安徽合肥八中2012届高三5月高考适应性考试数学理试题

合集下载

安徽合肥八中届高考适应性考试数学理试题.doc

安徽合肥八中届高考适应性考试数学理试题.doc

安徽省合肥八中 2012年高考适应性考试数学(理)试题考试说明:1.本试卷分第I 卷(选择题)和第II 卷(非选择题),试题分值:150分,考试时间:120分钟.2.所肴答案均要答在答题卷上,否则无效,考试结束后只突答题卷。

第I 卷 选择题(共50分)一、选择题(本题包括10小题,每小题5分,共50分。

每小题只有一个选项符合题意。

请把正确答案填在答题卷的答题栏内。

)1.复数()12aiz a R i=∈-对应的点在复平面的第四象限,且a 的值为A .5B .-5CD .2.已知集合221{|log ,{|,12},2A y y x x B y y x x ==<<==-≤≤则()R C A BA .∅aB .1[0,)2C .[1,4]D .1[,4]23.双曲线线22212x y -=的渐近线与圆22()1x y a ++=相切,则正实数a 的值为A .4BC .2D 4.若()f x 是R 上周期为5的奇函数,当20x -≤≤时,3()2log (1)(xf x x a a =+-+为常数),则(2012)f =A .14-B .14C .—3D .35.由直线14x y y x===与曲线所围成的封闭图形的面积为A .212ln 22- B .172C .142ln 23- D .836.已知{n a }是公差不为0的等差数列,a 1 =1,若a 2,a 5,a 7三项分别加上l 后,按原顺序构成等比数列,则211(1)iii a=-∑=A .5B .1C .-2D .-217.已知向量,a b 满足||1,||2,(2)()6,|2|a b a b a b a b ==+-=--则= A .3B 3C .13D 138.一个空间几何体的三视图如右图所示, 则该几何体的表面积为 A .2+2225+B .6+2225+C .825++B .164245+9.用数字0,1,2,3,4,5组成没有重复数字的六位数,要求它能被5整除,且数字1,2相邻的有 A .36个 B .42个 C .84个 D .96个 10.函数43232()2(,),()043f x x ax x b a b R f x x =+++∈=若仅在处有极值,则a 的取值范围是A .[3,23]-B .(,23][23,)-∞-+∞C .[23,3)-D .(,3)[23,)-∞-+∞第Ⅱ卷(非选择题共100分)二、填空题(本题5小题,每小题5分,共25分。

安徽省皖南八校2012届高三第三次联考数学理(word版).pdf

安徽省皖南八校2012届高三第三次联考数学理(word版).pdf

一、教学目标 1.经历算术平方根概念的形成过程,了解算术平方根的概念. 2.会求某些正数(完全平方数)的算术平方根并会用符号表示. 二、重点和难点 1.重点:算术平方根的概念. 2.难点:算术平方根的概念. 三、自主探究 学校要举行美术作品比赛,小鸥很高兴.他想裁出一块面积为25平方分米的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少分米? (一)说这块正方形画布的边长应取多少分米?你是怎么算出来的? 答:因为52=25,所以这个正方形画布的边长应取5分米。

