数列求通项总结

合集下载

数列求通项公式方法大全

数列求通项公式方法大全

数列求通项公式方法大全1.等差数列求通项公式等差数列是指数列中相邻两项之间的差值相同的数列。

设等差数列的首项为a1,公差为d,则其通项公式为an=a1+(n-1)d。

其中,n为该数列的第n项。

2.等比数列求通项公式等比数列是指数列中相邻两项之间的比值相同的数列。

设等比数列的首项为a1,公比为q,则其通项公式为an=a1*q^(n-1)。

其中,n为该数列的第n项。

3.斐波那契数列求通项公式斐波那契数列是指数列中每一项都是前两项之和的数列。

设斐波那契数列的首项为a1,第二项为a2,则其通项公式为an=a1*f1+n*f2,其中,f1和f2分别为斐波那契数列的第一项和第二项。

4.调和数列求通项公式调和数列是指数列中每一项都是它前一项加上一个固定常数的倒数。

设调和数列的首项为a1,差值为d,则其通项公式为an=1/(a1+(n-1)d)。

5.等差几何数列求通项公式等差几何数列是指数列中相邻两项之间既有等差关系又有等比关系的数列。

设等差几何数列的首项为a1,公差为d,公比为q,则其通项公式为an=a1*q^(n-1)+d*(q^(n-1)-1)/(q-1)。

6.垂直数列求通项公式垂直数列是指数列中每一项之间的垂直差别相等,且相邻两项之间的垂直和恒定的数列。

设垂直数列的首项为a1,公差为d,垂直和为S,则其通项公式为an=(2a1+(n-1)d)*S/(2+S(n-1))。

7.几何平均数列求通项公式几何平均数列是指数列中每一项为前一项与下一项的几何平均数的数列。

设几何平均数列的首项为a1,公比为q,则其通项公式为an=a1*q^((n-1)/2)。

8.调和平均数列求通项公式调和平均数列是指数列中每一项为前一项与下一项的调和平均数的数列。

设调和平均数列的首项为a1,公差为d,则其通项公式为an=2/(1/a1+(n-1)d)。

9.阿贝尔数列求通项公式阿贝尔数列是指数列中,对于任意正整数k,从第k项开始,其连续k项的和为常数的数列。

求数列通项公式常用的八种方法

求数列通项公式常用的八种方法

求数列通项公式常用八种方法一、 公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+= 或11-=n n q a a 进行求解.二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a .(分3步)三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a .(分3步)四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.五、累乘法:它与累加法类似 ,当数列{}n a 中有()1n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:------+常数P㈡、取倒数法:这种方法适用于11c --=+n n n Aa a Ba ()2,n n N *≥∈(,,k m p 均为常数 0m ≠),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子.㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数)例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得211lg lg 2lg n n n a a a --== 即1lg 2lg n n a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --==∴123n n a -=七、“1p ()n n a a f n +=+(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a . 可以先在等式两边 同除以f(n)后再用累加法。

数列求通项公式的9种方法

数列求通项公式的9种方法


9:已知数列{an} 满足 a1
1 , an1

an an
2
,求{an} 的通项公式.
例 10(拓展).设由 a1
1, an

an1
2n 1an1
n
1

2,3,定义数列an ,试将 an 用 n 来表示
变式训练 11
已知数列 {an }
满足
a1

1 , an1
变式训练 14
已知数列{an} 满足 a1
2 , an1

1 2 an
2n ,求{an} 的通项公式.
变式训练 15 已知数列{an} 满足 a1 1 , an1 2an 3 2n1 ,求{an} 的通项公式.
七、型如 an1 pan A0n B0 的数列
四、加法构造
型如 an1 kan b ( k、b 为常数)的数列构造{an } 为等比数列
例 7 已知数列{an} 满足 a1 2 , an1 2an 3 ,求{an} 的通项公式.
变式训练 9 已知数列{an} 满足 a1 1 , an1 3an 2 ,求{an} 的通项公式.
数列求通项公式常见的9种方法
知识复习
1、等差数列通项公式: an=a1+ (n-1)d an=am+(n-m)d
2、等比数列通项公式: an= a1·qn-1 am= a1·qn-m
一、利用 an 与 Sn 关系求 an
an=SS1n,-Sn-1,
n=1, n≥2.
例1 已知数列{an}的前n项和Sn,求数列{an}的通项公式.(1)Sn=2n-1;(2)Sn=2n2+ n+3.
变式训练 10

