题型六新定义阅读理解题
北京市中考数学复习专题:新定义阅读理解问题
新定义阅读理解问题新定义学习型阅读理解题,是指题目中首先给出一个新定义(新概念或新公式),通过阅读题目提供的材料,理解新定义,再通过对新定义的理解来解决题目提出的问题。
其主要目的是通过对新定义的理解与运用来考查学生的自学能力,便于学生养成良好的学习习惯。
解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”; 归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。
一、基础练习部分★例1:【——海淀期末】对于正整数n ,定义210()=()10,,≥n n F n f n n ⎧<⎨⎩,其中f(n )表示n 的首位数字、末位数字的平方和.例如:F(6)=62=36,F(123)=f(123)=12+32=10.规定F 1(n )=F(n ),F k +1(n )=F(F K (n ))(K 为正整数).例如:F 1(123)=F(123)=10,F 2(123)=F(F 1(123))=F(10)=1.(1)求:F 2(4)= ,F(4)= ;(2)若F 3m (4)=89,则正整数m 的最小值是 . 答案:(1)37,26;(2)6. 练习①: 【通州一模】定义一种对正整数n 的“F 运算”:①当n 为奇数时,结果为31n +;②当n 为偶数时,结果为k n 2(其中k 是使得k n 2为奇数的正整数),并且运算重复进行.例如,取6n =,则:12363105F F F −−−→−−−→−−−→① ②②第次第次第次……,若1n =,则第2次“F 运算”的结果是 ;若13n =,则第次“F 运算”的结果是 . 答案:1,4练习②:【门头沟二模】我们知道,一元二次方程x 2=-1没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“i ”,使其满足i 2=-1 (即方程x 2=-1有一个根为i ),并且进一步规定: 一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i 1=i ,i 2=-1,i 3= i 2·i =(-1)(-1)·i =-i , i 4=( i 2)2=(-1) 2=1,从而对任意正整数n ,则i 6=______________;由于i 4n+1=i 4n ﹒i=(i 4)n ﹒i=i,同理可得i 4n+2=﹣1, i 4n+3=﹣i , i 4n =1那么i + i 2+ i 3+ i 4+…+ i+ i 的值为_____ 答案:-1,i★例2:【宣武一模】任何一个正整数n 都可以进行这样的分解:n =p ×q (p 、q 是正整数,且p ≤q ), 如果p ×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并规定:()p F n q =.例如18可以分解成1×18、2×9或3×6,这时就有31(18)62F ==.给出下列关于F(n )的说法:(1)1(2)2F =;(2)3(24)8F =;(3)(27)3F =;(4)若n 是一个完全平方数,则F(n )=1.其中正确说法的个数是 ( )A.1 B.2 C.3D.4 答案:B 练习①:【北京中考】在右表中,我们把第i 行第j 列的数记为a i ,j (其中i ,j 都是不大于5的正整数),对于表中的每个数a i ,j ,规定如下:当i ≥j 时,a i ,j =1;当i <j 时,a i ,j =0.例如:当i =2,j=1时,a i ,j =a 2,1=1.按此规定,a 1,3= ;表中的25个数中,共有 个1;计算a 1,1•a i ,1+a 1,2•a i ,2+a 1,3•a i ,3+a 1,4•a i ,4+a 1,5•a i ,5的值为 .答案:0;15;1. 练习②:【海淀二模】某种数字化的信息传输中,先将信息转化为数学0和1组成的数字串,并对数字串进行了加密后再传输.现采用一种简单的加密方法:将原有的每个1都变成10,原有的每个0变成01.我们用A 0表示没有经过加密的数字串.这样对A 0进行一次加密就得到一个新的数字串A 1,对A 1再进行一次加密又得到一个新的数学串A 2,依此类推,…,例如:A 0:10,则A 1:1001.若已知A 2:100101101001,则A 0: ,若数字串A 0共有4个数字,则数字串A 2中相邻两个数字相等的数对至少..有 对. 答案:101 ,4练习③:【燕山一模】若将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式.如在代数式a +b +c 中,把a 和b 互相替换,得b +a +c ;把a 和c 互相替换,得c +b +a ;把b 和c ……;a +b +c 就是完全对称式.下列三个代数式:① (a -b )2;② ab +bc +ca ;③ a 2b +b 2c +c 2a .其中为完全对称式的是A .① ②B .② ③C .① ③D .①②③ 答案:A练习④:【西城一模】在平面直角坐标系中,对于平面内任一点P (a ,b )若规定以下两种变换: ①f (a ,b )= (-a ,-b ).如f (1,2)= (-1,-2);②g (a ,b )= (b ,a ).如g (1,3)= (3,1)按照以上变换,那么f (g (a ,b ))等于A .(-b ,-a )B .(a ,b )C .(b ,a )D .(-a ,-b ) 答案:A★例3:【昌平二模】请阅读下列材料:我们规定一种运算:,例如:. 按照这种运算的规定,请解答下列问题:(1)直接写出 的计算结果;(2)若,直接写出和的值.(3)当取何值时, ; 答案:(1)3.5; (2)x=8,y=2. (3) ;a b ad bc c d=-2325341012245=⨯-⨯=-=-1220.5--0.517830.51x y xy --==--x y x 0.5012x xx -=15x -±=a 1,1 a 1,2 a 1,3 a 1,4 a 1,5 a 2,1 a 2,2 a 2,3 a 2,4 a 2,5 a 3,1 a 3,2a 3,3 a 3,4 a 3,5 a 4,1 a 4,2a 4,3 a 4,4 a 4,5 a 5,1 a 5,2 a 5,3 a 5,4 a 5,5变式练习:【宣武一模】对于实数d c b a ,,,规定一种运算:c a bc ad d b -=,如21=-20()21-⨯ 220-=⨯-,那么)3(2x -2554=-时,=x ( ).(A )413- (B )427 (C )423- (D )43- 答案:(D)练习:①【北京中考(课标卷)】用“☆”定义新运算: 对于任意实数a 、b , 都有a ☆b =b 2+1。
新定义与阅读理解创新型问题(共31题)(解析版)--2023年中考数学真题分项汇编(全国通用)
新定义与阅读理解创新型问题(31题)一、单选题1(2023·湖北武汉·统考中考真题)皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积S=N+12L-1,其中N,L分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知A0,30,B20,10,O0,0,则△ABO内部的格点个数是()A.266B.270C.271D.285【答案】C【分析】首先根据题意画出图形,然后求出△ABO的面积和边界上的格点个数,然后代入求解即可.【详解】如图所示,∵A0,30,B20,10,O0,0,∴S△ABO=12×30×20=300,∵OA上有31个格点,OB上的格点有2,1,4,2,6,3,8,4,10,5,12,6,14,7,16,8,18,9,20,10,共10个格点,AB上的格点有1,29,2,28,3,27,4,26,5,25,6,24,7,23,8,22,9,21,10,20,11,19,12,18,13,17,16,14,15,15,16,14,17,13,18,12,19,11,共19个格点,∴边界上的格点个数L=31+10+19=60,∵S=N+12L-1,∴300=N+12×60-1,∴解得N=271.∴△ABO内部的格点个数是271.故选:C.【点睛】本题主要考查了坐标与图形的性质,解决问题的关键是掌握数形结合的数学思想.2(2023·湖南张家界·统考中考真题)“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边△ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”.若等边△ABC的边长为3,则该“莱洛三角形”的周长等于()A.πB.3πC.2πD.2π-3【答案】B【分析】根据等边三角形的性质及弧长公式l =n πr180求解即可.【详解】解:∵等边三角形ABC 的边长为3,∠ABC =∠ACB =∠BAC =60°,∴AB =BC =AC =60π⋅3180=π,∴该“莱洛三角形”的周长=3×π=3π,故选:B .【点睛】本题考查了等边三角形的性质,弧长公式,熟练掌握等边三角形的性质和弧长公式是解题的关键.3(2023·重庆·统考中考真题)在多项式x -y -z -m -n (其中x >y >z >m >n )中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x -y -|z -m |-n =x -y -z +m -n ,x -y -z -m -n =x -y -z -m +n ,⋯.下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0 B.1C.2D.3【答案】C【分析】根据给定的定义,举出符合条件的说法①和②.说法③需要对绝对操作分析添加一个和两个绝对值的情况,并将结果进行比较排除相等的结果,汇总得出答案.【详解】解:x -y -z -m -n =x -y -z -m -n ,故说法①正确.若使其运算结果与原多项式之和为0,必须出现-x ,显然无论怎么添加绝对值,都无法使x 的符号为负,故说法②正确.当添加一个绝对值时,共有4种情况,分别是x -y -z -m -n =x -y -z -m -n ;x -y -z -m -n =x -y +z -m -n ;x -y -|z -m |-n =x -y -z +m -n ;x -y -z -m -n =x -y -z -m +n .当添加两个绝对值时,共有3种情况,分别是x -y -z -m -n =x -y -z +m -n ;x -y -z -m -n =x -y -z -m +n ;x -y -z -m -n =x -y +z -m +n .共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C .【点睛】本题考查新定义题型,根据多给的定义,举出符合条件的代数式进行情况讨论;需要注意去绝对值时的符号,和所有结果可能的比较.主要考查绝对值计算和分类讨论思想的应用.4(2023·湖南岳阳·统考中考真题)若一个点的坐标满足k ,2k ,我们将这样的点定义为“倍值点”.若关于x 的二次函数y =t +1 x 2+t +2 x +s (s ,t 为常数,t ≠-1)总有两个不同的倍值点,则s 的取值范围是()A.s<-1B.s<0C.0<s<1D.-1<s<0【答案】D【分析】利用“倍值点”的定义得到方程t+1x2+tx+s=0,则方程的Δ>0,可得t2-4ts-4s>0,利用对于任意的实数s总成立,可得不等式的判别式小于0,解不等式可得出s的取值范围.【详解】解:由“倍值点”的定义可得:2x=t+1x2+t+2x+s,整理得,t+1x2+tx+s=0∵关于x的二次函数y=t+1x2+t+2x+s(s,t为常数,t≠-1)总有两个不同的倍值点,∴Δ=t2-4t+1s=t2-4ts-4s>0,∵对于任意实数s总成立,∴-4s2-4×-4s<0,整理得,16s2+16s<0,∴s2+s<0,∴s s+1<0,∴s<0s+1>0,或s>0s+1<0,当s<0s+1>0时,解得-1<s<0,当s>0s+1<0时,此不等式组无解,∴-1<s<0,故选:D.【点睛】本题主要考查了二次函数图象上点的坐标特征,一元二次方程根的判别式以及二次函数与不等式的关系,理解新定义并能熟练运用是解答本题的关键.5(2023·山东·统考中考真题)若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:A(1, 3),B(-2,-6),C(0,0)等都是三倍点”,在-3<x<1的范围内,若二次函数y=-x2-x+c的图象上至少存在一个“三倍点”,则c的取值范围是()A.-14≤c<1 B.-4≤c<-3 C.-14<c<5 D.-4≤c<5【答案】D【分析】由题意可得:三倍点所在的直线为y=3x,根据二次函数y=-x2-x+c的图象上至少存在一个“三倍点”转化为y=-x2-x+c和y=3x至少有一个交点,求Δ≥0,再根据x=-3和x=1时两个函数值大小即可求出.【详解】解:由题意可得:三倍点所在的直线为y=3x,在-3<x<1的范围内,二次函数y=-x2-x+c的图象上至少存在一个“三倍点”,即在-3<x<1的范围内,y=-x2-x+c和y=3x至少有一个交点,令3x=-x2-x+c,整理得:-x2-4x+c=0,则Δ=b2-4ac=-42-4×-1×c=16+4c≥0,解得c≥-4,x=--4±-42-4×-1c2×-1=-4±16+4c2,∴x1=-2+4+c,x2=-2-4+c∴-3<-2+4+c<1或-3<-2-4+c<1当-3<-2+4+c <1时,-1<4+c <3,即0≤4+c <3,解得-4≤c <5,当-3<-2-4+c <1时,-3<4+c <1,即0≤4+c <1,解得-4≤c <-3,综上,c 的取值范围是-4≤c <5,故选:D .【点睛】本题考查二次函数与一次函数交点问题,熟练掌握相关性质是关键.6(2023·福建·统考中考真题)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O 的面积,可得π的估计值为332,若用圆内接正十二边形作近似估计,可得π的估计值为()A.3B.22C.3D.23【答案】C【分析】根据圆内接正多边形的性质可得∠AOB =30°,根据30度的作对的直角边是斜边的一半可得BC=12,根据三角形的面积公式即可求得正十二边形的面积,即可求解.【详解】解:圆的内接正十二边形的面积可以看成12个全等的等腰三角形组成,故等腰三角形的顶角为30°,设圆的半径为1,如图为其中一个等腰三角形OAB ,过点B 作BC ⊥OA 交OA 于点于点C ,∵∠AOB =30°,∴BC =12OB =12,则S △OAB =12×1×12=14,故正十二边形的面积为12S △OAB =12×14=3,圆的面积为π×1×1=3,用圆内接正十二边形面积近似估计⊙O 的面积可得π=3,故选:C .【点睛】本题考查了圆内接正多边形的性质,30度的作对的直角边是斜边的一半,三角形的面积公式,圆的面积公式等,正确求出正十二边形的面积是解题的关键.二、填空题7(2023·甘肃武威·统考中考真题)如图1,我国是世界上最早制造使用水车的国家.1556年兰州人段续的第一架水车创制成功后,黄河两岸人民纷纷仿制,车水灌田,水渠纵横,沃土繁丰.而今,兰州水车博览园是百里黄河风情线上的标志性景观,是兰州“水车之都”的象征.如图2是水车舀水灌溉示意图,水车轮的辐条(圆的半径)OA 长约为6米,辐条尽头装有刮板,刮板间安装有等距斜挂的长方体形状的水斗,当水流冲动水车轮刮板时,驱使水车徐徐转动,水斗依次舀满河水在点A 处离开水面,逆时针旋转150°上升至轮子上方B 处,斗口开始翻转向下,将水倾入木槽,由木槽导入水渠,进而灌溉,那么水斗从A 处(舀水)转动到B 处(倒水)所经过的路程是米.(结果保留π)【答案】5π【分析】把半径和圆心角代入弧长公式即可;【详解】l =n πr 180=150×π×6180=5π故填:5π.【点睛】本题考查弧长公式的应用,准确记忆公式,并正确代入公式是解题的关键.8(2023·湖北随州·统考中考真题)某天老师给同学们出了一道趣味数学题:设有编号为1-100的100盏灯,分别对应着编号为1-100的100个开关,灯分为“亮”和“不亮”两种状态,每按一次开关改变一次相对应编号的灯的状态,所有灯的初始状态为“不亮”.现有100个人,第1个人把所有编号是1的整数倍的开关按一次,第2个人把所有编号是2的整数倍的开关按一次,第3个人把所有编号是3的整数倍的开关按一次,⋯⋯,第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几位同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律:乙:1号开关只被第1个人按了1次,2号开关被第1个人和第2个人共按了2次,3号开关被第1个人和第3个人共按了2次,⋯⋯丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的思维过程,可以得出最终状态为“亮”的灯共有盏.【答案】10【分析】灯的初始状态为“不亮”,按奇数次,则状态为“亮”,按偶数次,则状态为“不亮”,确定1-100中,各个数因数的个数,完全平方数的因数为奇数个,从而求解.【详解】所有灯的初始状态为“不亮”,按奇数次,则状态为“亮”,按偶数次,则状态为“不亮”;因数的个数为奇数的自然数只有完全平方数,1-100中,完全平方数为1,4,9,16,25,36,49,64,81,100;有10个数,故有10盏灯被按奇数次,为“亮”的状态;故答案为:10.【点睛】本题考查因数分解,完全平方数,理解因数的意义,完全平方数的概念是解题的关键.9(2023·湖南常德·统考中考真题)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图.AB是以O 为圆心,OA 为半径的圆弧,C 是弦AB 的中点,D 在AB上,CD ⊥AB .“会圆术”给出AB 长l 的近似值s 计算公式:s =AB +CD 2OA,当OA =2,∠AOB =90°时,l -s =.(结果保留一位小数)【答案】0.1【分析】由已知求得AB 与CD 的值,代入s =AB +CD 2OA得弧长的近似值,利用弧长公式可求弧长的值,进而即可得解.【详解】∵OA =OB =2,∠AOB =90°,∴AB =22,∵C 是弦AB 的中点,D 在AB上,CD ⊥AB ,∴延长DC 可得O 在DC 上,OC =12AB =2∴CD =OD -OC =2-2,∴s =AB +CD 2OA=22+2-2 22=3,l =90×2×2π360=π,∴l -s =π-3 ≈0.1.故答案为:0.1.【点睛】本题考查扇形的弧长,掌握垂径定理。
中考数学复习《新定义及阅读理解型问题》测试题(含答案)