(二) (自主完成下表) 正方形的面积916361边长这个实例中的问题、填表中的问题实际上是一个问题,什么问题?它们都是已知正方形面积求边长的问题.通过解决这个问题,我们就有了算术平方根的概念. 正数3的平方等于9,我们把正数3叫做9的算术平方根. 正数4的平方等于16,我们把正数4叫做16的算术平方根. 说说6和36这两个数?说说1和1这两个数? 同桌之间互相说一说5和25这两个数.(同桌互相说) 说了这么多,同学们大概已经知道了算术平方根的意思.那么什么是算术平方根呢?还是先在小组里讨论讨论,说说自己的看法. (三)什么是算术平方根呢?如果一个正数的平方等于a,那么这个正数叫做a的算术平方根 请大家把算术平方根概念默读两遍.(生默读) 如果一个正数的平方等于a,那么这个正数叫做a的算术平方根.为了书写方便,我们把a的算术平方根记作(板书:a的算术平方根记作). (指准上图)看到没有?这根钓鱼杆似的符号叫做根号,a叫做被开方数,表示a的算术平方根. 精讲精练 1、 求下列各数的算术平方根: (1); (2)0.0001. (要注意解题格式,解题格式要与课本第40页上的相同) 精练 2、填空: (1)因为_____2=64,所以64的算术平方根是______,即=______; (2)因为_____2=0.25,所以0.25的算术平方根是______,即=______; (3)因为_____2=,所以的算术平方根是______,即=______. 3、求下列各式的值: (1)=______; (2)=______; (3)=______; (4)=______; (5)=______; (6)=______. 4、根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式: =_______, =_______, =_______, =_______, =_______, =_______, =_______, =_______, =_______. (学生记住没有,教师可以利用卡片进行检查,并要求学生课后记熟) 5、辨析题:卓玛认为,因为(-4)2=16,所以16的算术平方根是-4.你认为卓玛的看法对吗?为什么? 五、课堂小结:《6.1平方根》教学案 (第2课时) 课型:新授课 主备:肖小东 审核:七年级数学组 时间:______ 1.通过由正方形面积求边长,让学生经历的估值过程,加深对算术平方根概念的理解,感受无理数,初步了解无限不循环小数的特点. 2.会用计算器求算术平方根. 二、重点和难点1.重点:感受无理数.2.难点:感受无理数. 三、自主探究 1.填空:如果一个正数的平方等于a,那么这个正数叫做a的_______________,记作_______. 2.填空: (1)因为_____2=36,所以36的算术平方根是_______,即=_____; (2)因为(____)2=,所以的算术平方根是_______,即=_____; (3)因为_____2=0.81,所以0.81的算术平方根是_______,即=_____; (4)因为_____2=0.572,所以0.572的算术平方根是_______,即=_____. (二)(看下图) 这个正方形的面积等于4,它的边长等于多少? 谁会用算术平方根来说这个正方形边长和面积的关系? 这个正方形的面积等于1,它的边长等于多少? 用算术平方根来说这个正方形边长和面积的关系? (指准图)这个正方形的边长等于面积1的算术平方根,也就是边长=,等于多少? (看下图)这个正方形的面积等于2,它的边长等于什么? 因为边长等于面积的算术平方根,所以边长等于 (板书:边长=).(上面三个图的位置如下所示) =2,=1,那么等于多少呢?求等于多少,怎么求? 在1和2之间的数有很多,到底哪个数等于呢?我们怎么才能找到这个数呢?我们可以这样来考虑问题,等于的那个数,它的平方等于多少? 第一条线索是那个数在1和2之间,第二条线索是那个数的平方恰好等于2.根据这两条线索,我们来找等于的那个数. 我们在1和2之间找一个数,譬如找1.3,(板书:1.32=)1.3的平方等于多少?(师生共同用计算器计算)1.69不到2,说明1.3比我们要找的那个数小.1.3小了,那我们找1.5,1.5的平方等于多少?(师生共同用计算器计算)2.25超过2,说明1.5比我们要找的那个数大.找1.3小了,找1.5又大了,下面怎么找呢?大家用计算器,算一算,找一找,哪个数的平方恰好等于2? 等于1.41421356点点点,可见是一个小数,这个小数与我们以前学过的小数相比有点不同,有什么不同呢?第一,这个小数是无限小数(板书:无限). 是无限小数,又是不循环小数,所以是一个无限不循环小数. 除了,还有别的无限不循环小数吗?无限不循环小数还有很多很多,、、、都是无限不循环小数(板书:、、、都是无限不循环小数). 那怎么求、、、这些无限不循环小数的值呢?我们可以利用计算器来求. 四、精讲精练 1、 用计算器求下列各式的值: (1)(精确到0.001); (2). (按键时,教师要领着学生做;解题格式要与课本上的相同) 2、填空: (1)面积为9的正方形,边长== ; (2)面积为7的正方形,边长=≈ (利用计算器求值,精确到0.001). 3、用计算器求值: (1)= ;(2)= ;(3)≈ (精确到0.01). 4、选做题: (1)用计算器计算,并将计算结果填入下表: ………25… (2)观察上表,你发现规律了吗?根据你发现的规律,不用计算器,直接写出下列各式的值: = , = , = , = .《6.1平方根》教学案 (第3课时) 课型:新授课 主备:肖小东 审核:七年级数学组 时间:______ 一、教学目标 1、经历平方根概念的形成过程,了解平方根的概念,会求某些正数(完全平方数)的平方根. 2、经历有关平方根结论的归纳过程,知道正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根. 二、重点和难点 1、重点:平方根的概念. 2、难点:归纳有关平方根的结论. 三、自主探究 (一)基本训练,巩固旧知 1、填空:如果一个 的平方等于a,那么这个 叫做a的算术平方根,a的算术平方根记作 . 2、填空: (1)面积为16的正方形,边长== ; (2)面积为15的正方形,边长=≈ (利用计算器求值,精确到0.01). 3、填空: (1)因为1.72=2.89,所以2.89的算术平方根等于 ,即= ; (2)因为1.732=2.9929,所以3的算术平方根约等于 ,即≈ . (二)什么是平方根呢?大家先来思考这么一个问题. (三) 如果一个正数的平方等于9,这个正数是多少? 如果一个数的平方等于9,这个数是多少?和算术平方根的概念类似,(指准32=9)我们把3叫做9的平方根,(指准(-3)2=9)把-3也叫做9的平方根,也就是3和-3是9的平方根。

