中考数学专题图形的翻折
中考翻折问题答案解析
翻折问题---解答题综合1.△AOB在平面直角坐标系中的位置如图所示,其中,A0,﹣3,B﹣2,0,O是坐标原点.1将△AOB先作其关于x轴的对称图形,再把新图形向右平移3个单位,在图中画出两次变换后所得的图形△AO1B1;2若点Mx,y在△AOB上,则它随上述两次变换后得到点M1,则点M1的坐标是.2.1数学课上,老师出了一道题,如图①,Rt△ABC中,∠C=90°,,求证:∠B=30°,请你完成证明过程.2如图②,四边形ABCD是一张边长为2的正方形纸片,E、F分别为AB、CD的中点,沿过点D的折痕将纸片翻折,使点A落在EF上的点A′处,折痕交AE于点G,请运用1中的结论求∠ADG的度数和AG的长.3若矩形纸片ABCD按如图③所示的方式折叠,B、D两点恰好重合于一点O如图④,当AB=6,求EF的长.3.如图,矩形ABCD中,AB=6,BC=8,点E是射线CB上的一个动点,把△DCE沿DE折叠,点C的对应点为C′.1若点C′刚好落在对角线BD上时,BC′=;2若点C′刚好落在线段AB的垂直平分线上时,求CE的长;3若点C′刚好落在线段AD的垂直平分线上时,求CE的长.4.如图,矩形纸片ABCD,将△AMP和△BPQ分别沿PM和PQ折叠AP>AM,点A和点B都与点E重合;再将△CQD沿DQ折叠,点C落在线段EQ上点F处.1判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形不需说明理由2如果AM=1,sin∠DMF=,求AB的长.5.如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作分、FG∥CD,交AE 于点G连接DG.1求证:四边形DEFG为菱形;2若CD=8,CF=4,求的值.6.如图1,一张菱形纸片EHGF,点A、D、C、B分别是EF、EH、HG、GF边上的点,连接AD、DC、CB、AB、DB,且AD=,AB=;如图2,若将△FAB、△AED、△DHC、△CGB分别沿AB、AD、DC、CB对折,点E、F都落在DB上的点P处,点H、G都落在DB 上的点Q处.1求证:四边形ADCB是矩形;2求菱形纸片EHGF的面积和边长.7.1操作发现:如图①,在Rt△ABC中,∠C=2∠B=90°,点D是BC上一点,沿AD折叠△ADC,使得点C恰好落在AB上的点E处.请写出AB、AC、CD之间的关系;2问题解决:如图②,若1中∠C≠90°,其他条件不变,请猜想AB、AC、CD之间的关系,并证明你的结论;3类比探究:如图③,在四边形ABCD中,∠B=120°,∠D=90°,AB=BC,AD=DC,连接AC,点E是CD上一点,沿AE折叠,使得点D正好落在AC上的F处,若BC=,直接写出DE的长.8.如图,现有一张边长为4的正方形纸片ABCD,点P为AD边上的一点不与点A、点D重合,将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,联结BP、BH.1求证:∠APB=∠BPH;2求证:AP+HC=PH;3当AP=1时,求PH的长.9.如图,折叠矩形纸片ABCD,使点B落在AD边上一点E处,折痕的两端点分别在边AB,BC上含端点,且AB=6,BC=10,设AE=x.1当BF的最小值等于时,才能使点B落在AD上一点E处;2当点F与点C重合时,求AE的长;3当AE=3时,点F离点B有多远10.如图,三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,求△ADE的周长.11.问题提出如果我们身边没有量角器和三角板,如何作15°大小的角呢实践操作如图.第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开,得到AD∥EF∥BC.第二步:再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM.折痕BM 与折痕EF相交于点P.连接线段BN,PA,得到PA=PB=PN.问题解决1求∠NBC的度数;2通过以上折纸操作,还得到了哪些不同角度的角请你至少再写出两个除∠NBC的度数以外.3你能继续折出15°大小的角了吗说说你是怎么做的.12.已知矩形ABCD中,AB=3cm,AD=4cm,点E、F分别在边AD、BC上,连接B、E,D、F.分别把Rt△BAE和Rt△DCF沿 BE,DF 折叠成如图所示位置.1若得到四边形 BFDE是菱形,求AE的长.2若折叠后点A′和点C′恰好落在对角线BD上,求AE的长.13.如图1,矩形纸片ABCD的边长AB=4cm,AD=2cm.同学小明现将该矩形纸片沿EF折痕,使点A与点C重合,折痕后在其一面着色如图2,观察图形对比前后变化,回答下列问题:1GF FD:直接填写=、>、<2判断△CEF的形状,并说明理由;3小明通过此操作有以下两个结论:①四边形EBCF的面积为4cm2②整个着色部分的面积为运用所学知识,请论证小明的结论是否正确.14.操作:准备一张长方形纸,按下图操作:1把矩形ABCD对折,得折痕MN;2把A折向MN,得Rt△AEB;3沿线段EA折叠,得到另一条折痕EF,展开后可得到△EBF.探究:△EBF的形状,并说明理由.15. 1如图1,将△ABC纸片沿DE折叠,使点A落在四边形BCDE内点A′的位置,若∠A=40°,求∠1+∠2的度数;2通过1的计算你发现∠1+∠2与∠A有什么数量关系请写出这个数量关系,并说明这个数量关系的正确性;3将图1中△ABC纸片的三个内角都进行同样的折叠.①如果折叠后三个顶点A、B、C重合于一点O时,如图2,则图中∠α+∠β+∠γ=;∠1+∠2+∠3+∠4+∠5+∠6=;②如果折叠后三个顶点A、B、C不重合,如图3,则①中的关于“∠1+∠2+∠3+∠4+∠5+∠6”的结论是否仍然成立请说明你的理由.16.如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的B′处,得到折痕EC,将点A落在直线EF上的点A′处,得到折痕EN.1若∠BEB′=110°,则∠BEC=°,∠AEN=°,∠BEC+∠AEN=°.2若∠BEB′=m°,则1中∠BEC+∠AEN的值是否改变请说明你的理由.3将∠ECF对折,点E刚好落在F处,且折痕与B′C重合,求∠DNA′.17.如图△ABC中,∠B=60°,∠C=78°,点D在AB边上,点E在AC边上,且DE∥BC,将△ADE沿DE折叠,点A对应点为F 点.1若点A落在BC边上如图1,求证:△BDF是等边三角形;2若点A落在三角形外如图2,且CF∥AB,求△CEF各内角的度数.18.如图1,四边形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处如图1.1若折叠后点D恰为AB的中点如图2,则θ=;2若θ=45°,四边形OABC的直角∠OCB沿直线l折叠后,点B落在点四边形OABC的边AB上的E处如图3,求a的值.19.在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC沿着直线DE折叠,顶点B的对应点是B′.1如图1,如果点B′和顶点A重合,求CE的长;2如图2,如果点B′和落在AC的中点上,求CE的长.20.把一张矩形纸片ABCD按如图方式折叠,使顶点B和D重合,折痕为EF.1连接BE,求证:四边形BFDE是菱形;2若AB=8cm,BC=16cm,求线段DF和EF的长.21.如图,矩形ABCD中,AB=8cm,BC=6cm,动点P从点A出发,以每秒1cm的速度沿线段AB向点B运动,连接DP,把∠A沿DP 折叠,使点A落在点A′处.求出当△BPA′为直角三角形时,点P运动的时间.22.在矩形ABCD中,=a,点G,H分别在边AB,DC上,且HA=HG,点E为AB边上的一个动点,连接HE,把△AHE沿直线HE翻折得到△FH E.如图1,当DH=DA时,1填空:∠HGA=度;2若EF∥HG,求∠AHE的度数,并求此时a的最小值;23.如图1,△ABC中,沿∠BAC的平分线AB1折叠,点B落在A1处.剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,点B1落在A2处.剪掉重叠部分;…;将余下部分沿∠B n A n C的平分线A n B n+1折叠,点B n与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B 与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.1情形二中,∠B与∠C的等量关系.2若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C的等量关系.3如果一个三角形的最小角是4°,直接写出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.答:.24.在矩形纸片ABCD中,AB=6,BC=8,将矩形纸片折叠,使点B与点D重合如图,1求证:四边形BEDF是菱形;2求折痕EF的长.25.如图1,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK,KB交MN于O.1若∠1=80°,求∠MKN的度数;2当B与D重合时,画出图形,并求出∠KON的度数;3△MNK的面积能否小于2 若能,求出此时∠1的度数;若不能,试说明理由.26.七年级科技兴趣小组在“快乐星期四”举行折纸比赛,折叠过程是这样的阴影部分表示纸条的反面:如果由信纸折成的长方形纸条图①长为26厘米,回答下列问题:1如果长方形纸条的宽为2厘米,并且开始折叠时起点M与点A的距离为3厘米,那么在图②中,BM= 厘米;在图④中,BM= 厘米.2如果信纸折成的长方形纸条宽为2cm,为了保证能折成图④形状即纸条两端均刚好到达点P,纸条长至少多少厘米纸条长最小时,长方形纸条面积是多少3如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是对称图形,假设长方形纸条的宽为x厘米,试求在开始折叠时图①起点M与点A的距离用含x的代数式表示.温馨提示:别忘了用草稿纸来折一折哦27.将四张形状,大小相同的长方形纸片分别折叠成如图所示的图形,请仔细观察重叠部分的图形特征,并解决下列问题:1观察图①,②,③,④,∠1和∠2有怎样的关系并说明你的依据.2猜想图③中重叠部分图形△MBD的形状按边,验证你的猜想.3若图④中∠1=60°,猜想重叠部分图形△MEF的形状按边,验证你的猜想.28.如图,长方形纸片ABCD中,AB=10,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上.1如图1,当折痕的另一端F在AB边上且AE=5时,求AF的长;2如图2,当折痕的另一端F在AD边上且BG=13时,求AF的长.29.矩形ABCD沿EF折叠,使点B落在AD边上的B′处,再沿B′G折叠四边形,使B′D边与B′F重合,且B′D′过点F.已知AB=4,AD=11试探索EF与B′G的位置关系,并说明理由;2若四边形EFGB′是菱形,求∠BFE的度数;3若点D′与点F重合,求此时图形重叠部分的面积.30.1操作发现:如图①,在Rt△ABC中,∠C=2∠B=90°,点D是BC上一点,沿AD折叠△ADC,使得点C恰好落在AB上的点E处,请写出AB、AC、CD之间的关系2问题解决:如图②,若1中∠C≠90°,其他条件不变,请猜想AB、AC、CD之间的关系,并证明你的结论;3类比探究:如图③,在四边形ABCD中,∠B=120°,∠D=90°,AB=BC,AD=DC,连接AC,点E是CD上一点,沿AE折叠,使得点D正好落在AC上的点F处,若BC=3,直接写出DE的长.翻折问题---解答题综合参考答案与试题解析一.解答题共30小题1.2016 安徽模拟△AOB在平面直角坐标系中的位置如图所示,其中,A0,﹣3,B﹣2,0,O是坐标原点.1将△AOB先作其关于x轴的对称图形,再把新图形向右平移3个单位,在图中画出两次变换后所得的图形△AO1B1;2若点Mx,y在△AOB上,则它随上述两次变换后得到点M1,则点M1的坐标是x+3,﹣y .分析1首先确定A、B、C三点关于x轴的对称点位置,再向右平移3个单位找到对应点位置,然后再连接即可;2根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标相反可得点Mx,y关于x轴的对称图形上的点的坐标为x,﹣y,再向右平移3个单位,点的横坐标+3,纵坐标不变.解答解:1如图所示:2点Mx,y关于x轴的对称图形上的点的坐标为x,﹣y,再向右平移3个单位得到点M1的坐标是x+3,﹣y.故答案为:x+3,﹣y.点评此题主要考查了作图﹣﹣平移变换和轴对称变换,关键是掌握点的坐标的变化规律.2.2016 贵阳模拟1数学课上,老师出了一道题,如图①,Rt△ABC中,∠C=90°,,求证:∠B=30°,请你完成证明过程.2如图②,四边形ABCD是一张边长为2的正方形纸片,E、F分别为AB、CD的中点,沿过点D的折痕将纸片翻折,使点A落在EF上的点A′处,折痕交AE于点G,请运用1中的结论求∠ADG的度数和AG的长.3若矩形纸片ABCD按如图③所示的方式折叠,B、D两点恰好重合于一点O如图④,当AB=6,求EF的长.分析1Rt△ABC中,根据sinB═=,即可证明∠B=30°;2求出∠FA′D的度数,利用翻折变换的性质可求出∠ADG的度数,在Rt△A'FD中求出A'F,得出A'E,在Rt△A'EG中可求出A'G,利用翻折变换的性质可得出AG的长度.3先判断出AD=AC,得出∠ACD=30°,∠DAC=60°,从而求出AD的长度,根据翻折变换的性质可得出∠DAF=∠FAO=30°,在Rt△ADF中求出DF,继而得出FO,同理可求出EO,再由EF=EO+FO,即可得出答案.解答1证明:Rt△ABC中,∠C=90°,,∵sinB==,∴∠B=30°;2解:∵正方形边长为2,E、F为AB、CD的中点,∴EA=FD=×边长=1,∵沿过点D的抓痕将纸片翻折,使点A落在EF上的点A′处,∴A′D=AD=2,∴=,∴∠FA′D=30°,可得∠FDA′=90°﹣30°=60°,∵A沿GD折叠落在A′处,∴∠ADG=∠A′DG,AG=A′G,∴∠ADG===15°,∵A′D=2,FD=1,∴A′F==,∴EA′=EF﹣A′F=2﹣,∵∠EA′G+∠DA′F=180°﹣∠GA′D=90°,∴∠EA′G=90°﹣∠DA′F=90°﹣30°=60°,∴∠EGA′=90°﹣∠EA′G=90°﹣60°=30°,则A′G=AG=2EA′=22﹣;3解:∵折叠后B、D两点恰好重合于一点O,∴AO=AD=CB=CO,∴DA=,∵∠D=90°,∴∠DCA=30°,∵AB=CD=6,在Rt△ACD中,=tan30°,则AD=DC tan30°=6×=2,∵∠DAF=∠FAO=∠DAO==30°,∴=tan30°=,∴DF=AD=2,∴DF=FO=2,同理EO=2,∴EF=EO+FO=4.点评本题考查了翻折变换的知识,涉及了含30°角的直角三角形的性质、平行四边形的性质,综合考察的知识点较多,注意将所学知识融会贯通.3.2016 贵阳模拟如图,矩形ABCD中,AB=6,BC=8,点E是射线CB上的一个动点,把△DCE沿DE折叠,点C的对应点为C′.1若点C′刚好落在对角线BD上时,BC′= 4 ;2若点C′刚好落在线段AB的垂直平分线上时,求CE的长;3若点C′刚好落在线段AD的垂直平分线上时,求CE的长.分析1根据点B,C′,D在同一直线上得出BC′=BD﹣DC′=BD﹣DC求出即可;2利用垂直平分线的性质得出CC′=DC′=DC,则△DC′C是等边三角形,进而利用勾股定理得出答案;3利用①当点C′在矩形内部时,②当点C′在矩形外部时,分别求出即可.解答解:1如图1,∵点B,C′,D在同一直线上,∴BC′=BD﹣DC′=BD﹣DC=10﹣6=4;故答案为:4;2如图2,连接CC′,∵点C′在AB的垂直平分线上,∴点C′在DC的垂直平分线上,∴CC′=DC′=DC,则△DC′C是等边三角形,设CE=x,易得DE=2x,由勾股定理得:2x2﹣x2=62,解得:x=2,即CE的长为2;3作AD的垂直平分线,交AD于点M,交BC于点N,分两种情况讨论:①当点C′在矩形内部时,如图3,∵点C′在AD的垂直平分线上,∴DM=4,∵DC′=6,由勾股定理得:MC′=2,∴NC′=6﹣2,设EC=y,则C′E=y,NE=4﹣y,故NC′2+NE2=C′E2,即6﹣22+4﹣y2=y2,解得:y=9﹣3,即CE=9﹣3;②当点C′在矩形外部时,如图4,∵点C′在AD的垂直平分线上,∴DM=4,∵DC′=6,由勾股定理得:MC′=2,∴NC′=6+2,设EC=z,则C′E=a,NE=z﹣4故NC′2+NE2=C′E2,即6+22+z﹣42=z2,解得:z=9+3,即CE=9+3,综上所述:CE的长为9±3.点评此题主要考查了矩形的性质、翻折变换的性质、勾股定理等知识;利用数形结合以及分类讨论得出是解题关键.4.2015 南充如图,矩形纸片ABCD,将△AMP和△BPQ分别沿PM和PQ折叠AP>AM,点A和点B都与点E重合;再将△CQD 沿DQ折叠,点C落在线段EQ上点F处.1判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形不需说明理由2如果AM=1,sin∠DMF=,求AB的长.分析1由矩形的性质得∠A=∠B=∠C=90°,由折叠的性质和等角的余角相等,可得∠BPQ=∠AMP=∠DQC,所以△AMP∽△BPQ∽△CQD;2先证明MD=MQ,然后根据sin∠DMF==,设DF=3x,MD=5x,表示出AP、BP、BQ,再根据△AMP∽△BPQ,列出比例式解方程求解即可.解答解:1△AMP∽△BPQ∽△CQD,∵四边形ABCD是矩形,∴∠A=∠B=∠C=90°,根据折叠的性质可知:∠APM=∠EPM,∠EPQ=∠BPQ,∴∠APM+∠BPQ=∠EPM+∠EPQ=90°,∵∠APM+∠AMP=90°,∴∠BPQ=∠AMP,∴△AMP∽△BPQ,同理:△BPQ∽△CQD,根据相似的传递性,△AMP∽△CQD;2∵AD∥BC,∴∠DQC=∠MDQ,根据折叠的性质可知:∠DQC=∠DQM,∴∠MDQ=∠DQM,∴MD=MQ,∵AM=ME,BQ=EQ,∴BQ=MQ﹣ME=MD﹣AM,∵sin∠DMF==,∴设DF=3x,MD=5x,∴BP=PA=PE=,BQ=5x﹣1,∵△AMP∽△BPQ,∴,∴,解得:x=舍或x=2,∴AB=6.点评本题主要考查了相似三角形的判定与性质、矩形的性质、翻折的性质以及锐角三角函数的综合运用,在求AB长的问题中,关键是恰当的设出未知数表示出一对相似三角形的对应边列比例式.5.2015 漳州如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作分、FG∥CD,交AE于点G连接DG.1求证:四边形DEFG为菱形;2若CD=8,CF=4,求的值.分析1根据折叠的性质,易知DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,易证FG=FE,故由四边相等证明四边形DEFG 为菱形;2在Rt△EFC中,用勾股定理列方程即可CD、CE,从而求出的值.解答1证明:由折叠的性质可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形;2解:设DE=x,根据折叠的性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,FC2+EC2=EF2,即42+8﹣x2=x2,解得:x=5,CE=8﹣x=3,∴=.点评本题主要考查了折叠的性质、菱形的判定以及勾股定理,熟知折叠的性质和菱形的判定方法是解答此题的关键.6.2015 江西校级模拟如图1,一张菱形纸片EHGF,点A、D、C、B分别是EF、EH、HG、GF边上的点,连接AD、DC、CB、AB、DB,且AD=,AB=;如图2,若将△FAB、△AED、△DHC、△CGB分别沿AB、AD、DC、CB对折,点E、F都落在DB上的点P处,点H、G都落在DB上的点Q处.1求证:四边形ADCB是矩形;2求菱形纸片EHGF的面积和边长.分析1由对折可知∠EAB=∠PAB,∠FAD=∠PAD,利用等角关系可求出∠BAD=90°,同理可求出∠ADC=∠ABC=90°.即可得出四边形ADCB是矩形.2由对折可知S菱形EHGF=2S矩形ADCB即可求出EHGF的面积,由对折可得出点A,C为中点,连接AC,得FG=AC=BD.利用勾股定理就可得出边长.解答1证明:由对折可知∠EAB=∠PAB,∠FAD=∠PAD,∴2∠PAB+∠PAD=180°,即∠BAD=∠PAB+∠PAD=90°.同理可得,∠ADC=∠ABC=90°.∴四边形ADCB是矩形.2解:由对折可知:△AEB≌△APB,△AFD≌△APD,△CGD≌△CQD,△CHB≌△CQB.∴S菱形EHGF=2S矩形ADCB=.又∵AE=AP=AF,∴A为EF的中点.同理有C为GH的中点.即AF=CG,且AF∥CG,如图2,连接AC,∴四边形ACGF为平行四边形,得FG=AC=BD.∴.点评本题主要考查了翻折变换,勾股定理,菱形的性质及矩形的判定,解题的关键是折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.2015 平顶山二模1操作发现:如图①,在Rt△ABC中,∠C=2∠B=90°,点D是BC上一点,沿AD折叠△ADC,使得点C恰好落在AB上的点E处.请写出AB、AC、CD之间的关系AB=AC+CD ;2问题解决:如图②,若1中∠C≠90°,其他条件不变,请猜想AB、AC、CD之间的关系,并证明你的结论;3类比探究:如图③,在四边形ABCD中,∠B=120°,∠D=90°,AB=BC,AD=DC,连接AC,点E是CD上一点,沿AE折叠,使得点D正好落在AC上的F处,若BC=,直接写出DE的长.分析1如图①,设CD=t,由∠C=2∠B=90°易得△ABC为等腰直角三角形,则AC=BC,AB=AC,再根据折叠的性质得DC=DE,∠AED=∠C=90°,又可判断△BDE为等腰直角三角形,所以BD=DE,则BD=t,AC=BC=t+t=+1t,AB=+1t=2+t,从而得到AB=AC+CD;2如图②,根据折叠的性质得DC=DE,∠AED=∠C,AE=AC,而∠C=2∠B,则∠AED=2∠B,根据三角形外角性质得∠AED=∠B+∠BDE,所以∠B=∠BDE,则EB=ED,所以ED=CD,于是得到AB=AE+BE=AC+CD;3作BH⊥AC于H,如图③,设DE=x,利用1的结论得AC=2+x,根据等腰三角形的性质由BA=BC,∠CBA=120°得到∠BCA=∠BAC=30°,且CH=AH=AC=x,在Rt△BCH中,利用30度的余弦得cos30°==,即x=2+2,然后解方程求出x即可.解答解:1如图①,设CD=t,∵∠C=2∠B=90°,∴∠B=45°,∠BAC=45°,∴△ABC为等腰直角三角形,∴AC=BC,AB=AC,∵AD折叠△ADC,使得点C恰好落在AB上的点E处,∴DC=DE,∠AED=∠C=90°,∴△BDE为等腰直角三角形,∴BD=DE,∴BD=t,∴AC=BC=t+t=+1t,∴AB=+1t=2+t,∴AB=AC+CD;故答案为AB=AC+CD;2AB=AC+CD.理由如下:如图②,∵AD折叠△ADC,使得点C恰好落在AB上的点E处,∴DC=DE,∠AED=∠C,AE=AC,∵∠C=2∠B,∴∠AED=2∠B,而∠AED=∠B+∠BDE,∴∠B=∠BDE,∴EB=ED,∴ED=CD,∴AB=AE+BE=AC+CD;3作BH⊥AC于H,如图③,设DE=x,由1的结论得AC=2+x,∵BA=BC,∠CBA=120°,∴∠BCA=∠BAC=30°,∵BH⊥AC,∴CH=AH=AC=x,在Rt△BCH中,cos30°==,∴x=2+2,解得x=,即DE的长为.