三角形中边与角之间的不等关系课件

合集下载

三角形中的边角关系

三角形中的边角关系

三角形中的边角关系三角形,作为几何学中最基本且最古老的存在之一,是我们理解空间结构的重要元素。

在众多的几何图形中,三角形以其独特的性质和关系,展示了丰富多样的形态和功能。

其中,边角关系是三角形属性中的核心内容之一。

我们来看三角形中的边与角的关系。

在任意一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。

这是三角形边长关系的基本定理,它告诉我们三角形的三边长度之间是相互制约的。

同时,三角形的三个内角之和等于180度,这是三角形角的关系的基本定理。

我们来看三角形中的特殊边角关系。

等边三角形是三边长度相等的三角形,其三个内角都是60度。

这是三角形中一种简单而特殊的形式,其中所有的边都相等,所有的角也都相等。

等腰三角形是两边长度相等的三角形,其两个内角相等。

这是三角形中另一种常见的形式,其中两边的长度相等,相应的两个角也相等。

在等腰直角三角形中,两边的长度相等,一个角是直角。

这种三角形的特性是,其斜边的长度是直角的边的两倍。

这种关系在解决几何问题时非常重要,例如在勾股定理的应用中。

我们还可以看到,在直角三角形中,斜边的平方等于两直角边的平方和。

这是勾股定理的表现形式,它揭示了直角三角形中边与边之间的深刻关系。

三角形的边角关系是几何学中的基本概念,它反映了三角形的基本属性和结构。

对这些关系的理解和掌握,不仅可以帮助我们解决各种几何问题,还可以帮助我们理解更复杂的几何结构。

这些知识将贯穿我们在数学和其他科学领域的学习和应用中。

一、测试目的本单元测试旨在检验学生对三角形中边角关系的理解与运用。

三角形中的边角关系是几何学中最基本的概念之一,理解并掌握这些关系对于进一步学习和解决几何问题具有重要意义。

二、测试内容本单元测试主要包括以下几个方面的内容:1、三角形内角和定理及其应用2、三角形边角关系的应用3、特殊三角形的性质与判定三、测试形式本单元测试采用闭卷、笔试形式,考试时间为60分钟,满分为100分。

最新人教版初中八年级上册数学【第十三章 实验与探究 三角形中边与角之间的不等关系】教学课件

最新人教版初中八年级上册数学【第十三章 实验与探究 三角形中边与角之间的不等关系】教学课件
八年级—人教版—数学—第十三章
实验与探究 三角形中边与角之间的不等关系
学习目标:
1. 能利用轴对称的性质进行探究三角形的边角之间的不等关系, 解决边角之间的不等问题;
2. 通过探索体会利用图形的翻折等变换是解决几何问题常见的策略.
学习重点:
添加辅助线,将三角形中边角之间的不等问题进行转化.
温故知新,总结经验
问题一:你还有哪些方法验证你的猜想?
已知:△ABC中,AB>AC,
求证:∠C>∠B.
A
B
C
问题一:你还有哪些方法验证你的猜想?
已知:△ABC中,AB>AC, 求证:∠C>∠B.
截长法
证明:在AB上截取AD,使AD=AC,连结DC.
∵AD=AC,
∴∠1=∠2.
又∵ ∠ACB>∠2,
D1
∴∠ACB>∠1.
1. 作底边BC边上的中线AD
2. 将△ADC中沿中线AD翻折
方法一
问题三:用一张长方形的纸片如何折出一个 等边三角形?
1.准备一张长方形的纸; 2.将纸从中间对折,展开; 3.将其中一个角折到上一步折的对折线上;
4.然后再将纸按图:用一张长方形的纸片如何折出一个 等边三角形?
∵DE垂直平分BC,
∴BE=CE.
E
∴∠B=∠BCE.
∵∠ACB>∠BCE,
∴∠ACB>∠B.
D
探究二
推理认证,证明猜想
已知:△ABC中,AB>AC,
求证:∠C>∠B.
翻折三:沿过点A的垂线翻折 使点C落到BC边上
探究三
推理认证,证明猜想
已知:△ABC中,AB>AC,
求证:∠C>∠B.
证明:过点A作AD⊥BC于D, 在BD边上截取DE=DC,连结AE.