安徽省“皖南八校”2012届高三第二次联考理科数学(扫描版含答案).pdf

安徽省“皖南八校”2012届高三第二次联考理科数学(扫描版含答案).pdf

课型:新授课 主备:汪海霞 审核:八年级数学组 时间:______ 【学习目标】 了解勾股定理的文化背景,体验勾股定理的探索过程。

了解利用拼图验证勾股定理的方法。

利用勾股定理,已知直角三角形的两边求第三边的长。

【重点难点】 重点:探索和体验勾股定理。

难点:用拼图的方法验证勾股定理。

【导学指导】 毕达哥拉斯是古希腊著名的数学家,相传2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。

是什么呢?我们来研究一下吧。

阅读教材P64-P66内容,思考、讨论、合作交流后完成下列问题。

请同学们观察一下,教材P64图18.1-1中的等腰直角三角形有什么特点?请用语言描述你发现的特点。

等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也满足这种特点?你能解决教材P65的探究吗?由此你得出什么结论? 我们如何证明你得出的结论呢?你看懂我国古人赵爽的证法了吗?动手摆一摆,想一想,画一画,证一证吧。

【课堂练习】 教材P69习题18.1第1题。

求下图字母A,B所代表的正方形的面积。

3.在直角三角形ABC中,∠C=90°,若a=4,c=8,则b=. 【要点归纳】 本节课你学到了什么知识?还存在什么困惑?与同伴交流一下。

【拓展训练】 1.直角三角形的两边长分别是3cm,5cm,试求第三边的长度。

2.你能用下面这个图形证明勾股定理吗?第二课时 勾股定理的应用(1) 课型:新授课 主备:汪海霞 审核:八年级数学组 时间:______ 【学习目标】 能熟练的叙述勾股定理的内容,能用勾股定理进行简单的计算。

运用勾股定理解决生活中的问题。

【重点难点】 重点:运用勾股定理进行简单的计算。

难点:应用勾股定理解决简单的实际问题。

【导学指导】 复习旧知: 什么是勾股定理?它描述了直角三角形中的什么的关系? 求出下列直角三角形的未知边。

在Rt△ABC中,∠C=90°。

2012年安徽高考数学理科试卷 (带详解)

2012年安徽高考数学理科试卷    (带详解)