中考数学复习《新定义及阅读理解型问题》测试题(含答案)题型解读1.考查题型:①新定义计算型;②阅读理解型;③新定义与阅读理解结合题. 2.考查内容:①新定义下的实数运算;②涉及“新定义”的阅读理解及材料分析;③与函数、多边形、圆结合,通过材料或定义进行相关证明或计算.3.在做此类题型时,首先要理解新定义的运算方式,提升从材料阅读中提取信息的能力,结合已知条件中的推理方法,学以致用,便可得以解决.1.对于实数a ,b ,定义一种新运算“⊗”为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32=-18,则方程x ⊗(-2)=2x -4-1的解是( ) A . x =4 B . x =5 C . x =6 D . x =72.对于实数a 、b ,我们定义符号max {a ,b}的意义为:当a≥b 时,max {a ,b}=a ;当a <b 时,max {a ,b}=b ;如max {4,-2}=4,max {3,3}=3.若关于x 的函数为y =max {x +3,-x +1},则该函数的最小值是( )A . 0B . 2C . 3D . 43.我们根据指数运算,得出了一种新的运算,下表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 212=-1.其中正确的是( )A . ①②B . ①③C . ②③D . ①②③4.设a ,b 是实数,定义关于@的一种运算如下:a@b =(a +b)2-(a -b)2,则下列结论:( ) ①若a@b =0,则a =0或b =0; ②a@(b +c)=a@b +a@c ;③不存在实数a ,b ,满足a@b =a 2+5b 2;④设a ,b 是矩形的长和宽,若该矩形的周长固定,则当a =b 时,a@b 的值最大. 其中正确的是( )A . ②③④B . ①③④C . ①②④D . ①②③5.对于实数a ,b ,定义运算“*”:a*b =⎩⎪⎨⎪⎧a 2-ab (a≥b)a -b (a<b ),例如:因为 4>2,所以4*2=42-4×2=8,则(-3)*(-2)=________.6.规定:log a b(a>0,a ≠1,b>0)表示a ,b 之间的一种运算. 现有如下的运算法则:log a a n=n ,log N M =log a Mlog a N(a>0,a ≠1,N>0,N ≠1,M>0), 例如:log 223=3,log 25=log 105log 102,则log 1001000=________.第7题图7.实数a ,n ,m ,b 满足a<n<m<b ,这四个数在数轴上对应的点分别是A ,N ,M ,B(如图).若AM 2=BM·AB,BN 2=AN·AB,则称m 为a ,b 的“黄金大数”,n 为a ,b 的“黄金小数”,当b -a =2时,a ,b 的黄金大数与黄金小数之差m -n =________. 8.请阅读下列材料,并完成相应的任务: 阿基米德折弦定理阿基米德(Archimedes ,公元前287~公元前212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al -Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理. 阿基米德折弦定理:如图①,AB 和BC 是⊙O 的两条弦(即折线ABC 是圆的一条折弦),BC>AB ,M 是ABC ︵的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +BD.下面是运用“截长法”证明CD =AB +BD 的部分证明过程.证明:如图②,在CB 上截取CG =AB ,连接MA ,MB ,MC 和MG. ∵M 是ABC ︵的中点, ∴MA =MC. …图① 图②任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图③,已知等边△ABC 内接于⊙O,AB =2,D 为AC ︵上一点,∠ABD =45°,AE ⊥BD 于点E ,则△BDC 的周长是________.图③9.如果三角形三边的长a 、b 、c 满足a +b +c3=b ,那么我们就把这样的三角形叫做“匀称三角形”.如:三边长分别为1,1,1或3,5,7,…的三角形都是“匀称三角形”.(1)如图①,已知两条线段的长分别为a 、c(a<c),用直尺和圆规作一个最短边、最长边的长分别为a 、c 的“匀称三角形”(不写作法,保留作图痕迹);(2)如图②,△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作⊙O 的切线交AB 延长线于点E ,交AC 于点F.若BE CF =53,判断△AEF 是否为“匀称三角形”?请说明理由.10.我们知道,任意一个正整数n 都可以进行这样的分解:n =p×q(p,q 是正整数,且p≤q),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p×q 是n 的最佳分解,并规定:F(n)=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=34. (1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数.求证:对任意一个完全平方数m ,总有F(m)=1;(2)如果一个两位正整数t ,t =10x +y(1≤x≤y≤9,x ,y 是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”.求所有“吉祥数”中F(t)的最大值.11.已知点P(x 0,y 0)和直线y =kx +b ,则点P 到直线y =kx +b 的距离d 可用公式d =|kx 0-y 0+b|1+k 2计算. 例如:求点P(-1,2)到直线y =3x +7的距离. 解:因为直线y =3x +7,其中k =3,b =7,所以点P(-1,2)到直线y =3x +7的距离为d =|kx 0-y 0+b|1+k 2=|3×(-1)-2+7|1+32=210=105. 根据以上材料,解答下列问题:(1)求点P(1,-1)到直线y =x -1的距离;(2)已知⊙Q 的圆心Q 坐标为(0,5),半径r 为2,判断⊙Q 与直线y =3x +9的位置关系并说明理由; (3)已知直线y =-2x +4与y =-2x -6平行,求这两条直线之间的距离.12.【图形定义】如图,将正n 边形绕点A 顺时针旋转60°后,发现旋转前后两图形有另一交点O ,连接AO ,我们称AO 为“叠弦”;再将“叠弦”AO 所在的直线绕点A 逆时针旋转60°后,交旋转前的图形于点P ,连接PO ,我们称∠OAB 为“叠弦角”,△AOP 为“叠弦三角形”. 【探究证明】(1)请在图①和图②中选择其中一个证明:“叠弦三角形”(即△AOP)是等边三角形; (2)如图②,求证:∠OAB=∠OAE′. 【归纳猜想】(3)图①、图②中“叠弦角”的度数分别为__________,__________; (4)图中,“叠弦三角形”__________等边三角形(填“是”或“不是”); (5)图中,“叠弦角”的度数为__________(用含n 的式子表示).13.若抛物线L :y =ax 2+bx +c(a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系.此时直线l 叫做抛物线L 的“带线”,抛物线L 叫做直线l 的“路线”.(1)若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值;(2)若某“路线”L 的顶点在反比例函数y =6x 的图象上,它的“带线”l 的解析式为y =2x -4,求此“路线”L 的解析式;(3)当常数k 满足12≤k≤2时,求抛物线L :y =ax 2+(3k 2-2k +1)x +k 的“带线”l 与x 轴,y 轴所围成的三角形面积的取值范围.1. B 【解析】根据题意a ⊗b =1a -b 2,则 x ⊗(-2)=1x -(-2)2=1x -4,又∵x ⊗(-2)=2x -4-1,∴1x -4=2x -4-1,解得x =5,经检验x =5是原方程的根,∴原方程x ⊗(-2)=2x -4-1的解是x =5. 2. B 【解析】当x +3≥-x +1时,max{x +3,-x +1}=x +3,此时x ≥-1,∴y ≥2;当x +3<-x +1时,max{x +3,-x +1}=-x +1,此时x <-1,∴y >2.综上y 的最小值为2.3. B 【解析】①∵24=16,∴log 216=4,故①正确;②∵52=25,∴log 525=2,故②不正确;③∵2-1=12,∴log 212=-1,故③正确. 4. C 【解析】∵a @b =(a +b )2-(a -b )2,若a @b =0,则(a +b )2-(a -b )2=0,∴(a +b )2=(a -b )2, ∴a +b =±(a -b ),∴a =0或b =0,∴①正确;∵a @b =(a +b )2-(a -b )2,∴a @(b +c )=[a +(b +c )]2-[a -(b +c )]2=[a +(b +c )+a -(b +c )][a +(b +c )-(a -b -c )]=4ab +4ac ,∵a @b +a @c =(a +b )2-(a -b )2+(a +c )2-(a -c )2=a 2+2ab +b 2-a 2+2ab -b 2+a 2+2ac +c 2- a 2+2ac -c 2=4ab +4ac ,∴a @(b +c )=a @b +a @c ,∴②正确;∵a @b =(a +b )2-(a -b )2= a 2+2ab +b 2-a 2+2ab -b 2=4ab ,当a =b =0时,满足a @b =a 2+5b 2,∴③错误;若矩形的周长固定,设为2c ,则2c =2a +2b ,b =c -a ,a @b =(a +b )2-(a -b )2=4ab =4a (c -a )=-4(a -12c )2+c 2,∴当a =12c 时,4ab 有最大值是c 2,即a =b 时,a @b 的值最大,∴④正确.综上,正确结论有①②④.5. -1 【解析】根据新定义,当a<b 时,a*b =a -b 列出常规运算,进行计算便可.∵-3<-2,∴由定义可知,原式=-3-(-2)=-1.6. 32 【解析】根据新运算法则,得log 1001000=log 101000log 10100=log 10103log 10102=32. 7. 25-4 【解析】设AN =y ,MN =x ,由题意可知:AM 2=BM ·AB ,∴(x +y)2=2(2-x -y),解得x +y =5-1(取正),又BN 2=AN·AB ,∴(2-y)2=2y ,解得y =3-5(y <2),∴m -n =MN =x =5-1-(3-5)=25-4,故填25-4.8. 解:(1)又∵∠A =∠C ,CG =AB. ∴△MBA ≌△MGC(SAS ),∴MB =MG . 又∵MD ⊥BC , ∴BD =GD ,∴CD =CG +GD =AB +BD. (2)2+2 2.【解法提示】折线BDC 为⊙O 的一条折弦,由题意知A 为BDC ︵中点,由材料中折弦定理易得BE =DE +CD ,在Rt △ABE 中可得BE =2,所以△BCD 周长为BC +CD +DE +BE =2+2 2.9. 解:(1)作图如解图①.第9题解图①(2)△AEF是“匀称三角形”.理由如下:如解图②,第9题解图②连接AD、OD,∵AB是⊙O直径,∴AD⊥BC,∵AB=AC,∴D是BC中点,∵O是AB中点,∴OD是△ABC的中位线,∴OD∥AC.∵DF切⊙O于D点,∴OD⊥DF,∴EF⊥AF,过点B作BG⊥EF于点G,易证Rt△BDG≌Rt△CDF(AAS),∴BG=CF,∵BECF=53,∴BEBG=53,∵BG∥AF(或Rt△BEG∽Rt△AEF),∴BEBG=AEAF=53.在Rt△AEF中,设AE=5k,则AF=3k,由勾股定理得,EF=4k,∴AF+EF+AE3=3k+4k+5k3=4k=EF,∴△AEF是“匀称三角形”.10. (1)证明:∵m是一个完全平方数,∴m=p×q,当p=q时,p×q就是m的最佳分解,∴F(m)=pq=pp=1.(2)解:由题意得,(10y+x)-(10x+y)=18,得y=x+2(y≤9),∴t=10x+y=10x+x+2=11x+2(1≤x≤7),则所有的“吉祥数”为:13,24,35,46,57,68,79共7个,∵13=1×13,24=1×24=2×12=3×8=4×6,35=1×35=5×7,46=1×46=2×23,57=1×57,68=1×68=2×34=4×17,79=1×79,∴F(13)=113,F(24)=46=23,F(35)=57,F(46)=223,F(57)=157,F(68)=417,F(79)=179,∴“吉祥数”中F(t)的最大值为:F(35)=57.11. 解:(1)∵直线y =x -1,其中k =1,b =-1, ∴点P(1,-1)到直线y =x -1的距离为: d =|kx 0-y 0+b|1+k 2=|1-(-1)-1|1+12=12=22.(2)相切.理由如下:∵直线y =3x +9,其中k =3,b =9,∴圆心Q(0,5)到直线y =3x +9的距离为d =|kx 0-y 0+b|1+k 2=|3×0-5+9|1+(3)2=42=2,又∵⊙Q 的半径r 为2,∴⊙Q 与直线y =3x +9的位置关系为相切.(3)在直线y =-2x +4上任意取一点P , 当x =0时,y =4, ∴P(0,4),∵直线y =-2x -6,其中k =-2,b =-6,∴点P(0,4)到直线y =-2x -6的距离为d =|kx 0-y 0+b|1+k 2=|-2×0-4-6|1+(-2)2=105=25,∴这两条直线之间的距离为2 5.12. (1)选择图①.证明:依题意得∠DAD′=60°,∠PAO =60°. ∵∠DAP =∠DAD′-∠PAD′=60°-∠PAD′,∠D ′AO =∠PAO -∠PAD ′=60°-∠PAD′, ∴∠DAP =∠D′AO.∵∠D =∠D′,AD =AD′, ∴△DAP ≌△D ′AO(ASA ), ∴AP =AO , 又∵∠PAO =60°,∴△AOP 是等边三角形. 选择图②.证明:依题意得∠EAE′=60°,∠PAO =60°. ∵∠EAP =∠EAE′-∠PAE′=60°-∠PAE′, ∠E ′AO =∠PAO -∠PAE′=60°-∠PAE′, ∴∠EAP =∠E′AO(ASA ). ∵∠E =∠E′,AE =AE′, ∴△EAP ≌△E ′AO , ∴AP =AO , 又∵∠PAO =60°, ∴△AOP 是等边三角形.第12题解图(2)证明:如解图,连接AC ,AD ′,CD ′. ∵AE ′=AB ,∠E′=∠B =180°×(5-2)5=108°,E ′D ′=BC ,∴△AE ′D ′≌△ABC(SAS ),∴AD ′=AC ,∠AD ′E ′=∠ACB , ∴∠AD ′C =∠ACD′, ∴∠OD ′C =∠OCD′, ∴OC =OD′,∴BC -OC =E′D′-OD′,即BO =E′O. ∵AB =AE′,∠B =∠E′, ∴△ABO ≌△AE ′O(SAS ), ∴∠OAB =∠OAE′. (3)15°,24°.【解法提示】∵由(1)得,在图①中,△AOP 是等边三角形, ∴∠DAP +∠OAB =90°-60°=30°, 在△OAB 和△OAD′中,⎩⎪⎨⎪⎧OA =OABA =D′A, ∴△ABO ≌△AD ′O(HL ), ∴∠OAB =∠D′AO , 由(1)知∠D′AO =∠DAP , ∴∠OAB =∠DAP , ∴∠OAB =12×30°=15°;∵由(1)得,在图②中,△PAO 为等边三角形, ∴∠PAE +∠BAO =∠EAB -∠PAO ,∵∠EAB=15×180°×(5-2)=108°,∴∠PAE+∠BAO=48°,同理可证得∠OAB=∠PAE,∴∠OAB=12×48°=24°.(4)是.【解法提示】由(1)(2)可知,“叠弦”AO所在的直线绕点A逆时针旋转60°后,AO=AP,且∠PAO =60°,故△AOP是等边三角形.(5)60°-180°n(n≥3).【解法提示】由(1)(2)(3)可知,“叠弦角”的度数为正n边形的内角度数减去60°之后再除以2,即∠OAB=180°(n-2)n-60°2,化简得∠OAB=60°-180°n(n≥3).13. 解:(1)由题意得n=1,∴抛物线y=x2-2x+1=(x-1)2,顶点为Q(1,0),将(1,0)代入y=mx+1,得m=-1,∴m=-1,n=1.(2)由题意设“路线”L的解析式为y=a(x-h)2+k,∵顶点Q的坐标在y=6x和y=2x-4上,∴⎩⎪⎨⎪⎧k=6hk=2h-4,解得h=-1或3,∴顶点Q的坐标为(-1,-6)或(3,2),∴y=a(x+1)2-6或y=a(x-3)2+2,又∵“路线”L过P(0,-4),代入解得a=2(顶点为(-1,-6)),a=-23(顶点为(3,2)),∴y=2(x+1)2-6或y=-23(x-3)2+2,即y=2x2+4x-4或y=-23x2+4x-4.(3)由题可知抛物线顶点坐标为(-3k2-2k+12a,4ak-(3k2-2k+1)24a),设带线l:y=px+k,代入顶点坐标得p=3k2-2k+12,11 ∴y =3k 2-2k +12x +k , 令y =0,则带线l 交x 轴于点(-2k 3k 2-2k +1,0),令x =0,则带线l 交y 轴于点(0,k), ∵k ≥12>0, ∴3k 2-2k +1=3(k -13)2+23>0, ∴带线l 与坐标轴围成三角形面积为S =12·2k 3k 2-2k +1·k =k 23k 2-2k +1=11k 2-2·1k +3, 令t =1k ,∵12≤k ≤2,∴12≤t ≤2,∴S =1t 2-2t +3,∴1S =t 2-2t +3=(t -1)2+2,故当t =2时,(1S )max =3;当t =1时,(1S )min =2.∴13≤S ≤12.。
题型六-新定义阅读理解题
题型六新定义阅读理解题1. (2016重庆B卷)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=pq.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=3 4.(1)如果一个正整数a是另外—个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18.那么我们称这个数t为“吉祥数”.求所有“吉祥数”中F(t)的最大值.2. (2017重庆A卷)对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123.对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213 +321+132 =666,666÷111=6,所以,F(123) =6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=F(s)F(t).当F(s)+F(t)=18时,求k的最大值.3. (2015重庆A卷)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”.再如22,545,3883 ,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字为x(1≤x≤4,x 为自然数),十位上的数字为y,求y与x的函数关系式.4. (2017张家界)阅读理解题:定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部.它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2-i)+(5+3i)=(2+5)+(-1+3)i=7+2i;(1+i)×(2-i)=1×2-i+2×i-i2=2+(-1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=________,i4=________;(2)计算:(1+i)×(3-4i);(3)计算:i+i2+i3+ (i2017)5. (2018原创)若整数m是8的倍数,那么称整数m为“发达数”.例如,因为16是8的倍数,所以16是“发达数”.(1)已知整数m等于某个奇数的平方减1,求证:m是“发达数”.(2)已知两位正整数t=10x+y(1≤x≤y≤9,其中x,y为自然数),交换其个位上的数字和十位上的数字得到新数s,如果s加上t的和是“发达数”,求所有符合条件的两位正整数t.6. (2017重庆南开模拟)若将自然数中能被3整除的数,在数轴上的对应点称为“3倍点”,取任意的一个“3倍点”P,到点P距离为1的点所对应的数分别记为a,b.定义:若数K=a2+b2-ab,则称数K为“尼尔数”.例如:若P所表示的数为3,则a=2,b=4,那么K=22+42-2×4=12;若P所表示的数为12,则a =11,b=13,那么K=132+112-13×11=147,所以12,147是“尼尔数”.(1)请直接判断6和39是不是“尼尔数”,并且证明所有“尼尔数”一定被9除余3;(2)已知两个“尼尔数”的差是189,求这两个“尼尔数”.7. (2017重庆一外一模)若一个三位数t=abc(其中a,b,c不全相等且都不为0),重新排列各数位上的数字必可得到一个最大数和一个最小数,此最大数和最小数的差叫作原数的差数,记为T(t).例如,357的差数T(357)=753-357=396. (1)已知一个三位数a1b(其中a>b>1)的差数T(a1b)=792,且各数位上的数字之和为一个完全平方数,求这个三位数.(2)若一个三位数ab2(其中a、b都不为0)能被4整除,将个位上的数字移到百位得到一个新数2ab被4除余1,再将新数的个位数字移到百位得到另一个新数b2a 被4除余2,则称原数为4的“闺蜜数”.例如:因为612=4×153,261=4×65+1,126=4×31+2,所以612是4的一个闺蜜数.求所有小于500的4的“闺蜜数”t,并求T(t)的最大值.8. (2017重庆八中一模)一个三位正整数M,其各位数字均不为零且互不相等,若将M的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M的“友谊数”,如:168的“友谊数”为“618”;若从M的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132.(1)求证:M与其“友谊数”的差能被15整除;(2)若一个三位正整数N,其百位数字为2,十位数字为a、个位数字为b,且各位数字互不相等(a≠0, b≠0).若N的“团结数”与N之差为24,求N的值.9. (2017重庆大渡口区模拟)我们知道:一个整数的个位数是偶数,则它一定能被2整除;一个整数的各位数字之和能被3整除,则它一定能被3整除.若一个整数既能被2整除又能被3整除,那么这个整数一定能被6整除.数字6象征顺利、吉祥,我们规定,能被6整除的四位正整数abcd(千位数字为a,百位数字为b,十位数字为c,个位数字为d)是“吉祥数”.请解答下面几个问题:(1)已知785x是“吉祥数”,则x=________.(2)若正整数abcd是“吉祥数”,试说明:d+4(a+b+c)能被2整除.(3)小明完成第(2)问后认为:四位正整数abcd是“吉祥数”,那么d+4(a+b+c)也能被6整除.