角形中边与角之间的不等关系

角形中边与角之间的不等关系

边与角的基本性质
边的基本性质
任意两边之和大于第三边,任意两边 之差小于第三边。
角的基本性质
角形的内角和等于180°,外角和等于 360°。
角形的内角和与外角和
1 2
内角和定理
角形的内角和等于180°。
外角和定理
角形的外角和等于360°。
3
内外角关系
一个内角与其相邻的外角互补,即一个内角加其 相邻的外角等于180°。
05
边与角之间不等关系的应 用
在几何问题中的应用
01
利用边与角之间的不等关系,可 以解决一些几何问题,如判断三 角形的形状、证明角平分线的性 质等。
02
在解决几何问题时,边与角之间 的不等关系可以帮助我们找到一 些关键的突破口,从而简化问题 的求解过程。
在三角函数中的应用
边与角之间的不等关系在三角函数中也有广泛的应用,如 在求解三角函数的值域、判断三角函数的单调性等问题中 。
研究目的和意义
探究角形中边与角之间的不等关系的性质和特点 为解决几何问题提供有效的思路和方法
促进几何学的发展和应用
02
角形的基本概念和性质
角形的定义和分类
角形的定义
由不在同一直线上的三条线段首 尾顺次连接所组成的封闭图形叫 做角形。
角形的分类
根据角的大小可分为锐角角形、 直角角形和钝角角形;根据边的 长短可分为不等边角形和等腰角 形。
应用正弦、余弦定理
在三角形中,正弦定理和余弦定理是连接边和角的重要工具。通过灵活运用这 两个定理,可以推导出边与角之间的不等关系。
分析法证明
逐步推导
从已知条件出发,逐步推导出边与角 之间的不等关系。这种方法需要仔细 分析每一步的推导过程,确保逻辑严 密。

三角形三边关系ppt课件

三角形三边关系ppt课件
高层建筑 高层建筑的结构设计中,经常采用三角形支撑结 构,利用三角形三边关系来增强建筑的稳定性和 抗风能力。
建筑设计软件 现代建筑设计软件中集成了三角形三边关系的计 算功能,帮助建筑师快速准确地完成设计。
地理测量中距离计算
三角测量法
01
在地理测量中,利用三角形三边关系和已知的两个角度或两条
边长,可以计算出未知的距离或角度。
04
与三角形三边关系相关的数学定理
勾股定理及其逆定理
01
02
03
勾股定理
在直角三角形中,直角边 的平方和等于斜边的平方。
勾股定理的逆定理
如果三角形的三边满足勾 股定理,则这个三角形是 直角三角形。
应用举例
通过勾股定理可以判断一 个三角形是否为直角三角 形,以及求解直角三角形 的未知边长。
余弦定理及其推论
特殊情况下的三边关系
等边三角形
三边长度相等,任意两边之和等 于两倍的第三边,任意两边之差
等于0。
等腰三角形
有两边长度相等,这两边之和大于 第三边,同时这两边之差等于0。
直角三角形
满足勾股定理,即直角边的平方和 等于斜边的平方。同时也满足任意 两边之和大于第三边和任意两边之 差小于第三边的条件。
03
三角形三边关系应用举例
判断三条线段能否构成三角形
定理应用:任意两边之和大于第三边,任 意两边之差小于第三边。
实例分析:如线段a=3cm, b=4cm, c=5cm,因为a+b>c, a+c>b, b+c>a, 所以能构成三角形。
2. 验证是否满足定理条件。
判断步骤 1. 测量或计算三条线段的长度。
余弦定理
在任意三角形中,任意一 边的平方等于其他两边平 方和减去这两边与它们夹 角的余弦的积的两倍。