(完整版)求数列通项公式常用的七种方法

(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列na 为等差或等比数列,根据通项公式d n a a n11或11n n qa a 进行求解.例1:已知n a 是一个等差数列,且5,152a a ,求n a 的通项公式.分析:设数列n a 的公差为d ,则54111da d a 解得231da 5211ndn a a n二、前n 项和法:已知数列n a 的前n 项和n s 的解析式,求n a .例2:已知数列n a 的前n 项和12nns ,求通项n a .分析:当2n 时,1n nns s a =32321n n=12n 而111s a 不适合上式,22111n n a n n三、n s 与n a 的关系式法:已知数列n a 的前n 项和n s 与通项n a 的关系式,求n a .例3:已知数列n a 的前n 项和n s 满足n n s a 311,其中11a ,求n a .分析:13n na s ①nna s 312n②①-②得n n n a a a 331134nn a a 即341nn a a 2n又1123131a s a 不适合上式数列n a 从第2项起是以34为公比的等比数列222343134n n n a a 2n23431112n na n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1na 与1ns 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列n a 中有n f a a nn1,即第n 项与第1n 项的差是个有“规律”的数时,就可以用这种方法. 例4:12,011n a a a nn,求通项na 分析:121n a a n n112a a 323a a 534a a ┅321n a a nn2n以上各式相加得211327531n n a a n 2n 又01a ,所以21n a n 2n,而01a 也适合上式,21n a n Nn 五、累乘法:它与累加法类似,当数列n a 中有1n na f n a ,即第n 项与第1n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1nnn a a a n 2,n n N求通项na 分析:Q 11nnna a n 11nn a na n 2,n n N故3241123123411231n nn a a a a na a n a a a a n g g g g L g g g g L g 2,n n N而11a 也适合上式,所以na n n N六、构造法:㈠、一次函数法:在数列n a 中有1nna kab (,k b 均为常数且0k ),从表面形式上来看n a 是关于1n a 的“一次函数”的形式,这时用下面的方法: 一般化方法:设1nna mk a m则11nna ka k m而1nn a ka b1bk m 即1bmk 故111n nb ba k a k k数列11nba k 是以k 为公比的等比数列,借助它去求na 例6:已知111,21n n a a a 2,n n N求通项na 分析:Q 121nna a 1112221n nna a a 数列1n a 是以2为首项,2为公比的等比数列111122n nna a 故21nna ㈡、取倒数法:这种方法适用于11n nnka a ma p2,n n N (,,k m p 均为常数0m),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n na kab 的式子.例7:已知11122,2n nna a a a 2,nnN求通项na Q 1122n nna a a 111211122nnnna a a a 即11112nna a 2,n n N数列1n a 是以12为首项,以12为公差的等差数列1111222nn n a 2na n㈢、取对数法:一般情况下适用于1klnn a a (,k l 为非零常数)例8:已知2113,2nn a a a n 求通项na 分析:由2113,2nn a a an知0n a 在21n na a 的两边同取常用对数得211lg lg 2lg n n n a a a 即1lg 2lg n na a 数列lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3nn na 123nna 七、“mnnc ba a 1(c b,为常数且不为0,*,N nm )”型的数列求通项n a .例9:设数列n a 的前n 项和为n s ,已知*11,3,N ns a a a nn n ,求通项n a .解:nn n s a 31113n nns a 2n两式相减得1132n n nn a a a 即11322n nna a 上式两边同除以13n 得92332311nn n n a a (这一步是关键)令nn na c 3得92321nn c c 3232321n nc c 2n(想想这步是怎么得来的)数列32nc 从第2项起,是以93322a c 为首项,以32为公比的等比数列故nn n n na a c c 32332933232322222323232nn nac 又nn na c 3,所以123223n n na a a a 1不适合上式23223112n a n a a n n n注:求mnnc ba a 1(c b,为常数且不为0,*,N nm )”型的数列求通项公式的方法是等式的两边同除以1n c ,得到一个“1nna kab ”型的数列,再用上面第六种方法里面的“一次函数法”便可求出nn ca 的通式,从而求出n a .另外本题还可以由nnns a 31得到n nn ns s s 31即nn ns s 321,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。

求数列的通项公式的八种方法(强烈推荐)

求数列的通项公式的八种方法(强烈推荐)

怎样由递推关系式求通项公式一、基本型:(1)a n =pa n-1+q (其中pq ≠0 ,p ≠1,p 、q 为常数)型:——运用代数方法变形,转化为基本数列求解.利用待定系数法,可在两边同时加上同一个数x ,即a 1+n + x = pa n + q + x ⇒a 1+n + x = p(a n +p x q +), 令x =px q + ∴x =1-p q时,有a 1+n + x = p(a n + x ),从而转化为等比数列 {a n +1-p q} 求解. 例1. 已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.-1练1.已知数列{a n }中,a 1=1,a n =21a 1-n + 1,n ∈ N +,求通项a n .a n = 2 -2n-1 ,n ∈N + 练2.已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.21nn a ∴=- 二、可化为基本型的数列通项求法: (一)指数型:a n=ca n-1+f(n)型 1、a 1=2,a n =4a n-1+2n (n ≥2),求a n .2、a 1=-1,a n =2a n-1+4〃3n-1(n ≥2),求a n .3、已知数列{}n a 中,1a =92,113232+-+=n n n a a (n ≥2),求n a .∴ n a =13)21(2+--n n(二)指数(倒数)型 1、a 1=1,2a n -3a n-1=(n ≥2),求a n .2、a 1=,a n+1=a n +()n+1,求a n . (三)可取倒数型:将递推数列1nn n ca a a d+=+(0,0)c d ≠≠,1、(2008陕西卷理22)(本小题满分14分)已知数列{a n }的首项135a =,1321n n n a a a +=+,12n = ,,. (Ⅰ)求{a n }的通项公式; 332nn n a ∴=+2、已知数列{}n a *()n N ∈中, 11a =,121nn n a a a +=+,求数列{}n a 的通项公式.∴121n a n =-. 3、若数列{a n }中,a 1=1,a 1+n =22+n na a n ∈N +,求通项a n . a n =4、 若数列{n a }中,1a =1,n S 是数列{n a }的前n 项之和,且nnn S S S 431+=+(n 1≥),求数列{n a }的通项公式是n a . 131-=n n S ⎪⎩⎪⎨⎧+⋅-⋅-=123833212n n n n a )2()1(≥=n n 三、叠加法:a n=a n-1+f(n)型:1.已知数列{a n }中, 11a =,1n-13n n a a -=+(2)n ≥。