点评本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了等腰三角形的性质和解直角三角形.8.2015 潍坊校级一模如图,现有一张边长为4的正方形纸片ABCD,点P为AD边上的一点不与点A、点D重合,将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,联结BP、BH.1求证:∠APB=∠BPH;2求证:AP+HC=PH;3当AP=1时,求PH的长.分析1根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;2首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出AP+HC=PH;3设QH=HC=x,则DH=4﹣x.在Rt△PDH中,根据勾股定理列出关于x的方程求解即可.解答1证明:∵PE=BE,∴∠EPB=∠EBP,又∵∠EPH=∠EBC=90°,∴∠EPH﹣∠EPB=∠EBC﹣∠EBP.即∠BPH=∠PBC.又∵四边形ABCD为正方形∴AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.2证明:过B作BQ⊥PH,垂足为Q,由1知,∠APB=∠BPH,在△ABP与△QBP中,,∴△ABP≌△QBPAAS,∴AP=QP,BA=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,∴△BCH和△BQH是直角三角形,在Rt△BCH与Rt△BQH中,∴Rt△BCH≌Rt△BQHHL,∴CH=QH,∴AP+HC=PH.3解:由2知,AP=PQ=1,∴PD=3.设QH=HC=x,则DH=4﹣x.在Rt△PDH中,PD2+DH2=PH2,即32+4﹣x2=x+12,解得x=,∴PH=.点评此题主要考查了翻折变换的性质以及全等三角形的判定与性质和勾股定理等知识,熟练利用全等三角形的判定得出对应相等关系是解题关键.9.2015 江西样卷如图,折叠矩形纸片ABCD,使点B落在AD边上一点E处,折痕的两端点分别在边AB,BC上含端点,且AB=6,BC=10,设AE=x.1当BF的最小值等于 6 时,才能使点B落在AD上一点E处;2当点F与点C重合时,求AE的长;3当AE=3时,点F离点B有多远分析1当点G与点A重合时,BF的值最小,即可求出BF的最小值等于6;2在RT△CDE中运用勾股定理求出DE,再利用AE=AD﹣DE即可求出答案;3作FH⊥AD于点H,设AG=x,利用勾股定理可先求出AG,可得EG,利用△AEG∽△HFE,由=可求出EF,即得出BF的值.解答解:1点G与点A重合时,如图1所示,四边形ABFE是正方形,此时BF的值最小,即BF=AB=6.当BF的最小值等于6时,才能使B点落在AD上一点E处;故答案为:6.2如图2所示,∵在Rt△CDE中,CE=BC=10,CD=6,∴DE===8,∴AE=AD﹣DE=10﹣8=2,3如图3所示,作FH⊥AD于点H,AE=3,设AG=y,则BG=EG=6﹣y,根据勾股定理得:6﹣y2=y2+9,解得:y=,∴EG=BG=,又△AEG∽△HFE,∴=,∴,∴EF=,∴BF=EF=.点评本题主要考查了翻折变换,解题的关键是折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10.2015秋苍溪县期末如图,三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形,使点C落在AB 边上的点E处,折痕为BD,求△ADE的周长.分析根据翻折变换的性质可得DE=CD,BE=BC,然后求出AE,再根据三角形的周长列式求解即可.解答解:∵BC沿BD折叠点C落在AB边上的点E处,∴DE=CD,BE=BC,∵AB=8cm,BC=6cm,∴AE=AB﹣BE=AB﹣BC=8﹣6=2cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.点评本题考查了翻折变换的性质,熟记翻折前后两个图形能够完全重合得到相等的线段是解题的关键.11.2015春无棣县期末问题提出如果我们身边没有量角器和三角板,如何作15°大小的角呢实践操作如图.第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开,得到AD∥EF∥BC.第二步:再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM.折痕BM 与折痕EF相交于点P.连接线段BN,PA,得到PA=PB=PN.问题解决1求∠NBC的度数;2通过以上折纸操作,还得到了哪些不同角度的角请你至少再写出两个除∠NBC的度数以外.3你能继续折出15°大小的角了吗说说你是怎么做的.分析1根据折叠性质由对折矩形纸片ABCD,使AD与BC重合得到点P为BM的中点,即BP=PM,再根据矩形性质得∠BAM=90°,∠ABC=90°,则根据直角三角形斜边上的中线性质得PA=PB=PM,再根据折叠性质由折叠纸片,使点A落在EF 上的点N处,并使折痕经过点B,得到折痕BM.折痕BM得到PA=PB=PM=PN,∠1=∠2,∠BNM=∠BAM=90°,利用等要三角形的性质得∠2=∠4,利用平行线的性质由EF∥BC得到∠4=∠3,则∠2=∠3,易得∠1=∠2=∠3=∠ABC=30°;2利用互余得到∠BMN=60°,根据折叠性质易得∠AMN=120°;3把30度的角对折即可.解答解:1∵对折矩形纸片ABCD,使AD与BC重合,∴点P为BM的中点,即BP=PM,∵四边形ABCD为矩形,∴∠BAM=90°,∠ABC=90°,∴PA=PB=PM,∵折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM.折痕BM,∴PA=PB=PM=PN,∠1=∠2,∠BNM=∠BAM=90°,∴∠2=∠4,∵EF∥BC,∴∠4=∠3,∴∠2=∠3,∴∠1=∠2=∠3=∠ABC=30°,即∠NBC=30°;2通过以上折纸操作,还得到了∠BMN=60°,∠AMN=120°等;3折叠纸片,使点A落在BM上,则可得到15°的角.点评本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和直角三角形斜边上的中线性质.12.2015春大同期末已知矩形ABCD中,AB=3cm,AD=4cm,点E、F分别在边AD、BC上,连接B、E,D、F.分别把Rt△BAE 和Rt△DCF沿 BE,DF折叠成如图所示位置.1若得到四边形 BFDE是菱形,求AE的长.2若折叠后点A′和点C′恰好落在对角线BD上,求AE的长.分析1由矩形的性质得出∠A=90°,设AE=xcm,则ED=4﹣xcm,由菱形的性质得出EB=ED=4﹣x,由勾股定理得出方程,解方程即可;2由勾股定理求出BD,由折叠的性质得出A′E=AE,∠EA′B=∠A=90°,A′B=AB=3cm,求出A′D,设AE=A′E=x,则ED=4﹣xcm,在Rt△EA′D中,由勾股定理得出方程,解方程即可.解答解:1∵四边形ABCD是矩形,∴∠A=90°,设AE=xcm,则ED=4﹣xcm,∵四边形EBFD是菱形,∴EB=ED=4﹣x,由勾股定理得:AB2+AE2=BE2,即32+x2=4﹣x2,解得:x=,∴AE=cm;2根据勾股定理得:BD==5cm,由折叠的性质得:A′E=AE,∠EA′B=∠A=90°,A′B=AB=3cm,∴∠EA′D=90°,A′D=5﹣3=2cm,设AE=A′E=x,则ED=4﹣xcm,在Rt△EA′D中,A′E2+A′D2=ED2,即x2+22=4﹣x2,解得:x=,∴AE=cm.点评本题考查了翻折变换的性质、矩形的性质、勾股定理、菱形的性质;熟练掌握翻折变换和矩形、菱形的性质,并能进行推理计算是解决问题的关键.13.2015春廊坊期末如图1,矩形纸片ABCD的边长AB=4cm,AD=2cm.同学小明现将该矩形纸片沿EF折痕,使点A与点C 重合,折痕后在其一面着色如图2,观察图形对比前后变化,回答下列问题:1GF = FD:直接填写=、>、<2判断△CEF的形状,并说明理由;3小明通过此操作有以下两个结论:①四边形EBCF的面积为4cm2②整个着色部分的面积为运用所学知识,请论证小明的结论是否正确.分析1根据翻折的性质解答;2根据两直线平行,内错角相等可得∠AEF=∠CFE,再根据翻折的性质可得∠AEF=∠FEC,从而得到∠CFE=∠FEC,根据等角对等边可得CE=CF,从而得解;3①根据翻折的性质可得AE=EC,然后求出AE=CF,再根据图形的面积公式列式计算即可得解;②设GF=x,表示出CF,然后在Rt△CFG中,利用勾股定理列式求出GF,根据三角形的面积公式求出S GFC,然后计算即可得解.解答解:1由翻折的性质,GD=FD;2△CEF是等腰三角形.∵矩形ABCD,∴AB∥CD,∴∠AEF=∠CFE,由翻折的性质,∠AEF=∠FEC,∴∠CFE=∠FEC,∴CF=CE,故△CEF为等腰三角形;3①由翻折的性质,AE=EC,∵EC=CF,∴AE=CF,∴S四边形EBCF=EB+CFBC=AB BC=×4×2×=4cm2;②设GF=x,则CF=4﹣x,∵∠G=90°,∴x2+22=4﹣x2,解得x=,∴S GFC=××2=,S着色部分=+4=;综上所述,小明的结论正确.点评本题考查了翻折变换的性质,矩形的性质,平行线的性质,等腰三角形的判定,以及勾股定理的应用,熟记翻折前后的两个图形能够完全重合是解题的关键.14.2015春娄底期末操作:准备一张长方形纸,按下图操作:1把矩形ABCD对折,得折痕MN;2把A折向MN,得Rt△AEB;3沿线段EA折叠,得到另一条折痕EF,展开后可得到△EBF.探究:△EBF的形状,并说明理由.分析由1得出M、N分别是AB、DC的中点,由2得出BE=2AP,再由3得出BF=2AP,证出BE=BF,因此∠1=∠2,由角的关系求出∠1=60°,即可证出△EBF为等边三角形.解答解:△EBF是等边三角形;理由如下:如图所示:由操作1得:M、N分别是AB、DC的中点,∴在Rt△ABE中,P为BE的中点,AP是斜边上的中线,∴AP=BP=BE,即BE=2AP,在△EBF中,A是EF的中点,∴AP=BF,即BF=2AP,∴BE=BF,∴∠1=∠2,又∵∠2=∠3,2∠1+∠3=180°,∴3∠1=180°,∴∠1=60°,∴△EBF为等边三角形.点评本题考查了矩形的性质、翻折变换的性质、直角三角形斜边上的中线性质、等边三角形的判定;熟练掌握翻折变换和矩形的性质,并能进行推理论证是解决问题的关键.15.2015秋兴化市校级期末1如图1,将△ABC纸片沿DE折叠,使点A落在四边形BCDE内点A′的位置,若∠A=40°,求∠1+∠2的度数;2通过1的计算你发现∠1+∠2与∠A有什么数量关系请写出这个数量关系,并说明这个数量关系的正确性;3将图1中△ABC纸片的三个内角都进行同样的折叠.。
2023年中考数学必考特色题型讲练【选择题】必考重点03 几何变换之翻折问题
【选择题】必考重点03 几何变换之翻折问题几何变换中的折叠问题,是江苏各地中考中常考的题型,难度多为一般或者较难。
几何的翻折问题,本质上考查的是轴对称的性质,常和矩形相结合。
在解题时,首先要明确折叠前后的图形全等,折叠前后的对应边、对应角相等,对称轴垂直平分对应点之间的连线,在结合矩形、菱形、三角形等的性质,运用勾股定理,列出方程,求出相应的线段长度。
【2022·江苏连云港·中考母题】如图,将矩形ABCD 沿着GE 、EC 、GF 翻折,使得点A 、B 、D 恰好都落在点O 处,且点G 、O 、C 在同一条直线上,同时点E 、O 、F 在另一条直线上.小炜同学得出以下结论:①GF ∥EC ;②AB ;③GE DF ;④OC ;⑤△COF ∽△CEG .其中正确的是( )A .①②③B .①③④C .①④⑤D .②③④【考点分析】本题主要考查了折叠问题,解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案. 【思路分析】由折叠的性质知∠FGE =90°,∠GEC =90°,点G 为AD 的中点,点E 为AB 的中点,设AD =BC =2a ,AB =CD =2b ,在Rt △CDG 中,由勾股定理求得b ,然后利用勾股定理再求得DF =FO =【2021·江苏苏州·中考母题】如图,在平行四边形ABCD 中,将ABC 沿着AC 所在的直线翻折得到AB C ',B C '交AD 于点E ,连接B D ',若60B ∠=︒,45ACB ∠=︒,AC =B D '的长是( )A.1BC D 【考点分析】本题考查翻折变换、等腰三角形的性质、勾股定理、平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【思路分析】利用平行四边形的性质、翻折不变性可得△AEC 为等腰直角三角形,根据已知条件可得CE 得长,进而得出ED 的长,再根据勾股定理可得出B D ';1.(2022·江苏苏州·二模)如图把一张矩形纸片ABCD 沿对角线AC 翻折,点B 的对应点为B ′,AB ′与DC 相交于点E ,则下列结论一定正确的是( )A .BC =12ACB .AE =CEC .AD =DE D .∠DAE =∠CAB2.(2022·江苏南京·二模)如图,矩形ABCO ,点A 、C 在坐标轴上,点B 的坐标为()2,4-.将△ABC 沿AC 翻折,得到△ADC ,则点D 的坐标是( )A.612,55⎛⎫⎪⎝⎭B.65,52⎛⎫⎪⎝⎭C.312,25⎛⎫⎪⎝⎭D.35,22⎛⎫⎪⎝⎭3.(2022·江苏泰州·一模)如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=11,EN=2,则FO的长为()A B C D4.(2022·江苏宿迁·三模)已知长方形纸条ABCD,点E、G在AD边上,点F、H在BC边上.将纸条分别沿着EF、GH折叠,如图,当DC恰好落在EA'上时,1∠与2∠的数量关系是()A.12135∠+∠=︒B.2115∠-∠=︒C.1290∠+∠=︒D.22190∠-∠=︒5.(2022·江苏苏州·二模)如图①,②,③,④,两次折叠等腰三角形纸片ABC,先使AB与AC重合,折痕为AD,展平纸片:再使点A与点C重合,折痕为EF,展平纸片,AD、EF交于点G.若5cmAB AC==,6cmBC,则DG的长为()A.3cm4B.7cm8C.1cm D.7cm66.(2022·江苏·苏州中学二模)如图,菱形ABCD中,点E在AD上,将△ABE沿着BE翻折,点A恰好落在CD上的点F处.若∠A=65°,则∠DFE的度数为()A.85︒B.82.5︒C.65︒D.50︒7.(2022·江苏扬州·二模)如图,在矩形ABCD中,2AB=,BC=E是BC的中点,将ABE△沿直线AE翻折,点B落在点F处,连结CF,则tan ECF∠的值为()A B C.23D8.(2022·江苏苏州·模拟)如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC 边上的点F处,若3AB=,5BC=,则tan FEC∠的值为().A.12B.35C.34D.459.(2022·江苏苏州·一模)如图,在平面直角坐标系中,O为坐标原点,平行四边形ABCD的边AB在x轴上,顶点D在y轴的正半轴上,点C在第一象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处、点B恰好为OE的中点.DE与BC交于点F.若y=kx(k≠0)图象经过点C.且S△BEF=1,则k的值为()A.18B.20C.24D.2810.(2022·江苏·江阴市第一初级中学一模)如图,把三角形纸片ABC沿DE折叠,当点A落在四边形BCDE外部时,则∠A与∠1、∠2之间的数量关系是()A.2∠A=∠1-∠2B.3∠A=2(∠1-∠2)C.3∠A=2∠1-∠2D.∠A=∠1-∠211.(2022·江苏·无锡市天一实验学校二模)已知:如图,在Rt△ABC中,∠A=90°,AB=8,tan∠ABC=32,点N是边AC的中点,点M是射线BC上的一动点(不与B,C重合),连接MN,将△CMN沿MN 翻折得△EMN,连接BE,CE,当线段BE的长取最大值时,sin∠NCE的值为()A B C D12.(2022·江苏省南菁高级中学实验学校九年级)如图,在ABC 中,点D 是线段AB 上的一点,过点D 作DE ∥AC 交BC 于点E ,将BDE 沿DE 翻折,得到B DE ',若点C 恰好在线段B D '上,若90BCD ∠=︒,DC :3CB '=:2,AB =CE 的长度为( )A.B C .D 13.(2022·江苏·九年级专题练习)如图,在△ABC 中,90ACB ∠=,点D 是AB 的中点,将△ACD 沿CD 对折得△A ′CD .连接BA ',连接AA ′交CD 于点E ,若14cm AB =,4cm BA '=,则CE 的长为( )A .4cmB .5cmC .6cmD .7cm14.(2022·江苏·宜兴市树人中学九年级)如图,在△ABC 中,点D 是线段AB 上的一点,过点D 作DE ∥AC 交BC 于点E ,将△BDE 沿翻折,得到△B 'DE ,若点C 恰好在线段B 'D 上,若∠BCD =90°,DC :CB '=3:2,AB =CE 的长度为( )A.B .4C .D .615.(2022·江苏·九年级专题练习)如图①,AB =5,射线AM ∥BN ,点C 在射线BN 上,将△ABC 沿AC 所在直线翻折,点B 的对应点D 落在射线BN 上,点P ,Q 分别在射线AM 、BN 上,PQ ∥AB .设AP =x ,QD =y .若y 关于x 的函数图象(如图②)经过点E (9,2),则cos B 的值等于( )A.25B.12C.35D.71016.(2022·江苏·苏州市吴江区铜罗中学九年级期中)如图,在△ABC中,D是AC边上的中点,连接BD,把△BDC沿BD翻折,得到△BDC′,DC'与AB交于点E,连接AC′,若AD=AC′=2,BD=3,则点D到BC的距离为()A B C D17.(2022·江苏南通·九年级)如图,AB为⊙O的一条弦,C为⊙O上一点,OC∥AB.将劣弧AB沿弦AB 翻折,交翻折后的弧AB交AC于点D.若D为翻折后弧AB的中点,则∠ABC=()A.110°B.112.5°C.115°D.117.5°18.(2022·江苏南京·九年级专题练习)如图,在矩形纸片ABCD中,点E、F分别在矩形的边AB、AD 上,将矩形纸片沿CE、CF折叠,点B落在H处,点D落在G处,点C、H、G恰好在同一直线上,若AB=6,AD=4,BE=2,则DF的长是()A .2B .74C D .319.(2022·江苏·宿迁青华中学九年级期末)如图,四边形ABCD 内接于O ,AB AD =,3BC =.劣弧BC 沿弦BC 翻折,刚好经过圆心O .当对角线BD 最大时,则弦AB 的长为( )A B .C .32D .【选择题】必考重点03 几何变换之翻折问题几何变换中的折叠问题,是江苏各地中考中常考的题型,难度多为一般或者较难。
2022届全国中考数学专项(图形的平移翻折对称)真题汇编(附答案)
2022届全国中考数学专项(图形的平移翻折对称)真题汇编一.选择题(共16小题)1.(2022•湖州)如图,将△ABC沿BC方向平移1cm得到对应的△A'B'C'.若B'C=2cm,则BC′的长是( )A.2cm B.3cm C.4cm D.5cm2.(2022•怀化)如图,△ABC沿BC方向平移后的像为△DEF,已知BC=5,EC=2,则平移的距离是( )A.1 B.2 C.3 D.43.(2022•嘉兴)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A′B′C′D′,形成一个“方胜”图案,则点D,B′之间的距离为( )A.1cm B.2cm C.(﹣1)cm D.(2﹣1)cm4.(2022•河北)如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕l,则l是△ABC的( )A.中线B.中位线C.高线D.角平分线5.(2022•天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A.B.C.D.6.(2022•孝感)下列图形中,对称轴条数最多的是( )A.等边三角形B.矩形C.正方形D.圆7.(2022•眉山)下列英文字母为轴对称图形的是( )A.W B.L C.S D.Q8.(2022•邵阳)下列四种图形中,对称轴条数最多的是( )A.等边三角形B.圆C.长方形D.正方形9.(2022•台州)如图是战机在空中展示的轴对称队形.以飞机B,C所在直线为x轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E的坐标为(40,a),则飞机D的坐标为( )A.(40,﹣a)B.(﹣40,a)C.(﹣40,﹣a)D.(a,﹣40)10.(2022•武汉)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A.B.C.D.11.(2022•乐山)如下字体的四个汉字中,是轴对称图形的是( )A.B.C.D.12.(2022•新疆)在平面直角坐标系中,点A(2,1)与点B关于x轴对称,则点B的坐标是( )A.(2,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)13.(2022•泰安)下列图形:其中轴对称图形的个数是( )A.4 B.3 C.2 D.114.(2022•湖州)如图,已知BD是矩形ABCD的对角线,AB=6,BC=8,点E,F分别在边AD,BC上,连结BE,DF.将△ABE沿BE翻折,将△DCF沿DF翻折,若翻折后,点A,C分别落在对角线BD上的点G,H处,连结GF.则下列结论不正确的是( )A.BD=10 B.HG=2 C.EG∥FH D.GF⊥BC15.(2022•连云港)下列图案中,是轴对称图形的是( )A.B.C.D.16.(2022•台湾)如图1为一张正三角形纸片ABC,其中D点在AB上,E点在BC上.今以DE为折线将B点往右折后,BD、BE分别与AC相交于F点、G点,如图2所示.若AD=10,AF=16,DF=14,BF=8,则CG的长度为多少?( )A.7 B.8 C.9 D.10二.填空题(共12小题)17.(2022•台州)如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A'B'C',且BB'⊥BC,则阴影部分的面积为cm2.18.(2022•十堰)如图,扇形AOB中,∠AOB=90°,OA=2,点C为OB上一点,将扇形AOB沿AC折叠,使点B的对应点B'落在射线AO上,则图中阴影部分的面积为.19.(2022•娄底)菱形ABCD的边长为2,∠ABC=45°,点P、Q分别是BC、BD上的动点,CQ+PQ的最小值为.20.(2022•眉山)如图,点P为矩形ABCD的对角线AC上一动点,点E为BC的中点,连接PE,PB,若AB=4,BC=4,则PE+PB的最小值为.21.(2022•台州)如图,在菱形ABCD中,∠A=60°,AB=6.折叠该菱形,使点A落在边BC上的点M 处,折痕分别与边AB,AD交于点E,F.当点M与点B重合时,EF的长为;当点M的位置变化时,DF长的最大值为.22.(2022•扬州)“做数学”可以帮助我们积累数学活动经验.如图,已知三角形纸片ABC,第1次折叠使点B落在BC边上的点B′处,折痕AD交BC于点D;第2次折叠使点A落在点D处,折痕MN交AB′于点P.若BC=12,则MP+MN= .23.(2022•泰安)如图,四边形ABCD为正方形,点E是BC的中点,将正方形ABCD沿AE折叠,得到点B的对应点为点F,延长EF交线段DC于点P,若AB=6,则DP的长度为.24.(2022•舟山)如图,在扇形AOB中,点C,D在上,将沿弦CD折叠后恰好与OA,OB相切于点E,F.已知∠AOB=120°,OA=6,则的度数为,折痕CD的长为.25.(2022•滨州)如图,在矩形ABCD中,AB=5,AD=10.若点E是边AD上的一个动点,过点E作EF ⊥AC且分别交对角线AC、直线BC于点O、F,则在点E移动的过程中,AF+FE+EC的最小值为.26.(2022•德阳)如图,直角三角形ABC纸片中,∠ACB=90°,点D是AB边上的中点,连结CD,将△ACD沿CD折叠,点A落在点E处,此时恰好有CE⊥AB.若CB=1,那么CE= .27.(2022•成都)如图,在菱形ABCD中,过点D作DE⊥CD交对角线AC于点E,连接BE,点P是线段BE上一动点,作P关于直线DE的对称点P',点Q是AC上一动点,连接P'Q,DQ.若AE=14,CE=18,则DQ﹣P'Q的最大值为.28.(2022•自贡)如图,矩形ABCD中,AB=4,BC=2,G是AD的中点,线段EF在边AB上左右滑动,若EF=1,则GE+CF的最小值为.三.解答题(共2小题)29.(2022•陕西)如图,△ABC的顶点坐标分别为A(﹣2,3),B(﹣3,0),C(﹣1,﹣1).将△ABC 平移后得到△A'B'C',且点A的对应点是A'(2,3),点B、C的对应点分别是B'、C'.(1)点A、A'之间的距离是;(2)请在图中画出△A'B'C'.30.(2022•连云港)如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,且BE⊥DC.(1)求证:四边形DBCE为菱形;(2)若△DBC是边长为2的等边三角形,点P、M、N分别在线段BE、BC、CE上运动,求PM+PN的最小值.。