2012年普通高等学校招生全国统一考试(安徽卷)数学理科一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.复数满足,则为 ( )A. B. C. D.【测量目标】复数代数形式的四则运算.【考查方式】给出代数式,求复数.【难易程度】容易【参考答案】D【试题解析】设,则,所以可得,故.2.下列函数中,不满足等于的是()A. B. C. D.【测量目标】函数相等.【考查方式】给出一系列函数解析式,计算两函数值,得到答案.【难易程度】容易【参考答案】C【试题解析】令,则,其中C不满足,故答案为C.3.如图所示,程序框图(算法流程图)的输出结果是 ( )A.3B.4C.5D.8第3题图【测量目标】循环结构的程序框图.【考查方式】理解程序框图中的计算关系,求值.【难易程度】容易【参考答案】B【试题解析】第一次循环后:;第二次循环后:;第三次循环后:,跳出循环,输出 .4. 公比为2的等比数列{} 的各项都是正数,且=16,则 ( )A.4B.5C.6D.7【测量目标】等比数列的性质,对数的求值.【考查方式】给出等比数列两项乘积,求出等比中项,根据公比求出再求对数的值.【难易程度】中等【参考答案】B【试题解析】设等比数列的公比为,,则,所以,故.5.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )第5题图A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差【测量目标】频率直方图.【考查方式】给出频率直方图,通过图比较两者的中位数,平均数,以及方差和极差.【难易程度】容易【参考答案】C【试题解析】由条形图易知甲的平均数为,中位数为,(步骤1)方差为,极差为;(步骤2)乙的平均数为,中位数为5,(步骤3)方差为,极差为,(步骤4)故,甲乙中位数不相等且.(步骤5)6.设平面与平面相交于直线m,直线a在平面内,直线b在平面内,且,则“”是“”的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【测量目标】充分,必要条件.【参考方式】判断充分必要条件.【难易程度】容易【参考答案】A【试题解析】判断本题条件命题为“”条件命题,命题“”为结论命题,当时,由线面垂直的性质定理可得,所以条件具有充分性;但当时,如果,就得不出,所以条件不具有必要性,故条件是结论的充分不必要条件.7.()的展开式的常数项是 ( )A. B. C. D.【测量目标】二项式定理.【考查方式】整理所给的方程,直接利用二项式定理求展开式常数项.【难易程度】容易【参考答案】D【试题解析】因为,所以要找原二项式展开式中的常数项,(步骤1)只要找展开式中的常数项和含项即可.通项公式(步骤2)8.在平面直角坐标系中,点(0,0),点,将向量绕点按逆时针方向旋转后得向量,则点的坐标是()A. B. C. D.【测量目标】三角函数的定义和求值,两角和的正切.【考查方式】根据题意得到正切值,将向量转动后再利用两角和的正切公式求解.【难易程度】中等【参考答案】A【试题解析】设,因为,所以,(步骤1)可得,(步骤2)验证可知只有当点坐标为时满足条件,(步骤3)故答案为A;法二:估算.设,因为,所以,可得,,所以点在第三象限,排除B,D选项,又,故答案为A.9.过抛物线的焦点的直线交该抛物线于A,B两点,为坐标原点.若,则的面积为()第9题A. B. C. D.【测量目标】直线的方程,直线和抛物线的位置关系.【考查方式】给出抛物线方程求出直线方程,根据直线与抛物线的位置关系求三角形面积.【难易程度】较难【参考答案】C【试题解析】如图,设,由抛物线方程,可得抛物线焦点,(步骤1)抛物线准线方程为,故.(步骤2)可得,,故,直线的斜率为,(步骤3)直线的方程为,(步骤4)联立直线与抛物线方程可得,(步骤5)因为两点横坐标之积为,所以点的横坐标为,(步骤6)可得,,(步骤7)点到直线的距离为,所以.(步骤8)10.6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为 ` ( )A.1或3B.1或4C.2或3D.2或4【测量目标】简单的计数,排列组合的应用.【考查方式】通过实际的问题,利用简单的计数原理和排列组合求值.【难易程度】较难【参考答案】D【试题解析】任意两个同学之间交换纪念品共要交换次,如果都完全交换,每个人都要交换5次,也就是得到5份纪念品,现在6个同学总共交换了13次,少交换了2次,这2次如果不涉及同一个人,则收到4份纪念品的同学人数有4人;如果涉及同一个人,则收到4份纪念品的同学人数有2人,答案为D.2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)第Ⅱ卷(非选择题共100分)请用0.5毫米海瑟墨水签字笔在答题卡上作答,在试卷上答题无效.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置.11.若满足约束条件则的取值范围是______.第11 题图【测量目标】二元线性规划求目标函数的范围.【考查方式】直接给出约束条件,画出可行域,求目标函数的的取值范围.【难易程度】容易【参考答案】【试题解析】法一:画出可行域是如图所示的的边界及内部,令.易知当直线经过点时,直线在轴上截距最大,目标函数取得最小值,即;当直线经过点时,直线在轴上截距最小,目标函数取得最大值,即,所以.法二:界点定值,同法一先画出可行域,令,把边界点代入目标函数可得,,比较可得.12.某几何体的三视图如图所示,该几何体的表面积是______.第12题图【测量目标】三视图求几何体的表面积.【考查方式】观察三视图,通过空间想象得出几何体,求几何体表面积.【难易程度】中等【参考答案】【试题解析】如图,根据三视图还原的实物图为底面是直角梯形的直四棱柱,其表面积为.第12题图13.