求数列通项公式常用的七种方法

求数列通项公式常用的七种方法

求数列通项公式经常使用的七种方法一、公式法:已知或根据题目的条件能够推出数列为等差或等比数列,根据通项公式或进行求解.例1:已知是一个等差数列,且,求的通项公式.分析:设数列的公差为,则解得二、前项和法:已知数列的前项和的解析式,求.例2:已知数列的前项和,求通项.分析:当时,==而不适合上式,三、与的关系式法:已知数列的前项和与通项的关系式,求.例3:已知数列的前项和满足,其中,求.分析:①②①-②得即又不适合上式数列从第2项起是以为公比的等比数列注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由与的关系式,类比出与的关系式,然后两式作差,最后别忘了检验是否适合用上面的方法求出的通项. 四、累加法:当数列中有,即第项与第项的差是个有“规律”的数时,就可以用这种方法.例4:,求通项分析:┅以上各式相加得又,所以,而也适合上式,五、累乘法:它与累加法类似,当数列中有,即第项与第项的商是个有“规律”的数时,就可以用这种方法.例5:求通项分析:故而也适合上式,所以六、构造法:㈠、一次函数法:在数列中有(均为常数且),从概况形式上来看是关于的“一次函数”的形式,这时用下面的方法:一般化方法:设则而即故数列是以为公比的等比数列,借助它去求例6:已知求通项分析:数列是以为首项,为公比的等比数列故㈡、取倒数法:这种方法适用于(均为常数),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于的式子.例7:已知求通项即数列是以为首项,以为公差的等差数列㈢、取对数法:一般情况下适用于(为非零常数)例8:已知求通项分析:由知在的两边同取经常使用对数得即数列是以为首项,以为公比的等比数列故七、“(为常数且不为,)”型的数列求通项.例9:设数列的前项和为,已知,求通项.解:两式相减得即上式两边同除以得(这一步是关键)令得(想想这步是怎么得来的)数列从第项起,是以为首项,以为公比的等比数列故又,所以不适合上式注:求(为常数且不为,)”型的数列求通项公式的方法是等式的两边同除以,得到一个“”型的数列,再用上面第六种方法里面的“一次函数法”即可求出的通式,从而求出.另外本题还可以由得到即,依照上面求的方法同理可求出,再求.您不无妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜测法等,但这七种方法是经经常使用的,将其总结到一块,以便于学生记忆和掌握.。

(完整版)求数列通项公式常用的七种方法

(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.分析:设数列{}n a 的公差为d ,则⎩⎨⎧-=+=+54111d a d a 解得⎩⎨⎧-==231d a∴ ()5211+-=-+=n d n a a n二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =()()32321----n n=12-n而111-==s a 不适合上式,()()⎩⎨⎧≥=-=∴-22111n n a n n三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 分析:Θ 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a即 341=+n n a a ()2≥n 又1123131a s a ==不适合上式∴ 数列{}n a 从第2项起是以34为公比的等比数列 ∴ 222343134--⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=n n n a a ()2≥n ∴()()⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛==-23431112n n a n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a分析:Θ 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a┅ 321-=--n a a n n ()2≥n以上各式相加得()()211327531-=-+++++=-n n a a n Λ ()2≥n又01=a ,所以()21-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()21-=n a n ()*∈Nn五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a分析:Q 11n n n a a n -=- ∴11n n a n a n -=- ()2,n n N *≥∈故3241123123411231n n n a a a a na a n a a a a n -===-gg g g L g g g g L g ()2,n n N *≥∈ 而11a =也适合上式,所以()n a n n N *=∈ 六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a分析:Q 121n n a a -=+ ∴()1112221n n n a a a --+=+=+ ∴数列{}1n a +是以2为首项,2为公比的等比数列 ∴()111122n n n a a -+=+⋅= 故21n n a =- ㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n aQ 1122n n n a a a --=+ ∴111211122n n n n a a a a ---+==+ 即11112n n a a --= ()2,n n N *≥∈ ∴ 数列1n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列∴()1111222n n n a =+-⋅= ∴2n a n= ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a aa --==即1lg 2lg nn a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --== ∴123n n a -=七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a . 解:n n n s a 31+=+Θ 113--+=∴n n n s a ()2≥n两式相减得 1132-+⋅+=-n n n n a a a 即 11322-+⋅+=n n n a a上式两边同除以13+n 得92332311+⋅=++n n n n a a (这一步是关键) 令nnn a c 3=得 92321+=+n n c c ⎪⎭⎫⎝⎛-=-∴+3232321n n c c ()2≥n (想想这步是怎么得来的) ∴数列⎭⎬⎫⎩⎨⎧-32n c 从第2项起,是以93322-=-a c 为首项,以32为公比的等比数列故 ()n n n n n a a c c 32332933232322222----=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=-()323232+-=∴-n n n a c 又n n n a c 3=,所以()123223--⋅+⋅-=n n n a a a a =1Θ不适合上式 ()()()⎩⎨⎧≥⋅+⋅-==∴--23223112n a n a a n n n 注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。

数列通项公式常见9种求法

数列通项公式常见9种求法

解:令
,得
,则 是函数
的不动点。
因为
,所以

评注:本题解题的关键是通过将 形式,从而可知数列
最后再求出数列 的通项公式。
的换元为 ,使得所给递推关系式转化
为等比数列,进而求出数列
的通项公式,
,求数列 的通项公式。
解:令
,得
的两个不动点。因为
,则
是函数
。所以数列
是以
为首项,以 为公比的等比数列,故



评注:本题解题的关键是先求出函数
的不动点,即方程
的两
个根
,进而可推出
,从而可知数列
为等比数
列,再求出数列
的通项公式,最后求出数列 的通项公式。
例 15 已知数列 满足
,求数列 的通项公式。
并整理,得

,求数列 的通项公式。
,所以 ⑩
。在
式两边取
11
,则
,两边消去
,故
代入 11 式,得 由 得 则 所以数列 比数列,则
, ,
是以
12 及 12 式,
为首项,以 5 为公比的等 ,因此