中考数学点对点-几何折叠翻折类问题(解析版)
专题33 中考几何折叠翻折类问题专题知识点概述1.轴对称(折痕)的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.2.折叠或者翻折试题解决哪些问题(1)求角度大小;(2)求线段长度;(3)求面积;(4)其他综合问题。
3.解决折叠问题的思维方法(1)折叠后能够重合的线段相等,能够重合的角相等,能够重合的三角形全等,折叠前后的图形关于折痕对称,对应点到折痕的距离相等。
(2)折叠类问题中,如果翻折的直角,那么可以构造三垂直模型,利用三角形相似解决问题。
(3)折叠类问题中,如果有平行线,那么翻折后就可能有等腰三角形,或者角平分线。
这对解决问题有很大帮助。
(4)折叠类问题中,如果有新的直角三角形出现,可以设未知数,利用勾股定理构造方程解决。
(5)折叠类问题中,如果折痕经过某一个定点,往往用辅助圆解决问题。
一般试题考查点圆最值问题。
(6)折叠后的图形不明确,要分析可能出现的情况,一次分析验证可以利用纸片模型分析。
例题解析与对点练习【例题1】(2020•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【答案】A【解析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°。
2024成都中考数学一轮复习专题 图形的平移翻折对称 (含解析)
2024成都中考数学一轮复习专题图形的平移翻折对称一、单选题A.2B.2.(2023·山东·统考中考真题)落在DC边上,点A落在点A.21-B.51-3.(2023·内蒙古赤峰·统考中考真题)如图,在中点,连接CF,把线段CF沿射线BC形成的四边形CFDE的周长和面积分别是A.16,6B.4.(2023·黑龙江·统考中考真题)如图,在平面直角坐标中,矩形形ABCD沿直线OE折叠到如图所示的位置,线段A.()1,2B.(-5.(2023·浙江嘉兴·统考中考真题)如图,已知矩形纸片操作:第一步,如图①将纸片对折,使第二步,再将图②中的纸片沿对角线A.32B.85C.53D.956.(2023·甘肃武威·统考中考真题)如图,将矩形ABCD对折,使边AB与DC,BC与AD 后得到四边形EFGH.若2AB=,4BC=,则四边形EFGH的面积为()A.2B.47.(2023·内蒙古赤峰·统考中考真题)延长线上的点Q重合.DE交BCA .①②③B .②④二、填空题8.(2023·吉林长春·统考中考真题)如图,将正五边形纸片ABCDE 折叠,使点B 与点E 重合,折痕为AM ,展开后,再将纸片折叠,使边AB 落在线段AM 上,点B 的对应点为点B ',折痕为AF ,则AFB '∠的大小为__________度.9.(2023·全国·统考中考真题)如图,在Rt ABC △中,90C BC AC ∠=︒<,.点D ,E 分别在边AB ,BC 上,连接DE ,将BDE 沿DE 折叠,点B 的对应点为点B '.若点B '刚好落在边AC 上,303CB E CE '∠=︒=,,则BC 的长为__________.10.(2023·湖北宜昌·统考中考真题)如图,小宇将一张平行四边形纸片折叠,使点A 落在长边CD 上的点A 处,并得到折痕DE ,小宇测得长边8CD =,则四边形A EBC '的周长为_________.11.(2023·辽宁·统考中考真题)如图,在三角形纸片ABC 中,,20AB AC B =∠=︒,点D 是边BC 上的动点,将三角形纸片沿AD 对折,使点B 落在点B '处,当B D BC '⊥时,BAD ∠的度数为___________.12.(2023·江苏徐州·统考中考真题)如图,在Rt ABC △中,90,3C CA CB ︒∠===,点D 在边BC 上.将ACD沿AD 折叠,使点C 落在点C '处,连接BC ',则BC '的最小值为_______.13.(2023·黑龙江齐齐哈尔·统考中考真题)矩形纸片ABCD 中,3AB =,5BC =,点M 在AD 边所在的直线上,且1DM =,将矩形纸片ABCD 折叠,使点B 与点M 重合,折痕与AD ,BC 分别交于点E ,F ,则线段EF 的长度为______.14.(2023·四川凉山·统考中考真题)如图,在Rt ABC △纸片中,90ACB ∠=︒,CD 是AB 边上的中线,将ACD沿CD 折叠,当点A 落在点A '处时,恰好CA AB '⊥,若2BC =,则CA '=_________.15.(2023·新疆·统考中考真题)如图,在ABCD Y 中,6AB =,8BC =,120ABC ∠=︒,点E 是AD 上一动点,将ABE 沿BE 折叠得到A BE ' ,当点A '恰好落在EC 上时,DE 的长为______.16.(2023·江苏扬州·统考中考真题)如图,已知正方形ABCD 的边长为1,点E.F 分别在边AD BC 、上,将17.(2023·湖北随州·端点),将ADM△沿直线面积为___________;18.(2023·湖南·统考中考真题)如图,在矩形→→→运动.当点B C D A运动过程中,线段CB'的最小值为19.(2023·湖北武汉·统考中考真题)如图,DF EF相交于,G H两点.若与,20.(2023·广东深圳·统考中考真题)如图,在21.(2023·黑龙江·统考中考真题)矩形点B落在点E处,若ADEV是直角三角形,则点22.(2023·四川成都·统考中考真题)如图,在23.(2023·四川南充·统考中考真题)沿MNBC上,将ABC+'为定值;论:①CN NB24.(2023·浙江杭州DE EF上,连接,(结果用含k的代数式表示)三、解答题25.(2023·安徽·统考中考真题)如图,在由边长为1个单位长度的小正方形组成的网格中,点,,,A B C D 均为格点(网格线的交点).(1)画出线段AB 关于直线CD 对称的线段11A B ;(2)将线段AB 向左平移2个单位长度,再向上平移1个单位长度,得到线段22A B ,画出线段22A B ;(3)描出线段AB 上的点M 及直线CD 上的点N ,使得直线MN 垂直平分AB .26.(2023·四川广安·统考中考真题)将边长为2的正方形剪成四个全等的直角三角形,用这四个直角三角形拼成符合要求的四边形,请在下列网格中画出你拼成的四边形(注:①网格中每个小正方形的边长为1;②所拼的图形不得与原图形相同;③四边形的各顶点都在格点上).27.(2023·内蒙古通辽·统考中考真题)综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动,有一位同学操作过程如下:操作一:对折正方形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;操作二:在AD 上选一点P ,沿BP 折叠,使点A 落在正方形内部点M 处,把纸片展平,连接PM 、BM ,延长PM 交CD 于点Q ,连接BQ .(1)如图1,当点M 在EF 上时,EMB ∠=___________度;(2)改变点P 在AD 上的位置(点P 不与点A ,D 重合)如图2,判断MBQ ∠与CBQ ∠的数量关系,并说明理由.28.(2023·湖北·统考中考真题)如图,将边长为3的正方形ABCD 沿直线EF 折叠,使点B 的对应点M 落在边AD 上(点M 不与点,A D 重合),点C 落在点N 处,MN 与CD 交于点P ,折痕分别与边AB ,CD 交于点,E F ,连接BM .(1)求证:AMB BMP ∠=∠;(2)若1DP =,求MD 的长.29.(2023·江苏无锡·统考中考真题)如图,四边形ABCD 是边长为4的菱形,60A ∠=︒,点Q 为CD 的中点,P 为线段AB 上的动点,现将四边形PBCQ 沿PQ 翻折得到四边形PB C Q ''.(1)当45QPB ∠=︒时,求四边形BB C C ''的面积;(2)当点P 在线段AB 上移动时,设BP x =,四边形BB C C ''的面积为S ,求S 关于x 的函数表达式.(1)求证:AA CA '⊥';(2)以点O 为圆心,OE 为半径作圆.①如图2,O 与CD 相切,求证:3AA CA '=';②如图3,O 与CA '相切,1AD =,求O 的面积.参考答案一、单选题【点拨】本题考查了矩形的判定和性质,相似三角形的判定和性质,折叠的性质以及勾股定理的应用等知识,通过证明三角形相似,利用相似三角形的性质求出5.【答案】D 【分析】根据折叠的性质得出即可求解.∵折叠,∴EB EH EC==∴,,B C H 在以E 为圆心,∴90BHC ∠=︒,二、填空题②当B '在BC 上方时,如图,∵90ADB ADB '∠+∠=︒,∠的度数为25︒或115综上,BAD故答案为:25︒或115︒.【点拨】本题考查了折叠的性质,三角形内角和,注意分类讨论.12.【答案】323-=【分析】由折叠性质可知AC AC∵3AB =,5BC =,1DM =,∴Rt ABM 中,2BM AM AB =+则13522OM BM ==,EO AB 31则1522OM BM ==,∵tan EO AB EMO OM AM ∠==∴3EO OM =∵CA AB '⊥,∴90CEA ∠=︒,∵CEA ACD ∠+∠∴30A ∠=︒,BC∵在ABCD Y 中,6AB =,BC ∴120,ADC ABC HDC ∠=∠=︒∠∴1cos 2DH DC HDC DC =⨯∠=∵正方形ABCD 的边长为∴33=1=88ABFE S ⨯四边形,设CF x =,则DH x =∴(1=2ABFE AE BF S +四边形13由题意可得:AD ND =,∴90NDC DCN ∠+∠=︒,∴NDC MCB∠=∠∵AD BC =,∵2AB AB '==∴B '在A 为圆心,2为半径的弧上运动,当,,A B C '三点共线时,CB 此时11CB AC AB ''=-=-此时112CB '>-当P 在AD 上时,如图所示,此时综上所述,CB'的最小值为故答案为:112-.【点拨】本题考查了矩形与折叠问题,圆外一点到圆上的距离的最值问题,熟练掌握折叠的性质是解题的关键.∵AM BD⊥于点M,当过点D 的直线与圆相切与点E 时,V ①如图,过点E 作EH BC ⊥交BC 于点∵四边形ABCD 是矩形,∴EG AD ⊥,∴四边形ABHG 是矩形,3GH AB ==∵3AE AB ==,AE DE ⊥,9AD =,∵四边形ABCD 是矩形,∴NM AD ⊥,∴四边形ABNM 是矩形,3MN AB ==∵3AE AB ==,AE DE ⊥,9AD =,∵CD 平分ACB ∠交AB ∴12∠=∠,23∠∠=∴13∠=∠CD BC ⊥ ,90BCD ∴∠=︒,由折叠的性质得:B C BC '=AC B C '∴=,ACB BCD '∠=∠(11802AB C CAB ''∴∠=∠=⨯2,30AC ACB '=∠=︒ ,cos303B C AC '∴=⋅︒=三、解答题A B即为所求;(2)解:如图所示,线段22(3)解:如图所示,点,M N 即为所求如图所示,∵221310AM BM ==+=,1MN =∴AM MN =,又1,3NP MQ MP AQ ====,【点拨】本题考查轴对称图形和中心对称图形的概念及作图,轴对称图形:把一个图形沿着某条直线折叠,能够与另一个图形重合;中心对称图形:把一个图形绕着某个点旋转180︒能够和原图形重合.27.【答案】(1)30(2)MBQ CBQ ∠=∠,理由见解析【分析】(1)由正方形的性质结合折叠的性质可得出2BM AB BE ==,90BEF ∠=︒,进而可求出1sin 2EMB ∠=,即得出30EMB ∠=°;(2)由正方形的性质结合折叠的性质可证()Rt Rt HL BCQ BMQ ≅ ,即得出MBQ CBQ ∠=∠【详解】(1)解:∵对折正方形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,∴2AB BC CD AD BE ====,90BEF ∠=︒.【点拨】本题主要考查了正方形与折叠问题,相似三角形的性质与判定,等腰三角形的性质与判定,勾股定理等等,正确作出辅助线构造相似三角形是解题的关键.∴90AA C AEO ∠'=∠=︒,∴AA CA '⊥'(2)①过点O 作OF AB ⊥于点F ,延长FO 交CD 于点G ,则90OFA ∠=︒,∵四边形ABCD 是矩形,∴AB CD ,AO BO CO DO ===,∴OCG OAF ∠=∠,90OGC OFA ∠=∠=︒.∵OCG OAF ∠=∠,90OGC OFA ∠=∠=︒,AO CO =,∴()AAS OCG OAF ≌,∴OG OF =.∵O 与CD 相切,OE 为半径,90OGC ∠=︒,∴OG OE =,∴OE OF=又∵90AEO ∠=︒即OE AE ⊥,OF AB ⊥,∴AO 是EAF ∠的角平分线,即OAE OAF ∠=∠,设OAE OAF x ∠=∠=,则OCG OAF x ∠=∠=,又∵CO DO=∴OCG ODG x∠=∠=∴2AOE OCG ODG x∠=∠+∠=又∵90AEO ∠=︒,即AEO △是直角三角形,∴90AOE OAE ∠+∠=︒,即290x x +=︒解得:30x =︒,∴30OAE ∠=︒,即30A AC '∠=︒,在Rt A AC '△中,30A AC '∠=︒,90AA C '∠=︒,∴2AC CA '=,∵O 与CA '相切,∴OE OH =,90A HO '∠=∵AA C AEO A EO '∠'=∠=∠∴四边形A EOH '是矩形,。
中考数学专题训练:图形的折叠问题(附参考答案)
中考数学专题训练:图形的折叠问题(附参考答案)1.如图,在平面直角坐标系中,矩形ABCD的边AD=5,OA∶OD=1∶4,将矩形ABCD沿直线OE折叠到如图所示的位置,线段OD1恰好经过点B,点C落在y轴的点C1处,则点E的坐标是( )A.(1,2) B.(-1,2)C.(√5-1,2) D.(1-√5,2)2.如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是( )A.30°B.45°C.74°D.75°3.如图,在矩形ABCD中,AB=2,BC=2√5,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连接CF,则cos ∠ECF的值为( )A.23B.√104C.√53D.2√554.把一张矩形纸片ABCD按如图所示方法进行两次折叠,得到等腰直角三角形BEF.若BC=1,则AB的长度为( )A.√2B.√2+12C.√5+12D.435.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D,E分别在AB,AC 上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上.若FD平分∠EFB,则AD的长为( )A.259B.258C.157D.2076.如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为__________.7.如图,在Rt△ABC纸片中,∠ACB=90°,CD是边AB上的中线,将△ACD沿CD折叠,当点A落在点A′处时,恰好CA′⊥AB.若BC=2,则CA′=_______.8.如图,点E在矩形ABCD的边CD上,将△ADE沿AE折叠,点D恰好落在边BC 上的点F处.若BC=10,sin ∠AFB=45,则DE=_____.9.如图,在扇形AOB中,点C,D在AB⏜上,将CD⏜沿弦CD折叠后恰好与OA,OB 相切于点E,F.已知∠AOB=120°,OA=6,则EF⏜的度数为________;折痕CD 的长为_______.10.如图,在矩形ABCD中,AB=5,AD=4,M是边AB上一动点(不含端点),将△ADM沿直线DM对折,得到△NDM.当射线CN交线段AB于点P时,连接DP,则△CDP的面积为______;DP的最大值为_______.11.如图,在矩形ABCD中,AB=2,AD=√7,动点P在矩形的边上沿B→C→D →A运动.当点P不与点A,B重合时,将△ABP沿AP对折,得到△AB′P,连接CB′,则在点P的运动过程中,线段CB′的最小值为_________.12.如图,DE平分等边三角形ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是______.13.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若AGGE =73,则tan A=______.14.如图,在等边三角形ABC中,过点C作射线CD⊥BC,点M,N分别在边AB,BC上,将△ABC沿MN折叠,使点B落在射线CD上的点B′处,连接AB′,已知AB=2.给出下列四个结论:①CN+NB′为定值;②当BN=2NC时,四边形BMB′N为菱形;③当点N与C重合时,∠AB′M=18°;④当AB′最短时,MN=7√21.20其中正确的结论是__________.(填序号)15.将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(3,0),点C(0,6),点P在边OC上(点P不与点O,C重合),折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O的对应点O′落在第一象限.设OQ=t.(1)如图1,当t=1时,求∠O′QA的大小和点O′的坐标;(2)如图2,若折叠后重合部分为四边形,O′Q,O′P分别与边AB相交于点E,F,试用含有t的式子表示O′E的长,并直接写出t的取值范围;(3)若折叠后重合部分的面积为3√3,则t的值可以是__________________________________________.(请直接写出两个不同....的值即可)16.如图,已知△ABC,AB=AC,BC=16,AD⊥BC,∠ABC的平分线交AD于点E,且DE=4.将∠C沿GM折叠使点C与点E恰好重合.下列结论正确的有________.(填序号)①BD=8;②点E到AC的距离为3;③EM=103;④EM∥AC.17.综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动,有一位同学操作过程如下:操作一:对折正方形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在正方形内部点M处,把纸片展平,连接PM,BM,延长PM交CD于点Q,连接BQ.(1)如图1,当点M在EF上时,∠EMB=________;(填度数)(2)改变点P在AD上的位置(点P不与点A,D重合)如图2,判断∠MBQ与∠CBQ 的数量关系,并说明理由.参考答案1.D 2.D 3.C 4.A 5.D6. 3√2-3 7.2√3 8.5 9.60°4√6 10.10 2√511.-2 12.√m2+n2 13.3√7714.①②④15.(1)∠O′QA=60°点O′的坐标为(32,√32)(2)O′E=3t-6,其中t的取值范围是2<t<3 (3)3或103(答案不唯一,满足3≤t<2√3即可) 16.①④17.(1)30°(2)∠MBQ=∠CBQ,理由略。
中考复习专题折叠压轴题(无答案)
中考专题:折叠问题折叠型问题是近年中考的热点问题,通常是把某个图形按照给定的条件折叠,通过折叠前后图形变换的相互关系来命题。
折叠型问题立意新颖,变幻巧妙,对培养学生的识图能力及灵活运用数学知识解决问题的能力非常有效。
图形折叠问题中题型的变化比较多,主要有以下几点:1.图形的翻折部分在折叠前和折叠后的形状、大小不变,是全等形;2.图形的翻折部分在折叠前和折叠后的位置关于折痕成轴对称;3.将长方形纸片折叠,三角形是否为等腰三角形;4.解决折叠问题时,要抓住图形之间最本质的位置关系,从而进一步发现其中的数量关系;5.充分挖掘图形的几何性质,将其中的基本的数量关系,用方程的形式表达出来,并迅速求解,这是解题时常用的方法之一。
折叠问题数学思想:(1)思考问题的逆向(反方向),(2)从一般问题的特例人手,寻找问题解决的思路;(3)把一个复杂问题转化为解决过的基本问题的转化与化归思想;(4)归纳与分类的思想(把折纸中发现的诸多关系归纳出来,并进行分类);(5)从变化中寻找不变性的思想.用“操作”、“观察”、“猜想”、“分析”的手段去感悟几何图形的性质是学习几何的方法。
折叠问题主要有以下题型:题型1:动手问题此类题目考查学生动手操作能力,它包括裁剪、折叠、拼图,它既考查学生的动手能力,又考查学生的想象能力,往往与面积、对称性质联系在一起.题型2:证明问题动手操作的证明问题,既体现此类题型的动手能力,又能利用几何图形的性质进行全等、相似等证明.题型3:探索性问题此类题目常涉及到画图、测量、猜想证明、归纳等问题,它与初中代数、几何均有联系.此类题目对于考查学生注重知识形成的过程,领会研究问题的方法有一定的作用,也符合新课改的教育理论。
典型例题一.折叠后求度数例1.将一张长方形纸片按如图所示的方式折叠,BC、BD为折痕,则∠CBD的度数为()A.600B.750C.900D.950练习1.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB =65°,则∠AED′等于()A.50°B.55°C.60°D.65°2.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,则∠1=_______°,∠2=_______°A3. 用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE ,其中∠BAC =度。
专题31 几何变换之翻折模型(教师版)-中考数学几何模型重点突破讲练
EF CF ∴ BD AB BD AF ,
BE CF CE ∵AC=5AF,
∴设 AF=x,则 AC=5x,CF=4x,
∴
BD BE
5x
BD 4x
5x
x BE
,
∴9BD=6BE,
∴ BD 2 , BE 3
故选:A.