三角形边角关系-第3讲的角与边学

三角形边角关系-第3讲的角与边学

第三讲三角形的角与边一、基础知识本讲重点介绍三角形的边、角不等关系,包括同一个三角形中的边、角不等关系以及不同三角形中的边、角不等关系.1.边与边的关系(1)在同一个三角形中两边之和大于第三边,两边之差小于第三边(三边满足什么条件时,三角形必然存在?);(2)勾股定理:即在直角三角形中两条直角边的平方和等于斜边的平方.2.角与角的关系(1)三角形的内角和为180︒;(2)直角三角形中两锐角互余;(3)三角形的一个外角大于任何一个与它不相邻的内角;(4)三角形的一个外角等于与它不相邻的两内角之和.3.边和角的关系(1)在同一个三角形中,大边对大角,大角对大边;(2)在两个三角形中,如果有两条边对应相等,那么夹角大的所对的边也大;反之也成立,即在两个三角形中,如果有两条边对应相等,那么第三边大,则所对的角也大.4.不等式变形时常用的性质(1)若a>b,c>d,则a+c>b+d;(2)若a>b,c>d,则a-d>b-c;(3)若a>b,c>0,则ac>bc;若a>b,c<0,则ac<bc;(4)若a>b>0,则11 a b <;(5)总量大于任何一个部分量.5.三角形中的不等关系根源:(1)两点之间线段最短;(2)垂线段最短.二、例题第一部分边的问题例1. (★★希望杯训练题)将三边长为a,b,c的三角形记作(a,b,c).写出周长为20,各边长为正整数的所有不同的三角形.例2. (★★★ 2000年希望杯竞赛题)一个三角形的三条边的长分别是a,b,c(a,b,c都是质数),且a+b+c=16,则这个三角形是()A.直角三角形B.等腰三角形C.等边三角形D.直角三角形或等腰三角形例3. (★★★1998年江苏省竞赛题)在不等边三角形中,如果有一条边长等于另两条边长的平均值,那么最大边上的高与最小边上的高的比值的取值范围是( )A.31 4k<<B.113k<<C.12k<< D.112k<<例4. (★★★1997年北京市竞赛题)等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm 两部分,则这个等腰三角形的底边的长为( )A.17cmB.5cmC.17cm或5cmD.无法确定例5. (★★★)如图3-1,已知P为三角形ABC内一点,求证:1()2AB AC BC PA PB PC AB AC BC++<++<++.例6. (★★★第三十二届美国邀请赛试题)不等边三角形ABC的两条高长度为4和12,若第三条高的长也是整数,试求它的长.例7. (★★★)若三角形ABC 的三边长是a,b,c,且满足:444224442244422,,a b c b c b c a a c c a b a b =+-=+-=+-,则ABC ∆是( )A.钝角三角形B.直角三角形C.等腰直角三角形D.等边三角形第二部分 角的问题例8. (★★)如图3-4,在三角形ABC 中,042A ∠= ,ABC ∠和ACB ∠的三等分线分别交于D,E,求BDC ∠的度数.例9. (★★★1999年重庆市竞赛题)三角形的三个内角分别为,,αβγ,且αβγ≥≥,2αγ=.则β的取值范围是( )A.003645β≤≤B.004560β≤≤C.006090β≤≤D.004572β≤≤例10. (★★★)如图3-7,延长四边形ABCD 对边AD,BC 交于F ;DC,AB 交于E,若AED ∠,AFB ∠平分线交于O,求证:1()2EOF EAF BCD ∠=∠+∠第三部分边角综合24,例11. (★★★ 2000年江苏省竞赛题)在锐角三角形ABC中,AB>BC>AC,且最大内角比最小内角大0 的取值范围是( ).则A例12. (★★★★)如图3-2,在三角形ABC中,AB>AC>BC,P为三角形内任意一点,连结AP并延长交BC于点D.求证:(1)AB+AC>AD+BC;(2)AB+AC>AP+BP+CP.例13. (★★★★)如图,在三角形ABC中,角A=90度,AD垂直于BC,求证:AB+AC<AD+BC例14.(★★★★)如图,在三角形ABC中,AC>AB,在CA上截取CD=AB,E,F分别是BC,AD的中点,连接EF 并延长交BA的延长线于G,求证:AF=AG例15. (★★★★★)设三角形的三个内角度数分别为A,B,C,相应的对边长分别为a,b,c,求证:60 aA bB cCa b c︒++≥++三、练习题1. (★★)设m,n,p均为自然数,满足m n p≤≤,且m+n+p=15,试问以m,n,p为边长的三角形有多少个?2.(★★ 1998年山东省竞赛题) 已知三角形三边的长均为整数,其中某两条边长之差为5,若此三角形周长为奇数,则第三边长的最小值为( )** B.7 C.6 D.43.(★★★)一个三角形的周长为偶数,其中的两条边长分别为4和2003,则满足上述条件的三角形的个数为( )A.1个B.3个C.5个D.7个4.(★ 2002,云南省中考题)两根木棒的长分别是7cm和10cm,要选择第三根木棒,将它们钉成一个三角形,若第三根木棒的长是acm,则a的取值范围是( ).5. (★)ABC 的一个内角的大小是040,且A B ∠=∠,那么C ∠的外角的大小是( )A.140︒B.80︒或100︒C.100︒或140︒D.80︒或140︒6. (★★★)如图3-5,在ABC ∆中,90ACB ︒∠=,D,E 为AB 上的两点,若AE=AC,45DCE ︒∠=则图中与BC 等长的线段是( ) A.CD B.BD C.CE D.AE-BE7. (★★★)如图3-6,在ABC ∆中,B ∠的平分线与C ∠的外角平分线相交于D,40D ︒∠=.则A ∠等于( )A.50︒B. 60︒C. 70︒D.80︒8. (★★ 第12届希望杯竞赛题)如图3-9,127.5︒∠=,295︒∠=,338.5︒∠=求4∠的大小.9. (★★★第5届希望杯竞赛题)如图3-8,BE 是ABD ∠的平分线,CF 是ACD ∠的平分线,BE 与CF 交于G,若140BDC ︒∠=,110BGC ︒∠=,求A ∠的度数.10. (★★★★)如图,三角形ABC 中,AB=BC=CA,AE=CD,AD,BE 相交于P,BQ 垂直于AD 于Q ,求证:BP=2PQ课外小故事五枚金币有个叫阿巴格的人生活在内蒙古草原上.有一次,年少的阿巴格和他爸爸在草原上迷了路,阿巴格又累又怕,到最后快走不动了.爸爸就从兜里掏出5枚硬币,把一枚硬币埋在草地里,把其余4枚放在阿巴格的手上,说:“人生有5枚金币,童年、少年、青年、中年、老年各有一枚,你现在才用了一枚,就是埋在草地里的那一枚,你不能把5枚都扔在草原里,你要一点点地用,每一次都用出不同来,这样才不枉人生一世.今天我们一定要走出草原,你将来也一定要走出草原.世界很大,人活着,就要多走些地方,多看看,不要让你的金币没有用就扔掉.”在父亲的鼓励下,那天阿巴格走出了草原.长大后,阿巴格离开了家乡,成了一名优秀的船长.珍惜生命,就能走出挫折的沼泽.。