评注:本题解题的关键是通过对数变换把递推关系式
转化为 ,从而可知数列
是等比数列,进而求出数列 公式,最后再求出数列 的通项公式。
解:设


代入⑥式,得
整理得


,则
,代入⑥式得


及⑦式,

,则

故数列 因此
是以 ,则
为首项,以 3 为公比的等比数列, 。
评注:本题解题的关键是把递推关系式

数列通项公式—常见9种求法

数列通项公式—常见9种求法

数列通项公式—常见9种求法一、公式法例1 已知数列满足,,求数列的通项公式。

解:两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。

评注:本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接利用等差数列的通项公式求出,进而求出数列的通项公式。

二、累加法例2 已知数列满足,求数列的通项公式。

解:由得则所以数列的通项公式为。

评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。

例3 已知数列满足,求数列的通项公式解:由得所以评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。

例4已知数列满足,求数列的通项公式。

解:两边除以,得,则,故因此,则评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。

三、累乘法例5 已知数列满足,求数列的通项公式。

解:因为,所以,则,故所以数列的通项公式为评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。

例6 已知数列满足,求的通项公式。

解:因为①所以②用②式-①式得则故所以③由,,则,又知,则,代入③得。

所以,的通项公式为评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。

四、待定系数法例7已知数列满足,求数列的通项公式。

解:设④将代入④式,得,等式两边消去,得,两边除以,得代入④式得⑤由及⑤式得,则,则数列是以为首项,以2为公比的等比数列,则,故。

评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。

例8 已知数列满足,求数列的通项公式。

解:设⑥将代入⑥式,得整理得。

令,则,代入⑥式得⑦由及⑦式,得,则,故数列是以为首项,以3为公比的等比数列,因此,则。

评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。

求数列通项公式方法总结

求数列通项公式方法总结

求数列通项公式的方法总结:1)观察法。

例如1、3、5、7、9……2)公式法。

对于等差数列:a n=a1+(n-1)d;对于等比数列:a n=a1·q n-1。

3)形如a n+1=pa n+q,变形为(a n+1+k)=p(a n+k),其中k=q/(p-1)构造数列{a n+k}是以a1+k为首项,p为公比的等比数列。

4)形如a n+2=pa n+1+qa n,,变形为a n+2+ma n+1=n(a n+1+ma n),自行解出m和n构造数列{a n+1+ma n}是以a2+ma1为首项,n为公比的等比试列。

5)形如a n+1=pa n+q n,变形为a n+1/q n=p/q·a n/q n-1+1,再利用3)的步骤即可求出通项公式。

6)形如a n+1=pa n+q n+t n,变形为a n+1/q n=p/q·a n/q n-1+(t/q)n+1,则先忽略(t/q)n这一项,利用3)的方法配出3)的形式,然后再同时除以(t/q)n,再利用3)的步骤即可求出通项公式。

7)a n+1=ta n/(p+qa n)变形为1/a n+1=p/t·1/a n+q/t, 再利用3)的步骤即可求出通项公式。

8)利用s n-s n-1=a n的关系求出通项公式。

利用以上方法求通项公式时,要用到数列求和的方法,下面予以归纳:1)公式法。

对于等差数列s n=na1+n·(n-1)d或s n=n(a1+a n)/2,对于等比数列s n=a1·q n-I。

2)常用的几个基本求和公式a)1+2+3+……+n=n·(n+1)/2b)12+22+32+……+n2=n·(n+1)·(2n+1)/6c)13+23+33+……+n3=n2·(n+1)2/4d)1+3+5+……+(2n-1)=n23)倒序相加法。

主要用于等差数列或组合数列。

数列求通项公式及求和9种方法

数列求通项公式及求和9种方法

数列求通项公式及求和9种方法数列是指按照一定规律排列的一系列数值。

求数列的通项公式和求和的方法是数列研究的基础,下面将介绍9种常见的方法。

一、等差数列求通项公式和求和等差数列是指数列中两个相邻项之间的差固定的数列。

例如:1,3,5,7,9,……,其中差为21.1求通项公式对于等差数列,可使用以下公式计算通项:通项公式:a_n=a_1+(n-1)*d其中a_n表示数列第n项,a_1表示数列第一项,d表示公差。

1.2求和求和的公式为:S_n=(a_1+a_n)*n/2其中S_n表示数列前n项的和。

二、等比数列求通项公式和求和等比数列是指数列中的两个相邻项之间的比值是固定的数列。

例如:1,2,4,8,16,……,其中比值为22.1求通项公式等比数列的通项公式为:a_n=a_1*q^(n-1)其中a_n表示数列的第n项,a_1表示数列的第一项,q表示公比。

2.2求和求等比数列前n项和的公式为:S_n=a_1*(q^n-1)/(q-1)三、斐波那契数列求通项公式和求和斐波那契数列是指数列中的每一项都等于前两项之和。

例如:0,1,1,2,3,5,8,13,……3.1求通项公式斐波那契数列的通项公式为:a_n=a_(n-1)+a_(n-2)其中a_n表示数列的第n项。

3.2求和斐波那契数列前n项和的公式为:S_n=a_(n+2)-1四、等差数列的和差公式求通项公式和求和对于等差数列,如果已知首项、末项和项数,可以使用和差公式求通项公式和求和。

4.1公式和差公式是指通过首项、末项和项数计算公差的公式。

已知首项a_1、末项a_n和项数n,可以使用和差公式计算公差d:d=(a_n-a_1)/(n-1)4.2求通项公式已知首项a_1、公差d和项数n,可以使用通项公式计算任意项的值:a_n=a_1+(n-1)*d4.3求和已知首项a_1、末项a_n和项数n,可以使用求和公式计算等差数列前n项的和:S_n=(a_1+a_n)*n/2五、等比数列的部分和求和公式求通项公式和求和对于等比数列,如果已知首项、公比和项数,可以使用部分和求和公式求通项公式和求和。