4.如图,在△ABC 中,AB<AC,∠C=45°,AB=5,BC=4 2 ,点 D 在 AC 上运动,连接 BD,把△BCD 沿 BD 折叠得到△BCD , BC 交 AC 于点 E, CD∥ AB ,则图中阴影部分的面积是( )
∵S△ABC
1 2
AF•BC
17 2 22
4
2 14,
如图,过点 B 作 BG⊥AC 于点 G,
∵S△ABC
1 2
AC•BG,
∴14 1 7×BG, 2
∴BG=4,
∴S
阴影部分
1 2
DE•BG
1 10 4 27
20 7
.
故选:D.
5.如图,正方形 ABCD 中,AB=4,延长 DC 到点 F(0<CF<4),在线段 CB 上截取点 P,使得 CP=CF,
6 8
BG 6 7
FG 7
, 可得
FG,由 EQ ∥GB, DQ ∥CB, 可求
DQ,进而可求
第10讲 填空小压轴—翻折冲刺2023年中考数学满分应对方法与策略(解析版)
第10讲填空小压轴—翻折【考点梳理】图形翻折的性质和特征:图形翻折的常见题型:【典型例题】一.填空题(共20小题)1.(2019•上海)如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是2.【分析】由折叠可得AE=FE,∠AEB=∠FEB,由折叠的性质以及三角形外角性质,即可得到∠AEB=∠EDF,进而得到tan∠EDF=tan∠AEB==2.【解答】解:如图所示,由折叠可得AE=FE,∠AEB=∠FEB=∠AEF,∵正方形ABCD中,E是AD的中点,∴AE=DE=AD=AB,∴DE=FE,∴∠EDF=∠EFD,又∵∠AEF是△DEF的外角,∴∠AEF=∠EDF+∠EFD,∴∠EDF=∠AEF,∴∠AEB=∠EDF,∴tan∠EDF=tan∠AEB==2.故答案为:2.【点评】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.2.(2022•松江区校级模拟)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=10,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为或10﹣15.【分析】由△DCM为直角三角形,分两种情况进行讨论:①∠CDM=90°;②∠CMD=90°.分别依据含30°角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长.【解答】解:分两种情况:①如图,当∠CDM=90°时,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=10,∴∠C=30°,AB=AC=5,由折叠可得,∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=,∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴MN=AN=;②如图,当∠CMD=90°时,△CDM是直角三角形,由题可得,∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD,又∵AB=5,∴AN=20﹣10,BN=15﹣10,过N作NH⊥AM于H,则∠ANH=30°,∴AH=AN=10﹣5,HN=10﹣15,由折叠可得,∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=10﹣15,∴MN=10﹣15.故答案为:或10﹣15.【点评】本题考查了翻折变换﹣折叠问题,勾股定理,含30°角的直角三角形的性质,等腰直角三角形的性质,正确的作出图形是解题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3.(2022•虹口区二模)如图,已知正方形ABCD的边长为1,点M是边CD的中点,将△BCM沿直线BM翻折,使得点C落在同一平面内的点E处,联结AE并延长交射线BM于点F,那么EF的长为.【分析】连接CE,交BF于点H,过点B作BN⊥AF于点N,由翻折和等腰三角形三线合一可得△BNF是等腰直角三角形,∠F=45°,△EHF是等腰直角三角形,在Rt△BEM 中,根据勾股定理得BM的长,再根据面积即可求出EH的长,从而求解.【解答】解:连接CE,交BF于点H,过点B作BN⊥AF于点N,由翻折得,BM垂直平分EC,△BEH≌△BCH,∠1=∠2,∵AB=BC=BE=1,BN⊥AF,∴∠ABN=∠NBE,∴∠NBE+∠1=∠ABC=×90°=45°,∴△BNF是等腰直角三角形,∠F=45°,∴△EHF是等腰直角三角形,在Rt△BEM中,BM===,∵S△BEM=BE•EM=BM•EH,∴×1×=×EH,∴EH=,∴EF=EH==,故答案为:.【点评】本题考查翻折变换,正方形的性质,全等三角形的判定和性质,等腰三角形的三线合一,勾股定理等知识,解题的关键是恰当作出辅助线,属于中考填空题中的压轴题.4.(2022•徐汇区二模)如图,在Rt△ABC中,∠C=90°,BC=8,AC=6,点D是BC 的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B'DE的位置,B′D交AB于点F,如果△AB′F为直角三角形,那么BE的长为2或.【分析】分两种情况画出图形,①方法一:如图1,当∠AFB′=90°时,由相似三角形的性质及直角三角形的性质可求出答案;方法二:过点E作EH⊥BC于点H,设EH=3a,BE=5a,则BH=4a,由BF的长列出方程,解方程求出a即可;②方法一如图2,当∠AB′F=90°时,由相似三角形的性质及直角三角形的性质可求出答案.方法二:过点E作EG⊥BD于点G,设EG=3a,BG=4a,BE=5a,得出=4,求出a的值则可得出答案.【解答】解:①方法一:如图1,当∠AFB′=90°时.在Rt△ABC中,∵AC=6,BC=8,∴AB===10,∵D是BC的中点,∴BD=CD=BC=4,∵∠AFB'=∠BFD=90°,∠ACB=90°,∴∠DFB=∠ACB,又∵∠DBF=∠ABC,∴△BDF∽△BAC,∴,即,解得:BF=,设BE=B'E=x,则EF=﹣x,∵∠B=∠FB'E,∴sin∠B=sin∠FB'E,∴,∴,解得x=2.∴BE=2.方法二:过点E作EH⊥BC于点H,设EH=3a,BE=5a,则BH=4a,∵将△BDE沿直线DE翻折,∴EF=3a,∴BF=8a=BD•cos∠B=4×,∴a=,∴BE=5a=2;②如图2中,当∠AB′F=90°时,连接AD,作EH⊥AB′交AB′的延长线于H.∵AD=AD,CD=DB′,∴Rt△ADC≌Rt△ADB′(HL),∴AC=AB′=6,∵将△BDE沿直线DE翻折,∴∠B=∠DB'E,∵AB'⊥DB',EH⊥AH,∴DB'∥EH,∴∠DB'E=∠B'EH,∴∠B=∠B'EH,∴sin∠B=sin∠B'EH,设BE=x,则B'H=x,EH=x,在Rt△AEH中,AH2+EH2=AE2,∴,解得x=,∴BE=.则BE的长为.方法二:过点E作EG⊥BD于点G,设EG=3a,BG=4a,BE=5a,∴DG=EG×=a,∵DG+GB=DB,∴,∴a=,∴BE=.故答案为:2或.【点评】本题考查了翻折变换、勾股定理、解直角三角形、相似三角形的判定与性质、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题.5.(2022•嘉定区二模)在正方形ABCD中,AB=5,点E在边BC上,△ABE沿直线AE 翻折后点B落到正方形ABCD的内部点F,联结BF、CF、DF,如图,如果∠BFC=90°,那么DF=.【分析】连接EF,过点F作FH⊥BC于点H,延长HF交AD于点G,先证明四边形GHCD是矩形,可得GD=CH,GH=CD,根据翻折可得∠AFE=∠ABE,BE=FE,再根据∠BFC=90°,可得E是BC的中点,根据正方形的性质,易证△AGF∽△FHE,可得,设EH=m,FH=n,列二元一次方程组,求出m和n的值,再根据勾股定理可得DF的长.【解答】解:连接EF,过点F作FH⊥BC于点H,延长HF交AD于点G,如图所示:∴∠GHC=90°,在正方形ABCD中,∠BCD=∠CDA=90°,∴四边形GHCD是矩形,∴GH=CD,GD=HC,根据翻折,可得△ABE≌△AFE,∴∠AFE=∠ABE,BE=FE,∴∠EBF=∠EFB,∵∠BFC=90°,∴∠FBC+∠FCB=90°,∴∠EFC=∠ECF,∴FE=CE,∴BE=CE,在正方形ABCD中,∠ABE=90°,AB=BC=CD=AD=5,AD∥BC,∴∠AFE=90°,,∴∠AFG+∠EFH=90°,∵∠EFH+∠FEH=90°,∴∠AFG=∠FEH,∵FH⊥BC,且AD∥BC,∴∠AGF=∠FHE=90°,∴△AGF∽△FHE,∴,设EH=m,FH=n,则GF=2m,AG=2n,∵EC=,CH=,∵GD=CH,GH=CD,∴,解得,∴GF=2m=3,GD==1,根据勾股定理,得DF==,故答案为:.【点评】本题考查了正方形的性质,矩形的判定和性质,折叠的性质,直角三角形的性质,相似三角形的判定和性质,勾股定理等,本题综合性较强,属于中考常考题型.6.(2022•闵行区二模)如图,已知Rt△ABC中,∠ACB=90°,点M是AB的中点,将AM沿CM所在的直线翻折,点A落在点A'处,A'M⊥AB,且交BC于点D,A'D:DM的值为.【分析】连接AA',交CM于点P,可设DM=a(a>0),AM=b(b>0),由直角三角形斜边上的中线的定义可得CM是Rt△ABC有斜边上的中线,可得BM=CM=b,AB=AM+BM=2b,再由折叠的性质可得A'M=AM,∠AMC=∠A'MC,AA'⊥CM,从而可求得∠AMC=45°,则可证得△APM是以点P为直角顶点的等腰直角三角形,故有CP=CM﹣MP=b﹣b=b,从而可求得AC=b,再由sin B=,sin B=,得,可求得,,即可求解.【解答】解:连接AA',交CM于点P,如图,设DM=a(a>0),AM=b(b>0),∵M是AB的中点,∠ACB=90°,∴CM是Rt△ABC有斜边上的中线,∴CM=AB,即AM=BM=CM,∴BM=CM=b,AB=AM+BM=2b,∵A'M⊥AB,∴∠A'MB=∠A'MA=90°,即∠DMA=∠DMB=90°,∴DB=,∵AM、A'M关于CM对称,∴A'M=AM,∠AMC=∠A'MC,AA'⊥CM,∴A'M=b,∴A'D=A'M﹣DM=b﹣a.∵∠A'MA=90°,∴∠AMC+∠A'MC=90°,∴2∠AMC=90°,∴∠AMC=45°,∵AA'⊥CM,∴△APM是以点P为直角顶点的等腰直角三角形,∴AP=MP=AM=b,∴CP=CM﹣MP=b﹣b=b,∵AA'⊥CM,∴∠APC=90°,∴AC===,∵b>0,∴,故AC=b,∵在Rt△ABC中,sin B=,在Rt△DMB中,sin B=,∴,∴,∴,∴=,故,∴1+==4+2,∴,∵a>0,b>0,∴,∴,∴,即A'D:DM的值为.解法二:如图,∵A'M⊥AB,∴∠AMA'=∠3=90°,由翻折得:∠1=∠2=∠AMA'=45°,AM=A'M,∵Rt△ABC中,∠ACB=90°,M是AB的中点,∴AM=BM=CM,∴A'M=BM,∴∠A'=∠A'BM=45°,∴∠A'BM=∠1,∴A'B∥CM,∴.故答案为:.【点评】本题主要考查翻折变换(折叠问题),解答的关键是明确折叠的过程中相应的边或角之间的关系.7.(2022•宝山区二模)如图,矩形ABCD中,AB=3,BC=5,F为边CD上一点,沿AF 折叠,点D恰好落在BC边上的点E处,那么线段DF:FC的值为.【分析】由矩形的性质可得AB=CD=3,AD=BC=5,∠B=∠C=90°,由翻折可得AE =AD=5,DF=EF,则BE==4,EC=5﹣4=1,设CF=x,则DF=EF=3﹣x,由勾股定理可得(3﹣x)2=x2+12,解得x=,则CF=,DF=,进而可得出答案.【解答】解:∵四边形ABCD为矩形,∴AB=CD=3,AD=BC=5,∠B=∠C=90°,由翻折可得AE=AD=5,DF=EF,∴BE==4,∴EC=5﹣4=1,设CF=x,则DF=EF=3﹣x,由勾股定理可得(3﹣x)2=x2+12,解得x=,∴CF=,DF=3﹣=,∴DF:FC=.故答案为:.【点评】本题考查翻折变换(折叠问题)、矩形的性质、勾股定理,熟练掌握翻折的性质是解答本题的关键.8.(2022•静安区二模)如图,∠MON=30°,点A在OM上,OA=1,点P在ON上,将∠MON沿AP翻折,设点O落在点O′处,如果AO′⊥AO,那么OP的长为+1或﹣1.【分析】连接OO′交直线AP于点B,过点P作PC⊥OM于点C,则∠OCP=∠ACP=90°,设OP=x,根据折叠的性质可得OAB=∠OAO′=45°,OB=OA•sin∠OAB=1×=,然后分两种情况:若点O′在OM上方,若O′在OM下方,分别根据解直角三角形与勾股定理即可解答.【解答】解:连接OO′交直线AP于点B,过点P作PC⊥OM于点C,则∠OCP=∠ACP =90°,设OP=x,∵∠MON=30°,OA=1,∴PC=OP=x,∵点A在OM上,点P在ON上,将∠MON沿AP翻折,点O落在O′处,∴O′与O关于直线AP对称,O′A=OA=1,∴AP垂直平分OO′,∴O′B=OB=OO′,∠OBP=90°,∴∠OAB=∠O′AB=∠OAO′,∵AO′⊥AO,∴∠OAO′=90°,∴∠OAB=∠OAO′=45°,∴OB=OA•sin∠OAB=1×=,若点O′在OM上方,如图:在Rt△ACP中,AP==x,∴BP=AB﹣AP=,在Rt△OBP中,BP2+OB2=OP2,∴()=x2,整理得:x2+2x﹣2=0,∴x=﹣1±,∵x>0,∴x=﹣1;若O′在OM下方,如图:∴∠CAP=∠OAB=45°,在Rt△ACP中,AP==x,∴BP=AB+AP=x,在Rt△OBP中,BP2+OB2=OP2,∴()=x2,整理得:x=1±,∵x>1,∴x=+1,综上所述,OP的长为+1或﹣1,故答案为:+1或﹣1.【点评】此题考查的是翻折变换、解直角三角形、线段垂直平分线的性质、勾股定理等知识,正确作出辅助线分情况进行讨论是解决此题的关键.9.(2022•松江区校级模拟)如图,已知在△ABC中,AB=AC,,将△ABC翻折,使点C与点A重合,折痕DE交边BC于点D,交边AC于点E,那么的值为.【分析】过点A作AF⊥BC于点F,连接AD.由翻折可知,AE=CE,DE⊥AC,设AF=x,在Rt△ABF中,tan∠B=,可求得BF=CF=2x,再利用勾股定理求出AB=AC =x,在Rt△CDE中,tan∠C=tan∠B=,即可求得DE=,结合勾股定理可得CD==,则BD=BC﹣CD=2BF﹣CD=,进而可得出答案.【解答】解:过点A作AF⊥BC于点F,连接AD.由翻折可知,AE=CE,DE⊥AC,∵AB=AC,∴∠B=∠C,BF=CF.设AF=x,在Rt△ABF中,tan∠B=,∴BF=CF=2x,∴AB=AC=x,在Rt△CDE中,tan∠C=tan∠B=,∵CE=,∴DE=,∴,则BD=BC﹣CD=2BF﹣CD=,∴.故答案为:.【点评】本题考查翻折变换(折叠问题)、解直角三角形、勾股定理,熟练掌握翻折的性质是解答本题的关键.10.(2022•金山区校级模拟)如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=8.将△ABC翻折,使点C落在AB边上的点D处,折痕EF交边AC于点E,交边BC于点F,如果DE∥BC,则线段EF的长为.【分析】根据折叠的性质可得EC=ED,FC=FD,∠CEF=∠DEF,EF是CD的垂直平分线,进而得出四边形CEDF是正方形,设未知数,利用相似三角形、直角三角形的边角关系求解即可.【解答】解:如图,由折叠可知,EC=ED,FC=FD,∠CEF=∠DEF,EF是CD的垂直平分线,∵DE∥BC,∠ACB=90°,∴∠AED=∠ACB=90°,∴∠CEF=∠DEF=45°,∴∠CED=∠ECF=∠EDF=90°∴四边形CEDF是正方形,设CF=x,则AE=6﹣x,BF=8﹣x,由△AED∽△DFB得,=,即,=,解得,x=,在Rt△CEF中,EF=CF=,故答案为:.【点评】本题考查折叠轴对称,正方形的判定和性质,相似三角形以及直角三角形的边角关系,理解折叠轴对称的性质和直角三角形的边角关系是解决问题的关键.11.(2021•浦东新区模拟)如图,已知在△ABC中,AB=AC,BM是腰AC上的中线,且BM=BC,将△BCM沿直线BM翻折,点C落在△ABC所在平面内的点D处,如果BC=7,那么AD=.【分析】由翻折的性质可得BM=BC=BD,根据等腰三角形的性质,可以得出两个底角相等由三角形一个外角等于与它不相邻的两个内角和∠DMC=2∠ADM,根据相似三角形判定,两角对应相等可得△MAD∽△ABC,由相似三角形的性质==即可示AD的值.【解答】解:∵△BCM沿直线BM翻折得到△BMD,∴∠BCM=∠BMC=∠BMD=∠BDM,BD=BM=BC=7,又∵AB=AC,∴∠BCM=∠ABC=∠BMC=∠BMD=∠BDM,∵BM是腰AC上的中线,∴CM=AM,又∵DM=CM,∴AM=DM,∴∠ADM=∠DAM,又∵三角形一个外角等于与它不相邻的两个内角和,∴∠DMC=∠ADM+∠DAM=2∠ADM,∵∠ADM=∠DMC=∠DMB=∠BCA,∠ADM=∠BCA,∠DAM=∠ABC,∴△MAD∽△ABC,又∵MA=AC,∴AD=BC=,故答案为.【点评】本题考查等腰三角形的性质以及折叠的性质.解本题的关键要熟练掌握相似三角形的判定与性质、等腰三角形的性质和折叠的性质等.12.(2021•浦东新区模拟)如图,点M、N分别在∠AOB的边OA、OB上,将∠AOB沿直线MN翻折,设点O落在点P处,如果当OM=4,ON=3时,点O、P的距离为4,那么折痕MN的长为2﹣.【分析】由折叠的性质可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的长,即可求MN的长.【解答】解:设MN与OP交于点E,∵点O、P的距离为4,∴OP=4,∵将∠AOB沿直线MN翻折,∴MN⊥OP,EO=EP=2,在Rt△OME中,ME==2,在Rt△ONE中,NE==,∴MN=ME﹣NE=2﹣,故答案为:2﹣.【点评】本题考查了翻折变换,勾股定理,利用勾股定理求线段的长度是本题的关键.13.(2021•虹口区二模)如图,正方形ABCD的边长为4,点M在边DC上,将△BCM沿直线BM翻折,使得点C落在同一平面内的点C′处,联结DC′并延长交正方形ABCD 一边于点N.当BN=DM时,CM的长为2或8﹣4.【分析】分两种情形:如图1中,当BN=DM时,连接CC′交BM于J.如图2中,当BN=DM时,过点C′作C′T⊥CD于T.分别求解即可.【解答】解:如图1中,当BN=DM时,连接CC′交BM于J.∵BN=DM,BN∥DM,∴四边形BNDM是平行四边形,∴BM∥DN,∴∠BMC=∠NDM,∠BMC′=∠DC′M,由折叠知,MC′=MC,∠BMC=∠BMC′,∴∠NDM=∠DC′M,∴MC′=MD,∴CM=DM=CD=2.如图2中,当BN=DM时,过点C′作C′T⊥CD于T.∵CB=CD,BN=DM,∴CN=CM=MC′,在△BCM和△DCN中,,∴△BCM≌△DCN(SAS),∴∠CDN=∠CBM,∵∠CBM+∠BCC′=90°,∠BCC′+∠C′CD=90°,∴∠CBM=∠C′CD,∴∠C′CD=∠DCC′,∴C′D=C′C,∵C′T⊥CD,∴DT=TC=2,∵C′T∥CN,∴DC′=C′N,∴C′T=CN,设C′T=x,则CN=CM=MC′=2x,TM=x,∴2x+x=2,∴x=4﹣2,∴CM=8﹣4,综上所述,CM的值为2或8﹣4.【点评】本题考查翻折变换,正方形的性质,平行四边形的判定和性质,全等三角形的判定和性质,三角形中位线定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考填空题中的压轴题.14.(2021•嘉定区二模)在矩形ABCD中,AB=6,BC=4(如图),点E是边AB的中点,联结DE.将△DAE沿直线DE翻折,点A的对应点为A',那么点A'到直线BC的距离为.【分析】过A′作FG∥BC交AB于F,交CD于G,过A′作A′H⊥BC于H,先证明△EF A′∽△A′GD得它们对应边的比为,再设EF=3m,F A′=3n,则A′G=4m,DG =4n,根据F A′+A′G=BC=4,AE+EF=DG,列方程即可得到答案.【解答】解:过A′作FG∥BC交AB于F,交CD于G,过A′作A′H⊥BC于H,如图:∵矩形ABCD中,AB=6,BC=4,E是边AB的中点∴∠A=90°,AD=BC=4,CD=AB=6,AE=3,∵△DAE沿直线DE翻折,点A的对应点为A',∴∠DA′E=∠A=90°,A′D=AD=4,A′E=AE=3,又FG∥BC,∴∠A′DG=90°﹣∠DA′G=∠EA′F,而∠EF A′=∠A′GD=90°,∴△EF A′∽△A′GD,∴=,设EF=3m,F A′=3n,则A′G=4m,DG=4n,∵F A′+A′G=BC=4,AE+EF=DG,∴,解得n=,∴DG=4n=,∴CG=CD﹣DG=,∴A′H=故答案为:.【点评】本题考查矩形中的翻折问题,构造相似三角形列方程是解题的关键.15.(2021•闵行区二模)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,点D为AB 中点,将△ACD沿直线CD翻折后,点A落在点E处,设,那么向量用向量表示为2+.【分析】证明DE∥AC,DE=AC,求出,可得结论.【解答】解:如图,∵∠ACB=90°,AD=BD,∴CD=DB=DA,∵∠A=60°,∴△ADC是等边三角形,由翻折的性质可知,ED=EC=AD=AC,∴四边形ACED是菱形,∴AC=DE,AC∥DE,∵=+,∴=2+,∴=2+,故答案为:2+.【点评】本题考查直角三角形斜边中线的性质,菱形的判定和性质,三角形法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(2021•静安区二模)已知矩形纸片ABCD的边AB=10,BC=12(如图),将它折叠后,点D落在边AB的中点处,那么折痕的长为.【分析】方法一:先画出图形,构造相似三角形求出MF,再利用勾股定理求解.方法二:先根据勾股定理求出PD长,再证明△ADP∽△FEM,根据相似三角形的性质即可求出EF.【解答】解:方法一:如图,设折痕为EF,过点E作EM⊥BC于点M,∵把矩形ABCD折叠,点D与AB中点P重合,点C落在G处,∴EF垂直平分PD,∴∠EDP+∠DEF=90°,∵∠DEF+∠MEF=90°,∴∠EDP=∠MEF,∵∠EMF=90°,∠A=90°,∴△ADP∽△FEM,∴.在矩形ABCD中,AB=10,BC=12,P为AB中点,∴AD=12,AP=5,EM=10,∴,∴,在Rt△EMF中,.方法二:如图,设折痕为EF,过点E作EM⊥BC于点M,则EM=10,在矩形ABCD中,AB=10,P为AB中点,∴AP=5,又∵∠A=90°,AD=12,∴PD=13(勾股定理),由方法一得△ADP∽△FEM,∴,∴,∴EF=.故答案为:.【点评】本题考查折叠的性质、矩形的性质、勾股定理、相似三角形的性质与判定等知识,熟练掌握折叠的性质和勾股定理是解题的关键.17.(2021•杨浦区二模)如图,已知在△ABC中,∠C=90°,∠B=30°,AC=2,点D 是边BC的中点,点E是边AB上一点,将△BDE沿直线DE翻折,点B落在B'处,联结AB',如果∠AB'D=90°,那么线段AE的长为或2.【分析】分两种情况讨论,由折叠的性质和锐角三角函数可求解.