在极坐标系中,圆的圆心到直线的距离是____________.【测量目标】点到直线的距离,坐标系和参数方程.【考查方式】将参数方程化为一般方程,利用点到直线的距离公式求值.【难易程度】容易【参考答案】【试题解析】圆,即化为直角坐标为,(步骤1)直线的方程也就是直线,即为,(步骤2)圆心到直线的距离为.(步骤3)14.若平面向量,满足,则的最小值是___________.【测量目标】绝对值,均值不等式,向量的异向性.【考查方式】给出绝对值不等式,利用均值不等式求两向量的最值.【难易程度】中等【参考答案】【试题解析】由,有,(步骤1),可得,所以,(步骤2)故当且方向相反时,的最小值为.(步骤3)15.设的内角所对边的长分别为,则下列命题正确的是_____________(写出所有正确命题的编号).①若,则;②若,则;③若,则;④若,则;⑤若,则.【测量目标】正余弦定理判断三角形角的大小,均值不等式,命题之间的关系.【考查方式】根据三角形的边角关系,通过均值不等式以及正余弦定理判断角的大小从而确定命题间的关系.【难易程度】较难【参考答案】①②③【试题解析】对于①,由得,(步骤1)则,因为,所以,故①正确;(步骤2)对于②,由得,即,则,(步骤3)因为,所以,故②正确;(步骤4)对于对于③,可变为,可得,(步骤4)所以,所以,故,③正确;(步骤5)对于④,可变为,可得,所以,(步骤6)因为,所以,④错误;(步骤7)对于⑤,可变为,即,(步骤8)所以,所以,所以,故⑤错误. (步骤9)答案为①②③三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.(本小题满分12分)设函数.(I)求函数的最小正周期;(II)设函数对任意,有,且当时,,求函数在上的解析式.【测量目标】两角和与差的三角函数公式,二倍角公式,三角函数的性质,求分段函数解析式.【考查方式】给出函数解析式,根据三角函数的性质得到周期,利用两角和与差的三角公式以及二倍角公式求分段函数解析式.【难易程度】中等【试题解析】.(步骤1)(1)函数的最小正周期.(步骤2)(2)当时,,(步骤3)当时,,当时, .(步骤4)得:函数在上的解析式为(步骤5)17.(本小题满分12分)某单位招聘面试,每次从试题库随机调用一道试题,若调用的是类型试题,则使用后该试题回库,并增补一道类试题和一道类型试题入库,此次调题工作结束;若调用的是类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有道试题,其中有道类型试题和道类型试题,以表示两次调题工作完成后,试题库中类试题的数量.(Ⅰ)求的概率;(Ⅱ)设,求的分布列和均值(数学期望).【测量目标】基本事件概率,条件概率,离散型随机变量及其分布列均值.【考查方式】通过实际问题考查基本事件的的概率以及分布列和数学期望.【难易程度】中等【试题解析】(I)表示两次调题均为类型试题,概率为.(步骤1)(Ⅱ)时,每次调用的是类型试题的概率为,随机变量可取.,,.(步骤2).(步骤4)答:(Ⅰ)的概率为;(Ⅱ)的均值为.(步骤5)18.(本小题满分12分)平面图形,其中是矩形,,,.现将该平面图形分别沿和折叠,使与所在平面都与平面垂直,再分别连接,得到如图空间图形,对此空间图形解答下列问题.第18题图(1)证明:;(2)求的长;(3)求二面角的余弦值.【测量目标】空间中线线、线面、面面的位置关系,空间中的距离以及二面角.【考查方式】线线,线面,面面的垂直的相互转化,证明线线垂直;根据证明得到三角关系求距离;分析所求二面角所形成的三角形,解三角形,求角.【难易程度】中等【试题解析】(1)取的中点为点,连接,则,∴,∵平面平面,∴平面,(步骤1)同理:平面,得,∴共面,(步骤2)又∵,∴平面,∴.(步骤3)(2)延长到,使,得,(步骤4),平面平面∴平面,∴平面,(步骤5).(3),∴是二面角的平面角.(步骤6)在中,,在中,,∴二面角的余弦值为.(步骤7)19.(本小题满分13分)设.(I)求在上的最小值;(II)设曲线在点的切线方程为,求的值.【测量目标】函数、导数的基础知识,运用导数研究函数性质,导数的几何性质.【考查方式】给出含参的函数解析式,利用导数对参数进行分类讨论求函数的最值;根据导数的几何性质,得到切点方程联立该点函数方程求值.【难易程度】中等【试题解析】(I)设,则.(步骤1)①当时,在上是增函数,得:当时,的最小值为.(步骤2)②当时,,当且仅当时,的最小值为.(步骤3)(II),(步骤4)由题意得:20. (本小题满分13分)如图,分别是椭圆的左,右焦点,过点作轴的垂线交椭圆的上半部分于点,过点作直线的垂线交直线于点;(I)若点的坐标为,求椭圆的方程;(II)证明:直线与椭圆只有一个交点.第20 题图【测量目标】椭圆方程和椭圆几何性质,直线与椭圆的位置关系. 【考查方式】通过图形以及已知条件求椭圆方程;根据直线与圆的位置关系进行证明.【难易程度】中等【试题解析】(I)点代入,得:.(步骤1).①又. ②.③(步骤2)由①②③得:,即椭圆的方程为.(步骤3)(II)设,则.(步骤4)得:,(步骤5).(步骤6)过点与椭圆相切的直线斜率.(步骤7)得:直线与椭圆只有一个交点.21.(本小题满分13分)数列满足:.(I)证明:数列是单调递减数列的充分必要条件是;(II)求的取值范围,使数列是单调递增数列.【测量目标】数列概念及其性质,不等式及其性质,充要条件.【考查方式】给出数列关系式,分步骤证明充分,必要条件;分类讨论,归纳求参数的取值范围使得数列单调递增.【难易程度】较难【试题解析】(I)必要条件当时,数列是单调递减数列;(步骤1)充分条件数列是单调递减数列.(步骤2)得:数列是单调递减数列的充分必要条件是.(II)由(I)得:.①当时,,不合题意;(步骤3)②当时,,,(步骤4).(步骤5)当时,与同号,由,.(步骤6)当时,存在,使与异号.(步骤7)与数列是单调递减数列矛盾得:当时,数列是单调递增数列.(步骤8)。

