题型六新定义阅读理解题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型六新定义阅读理解题

1. (2016重庆B卷)我们知道,任意一个正整数n都可以进行这样的分解:n=

p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差

的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=p

q.例如12可以

分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳

分解,所以F(12)=3 4.

(1)如果一个正整数a是另外—个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;

(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18.那么我们称这个数t为“吉祥数”.求所有“吉祥数”中F(t)的最大值.

2. (2017重庆A卷)对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=12

3.对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213 +321+132 =666,666÷111=6,所以,F(123) =6.

(1)计算:F(243),F(617);

(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,

y都是正整数),规定:k=F(s)

F(t)

.当F(s)+F(t)=18时,求k的最大值.

3. (2015重庆A卷)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”.再如22,545,3883 ,345543,…,都是“和谐数”.

(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;

(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字为x(1≤x≤4,x 为自然数),十位上的数字为y,求y与x的函数关系式.

4. (2017张家界)阅读理解题:定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部.它的加,减,乘法运算与整式的加,减,乘法运算类似.

例如计算:(2-i)+(5+3i)=(2+5)+(-1+3)i=7+2i;

(1+i)×(2-i)=1×2-i+2×i-i2=2+(-1+2)i+1=3+i;

根据以上信息,完成下列问题:

(1)填空:i3=________,i4=________;

(2)计算:(1+i)×(3-4i);

(3)计算:i+i2+i3+ (i2017)

5. (2018原创)若整数m是8的倍数,那么称整数m为“发达数”.例如,因为16是8的倍数,所以16是“发达数”.

(1)已知整数m等于某个奇数的平方减1,求证:m是“发达数”.

(2)已知两位正整数t=10x+y(1≤x≤y≤9,其中x,y为自然数),交换其个位上的数字和十位上的数字得到新数s,如果s加上t的和是“发达数”,求所有符合条件的两位正整数t.

6. (2017重庆南开模拟)若将自然数中能被3整除的数,在数轴上的对应点称为“3倍点”,取任意的一个“3倍点”P,到点P距离为1的点所对应的数分别记为a,b.定义:若数K=a2+b2-ab,则称数K为“尼尔数”.例如:若P所表示的数为3,则a=2,b=4,那么K=22+42-2×4=12;若P所表示的数为12,则a =11,b=13,那么K=132+112-13×11=147,所以12,147是“尼尔数”.(1)请直接判断6和39是不是“尼尔数”,并且证明所有“尼尔数”一定被9除余3;

(2)已知两个“尼尔数”的差是189,求这两个“尼尔数”.

7. (2017重庆一外一模)若一个三位数t=abc(其中a,b,c不全相等且都不为0),重新排列各数位上的数字必可得到一个最大数和一个最小数,此最大数和最小数的差叫作原数的差数,记为T(t).例如,357的差数T(357)=753-357=396. (1)已知一个三位数a1b(其中a>b>1)的差数T(a1b)=792,且各数位上的数字之和为一个完全平方数,求这个三位数.

(2)若一个三位数ab2(其中a、b都不为0)能被4整除,将个位上的数字移到百位得到一个新数2ab被4除余1,再将新数的个位数字移到百位得到另一个新数b2a 被4除余2,则称原数为4的“闺蜜数”.例如:因为612=4×153,261=4×65+1,126=4×31+2,所以612是4的一个闺蜜数.求所有小于500的4的“闺蜜数”t,并求T(t)的最大值.

8. (2017重庆八中一模)一个三位正整数M,其各位数字均不为零且互不相等,若将M的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M的“友谊数”,如:168的“友谊数”为“618”;若从M的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132.

(1)求证:M与其“友谊数”的差能被15整除;

(2)若一个三位正整数N,其百位数字为2,十位数字为a、个位数字为b,且各位数字互不相等(a≠0, b≠0).若N的“团结数”与N之差为24,求N的值.

相关文档
最新文档