三角形的内角和PPT课件

三角形的内角和PPT课件
三角形的内角和PPT课与性质 • 三角形内角和定理及其证明 • 三角形外角性质与计算 • 三角形角度计算技巧与方法 • 三角形内角和在生活中的应用 • 总结回顾与拓展延伸
01
CATALOGUE
三角形基本概念与性质
三角形定义及分类
三角形定义
由不在同一直线上的三条线段首 尾顺次连接所组成的封闭图形。
04
CATALOGUE
三角形角度计算技巧与方法
利用平行线求角度
平行线性质
两直线平行,同位角相等;内错角相等;同旁内角互补。
示例
已知三角形ABC中,角A=60度,角B=45度,求角C的度数。可以过点C作AB的 平行线,将角C分为两个与角A、角B分别相等或互补的角,从而求得角C的度数 。
利用相似三角形求角度
三角形分类
按边可分为不等边三角形、等腰 三角形;按角可分为锐角三角形 、直角三角形、钝角三角形。
三角形边与角关系
三角形边的关系
任意两边之和大于第三边,任意两边 之差小于第三边。
三角形角的关系
三个内角之和等于180°,外角等于与 它不相邻的两个内角之和。
特殊三角形性质
01
02
03
等腰三角形性质
两腰相等,两底角相等; 三线合一(即顶角的平分 线、底边上的中线、底边 上的高重合)。
相似三角形性质
两个三角形如果三边对应成比例,则这两个三角形相似。相 似三角形的对应角相等。
示例
已知三角形ABC中,AB=AC,D为BC上一点,且BD=DC。 求角BAD的度数。可以通过构造与三角形ABD相似的三角形 ,利用相似三角形的性质求得角BAD的度数。
利用三角函数求角度
三角函数性质
正弦、余弦、正切等三角函数在特定角度下有确定的值。

人教版八年级上册数学:实验与探究 三角形中边与角之间的不等关系(公开课课件)

人教版八年级上册数学:实验与探究 三角形中边与角之间的不等关系(公开课课件)