【解答】解:在△ABC中,∠C=90°,∠B=30°,AC=2,∴AB=4,BC=AC=2,∵点D是边BC的中点,∴BD=CD=,∵将△BDE沿直线DE翻折,∴B'D=BD=,∴点B'在以点D为圆心,BD为半径的圆上,如图,当点B'与点C不重合时,过点E作EH ⊥BC于H,连接AD,在Rt△ACD和Rt△AB'D中,,∴Rt△ACD≌Rt△AB'D(HL),∴∠DAC=∠DAB',∵∠BDB'+∠B'DC=180°=∠B'AC+∠B'DC,∴∠B'AC=∠BDB',∵折叠,∴∠BDE=∠EDB',∴∠BDE=∠DAC,∴tan∠DAC=tan∠BDE==,∴设EH=x,DH=2x,∵∠B=30°,∴BH=EH=3x,BE=2x∵BH+DH=BD=,∴x=,∴EH=,BE=,∴AE=,当点B'与点C重合时,∠AB'D=90°,∴DE是BC的垂直平分线,∴DE∥AC,∴,∴AE=BE=AB=2,综上所述:AE=或2.故答案为:或2.【点评】本题考查了翻折变换,锐角三角函数,全等三角形的判定和性质等知识,灵活运用这些性质解决问题是本题的关键.18.(2021•奉贤区二模)如图,在△ABC中,AD是BC边上的中线,∠ADC=60°,BC =3AD.将△ABD沿直线AD翻折,点B落在平面上的B′处,联结AB′交BC于点E,那么的值为.【分析】过A作AF⊥BC于F,过B'作B'G⊥BC于G,设AD=m,根据翻折及∠ADC=60°,用m的代数式表示CE、BE即可得出答案.【解答】解:过A作AF⊥BC于F,过B′作B′G⊥BC于G,如图:∵∠ADC=60°,∴∠ADB=120°,∵△ABD沿直线AD翻折,点B落在平面上的B′处,∴∠ADB′=120°,∠CDB′=60°,B′D=BD,∵BC=3AD,AD是BC边上的中线,∴设AD=m,则BC=3m,BD=B′D=m,Rt△ADF中,DF=AD•cos60°=m,AF=AD•sin60°=m,∴BF=BD+DF=2m,CF=BC﹣BF=mRt△B′DG中,DG=B′D•cos60°=m,B′G=B′D•sin60°=m,∴FG=DG﹣DF=m,∵AF⊥BC,B′G⊥BC,∴AF∥B′G,∴==,∵FE+GE=FG=m,∴FE=m,∴BE=BF+EF=m,CE=CF﹣EF=m,∴==,故答案为:.方法二:如图:∵AD是BC边上的中线,∴CD=BD,∵将△ABD沿直线AD翻折,点B落在平面上的B′处,∴B'D=BD=CD,∵∠ADC=60°,∴∠ADB=∠ADB'=120°,∴∠CDB'=60°,∴△CDB'是等边三角形,∴B'C=CD=BD,∠B'CD=60°,∴∠B'CD=∠ADC=60°,AD∥B'C,∴,由BC=3AD,设AD=2m,则BC=6m,B'C=CD=BD=3m,∴,∴CE=CD=m,DE=CD=m,∴BE=BD+DE=m,∴==,故答案为:.【点评】本题考查翻折、特殊角的三角函数及相似三角形性质等综合知识,解题的关键是作垂线把60°角放入直角三角形.19.(2021•黄浦区二模)如图,在等腰梯形ABCD中,AD∥BC.将△ABD沿对角线BD 翻折,点A的对应点E恰好位于边BC上,且BE:EC=3:2,则∠C的余切值是.【分析】过点A作AF⊥BC于F,DH⊥BC于H,设BE=3x,EC=2x,分别求出CH和DH的长,即可求解.【解答】解:如图,过点A作AF⊥BC于F,DH⊥BC于H,∴AF∥DH,又∵AD∥BC,∴四边形ADHF是平行四边形,又∵AF⊥BC,∴四边形ADHF是矩形,∴AF=DH,AD=FH,在Rt△ABF和Rt△DCH中,,∴Rt△ABF≌Rt△DCH(HL),∴BF=CH,∵将△ABD沿对角线BD翻折,∴AB=BE,∠ABD=∠DBC,∵AD∥BC,∴∠ADB=∠DBC=∠ABD,∴AB=AD,∵BE:EC=3:2,∴设BE=3x,EC=2x,∴AB=CD=3x=AD=FH,∴BF=CH=x,∴DH==2x,∴∠C的余切值==,故答案为:.【点评】本题考查了翻折变换,全等三角形的判定和性质,矩形的判定和性质,锐角三角函数等知识,灵活运用这些性质解决问题是本题的关键.20.(2021•上海模拟)如图,在矩形ABCD中,点E、F分别在BC、CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD 的交点C′处.则BC:AB的值为.【分析】首先连接CC′,可以得到CC′是∠EC′D的平分线,所以CB′=CD,又AB′=AB,所以B′是对角线中点,AC=2AB,所以∠ACB=30°,即可得出答案.【解答】解:连接CC′,∵将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.∴EC=EC′,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∵∠CB′C′=∠D=90°,∴△CC′B′≌△CC′D,∴CB′=CD,又∵AB′=AB,∴AB′=CB′,所以B′是对角线AC中点,即AC=2AB,所以∠ACB=30°,∴∠BAC=60°,∴tan∠BAC=tan60°==,BC:AB的值为:.故答案为:.【点评】此题主要考查了翻折变换的性质和角平分线的判定与性质,解答此题要抓住折叠前后的图形全等的性质,得出CC′是∠EC′D的平分线是解题关键.。
专题11 几何图形中的平移、翻折、旋转-2023年中考数学毕业班二轮热点题型归纳与变式演练(解析版)
专题11 几何图形中的平移、翻折、旋转目录最新模考题热点题型归纳【题型一】 平移运动【典例分析】(2022春·上海长宁·九年级校考期中)如图,在梯形ABCD 中,AB CD ∥,3AB =,8CD =,点E 是边CD 的中点,联结AE 交BD 于点F ,将ACD V 沿着射线DC 方向平移,如果点F 的对应点恰好落在ABC V 内,那么平移的距离m 的取值范围是________.【答案】122477m <<##241277m >>【分析】过点F 作CD 或AB 的平行线交AC 于点P ,交BC 于点Q ,此时由平移的性质可得FP FQ 、都为平移距离m ,如图所示,分别求得平移距离m FP =和m FQ =即可求得点F 的对应点恰好落在ABC V 内时,平移的距离m 的取值范围.【详解】解:过点F 作CD 或AB 的平行线交AC 于点P ,交BC 于点Q ,此时由平移的性质可得FP FQ 、都为平移距离m ,如图所示,【提分秘籍】图形的平移规律找特殊点1.图形的平移即是图形中各个点的平移,解题时只需选取线段端点或三角形顶点等这样的特殊点即可.2.在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数b,相应的新图形就是把原图形向上(或向下)平移b 个单位长度。
(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.【变式演练】1.(2020·上海浦东新·统考一模)如图,将ABC D 沿射线BC 方向平移得到DEF D ,边DE与AC 相交于点G ,如果6BC cm =,ABC D 的面积等于29cm ,GEC D 的面积等于24cm ,那么CF =____________cm .【答案】2【分析】根据平移性质得AC DF ∥,易证△EGC EDF ∽△,根据相似三角形的面积的比等于相似比的平方,求得EC 的长,即可求CF 的长.2.(2021·上海浦东新·模拟预测)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为16,阴影部分三角形的面积为9.如果AA'=1,那么A'D的长为_____.【题型二】 翻折运动【典例分析】(2022·上海·二模)已知在平行四边形ABCD 中,AB BC ¹,将ABC V 沿直线AC 翻折,点B 落在点尽处,AD 与CE 相交于点O ,联结DE .(1)如图1,求证://AC DE ;(2)如图2,如果90B Ð=°,AB ==BC OAC V 的面积;(3)如果30B Ð=°,AB =AED △是直角三角形时,求BC 的长.②如图4,当90AEDÐ=°时AD BC=Q,BC EC=,AD EC\=,由折叠的性质得:AE AB=,AE CD\=,在ACED和CADD中,AE CDCE ADAC CA=ìï=íï=î,()ACE CAD SSS\D@D,ECA DAC\Ð=Ð,OA OC\=,OE OD\=,OED ODE\Ð=Ð,AED CDE\Ð=Ð,90AEDÐ=°Q,90CDE\Ð=°,//AE CD\,又//AB CDQ,【提分秘籍】解决折叠问题的思维方法(1)折叠后能够重合的线段相等,能够重合的角相等,能够重合的三角形全等,折叠前后的图形关于折痕对称,对应点到折痕的距离相等。
中考一轮复习 数学专题15 图形的旋转、翻折(对称)与平移(学生版)
专题15 图形的旋转、翻折(对称)与平移一、单选题1.(2022·广东)在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是( ) A .()3,1 B .()1,1- C .()1,3 D .()1,1-2.(2022·广西)如图,在△ABC 中,点A (3,1),B (1,2),将△ABC 向左平移2个单位,再向上平移1个单位,则点B 的对应点B ′的坐标为( )A .(3,-3)B .(3,3)C .(-1,1)D .(-1,3)3.(2020·山东菏泽)在平面直角坐标系中,将点()3,2P -向右平移3个单位得到点P ',则点P '关于x 轴的对称点的坐标为( )A .()0,2-B .()0,2C .()6,2-D .()6,2--4.(2020·四川自贡)在平面直角坐标系中,将点()2,1向下平移3个单位长度,所得点的坐标是( ) A .(),-11 B .(),51 C .(),24 D .(),-225.(2021·四川雅安)如图,将ABC 沿BC 边向右平移得到DEF ,DE 交AC 于点G .若:3:1BC EC =.16ADG S =△.则CEG S △的值为( )A .2B .4C .6D .86.(2021·浙江丽水)四盏灯笼的位置如图.已知A ,B ,C ,D 的坐标分别是 (−1,b ),(1,b ),(2,b ),(3.5,b ),平移y 轴右侧的一盏灯笼,使得y 轴两侧的灯笼对称,则平移的方法可以是( )A .将B 向左平移4.5个单位B .将C 向左平移4个单位 C .将D 向左平移5.5个单位 D .将C 向左平移3.5个单位7.(2022·四川南充)如图,将直角三角板ABC 绕顶点A 顺时针旋转到AB C ''△,点B '恰好落在CA 的延长线上,3090∠=︒∠=︒,B C ,则BAC '∠为( )A .90︒B .60︒C .45︒D .308.(2022·山东青岛)如图,将ABC 先向右平移3个单位,再绕原点O 旋转180︒,得到A B C ''',则点A 的对应点A '的坐标是( )A .(2,0)B .(2,3)--C .(1,3)--D .(3,1)--9.(2022·内蒙古呼和浩特)如图,ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到EDC △,使点B 的对应点D 恰好落在AB 边上,AC 、ED 交于点F .若BCD α∠=,则EFC ∠的度数是(用含α的代数式表示)( )A .1902α︒+B .1902α︒-C .31802α︒-D .32α 10.(2022·四川内江)如图,在平面直角坐标系中,点B 、C 、E 在y 轴上,点C 的坐标为(0,1),AC =2,Rt△ODE 是Rt△ABC 经过某些变换得到的,则正确的变换是( )* 本号资料皆来源于微信:数学A .△ABC 绕点C 逆时针旋转90°,再向下平移1个单位B .△ABC 绕点C 顺时针旋转90°,再向下平移1个单位C .△ABC 绕点C 逆时针旋转90°,再向下平移3个单位D .△ABC 绕点C 顺时针旋转90°,再向下平移3个单位11.(2022·黑龙江绥化)如图,线段OA 在平面直角坐标系内,A 点坐标为()2,5,线段OA 绕原点O 逆时针旋转90°,得到线段OA ',则点A '的坐标为( )A .()5,2-B .()5,2C .()2,5-D .()5,2-12.(2021·四川广安)如图,将ABC 绕点A 逆时针旋转55︒得到ADE ,若70E ∠=︒且AD BC ⊥于点F ,则BAC ∠的度数为( )A .65︒B .70︒C .75︒D .80︒13.(2020·湖北黄石)在平面直角坐标系中,点G 的坐标是()2,1-,连接OG ,将线段OG 绕原点O 旋转180︒,得到对应线段OG ',则点G '的坐标为( )A .()2,1-B .()2,1C .()1,2-D .()2,1--14.(2020·四川攀枝花)如图,直径6AB =的半圆,绕B 点顺时针旋转30︒,此时点A 到了点A ',则图中阴影部分的面积是( ).A .2πB .34πC .πD .3π15.(2022·天津)如图,在△ABC 中,AB =AC ,若M 是BC 边上任意一点,将△ABM 绕点A 逆时针旋转得到△ACN ,点M 的对应点为点N ,连接MN ,则下列结论一定正确的是( )A .AB AN = B .AB NC ∥ C .AMN ACN ∠=∠D .MN AC ⊥16.(2022·江苏扬州)如图,在ABC ∆中,AB AC <,将ABC 以点A 为中心逆时针旋转得到ADE ,点D 在BC 边上,DE 交AC 于点F .下列结论:△AFE DFC △△;△DA 平分BDE ∠;△CDF BAD ∠=∠,其中所有正确结论的序号是( )A .△△B .△△C .△△D .△△△17.(2021·黑龙江牡丹江)如图,△AOB 中,OA =4,OB =6,AB =,将△AOB 绕原点O 旋转90°,则旋转后点A 的对应点A ′的坐标是( )A .(4,2)或(﹣4,2)B .(4)或(﹣4) C .(﹣2)或(2) D .(2,﹣2,18.(2021·广东广州)如图,在Rt ABC 中,90C ∠=︒,6AC =,8BC =,将ABC 绕点A 逆时针旋转得到A B C ''',使点C '落在AB 边上,连结BB ',则sin BB C ''∠的值为( )A .35B .45CD 19.(2021·河南)如图,OABC 的顶点(0,0)O ,(1,2)A ,点C 在x 轴的正半轴上,延长BA 交y 轴于点D .将ODA 绕点O 顺时针旋转得到OD A ''△,当点D 的对应点D 落在OA 上时,D A ''的延长线恰好经过点C ,则点C 的坐标为( )A .0)B .C .1,0)D .1,0)20.(2020·海南)如图,在Rt ABC 中, 90,30,1,C ABC AC cm ∠=︒∠=︒=将Rt ABC 绕点A 逆时针旋转得到Rt AB C ''△,使点C '落在AB 边上,连接BB ',则BB '的长度是( )A .1cmB .2cmCD .21.(2020·山东菏泽)如图,将ABC 绕点A 顺时针旋转角α,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠等于( )A .2α B .23α C .α D .180α︒-22.(2020·山东聊城)如图,在Rt ABC △中,2AB =,30C ∠=︒,将Rt ABC △绕点A 旋转得到Rt A B C '''∆,使点B 的对应点B '落在AC 上,在B C ''上取点D ,使2B D '=,那么点D 到BC 的距离等于( ).A .21⎫+⎪⎪⎝⎭B 1C 1D 123.(2020·山东枣庄)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,30AOB B ∠=∠=︒,2OA =,将AOB 绕点O 逆时针旋转90︒,点B 的对应点B '的坐标是( )A .(1,2-+B .()C .(2+D .(- 二、填空题 24.(2022·山东临沂)如图,在平面直角坐标系中,ABC 的顶点A ,B 的坐标分别是()0,2A ,()2,1B -.平移ABC 得到A B C ''',若点A 的对应点A '的坐标为()1,0-,则点B 的对应点B '的坐标是_____________.25.(2021·辽宁鞍山)如图,△ABC 沿BC 所在直线向右平移得到△DEF ,若EC =2,BF =8,则BE =___.26.(2021·湖南湘潭)在平面直角坐标系中,把点()2,1A -向右平移5个单位得到点A ',则点A '的坐标为____. 27.(2021·吉林长春)如图,在平面直角坐标系中,等腰直角三角形AOB 的斜边OA 在y 轴上,2OA =,点B 在第一象限.标记点B 的位置后,将AOB 沿x 轴正方向平移至111AO B 的位置,使11A O 经过点B ,再标记点1B 的位置,继续平移至222A O B △的位置,使22A O 经过点1B ,此时点2B 的坐标为__________.28.(2021·湖南怀化)如图,在平面直角坐标系中,已知(2,1)A -,(1,4)B -,(1,1)C -,将ABC 先向右平移3个单位长度得到111A B C △,再绕1C 顺时针方向旋转90︒得到221A B C △,则2A 的坐标是____________.29.(2022·山东潍坊)如图,在直角坐标系中,边长为2个单位长度的正方形ABCO 绕原点O 逆时针旋转75︒,再沿y 轴方向向上平移1个单位长度,则点B ''的坐标为___________.30.(2020·江苏镇江)如图,在△ABC 中,BC =3,将△ABC 平移5个单位长度得到△A 1B 1C 1,点P 、Q 分别是AB 、A 1C 1的中点,PQ 的最小值等于_____.31.(2020·广东广州)如图,点A 的坐标为()1,3,点B 在x 轴上,把OAB ∆沿x 轴向右平移到ECD ∆,若四边形ABDC 的面积为9,则点C 的坐标为_______.32.(2020·湖南湘西)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在,,OA AB OB 上,2OD =.将矩形CODE 沿x 轴向右平移,当矩形CODE 与ABO重叠部分的面积为CODE 向右平移的距离为___________.33.(2022·湖南永州)如图,图中网格由边长为1的小正方形组成,点A 为网格线的交点.若线段OA 绕原点O 顺时针旋转90°后,端点A 的坐标变为______.34.(2021·湖北随州)如图,在Rt ABC 中,90C ∠=︒,30ABC ∠=︒,BC =ABC 绕点A 逆时针旋转角α(0180α︒<<︒)得到AB C ''△,并使点C '落在AB 边上,则点B 所经过的路径长为______.(结果保留π)35.(2020·广西)以原点为中心,把()3,4M 逆时针旋转90°得到点N ,则点N 的坐标为______. 36.(2022·广西贺州)如图,在平面直角坐标系中,OAB 为等腰三角形,5OA AB ==,点B 到x 轴的距离为4,若将OAB 绕点O 逆时针旋转90︒,得到OA B ''△,则点B '的坐标为__________.37.(2022·湖北随州)如图1,在矩形ABCD 中,8AB =,6AD =,E ,F 分别为AB ,AD 的中点,连接EF .如图2,将△AEF 绕点A 逆时针旋转角()090θθ<<︒,使EF AD ⊥,连接BE 并延长交DF 于点H ,则△BHD 的度数为______,DH 的长为______. 本@号资料皆来源于微信*:数学38.(2021·四川巴中)如图,把边长为3的正方形OABC 绕点O 逆时针旋转n °(0<n <90)得到正方形ODEF ,DE 与BC 交于点P ,ED 的延长线交AB 于点Q ,交OA 的延长线于点M .若BQ :AQ =3:1,则AM =__________.9(0)0αα︒<<︒得到AB C ''△,连接BB ',CC ',则CAC '△与BAB '△的面积之比等于_______.40.(2020·四川眉山)如图,在Rt ABC 中,90BAC ∠=︒,2AB =.将ABC 绕点A 按顺时针方向旋转至11AB C △的位置,点1B 恰好落在边BC 的中点处,则1CC 的长为________.41.(2020·山东烟台)如图,已知点A (2,0),B (0,4),C (2,4),D (6,6),连接AB ,CD ,将线段AB 绕着某一点旋转一定角度,使其与线段CD 重合(点A 与点C 重合,点B 与点D 重合),则这个旋转中心的坐标为_____.42.(2020·甘肃天水)如图,在边长为6的正方形ABCD 内作45EAF ∠=︒,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,将ADF ∆绕点A 顺时针旋转90︒得到ABG ,若3DF =,则BE 的长为__________.三、解答题43.(2022·安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点均为格点(网格线的交点).(1)将△ABC 向上平移6个单位,再向右平移2个单位,得到111A B C △,请画出111A B C △﹔(2)以边AC 的中点O 为旋转中心,将△ABC 按逆时针方向旋转180°,得到222A B C △,请画出222A B C △.44.(2022·黑龙江牡丹江)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 与△DEF 关于点O 成中心对称,△ABC 与△DEF 的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O 的位置;(2)将△ABC 先向右平移4个单位长度,再向下平移2个单位长度,得到△A 1B 1C 1,请画出△A 1B 1C 1; (3)在网格中画出格点M ,使A 1M 平分△B 1A 1C 145.(2021·黑龙江哈尔滨)如图,方格纸中每个小正方形的边长均为1个单位长度,ABC ∆的顶点和线段DE 的端点均在小正方形的顶点上.(1)在方格纸中将ABC ∆向上平移1个单位长度,再向右平移2个单位长度后得到MNP ∆;(点A 的对应点是点M ,点B 的对应点是点N ,点C 的对应点是点P ),请画出MNP ∆;(2)在方格纸中画出以DE 为斜边的等腰直角三角形DEF (点F 在小正方形的顶点上).连接FP ,请直接写出线段FP 的长.46.(2021·安徽)图,在每个小正方形的边长为1个单位的网格中,ABC 的顶点均在格点(网格线的交点)上.(1)将ABC 向右平移5个单位得到111A B C △,画出111A B C △;(2)将(1)中的111A B C △绕点C 1逆时针旋转90︒得到221A B C △,画出221A B C △.47.(2022·湖南)如图所示的方格纸(1格长为一个单位长度)中,AOB ∆的顶点坐标分别为(3,0)A ,(0,0)O ,(3,4)B .(1)将AOB ∆沿x 轴向左平移5个单位,画出平移后的△111AO B (不写作法,但要标出顶点字母); (2)将AOB ∆绕点O 顺时针旋转90︒,画出旋转后的△222A O B (不写作法,但要标出顶点字母); (3)在(2)的条件下,求点B 绕点O 旋转到点2B 所经过的路径长(结果保留)π.48.(2022·黑龙江)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,5B -,()5,4C -.(1)将ABC 先向左平移6个单位,再向上平移4个单位,得到111A B C △,画出两次平移后的111A B C △,并写出点1A 的坐标;(2)画出111A B C △绕点1C 顺时针旋转90°后得到221A B C △,并写出点2A 的坐标; (3)在(2)的条件下,求点1A 旋转到点2A 的过程中所经过的路径长(结果保留π).49.