m= .(3)函数y=2※x(x≠0)的图象大致是()
yy
- 1 -。

相关文档
最新文档