你认为他说得对吗?请说明理由.10. —个正整数,由N个数字组成,若它的第一位数可以被1整除,它的前两位数可以被2整除,前三位数可以被3整除,…,一直到前N位数可以被N整除,则这样的数叫做“精巧数”.如:123的第—位“1”可以被1整除,前两位数“12”可以被2整除,“123”可以被3整除,则123是一个“精巧数”.(1)若四位数123k是一个“精巧数”,求k的值;(2)若一个三位“精巧数”2ab各位数字之和为—个完全平方数,请求出所有满足条件的三位“精巧数”.11. (2017重庆巴蜀模拟)阅读材料:欢喜数——若一个四位数的前2位数是后2位数的2倍,则称该数为“欢喜数”,如1005、2211等都是欢喜数;半和数——一个数,若各个数位上的数字之和等于十位上的数字的2倍,则称该数为“半和数”,如132等都是半和数;平方差数——一个三位数字,若十位上数字等于百位数字与个位数字的平方差,则称该数为“平方差数”.根据上面的材料,回答下列问题:(1)证明所有的三位“半和数”均能被11整除;(2)若一个四位正整数abbc是欢喜数,bmc既是半和数又是平方差数,求m的值.12. 一个三位自然数m,将它任意两个数位上的数字对调后得一个首位不为0的新三位自然数m′(m′可以与m相同),记m′=abc,在m′所有的可能情况中,当|a +2b-c|最小时,我们称此时的m′是m的“幸福美满数”,并规定K(m)=a2+2b2-c2.例如:318按上述方法可得新数有:381、813、138;因为|3+2×8-1|=18,|8+2×1-3|=7,|1+2×3-8|=1,1<7<18,所以138是318的“幸福美满数”,K(318)=12+2×32-82=-45.(1)若三位自然数t的百位上的数字与十位上的数字都为n(1≤n≤9,n为自然数),个位上的数字为0,求证:K(t)=0;(2)设三位自然数s=100+10x+y(1≤x≤9,1≤y≤9,x,y为自然数),且x<y.交换其个位与十位上的数字得到新数s′,若19s+8s′=3888,那么我们称s为“梦想成真数”,求所有“梦想成真数”中K(s)的最大值.13. (2018原创)如果一个自然数从高位到个位是由一个数字或几个数字重复出现组成,那么我们把这样的自然数叫循环数,被重复的一个或几个数字称为“循环节”,我们把“循环节”的数字个数叫做循环数的阶数,例如:252525,它由“25”依次重复出现组成,所以252525是循环数.它是2阶6位循环数;再如:11是1阶2位循环数,789789789是3阶9位循环数,345634563456是4阶12位循环数….(1)请你直接写出3个2阶6位循环数,猜想任意一个2阶6位循环数能否被7整除,并说明理由;(2)已知一个能被13整除的2阶4位循环数,设循环节为xy,(0<x<5),求y与x 之间的函数关系.14. (2018原创)若一个三位数,其个位数加上十位数等于百位数,可表示为t=100(x +y)+10y+x,则称实数t为“加成数”.将t的百位作为个位,个位作为十位,十位作为百位,组成一个新的三位数h,规定q=t-h,f(m)=q9.例如:321是一个“加成数”,将其百位作为个位,个位作为十位,十位作为百位,得到的数h=213,∴q=321-213=108,f(m)=1089=12.(1)当f(m)最小时,求此时对应的“加成数”t的值;(2)若f(m)是24的倍数,则称f(m)是“节气数”,猜想这样的“节气数”有多少个,并求出所有的“节气数”.15. (2017重庆渝中区校级二模)对于一个三位正整数t,将各数位上的数字重新排序后(包括本身),得到一个新的三位数abc(a≤c),在所有重新排列的三位数中,当|a+c-2b|最小时,称此时的abc为t的“最优组合”,并规定F(t)=|a-b|-|b -c|,例如:124重新排序后为:142、214,因为|1+4-4|=1,|1+2-8|=5,|2+4-2|=4,所以124为124的“最优组合”,此时F(124)=-1.(1)三位正整数t中,有一个数位上的数字是另外两数位上的数字的平均数,求证:F(t)=0(2)一个正整数,由N个数字组成,若从左向右它的第一位数能被1整除,它的前两位数能被2整除,前三位数能被3整除,…,一直到前N位数能被N整除,我们称这样的数为“善雅数”.例如:123的第一位数1能被1整除,它的前两位数12能被2整除,前三位数123能被3整除,则123是一个“善雅数”.若三位“善雅数”m=200+10x+y(0≤x≤9,0≤y≤9,x、y为整数),m的各位数字之和为一个完全平方数,求出所有符合条件的“善雅数”中F(m)的最大值.16. (2018原创)如果两个实数a ,b ,使得a 2+b 与a +b 2都是有理数,我们则称(a ,b )是“完美数对”.如:(12)2+13=14+13=712,12+(13)2=12+19=1118,因为712,1118是有理数,所以(12,13)是“完美数对”;(2)2+1=3,2+12=1+2,因为1+2为无理数,所以(2,1)不是“完美数对”.(1)请判断(12+2,12-2)是否是“完美数对”,并说明理由;(2)若(a ,b )是“完美数对”,且a +b =2,证明:a ,b 都是有理数.17. 1742年6月7日,德国数学家哥德巴赫在写给著名数学家欧拉的一封信中,提出了两个大胆的猜想,其中的“任何不小于7的奇数,都可以表示为三个质数之和”称为“弱哥德巴赫猜想”,并已经得到了成功的证明.根据“弱哥德巴赫猜想”,任意一个不小于7的奇数m,都可以进行这样的拆分:m=a+b+c(a、b、c均为质数,且a≥b≥c),在m的所有这种拆分中,如果a、c两数之差a-c最小,我们就称a+b+c是m的最优拆分.并规定:P(m)=a-c.例如9可以分解成2+2+5,3+3+3,因为5-2>3-3,所以3+3+3是9的最优拆分,且P(9)=0.(1)由上述条件,可得:P(11)=________;若P(n)=1,则n=________;若P(n)=0,证明n必定能被3整除;(2)t是一个两位正整数,且t的十位数字、个位数字分别为x、y(1≤x≤y≤9,x、y为整数).若t的十位数字、个位数字和的8倍加上t所得的和为99,则我们称这个数t为“期盼数”,求所有“期盼数”中P(t)的最大值.18. 对于一个大于100的整数,若将它的后两位之前的数移到个位之后,重新得到一个新数,称之为原数的“兄弟数”. 比如:2017的兄弟数为1720, 168的兄弟数为681.根据以上阅读材料,回答下列问题.(1)求证:—个三位数与其兄弟数之差一定能被9整除;(2)已知一个六位数的兄弟数恰好是原六位数的4倍,求满足条件的原六位数.19. (2017重庆南开模拟)一个自然数m,若将其数字重新排列可得—个新的自然数n,如果m=3n,我们称m是一个“希望数”,例如:3105=3×1035,71253=3×23751,371250=3×123750.(1)请说明41不是希望数,并证明任意两位数都不可能是“希望数”;(2)一个四位“希望数”M记为abcd,已知abcd=3·cbad,且c=2,请求出这个四位“希望数”.20. (2017重庆西大附中月考)一个三位正整数N,各个数位上的数字互不相同且都不为0,若从它的百位、十位、个位上的数字任意选择两个数字组成两位数,所有这些两位数的和等于这个三位数本身,则称这样的三位数N为“公主数”.例如:132,选择百位数字1和十位效字3所组成的两位数为:13和31,选择百位数字1和个位数字2所组成的两位数为:12和21,选择十位数字3和个位数字2所组成的两位数为:32和23,因为13+31+12+21+32+23=132,所以132是“公主数”.—个三位正整数,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数为“伯伯数”.(1)判断123是不是“公主数”?请说明理由.(2)证明:当一个“伯伯数”xyz是“公主数”时,则z=2x.(3)若一个“伯伯数”与132的和能被13整除,求满足条件的所有“伯伯数”.21. (2018原创)若实数a 可以表示成两个连续自然数的倒数差,即a =1n -1n +1,那么我们称a 为第n 个“1阶倒差数”,例如12=1-12,∴12是第1个“1阶倒差数”,16=12-13,∴16是第2个“1阶倒差数”.同理,若b =1n -1n +2,那么,我们称b 为第n 个“2阶倒差数”.(1)判断132是否为“1阶倒差数”;直接写出第5个“2阶倒差数”;(2)若c ,d 均是由两个连续奇数组成的“2阶倒差数”,且1d -1c =22,求c ,d 的值.22. (2017重庆八中二模)若在一个两位正整数N 的个位数字与十位数字之间添上数字2,组成一个新的三位数,我们称这个三位数为N 的“诚勤数”,如34的“诚勤数”为324;若将—个两位正整数M 加2后得到一个新数,我们称这个新数为M 的“立达数”,如34的“立达数”为36.(1)求证:对任意一个两位正整数A ,其“诚勤数”与”立达数”之差能被6整除;(2)若一个两位正整数B 的“立达数”的各位数字之和是B 的各位数字之和的一半,求B 的值.23. (2017重庆南岸区二模)若一个两位正整数m 的个位数为8,则称m 为“好数”.(1)求证:对任意“好数”m ,m 2-64一定为20的倍数;(2)若m=p2-q2,且p,q为正整数,则称数对(p,q)为“友好数对”.规定:H(m)=qp.例如68=182-162,称数对(18,16)为“友好数对”,则H(68)=1618=89.求小于50的“好数”中,所有“友好数对”的H(m)的最大值.24. (2018原创)定义,对于一个多位自然数a,若其从左向右各个数位上的数恰好是前一数位数字加1,我们称自然数a是“格调数”.例如,12,123,1234等都是“格调数”.根据数的特点,我们可以发现,最小的“格调数”是12,最大的“格调数”是123456789.而如果一个“格调数”有七位时,第一位上的数字最大只能是3,这样的“格调数”是3456789.(1)已知四位“格调数”m和n,若m-n=3333,求m的值;(2)规定:任意一个能被18整除的数,称为“发财数”.对于任意一个三位“格调数”t=100a+10(a+1)+(a+2),交换其个位和百位上的数字,得到新的三位数k,令q=k-t,猜想q是否为“发财数”,请说明理由.25. (2017重庆一中一模)人和人之间讲友情,有趣的是,数与数之间也有相类似的关系,若两个不同的自然数的所有真因数(即除了自身以外的正因数)之和相等,我们称这两个数为“亲和数”.例如:18的正因数有1、2、3、6、9、18,它的真因数之和为1+2+3+6+9=21;51的正因数有1、3、17、51,它的真因数之和为1+3+17=21,所以称18和51为“亲和数”.数还可以与动物形象地联系起来,我们称一个两头(首位与末位)都是1的数为“两头蛇数”.例如:121、1351等.(1)8的真因数之和为________;求证:一个四位的“两头蛇数”与它去掉两头后得到的两位数的3倍的差,能被7整除;(2)一个百位上的数为4的五位“两头蛇数”能被16的“亲和数”整除,若这个五位“两头蛇数”的千位上的数字小于十位上的数字,求满足条件的五位“两头蛇数”.26. (2018原创)依次排列的几个数,如:a,b,c,…,对任意相邻的两个数,都用右边的数减去左边的数,并将所得的差写在这两个数之间,从而产生一个新数串:a,b-a,b,c-b,c,…,我们称这样的一次操作为“差变增数列”.例如,对于依次排列的两个数,1,2,做一次“差变增数列”所得数串为1,1,2;再做一次“差变增数列”所得数串为1,0,1,1,2.(1)已知依次排列的3个数:2,8,7,做一次“差变增数列”,所得新数串所有数字的和是________;做m次“差变增数列”后,所得新数串所有数字的和为________(用含m的代数式表示);(2)若依次排列的3个数:x,8,y;其中,0≤x<y≤9,且x,y均为整数,做100次“差变增数列”后所得数串的所有数字和为216,求x和y的值.27. (2017重庆江北区一模)一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3,因为x=y,所以1423是“和平数”.(1)直接写出:最小的“和平数”是________,最大的“和平数”是________;(2)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”.求证:任意的一组“相关和平数”之和是1111的倍数.28. (2017重庆南岸区一模)对任意一个正整数m,如果m=k(k+1),其中k是正整数,则称m为“矩数”,k为m的最佳拆分点.例如,56=7×(7+1),则56是一个“矩数”,7为56的最佳拆分点.(1)求证:若“矩数”m是3的倍数,则m一定是6的倍数;(2)把“矩数”p与“矩数”q的差记为D(p,q),其中p>q,D(p,q)>0.例如,20=4×5,6=2×3,则D(20,6)=20-6=14.若“矩数”P的最佳拆分点为t,“矩数”q的最佳拆分点为s,当D(p,q)=30时,求st的最大值.29. (2017重庆一外二模)若一个多位自然数t=abc…fg的各数位上的数字满足b-a=c-b=…=g-f=k(k≠0),则称该数为“k”类自然数,把自然数t各数位上的数字从左往右数,所有奇数位上的数字之和的平方减去所有偶数位上的数字之和的平方,记为F(t).例如:135是一个“2”类自然数.F(135)=(1+5)2-32=274321是一个“-1”类自然数.F(4321)=(4+2)2-(3+1)2=20(1)证明:任意一个三位“k”类自然数与它百位上的数字之和一定能被4整除;(2)如果—个四位自然数,交换其个位数字与千位数字得到的新数减去原数所得的差能够被18整除,则称这个数为“成年数”.若一个“k”类自然数t是“成年数”,求F(t)的最小值.30. 阅读下列材料解决问题:两个多位正整数,若它们各数位上的数字和相等,则称这两个多位数互为“调和数”.例如:37与82,它们各数位上的数字和分别为3+7,8+2,∵3+7=8+2=10,∴37与82互为“调和数”;又如:123与51,它们各数位上的数字和分别为1+2+3,5+1,∵1+2+3=5+1=6,∴123与51互为“调和数”.(1)若两个三位数a43、2bc(0≤b≤a≤9,0≤c≤9且a、b、c为整数)互为“调和数”,且这两个三位数之和是17的倍数,求这两个“调和数”;(2)若A、B是两个不相等的两位数,A=xy,B=mn,A、B互为“调和数”,且A 与B之和是B与A之差的3倍,求证:y=-x+9.答案1. (1)证明:∵m是一个完全平方数,∴m=p×q,当q=p时,p·q就是m的最佳分解,∴F(m)=pq=pp=1;(2)解:由题意得,(10y+x)-(10x+y)=18,得y=x+2,∴t=10x+y=10x+x+2=11x+2(1≤x≤7),则所有的吉祥数为:13,24,35,46,57,68,79共7个,∵13=1×13,24=1×24=2×12=3×8=4×6,35=1×35=5×7,46=1×46=2×23,57=1×57=3×19,68=1×68=2×34=4×17,79=1×79,则F(13)=113,F(24)=23,F(35)=57,F(46)=223,F(57)=319,F(68)=417,F(79)=179,∵57>23>417>319>223>113>179,∴“吉祥数”中F (t )的最大值为F (35)=57.2. 解:(1)F (243)=(423+342+234)÷111=9,F (617)=(167+716+671)÷111=14;(2)∵s ,t 都是相异数.∴F (s )=(302+10x +230+x +100x +23)÷111=x +5,F (t )=(510+y +100y +51+105+10y )÷111=y +6,∵F (s )+F (t )=18,∴x +5+y +6=x +y +11=18,∴x +y =7,∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数.∴⎩⎨⎧x =1y =6或⎩⎨⎧x =2y =5或⎩⎨⎧x =3y =4或⎩⎨⎧x =4y =3或⎩⎨⎧x =5y =2或⎩⎨⎧x =6y =1,∵s 是相异数,∴x ≠2,x ≠3,∵t 是相异数,∴y ≠1,y ≠5,∴满足条件的有⎩⎨⎧x =1y =6或⎩⎨⎧x =4y =3或⎩⎨⎧x =5y =2,∴⎩⎨⎧F (s )=6F (t )=12或⎩⎨⎧F (s )=9F (t )=9或⎩⎨⎧F (s )=10F (t )=8, ∴k =F (s )F (t )=612=12或k =F (s )F (t )=99=1或k =F (s )F (t )=108=54, ∵12<1<54,∴k 的最大值为54.3. 解:(1)1331,2442,1001;猜想:任意一个四位“和谐数”能被11整除.理由:设一个四位“和谐数”记为xyyx ,用十进制表示为: 1000x +100y +10y +x =1001x +110y =11(91x +10y ), ∵x 、y 是0~9之间的整数,∴11(91x +10y )能被11整除;∴任意一个四位“和谐数”能被11整除;(2)设这个三位的“和谐数”为xyx ,用十进制表示为: 100x +10y +x =101x +10y ,∵它是11的倍数,∴101x +10y 11为整数,∵101x +10y 11=99x +11y +2x -y 11=9x +y +2x -y 11,x ,y 是0~9之间的整数,∴2x -y 11是整数.又∵1≤x ≤4,0≤y ≤9,∴2≤2x ≤8,-9≤-y ≤0,∴-7≤2x -y ≤8,∵要使2x -y 11是整数,则2x -y 只能是0,∴2x -y =0,即y =2x ,∴y 与x 之间的函数关系式是y =2x (1≤x ≤4,x 为自然数).4. 解:(1)-i ;1;【解法提示】∵i 2=-1,∴i 3=i 2·i =-i ,i 4=i 2·i 2=(-1)×(-1)=1.(2)原式=3-4i +3i -4i 2=3-i +4=7-i ;(3)根据题意可得i =i ,i 2=-1,i 3=-i ,i 4=1,i 5=i ,i 6=-1,…,i 2016=1,i 2017=i ,∵i+i2+i3+i4=0,2016÷4=504,∴i+i2+i3+i4+…+i2017=i2017=i.5.解:(1)设这个奇数为2n+1,n为任意整数,由题意知m=(2n+1)2-1=4n2+4n+1-1=4n(n+1),4n(n+1)8=n(n+1)2,是整数,即4n(n+1)是8的倍数,∴m是“发达数”;(2)由题意知s=10y+x,∴s+t=10y+x+10x+y=11x+11y=11(x+y),又∵1≤x≤y≤9,∴2≤x+y≤18,要使11(x+y)是发达数,则x+y是发达数,∴x+y=8或x+y=16,当x+y=8时,x=1,y=7,t=17,x=2,y=6,t=26,x=3,y=5,t=35,x=4,y=4,t=44,当x+y=16时,x=7,y=9,t=79,x =8,y =8,t =88,故所有符合条件的两位正整数t 有17,26,35,44,79,88.6. 解:(1)6不是尼尔数,39是尼尔数.证明:设P 表示的数为3m ,则a =(3m -1),b =(3m +1),K =(3m -1)2+(3m +1)2-(3m -1)(3m +1)=9m 2+3,∵m 为整数,∴m 2为整数,∴9m 2+3被9除余3;(2)设这两个尼尔数分别是K 1,K 2,将P 1,P 2分别记为3m 1,3m 2.∴K 1-K 2=9m 12-9m 22=189,∴m 12-m 22=21,∵m 1,m 2都是整数,∴m 1+m 2=7,m 1-m 2=3,∴⎩⎨⎧m 1=5m 2=2, ∴⎩⎨⎧K 1=228K 2=39. 7. 解:(1)∵一个三位数a 1b (其中a >b >1)的差数T (a 1b )=792,∴a =9,∵三位数a1b(其中a>b>1)的各数位上的数字之和为一个完全平方数,∴1+a+b=n2,10<1+a+b≤19,∴n=4,∴b=16-9-1=6,∴这个三位数是916;(2)∵一个三位数ab2(其中a、b都不为0)能被4整除,∴b=1或3或5或7或9,∵将新数个位数字移到百位得到另一个新数b2a被4除余2并且a<5,∴a=2,∴所有小于500的4的“闺蜜数”t是212,232,252,272,292,T(t)的最大值是922-229=693.8. (1)证明:设M=xyz(x≠y≠z≠0),则M的友谊数是yxz,∴xyz-yxz=(100x+10y+z)-(100y+10x+z)=90x-90y=90(x-y)=15×6(x -y),∵6(x-y)是整数,∴xyz-yxz能被15整除.故M与其“友谊数”的差能被15整除;(2)解:由团结数定义可知,N 的团结数为:(20+a )+(20+b )+(10a +2)+(10a +b )+(10b +2)+(10b +a )=22a +22b +44,∵N 的团结数与N 之差为24,∴(22a +22b +44)-(200+10a +b )=24,即a =15-74b ,∵a 、b 为整数,1≤a ≤9,1≤b ≤9,a ≠b ,∴⎩⎨⎧a =8b =4或⎩⎨⎧a =1b =8, ∴N =284或218.9. 