(2020·四川巴中)如图所示,ABC 在边长为1cm 的小正方形组成的网格中.(1)将ABC 沿y 轴正方向向上平移5个单位长度后,得到111A B C △,请作出111A B C △,并求出11A B 的长度; (2)再将111A B C △绕坐标原点O 顺时针旋转180°,得到222A B C △,请作出222A B C △,并直接写出点2B 的坐标; (3)在(1)(2)的条件下,求线段AB 在变换过程中扫过图形的面积和.50.(2022·江苏常州)如图,点A 在射线OX 上,OA a =.如果OA 绕点O 按逆时针方向旋转(0360)<≤︒n n 到OA ',那么点A '的位置可以用(),︒a n 表示.(1)按上述表示方法,若3a =,37n =,则点A '的位置可以表示为______;(2)在(1)的条件下,已知点B 的位置用()3,74︒表示,连接A A '、A B '.求证:A A A B ''=.51.(2021·黑龙江)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABO 的三个顶点坐标分别为()()()1,3,4,3,00,0A B --.(1)画出ABO 关于x 轴对称的11A B O ,并写出点1A 的坐标;(2)画出ABO 绕点O 顺时针旋转90︒后得到的22A B O ,并写出点2A 的坐标; (3)在(2)的条件下,求点A 旋转到点2A 所经过的路径长(结果保留π).52.(2021·青海西宁)如图,正比例函数12y x =与反比例函数(0)ky x x =>的图象交于点A ,AB x ⊥轴于点B ,延长AB 至点C ,连接OC .若2cos 3BOC ∠=,3OC =.(1)求OB的长和反比例函数的解析式;(2)将AOB绕点О旋转90°,请直接写出旋转后点A的对应点A'的坐标.53.(2021·江苏淮安)如图,方格纸上每个小正方形的边长均为1个单位长度,△ABC的顶点A、B、C都在格点上(两条网格线的交点叫格点).请仅用无刻度的直尺按下列要求画图,并保留画图痕迹(不要求写画法).(1)将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B1,点C的对应点为C1,画出△AB1C1;(2)连接CC1,△ACC1的面积为;*本号资料皆来源于微信:数学第*六感(3)在线段CC1上画一点D,使得△ACD的面积是△ACC1面积的15.54.(2021·辽宁阜新)下面是小明关于“对称与旋转的关系”的探究过程,请你补充完整.(1)三角形在平面直角坐标系中的位置如图1所示,简称G ,G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G .则将图形1G 绕____点顺时针旋转____度,可以得到图形2G .(2)在图2中分别画出....G 关于 y 轴和直线1y x =+的对称图形1G ,2G .将图形1G 绕____点(用坐标表示)顺时针旋转______度,可以得到图形2G .(3)综上,如图3,直线1:22l y x =-+和2:l y x =所夹锐角为α,如果图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕____点(用坐标表示)顺时针旋转_____度(用α表示),可以得到图形2G .55.(2021·贵州毕节)如图1,在Rt ABC 中,90BAC ∠=︒,AB AC =,D 为ABC 内一点,将线段AD 绕点A 逆时针旋转90°得到AE ,连接CE ,BD 的延长线与CE 交于点F . (1)求证:BD CE =,BD CE ⊥;(2)如图2.连接AF ,DC ,已知135BDC ∠=︒,判断AF 与DC 的位置关系,并说明理由.56.(2021·内蒙古通辽)已知AOB 和MON △都是等腰直角三角形OM OA ⎫<<⎪⎪⎝⎭,90AOB MON ∠=∠=︒.(1)如图1,连接AM ,BN ,求证:AM BN =; (2)将MON △绕点O 顺时针旋转.△如图2,当点M 恰好在AB 边上时,求证:2222AM BM OM +=;△当点A ,M ,N 在同一条直线上时,若4OA =,3OM =,请直接写出线段AM 的长.57.(2021·湖南衡阳)如图,点E 为正方形ABCD 外一点,90AEB =︒∠,将Rt ABE △绕A 点逆时针方向旋转90︒得到,ADF DF 的延长线交BE 于H 点.(1)试判定四边形AFHE 的形状,并说明理由; (2)已知7,13BH BC ==,求DH 的长.58.(2021·北京)如图,在ABC 中,,,AB AC BAC M α=∠=为BC 的中点,点D 在MC 上,以点A 为中心,将线段AD 顺时针旋转α得到线段AE ,连接,BE DE .(1)比较BAE ∠与CAD ∠的大小;用等式表示线段,,BE BM MD 之间的数量关系,并证明; (2)过点M 作AB 的垂线,交DE 于点N ,用等式表示线段NE 与ND 的数量关系,并证明.59.(2021·浙江嘉兴)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD 绕点A 顺时针旋转()090αα︒<≤︒,得到矩形'''AB C D[探究1]如图1,当90α=︒时,点'C 恰好在DB 延长线上.若1AB =,求BC 的长.[探究2]如图2,连结'AC ,过点'D 作'//'D M AC 交BD 于点M .线段'D M 与DM 相等吗?请说明理由.[探究3]在探究2的条件下,射线DB 分别交'AD ,'AC 于点P ,N (如图3),MN ,PN 存在一定的数量关系,并加以证明.60.(2021·四川阿坝)如图,Rt ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到DEC ,点D 落在线段AB 上,连接BE .(1)求证:DC 平分ADE ∠;(2)试判断BE 与AB 的位置关系,并说明理由:(3)若BE BD =,求tan ABC ∠的值.61.(2020·湖南邵阳)已知:如图△,将一块45°角的直角三角板DEF 与正方形ABCD 的一角重合,连接,AF CE ,点M 是CE 的中点,连接DM .(1)请你猜想AF 与DM 的数量关系是__________.(2)如图△,把正方形ABCD 绕着点D 顺时针旋转α角(090a ︒<<︒).△AF 与DM 的数量关系是否仍成立,若成立,请证明;若不成立,请说明理由;(温馨提示:延长DM 到点N ,使MN DM =,连接CN )△求证:AF DM ⊥;△若旋转角45α=︒,且2EDM MDC ∠=∠,求AD ED 的值.(可不写过程,直接写出结果)62.(2020·江苏常州)如图1,点B 在线段CE 上,Rt△ABC △Rt△CEF ,90ABC CEF ∠=∠=︒,30BAC ∠=︒,1BC =.(1)点F 到直线CA 的距离是_________;(2)固定△ABC ,将△CEF 绕点C 按顺时针方向旋转30°,使得CF 与CA 重合,并停止旋转. △请你在图1中用直尺和圆规画出线段EF 经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为_________;△如图2,在旋转过程中,线段CF 与AB 交于点O ,当OE OB =时,求OF 的长.63.(2020·福建)如图,ADE ∆由ABC ∆绕点A 按逆时针方向旋转90︒得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P .(1)求BDE ∠的度数;(2)F 是EC 延长线上的点,且∠=∠CDF DAC .△判断DF 和PF 的数量关系,并证明;△求证:=EP PC PF CF.64.(2020·甘肃金昌)如图,点M ,N 分别在正方形ABCD 的边BC ,CD 上,且45MAN ∠=︒,把ADN △绕点A 顺时针旋转90︒得到ABE △.(1)求证:AEM △△ANM .(2)若3BM =,2DN =,求正方形ABCD 的边长.。
图形变换模型之翻折(折叠)模型(学生版)-2024年中考数学常见几何模型
图形变换模型之翻折(折叠)模型几何变换中的翻折(折叠、对称)问题是历年中考的热点问题,试题立意新颖,变幻巧妙,主要考查学生的识图能力及灵活运用数学知识解决问题的能力。
涉及翻折问题,以矩形对称最常见,变化形式多样。
无论如何变化,解题工具无非全等、相似、勾股以及三角函数,从条件出发,找到每种对称下隐藏的结论,往往是解题关键。
本专题以各类几个图形(三角形、平行四边形、菱形、矩形、正方形、圆等)为背景进行梳理及对应试题分析,方便掌握。
【知识储备】翻折和折叠问题其实质就是对称问题,翻折图形的性质就是翻折前后图形是全等的,对应的边和角都是相等的。
以这个性质为基础,结合三角形、四边形、圆的性质,三角形相似,勾股定理设方程思想来考查。
解决翻折题型的策略:1)利用翻折的性质:①翻折前后两个图形全等;②对应点连线被对称轴垂直平分;2)结合相关图形的性质(三角形,四边形等);3)运用勾股定理或者三角形相似建立方程。
模型1.矩形中的翻折模型【模型解读】1(2023·辽宁鞍山·统考中考真题)如图,在平面直角坐标系中,矩形AOBC的边OB,OA分别在x轴、y轴正半轴上,点D在BC边上,将矩形AOBC沿AD折叠,点C恰好落在边OB上的点E处.若OA=8,OB= 10,则点D的坐标是.2(2023春·江苏泰州·八年级统考期中)如图,在矩形ABCD中,AB=3,BC=8,E是BC的中点,将△ABE 沿直线AE翻折,点落B在点F处,连结CF,则CF的长为()A.6B.325C.35 D.2543(2023·湖北·统考中考真题)如图,将边长为3的正方形ABCD沿直线EF折叠,使点B的对应点M落在边AD上(点M不与点A,D重合),点C落在点N处,MN与CD交于点P,折痕分别与边AB,CD交于点E, F,连接BM.(1)求证:∠AMB=∠BMP;(2)若DP=1,求MD的长.4(2023春·江苏宿迁·八年级统考期末)如图,在矩形ABCD中,AB=6,BC=8.点O为矩形ABCD的对称中心,点E为边AB上的动点,连接EO并延长交CD于点F.将四边形AEFD沿着EF翻折,得到四边形A EFD ,边A E交边BC于点G,连接OG、OC,则△OGC的面积的最小值为()A.18-3B.92+37 C.12-372D.6+3725(2023春·辽宁抚顺·八年级校联考期中)如图,矩形纸片ABCD中,AB=6,BC=10,点E、G分别在BC、AB上,将△DCE、△BEG分别沿DE、EG翻折,翻折后点C与点F重合,点B与点P重合.当A、P、F、E 四点在同一直线上时,线段GP长为()A.832 B.83C.53D.5326(2023·江苏盐城·统考中考真题)综合与实践【问题情境】如图1,小华将矩形纸片ABCD先沿对角线BD折叠,展开后再折叠,使点B落在对角线BD上,点B的对应点记为B ,折痕与边AD,BC分别交于点E,F.【活动猜想】(1)如图2,当点B 与点D重合时,四边形BEDF是哪种特殊的四边形?答:.【问题解决】(2)如图3,当AB=4,AD=8,BF=3时,求证:点A ,B ,C在同一条直线上.【深入探究】(3)如图4,当AB与BC满足什么关系时,始终有A B 与对角线AC平行?请说明理由.(4)在(3)的情形下,设AC与BD,EF分别交于点O,P,试探究三条线段AP,B D,EF之间满足的等量关系,并说明理由.模型2.正方形中的翻折模型【模型解读】7(2023·河南洛阳·统考二模)如图,正方形ABCD的边长为4,点F为CD边的中点,点P是AD边上不与端点重合的一动点,连接BP.将△ABP沿BP翻折,点A的对应点为点E,则线段EF长的最小值为()A.27B.25-4C.34D.37-28(2023·广西玉林·统考模拟预测)如图,在正方形ABCD的边AB上取一点E,连接CE,将△BCE沿CE翻折,点B恰好与对角线AC上的点F重合,连接DF,若BE=2,则△CDF的面积是()A.1+324B.32+4 C.62+8 D.3229(2023·广东九年级课时练习)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE 沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,则下列结论:①△ABG≌△AFG;②∠AGB +∠AED=135°③GF=3;④AG⎳CF;其中正确的有(填序号).10(2023·江苏扬州·统考中考真题)如图,已知正方形ABCD的边长为1,点E、F分别在边AD、BC上,将正方形沿着EF翻折,点B恰好落在CD边上的点B 处,如果四边形ABFE与四边形EFCD的面积比为3∶5,那么线段FC的长为.11(2023·江苏·统考中考真题)综合与实践定义:将宽与长的比值为22n+1-12n(n为正整数)的矩形称为n阶奇妙矩形.(1)概念理解:当n=1时,这个矩形为1阶奇妙矩形,如图(1),这就是我们学习过的黄金矩形,它的宽(AD)与长CD的比值是.(2)操作验证:用正方形纸片ABCD进行如下操作(如图(2)):第一步:对折正方形纸片,展开,折痕为EF,连接CE;第二步:折叠纸片使CD落在CE上,点D的对应点为点H,展开,折痕为CG;第三步:过点G折叠纸片,使得点A、B分别落在边AD、BC上,展开,折痕为GK.试说明:矩形GDCK是1阶奇妙矩形. (3)方法迁移:用正方形纸片ABCD折叠出一个2阶奇妙矩形.要求:在图(3)中画出折叠示意图并作简要标注.(4)探究发现:小明操作发现任一个n阶奇妙矩形都可以通过折纸得到.他还发现:如图(4),点E为正方形ABCD边AB上(不与端点重合)任意一点,连接CE,继续(2)中操作的第二步、第三步,四边形AGHE的周长与矩形GDCK的周长比值总是定值.请写出这个定值,并说明理由.模型3.菱形中的翻折模型【模型解读】12(2023·四川成都·模拟预测)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为.13(2023·安徽·统考一模)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A'MN,连结A'C,则A'C长度的最小值是( ).A.7B.7-1C.3D.214(2023·山东枣庄·九年级校考阶段练习)如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.72B.12C.74D.2315(2023春·湖北十堰·八年级校联考期中)如图,在菱形纸片ABCD中,∠ABC=60°,E是CD边的中点,将菱形纸片沿过点A的直线折叠,使点B落在直线AE上的点G处,折痕为AF,FG与CD交于点H,有如下结论:①∠CFH=30°;②DE=33AE;③CH=GH;④S△ABF:S四边形AFCD=3:5,上述结论中,所有正确结论的序号是()A.①②④B.①②③C.①③④D.①②③④16(2023·浙江·九年级期末)对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B 两点重合,MN是折痕.若B M=1,则CN的长为.17(2023秋·重庆·九年级专题练习)如图,在菱形ABCD中,BC=4,∠B=120°,点E是AD的中点,点F是AB上一点,以EF为对称轴将△EAF折叠得到△EGF,以CE为对称轴将△CDE折叠得到△CHE,使得点H落到EG上,连接AG.下列结论错误的是()A.∠CEF=90°B.CE∥AGC.FG=1.6D.CFAB =145模型4.三角形中的翻折模型【模型解读】18(2023·内江九年级期中)如图,在Rt△ABC的纸片中,∠C=90°,AC=7,AB=25.点D在边BC上,以AD为折痕将△ADB折叠得到△ADB ,AB 与边BC交于点E.若△DEB 为直角三角形,则BD的长是.19(2023年四川省成都市数学中考真题)如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,过D作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若AGGE =73,则tan A=.20(2023·湖北襄阳·统考中考真题)如图,在△ABC中,AB=AC,点D是AC的中点,将BCD沿BD折叠得到△BED,连接AE.若DE⊥AB于点F,BC=10,则AF的长为.21(2023·湖北武汉·统考中考真题)如图,DE平分等边△ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是.模型5.圆中的翻折模型(弧翻折必出等腰)如图,以圆O的一条弦BC为对称轴将弧BC折叠后与弦AB交于点D,则CD=CA特别的,若将弧BC折叠后过圆心,则CD=CA,∠CAB=60°22(2022秋·浙江宁波·九年级校考期末)如图,⊙O 是△ABC 的外接圆,AB =BC =4,把弧AB 沿弦AB 向下折叠交BC 于点D ,若点D 为BC 中点,则AC 长为()A.1B.2C.22D.623(2023·广东广州·统考一模)如图,AB 为⊙O 的直径,点C 为圆上一点,∠BAC =20°,将劣弧AC 沿弦AC 所在的直线翻折,交AB 于点D ,则∠ACD 的度数等于( ).A.40°B.50°C.80°D.100°24(2023·浙江宁波·校考一模)如图,⊙O 的半径为4.将⊙O 的一部分沿着弦AB 翻折,劣弧恰好经过圆心O .则这条劣弧的弧长为.25(2022春·湖北荆州·九年级专题练习)如图,AB 为⊙O 的直径,将BC沿BC 翻折,翻折后的弧交AB 于D .若BC =45,sin ∠ABC =55,则图中阴影部分的面积为()A.256π-2B.253π-2 C.8 D.1026(2023·河南商丘·统考二模)如图,在扇形OBA 中,∠AOB =120°,点C ,D 分别是AB 和OA 上的点,且CD ∥OB ,将扇形沿CD 翻折,翻折后的A C 恰好经过点O .若OA =2,则图中阴影部分的面积是.27(2023·吉林长春·统考模拟预测)如图,在⊙O 中,点C 在优弧AB 上,将BC 沿BC 折叠后刚好经过AB 的中点D ,连接AC ,CD .则下列结论中错误的是()①AC =CD ;②AD =BD ;③AC +BD =BC ;④CD 平分∠ACBA.1B.2C.3D.428(2021·湖北武汉·统考中考真题)如图,AB 是⊙O 的直径,BC 是⊙O 的弦,先将BC 沿BC 翻折交AB 于点D .再将BD 沿AB 翻折交BC 于点E .若BE =DE ,设∠ABC =α,则α所在的范围是()A.21.9°<α<22.3°B.22.3°<α<22.7°C.22.7°<α<23.1°D.23.1°<α<23.5°29(2022·江苏扬州·统考一模)如图,将⊙O 沿弦AB 折叠,使折叠后的弧恰好经过圆心O ,点P 是优弧AMB 上的一个动点(与A 、B 两点不重合),若⊙O 的半径是2cm ,则△APB 面积的最大值是cm 2课后专项训练1(2023·浙江·一模)如图,在矩形ABCD中,AB=2,AD=3,点E为DC的中点,点F在BC上,连接AF,将△ABF沿AF翻折,使点B的对应点恰为点E,则AF的长为()A.5B.233C.433D.1032(2023年湖北省黄石市中考数学真题)如图,有一张矩形纸片ABCD.先对折矩形ABCD,使AD与BC重合,得到折痕EF,把纸片展平.再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM ﹐同时得到线段BN,MN.观察所得的线段,若AE=1,则MN=()A.32B.1 C.233D.23(2023·黑龙江·统考中考真题)如图,在平面直角坐标中,矩形ABCD的边AD=5,OA:OD=1:4,将矩形ABCD沿直线OE折叠到如图所示的位置,线段OD1恰好经过点B,点C落在y轴的点C1位置,点E的坐标是()A.1,2B.-1,2C.5-1,2D.1-5,2 4(2023·福建莆田·九年级校考期末)如图,在⊙O 中,点C 在优弧AB上,将弧BC 沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =45,则AC 的长是()A.5π2B.25π4C.10π3D.4π5(2022·浙江宁波·统考一模)如图,AB 是半径为4的⊙O 的弦,且AB =6,将AB 沿着弦AB 折叠,点C 是折叠后的AB 上一动点,连接并延长BC 交⊙O 于点D ,点E 是CD 的中点,连接EO .则EO 的最小值为.6(2023·辽宁盘锦·统考中考真题)如图,四边形ABCD 是矩形,AB =6,BC =6.点E 为边BC 的中点,点F 为边AD 上一点,将四边形ABEF 沿EF 折叠,点A 的对应点为点A ,点B 的对应点为点B ,过点B 作B H ⊥BC 于点H ,若B H =22,则FD 的长是.7(2023·山东济南·统考中考真题)如图,将菱形纸片ABCD 沿过点C 的直线折叠,使点D 落在射线CA 上的点E 处,折痕CP 交AD 于点P .若∠ABC =30°,AP =2,则PE 的长等于.8(2023·山东淄博·统考一模)如图所示,有一块直角三角形纸片,∠C =90°,AC =4cm ,BC =3cm ,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则DE的长是.9(2023秋·四川雅安·八年级统考期末)在Rt△ACB中,∠ACB=90°,点D在边AB上,连接CD,将△ADC沿直线CD翻折,点A恰好落在BC边上的点E处,若AC=6,BE=2,则DE的长是.10(2023·湖北宜昌·统考中考真题)如图,小宇将一张平行四边形纸片折叠,使点A落在长边CD上的点A处,并得到折痕DE,小宇测得长边CD=8,则四边形A EBC的周长为.11(2023·新疆·统考中考真题)如图,在▱ABCD中,AB=6,BC=8,∠ABC=120°,点E是AD上一动点,将△ABE沿BE折叠得到△A BE,当点A 恰好落在EC上时,DE的长为.12(2023春·浙江宁波·八年级统考期末)如图,在矩形ABCD中,AB=7cm,BC=8cm,现将矩形沿EF 折叠,点C翻折后交AB于点G,点D的对应点为点H,当BG=4cm时,线段GI的长为cm.13(2023春·安徽安庆·九年级校联考阶段练习)如图,长方形ABCD 沿着对角线BD 翻折,点C 落在点C 处,BC 与AD 相交于点E ,若AB =3,AE =1,则BC 的长为.14(2023春·湖北武汉·八年级校考阶段练习)如图(1),在等腰直角三角形纸片ABC 中,∠B =90°,AB =2,点D ,E 分别为AB ,BC 上的动点,将纸片沿DE 翻折,点B 的对应点B 恰好落在边AC 上,如图(2),再将纸片沿B E 翻折,点C 的对应点为C ,如图(3).当△DB E ,△B C E 的重合部分(即阴影部分)为直角三角形时,CE 的长为.15(2022·浙江嘉兴·统考中考真题)如图,在扇形AOB 中,点C ,D 在AB 上,将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知∠AOB =120°,OA =6,则EF 的度数为;折痕CD 的长为.16(2023·黑龙江绥化·统考中考真题)如图,⊙O 的半径为2cm ,AB 为⊙O 的弦,点C 为AB 上的一点,将AB 沿弦AB 翻折,使点C 与圆心O 重合,则阴影部分的面积为.(结果保留π与根号)17(2023·湖北·统考中考真题)如图,将边长为3的正方形ABCD 沿直线EF 折叠,使点B 的对应点M 落在边AD 上(点M 不与点A ,D 重合),点C 落在点N 处,MN 与CD 交于点P ,折痕分别与边AB ,CD 交于点E ,F ,连接BM .(1)求证:∠AMB =∠BMP ;(2)若DP =1,求MD 的长.18(2023·宁夏·统考中考真题)综合与实践问题背景:数学小组发现国旗上五角星的五个角都是顶角为36°的等腰三角形,对此三角形产生了极大兴趣并展开探究.探究发现:如图1,在△ABC 中,∠A =36°,AB =AC .(1)操作发现:将△ABC 折叠,使边BC 落在边BA 上,点C 的对应点是点E ,折痕交AC 于点D ,连接DE ,DB ,则∠BDE =°,设AC =1,BC =x ,那么AE =(用含x 的式子表示);(2)进一步探究发现:底BC 腰AC =5-12,这个比值被称为黄金比.在(1)的条件下试证明:底BC 腰AC=5-12;拓展应用:当等腰三角形的底与腰的比等于黄金比时,这个三角形叫黄金三角形.例如,图1中的△ABC 是黄金三角形.如图2,在菱形ABCD 中,∠BAD =72°,AB =1.求这个菱形较长对角线的长.19(2023秋·山西·九年级专题练习)综合与实践:在综合与实践课上,老师让同学们以“矩形纸片的折叠”为主题开展数学活动.在矩形ABCD 中,E 为AB 边上一点,F 为AD 边上一点,连接CE 、CF ,分别将△BCE 和△CDF 沿CE 、CF 翻折,点D 、B 的对应点分别为点G 、H ,且C 、H 、G 三点共线.(1)如图1,若F 为AD 边的中点,AB =BC =6,点G 与点H 重合,则∠ECF = °,BE = ;(2)如图2,若F 为AD 的中点,CG 平分∠ECF ,AB =2+1,BC =2,求∠ECF 的度数及BE 的长;(3)AB =5,AD =3,若F 为AD 的三等分点,请直接写出BE 的长.20(2022·广西南宁·统考三模)综合实践:在数学综合实践课上,第一小组同学展示了如下的操作及问题:如图1,同学们先画出半径为10cm 的⊙O 1,将圆形纸片沿着弦AB 折叠,使对折后劣弧AB 恰好过圆心O 1,同学们用尺子度量折痕AB 的长约为18cm ,并且同学们用学过的知识验证度量的结果是正确的.验证如下:如图1,过点O 1作O 1F ⊥AB 于点F ,并延长O 1F 交虚线劣弧AB 于点E ,∴AB =2AF ,由折叠知,EF =O 1F =12O 1E =12×10=5(cm ),连接O 1A ,在Rt △O 1FA 中,O 1A =10,根据勾股定理得,AF =O 1A 2-O 1F 2=102-52=53(cm ),∴AB =2AF =103≈10×1.732≈17.732(cm ),通过计算:17.732≈18,同学们用尺子度量折痕AB 的长约为18cm 是正确的.请同学们进一步研究以下问题:(1)如图2,⊙O 2的半径为10cm ,AB 为⊙O 2的弦,O 2C ⊥AB ,垂足为点C ,劣弧AB 沿弦AB 折叠后经过O 2C 的中点P ,求弦AB 的长(结果保留根号);(2)如图3,在⊙O 3中劣弧AB 沿弦AB 折叠后与直径CB 相交于点Q ,若CQ =8cm ,BQ =12cm ,求弦AB 的长(结果保留根号).。