2. 尺规作图,验证猜想.
C
B
结论:在一个三角形中,如果两个角不等,那么它们所对
的边也不等,大角所对的边 大 (简称“ 大角 对 大边 ).
知识应用:
(1)如图,在△ABC中,如果 BC=20cm,AC=16cm,AB=15cm, 则∠A > ∠B > ∠C.
(2)如图,在△ABC中,如果
C
∠A=80°,∠B=60°,∠C=40°, 则. BC > AC > AB.
能力提升:
已知如图,AB=AC,D在BC上,求证:AD < AB.
A
B
DC
课堂小结:
你在本节课的学习中有哪些收获?
1. 等腰三角形: (1)等边对等角; (2)等角对等边.
2.不等边三角形: (1)大边对大角;(2)大角对大边
思考:
1.如果一个三角形中最大的边所对的角是锐角,这个三角 形是锐角三角形吗?为什么? 2.如果一个三角形中最大的边所对的角是钝角,这个三角 形是钝角三角形吗?为什么? 3.直角三角形中,哪一条边最长?为什么?
探究一:大边对大角
(一)观察图形,提出猜想. 在△ABC中,如果BC=15cm,AC=12cm, AB=10cm,同学们通过肉眼观察可得 C 到∠A > ∠B > ∠C.
猜想: 大边 对 大角 .
A B
(二)验证猜想
1. 用量角器测量,猜想结果是否真确?
2. 叠合法:(发现结论是否正确?)
(1)使∠A与∠B的顶点重合,判定BC所对 角∠A与AC所对角∠B的大小关系?
4.如图,在等腰三角形中,AC = AB ,
A
则 ∠B = ∠C ,(简称:等边 对等角 )
5.如图,在等腰三角形中, ∠C=∠B,

解直角三角形的应用(19张ppt)课件

解直角三角形的应用(19张ppt)课件

选择合适的解法
根据实际情况选择合适的解法,如近似计算、 精确计算等。
注意单位统一
在实际应用中,要注意单位统一,避免计算 错误。
考虑多解情况
在某些情况下,解直角三角形可能存在多个 解,需要全面考虑。
06
练习与巩固
基础练习题
总结词
掌握基本概念和公式
直角三角形中的角度和边长关系
理解直角三角形中锐角、直角和钝角之间 的关系,以及边长与角度之间的勾股定理 。
利用三角函数定义求解
总结词
通过已知角度和邻边长度,求对边或 斜边长度。
详细描述
根据三角函数定义,已知一个锐角和它 所对的边,可以通过三角函数求出其他 两边。例如,已知∠A=30°和a=1,可 以通过三角函数sin(30°)求出对边b。
利用勾股定理求解
总结词
通过已知两边的长度,求第三边长度。
详细描述
向。
确定建筑物的角度
在建筑设计中,通过解直角三角形, 可以确定建筑物的角度和方向。
确定建筑物的长度
在建筑设计中,通过解直角三角形, 可以确定建筑物的长度和方向。
物理问题中的运用
确定物体的运动轨迹
在物理问题中,通过解直角三角形,可以确定物体的运动轨 迹和方向。
确定物体的受力情况
在物理问题中,通过解直角三角形,可以确定物体的受力情 况和方向。
04
实际应用案例
测高问题
01
02
03
测量山的高度
通过测量山脚和山顶的仰 角,利用解直角三角形的 知识,可以计算出山的高 度。
测量楼的高度
利用解直角三角形的知识, 通过测量楼底和楼顶的仰 角,可以计算出楼的高度。
测量树的高度
通过测量树底部和树顶部 的仰角,利用解直角三角 形的知识,可以计算出树 的高度。

《三角函数的计算》直角三角形的边角关系PPT课件

《三角函数的计算》直角三角形的边角关系PPT课件

5.一个人由山底爬到山顶,需先爬坡角为40°的山坡300 m,
再爬坡角为30°的山 坡100 m,求山高(结果精确到0.1m).
解:如图,过点C作CE⊥AE于点E,
过点B作BF⊥AE于点F,
过点B作BD⊥CE于点D,则BF=DE.
在Rt△ABF中,BF=AB sin 40°;
在Rt△CDB中,CD=BC sin 30°.
BC 10 1
如图,在Rt△ABC中,sinA=


AC 40 4
那么∠A是多少度呢?
要解决这个问题,我们可以借助科学计算器.
已知三角函数值求角度,要用到
“sin”、“cos”、“tan”键
的第二功能“sin‫־‬¹,cos‫־‬¹,
tan‫־‬¹ ”和2ndf 键。
以“度”为单位
按键顺序
sinA=0.9816
(4)sin18°+cos55°-tan59°≈-0.7817.
议一议
当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D
的行驶路线与水平面的夹角为∠β=42°
,由此你还能计算什么?
想一想
为了方便行人推自行车过某天桥,市政府在10m高的天桥两端
修建了40m长的斜道.这条斜道的倾斜角是多少?
故选A.