安徽省名校2012届高三第五次联考试卷(数学理)word版

安徽省名校2012届高三第五次联考试卷(数学理)word版

2012届安徽名校高三第五次联考卷数学(理)试题本试卷分第I卷(选择题)和第II卷(非选择题)两部分.全卷满分150分,考试时间:120分钟。

所有答案均要答在答题卷上,否则无效。

考试结束后只交答题卷.第I卷(选择题共50分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的明个选项中,只有一项是符合题目要求的.)1. 设,其中i为虚数单位,,则以a=( )A. 1-iB. 1 +iC. 2-2iD. 2 + 2i2. 双曲线的实轴长是()A. 2B.C. 4D.3. 己知集合I、A、B的关系如图,则I、A、B的关系为()A.B.C.D.4. 已知函数,则的单调递增区间是()A. B.C. D.5. 若正项数列满足,如,则=( )A. B. 1 C. D. 26. 曲线与直线的交点个数逛()A. 0B. 1C. 2D. 37. 右图是某四棱锥的三视图,则该几何体的表面积等于()A.B.C.D.8. 在平面直角坐标系xOy上的区域D由不等式给定。

则区域D的面积等于()A. 2B. 4C.D. 89. 的展开式中合并同类项后共有()A. 28项B. 35项C. 42项D. 56项10. 已知集合J= {直线},集合万={平面},集合,若,则下列命题中正确的是()A. B. C. D.第II卷(非选择题共100分)二、填空题(本大题共5小题,每小题5分,共25分,请把正确答案写在答题卷上。

)11. 已知随机变量服从正态分布,则=________12. 极坐标系下,直线与圆的公共点个数是________.13. 某程序框图如图所示,该程序运行后输出的k的值是________.14设F1、F2分别为双曲线C:(a,b>0)的左右焦点,A为双曲线的左顶点,以F1F2为直径的圆交双曲线某条渐近线于M、N两点,且满足,则该双曲线的离心率为________.15. 实数x,y满足,且则的取值范围是________三、解答题(共大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤)16 已知I,且满足。

2012届合肥八中高三第01次教学质量检测适应性考试参考答案(1)

2012届合肥八中高三第01次教学质量检测适应性考试参考答案(1)