高考数学-数列通项公式求解方法总结

高考数学-数列通项公式求解方法总结

求数列通项公式的十种方法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。

评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2nna 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。

二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。

评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+ ,即得数列{}n a 的通项公式。

数列求通项公式专题(完美总结)

数列求通项公式专题(完美总结)

求通项公式专题1、作差法:已知数列{a n }的前n 项和S n ,求通项公式n a例 已知数列{a n }的前n 项和S n ,求数列{a n }的通项公式.(1)S n =2n -1;(2)S n =2n 2+n +3.变式训练 已知下面各数列{a n }的前n 项和S n 的公式,求a n . (1)S n =2n 2-3n ;(2)S n =3n -2.2.累加法:型如)(1n f a a n n +=+的数列例 已知数列}{n a 满足21=a ,231++=+n a a n n ,求}{n a 的通项公式.变式训练 已知数列}{n a 满足21=a ,12123-+⋅=-n n n a a ,求}{n a 的通项公式.3.累乘法:型如)(1n f a a n n ⋅=+的数列例 已知数列}{n a 满足11=a ,n n a nn a 21+=+,求}{n a 的通项公式.变式训练 已知数列}{n a 满足11=a ,12n n n a a +=⋅,求}{n a 的通项公式.4.构造法4-1型如b ka a n n +=+1(b k 、为常数)的数列构造}{λ+n a 为等比数列▲例 已知数列}{n a 满足21=a ,321+=+n n a a ,求}{n a 的通项公式.变式训练1 已知数列}{n a 满足11=a ,231+=+n n a a ,求}{n a 的通项公式.变式训练2 已知数列}{n a 满足2171-=a ,)2(5231≥+=-n a a n n ,求}{n a 的通项公式.4-2 型如001B n A pa a n n ++=+的数列解法:设1(1)()n n a A n B p a An B ++++=++,去括号整理对比001B n A pa a n n ++=+解出A 、B的值,构造出}{B An a n ++为等比数列.理解该数列的构造原理,若出现00201C n B n A pa a n n +++=+,方法也相同.例 已知数列}{n a 满足11=a ,1231n n a a n +=+-,求}{n a 的通项公式.变式训练 已知数列}{n a 满足11=a ,1321n n a a n +=++,求}{n a 的通项公式.4-3 型如n n n q m pa a ⋅+=+1的数列将原递推公式两边同除以1n q +得q m q a q p q a n n n n +⋅=++11,设n n n a b q=,得q m b q p b n n +⋅=+1, 转化为“6-1型如b ka a n n +=+1(b k 、为常数)的数列构造}{λ+n a 为等比数列”.例 已知数列}{n a 满足11=a ,123n n n a a +=+,求}{n a 的通项公式.变式训练1 已知数列}{n a 满足21=a ,n n n a a 2211+=+,求}{n a 的通项公式.变式训练2 已知数列{}n a 中,651=a ,11)21(31+++=n n n a a ,求n a 。

求数列通项的方法总结

求数列通项的方法总结

求数列通项的方法总结求数列的通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法灵活是灵活多变的,分享了求数列通项的方法,一起来看看吧!一、累加法:利用an=a1+(a2-a1)+…(an-an-1)求通项公式的方法称为累加法。

累加法是求型如an+1=an+f(n)的递推数列通项公式的基本方法(f (n)可求前n项和).例1.已知数列an满足an+1=an+2n+1,a1=1,求数列an的通项公式。

解:由an+1=an+2n+1得an+1-an=2n+1则an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+ (a2-a1)+a1=[2(n-1)+1]+[2(n-2)+1]+…+(2×2+1)+(2×1+1)+1=2[(n-1)+(n-2)+…+2+1]+(n-1)+1=2+(n-1)+1=(n-1)(n+1)+1=n2所以数列an的通项公式为an=n2。

例2:在数列{an}中,已知an+1= ,求该数列的通项公式.备注:取倒数之后变成逐差法。

解:两边取倒数递推式化为:=+,即-=所以-=,-=,-=…-=.…,将以上n-1个式子相加,得:-=++…+即=+++…+==1-故an==二、累乘法:利用恒等式an=a1…(an≠0,n?叟n)求通项公式的方法称为累乘法,累乘法是求型如:an+1=g(n)an的递推数列通项公式的基本方法(数列g(n)可求前n项积).例3.已知数列{an}中a1=,an=an-1(n?叟2)求数列{an}的通项公式。

解:当n?叟2时,=,=,=,…=将这n-1个式子累乘,得到=,从而an=×=,当n=1时,==a1,所以an= 。

注:在运用累乘法时,还是要特别注意项数,计算时项数容易出错.三、公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有an=Sn-Sn-1(n?叟2),等差数列或等比数列的通项公式。

八种通项公式求解方法

八种通项公式求解方法

求数列通项公式的八种方法总述:一.利用递推关系式求数列通项的8种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、二.等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:----------这是广义的等差数列累加法是最基本的二个方法之一。

2.若,则两边分别相加得例1已知数列满足,求数列的通项公式。

解:由得则所以数列的通项公式为。

例2已知数列满足,求数列的通项公式。

解法一:由得则所以解法二:两边除以,得,则,故因此,则评注:已知,,其中f(n)可以是关于n的一次函数、二次函数、指数函数、分式函数,求通项.若f(n)是关于n的一次函数,累加后可转化为等差数列求和;若f(n)是关于n的二次函数,累加后可分组求和;若f(n)是关于n的指数函数,累加后可转化为等比数列求和;若f(n)是关于n的分式函数,累加后可裂项求和。

例3.已知数列中,且,求数列的通项公式.解:由已知得,化简有,由类型(1)有,又得,所以,又,,则二、累乘法1.适用于:----------这是广义的等比数列累乘法是最基本的二个方法之二。