)
2.下列各式中一定成立的是( A )
A.tan75°﹥tan48°﹥tan15°
B. tan75°﹤tan48°﹤tan15°
C. cos75°﹥cos48°﹥cos15°
D. sin75°﹤sin48°<sin15°
3.某款国产手机上有科学计算器,依次按键: = ,显示
合作学习
如图,在Rt△ABC中,∠ACB=90°

三角形三边关系课件

三角形三边关系课件
三角形分类
根据三角形的边长和角度,可以 将三角形分为等边三角形、等腰 三角形、直角三角形、锐角三角 形和钝角三角形等。
三角形元素介绍
பைடு நூலகம்顶点

三角形的三个角所在的点称为三角形 的顶点。
三角形中相邻两边所夹的角称为三角 形的角。

组成三角形的三条线段称为三角形的 边。
三角形性质概述
三角形两边之和大于第三 边,两边之差小于第三边 。
在几何证明中的应用
利用三角形三边关系及其不等式形式,可以在几 何证明中方便地证明一些与边长相关的结论。
3
在实际问题中的应用
三角形三边关系及其不等式形式在实际问题中也 有广泛的应用,如建筑设计、测量等领域。
05 三角形三边关系实验探究 与发现
通过实验验证三角形三边关系原理
准备实验材料
长度不同的小棒、直尺、笔和纸等。
在实际问题中求解最值问题
在建筑、工程等实际问题中, 利用三角形三边关系求解最短 路径、最小成本等问题。
通过构建数学模型,将实际问 题转化为三角形三边关系问题, 进而求解最优解。
结合不等式性质与三角形三边 关系,解决一类具有约束条件 的最值问题。
在其他数学领域应用
在解析几何中,利用三角形三边 关系判断点的位置、直线的交点
平或拉长。
实例解析
例如,在一个直角三角形中,两 条直角边之差一定小于斜边,这 符合三角形两边之差小于第三边
的性质。
三角形三边关系证明方法
01
02
03
代数法
通过三角形的边长代数表 达式进行推导和证明,常 用于解决与边长相关的计 算问题。
几何法
利用几何图形和性质进行 直观证明,常用于解决与 形状、位置相关的几何问 题。

直角三角形性质PPT课件

直角三角形性质PPT课件
勾股定理是直角三角形的基本性质之一,具有广泛的应 用。
勾股定理证明方法
拼图法
通过将四个相同的直角三角形拼成一个 正方形来证明。
相似三角形法
利用相似三角形的性质来证明勾股定理 。
代数法
通过代数运算来证明勾股定理,例如使 用余弦定理推导。
面积法
利用三角形的面积公式来证明勾股定理 。
勾股定理逆定理及应用
精度检测和校准。
其他领域应用举例
01
02
03
物理学
在物理学中,直角三角形 用于描述和计算力的矢量 合成与分解、运动的位移 和速度等问题。
地理学
在地理学中,利用直角三 角形的性质可以计算地球 表面的距离、经纬度等地 理信息。
艺术领域
在绘画、摄影等艺术领域 ,直角三角形的构图原则 被广泛运用,以创造出和 谐、平衡的作品。
对应边成比例。
04
05
面积比等于相似比的平方。
相似直角三角形判定方法
如果两个直角三角形有一个锐角 相等,则这两个三角形相似。
如果两个直角三角形的两组对应 边成比例,则这两个三角形相似 。
基于角的判定
基于边的判定
如果一个直角三角形的斜边和一 条直角边与另一个直角三角形的 斜边和一条直角边对应成比例, 那么这两个直角三角形相似。
THANKS
角度关系
01
两锐角互余
02
锐角与斜边关系
直角三角形中,两个锐角的度数之和为90°,即∠A + ∠B = 90°。
锐角的对边长度小于斜边长度,且随着锐角度数的增大,对边长度也 增大。
特殊直角三角形性质
等腰直角三角形
当直角三角形的两条直角边长度相等时,该三角形为等腰直角三角形。此时,两 个锐角的度数均为45°。

三角形中的不等关系

三角形中的不等关系

三角形中的不等关系
知识点:
1、 边的不等关系:三角形的任意两边之和大于第三边;任意两边之差小于第三边。

2、 角的不等关系:三角形的外角大于与它不相邻的任何一个内角。

3、 边与角之间的不等关系:在同一个三角形中,等边对等角,等角对等边;大边对大角,大角对大边。

例题讲解:
1、如图,O 为△ABC 内任意一点,
(1)求证:∠BO C >∠A ;
(2)求证:AB+AC>OB+OC;
(3)连结OA,求证:AB+BC+AC>OA+OB+OC>21(AB+BC+AC) (1)证明:
2、如图,AD 是△ABC 的外角∠EAC 的平分线,且交BC 的延长线于点D 。