解:(1)4;(2)∵正整数abcd 能被6整除,∴d 能被2整除.设d =2k ( k 为自然数),则d +4(a +b +c )=2k +4(a +b +c )=2[k +2(a +b +c )].∴d +4(a +b +c )能被2整除;(3)小明的说法正确.理由如下:∵四位正整数abcd能被6整除,∴a+b+c+d能被3整除.设a+b+c+d=3m(m为自然数),则d+4(a+b+c)=(a+b+c+d)+3(a+b+c)=3m+3(a+b+c).∴d+4(a+b+c)既能被2整除,也能被3整除,∴也能被6整除.10.解:(1)根据精巧数的定义,得123k能被4整除,则1230+k能被4整除,∵1230+k=1228+(2+k),∴2+k能被4整除,又∵0≤k≤9,且k为整数,∴k=2或6;(2)∵2ab是“精巧数”,∴a为偶数,且2+a+b是3的倍数,∵a<10,b<10,∴2+a+b<22,∵2ab各位数字之和为一个完全平方数,∴2+a+b=32=9,∴当a=0时,b=7,当a=2时,b=5,当a=4时,b=3,当a=6时,b=1,∴所有满足条件的三位“精巧数”有:207,225,243,261.11. (1)证明:设三位数abc是一个半和数,则a+b+c=2b,∴a+c=b.∵这个三位数为100a+10b+c=100a+10(a+c)+c=110a+11c=11(10a+c),且10a+c为整数,∴这个三位数是11的倍数,能被11整除.(2)解:∵四位数abbc是欢喜数,∴10a+b=2(10b+c),∴10a-19b-2c=0①.∵bmc是半和数,∴b+c=m.∵bmc是平方差数,∴m=b2-c2=(b+c)(b-c),∴b -c =1,∴b =1+c ②,②代入①得a =21c +1910,∵a 是1~9的正整数,∴c =1,∴b =2,∴m =2+1=3.12. (1)证明:由题意得,t 按上述方法可得新数:n 0n ,nn 0,∵|n +2×0-n |=0,|n +2n -0|=3n ,0<3n ,∴n 0n 是t 的“幸福美满数”,K (t )=n 2+2×02-n 2=0;(2)解:s =100+10x +y ,s ′=100+10y +x ,19s +8s ′=3888,即19(100+10x +y )+8(100+10y +x )=3888.得到2x +y =12,∵x <y ,且均为自然数,∴⎩⎨⎧x =2y =8或⎩⎨⎧x =3y =6, ∴“梦想成真数”为128或136,通过计算,K (128)=-55,K (136)=-17或-25,又∵-55<-25<-17,∴K(s)的最大值为-17.13.解:(1)依照2阶6位循环数的定义,可任意写出3个2阶6位循环数:131313;272727;868686.任意一个2阶6位循环数能被7整除,理由如下:结合数字的特点可得知:2阶6位循环数为任意的一个两位数×10101得出的.∵10101÷7 =1443.∴任意一个2阶6位循环数能被7整除;(2)结合(1)的规律可知:2阶4位循环数为任意的一个两位数×101得出的.∵101为质数.∴xy为13的倍数,又∵0<x<5,∴y=3x.∵当x=4时,y=3×4=12,当x=5时,y=3×5=15均不符合题意.∴0<x<4,且x为整数,∴y与x之间的函数关系为y=3x(x=1,2,3).14.解:(1)根据题意知t=100(x+y)+10y+x,∴h=100y+10x+x+y,∴q=t-h=(100x+100y+10y+x)-(100y+10x+x+y)=90x+9y,∴f(m)=q9=90x+9y9=10x+y.∵0不能在百位,∴t的十位和百位均不可以为0,∴x的最小值为0,y的最小值为1,∴f(m)的最小值为1,此时“加成数”t为110;(2)∵f(m)是24的倍数,∴10x+y=24n(n=1,2,3,…),∵0≤x≤8,1≤y≤9,且1≤x+y≤9,∴当n=1时,10x+y=24,x=2,y=4,当n=3时,10x+y=72,x=7,y=2;综上,这样的“节气数”有2个,分别为24,72.15. (1)证明:∵三位正整数t中,有一个数位上的数字是另外两数位上的数字的平均数,∴重新排序后,其中两个数位上数字的和是另一个数位上的数字的2倍,∴a+c-2b=0,∴F(t)=0;(2)解:∵m=200+10x+y是“善雅数”,∴x为偶数,且2+x+y是3的倍数,∵x<10,y<10,∴2+x+y<30,∵m的各位数字之和为一个完全平方数,∴2+x+y=32=9,∴当x=0时,y=7,当x=2时,y=5,当x=4时,y=3,当x=6时,y=1,∴所有符合条件的“善雅数”有:207,225,243,261,∴所有符合条件的“善雅数”中F(m)的最大值是|2-3|-|3-4|=0.16. (1)解:是.理由如下:∵(12+2)2+(12-2)=14+2+2+12-2=114,是有理数;(12+2)+(12-2)2=12+2+14-2+2=114,是有理数.∴(12+2,12-2)是“完美数对”;(2)证明:∵(a ,b )是“完美数对”,∴a 2+b 与a +b 2都是有理数,∴(a 2+b )-(a +b 2)=(a -b )(a +b -1)是有理数.设t =(a -b )(a +b -1)=(a -b )×(2-1)=a -b ,∴t =a -b 是有理数.解⎩⎨⎧a +b =2a -b =t ,得⎩⎪⎨⎪⎧a =1+t 2b =1-t 2, ∵t 是有理数,∴a ,b 都是有理数.17. 解:(1)2;8;证明:假设P (n )的质数为a ,b ,c ,由P (n )=0可知,a =b =c ,∴P (n )=a +a +a =3a ,∴3a÷3=a,为整数,∴若P(n)=0,n必定能被3整除;(2)(x+y)×8+10x+y=99,∴2x+y=11;∵1≤x≤y≤9,∴期盼数:35,27,19,35=11+11+13;27=7+7+13;19=7+7+5;P(35)=2,P(27)=6,P(19)=2,∴P(t)max=6.18. (1)证明:设原来的三位数为:100a+10b+c,其兄弟数为:100b+10c+a,则(100a+10b+c)-(100b+10c+a)=99a-90b-9c=9(11a-10b-c),∵(11a-10b-c)为整数,∴一个三位数与其兄弟数之差一定可以被9整除.(2)解:设这个六位数的前4位是M,后2位是N,则这个数可表示为:(100M+N),其兄弟数可表示为:(10000N+M),∴4×(100M+N)=10000N+M,∴化简得19M=476N,∴N一定是19的倍数,∵N是2位数,∴满足条件的N=19,38,57,76,95;又∵M是4位数,∴N=19,38都不满足条件,舍去;∴N=57,76,95,相应的:M=1428,1904,2380,∴满足条件的六位数有三个142857,190476,238095.19. (1)证明:∵3×14=42≠41,∴41不是希望数.假设存在两位数是希望数,记为ab,∴ab=3ba.∵3b为一位数,且b是3a的个位数,∴b=1,2,3.当b=1时,a=7,3×17=51≠71;当b=2时,a=4,3×24=72≠42;当b=3时,a=1,3×31=93≠13.综上可知:假设不成立,即任意两位数都不可能是“希望数”;(2)解:∵abcd=3·cbad,∴3d的个位是d,∴d=0或5.当d=0时,∵3a的个位是c,c=2,∴a=4,此时3c=6>4,不合适;当d=5时,∵3a的个位+1是c,c=2,∴a=7,又∵abcd=3·cbad,∴3b+2=10+b,解得:b=4.∴这个四位“希望数”为7425.20. (1)解:123的百位与十位数字组成的数为12,21,百位与个位数字组成的数为13,31, 十位与个位数字组成的数为23,32,则各数和为12+21+13+31+23+32=132≠123,显然不是公主数;(2)证明:∵xyz是一个公主数,∴(10x+y+10y+x)+(10x+z+10z+x)+(10y+z+10z+y) =100x+10y+z,∴78x=12y+21z①;∵xyz是一个伯伯数,∴y=x+z②,代入①得66x=33z,∴z=2x;(3)解:设这个伯伯数为xyz,则y=x+z,∴100x+10y+z=110x+11z.∵110x+11z+132=11(10x+z+12),∵能被13整除,∴10x+z+12是13的倍数.当10x+z+12=26时,x=1,z=4,y=5,这个数为154;当10x +z +12=39时,x =2,z =7,y =9,这个数为297;当10x +z +12=52时,x =4,z =0,y =4,这个数为440;当10x +z +12=65时,x =5,z =3,y =8,这个数为583;当10x +z +12=78时,x =6,z =6,y =12,不符合;当10x +z +12=91时,x =7,z =9,y =16,不符合.故满足条件的数有154,297,440,583.21. 解:(1)132不是“1阶倒差数”,235;【解法提示】∵32=1×32=2×16=4×8,不是两个连续自然数的积, ∴132不是“1阶倒差数”.第5个“2阶倒差数”为15-17=235.(2)设m 是由两个连续奇数2x -1,2x +1组成的“2阶倒差数”,则m =12x -1-12x +1=2x +1-(2x -1)(2x +1)(2x -1)=24x 2-1. ∵c ,d 是两个连续奇数组成的“2阶倒差数”,∴可设c =24y 2-1,d =24z 2-1,∵1d -1c =22,∴4z 2-12-4y 2-12=22,即z 2-y 2=11,∴(z +y )(z -y )=11>0,∴z >y .∵11=1×11,∴⎩⎨⎧z +y =11z -y =1,解得⎩⎨⎧y =5z =6, ∴c =24×52-1=299,d =24×62-1=2143. 22. (1)证明:设A =xy ,则其“诚勤数”为x 2y ,“立达数”为10x +y +2, ∴x 2y -(10x +y +2)=100x +20+y -10x -y -2=90x +18=6(15x +3), ∵15x +3为整数,∴6(15x +3)能被6整除,即对任意一个两位正整数A ,其“诚勤数”与“立达数”之差能被6整除;(2)解:设B =10a +b ,1≤a ≤9,0≤b ≤9(13加上2后各数字之和变小,说明个位发生了进位),B +2=10a +b +2,则B 的“立达数”为10(a +1)+(b +2-10),a +1+b +2-10=12(a +b ),整理得:a +b =14,∵1≤a ≤9,0≤b ≤9,∴⎩⎨⎧a =8(舍)b =6、⎩⎨⎧a =6b =8,⎩⎨⎧a =9(舍)b =5、⎩⎨⎧a =5b =9,经检验:86和95不符合题意舍去,∴所求两位数为68或59.23. (1)证明:设m =10t +8,1≤t ≤9,且t 为整数.∴m 2-64=(10t +8)2-64=100t 2+160t +64-64=20(5t 2+8t ).∵1≤t ≤9,t 为正整数,∴5t 2+8t 是正整数.∴m 2-64一定为20的倍数;(2)解:∵m =p 2-q 2,p ,q 为正整数,∴10t +8=(p +q )(p -q ),当t =1时,18=1×18=2×9=3×6,没有满足条件的p ,q .当t =2时,28=1×28=2×14=4×7.其中满足条件的p ,q 的数对有(8,6),即28=82-62,∴H (28)=68=34.当t =3时,38=1×38=2×19,没有满足条件的p ,q . 当t =4时,48=1×48=2×24=3×16=4×12=6×8.满足条件的p ,q 的数对为⎩⎨⎧p -q =2p +q =24或⎩⎨⎧p -q =4p +q =12或⎩⎨⎧p -q =6p +q =8,解得⎩⎨⎧p =13q =11或⎩⎨⎧p =8q =4或⎩⎨⎧p =7q =1. 即48=132-112=82-42=72-12.∴H (48)=1113或H (48)=48=12或H (48)=17.∵1113>34>12>17,∴H (m )的最大值为1113.24. 解:(1)∵m ,n 都是四位“格调数”,则设m =a (a +1)(a +2)(a +3),n =b (b +1)(b +2)(b +3), 即m =1000a +100(a +1)+10(a +2)+(a +3)=1111a +123, n =1000b +100(b +1)+10(b +2)+(b +3)=1111b +123, ∴m -n =1111a +123-(1111b +123)=1111(a -b )=3333, ∴a -b =3,即a =b +3.∵m是四位“格调数”,∴1≤a≤6,∴1≤b+3≤6,∴1≤b≤3,∴b为1,2或3,则a为4,5或6,∴m为4567,5678或6789;(2)q是“发财数”.∵t=100a+10(a+1)+(a+2)=111a+12,∴k=100(a+2)+10(a+1)+a=111a+210,∴q=k-t=(111a+210)-(111a+12)=210-12=198,∵198÷18=11,∴198是18的整倍数,即198是“发财数”,∴q是“发财数”.25. 解:(1)7;证明:设这个四位“两头蛇数”为1ab1,由题意得:1ab1-3ab=1001+100a+10b-30a-3b=1001+70a+7b=7(143+10a+b)∵a 、b 为整数,∴143+10a +b 为整数,∴一个四位的“两头蛇数”与它去掉两头后得到的两位数的三倍能被7整除;(2)∵16的真因数有:1,2,4,8.∴1+2+4+8=15,∵15=1+3+11,∴16的“亲和数”为33.设这个五位“两头蛇数”为1x 4y 1,由题意得:1x4y133为整数, ∴315+30x +10x +10y +633为整数, ∴10x +10y +6=66,∴x +y =6,∵0≤x ≤9,0≤y ≤9,且为整数,x <y∴⎩⎨⎧x =0y =6或⎩⎨⎧x =1y =5或⎩⎨⎧x =2y =4. ∴这个五位“两头蛇数”为10461或11451或12441.26.解:(1)22;17+5m.【解法提示】将3个数:2,8,7,做一次“差变增数列”,得到的数字为2,6,8,-1,7,所有数字的和为2+6+8+(-1)+7 =22;∵将数串a,b,c做一次“差变增数列”得到a,b-a,b,c-b,c,所有数字和的增加量M=(a+b-a+b+c-b+c)-(a+b+c)=c-a,∴将一个数串每做一次“差变增数列”,所有数字的和的增加量相同,均为原数最后一个数与第一个数的差∵数串2,8,7中,7-2=5.∴每做一次“差变增数列”,所有数字的和增加5,∴做m次“差变增数列”后,所得数字的和为2+8+7+5m,即17 +5m. (2)∵数串:x,8,y,∴做100次“差变增数列”,所得数字的和为x+8+y+100(y-x)=-99x+101y+8,根据题意得-99x+101y+8 =216,即y=208+99x101,∵y是整数,∴208+99x是101的正整数倍,当208+99x=101时,x无正整数解;。
新定义题型(学生版)
大题新定义题型继2024年九省联考的第19题考查了新定义问题,已有部分地区考试采用了该结构考试。
2024年的新高考试卷第19题极大可能也会考查新定义问题,难度较大。
新定义题型内容新颖,题目中常常伴随有“定义”“规定”等字眼,题目一般使用抽象的语言给出新定义、运算或符号,没有过多的解释说明,要求考生自己仔细揣摩、体会和理解定义的含义,在阅读新定义要求后马上运用它解决相关问题,考查考生的理解与运算、信息迁移的能力。
题型一:集合的新定义问题题型二:函数与导数的新定义问题题型三:复数与不等式的新定义问题题型四:三角函数的新定义问题题型五:平面向量的新定义问题题型六:数列的新定义问题题型七:立体几何的新定义问题题型八:平面解析几何的新定义问题题型九:概率统计的新定义问题题型十:高等数学背景下的新定义问题题型一:集合的新定义问题1(2024·广东·惠州一中校联考模拟预测)已知集合A中含有三个元素x,y,z,同时满足①x<y<z;②x+y>z;③x+y+z为偶数,那么称集合A具有性质P.已知集合S n=1,2,3,⋯,2n(n∈N*,n≥4),对于集合S n的非空子集B,若S n中存在三个互不相同的元素a,b,c,使得a+b,b+c,c+a均属于B,则称集合B是集合S n的“期待子集”.(1)试判断集合A=1,2,3,5,7,9是否具有性质P,并说明理由;(2)若集合B=3,4,a具有性质P,证明:集合B是集合S4的“期待子集”;(3)证明:集合M具有性质P的充要条件是集合M是集合S n的“期待子集”.集合新定义问题的方法和技巧:(1)可通过举例子的方式,将抽象的定义转化为具体的简单的应用,从而加深对信息的理解;(2)可用自己的语言转述新信息所表达的内容,如果能清晰描述,那么说明对此信息理解的较为透彻;(3)发现新信息与所学知识的联系,并从描述中体会信息的本质特征与规律;(4)如果新信息是课本知识的推广,则要关注此信息与课本中概念的不同之处,以及什么情况下可以使用书上的概念.1(2023·北京·北京四中校考模拟预测)已知集合M =1,2,3,⋯,n n ∈N * ,若集合A =a 1,a 2,⋯,a m ⊆M m ∈N * ,且对任意的b ∈M ,存在a i ,a j ∈A 1≤i ≤j ≤m ,使得b =λ1a i +λ2a j (其中λ1,λ2∈-1,0,1 ),则称集合A 为集合M 的一个m 元基底.(1)分别判断下列集合A 是否为集合M 的一个二元基底,并说明理由;①A =1,5 ,M =1,2,3,4,5 ;②A =2,3 ,M =1,2,3,4,5,6 .(2)若集合A 是集合M 的一个m 元基底,证明:m m +1 ≥n ;(3)若集合A 为集合M =1,2,3,⋯,19 的一个m 元基底,求出m 的最小可能值,并写出当m 取最小值时M 的一个基底A .2(2024·北京海淀·高三人大附中校考开学考试)设m 为正整数,集合A ⊆α∣α=t 1,t 2,⋯,t m ,t j ∈-1,1 ,j =1,2,⋯,m . 任取集合A 中的2n +1n ∈N *个元素(可以重复)α1=α1.1,α1.2,⋅⋅⋅,α1.m ,α2=α2.1,α2.2,⋅⋅⋅,α2.m ,⋅⋅⋅,α2n +1=α2n +1.1,α2n +1.2,⋅⋅⋅,α2n +1.m ,M α1,α2,⋅⋅⋅,α2n +1 =y 1,y 2,⋅⋅⋅,y m ,其中y j =α1.j +α2.j +⋅⋅⋅+α2n +1.jα1.j +α2.j +⋅⋅⋅+α2n +1.jj =1,2,⋅⋅⋅,m .(1)若α1=1,-1,-1,-1 ,α2=-1,1,1,-1 ,α3=-1,-1,-1,1 ,α4=1,1,-1,1 ,α5=-1,-1,-1,1 ,直接写出M α1,α2,α3 ,M α1,α2,α3,α4,α5 ;(2)对于α,β,γ∈A ,证明:M α,⋯,αk 个 ,β,⋯,βk 个,γ=M α,β,γ ;(3)对于某个正整数n ,若集合A 满足:对于A 中任意2n +1个元素α1,α2,⋅⋅⋅,α2n +1,都有M α1,α2,⋅⋅⋅,α2n +1 ∈A ,则称集合A 具有性质P n . 证明:若∃n 0∈N *,集合A 具有性质P n 0 ,则∀n ∈N *,集合A 都具有性质P n .题型二:函数与导数的新定义问题1(2024·陕西安康·高三校联考阶段练习)记函数f x 的导函数为f x ,f x 的导函数为f x ,设D 是f x 的定义域的子集,若在区间D 上f x ≤0,则称f x 在D 上是“凸函数”.已知函数f x =a sin x -x 2.(1)若f x 在0,π2上为“凸函数”,求a 的取值范围;(2)若a =2,判断g x =f x +1在区间0,π 上的零点个数.函数新定义问题,命题新颖,常常考虑函数的性质,包括单调性,奇偶性,值域等,且存在知识点交叉,会和导函数,数列等知识进行结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决。
专题2.7 新定义与阅读理解题
第二篇热点难点篇专题07新定义与阅读理解题(讲案)一讲考点——考点梳理1、“新定义”型问题,主要是指在问题中概念了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新概念进行运算、推理、迁移的一种题型.“新概念”型问题成为近年来中考数学压轴题的新亮点.注重考查学生应用新的知识解决问题的能力.2、阅读理解型问题一般文字叙述较长,信息量较大,各种关系错综复杂,考查的知识也灵活多样,既考查学生的阅读能力,又考查学生的解题能力的新颖数学题.中考数学的阅读理解题考查学生阅读理解能力与日常生活体验,同时又能考查学生获取信息后的抽象概括能力、建模能力,决策判断能力。