2.若,则两边分别相乘得,∏=+=nk n k f a a 111)(例4已知数列满足,求数列的通项公式。

解:因为,所以,则,故所以数列的通项公式为例5.设是首项为1的正项数列,且(=1,2,3,…),则它的通项公式是=________.解:已知等式可化为:()(n+1),即时,==.评注:本题是关于和的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到与的更为明显的关系式,从而求出.三、待定系数法适用于基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。

史上最全的数列通项公式的求法15种

史上最全的数列通项公式的求法15种

史上最全的数列通项公式的求法15种一、等差数列(Arithmetic sequence)1.基本公式:一个等差数列的通项公式为:an = a1 + (n-1)d其中an代表数列的第n项,a1代表数列的首项,d代表数列的公差。

2.另一种形式:等差数列的通项公式还可以表示为:an = a + (n-1) * (a2-a1)/2其中an代表数列的第n项,a代表数列的首项,a1代表数列的第二项,a2代表数列的前两项。

二、等比数列(Geometric sequence)1.基本公式:一个等比数列的通项公式为:an = a1 * r^(n-1)其中an代表数列的第n项,a1代表数列的首项,r代表数列的公比。

2.另一种形式:等比数列的通项公式也可以表示为:an = a * q^n其中an代表数列的第n项,a代表数列的首项,q代表数列的公比。

三、斐波那契数列(Fibonacci sequence)1.基本公式:一个斐波那契数列的通项公式为:Fn=(φ^n-(1-φ)^n)/√5其中Fn代表数列的第n项,φ代表黄金分割比(约1.618)。

2.矩阵法:斐波那契数列的通项公式还可以通过矩阵的形式表示:Fn=(A^n*F0),其中An是一个特定的矩阵,F0是初始向量。

四、调和数列(Harmonic sequence)1.基本公式:一个调和数列的通项公式为:an = 1/n其中an代表数列的第n项。

五、多项式数列(Polynomial sequence)一个多项式数列的通项公式为:an = an-1 + an-2 + ... + an-m其中an代表数列的第n项,an-1为前一项,an-2为前两项,an-m为前m项。

六、余弦数列(Cosine sequence)1.基本公式:一个余弦数列的通项公式为:an = a + b * cos(cn)其中an代表数列的第n项,a、b为常数,c为常数。

2.幂函数法:余弦数列的通项公式还可以表示为:an = a + b * cos(nθ)其中an代表数列的第n项,a、b为常数,θ为角度。

数列求通项公式方法总结

数列求通项公式方法总结

数列求通项公式方法总结数列是数学中一个重要的概念,是指按照一定的规律依次排列的数的集合。

求数列的通项公式是数学中常见的一个问题,解决这个问题有多种方法,下面将对其中常用的几种方法进行总结。

一、等差数列的通项公式等差数列是指数列中的每个数与它的前一个数之间的差值都是一个常数d。

求等差数列的通项公式有两种常用的方法。

1. 首项和公差法:设等差数列的首项为a1,公差为d,那么第n项的值可以表示为an = a1 + (n-1)d。

2. 前后两项法:设等差数列的第n项为an,第(n-1)项为an-1,那么第n项的值可以表示为an = an-1 + d。

二、等比数列的通项公式等比数列是指数列中的每个数与它的前一个数之间的比值都是一个常数q。

求等比数列的通项公式有两种常用的方法。

1. 首项和公比法:设等比数列的首项为a1,公比为q,那么第n项的值可以表示为an = a1 * q^(n-1)。

2. 前后两项法:设等比数列的第n项为an,第(n-1)项为an-1,那么第n项的值可以表示为an = an-1 * q。

三、斐波那契数列的通项公式斐波那契数列是指数列中的每个数都是它前两个数之和。

求斐波那契数列的通项公式有两种常用的方法。

1. 递归定义法:设斐波那契数列的第n项为an,那么第n项的值可以表示为an = F(n-1) + F(n-2),其中F(n)表示第n个斐波那契数。

2. 矩阵法:可以用矩阵的幂等性来求解斐波那契数列的通项公式。

设矩阵A = [[1, 1], [1, 0]],那么第n项的值可以表示为an = (A^(n-1))[0][0]。

四、其他方法除了上述的常用方法外,还有一些其他方法可以用来求解数列的通项公式。

1. 等差数列的差分法:对等差数列进行差分可以得到一个等差数列,然后求解该等差数列的通项公式,再通过求和得到原等差数列的通项公式。

2. 递推法:通过观察数列的规律,找到数列中相邻项之间的递推关系,然后利用递推关系求解数列的通项公式。

求数列通项公式的十种方法-例题答案详解

求数列通项公式的十种方法-例题答案详解

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =。

例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++,则111213333n n n n n a a +++-=+,故因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯,则21133.322n n n a n =⨯⨯+⨯- 评注:已知aa =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项na .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和;②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;④若f(n)是关于n 的分式函数,累加后可裂项求和。

常见求数列通项的方法总结

常见求数列通项的方法总结

常见求数列通项的方法总结求数列通项是高中数学中的重点内容之一,也是解决数列相关问题的基础。

常见的求数列通项的方法有递推公式法、通项公式法和逆向代入法等,下面将对这些方法进行详细总结。

一、递推公式法递推公式法是通过利用数列中前几项之间的关系,找出递推公式进而求得通项的方法。

递推公式是指数列中的每一项都可以通过前一项得到的关系式。

1.等差数列等差数列是最简单的一类数列,其中每一项与前一项之间的差值都为常数,称为公差。

求数列通项的递推公式为:an = a1 + (n-1)d,其中an为第n项,a1为首项,d为公差。

2.等比数列等比数列是指数列中每一项与前一项之比都相等的数列。

求数列通项的递推公式为:an = a1 * r^(n-1),其中an为第n项,a1为首项,r为公比。

3.斐波那契数列斐波那契数列的定义是:F(1)=1,F(2)=1,F(n)=F(n-1)+F(n-2)。

通过递推公式可以求得通项公式:Fn = (phi^n - (1-phi)^n) / sqrt(5),其中phi=(1+sqrt(5))/2二、通项公式法通项公式法是通过观察数列的规律,找到数列的通项公式进行推导。