试判断∠ACB 与∠ABC 的大小关系,并说明理由。

C
D
3、如图,BCD 、CAE 和AFB 均为直线,试判断∠ACD 与∠AFE 的大小关系,并说明理由。

4、 如图,△ABC 中,AB<AC,试比较∠B 与∠C 的大小,并说明理由.你能用一句话来说明你
所得的结论吗?
5、如图,△ABC 中,AB ≤
21AC ,求证:∠C 〈21∠B
C C。

13.1三角形中的边角关系 第1课时 三角形中边的关系 课件2024-2025学年沪科版数学八上册

13.1三角形中的边角关系 第1课时 三角形中边的关系 课件2024-2025学年沪科版数学八上册

新知讲解
三角形的构成要素:
点 A,B,C 叫做这个三角形的顶点; 线段 AB,BC,CA 叫做这个三角形的边; ∠A,∠B,∠C 叫做这个三角形的内角,简称三角形角.
新知讲解
三角形的表示: 我们把这个三角形记作“△ABC”,读作“三角形ABC”.
新知讲解
三角形边的表示:
三角形的三边有时用它所对角的相应小写字母表示: 如边 BC 对着∠A,记作 A;边 CA 记作 B;边 AB 记作 C.
作业布置
【综合拓展类作业】 6.如图①,D为△ABC的边AC上任意一点,连接BD,E为BD上任 意一点,连接CE.
(1)用不等号“>”或“<”填空: AB十AC > DB十DC,DB十DC >
EB+ EC;
作业布置
【综合拓展类作业】 (2)如图②,M,N是△ABC内任意两点,试探索AB+AC与BM十 MN+NC之间的大小关系,并写出探究过程.
解:(2)延长BM交AC于点D,延长CN交BD于点E. 由(1)可得AB+AC> DB+DC> EB+ EC. ∵EB+EC=EM+BM+EN+NC=(EM+EN)+BM+NC, EM+EN>MN, ∴EB+ EC>MN+BM+NC, ∴AB+AC>BM+MN+NC.
新知讲解
任务二:三角形的分类 三角形的分类:
三角形中,三条边互不相等的三角形叫做不等边三角形; 有两条边相等的三角形叫做等腰三角形; 三条边都相等的三角形叫做等边三角形, 又叫做正三角形.
新知讲解
等腰三角形:

三角形的三边关系课件

三角形的三边关系课件

本节课知识点总结回顾
三角形的基本概念和性质
01
三角形是由三条不在同一直线上的线段首尾顺次连接所组成的
封闭图形。
三角形三边关系定理
02
三角形任意两边之和大于第三边,任意两边之差小于第三边。
三角形按边的分类
03
根据三角形的边长关系,可以将三角形分为等边三角形、等腰
三角形和一般三角形。
学生自我评价报告展示
交通网络优化
三角形的三边关系还可以应用于交通网络的优化。通过分析交通网络中各个节 点之间的连接关系,可以合理规划道路布局,提高交通网络的通行效率和便捷 性。
其他领域应用举例
机械设计
在机械设计中,三角形的稳定性原理被用于设计各种支撑 结构和连接件。例如,三角形的支架可以用于支撑机械部 件,确保其稳定性和可靠性。
对于多边形,可以将其划分成若 干个三角形,然后利用三角形的 三边关系定理来推断多边形的边 长关系。
实际应用
在建筑、工程等领域中,经常需 要利用三角形的三边关系定理来 解决实际问题,如测量距离、设 计结构等。同时,对于多边形边 长关系的探索也可以为相关领域 的研究提供新的思路和方法。
THANK YOU
02
三角形三边关系定理
三角形两边之和大于第三边
对于任意三角形ABC,有AB + BC > AC,AC + BC > AB,AB
+ AC > BC。
三角形两边之和大于第三边是三 角形的基本性质之一,也是判断 三条线段能否构成三角形的必要
条件。
若三条线段满足三角形两边之和 大于第三边的条件,则它们可以 构成一个三角形;反之,则不能。
当两点之间直线距离不可达时, 可以通过构造三角形并利用三 边关系找到最短路径。