3、方程思想、数形结合思想、分类思想、转化思想、从特殊到一般思想等.二讲题型——题型解析(一)规律题型中的新概念例1、(1)填空:()()a b a b -+=;22()()a b a ab b -++=;3223()()a b a a b ab b -+++=.(2)猜想:1221()(...)n n n n a b aa b ab b -----++++=(其中n 为正整数,且2n ≥).(3)利用(2)猜想的结论计算:98732222...222-+-+-+.(二)运算题型中的新概念例2、为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=101312-,即1+3+32+33+…+3100=101312-,仿照以上推理计算:1+5+52+53+…+52015的值是.(三)探索题型中的新概念例3、我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y kx =+与x 轴、y 轴分别交于A、B,∠OAB=30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是()A.6B.8C.10D.12(四)开放题型中的新概念例4、如图,已知抛物线C 1:y=a 1x 2+b 1x+c 1和C 2:y=a 2x 2+b 2x+c 2都经过原点,顶点分别为A,B,与x 轴的另一个交点分别为M、N,如果点A 与点B,点M 与点N 都关于原点O 成中心对称,则抛物线C 1和C 2为姐妹抛物线,请你写出一对姐妹抛物线C 1和C 2,使四边形ANBM 恰好是矩形,你所写的一对抛物线解析式是_______________________和_________________________(五)阅读材料题型中的新概念例5、在直角坐标系xOy 中,对于点P(x,y)和Q(x,y′),给出如下定义:若(0)(0)y x y y x ≥⎧'=⎨-<⎩,则称点Q 为点P 的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数3y x =+图象上点M 的“可控变点”,则点M 的坐标为;(2)若点P 在函数216y x =-+(5x a -≤≤)的图象上,其“可控变点”Q 的纵坐标y′的取值范围是1616y '-≤≤,则实数a 的取值范围是.(六)阅读试题信息,借助已有数学思想方法解决新问题例6、理数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:思路一如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则==2.思路二利用科普书上的和(差)角正切公式:tan(α±β)=tan tan1tan tanαβαβ±.假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)=tan60tan451tan60tan45-+2-.思路三在顶角为30°的等腰三角形中,作腰上的高也可以…思路四…请解决下列问题(上述思路仅供参考).(1)类比:求出tan75°的值;(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;(3)拓展:如图3,直线112y x=-与双曲线4yx=交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.(七)阅读相关信息,通过归纳探索,发现规律,得出结论例7、在如图所示的平面直角坐标系中,△OA 1B 1是边长为2的等边三角形,作△B 2A 2B 1与△OA 1B 1关于点B 1成中心对称,再作△B 2A 3B 3与△B 2A 2B 1关于点B 2成中心对称,如此作下去,则△B 2n A 2n+1B 2n+1(n 是正整数)的顶点A 2n+1的坐标是()A.)B.C.)D.)三讲方法——方法点睛1.“新概念型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.2.解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.四练实题——随堂小练1.阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M 的位置可由∠MOx 的度数θ与OM 的长度m 确定,有序数对(θ,m)称为M 点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA 在射线Ox 上,则正六边形的顶点C 的极坐标应记为()A.(60°,4)B.(45°,4)C.)D.)2.把标准纸一次又一次对开,可以得到均相似的“开纸”.现在我们在长为1的矩形纸片中,画两个小矩形,使这两个小矩形的每条边都与原矩形纸的边平行,或小矩形的边在原矩形的边上,且每个小矩形均与原矩形纸相似,然后将它们剪下,则所剪得的两个小矩形纸片周长之和的最大值是.3.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子1x x+(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是1x,矩形的周长是2(1x x +);当矩形成为正方形时,就有x=1x (x>0),解得x=1,这时矩形的周长2(1x x +)=4最小,因此1x x+(x>0)的最小值是2.模仿张华的推导,你求得式子2x 9x +(x>0)的最小值是()A.2B.1C.6D.104.规定:sin(-x)=-sinx,cos(-x)=cosx,sin(x+y)=si nx•cosy+cosx•siny.据此判断下列等式成立的是(写出所有正确的序号)①cos (-60°)=-12;②sin75°=4+;③sin2x=2sinx•cosx;④sin (x-y)=sinx•cosy-cosx•siny.5.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n (n 为非负整数)的展开式中a 按次数从大到小排列的项的系数.例如,(a+b)2=a 2+2ab+b 2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a 3+3a 2b+3ab 2+b 3展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a-b)4的展开式,(a-b)4=.五练原创——预测提升1.“聪”和“明”是一对好朋友,聪说:“学数学就像玩游戏,一旦掌握了规则,就很容易了!”明说:“那我考考你,若规定:x◎y =x +|y|,如1◎(-2)=1+|-2|=1+2=3,那么(-2)◎1=()?”聪很快说出了答案,你也试试吧!A.﹣3B.﹣1C.1D.32.a 为有理数,定义运算符号“※”:当a>-2时,※a=-a;当a<-2时,※a=a;当a=-2时,※a=0.根据这种运算,则※[4+※(2-5)]的值为()A.1B.-1C.7D.-73.如图所示的数阵叫“莱布尼兹调和三角形”,它是由整数的倒数组成的,第n 行有n 个数,且两端的数都为1n,每个数是它下一行左右相邻两数的和,则第8行第3个数(从左往右数)为().1411211214161313121211A.160B.1168C.1252D.12804.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,32335.阅读下面材料:小明遇到下面一个问题:如图1所示,AD 是ABC ∆的角平分线,,AB m AC n ==,求BDDC的值.小明发现,分别过B ,C 作直线AD 的垂线,垂足分别为,E F .通过推理计算,可以解决问题(如图2).请回答,BDDC=________.参考小明思考问题的方法,解决问题:如图3,四边形ABCD 中,2,6,60,AB BC ABC BD ==∠=︒平分ABC ∠,AB AC ⊥,CD BD ⊥.AC 与BD 相交于点O .(1)AOOC=______.(2)tan DCO ∠=__________.。
中考阅读新题型(新定义)
阅读理解看得懂的问题,请仔细看;看不懂的问题,请硬着头皮看。
阅读:要理解新定义,不允许一知半解就解题转化:把它转化为熟悉的相关数学知识解决1. 我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称正方形、长方形、直角梯形(任选两个均可);(2)如图1,已知格点(小正方形的顶点)O (0,0),A (3,0),B (0,4),请你画出以格点为顶点,OA ,OB 为勾股边且对角线相等的勾股四边形OAMB ;(3)如图2,将△ABC 绕顶点B 按顺时针方向旋转60°,得到△DBE ,连接AD ,DC ,∠DCB=30度.求证:DC 2+BC 2=AC 2,即四边形ABCD 是勾股四边形.2.阅读下面的情景对话,然后解答问题老师:我们新定义一种多边形:把一个n (n 为大于等于3的整数)边形的内角及外角从小到大分别排序后,若按这个顺序得到的n 个内角的比与n 个外角的比相等,则这个多边形叫做内外等比多边形(说明:每个顶点处只取一个外角)小华:平行四边形一定是内外等比四边形 小明:三角形有内外等比三角形吗?哪些三角形是呢? (1)根据“内外等比多边形的定义”,请你判断小华的命题的真假,并说明理由(2)已知内外等比四边形ABCD 的四个内角分别是∠1、∠2、∠3、∠4,∠1:∠2:∠3:∠4=()d c b a d c b a ≤≤≤:::,请探索a 、b 、c 、d 之间的关系,并说明理由。
(3)请回答小明问题:“三角形有内外等比三角形吗?哪些三角形是呢?”,并说明理由。
3.通过学习勾股定理的逆定理,我们知道在一个三角形中,如果两边的平方和等于第三边的平方,那么这个三角形为直角三角形。
类似的,我们定义:对于任意三角形,设其三个内角的度数分别为 x 、 y 和z ,若满足222z y x =+,则称这个三角形为勾股三角形(1)根据“勾股三角形”的定义,请你直接判断:“直角三角形是勾股三角形”是真命题还是假命题? (2)若某一勾股三角形的内角度数分别为 x 、 y 和 z ,且z y x <<,,2160=xy 求y x +的值 (3)已知△ABC 中,AB=6,AC=1+3,BC=2,求证:△ABC 是勾股三角形4.探究问题:(1)阅读理解:①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离;②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB•CD+BC•DA=AC•BD.此为托勒密定理;(2)知识迁移:①请你利用托勒密定理,解决如下问题:如图(C),已知点P为等边△ABC外接圆的BC弧上任意一点.求证:PB+PC=PA;②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;第二步:在BC弧上任取一点P′,连接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+;第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段的长度即为△ABC的费马距离.(3)知识应用:2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.5.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V )、面数(F )、棱数(E )之间存在的一个有趣的关系式,被称为欧拉公式。
新定义与阅读理解问题 九年级数学专项训练(含解析)
新定义与阅读理解问题一、单选题A.1B.4C.6D()(A.113︒B.92二、填空题16.定义一种新的运算:a☆三、解答题17.若定义一种运算:a b∆()(32-=--+⨯-2Δ32(3)23参考答案:1.A【分析】本题考查了有理数的混合运算,理解题中的新定义是解此类题的关键.根据题中的新定义计算即可求出4-※2的值.【详解】解:根据新定义得:4-※22422=-⨯+84=-+4=-,故选:A 2.B【分析】本题考查了新运算,解一元一次方程,掌握新运算正确计算是解题的关键,根据()310312x ⎡⎤+⨯=⎣⎦★,()336x +⨯=-解方程即可.【详解】解:根据新定义得()31012x =★★()310312x ⎡⎤+⨯=⎣⎦★()3104x +=★()36x =-★()336x +⨯=-5x =-故选:B 3.D【分析】据提供的“F ”运算,对正整数n 分情况(奇数、偶数)循环计算,由于449n =为奇数应先进行F ①运算,发现从第4次运算结果开始循环,且奇数次运算的结果为8,偶数次为1,而第201次是奇数,这样循环计算一直到第201次“F ”运算,得到的结果为8.本题主要考查了新定义运算,有理数的混合运算.熟练掌握“F ”运算法则,找到结果存在的规律,根据有理数的混合运算求出答案,是解题的关键.【详解】解:第一次:344951352⨯+=,故选:A.8.C【分析】本题主要考查了等腰三角形的性质、相似三角形的性质等知识带你,由10.12x =,22x =-【分析】本题考查有理数的混合运算,新定义问题,根据已知公式得出24420x +=,解之可得答案.【详解】解:420x ⊗= ,24420x ∴+=,即2416x =,解得:12x =,22x =-.故答案为:122,2x x ==-.11.5【分析】此题考查了解一元一次方程和平方根解方程.根据题中的新定义分两种情况化简已知等式,求出x 的值即可.【详解】解:当4x ≥时,则1629x +=,解得13x =,不符合题意;当4x <时,则2429x +=,解得15=x ,25x =-(舍去),综上,x 的值为5.故答案为:5.12.3-【分析】本题考查了一次函数图象上点的坐标特征,根据“衍生函数”的定义,找出一次函数21y x =-+的“衍生函数”是解题的关键.【详解】解:由定义知,一次函数21y x =-+的“衍生函数”为()()210210x x y x x ⎧-+≥⎪=⎨+<⎪⎩,∵点()2,P m -在一次函数的“衍生函数”图象上,20x =-<,∴()2213m =⨯-+=-.故答案为:3-.13.1【分析】本题考查了解一元一次方程.理解题意,正确的列一元一次方程是解题的关键.由题意知,()3434341a =⨯+++※,3420=※,即()3434120a ⨯+++=,计算求解即可.【详解】解:由题意知,()3434341a =⨯+++※,3420=※,∵圆与三角形的三条边都有两个交点,截得的三条弦相等,∴圆心O就是三角形的内心,过C时,且在等腰直角三角形∴当O、、过点O分别作弦CG CF DE。
2020年重庆中考专题练习题阅读理解:新符号、新定义型(word 版无答案)
中考专题复习六:阅读理解(1)——新符号、新定义型典型例题:例1、《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n 为“纯数”.例如:32 是“纯数”,因为计算32+33+34 时,各数位都不产生进位;23 不是“纯数”,因为计算23+24+25 时,个位产生了进位.(1)判断2019 和2020 是否是“纯数”?请说明理由;(2)求出不大于100 的“纯数”的个数.例2、如果一个三位正整数abc(a≥b,且c≠0),交换其个位上的数字与百位上的数字可得到一个新的三位数cba .若用原三位数减去新三位数所得的差为396,那么我们称这个三位数abc 为“行知数”.比如三位数753,交换个位上的数字与百位上的数字后,得到新三位数357.因为753 357=396,所以三位数753 就是一个“行知数”.根据材料,回答下列问题:(1)判断864和996是否是“行知数”,并说明理由.(2)求在所有三位正整数abc (a ≥b, 且c ≠ 0 )中,“行知数”一共有多少个,并说明理由?例3、阅读材料:材料一:对实数a,b,定义T(a,b)的含义为:当a<b 时,T(a,b)=a+b;当a≥b 时,T(a,b)=a-b.例如:T(1,3)=1+3=4;T(2,-1)=2-(-1)=3.材料二:关于数学家高斯的故事:200 多年前,高斯的算术老师提出了下面的问题:1+2+3+4+…+100=?据说,当其他同学忙于把100 个数逐项相加时,十岁的高斯却用下面的方法迅速算出了正确答案:(1+100)+(2+99)+…+(50+51)=101×50=5050.也可以这样理解:令S=1+2+3+…+100①,则S=100+99+…+3+2+1②,①+②得2S=(1+100)+(2+99)+…………+(100+1)=100×(1+100)=10100,解决问题:(1)已知x+y=10,且x>y,求T(5,x)-T(5,y)的值;(2)对于正数m,有T(m2+1,-1)=3,求T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)的值.例4、如果一个正整数m 能写成m=a2-b2(a,b 均为正整数,且a≠b),我们称这个数为“平方差数”,则a,b 为m 的一个平方差分解,规定:⎧⎪a+b=8,⎧⎪a+b=4,例如:8=8×1=4×2,由8=a2-b2=(a+b)(a-b),可得⎨⎪⎩a-b=1或⎨⎪⎩a-b=2.因为a,b 为正⎧⎪a=3,整数,解得⎨⎪⎩b=1,所以又例如:48=132-112=82-42=72-12,所以(1)判断:6 平方差数(填“是”或“不是”),并求F(45)的值;(2)若s 是一个三位数,t 是一个两位数,s=100x+5,t=10y+x(1≤x≤4,1≤y≤9,x,y 是整数),且满足s+t 是11 的倍数,求F(t)的最大值.例5、一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3,因为x=y,所以1423是“和平数”.(1)请判断:2561(填“是”或“不是”)“和平数”.(2)直接写出:最小的“和平数”是,最大的“和平数”是;(3)如果一个“和平数”的个位上的数字是千位上的数字的两倍,且百位上的数字与十位上的数字之和是14的倍数,求满足条件的所有“和平数”.例6、一个四位数,记千位数字与个位数字之和为x ,十位数字与百位数字之和为y ,如果x y ,那么称这个四位数为“对称数”.(1)最小的“对称数”为;四位数A与2020之和为最大的“对称数”,则A的值为;(2)一个四位的“对称数”M,它的百位数字是千位数字a 的3倍,个位数字与十位数字之和为8,且千位数字a 使得不等式组恰有4个整数解,求出所有满足条件的“对称数”M的值.课后作业:1、阅读材料,回答问题:若整数m是8的倍数,那么称整数m为“立达数”,例如,因为16是8的倍数,所以16是“立达数”.(1)已知整数m等于某个奇数2k+1(k为正整数)的平方减1,求证:m是“立达数”.(2)已知两位正整数t=10x+y (1≤x≤y≤9,其中x、y为自然数),交换其个位上的数字和十位上的数字得到新数s,如果s加上t的和是“立达数”,求出所有符合条件的两位正整数t.2、已知一个三位自然数,若满足百位数字等于十位数字与个位数字的和,则称这个数为“和数”,若满足百位数字等于十位数字与个位数字的平方差,则称这个数为“谐数”.如果一个数既是“和数”,又是“谐数”,则称这个数为“和谐数”.例如321,∵3=2+1,∴321 是“和数”,∵3=22-12,∴321 是“谐数”,∴321 是“和谐数”.(1)证明:任意“谐数”的各个数位上的数字之和一定是偶数;(2)已知a=10m+4n+716(0≤m≤7,1≤n≤3,且m,n 均为正整数)是一个“和数”,请求出所有a 的值.3、阅读材料:在处理分数和分式问题时,有时由于分子比分母大,或者分子的次数高于分母的次数,在实际运算中往往难度比较大,这时我们可以考虑逆用分数(分式)的加减法,将假分数(分式)拆分成一个整数(或整式)与一个真分数的和(或差)的形式,通过对简单式的分析来解决问题,我们称之为分离整数法,此法在处理分式或整除问题时颇为有效,现举例说明.解决问题:(1)将分式拆分成一个整式与一个分子为整数的分式的和的形式,则结果为;(2)已知整数x 使分式的值为整数,则满足条件的整数x=;(3)若关于x 的方程2x2+(1-2a)x+(4-3a)=0 有整数解,求正整数a 的值.4、阅读下列两则材料,回答问题,材料一:定义直线y=ax+b与直线y=bx+a互为“互助直线”,例如,直线y=x+4与直y=4x+1互为“互助直线“材料二:对于平面直角坐标系中的任意两点P1(x1,y1)、P2(x2,y2),P1、P2两点间的直角距离d(P1,P2)=|x1﹣x2|+|y1﹣y2|.例如:Q1(﹣3,1)、Q2(2,4)两点间的直角距离为d(Q1,Q2)=|﹣3﹣2|+|1﹣4|=8设P0(x0,y0)为一个定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.(1)计算S(﹣1,6),T(﹣2,3)两点间的直角距离d(S,T)=,直线y=2x+3上的一点H(a,b)又是它的“互助直线”上的点,求点H的坐标.(2)对于直线y=ax+b上的任意一点M(m,n),都有点N(3m,2m﹣3n)在它的“互助直线”上,试求点L(5,﹣)到直线y=ax+b的直角距离.。
2021年中考数学复习专题6 新定义与阅读理解型问题(教学课件)
(1)特例感知:如图(一),已知边长为 2 的等边△ABC 的重心为 点 O,求△OBC 与△ABC 的面积. (2)性质探究:如图(二),已知△ABC 的重心为点 O,请判断OODA ,
S△OBC 是否都为定值?如果是,分别求出这两个定值;如果不是, S△ABC 请说明理由.