通项公式是指可以通过项数n直接求得数列中第n项的公式。

1.平方数列平方数列是指数列中每一项都是前一项的平方。

通项公式为:an = n^2,其中an为第n项。

2.立方数列立方数列是指数列中每一项都是前一项的立方。

通项公式为:an = n^3,其中an为第n项。

3.等差数列的通项公式对于已知的等差数列,可以通过解线性方程组来求得通项公式。

假设已知仅知道前几项的数列为an = a1 + (n-1)d,可以通过解方程组来求得首项a1和公差d。

4.等比数列的通项公式对于已知的等比数列,可以通过解对数方程来求得通项公式。

假设已知仅知道前几项的数列为an = a1 * r^(n-1),可以通过取对数来求得首项a1和公比r。

三、逆向代入法逆向代入法是通过已知数列中的一些特殊项,利用通项公式进行求解其他项的方法。

(完整版)求数列通项公式的十种方法

(完整版)求数列通项公式的十种方法

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11 种方法:累加法、累乘法、待定系数法、阶差法(逐差法) 、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号) 、数学归纳法、不动点法(递推式是一个数列通项的分式表达式) 、特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

、累加法1.适用于:a n 1 a n f (n) ------------------ 这是广义的等差数列累加法是最基本的二个方法之一。

2.若a n 1 a n f (n) (n 2) ,a2 a1 f (1)a3 a2 f (2) LLa n 1 a n f ( n)n两边分别相加得a n 1 a1 f (n )k1例1已知数列{a n }满足a n 1a n 2n 1, a i 1,求数列{a n }的通项公式。

解:由 a n 1 a n 2n 1 得 a n 1 a n 2n 1 则a n (a n a n 1) (a n 1 a n 2) L @3a 2) (a 2 aja 1 [2( n 1) 1] [2( n 2) 1]L (2 21) (2 11) 12[(n 1) (n 2) L 2 1] (n 1) 1 (n 1)n 2 (n 1) 12(n 1)( n 1) 1 2n2所以数列{a n }的通项公式为a n n 。

例2已知数列{a n }满足a n 1 a n 2 3n 1,印3,求数列 佝}的通项公式。

解法一:由a n 1 a n n 2 31 得 a n 1a n n2 31则a n (a * an 1)(a n 1 a n 2) L(a 3 a 2) (a 2 a 1) a 1n (2 3 1 1) (2 3n 21)L (2 32 31 1) (2 31) 312(33n2L 32 ;31)(n 1)3「(1 3n1)2(n 1) 31 3n3 3 n 133 n1所以a n 3n n 1.解法二:时3an 2 3 1两边除以3n1,得鄴J 3 3a n 2 n3 32132)3 32 3a3na n 3a n 1)a n 1(an 1a n 1a n 2) (a n 2(尹z a2 q 色(3231)33n )1)12门22(n 1)313n 3n13n2Lan 13n22答案:n数、分式函数,求通项 an .① 若f(n)是关于n 的一次函数,累加后可转化为等差数列求和 ② 若f(n)是关于n 的二次函数,累加后可分组求和 ; ③ 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和 ④ 若f(n)是关于n 的分式函数,累加后可裂项求和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n2
.(1)求 an1 与 a n 的关系; (2)求通项公式 a n .
解: (1)由 S n 于是 S n 1 所以 an 1
得: S n 1
4 an1 1
1 2 n1
S n (an an1 ) ( an an1
1 2
n2
1 an1 2 n1
得: 2
n 1
1 a1 1 .于是数列 2 n an 是以 2 n 2 n a n 2 2(n 1) 2n an n1 2 S1 4 a1
1 2
r an1 pan ( p 0, an 0)
类型 7
知识在手,世界我有
中山大学家教介绍所
类型 5 递推公式为 an 2 pan1 qan (其中 p,q 均为常数) 。
解 ( 特征根法 ):对于由递推公式 a n 2
a n 中, a1 5 , an1 1 an ( 1 ) n1 ,求 a n 。
pan1 qan , a1 , a 2
2 n1 3 )
(key: a n
知识在手,世界我有
中山大学家教介绍所

类型 4
an1 pan q n (其中 p, 均为常数, pq( p 1)( q 1) 0) ) q 。 (
类型 3
an1 pan q (其中 p,q 均为常数, ( pq( p 1) 0) ) 。
t p(an t ) ,其中 t
解法(待定系数法) :把原递推公式转化为: an 1 转化为等比数列求解。 例 4:已知数列
q ,再利用换元法 1 p
a n 中, a1 1 , an1 2an 3 ,求 a n .
或 解法:这种类型一般是等式两边取对数后转化为 an 1 例 8:已知数列{ a n }中, a1
pan q ,再利用待定系数法求解。
1 2 的通项公式. an (a 0) ,求数列 an a 1 2 1 解:由 a n 1 a n 两边取对数得 lg a n 1 2 lg a n lg , a a 1 1 2 n1 令 bn lg a n ,则 bn 1 2bn lg ,再利用待定系数法解得: an a( ) 。 a a 1, an1
3 3
key : an
7 3 1 n 1 ( ) 。 4 4 3
变式:(2006,福建,文,22) 已知数列
an 满足 a1 1, a2 3, an2 3an1 2an (n N * ). 求数列 an 的通项公式;
an (an an1 ) (an1 an2 ) ... (a2 a1 ) a1
5x 2 0 。 x1 1, x2
2 , 3
2 n a n Ax1n1 Bx2 1 A B ( ) n 1 。又由 a1 a, a 2 b ,于是 3
知识在手,世界我有
中山大学家教介绍所