《三角形三边的关系》ppt课件

《三角形三边的关系》ppt课件
地图制作 在制作地图时,利用三角形不等式原理可以根据 已知的距离和角度信息,推算出未知地点的坐标 位置。
遥感技术 在遥感技术中,三角形不等式可用于处理和分析 卫星图像数据,提取地物信息和进行地形分析。
其他领域中的实际应用案例
机器人路径规划
在机器人技术领域,三角形不等式可用于规划机器人的行动路径, 确保其以最短距离到达目的地。
通过测量或计算三角形的三条边, 验证两边之和是否大于第三边。
三角形两边之差小于第三边
01
02
03
定理内容
在任意三角形中,任意两 边之差小于第三边。
几何意义
确保三条边能够形成一个 稳定的三角形,避免过长 或过短的边导致三角形变 形。
验证方法
通过测量或计算三角形的 三条边,验证两边之差是 否小于第三边。
面积的影响。
面积最大化问题
03
在给定周长或某些边长的条件下,探讨如何使三角形面积最大
化。
面积最大化问题探讨
等周长的三角形面积最大化
对于周长一定的三角形,探讨其面积最大化的条件及求解方法。
等腰三角形的面积最大化
对于等腰三角形,在给定底边和腰长的情况下,探讨其面积最大化 的条件及求解方法。
直角三角形面积最大化
三边长度可以求出相似比。
在全等三角形中,已知三边长度 可以直接判定两个三角形全等, 或者已知两边和夹角可以求出第
三边长度。
通过比较相似三角形或全等三角 形的三边长度,可以解决一些与 三角形有关的实际问题,如测量、
建筑设计等。
06
三角形不等式在实 际问题中的应用
城市规划与建筑设计中的应用
道路设计
在道路规划中,利用三角形不等 式原理可以确定最短路径,优化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形中边与角之间的不等 关系
等腰三角形的边角关系: 等腰三角形的两个底角相等.(等边对等角) 如果一个三角形有两个角相等,那么这两 个角所对的边也相等.(等角对等边) 在一个三角形中,不相等的边 (或角)所对的角(或边)之间的 大小关系怎样呢?大边所对的角也 大吗?
A A
B ∵AB=AC
C
B
C
A
D
B
E
C
所以∠C> ∠B
从上面的过程可以看出,利用 轴对称的性质,可以把研究边与角 之间的不等问题,转化为较大量的 一部分与较小量相等的问题,这是 几何中研究不等问题时的常用方法。
证明:在AB 上截取AD,使AD=AC,连结DC. A
∵AD=AC(已知) ∴∠1= ∠2(等边对等角) D 又∵ ∠ ACB > ∠2 (角的大小定义) B ∴∠ACB > ∠1 (等量代换) 又∵ ∠1> ∠B (三角形外角定理) ∴∠ACB > ∠B (不等式的基本性质)
A
∵∠C>∠B ∴AB>AC (大角对大边)
B
C
利用上面两个结论,回答下面的问题:
1.在△ABC中,已知BC>AB>AC,那么∠A ,∠ B , ∠ C有怎样的大小关系?
2.如果一个三角形中最大的边所对的角是锐角,这个三 角形一定是锐角三角形吗?为什么?
3.直角三角形的哪一条边最长?为什么?
1
2
C
本题还可以延长小边来证吗?
已知:△ABC中,AB>AC 求证:∠ACB> ∠B
A
2
B
1
C E
在一个三角形中,如果两条边不相 等,那么它们所对的角也不相等,大边 所对的角较大。
A
∵AB>AC ∴∠C>∠B(大边对大角)
B
C
已知:△ABC中, ∠B<∠C 求证: AB>AC
在△ABC中,如果∠B<∠C , 那么我们可以将△ABC折叠, 使点B落在C上, ∠B落在∠C 内部,则, BD=CD 而AD+CD>AC B 所以AD+BD>AC 即AB>AC D
∴∠B=∠C(等边对等角) ∵∠ B=∠C ∴AB=AC(等角对等边)
如果AB>AC,那么∠B与∠C 大小如何? 如果∠C>∠B,那么AB与AC 大小如何?
已知:△ABC中,AB>AC
求证:∠C> ∠B
A
B
C
已知:△ABC中,AB>AC 求证:∠C> ∠B
在△ABC中,如果AB>AC,那么 我们可以将△ABC折叠,使边AC 落在AB上,点C落在AB上的D点, 则, ∠C= ∠ADE 而∠ADE> ∠B
A
E
CHale Waihona Puke 已知:△ABC中, ∠ B<∠C 求证: AB>AC
在△ABC中,如果∠ B<∠C ,那么 在∠C 内部可以作∠BCD= ∠ B. 因为∠BCD= ∠ B, 所以BD=CD 而AD+CD>AC 所以AD+BD>AC B 即AB>AC D
A
C
在一个三角形中,如果两个角不相 等,那么它们所对的边也不相等,大角 所对的边较大。
相关文档
最新文档