重点题型
题题组组训训练练
9≥2x+4,4x≥13,∴x≥143 ,∴x 的取值范围为 x≥143 .
重重点点题题型型
题组训练
例2.(2020·益阳)定义:若四边形有一组对角互补,一组邻边相等, 且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四 边形,简称“直等补”四边形.
根据以上定义,解决下列问题: (1)如图1,正方形ABCD中,E是CD上的点,将△BCE绕B点旋转, 使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形 BEDF为“直等补”四边形,为什么? (2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=5, CD=1,AD>AB,点B到直线AD的距离为BE. ①求BE的长; ②若M,N分别是AB,AD边上的动点,求△MNC周长的最小值.
设函数 y=x+ax (a>0,x>0),由上述结论可知:当 x= a 时,
该函数有最小值为 2 a .
应用举例
已知函数为 y1=x(x>0)与函数 y2=4x (x>0),则当 x= 4 =2 时,
y1+y2=x+4x 有最小值为 2 4 =4.
重点题型
题题组组训训练练
解决问题 (1)已知函数为 y1=x+3(x>-3)与函数 y2=(x+3)2+9(x>-3),当 x 取何值时,yy21 有最小值?最小值是多少? (2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试 费用,共 490 元;二是设备的租赁使用费用,每天 200 元;三是设 备的折旧费用,它与使用天数的平方成正比,比例系数为 0.001.若 设该设备的租赁使用天数为 x 天,则当 x 取何值时,该设备平均每 天的租赁使用成本最低?最低是多少元?
阅读型题目——新定义
解答这类问题,只有在理解有关阅读材料 的内容基础上,才能进行正确解答.学会数学阅 读尤为重要,学习过程中要加强数学三种语言 相互转化能力的训练.
新定义
方法提炼:
解决此类问题必须理解清楚有关 概念定义),公式,规律,方法等 等,明确几何元素之间的数量关系和 位置关系,在没有明确确定几何元素 的数量关系或涉及运动变化时,要全 面考虑问题,必要时进行分类讨论.
【2019年滚动迁移】中考专题复习资料
阅读型题目--新定义
阅读型题目
【专题解读】
这类题目给学生呈现没有学过的数学知识、 数学规律、数学方法等情境,要求考生通过自 主阅读、自主操作、独立思考等方式进行即时 学习,然后进行概括、归纳、抽象,并运用所 学知识解决相关的问题.
试题旨在考查通过数学阅读获取知识,从 已有的知识出发,建构新的知识的能力.
题库-新定义与阅读理解题
新定义与阅读理解题类型一 新法则、运算学习型1.我们规定:若(,),(,),m a b n c d ==则.m n ac bd =+如(1,2),(3,5),m n ==则13+25=13.m n =⨯⨯(1)已知(2,4),(2,-3),m n ==求m n ;(2)已知(,1),(,1)m x a n x a x =-=-+求,y m n =问,y m n =的函数图象与一次函数1y x =-的图象是否相交,请说明理由.解:(1)22+4(3)=8;m n =⨯⨯--(2)不相交,理由如下:2()(1)m n x a x =-++=22(21)1x a x a --++,∴22(21)1y x a x a =--++,与一次函数y=x-1联立得:22(21)11,x a x a x --++=-化简得22220,x ax a -++=∵2224(2)4(2)80,b ac a a -=--+=-<∴方程无实数解,两函数图象无交点.2.对x ,y 定义一种新运算 T ,规定:T (x,y )=2ax by x y++(其中a 、b 均为非零常数),这里等式右边是通常的四则运算,;例如T (0,1)=01201a b b ⨯+⨯=⨯+.已知T (1,-1) =-2,T (4,2)=1. (1)求a,b 的值;(2)若T (m ,m +3) =-1,求m 的值.解:(1)(1,1)2,21a b T --==--即a -b =-2 ,T (4,2)=42182a b +=+,即2a +b =5 ,解得a=1,b=3;(2)根据题意得3(3)12(3)m mm m++=-++,解得127m=-,经检验,127m=-是方程的解.3.定义新运算:(a,b)⊗(c,d)=(ac,b d),(a,b)⊕(c,d)=(a+c,b+d)(a,b)*(c,d)=a2+c2-b d .(1)求(1,2)*(3,-4)的值;(2)已知(1,2)⊗(p,q)=(2,-4),分别求出p与q的值;(3)在(2)的条件下,求(1,2)⊕(p,q)的结果;(4)已知x2+2xy+y2=5,x2-2xy+y2=1,求(x,5)*(y,xy)的值.解:(1)∵(a,b)*(c,d)=a2+c2-bd,∴(1,2)*(3,-4)=12+32-2×(-4) =1+9+8 =18;(2)∵(a,b)⊗(c,d)=(ac,bd),∴(1,2)⊗(p,q)=(p,2q),∵(1,2)⊗(p,q)=(2,-4),∴p=2,2q=-4,∴q=-2;(3)∵q=-2,p=2,(a,b)⊕(c,d)=(a+c,b+d),∴(1,2)⊕(p,q) =(1,2)⊕(2,-2) =(3,0);(4)∵x2+2xy+y2=5,x2-2xy+y2=1,∴x2+y2=3,xy=1,∵(a,b)*(c,d)=a2+c2-bd,∴(x,5)*(y,xy) =x2+y2-5xy =3-5 =-2.4. 我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad ).如图①,在△ABC 中,AB =AC ,顶角A 的正对记作sad A ,这时sad A =BC AB=底边腰,容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解答下列问题:(1)sad 60°= ___________,sad 90°=____________;(2)如图②,已知sin A =35,其中∠A 为锐角,试求sad A 的值.第4题图解:(1)1,2;(2)∵sin A =35,BC ⊥AC,∴设AB =5a ,BC =3a ,则AC =4a ,如解图,在AB 上取AD =AC =4a ,作DE ⊥AC 于点E ,则DE =AD ·sin A =4a ·35=125a ,AE =AD ·cos a =4a ·45=165a,CE =4a 165-a =45a ,CD =2222412410()()555a a CE DE a +=+=,∴sad A =105CD AC =.第4题解图类型二 新概念学习型1.观察下表我们把某格中字母和所得到的多项式称为特征多项式,例如第1格的“特征多项式”为4x +y ,回答下列问题:(1)第3格的“特征多项式”为_________,第4格的“特征多项式”为_________,第n 格的“特征多项式”为_________;(2)若第1格中的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16. ①求x ,y 的值;②在①的条件下,第n 格的“特征多项式”是否有最小值?若有,求出最小值和相应的n 值,若没有,请说明理由.解:(1)16x +9y ,25x +16y ,(n +1)2x +n 2y ;(2)①依题意得4109416x y x y +=-⎧⎨+=-⎩, 解得247267x y ⎧=-⎪⎪⎨⎪=⎪⎩. ②有,理由如下:设最小值为W ,依题意得:22222426(1)(1)77W n x n y n n =++=-++ 224824777n n =-- 22312(12)77n =--, ∴有最小值3127-,相应的n 值为12.2.已知抛物线21111y a x b x c =++,22222y a x b x c =++,且满足111222(0,1)a b c k k a b c ===≠,则抛物线12,y y 互为“友好抛物线”. (1)若y 2有最大值8,则y 1也有最大值,这样的说法对吗,为什么?(2)结合二次函数的特点和你对“友好抛物线”的理解,写出至少2条结论.解:(1)不对.理由如下: 如果y 2的最值是m ,则y 1的最值是221112221244844a c b a c b k k a a --==, 当k>0时,y 1有最大值为8k ;当k<0时,y 1有最小值为8k .(2)①当a 1与a 2符号相反时其开口方向相反,当12a a ≠时,两抛物线开口大小不同,②y 1与y 2的对称轴相同; ③如果1y 与x 轴有2个不同的交点,则y 2与x 轴也有两个不同的交点.(写出2条合理结论即可)3.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y =x 2-2x -3,AB 为半圆的直径,求这个“果圆”被y 轴截得的弦CD 的长.第3题图解:如解图,连接AC ,BC ,第3题解图∵抛物线的解析式为y=x2-2x-3,∴点D的坐标为(0,-3),∴OD=3,设y=0,则0=x2-2x-3,解得:x=-1或x=3,∴A(-1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AO•BO=3,∴CO=3,∴CD=CO+OD=3+3.4.定义:如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.(1)请根据定义判断下列命题的真假;(请在真命题后的括号内打“√”,假命题后的括号内打“×”)①等腰直角三角形一定不存在匀称中线. ( )②如果直角三角形是匀称三角形,那么匀称中线一定是较长直角边上的中线. (2)已知:如图①,在Rt△ABC中,∠C=90°,AC>BC,若△ABC是“匀称三角形”,求BC:AC:AB的值;(3)拓展应用:如图②,△ABC是O的内接三角形,AB>AC,∠BAC=45°,将△ABC绕点A逆时针旋转45°得到△ADE,点B的对应点为D,连接CD交O于M,连接AM.①请根据题意用实线在图②中补全图形;②若△ADC是“匀称三角形”,求tan∠AMC的值.第4题图解:(1)①√;②√.(2)∵∠C=90°,AC>BC,如解图①,由(1)可知△ABC的匀称中线是AC边上的中线,设D为AC的中点,则BD为匀称中线.设AC=2a,则CD=a,BD=2a.∵∠C=90°,∴BC=3a,∴AB=22a a a+=,(2)(3)7∴BC:AC:AB=3:2:7;第4题解图①(3)①根据题意补全图形如解图②;第4题解图②②∵△ABC 绕点A 逆时针旋转45°得到△ADE ,∴∠DAE =∠BAC =45°,AD =AB ,∴∠DAC =90°,AD>AC ,∵△ADC 是匀称三角形,∴AD :AC =2:3,即AB :AC =2:3,如解图③,过点C 作CH ⊥AB 于点H ,第4题解图③则∠AHC =∠BHC =90°,设AC =3k ,则AH =CH =26322kk =,AB=2k , ∴BH =646222k k k --=, ∴tan B =632625462k CH BH k +==-, 在O 中,由∠AMC =∠B 得tan ∠AMC =tan B=3265+. 类型三 新解题方法型 1.如果我们要计算231222++++++99100…22的值,我们可以用如下的方法:解:设231222++S =++++99100…22,①等式两边同乘以2,则有:231012222+++2S =+++99100…22,②②-①得,101221,S S -=-即231011222++21++++=-99100…22.【理解运用】计算:(1)231333++++++99100…33;(2)2313333+-+-+-99100…3.解:(1)设231333++S =++++99100…33,①等式两边同乘以3,得:231013333+++3S =+++99100…33,②②-①得,101231,S =- 即101312S -=, 则原式=101312-. (2)设2313333+S =-+-+-99100…3,①等式两边同乘以3,得:23433333S =-+-+100101…-3+3,②②+①得,101431,S =+ 即101314S +=, 则原式=101314+. 2. 阅读材料:已知方程210a a +-=,求一个一元二次方程,使它的根分别是已知方程根的2倍. 解:设所求方程的根为x ,则x =2a , ∴2xa =, 把2x a =代入210a a +-=,得2()()1022x x +-=,化简得2240x x +-=,所以所求方程为2240x x +-=.这种代换法求新方程的方法,我们称为“换根法”.根据以上阅读材料,解决下列问题:(1)已知方程220a a +-=,求关于m 的一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为___________;(2)已知关于x 的一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.解:(1)220m m --=;【解法提示】设所求方程的根为m ,则m =-a ,∴a =-m ,把a =-m 代入220a a --=中,得2()20m m ---=,所以所求方程为220m m --=;(2)设所求方程的根为n ,则1(0)n x x=≠, 所以1(0)x n n =≠, 把1x n =代入2ax bx c ++=0中, 得211()()a b c n n++=0, 化简得:20cn bn a ++=,当c =0时,20ax bx +=,方程20ax bx +=有一个根为0(0没有倒数,舍去),所以c ≠0,∴所求方程为20(0)cn bn a c ++=≠.3. 在△ABC 中,AB 、BC 、AC 三边的长分别为5、10、13,求这个三角形的面积. 小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图 所示,这样不需求△ABC 的高,而借用网格就能计算出它的面积.第3题图(1)△ABC 的面积等于___________;思维拓展:(2)我们把上述求△ABC 面积的方法叫做构图法,若△ABC 三边的长分别为5217(0)a a a a >、2、,请利用图②的正方形网格(每个小正方形的边长为a )画出相应的△ABC ,并求出它的面积;探索创新(3)若△ABC 三边的长分别为2216m n +、2294m n +、2244m n +(0,0,m n >>且m n =),试运用构图法求出这个三角形的面积. 解:(1)72;(2)画图如解图①:第3题解图①21112422243222ABC S a a a a a a a a a =⨯-⨯⨯-⨯⨯-⨯=;(3)构造△ABC 如解图②所示,第3题解图11134432225222ABC S m n m n m n m n mn =⨯-⨯⨯-⨯⨯-⨯⨯=. 4. 阅读下列材料:已知任意三角形的三边长,如何求三角形面积?古希腊的几何学家海伦(HerOn,约公元50年)解决了这个问题,在他的著作《度量》一书中给出了计算公式------海伦公式:()()()S p p a p b p c =---(其中A ,B ,C 是三角形的三边长,2a b c p ++=,S 为三角形的面积),并给出了证明.例如:在△ABC 中,a =3,b =4,c =5,那么它的面积可以这样计算:∵a =3,b =4,c =5, ∴62a b c p ++==, ∴()()()63216S p p a p b p c =---=⨯⨯⨯=.事实上,对于已知任意三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.根据上述材料,解答下列问题:如图,△ABC 中,BC =5,AC =6,AB =9.(1)用海伦公式求△ABC 的面积;(2)求△ABC 得内切圆半径r .第4题图解:(1)∵BC =5,AC =6,AB =9, ∴(569)102p ++==, ∴10(105)(106)(109)102S =⨯---=;(2)如解图,连接AO ,BO ,CO ,第4题解图∵ABC AOB BOC AOC S S S S =++, ∴111102956222r r r =⨯+⨯+⨯, 即956()102222r ++=, ∴10102r =, 解得2r =,∴△ABC 的内切圆半径为2.。
专题6 新定义与阅读理解型问题
专题6新定义与阅读理解型问题一、选择题1.(2019·柳州)定义:形如a+bi的数称为复数(其中a和b为实数,i为虚数单位,规定i2=-1),a称为复数的实部,b称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如(1+3i)2=12+2×1×3i+(3i)2=1+6i+9i2=1+6i-9=-8+6i,因此,(1+3i)2的实部是-8,虚部是6.已知复数(3-mi)2的虚部是12,则实部是( )A.-6 B.6 C.5 D.-52.(2019·百色)阅读理解:已知两点M(x1,y1),N(x2,y2),则线段MN的中点K(x,y)的坐标公式为:x=x1+x22,y=y1+y22.如图,已知点O为坐标原点,点A(-3,0),⊙O经过点A,点B为弦P A的中点.若点P(a,b),则有a,b 满足等式:a2+b2=9.设B(m,n),则m,n满足的等式是( )A.m2+n2=9B.(m-32)2+(n2)2=9C.(2m+3)2+(2n)2=3D.(2m+3)2+4n2=93.(2019·随州)“分母有理化”是我们常用的一种化简的方法,如:2+32-3=(2+3)(2+3)(2-3)(2+3)=7+4 3 ,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于3+ 5 -3- 5 ,设x=3+ 5 -3- 5 ,易知3+ 5 >3- 5 ,故x>0,由x2=(3+ 5 -3- 5 )2=3+ 5 +3- 5 -2(3+5)(3-5)=2,解得x= 2 ,即3+ 5 -3- 5 = 2 .根据以上方法,化简3-23+2+6-3 3 -6+3 3 后的结果为( )A.5+3 6 B.5+ 6C.5- 6 D.5-3 6二、填空题4.定义:a*b=ab,则方程2*(x+3)=1*(2x)的解为____.5.已知:[x]表示不超过x的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x}=x-[x],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}=____.6.(2019·贵港)我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,且b2-4a>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(-1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当-1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=-1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4.其中正确结论的个数是____.三、解答题7.(2019·黔东南州)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如M{1,2,9}=1+2+93=4,min{1,2,-3}=-3,min(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(-2)2,22,-22}=________,②min{sin 30°,cos 60°,tan 45°}=________;(2)若min(3-2x,1+3x,-5}=-5,则x的取值范围为________;(3)若M{-2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.8.(2019·荆州)若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y =ax2+bx+c(a≠0)为y=kx+t(k≠0)的伴随函数,如:y =x2+1是y=x+1的伴随函数.(1)若y=x2-4是y=-x+p的伴随函数,求直线y=-x+p与两坐标轴围成的三角形的面积;(2)若函数y=mx-3(m≠0)的伴随函数y=x2+2x +n与x轴两个交点间的距离为4,求m,n的值.9.(2019·镇江)【材料阅读】地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图1中的⊙O).人们在北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图2所示的工具尺(古人称它为“复矩”),尺的两边互相垂直,角顶系有一段棉线,棉线末端系一个铜锤,这样棉线就与地平线垂直.站在不同的观测点,当工具尺的长边指向北极星时,短边与棉线的夹角α的大小是变化的.【实际应用】观测点A在图1所示的⊙O上,现在利用这个工具尺在点A处测得α为31°,在点A所在子午线往北的另一个观测点B,用同样的工具尺测得α为67°.PQ 是⊙O的直径,PQ⊥ON.