(n 1)
个 等 式 累 加 之 , 即
(a2 a1 ) (a3 a2 ) (a4 a3 ) (an an1 )
1 1 1 1 1 1 1 (1 ) ( ) ( ) ( ) 2 2 3 3 4 n 1 n 1 1 1 3 1 a1 , an 1 2 2 n 2 n
3
n a n ,求 a n 。 n 1
解:由条件知
a n 1 n ,分别令 n 1,2,3, , (n 1) ,代入上式得 (n 1) 个等式累乘之,即 an n 1
a a a 2 a3 a 4 1 1 2 3 n 1 n n a1 a2 a3 an1 2 3 4 a1 n n
又 a1

2 2 , a n 3 3n
3 , an1
例 3:已知 a1
3n 1 an (n 1) ,求 a n 。 3n 2
知识在手,世界我有
中山大学家教介绍所

解: a n
解法:把原递推公式转化为 an1 例 1:已知数列
a n 满足 a1 1 , an1 求 a n 。 n n
2
解:由条件知: a n 1
1 1 1 1 n n n(n 1) n n 1
, 代 入 上 式 得
分 别 令
n 1,2,3, , (n 1)
(I)解:
2n 1 2n 2 ... 2 1 2n 1(n N * ).
类型 6 递推公式为 S n 与 a n 的关系式。(或 S n f (an ) )
解法:利用
S1 (n 1) an S n S n1 (n 2)

an S n S n1 f (an ) f (an1 )
消去
Sn
(n 2) 或与 S n f ( S n S n1 ) (n 2) 消去 a n 进行求解。
例 7:数列
a n 前 n 项和 S n 4 an
4 an 1 2
n2
1 2
类型 8 a n 1
f ( n) a n g ( n) a n h( n)
解法:这种类型一般是等式两边取倒数后换元转化为 a n 1
pan q 。
例 9:已知数列{an}满足: a n

a n1 , a1 1 ,求数列{an}的通项公式。 3 a n1 1
是以 b1
4 为首项,2 为公比的等比数列,则 bn 4 2 n1 2 n1 ,所以 an 2 n1 3 .
变式:(2006,重庆,文,14) 在数列
an 中,若 a1 1, an1 2an 3(n 1) ,则该数列的通项 an _______________
a1 , a2 , x1 , x2 和 n 1,2 ,代入 a n ( A Bn) x1n 1 ,得到关于 A、B 的方程组) 。
例 6: 数列
a n : 3an2 5an1 2an
2
0(n 0, n N ) , a1 a, a 2 b ,求 an
解(特征根法) :的特征方程是: 3x
变式:(2004,全国 I,理 15. )已知数列{an},满足 a1=1, a n
a1 2a2 3a3 (n 1)an1
(n≥
2),则{an}的通项 a
n
1 ___
n 1 n2
解:由已知,得 an1 当 n 2 时, a n 1
a1 2a2 3a3 (n 1)an1 nan ,用此式减去已知式,得
给出的数列
a n ,方程
x 2 px q 0 ,叫做数列 a n 的特征方程。
若 x1 , x 2 是特征方程的两个根, 当 x1
n x2 时,数列 a n 的通项为 a n Ax1n 1 Bx2 1 ,其中
A,B 由 a1
, a 2 决定(即把

3(n 1) 1 3(n 2) 1 3 2 1 3 1 a1 3(n 1) 2 3(n 2) 2 3 2 2 3 2

3n 4 3n 7 5 2 6 3 3n 1 3n 4 8 5 3n 1 。
) 2 n1 1 1 an n 2 2

.
(2)应用类型 4( a n 1 两边同乘以 2 由 a1
n1
pan q n (其中 p,q 均为常数, ( pq( p 1)(q 1) 0) ) )的方法,上式
an1 2 n an 2
2 为首项,2 为公差的等差数列,所以
例 5:已知数列
6 3 2 1 1 n1 2 n 1 n1 解:在 an 1 an ( ) 两边乘以 2 得: 2 an1 (2 n an ) 1 3 2 3 2 2 n n 令 bn 2 a n ,则 bn 1 bn 1 ,解之得: bn 3 2( ) 3 3 bn 1 n 1 n 所以 a n n 3( ) 2( ) 2 3 2
所以 a n
a1 1
1 n
反思:用累加法求通项公式的关键是将递推公式变形为 an1 an f (n) .
类型 2
a n 1 f (n)a n
解法:把原递推公式转化为
a n 1 f (n) ,利用累乘法(逐商相乘法)求解。 an
例 2:已知数列
a n 满足 a1 2 , an1
a A B A 3b 2a 2 B 3(a b) b A 3 B
练习:已知数列
故 an
2 3b 2a 3(a b)( ) n1 3
a n 中, a1 1 , a2 2 , an2 2 an1 1 an ,求 a n 。
2a n 3 可以转化为 an1 t 2(an t ) 即 an1 2an t t 3 .故递推
bn1 a n1 3 2 .所以 bn bn an 3
解:设递推公式 a n 1
公式为 an1
3 2(an 3) ,令 bn a n 3 ,则 b1 a1 3 4 ,且
n a1 , a2 , x1 , x2 和 n 1,2 ,代入 a n Ax1n 1 Bx2 1 ,得到关于 A、B 的方程组) ;
当 x1
x2 时,数列 a n 的通项为 an ( A Bn) x1n 1 ,其中
相关文档
最新文档