初中数学竞赛中考讲义之几何三大变换之翻折
第30讲几何三大变换之翻折翻折的性质(轴对称的性质)如图,将△ABC 沿着DE 翻折,使得点A 落在BC 的点F 处结论有:①ADE FDE ∆≅∆(即AD =DF ,AE =EF ,∠A =∠DFE ,∠ADE =∠FDE ,∠AED =∠FED )②DE 垂直平分AF函数的对称变换①一次函数y kx b=+关于x 轴对称后的解析式:y kx b=--关于y 轴对称后的解析式:y kx b=-+②二次函数2y ax bx c=++关于x 轴对称后的解析式:2y ax bx c=---关于y 轴对称后的解析式:2y ax bx c=-+【例题讲解】例题1.如图,ABC ∆中,AB AC =,54BAC ∠=︒,BAC ∠的平分线与AB 的垂直平分线交于点O ,将C ∠沿(EF E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,则OEC ∠的度数是______解:如图,连接OB 、OC ,54BAC ∠=︒ ,AO 为BAC ∠的平分线,11542722BAO BAC ∴∠=∠=⨯︒=︒,又AB AC = ,11(180)(18054)6322ABC BAC ∴∠=︒-∠=︒-︒=︒,DO 是AB 的垂直平分线,OA OB ∴=,27ABO BAO ∴∠=∠=︒,632736OBC ABC ABO ∴∠=∠-∠=︒-︒=︒,AO 为BAC ∠的平分线,AB AC =,()AOB AOC SAS ∴∆≅∆,OB OC ∴=,∴点O 在BC 的垂直平分线上,又DO 是AB 的垂直平分线,∴点O 是ABC ∆的外心,36OCB OBC ∴∠=∠=︒,将C ∠沿(EF E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,OE CE ∴=,36COE OCB ∴∠=∠=︒,在OCE ∆中,1801803636108OEC COE OCB ∠=︒-∠-∠=︒-︒-︒=︒,故选:B .例题2.如图,将边长为6cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为与边AD 、BC 交于点F 、H ,点C 落在Q 处,EQ 与BC 交于点G .(1)尺规作图作出折痕FH ;(2)求折痕FH 的长;(3)求△EBG 的周长;(4)若将题目中的“点E 为AB 中点”改为“点E 为AB 上任意一点”,其它条件不变,则△EBG 的周长是否发生变化,若不变,请求出该值,若发生变化,请说明理由.例题3、如图,矩形ABCD 中,8AB =,6BC =,P 为AD 上一点,将ABP ∆沿BP 翻折至EBP ∆,PE 与CD 相交于点O ,且OE OD =,则AP 的长为.解: 四边形ABCD 是矩形,90D A C ∴∠=∠=∠=︒,6AD BC ==,8CD AB ==,由折叠的性质可知ABP EBP ∆≅∆,EP AP ∴=,90E A ∠=∠=︒,8BE AB ==,在ODP ∆和OEG ∆中,DOP EOG OD OE D E ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ODP OEG ASA ∴∆≅∆,OP OG ∴=,PD GE =,DG EP ∴=,设AP EP x ==,则6PD GE x ==-,DG x =,8CG x ∴=-,8(6)2BG x x =--=+,根据勾股定理得:222BC CG BG +=,即2226(8)(2)x x +-=+,解得: 4.8x =,4.8AP ∴=,故答案为:4.8.例题4.如图1,在矩形纸片ABCD 中,AB =,10AD =,点E 是CD 中点,将这张纸片依次折叠两次;第一次折叠纸片使点A 与点E 重合,如图2,折痕为MN ,连接ME 、NE ;第二次折叠纸片使点N 与点E 重合,如图3,点B 落到B '处,折痕为HG ,连接HE ,则tan EHG ∠=________.解:如图2中,作NF CD ⊥于F .设DM x =,则10AM EM x ==-,DE EC = ,AB CD ==,12DE CD ∴==在RT DEM ∆中,222DM DE EM += ,222(10)x x ∴+=-,解得 2.6x =,2.6DM ∴=,7.4AM EM ==,90DEM NEF ∠+∠=︒ ,90NEF ENF ∠+∠=︒,DEM ENF ∴∠=∠,90D EFN ∠=∠=︒ ,DME FEN ∴∆∆∽,∴DE EM FN EN =,∴7.4EN=,EN ∴=AN EN ∴==tanAN AMN AM ∴∠==如图3中,ME EN ⊥ ,HG EN ⊥,//EM GH ∴,NME NHG ∴∠=∠,NME AMN ∠=∠ ,EHG NHG ∠=∠,AMN EHG ∴∠=∠,tan tanEHG AMN ∴∠=∠=方法二,tan tan EN BC EHG EMN EM DE ∠=∠==.故答案为例5.如图,已知ABCD 的三个顶点(,0)A n 、(,0)B m 、(0D ,2)(0)n m n >>,作ABCD 关于直线AD 的对称图形11AB C D(1)若3m =,试求四边形11CC B B 面积S 的最大值;(2)若点1B 恰好落在y 轴上,试求n m 的值.解:(1)如图1,ABCD 与四边形11AB C D 关于直线AD 对称,∴四边形11AB C D 是平行四边形,1CC EF ⊥,1BB EF ⊥,11////BC AD B C ∴,11//CC BB ,∴四边形BCEF 、11B C EF 是平行四边形,1111BCEF BCDA B C DA B C EF S S S S ∴=== ,112BCC B BCDA S S ∴= .(,0)A n 、(,0)B m 、(0,2)D n 、3m =,3AB m n n ∴=-=-,2OD n =,()()223932232(22BCDA S AB OD n n n n n ∴=⋅=-⋅=--=--+ ,211324(92BCC B BCDA S S n ∴==--+ .40-< ,∴当32n =时,11BCC B S 最大值为9;(2)当点1B 恰好落在y 轴上,如图2,1DF BB ⊥ ,1DB OB ⊥,1190B DF DB F ∴∠+∠=︒,1190B BO OB B ∠+∠=︒,11B DF OBB ∴∠=∠.190DOA BOB ∠=∠=︒ ,AOD ∴∆∽△1B OB ,∴1OB OA OD OB =,∴12OB n n m=,12m OB ∴=.由轴对称的性质可得1AB AB m n ==-.在1Rt AOB ∆中,222(()2m n m n +=-,整理得2380m mn -=.0m > ,380m n ∴-=,∴38n m =.例题6.如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在y 轴和x 轴的正半轴上,D 为边AB 的中点,一抛物线22(0)y x mx m m =-++>经过点A 、D(1)求点A 、D 的坐标(用含m 的式子表示);(2)把OAD ∆沿直线OD 折叠后点A 落在点A '处,连接OA '并延长与线段BC 的延长线交于点E ,①若抛物线经过点E ,求抛物线的解析式;②若抛物线与线段CE 相交,直接写出抛物线的顶点P 到达最高位置时的坐标:解:(1)当0x =时,y m =,(0,)A m ∴,当y m =时,0x =或2m(2,)D m m ∴;(2)①如图,设A D '与x 轴交于点Q ,过点A '作A N x '⊥轴于点N .把OAD ∆沿直线OD 折叠后点A 落在点A '处,OAD ∴∆≅△OA D ',OA OA m ='=,2AD A D m ='=,90OAD OA D ∠=∠'=︒,ADO A DO ∠=∠', 矩形OABC 中,//AD OC ,ADO DOQ ∴∠=∠,A DO DOQ ∴∠'=∠,DQ OQ ∴=.设DQ OQ x ==,则2A Q m x '=-,在Rt △OA Q '中,222OA A Q OQ '+'= ,222(2)m m x x ∴+-=,解得54x m =, 1122OA Q S OQ A N OA A Q '='='' ,334554m m A N m m ∴'==,45ON m ∴==,A ∴'点坐标为4(5m ,3)5m -,易求直线OA '的解析式为34y x =-,当4x m =时,3434y m m =-⨯=-,E ∴点坐标为(4,3)m m -.代入22(0)y x mx m m =-++>得0m =(舍),12m =,∴抛物线的解析式为:212y x x =-++.②当4x m =时,2222(4)248x mx m m m m m m m -++=-++=-+ ,即抛物线l 与直线CE 的交点为2(4,8)m m m -+,抛物线l 与线段CE 相交,2380m m m ∴--+,0m > ,3810m ∴--+解得:1182m ,2222()y x mx m x m m m =-++=--++ ,∴当x m =时,y 有最大值2m m +,又2211()24m m m +=+- ,∴当1182m 时,2m m +随m 的增大而增大,∴当12m =时,顶点P 到达最高位置,22113(224m m +=+=,∴抛物线顶点P 到达最高位置时的坐标为1(2,3)4.【巩固练习】1、如图,在矩形ABCD 中,点E 为边CD 上一点,沿AE 折叠,点D 恰好落在BC 边上的F 点处,若3AB =,5BC =,则tan EFC ∠的值为________.2.如图,先将一平行四边形纸片ABCD 沿AE ,EF 折叠,使点E ,B ',C '在同一直线上,再将折叠的纸片沿EG 折叠,使AE 落在EF 上,则AEG ∠=度.3、点E、F 分别在一张长方形纸条ABCD 的边AD 、BC 上,将这张纸条沿着直线EF 对折后如图,BF 与DE 交于点G ,长方形纸条的宽AB=2cm ,那么这张纸条对折后的重叠部分的面积的GEF S ∆最小值为_____________。
中考数学压轴题 第四部分 图形的平移翻折与旋转
4.1 图形的平移、翻折与旋转1.如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2, 0),点A在第一象限内,将△OAB沿直线OA 的方向平移至△O′B′A′的位置,此时点A′的横坐标为3,则点B′的坐标为().A.(4,B.(3,C.(4,D.(3,2.如图,在平面直角坐标系中,点A的坐标为(0, 6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线34y x=-上,则点B与其对应点B′间的距离为______.3.已知直线y=2x+(3-a)与x轴的交点在A(2, 0),B(3, 0)之间(包括A、B两点)则a的取值范围是_____________.4.如图,在矩形ABCD中,AD=15,点E在边DC上,连结AE,△ADE沿直线AE翻折后点D落到点F,过点F作FG⊥AD,垂足为G.如果AD=3GD,那么DE=_____.5.如图,在△ABC中,CA=CB,∠C=90°,点D是BC的中点,将△ABC沿着直线EF折叠,使点A与点D重合,折痕交AB于点E,交AC于点F,那么sin∠BED的值为____________.6.如图,在矩形ABCD中,AB=6,AD=8,把矩形ABCD沿直线MN翻折,点B落在边AD上的E点处,若AE=2AM,那么EN的长等于.7.如图,已知在Rt△ABC中,∠C=90°,AC=BC=1,点D在边BC上,将△ABC沿直线AD翻折,使点C落在点C′处,连结AC′.直线AC′与CB的延长线相交于点F.如果∠DAB=∠BAF,那么BF=______________.8.如图,已知Rt△ABC中,D是斜边AB的中点,AC=4,BC=2,将△ACD沿直线CD折叠,点A落在点E处,连结AE,那么线段AE的长度等于__________.9.如图,在矩形纸片ABCD中,AB<BC,点M、N分别在AD、BC上,沿直线MN将四边形DMNC翻折,点C恰好与点A重合.如果此时在原图中△CDM与△MNC的面积比是1∶3,那么MNDM的值等于___________.10.如图,△ABC中,AB=AC=5cm,BC=6cm,BD平分∠ABC,BD交AC于点D.如果将△ABD沿BD翻折,点A 落在点A′处,那么△DA′C的面积为_______.11.如图,在Rt△ABC中,∠ACB=90°.将△ABC沿BD折叠,点C恰好落在AB边上的点C′处,折痕为BD.再将其沿DE折叠,使点A落在DC′的延长线上的点A′处,若△BED与△ABC相似,则相似比BDAC=___________.12.如图,已知扇形OAB的半径为6,圆心角为90°,E是半径OA上一点,F是AB上一点.将扇形AOB沿着EF 对折,使得折叠后的'A F恰好与半径OB相切于点G,若OE=5,则O到折痕EF的距离为__________.13.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.14.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为().A B.C.D15.如图,将正方形ABCD沿MN折叠,使点D落在AB边上,对应点为D′,点C落在C′处.若AB=6,AD′=2,则折痕MN的长为_________.16.如图,矩形ABCD中,AB=8,BC=6,点P为AD边上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为_______.17.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是_________.18.如图,正方形ABCD的边长为3,点E在AB边上且BE=1,点P、Q分别是边BC、CD上的动点(均不与顶点重合),当四边形AEPQ的周长取得最小值时,四边形AEPQ的面积是____________.19.如图,已知钝角三角形ABC,∠A=35°,OC为AB边的中线.将△AOC绕着点O顺时针旋转,点C落在BC 边上的点C′处,点A落在点A′处,连结BA′,如果A、C、A′在同一条直线上,那么∠BA′C′的度数为__________.20.如图,在Rt△ABC中,∠C=90°,AC=BC ABC绕着点A顺时针旋转60°得到△AB′C′,连结C′B,则C′B的长为___________.21.如图,△ABC中,∠ABC>90°,tan∠BAC=34,BC=4,将三角形绕着点A旋转,点C落在直线AB上的点C′处,点B落在点B′处,若C、B、B′恰好在一直线上,则AB的长为______________.22.如图,在正方形ABCD中,E、F分别在BC、AB边上,如果AF=BE,那么∠AOD的度数是__________.23.如图,△ABC、△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.2B1C D124.如图,已知Rt△ACB中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC,若点F是DE的中点,连结AF,则AF= .25.如图,在△ABC中,∠ABC=90°,AB=BC ABC绕点C逆时针旋转60°,得到△MNC,则BM的长是___________.26.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′//AB,则旋转角的度数为().A.35°B.40°C.50°D.65°27.已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处.延长线段AD,交原△ABC的边BC的延长线于点E,那么线段DE的长等于.28.如图,△ABC≌△DEF(点A、B分别与点D、E对应),AB=AC=5,BC=6.△ABC固定不动,△DEF运动,并满足点E在BC边从B向C移动(点E不与B、C重合),DE始终经过点A,EF与AC边交于点M,当△AEM是等腰三角形时,BE=_________.29.如图,在四边形ABCD中,∠A=90°,AB=AD=3,点M、N分别是线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别是DM、MN的中点,则EF长度的最大值为.30.如图,正方形ABCD的边长为16,点E在边AB上,AE=3,点F是边BC上不与B、C重合的一个动点,把△EBF 沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为_______________.31.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.32.在平面直角坐标系中,点A,B,动点C在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为().A.2B.3C.4D.533.在平行四边形ABCD中,AB<BC,已知∠B=30°,AB=ABC沿AC翻折至△AB′C,使点B′落在平行四边形ABCD所在的平面内,连结B′D.若△AB′D是直角三角形,则BC的长为_____________.34.如图,AC是矩形ABCD的对角线,AB=2,BC=E、F分别是线段AB、AD上的点,连结CE、CF,当∠BCE=∠ACF且CE=CF时,AE+AF=______.35.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是().A.B.C.5 D.636.如图,过平行四边形ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的平行四边形AEMG 的面积S 1与平行四边形HCFM 的面积S 2的大小关系是( ).A .S 1>S 2B .S 1<S 2C .S 1=S 2D .2S 1=S 237.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD ,B 与D 两点之间用一根橡皮筋...拉直固定,然后向右扭动框架,观察所得四边形的变化.下面判断错误..的是( ). A .四边形ABCD 由矩形变为平行四边形; B .BD 的长度增大;C .四边形ABCD 的面积不变; D .四边形ABCD 的周长不变.38.如图,C 是以AB 为直径的半圆O 上一点,连结AC 、BC ,分别以AC 、BC 为边向外作正方形ACDE 和正方形BCFG ,DE 、FG 、AC 、BC 的中点分别是M 、N 、P 、Q .若MP +NQ =14,AC +BC =18,则AB 的长是( ). A. 29 B. 790 C. 13 D. 16 39.如图1,点P 是以r 为半径的⊙O 外一点,点P ′在线段OP 上,若满足OP ·OP ′=r 2,则称点P ′是点P 关于⊙O的反演点.如图2,在Rt △ABO 中,∠B =90°,AB =2,BO =4,⊙O 的半径为2,如果点A ′、B ′分别是点A 、B 关于⊙O 的反演点,那么A ′B ′的长是____.40.如图,已知⊙O 1的半径为1,⊙O 2的半径为2,O 1O 2=5,⊙O 分别与⊙O 1外切,与⊙O 2内切,那么⊙O 半径r 的取值范围是__________.41.如图,在边长为4的正方形ABCD 中,先以点A 为圆心,AD 为半径画弧,再以AB 边的中点为圆心,AB 的一半为半径画弧,则两弧之间的阴影部分的面积是_________(结果保留π).42.如图,半圆O 的直径AE =4,点B 、C 、D 均在半圆上,若AB =BC ,CD =DE ,连结OB 、OD ,则图中阴影部分的面积为_________.43.如图1,菱形ABCD 的边长为2,∠A =60°,以点B 为圆心的圆与AD ,DC 相切,与AB 、CB 的延长线分别相交于点E 、F ,则图中阴影部分的面积为( ).A 2πB πC 2πD .2π+44.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b ,然后把半圆沿直线b 进行无滑动滚动,使半圆的直径与直线b 重合为止,则圆心O 运动路径的长度等于_____.45.如图,⊙O 的半径为2,AB ,CD 是互相垂直的两条直径,点P 是⊙O 上任意一点(P 与A ,B ,C ,D 不重合),过点P 作PM ⊥AB 于点M ,PN ⊥CD 于点N ,点Q 是MN 的中点,当点P 沿着圆周转过45°时,点Q 走过的路径长为_________. A. 4π B. 2π C. 6π D. 3π 46.