(1)求∠POB的度数;(2)已知OP=6400 km,求这两个观测点之间的距离即⊙O上AB的长.(π取3.1)专题6新定义与阅读理解型问题一、选择题1.(2019·柳州)定义:形如a+bi的数称为复数(其中a和b为实数,i为虚数单位,规定i2=-1),a称为复数的实部,b称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如(1+3i)2=12+2×1×3i+(3i)2=1+6i+9i2=1+6i-9=-8+6i,因此,(1+3i)2的实部是-8,虚部是6.已知复数(3-mi)2的虚部是12,则实部是( C )A.-6 B.6 C.5 D.-52.(2019·百色)阅读理解:已知两点M(x1,y1),N(x2,y2),则线段MN的中点K(x,y)的坐标公式为:x=x1+x22,y=y1+y22.如图,已知点O为坐标原点,点A(-3,0),⊙O经过点A,点B为弦P A的中点.若点P(a,b),则有a,b 满足等式:a2+b2=9.设B(m,n),则m,n满足的等式是( D )A.m2+n2=9B.(m-32)2+(n2)2=9C.(2m+3)2+(2n)2=3D.(2m+3)2+4n2=93.(2019·随州)“分母有理化”是我们常用的一种化简的方法,如:2+32-3=(2+3)(2+3)(2-3)(2+3)=7+4 3 ,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于3+ 5 -3- 5 ,设x=3+ 5 -3- 5 ,易知3+ 5 >3- 5 ,故x>0,由x2=(3+ 5 -3- 5 )2=3+ 5 +3- 5 -2(3+5)(3-5)=2,解得x= 2 ,即3+ 5 -3- 5 = 2 .根据以上方法,化简3-23+2+6-3 3 -6+3 3 后的结果为( D )A.5+3 6 B.5+ 6C.5- 6 D.5-3 6二、填空题4.定义:a*b=ab,则方程2*(x+3)=1*(2x)的解为__x=1__.5.已知:[x]表示不超过x的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x}=x-[x],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}=__1.1__.6.(2019·贵港)我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,且b2-4a>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(-1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当-1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=-1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4.其中正确结论的个数是__4__.三、解答题7.(2019·黔东南州)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如M{1,2,9}=1+2+93=4,min{1,2,-3}=-3,min(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(-2)2,22,-22}=________,②min{sin 30°,cos 60°,tan 45°}=________;(2)若min(3-2x,1+3x,-5}=-5,则x的取值范围为________;(3)若M{-2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.解:(1)①M{(-2)2,22,-22}=43,②min{sin 30°,cos 60°,tan 45°}=12; (2)∵min (3-2x ,1+3x ,-5}=-5,∴⎩⎨⎧3-2x≥-5,1+3x≥-5,解得-2≤x ≤4; (3)∵M {-2x ,x 2,3}=2,∴-2x +x 2+33=2,解得x =-1或3;(4)∵M {2,1+x ,2x }=min {2,1+x ,2x },又∵2+1+x +2x 3 =x +1,∴⎩⎨⎧x +1≤2,x +1≤2x ,解得1≤x ≤1,∴x =1.8.(2019·荆州)若二次函数y =ax 2+bx +c (a ≠0)图象的顶点在一次函数y =kx +t (k ≠0)的图象上,则称y =ax 2+bx +c (a ≠0)为y =kx +t (k ≠0)的伴随函数,如:y =x 2+1是y =x +1的伴随函数.(1)若y =x 2-4是y =-x +p 的伴随函数,求直线y =-x +p 与两坐标轴围成的三角形的面积;(2)若函数y=mx-3(m≠0)的伴随函数y=x2+2x +n与x轴两个交点间的距离为4,求m,n的值.解:(1)∵y=x2-4,∴其顶点坐标为(0,-4),∵y=x2-4是y=-x+p的伴随函数,∴(0,-4)在一次函数y=-x+p的图象上,∴-4=0+p.∴p=-4,∴一次函数为:y=-x-4,∴一次函数与坐标轴的交点分别为(0,-4),(-4,0),∴直线y=-x+p与两坐标轴围成的三角形的面积为:12×4×4=8;(2)设函数y=x2+2x+n与x轴两个交点的横坐标分别为x1,x2,则x1+x2=-2,x1x2=n,∴|x1-x2|=(x1x+x2)2-4x1x2=4-4n ,∵函数y=x2+2x+n与x轴两个交点间的距离为4,∴4-4n =4,解得,n=-3,∴函数y=x2+2x+n为:y=x2+2x-3=(x+1)2-4,∴其顶点坐标为(-1,-4),∵y=x2+2x+n是y=mx-3(m≠0)的伴随函数,∴-4=-m-3,∴m=1.9.(2019·镇江)【材料阅读】地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图1中的⊙O).人们在北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图2所示的工具尺(古人称它为“复矩”),尺的两边互相垂直,角顶系有一段棉线,棉线末端系一个铜锤,这样棉线就与地平线垂直.站在不同的观测点,当工具尺的长边指向北极星时,短边与棉线的夹角α的大小是变化的.【实际应用】观测点A在图1所示的⊙O上,现在利用这个工具尺在点A处测得α为31°,在点A所在子午线往北的另一个观测点B,用同样的工具尺测得α为67°.PQ 是⊙O的直径,PQ⊥ON.(1)求∠POB的度数;(2)已知OP=6400 km,求这两个观测点之间的距离即⊙O上AB的长.(π取3.1)解:(1)设点B的切线CB交ON延长线于点E,HD⊥BC于D,CH⊥BH交BC于点C,如图所示:则∠DHC=67°,∵∠HBD+∠BHD=∠BHD+∠DHC=90°,∴∠HBD=∠DHC=67°,∵ON∥BH,∴∠BEO=∠HBD=67°,∴∠BOE=90°-67°=23°,∵PQ⊥ON,∴∠POE=90°,∴∠POB=90°-23°=67°;(2)同(1)可证∠POA=31°,∴∠AOB=∠POB-∠POA=67°-31°=36°,∴AB=36×π×6400180=3968(km).。
新定义阅读理解题(10道)
新定义阅读理解题1.阅读下列材料,解答下列问题:材料一:一个三位以上的自然数,如果该自然数的末三位表示的数与末三位之前的数字表示的数之差是11的倍数,我们称满足此特征的数叫“网红数”.如:65362,362-65=297=11×27,称65362是“网红数”.材料二:对任意的自然数p 均可分解为p =100x +10y +z (x ≥0,0≤y ≤9,0≤z ≤9且想,x ,y ,z 均为整数),如:5278=52×100+10×7+8,规定:G (p )= zx x z x x -++-+112)( . (1)求证:任意两个“网红数”之和一定能被11整除;(2)已知:s =300+10b +a ,t =1000b +100a +1142(1≤a ≤7,0≤b ≤5,且a 、b 均为整数),当s +t 为“网红数”时,求G (t )的最大值.(1)证明:设两个“网红数”为mn ,ab (n ,b 分别为mn ,ab 末三位表示的数,m ,a 分别为mn ,ab 末三位之前的数字表示的数),则n-m=11k1,b-a=11k2,∴mn+ab=1001m+1001a+11(k1+k2)=11(91m+91a+k1+k2). 又∵k1,k2,m,n均为整数,∴91m+91a+k1+k2为整数,∴任意两个“网红数”之和一定能被11整除.(2)解:s=3×100+10b+a,t=1000(b+1)+100(a+1)+4×10+2,S+t=1000(b+1)+100(a+4)+10(b+4)+a+2,①当1≤a≤5时,s+t=)1ab+++,+44b)()()(a(2则)b4+-(b+1)能被11整除,+a+4)()((2a∴101a+9b+441=11×9a+2a+11b-2b+40×11+1能被11整除,∴2a-2b+1能被11整除.∵1≤a≤5,0≤b≤5,∴-7≤2a-2b+1≤11,∴2a-2b+1=0或11,1,∴a=5,b=0,∴t=1642,G(1642)=1714②当6≤a≤7时,s+t=)2ab+-6+,+)()()((2a4b则))()((2a 4b 6a ++--(b +2)能被11整除,∴101a +9b -560=11×9a +2a +11b -2b -51×11+1能被11整除, ∴2a -2b +1能被11整除.∵6≤a ≤7,0≤b ≤5,∴3≤2a -2b +1≤15,∴2a -2b +1=11,∴⎩⎨⎧==1b 6a ,⎩⎨⎧==2b 7a , ∴t =2742或3842,G (2742)=28251,G (3842)=39361, 综上,G (t )的最大值为39361. 2.若将自然数中能被3整除的数,在数轴上的对应点称为“3倍点”,取任意的一个“3倍点”P ,到点P 距离为1的点所对应的数分别记为a ,b .定义:若数K =a 2+b 2-ab ,则称数K 为“尼尔数”.例如:若P 所表示的数为3,则a =2,b =4,那么K =22+42-2×4=12;若P 所表示的数为12,则a =11,b =13,那么K =132+112-13×11=147,所以12,147是“尼尔数”.(1)请直接判断6和39是不是“尼尔数”,并且证明所有“尼尔数”一定被9除余3;(2)已知两个“尼尔数”的差是189,求这两个“尼尔数”. 解:(1)6不是尼尔数,39是尼尔数.证明:设P 表示的数为3m ,则a =(3m -1),b =(3m +1), K =(3m -1)2+(3m +1)2-(3m -1)(3m +1)=9m 2+3,∵m 为整数,∴m 2为整数,∴9m 2+3被9除余3;(2)设这两个尼尔数分别是K 1,K 2,将两个“尼尔数”所对应的“3倍点数”P 1,P 2分别记为3m 1,3m 2.∴K 1-K 2=9m 12-9m 22=189,∴m 12-m 22=21,∵m 1,m 2都是整数,∴m 1+m 2=7,m 1-m 2=3,∴⎩⎨⎧==2m 5m 21, ∴⎩⎨⎧==39k 228k 21.3.若在一个两位正整数N的个位数字与十位数字之间添上数字 2 ,组成一个新的三位数,我们称这个三位数为N的“诚勤数”,如 34 的“诚勤数”为 324 ;若将一个两位正整数M加 2 后得到一个新数,我们称这个新数为M的“立达数”,如 34 的“立达数”为 36.(1)求证:对任意一个两位正整数A,其“诚勤数”与“立达数”之差能被 6 整除;(2)若一个两位正整数B的“立达数”的各位数字之和是B的各位数字之和的一半,求B的值.解:(1)设A的十位数字为a,个位数字为b,则A=10a+b,它的“诚勤数”为100a+20+b,它的“立达数”为10a+b+2,∴100a+20+b-(10a+b+2)=90a+18=6(15a+3),∵a为整数,∴15a+3是整数,则“诚勤数”与“立达数”之差能被6整除;(2)设B =10m +n ,1≤m ≤9,0≤n ≤9(B 加上2后各数字之和变小,说明个位发生了进位),∴B +2=10m +n +2,则B 的“立达数”为10(m +1)+(n +2-10),∴m +1+n +2﹣10=21(m +n ),整理,得m +n =14,∵1≤m ≤9,0≤n ≤9,∴⎩⎨⎧==6n 8m 、⎩⎨⎧==8n 6m 、⎩⎨⎧==5n 9m 、⎩⎨⎧==9n 5m 、⎩⎨⎧==7n 7m , 经检验:77、86和95不符合题意,舍去,∴所求两位数为68或59.4.一个正偶数k 去掉个位数字得到一个新数,如果原数的个位数字的2倍与新数之和与19的商是一个整数,则称正偶数k 为“魅力数”,把这个商叫做k 的魅力系数,记这个商为F (k ).如:722去掉个位数字是72,2的2倍与72的和是76,76÷19=4,4是整数,所以722是“魅力数”,722的魅力系数是4,记(722)4F =.(1)计算:(304)(2052)F F +;(2)若m 、n 都是“魅力数”,其中3030101m a =+,40010n b c =++(0≤a ≤9,0≤b ≤9,0≤c ≤9,a 、b 、c 是整数),规定:(,)a c G m n b-=.当()()24F m F n +=时,求(,)G m n 的值. 解:(1)∵30+2×4=38,38÷19=2,∴F (304)=2.∵205+2×2=209,209÷19=11, ∴F (2025)=11.∴F (304)+F (2052)=13;(2)∵m =3030+101a =3000+100a +30+a ,∴F (m )=19a 23a 10300+++=19a 12303+=15+19a 1218+. ∵m 是“魅力数”, ∴19a 1218+是整数. ∵0≤a ≤9,且a 是偶数,∴a =0,2,4,6,8.当a =0时,19a 1218+=1918不符合题意. 当a =2时,19a 1218+=1942不符合题意. 当a =4时,19a 1218+=1966不符合题意.当a =6时,19a 1218+=1990不符合题意. 当a =8时,19a 1218+=19114=6符合题意. ∴a =8,此时m =3838,F (m )=F (3838)=6+15=21. 又∵F (m )+F (n )=24,∴F (n )=3.∵n =400+10b +c ,∴F (n )=19c 2b 40++=3, ∴b +2c =17,∵n 是“魅力数”,∴c 是偶数,又∵0≤c ≤9,∴c =0,2,4,6,8.当c =0时,b =17不符合题意.当c =2时,b =13不符合题意.当c =4时,b =9符合题意.此时,G (m ,n )=b c a -=948-=94. 当c =6时,b =5符合题意.此时,G (m ,n )=b c a -=568-=52. 当c =8时,b =1符合题意.此时,G (m ,n )=b c a -=188-=0. ∵ 94>52>0,4.∴G(m,n)的最大值是95.已知一个正整数,把其个位数字去掉,再将余下的数加上个位数字的4倍,如果和是13的倍数,则称原数为“超越数”.如果数字和太大不能直接观察出来,就重复上述过程.如:1131:113+4×1=117,117÷13=9,所以1131是“超越数”;又如:3292:329+4×2=337,33+4×7=61,因为61不能被13整除,所以3292不是“超越数”.(1)请判断42356是否为“超越数”(填“是”或“否”),若ab+4c=13k(k为整数),化简abc除以13的商(用含字母k的代数式表示).(2)一个四位正整数N=abcd,规定F(N)=|a+d2﹣bc|,例如:F(4953)=|4+32﹣5×9|=32,若该四位正整数既能被13整除,个位数字是5,且a=c,其中1≤a≤4.求出所有满足条件的四位正整数N中F(N)的最小值.解:(1)否,4235+4×6=4259,425+4×9=461,46+4×1=50,因为50不能被13整除,所以42356不是超越数.∵ab+4c=13k,∴10a+b+4c=13k,∴10a+b=13k﹣4c,∵abc=100a+10b+c=10(10a+b)+c=130k﹣40c+c=130k﹣39c=13(10k﹣3c),abc=10k﹣3c;∴13(2)由题意得d=5,a=c,∴N=1000a+100b+10c+5,∵N能被13整除,∴设100a+10b+c+4×5=13k,∴101a+10b+20=13k,且a为正整数,b,k为非负整数,1≤a≤4,∴a=2,b=9,k=24 或a=3,b=8,k=31,或a=4,b =7,k=38,∴F(N)=|2+25﹣18|=9,或F(N)=|3+25﹣24|=4,或F (N )=|4+25﹣28|=1,∴F (N )最小值为1.6.一个两位正整数n ,如果n 满足各数位上的数字互不相同且均不为0,那么称n 为“启航数”,将n 的两个数位上的数字对调得到一个新数'n .把'n 放在n 的后面组成第一个四位数,把n 放在'n 的后面组成第二个四位数,我们把第一个四位数减去第二个四位数后再除以11所得的商记为()F n ,例如:23n =时,32n '=,23323223(23)8111F -==-. (1)计算(42)_____;F = 若m 为“启航数”,()F m 是一个完全平方数,求()F m 的值;(2)s t 、为“启航数”,其中10,10s a b t x y =+=+(1≤b ≤a ≤9,1≤x 、y ≤5,且y x b a ,,,为整数) 规定:(,)s t K s t t-=,若()F s 能被7整除,且()()81162F s F t y +-=,求(,)K s t 的最大值.解:(1)F (42)=162,设m =pq (1≤p ≤q ≤9,且p 、q 为整数),则()=81()11pqqp qppq F m p q -=-, ∵()F m 完全平方数,∴p q -为完全平方数,∵1≤p ≤q ≤9,且p 、q 为整数,∴0<p -q ≤8,∴14p q -=或,∴F (m )=81或324;(2)由题意知:s =ab ,t =xy (1≤b ≤a ≤9,1≤x 、y ≤5,且a b x y 、、、为整数),∴()81()F s a b =-,()81()F t x y =-,∵()F s 能被7整除,∴81()7a b -为整数, 又∵1≤b ≤a ≤9,∴0<a -b ≤8,∴7a b -=,∴9,28,1a b a b ====或,∴s =92或81.又∵()()81162F s F t y +-=,∴81(a -b )+81(x -y )-81y =162,∴2y =x +5,∵1≤x ,y ≤5且x y ≠,∴1,33,4x y x y ====或,∴t =13 或34, ∴79(92,13)13K =,K (92,34)=3458,68(81,13)13K =,47(81,34)34K = K max =1379. 7.若一个三位数,其个位数加上十位数等于百位数,可表示为t =100(x +y )+10y +x (x +y ≤9),则称实数t 为“加成数”,将t 的百位作为个位,个位作为十位,十位作为百位,组成一个新的三位数h .规定q =t ﹣h ,f (m )=9q ,例如:321是一个“加成数”,将其百位作为个位,个位作为十位,十位作为百位,得到的数h =213,∴q =321﹣213=108,f (m )=9108=12. (1)当f (m )最小时,求此时对应的“加成数”的值;(2)若f (m )是24的倍数,则称f (m )是“节气数”,猜想这样的“节气数”有多少个,并求出所有的“节气数”.解:(1)∵f (m )=9q,∴当f(m)最小时,q最小,∵t=100(x+y)+10y+x=101x+110y,h=100y+10x+x+y=101y+11x,∴q=t﹣h=101x+110y﹣(101y+11x)=9y+90x,且1≤y≤9,0≤x≤9,x、y为正整数,当x=0,y=1时,q=9,此时对应的“加成数”是110;(2)∵f(m)是24的倍数,设f(m)=24n(n为正整数),q,q=216n,则24n=9由(1)知:q=9y+90x=9(y+10x),∴216n=9(y+10x),24n=y+10x,(x+y<10)①当n=1时,即y+10x=24,解得:x=2,y=4,则这样的“节气数”是24;②当n=2时,即y+10x=48,解得:x=4,y=8,x+y=12>10,不符合题意;③当n=3时,即y+10x=72,解得:x=7,y=2,则这样的“节气数”是72;④当n=4时,即y+10x=96,解得:x=9,y=6,x+y=15>10,不符合题意;⑤当n=5时,即y+10x=120,没有符合条件的整数解,综上,这样的“节气数”有2个,分别为24,72.8.在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568(填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.(1)解:是;【解法提示】∵361568﹣315668=45900,且45900÷17=2700,∴根据最佳拍档数的定义可知,31568是“最佳拍档数”;故答案为:是设“最佳拍档数”N的十位数字为x,百位数字为y,则个位数字为8﹣x,y≥x,N=5000+100y+10x+8﹣x=100y+9x+5008,∵N是四位“最佳拍档数”,∴50000+6000+100y+10x+8﹣x﹣[50000+1000y+100x+60+8﹣x],=6000+100y+9x+8﹣1000y﹣100x﹣68+x,=5940﹣90x﹣900y,=90(66﹣x﹣10y),∴66﹣x﹣10y能被17整除,①x=2,y=3时,66﹣x﹣10y=34,能被17整除,此时N为5326;②x=3,y=8时,66﹣x﹣10y=﹣17,能被17整除,此时N为5835;③x=5,y=1时,66﹣x﹣10y=51,能被17整除,但x>y,不符合题意;④x=6,y=6时,66﹣x﹣10y=0,能被17整除,此时N为5662;⑤x=8,y=3时,66﹣x﹣10y=28,不能被17整除,但x>y,不符合题意;⑥当x=9,y=4时,66﹣x﹣10y=17,能被17整除,但x>y,不符合题意;综上,所有符合条件的N的值为5326,5835,5662;(2)证明:设三位正整数K的个位数字为x,十位数字为y,百位数字为z,它的“顺数”:1000z+600+10y+x,它的“逆数”:1000z+100y+60+x,∴(1000z+600+10y+x)﹣(1000z+100y+60+x)=540﹣90y =90(6﹣y),∴任意三位正整数K的“顺数”与“逆数”之差一定能被30整除,设四位正整数K的个位数字为x,十位数字为y,百位数字为z,千位数字为a,∴(10000a+6000+100z+10y+x)﹣(10000a+1000z+100y+60+x)=5940﹣900z﹣90y=90(66﹣10z﹣y),∴任意四位正整数K的“顺数”与“逆数”之差一定能被30整除,同理得:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.9.若实数a可以表示成两个连续自然数的倒数差,即a=n 1-1n +1,那么我们称a 为第n 个“1阶倒差数”,例如21=1-21,∴21是第1个“1阶倒差数”,61=21-31,∴16是第2个“1阶倒差数”.同理,若b =n 1-2n 1+,那么,我们称b 为第n 个“2阶倒差数”.(1)判断132是否为“1阶倒差数”;直接写出第5个“2阶倒差数”;(2)若c ,d 均是由两个连续奇数组成的“2阶倒差数”,且d 1-c 1=22,求c ,d 的值.解:(1)132不是“1阶倒差数”,235;【解法提示】∵32=1×32=2×16=4×8,不是两个连续自然数的积, ∴321不是“1阶倒差数”. 第5个“2阶倒差数”为51-71=352. (2)设m 是由两个连续奇数2x -1,2x +1组成的“2阶倒差数”,则m =1x 21--1x 21+=))(()(1x 21x 21x 21x 2-+--+=1x 422-.∵c ,d 是两个连续奇数组成的“2阶倒差数”,∴可设c =1y 422-,d =1z 422-, ∵d 1-c 1=22,∴4z 2-12-4y 2-12=22,即z 2-y 2=11,∴(z +y )(z -y )=11>0,∴z >y .∵11=1×11,∴⎩⎨⎧=-=+1y z 11y z ,解得⎩⎨⎧==6z 5y , ∴c =15422-⨯=299,d =16422-⨯=2143. 10.任意一个正整数n ,都可以表示为:n =a ×b ×c (a ≤b ≤c ,a ,b ,c 均为正整数),在n 的所有表示结果中,如果|2b ﹣(a +c )|最小,我们就称a ×b ×c 是n 的“阶梯三分法”,并规定:F (n )=b c a +,例如:6=1×1×6=1×2×3,因为|2×1﹣(1+6)|=5,|2×2﹣(1+3)|=0,5>0,所以1×2×3是6的阶梯三分法,即F(6)=231+=2.(1)如果一个正整数p是另一个正整数q的立方,那么称正整数p是立方数,求证:对于任意一个立方数m,总有F (m)=2;(2)t是一个两位正整数,t=10x+y(1≤x≤9,0≤y≤9,且x≥y,x+y≤10,x和y均为整数),t的23倍加上各个数位上的数字之和,结果能被13整除,我们就称这个数t为“满意数”,求所有“满意数”中F(t)的最小值.解:(1)∵m为立方数,∴设m=q×q×q,∴|2q﹣(q+q)|=0,∴q×q×q是m的阶梯三分法,∴F(m)=q qq+=2;(2)由已知,[23(10x+y)+x+y]能被13整除,整理得:231x+24y能被13整除,∵231x +24y =13(18x +2y )﹣(3x +2y ), ∴3x +2y 能被13整除,∵1≤x ≤9,0≤y ≤9,∴3≤3x +2y ≤45,∵x ,y 均为整数,∴3x +2y 的值可能为13、26或39, ①当3x +2y =13时,∵x ≥y ,x +y ≤10,∴x =3,y =2,t =32,∴32的阶梯三分法为2×4×4,∴F (32)=23242=+; ②同理,当3x +2y =26时,可得x =8,y =1或x =6,y =4, ∴t =81或64,∴F (81)=4,F (64)=2;③同理,当3x +2y =39时,可得x =9,y =6(不合题意舍去), ∴综合①②③,F (t )最小值为23.。
中考一轮复习--专题六 新定义题
类型一
类型二
类型三
(2)∵y1的图象经过点A(1,1),
∴2×12-4×m×1+2m2+1=1.
整理得m2-2m+1=0.解得m1=m2=1.
∴y1=2x2-4x+3=2(x-1)2+1.
∴y1+y2=2x2-4x+3+ax2+bx+5
=(a+2)x2+(b-4)x+8.
∵y1+y2与y1为“同簇二次函数”,
由②-①
得,4S=52 019-1,所以
52 019 -1
S=
.
4
1
2
3
4
5
6
5.(2017·湖南益阳)在平面直角坐标系中,将一点(横坐标与纵坐标不
相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(3,5)与(5,-3)是一对“互换点”.
(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?
最大值为5×(3-1)2=20.
综上所述,当0≤x≤3时,y2的最大值为20.
1
2
3
4
5
6
1.(2019·广西柳州)定义:形如a+bi的数称为复数(其中a和b为实数,i
为虚数单位,规定i2=-1),a称为复数的实部,b称为复数的虚部.复数
可以进行四则运算,运算的结果还是一个复数.例如
(1+3i)2=12+2×1×3i+(3i)2=1+6i+9i2=1+6i-9=-8+6i,因此,(1+3i)2的
△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推…△An-1Bn1Cn-1经γ(n,180°)变换后得△AnBnCn,则点A1的坐标
专题6 新定义与阅读理解型问题
a
+ax ≥0,从而 x+xa ≥2 a (当 x= a 时取等号).
设函数 y=x+xa (a>0,x>0),由上述结论可知:当 x=
a 时,该函数有最小值为 2 a .
应用举例 已知函数为 y1=x(x>0)与函数 y2=4x (x>0),则当 x=
4 =2 时,y1+y2=x+4x 有最小值为 2 4 =4. 解决问题
①当n=4,m=2时,如图4,y=________;当n=5, m=________时,y=9; ②对于一般的情形,在n边形内画m个点,通过归纳猜 想,可得y=________(用含m,n的代数式表示).请对同 一个量用算两次的方法说明你的猜想成立.
解:(1)直角长分别为a,b斜边为c的直角三角形中a2+ b2=c2. (2)n行n列的棋子排成一个正方形棋子个数为n2,每层 棋子分别为1,3,5,7,…,2n-1.由图形可知:n2= 1+3+5+7+…+2n-1.
P(3,-3)到直线 y=-23
x+53
的距离为
8 13
13
.
3.(2019·湘潭)阅读材料:运用公式法分解因式,除了 常用的平方差公式和完全平方公式以外,还可以应用 其他公式,如立方和与立方差公式,其公式如下:
立方和公式:x3+y3=(x+y)(x2-xy+y2);
立方差公式:x3-y3=(x-y)(x2+xy+y2).
解:(1)yy21 =(x+x+3)32+9 =(x+3)+x+9 3 , ∴当 x+3=x+9 3 时,yy21 有最小值, ∴x=0 或-6(舍去)时,有最小值=6; (2)设该设备平均每天的租赁使用成本为 w 元. 则 w=490+200xx+0.001x2 =4x90 +0.001x+200, ∴当4x90 =0.001x 时,w 有最小值,∴x=700 或-700(舍 去)时,w 有最小值,最小值=201.4 元.
初中数学中考复习 第6关 以新定义与阅读理解问题为背景的选择填空题(原卷版)
第6关 以新定义与阅读理解问题为背景的选择填空题【考查知识点】所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力. 阅读理解型问题在近几年的全国中考试题中频频“亮相”,特别引起我们的重视.这类问题一般文字叙述较长,信息量较大,各种关系错综复杂,考查的知识也灵活多样,既考查学生的阅读能力,又考查学生的解题能力的新颖数学题.【解题思路】“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.【典型例题】【例1】(2019·湖南中考真题)从1-,1,2,4四个数中任取两个不同的数(记作,k k a b )构成一个数组{},K k k M a b =(其中1,2,,k S =,且将{},k k a b 与{},k k b a 视为同一个数组),若满足:对于任意的{},i i i M a b =和{},(,1,1)j i j M a b i j i S j S =≠≤≤≤≤都有i i j j a b a b +≠+,则S 的最大值( )A .10B .6C .5D .4【名师点睛】本题考查了规律型:数字的变化类,找出i i a b +共有几个不同的值是解题的关键.【例2】(2020·四川绵阳实中、绵阳七中初三月考)阅读材料:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位,把形如a bi +(a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似. 例如计算:(4)(62)(46)(12)10i i i i ++-=++-=-;2(2)(3)6326(1)7i i i i i i i -+=-+-=---=-; 2(4)(4)1616(1)17i i i +-=-=--=;22(2)4444134i i i i i +=++=+-=+根据以上信息,完成下面计算:2(12)(2)(2)i i i +-+-=_______.【名师点睛】本题考查有理数的混合运算,解题的关键是读懂题意,掌握有理数的混合运算.【例3】(2019·湖南中考真题)规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,1),-P 是二次函数214y x =的图象上在第一象限内的任意一点,PQ 垂直直线1y =-于点Q ,则四边形PMNQ 是广义菱形.其中正确的是_____.(填序号) 【名师点睛】本题考查新定义,二次函数的性质,特殊四边形的性质;熟练掌握平行四边形,菱形,二次函数的图象及性质,将广义菱形的性质转化为已学知识是求解的关键.【例4】(2018新疆中考)如图,已知抛物线y 1=﹣x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M=y 1=y 2.①当x >2时,M=y 2;②当x <0时,M 随x 的增大而增大;③使得M 大于4的x 的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).【名师点睛】本题考查了一次函数的性质、二次函数的性质、一次函数图象上点的坐标特征以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.【方法归纳】阅读试题提供新定义、新定理,根据所给的内容类比解决新问题 ;阅读相关信息,通过归纳探索,发现规律,得出结论阅读试题信息,借助已有数学思想方法解决新问题;阅读理解型问题是指通过阅读材料,理解材料中所提供新的方法或新的知识,并灵活运用这些新方法或新知识,去分析、解决类似的或相关的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型六新定义阅读理解题1. (2016重庆B卷)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=pq.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=3 4.(1)如果一个正整数a是另外—个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18.那么我们称这个数t为“吉祥数”.求所有“吉祥数”中F(t)的最大值.2. (2017重庆A卷)对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123.对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213 +321+132 =666,666÷111=6,所以,F(123) =6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=F(s)F(t).当F(s)+F(t)=18时,求k的最大值.3. (2015重庆A卷)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”.再如22,545,3883 ,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字为x(1≤x≤4,x 为自然数),十位上的数字为y,求y与x的函数关系式.4. (2017张家界)阅读理解题:定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部.它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2-i)+(5+3i)=(2+5)+(-1+3)i=7+2i;(1+i)×(2-i)=1×2-i+2×i-i2=2+(-1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=________,i4=________;(2)计算:(1+i)×(3-4i);(3)计算:i+i2+i3+ (i2017)5. (2018原创)若整数m是8的倍数,那么称整数m为“发达数”.例如,因为16是8的倍数,所以16是“发达数”.(1)已知整数m等于某个奇数的平方减1,求证:m是“发达数”.(2)已知两位正整数t=10x+y(1≤x≤y≤9,其中x,y为自然数),交换其个位上的数字和十位上的数字得到新数s,如果s加上t的和是“发达数”,求所有符合条件的两位正整数t.6. (2017重庆南开模拟)若将自然数中能被3整除的数,在数轴上的对应点称为“3倍点”,取任意的一个“3倍点”P,到点P距离为1的点所对应的数分别记为a,b.定义:若数K=a2+b2-ab,则称数K为“尼尔数”.例如:若P所表示的数为3,则a=2,b=4,那么K=22+42-2×4=12;若P所表示的数为12,则a =11,b=13,那么K=132+112-13×11=147,所以12,147是“尼尔数”.(1)请直接判断6和39是不是“尼尔数”,并且证明所有“尼尔数”一定被9除余3;(2)已知两个“尼尔数”的差是189,求这两个“尼尔数”.7. (2017重庆一外一模)若一个三位数t=abc(其中a,b,c不全相等且都不为0),重新排列各数位上的数字必可得到一个最大数和一个最小数,此最大数和最小数的差叫作原数的差数,记为T(t).例如,357的差数T(357)=753-357=396. (1)已知一个三位数a1b(其中a>b>1)的差数T(a1b)=792,且各数位上的数字之和为一个完全平方数,求这个三位数.(2)若一个三位数ab2(其中a、b都不为0)能被4整除,将个位上的数字移到百位得到一个新数2ab被4除余1,再将新数的个位数字移到百位得到另一个新数b2a 被4除余2,则称原数为4的“闺蜜数”.例如:因为612=4×153,261=4×65+1,126=4×31+2,所以612是4的一个闺蜜数.求所有小于500的4的“闺蜜数”t,并求T(t)的最大值.8. (2017重庆八中一模)一个三位正整数M,其各位数字均不为零且互不相等,若将M的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M的“友谊数”,如:168的“友谊数”为“618”;若从M的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132.(1)求证:M与其“友谊数”的差能被15整除;(2)若一个三位正整数N,其百位数字为2,十位数字为a、个位数字为b,且各位数字互不相等(a≠0, b≠0).若N的“团结数”与N之差为24,求N的值.9. (2017重庆大渡口区模拟)我们知道:一个整数的个位数是偶数,则它一定能被2整除;一个整数的各位数字之和能被3整除,则它一定能被3整除.若一个整数既能被2整除又能被3整除,那么这个整数一定能被6整除.数字6象征顺利、吉祥,我们规定,能被6整除的四位正整数abcd(千位数字为a,百位数字为b,十位数字为c,个位数字为d)是“吉祥数”.请解答下面几个问题:(1)已知785x是“吉祥数”,则x=________.(2)若正整数abcd是“吉祥数”,试说明:d+4(a+b+c)能被2整除.(3)小明完成第(2)问后认为:四位正整数abcd是“吉祥数”,那么d+4(a+b+c)也能被6整除.你认为他说得对吗?请说明理由.10. —个正整数,由N个数字组成,若它的第一位数可以被1整除,它的前两位数可以被2整除,前三位数可以被3整除,…,一直到前N位数可以被N整除,则这样的数叫做“精巧数”.如:123的第—位“1”可以被1整除,前两位数“12”可以被2整除,“123”可以被3整除,则123是一个“精巧数”.(1)若四位数123k是一个“精巧数”,求k的值;(2)若一个三位“精巧数”2ab各位数字之和为—个完全平方数,请求出所有满足条件的三位“精巧数”.11. (2017重庆巴蜀模拟)阅读材料:欢喜数——若一个四位数的前2位数是后2位数的2倍,则称该数为“欢喜数”,如1005、2211等都是欢喜数;半和数——一个数,若各个数位上的数字之和等于十位上的数字的2倍,则称该数为“半和数”,如132等都是半和数;平方差数——一个三位数字,若十位上数字等于百位数字与个位数字的平方差,则称该数为“平方差数”.根据上面的材料,回答下列问题:(1)证明所有的三位“半和数”均能被11整除;(2)若一个四位正整数abbc是欢喜数,bmc既是半和数又是平方差数,求m的值.12. 一个三位自然数m,将它任意两个数位上的数字对调后得一个首位不为0的新三位自然数m′(m′可以与m相同),记m′=abc,在m′所有的可能情况中,当|a +2b-c|最小时,我们称此时的m′是m的“幸福美满数”,并规定K(m)=a2+2b2-c2.例如:318按上述方法可得新数有:381、813、138;因为|3+2×8-1|=18,|8+2×1-3|=7,|1+2×3-8|=1,1<7<18,所以138是318的“幸福美满数”,K(318)=12+2×32-82=-45.(1)若三位自然数t的百位上的数字与十位上的数字都为n(1≤n≤9,n为自然数),个位上的数字为0,求证:K(t)=0;(2)设三位自然数s=100+10x+y(1≤x≤9,1≤y≤9,x,y为自然数),且x<y.交换其个位与十位上的数字得到新数s′,若19s+8s′=3888,那么我们称s为“梦想成真数”,求所有“梦想成真数”中K(s)的最大值.13. (2018原创)如果一个自然数从高位到个位是由一个数字或几个数字重复出现组成,那么我们把这样的自然数叫循环数,被重复的一个或几个数字称为“循环节”,我们把“循环节”的数字个数叫做循环数的阶数,例如:252525,它由“25”依次重复出现组成,所以252525是循环数.它是2阶6位循环数;再如:11是1阶2位循环数,789789789是3阶9位循环数,345634563456是4阶12位循环数….(1)请你直接写出3个2阶6位循环数,猜想任意一个2阶6位循环数能否被7整除,并说明理由;(2)已知一个能被13整除的2阶4位循环数,设循环节为xy,(0<x<5),求y与x 之间的函数关系.14. (2018原创)若一个三位数,其个位数加上十位数等于百位数,可表示为t=100(x +y)+10y+x,则称实数t为“加成数”.将t的百位作为个位,个位作为十位,十位作为百位,组成一个新的三位数h,规定q=t-h,f(m)=q9.例如:321是一个“加成数”,将其百位作为个位,个位作为十位,十位作为百位,得到的数h=213,∴q=321-213=108,f(m)=1089=12.(1)当f(m)最小时,求此时对应的“加成数”t的值;(2)若f(m)是24的倍数,则称f(m)是“节气数”,猜想这样的“节气数”有多少个,并求出所有的“节气数”.。