如图,在平面直角坐标系中,已知点A (0, 1),点P 在线段OA 上,以AP 为半径的⊙P 的周长为1.点M 从点A 开始沿⊙P 按照逆时针方向转动,射线AM 交x 轴于点N (n , 0) ,设点M 转过的路程为m (0<m <1).随着点M 的转动,当m 从13变化到23时,点N 相应移动的路程长为____________.47.已知⊙P 的半径为2,圆心在函数y=8x的图象上运动,当⊙P 与坐标轴相切于点D 时,则符合条件的点D 的个数为( ).A .0B .1C .2D .448.如图,AB 是⊙O 的弦,AB =6,点C 是⊙O 上的一个动点,且∠ACB =45°.若M 、N 分别是AB 、BC 的中点,那么MN 长的最大值是__________.49.如图,正方形ABCD 的边长为1,中心为点O ,有一边长大小不定的正六边形EFGHIJ 绕点O 可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD 内(包括正方形的边),当这个六边形的边长最大时,AE 的最小值为 . 50.如图,正比例函数11y k x =的图象与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当y 1>y 2时,x 的取值范围是( ). A .x <-2或x >2 B . x <-2或0<x <2 C .-2<x <0或0<x <2 D .-2<x <0或x >251.正比例函数y 1=mx (m >0)的图象与反比例函数2k y x=(k ≠0)的图象交于A (n , 4)、B 两点,AM ⊥y 轴,垂足为M ,若△AMB 的面积为8,则满足y 1>y 2的实数x 的取值范围是___________.52.如图,在平面直角坐标系中,四边形ODEF 和四边形ABCD 都是正方形,点F 在x 轴的正半轴上,点C 在边DE 上,反比例函数k y x=(k ≠0,x >0)的图象过点B 、E .若AB =2,则k 的值为________.53.如图,点A 1、A 2依次在y =(x >0)的图象上,点B 1、B 2依次在x 轴的正半轴上,若△A 1OB 1、△A 2B 1B 2均为等边三角形,则点B 2的坐标为________.54.如图,在平面直角坐标系中,直线y =k 1x +2与x 轴交于点A ,与y 轴交于点C ,与反比例函数2k y x =在第一象限内的图象交于点B ,连结BO ,若S △OBC =1,tan ∠BOC =13,则k 2的值是( ).A .-3B .1C .2D .3 55.如图,在平面直角坐标系的第一象限内,边长为1的正方形ABCD 的边均平行于坐标轴,点A 的坐标为(a , a ).若曲线3y x=(x >0)与此正方形的边有交点,则a 的取值范围是_____________. 56.如图,已知点A 在反比例函数k y x =(x <0)上,作Rt △ABC ,点D 为斜边AC 的中点,连结DB 并延长交y 轴于点E ,若△BCE 的面积为8,则k = .57.如图,已知∠AOB =90°,在∠AOB 的平分线ON 上依次取点C 、F 、M ,过点C 作DE ⊥OC ,分别交OA 、OB 于点D 、E ,以FM 为对角线作菱形FGMH ,已知∠DFE =∠GFH =120°,FG =FE .设OC =x ,图中阴影部分的面积为y ,则y 与x 之间的函数关系式是( ). A. 223x y = B. 23x y = C. 232x y = D. 233x y = 58.如图1,正方形ABCD 的边长为3,动点P 从点B 出发以每秒3个单位长度的速度沿着BC -CD -DA 运动,到达点A 停止运动;另一动点Q 同时从点B 出发以每秒1个单位长度的速度沿着BA 边向点A 运动,到达点A 停止运动.设点P 运动时间为x 秒,△BPQ 的面积为y ,则y 关于x 的函数图象是( ).A .B .C .D .59.如图1,在平面直角坐标系中,点A 的坐标为(2, 2),点P (m , n )在直线y =-x +2上运动.设△APO 的面积为S ,则下面能够反映S 与m 的函数关系的图象是( ).60.如图1,在Rt△ABC中,∠C=90°,∠BAC=30°,AB=8.以DEFG的一边在直线AB上,且点D与点A重合.现将正方形DEFG沿A→B的方向以每秒1个单位的速度匀速运动,当点D与点B重合时停止,则在这个运动过程中,正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是().61.如图,已知正△ABC的边长为2,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是().图1 A.B.C.D.62.如图1,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图像中,能表示y 与x的函数关系的图象大致是().63.函数x xx y2 2+=的图象为().A.B.C.D.。
九年级数学专题复习图形的折叠和动点问题
中考冲刺:动手操作与运动变换型问题【中考展望】1.对于实践操作型问题,在解题过程中学生能够感受到数学学习的情趣与价值,经历“数学化〞和“再创造〞的过程,不断提升自己的创新意识与综合水平,这是?全日制义务教育数学课程标准〔实验稿〕?的根本要求之一,因此,近年来实践操作性试题受到命题者的重视,屡次出现.2.估计在今年的中考题中,实践操作类题目依旧是出题热点,仍符合常规题型,与三角形的全等和四边形的性质综合考查.需具备一定的分析问题水平和归纳推理水平.图形的设计与操作问题,主要分为如下一些类型:1.设计好的图案,求设计方案〔如:在什么根本图案的根底上,进行何种图形变换等〕.2.利用根本图案设计符合要求的图案〔如:设计轴对称图形,中央对称图形,而积或形状符合特定要求的图形等〕.3.图形分割与重组〔如:通过对原图形进行分割、重组,使形状满足特定要求〕.4.动手操作〔通过折叠、裁剪等手段制作特定图案〕.解决这样的问题,除了需要运用各种根本的图形变换〔平移、轴对称、旋转、位似〕外,还需要综合运用代数、几何知识对图形进行分析、计算、证实,以获得重要的数据,辅助图案设计.另外,由于折叠操作相当于构造轴对称变换,因此折叠问题中,要充分利用轴对称变换的特性,以获得更多的图形信息.必要时,实际动手配合上理论分析比单纯的理论分析更为快捷有效.从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的.动态问题一般分两类,一类是代数综合题,在坐标系中有动点,动直线,一般是利用多种函数交叉求解.另一类就是几何综合题, 在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析水平进行考查.所以说, 动态问题是中考数学当中的重中之重,只有完全掌握,才有时机拼高分.【方法点拨】实践操作问题:解答实践操作题的关键是要学会自觉地运用数学知识去观察、分析、抽象、概括所给的实际问题, 揭示其数学本质,并转化为我们所熟悉的数学问题.解答实践操作题的根本步骤为:从实例或实物出发, 通过具体操作实验,发现其中可能存在的规律,提出问题,检验猜测.在解答过程中一般需要经历操作、观察、思考、想象、推理、探索、发现、总结、归纳等实践活动过程,利用自己已有的生活经验和数学知识去感知发生的现象,从而发现所得到的结论,进而解决问题.动态几何问题:1、动态几何常见类型〔1〕点动问题〔一个动点〕〔2〕线动问题〔二个动点〕〔3〕面动问题〔三个动点〕2、运动形式平移、旋转、翻折、滚动3、数学思想函数思想、方程思想、分类思想、转化思想、数形结合思想4、解题思路〔1〕化动为静,动中求静〔2〕建立联系,计算说明〔3〕特殊探路,一般推证【典型例题】例1.直角三角形通过剪切可以拼成一个与该直角三角形面积相等的矩形.方法如下〔如下图〕:请你用上而图示的方法,解答以下问题:〔1〕对以下图中的三角形,设计一种方案,将它分成假设干块,再拼成一个与原三角形而积相等的矩形;〔2〕对以下图中的四边形,设计一种方案,将它分成假设F块,再拼成一个与原四边形而积相等的矩形.举一反三:【变式】把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,那么展开后图形是〔〕例2.如下图,现有一张边长为4的正方形纸片点尸为正方形助边上的一点〔不与点儿点,重合〕将正方形纸片折卷,使点6落在P处,点.落在G处,PG交DC干H,折痕为历,连接出\ BH.〔1〕求证:/AP斤4BP氏〔2〕当点尸在边月〃上移动时,△府的周长是否发生变化?并证实你的结论;〔3〕设"为x,四边形质GF的面积为S,求出S与x的函数关系式,试问S是否存在最小值?假设存在, 求出这个最小值;假设不存在,请说明理由.例3.刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,ZB=90° , NC=60° ,ZA=30° , BC=6 cm;图②中,ZD=90° , ZE=45° , DE=4 cm.图③是刘卫同学所做的一个实验:他将ADEF的直角边DE与AABC的斜边AC重合在一起,并将aDEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)在4DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐.(填“不变〞、“变大〞或“变小〞)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当ADEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?问题②:当ADEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?问题③:在ADEF的移动过程中,是否存在某个位置,使得NFCD=15° ?如果存在,求出AD的长度;如果不存在,请说明理由.举一反三:【变式】如图,直角梯形OBCD是某市将要筹建的高新技术开发区用地示意图,其中DC〃0B,0B=6, CD=BC二4, BCLOB于B,以0为坐标原点,0B所在直线为x轴建立平面直角坐标系,开发区综合效劳治理委员会〔其占地而积不计〕设在点P〔4,2〕处.为了方便驻区单位准备过点P修一条笔直的道路〔路宽不计〕,并且是这条路所在的直线?将直角梯形OBCD分成面积相等的两局部,你认为直线?是否存在?假设存在求出直线?的解析式,假设不存在,请说明理由.例4.两个全等的直角三角形ABC和DEF重叠在一起,其中NA=60, , AC=1.固定AABC不动,将4DEF进行如下操作:(1)如下图,ZkDEF沿线段AB向右平移(即D点在线段AB内移动),连结DC、CF、FB,四边形CDBF 的形状在不断地变化,但它的面积不变化,请求出其面积.B E⑵如下图,WD点移动到.AB的中点时,请你猜测四边形CDBF的形状,并说明理由.(3)如下图,4DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转aDEF,使DF落在AB请你求出sin的值.例5.如图,在平面直角坐标系中,点C的坐标为〔0, 4〕,动点A以每秒1个单位长的速度,从点O 出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中央,沿顺时针方向旋转90., 得到线段AB,过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D,运动时间为t秒.〔1〕当点B与点D重合时,求t的值;〔2〕当t为何值时,S A BCD=^?4举一反三:【变式】如图,平行四边形ABCD中,AB=10, AD=6, NA=60° ,点P从点A出发沿折线AB-BC以每秒1 个单位长的速度向点C运动,当P与C重合时停止运动,过点P作AB的垂线PQ交AD或DC于Q.设P 运动时间为t秒,直线PQ扫过平行四边形ABCD的面积为S.求S关于t的函数解析式.D C【稳固练习】 一、选择题将一张正方形纸片按如下图对折两次,并在如图位置上剪去一个圆形小洞后展开铺平得到的图形一张正方形的纸片,如图1进行两次对折,折成一个正方形,从右下角的顶点,沿斜虚线剪去一个3.如图,把矩形ABCD 对折,折痕为MN 〔图甲〕,再把B 点棒在折痕MN 上的B,处.得到RtZ\AB' E 〔图1. A. K B.区启启展开后的这个图形的内角和是多少度?〔 〕2D.直角三角形4.如图,边长为5的等边三角形ABC 纸片,点E 在AC 边上,乙〕,再延长EB'交AD 于F,所得到的4EAF 是〔〕点F在AB边上,沿着EF折福,使点A落在BC边上的点D的位置,且EDLBC,那么CE的长是〔A、B、10-56C、56-5D、20-10V3二、填空题5.如佟1(1)是一个等腰梯形,由6个这样的等腰梯形恰好可以拼出如图⑵所示的一个菱形.对于图⑴ 中的等腰梯形,请写出它的内角的度数或腰与底边长度之间关系的一个正确结论:6.如图,AABC中,ZBAC=60°, NABC=45* AB= 2点,D是线段BC上的一个动点,以AD为直径画.0 分别交AB, AC于E, F ,连接EF,那么线段EF长度的最小值为7.如图①,在四边形ABCD中,ADII BC, Z C=90% CD=6cm.动点Q从点B出发,以lcm/S的速度沿BC运动到点C停止,同时,动点P也从B点出发,沿折线B玲A玲D运动到点D停止,且PQ±BC.设运动时间为t(s),点P运动的路程为y (cm),在直角坐标系中画出y关于t的函数图象为折线段OE 和EF (如图②).点M (4, 5)在线段OE上,那么图①中AB的长是cm.三、解做题8.阅读以下材料:小明遇到一个问题:5个同样大小的正方形纸片排列形式如图(1)所示,将它们分割后拼接成一个新的正方形.他的做法是:按图⑵所示的方法分割后,将三角形纸片①绕AB的中点D旋转至三角形纸片②处, 依此方法继续操作,即可拼接成一个新的正方形DEFG.请你参考小明的做法解决以下问题:(1)现有5个形状、大小相同的矩形纸片,排列形式如图(3)所示.请将其分割后拼接成一个平行四边形.要求:在图⑶中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);(2)如图(4),在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点, 分别连结AF、BG、CH、DE得到一个新的平行四边形MNPQ.请在图(4)中探究平行四边形MWQ面积的大小(画图并直接写出结果).9.如图(a),把一张标准纸一次又一次对开,得到“2开〞纸、“4开〞纸、“8开〞纸、“16开〞纸……・已知标准纸的短边长为a.(1)如图(b),把这张标准纸对开得到的“16开〞张纸按如下步骤折叠:第一步将矩形的短边AB与长边AD对齐折叠,点B落在AD上的点B'处,铺平后得折痕AE;第二步将长边AD与折痕AE对齐折登,点D正好与点E重合,铺平后得折痕AF:贝|JAD:AB的值是 _______ , AD, AB的长分别是___________ ,:22) “2开〞纸、“4开〞纸、“8开〞纸的长与宽之比是否都相等?假设相等,直接写出这个比值;假设不相等,请分别计算它们的比值:(3)如图(c),由8个大小相等的小正方形构成“L〞型图案,它的4个顶点E, F, G, H分别在“16 开〞纸的边AB, BC, CD, DA上,求DG的长:(4)梯形MNPQ中,MN〃PQ, ZM=90° , MN=MQ=2PQ,且四个顶点乩N, P, Q都在“4开〞纸的边上,请直接写出两个符合条件且大小不同的直角梯形的面积.10.操作与探究(1)图(a)是一块直角三角形纸片•.将该三角形纸片按图中方法折登,点A与点C重合,DE为折痕.试证实aCBE是等腰三角形;(2)再将佟1(b)中的ACBE沿对称轴EF折叠(如图(b)).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝重叠)所成的矩形,我们称这样的两个矩形为“组合矩形〞.你能将图(c)中的AABC折登成一个组合矩形吗?如果能折成,请在图(c)中画出折痕:(3)请你在图(d)的方格纸中画出一个斜三角形,同时满足以下条件:①折成的组合矩形为正方形:②顶点都在格点(各小正方形的顶点)上;(4)有一些特殊的四边形,如菱形,通过折登也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足什么条件时,一定能折成组合矩形?11.在图1至图5中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE 在同一直线上.操作例如:当2bVa时,如图1,在BA上选取点G,使BG=b,连接FG和CG,裁掉4FAG和aCGB并分别拼接到AFEH和ACHD的位置构成四边形FGCH.思考发现:小明在操作后发现:该剪拼方法是先将AFAG绕点F逆时针旋转90°到AFEH的位置,易知EH与AD在同一直线上,连接CH.由剪拼方法可得DH=BG,故ACHD乌ZkCGB,从而又可将4CGB绕点C顺时针旋转90.到aCHD的位置.这样,对于剪拼得到的四边形FGCH 〔如下图〕,过点F作FM_L AE于点M 〔图略〕,利用SAS公理可判断△HFMgZkCHD,易得FH = HC=GC = FG, ZFHC=90° .进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.〔1〕正方形FGCH的面积是__________ :〔用含a、b的式子表示〕⑵类比图1的剪拼方法,请你就图2至图4的三种情形分别画出剪拼成一个新正方形的示意图.联想拓展:小明通过探究后发现:当bWa时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.当b>a时,如下图的图形能否剪拼成一个正方形?假设能,请你在图中画出剪拼的示意图;假设不能,12.AABC是等腰直角三角形,AC二BC=2, D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角.得到ACEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当a =90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF//AC;(2)如图2,当90° WaW180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求NCMD的度数;②设D为边AB的中点,当a从90°变化到180°时,求点M运动的路径长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题图形的翻折
1.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′C′的位置。
若∠EFB=65°,则∠AED′=___________°.
2.如图,已知矩形ABCD,将△BCD沿对角线BD折叠,记点C的对应点为C,若∠ADC=20°,则∠BDC的度数为______________.
3.如图,将正方形纸片ABCD分别沿AE、BF折叠(点E、F是边CD上两点),使点C与D在正方形内重合于点P处,则∠EPF=____________度。
4.如图,在△ABC中,D、E分别是边AB、AC的中点,∠B=50°.现将△ADE沿DE折叠,点A 落在三角形所在平面内的点为A,则∠BDA的度数为_________.
5.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别在边AB、AC上,将△ABC 沿着DE折叠压平,A与A重合,若∠A=75°,则∠1+∠2=_______°.
6.如图,已知边长为3的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF 折叠,使点A落在BC边上的点D的位置,且ED⊥BC,则CE的长是________________.
7.在梯形ABCD中,AD∥BC,AB=DC=3,沿对角线BD翻折梯形ABCD,若点A恰好落在下底BC 的中点E处,则梯形的周长为____________.
8.平行四边形ABCD中,AB=4,BC=3,∠B=60°,AE为BC边上的高,将△ABE沿AE所在直线翻折后得△AFE,那么△AFE与四边形AECD重叠部分的面积是_______________.
9.把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF。
若
AB=3cm,BC=5cm,则重叠部分△DEF的面积是______________cm2.
10.如图,在△
ABC中,
AB=AC=5,
BC=6,点E、F
分别在AB、BC
边上,将△BEF
沿直线EF翻折
后,点B落在
对边AC的点B′处,若△BFC与△ABC相似,那么BF=__________.
11.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3;点D是BC边上的一个动点(不与B、C重合),过点D作DE⊥BC交AB边于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处;当△AEF是直角三角形时,BD的长为_____________.
12.如图,在等边三角形ABC中,D是BC边上一点,延长AD到E,使得AE=AC,∠BAE的平分线交△ABC的高BF于点O,则tan∠AEO=_______________.
13.如图,在R△ABC中,∠C=90°,∠A=30°,BC=1,点D在AC上,将△ADB沿直线BD翻折后,点A落在点E处,如果AD⊥BD,那么线段DE的长为_____________.
14. 如图,在锐角△ABC 中,24AB ,∠BAC=45°,∠BAC 的平分线交BC 于D ,M 、N 分
别是AD 和AB 上的动点,则BM+MN 的最小值是______________.
15. 如图,在
矩形ABCD 中,AB=8,BC=6,点P 为AD 边上一点,将△ABP 沿BP 翻折至△BBP ,PE 与CD 相交于点O ,且CE =OD ,则AP 的长为____________.
16.如图,将正方形ABCD 沿MN 折叠,使点D 落在AB 边上,对应点为D ,点C 落在C 处若AB=6,AD ′=2,则折痕MN 的长为______________.
17.如图,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上
有一点P ,使PD+PE 最小,则这个最小值为( ) (A )3 (B)32 (C)62 (D)6
18.如图,正方形ABCD 的边长为4,E 为BC 上的一点,BE=1, F 为AB 上的一点,AF=2,P 为AC 上一个动点,则 PF+PE 的最小值为___________.
19. 如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的点处,EQ 与BC 相交于F ,若AD = 8 cm ,AB =6cm ,AE=4 cm ,则△EBF 的周长是_________cm.
20.如图,把平行四边形 ABCD 折叠,使点C 与点A 重合,这时点D 落在24AB =,折痕为
EF ,若∠BAE=55°,则AD D 1∠=________________.。