合肥八中2011——2012学年度一模适应性考试参考答案一、1.D(应该是“中国人对于‘动态’的注意与中国人的有机的宇宙观互为表里”,不是“中国人的有机的宇宙观与中国人对于“动态”的注意构成表里”。

)2.B(强加因果。

)3.D (A“中国人的思考方式也许有下列几项特色”,文中是“也许”不是“中国人的思考方式有四项特色”。

B表述与原文的表述不符,原文是“印度佛教传入中国,在中国经过华化终于成为发扬光大的宗派。

不是理论严谨的唯识宗,而是直指心境的禅宗与诚心念佛的净土宗。

”C“中国人的文化与人生态度”文中没有“文化”。

)二、4.C(宁:省视,探亲)5.C(③表现王瑜性格凶残的一面;⑥是赵徽的家人所为)6.D(“但终因寡不敌众,被盗贼所杀”与原文内容不符。

原文内容是“王瑜当晚逃进山谷,削发为僧,后被樵夫所获,送往岐州,被侯益所杀”)7.(1)高祖看到奏章感叹说:“像这样清廉正直谨慎的人,确实是良臣啊!”(“览”“如此”“诚”各1分,判断句1分,语句通顺1分)(2)出发的日期确定后,赵徽暗中召集党羽,在郊外等候。

(“期”“潜”“伺”各1分,“伺于郊外”状语后置,1分,语句通顺1分)8.和风,啼鸟,河畔草,树头花。

(2分,答出两点得1分)乐景写哀(反衬)(2分)9.贬谪江州的伤感消沉(2分)以拟人手法虚写(想象)春天到了自己家乡,到处找我不见,而我只有托春天向家人传达沦落江州的愁苦;含蓄蕴藉。

(2分,手法1分,效果1分)10.(1)见不贤而内自省也(2)君子博学而日参省乎己(3) 虽九死其犹未悔(4)海不厌深(5)内无应门五尺之僮(6)孤舟一系故园心(7)别有幽愁暗恨生(8)气吞万里如虎三、11.(4分)文中第三段说“如果我们把什么落在家里了,那一定是我们的灵魂”,由此可知,“什么”应指“我们的灵魂”。

(答出“灵魂”2分,答出原因2分)12.(1)(4分)因眷恋和牵挂(家人、朋友),心中感到孤寂而不踏实。

(或:尽管外面的世界风景诱人,但因眷恋和牵挂(家人、朋友),心中感到有一种怅然若失的虚浮,百无聊赖的空茫。

2012年安徽省高考数学试卷(理科)答案与解析

2012年安徽省高考数学试卷(理科)答案与解析

2012年安徽省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)(2012•安徽)复数数z满足(z﹣i)(2﹣i)=5.则z=()A.﹣2﹣2i B.﹣2+2i C.2﹣2i D.2+2i2.(5分)(2012•安徽)下列函数中,不满足f(2x)=2f(x)的是()A.f(x)=|x| B.f(x)=x﹣|x| C.f(x)=x+1 D.f(x)=﹣x 3.(5分)(2012•安徽)如图所示,程序框图(算法流程图)的输出结果是()A.3B.4C.5D.84.(5分)(2012•安徽)公比为的等比数列{a n}的各项都是正数,且a3a11=16,则log2a16=()A.4B.5C.6D.75.(5分)(2012•安徽)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差6.(5分)(2012•安徽)设平面α与平面β相交于直线m,直线a在平面α内.直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)(2012•安徽)(x2+2)()5的展开式的常数项是()A.﹣3 B.﹣2 C.2D.38.(5分)(2012•安徽)在平面直角坐标系中,点0(0,0),P(6,8),将向量绕点O 逆时针方向旋转后得向量,则点Q的坐标是()A.(﹣7,﹣)B.(﹣7,)C.(﹣4,﹣2)D.(﹣4,2)9.(5分)(2012•安徽)过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,则△AOB的面积为()A.B.C.D.210.(5分)(2012•安徽)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为()A.1或3 B.1或4 C.2或3 D.2或4二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置.11.(5分)(2012•安徽)若x,y满足约束条件,则x﹣y的取值范围是.12.(5分)(2012•安徽)某几何体的三视图如图所示,该几何体的表面积是.13.(5分)(2012•安徽)在极坐标系中,圆ρ=4sinθ的圆心到直线θ=(ρ∈R)的距离是.14.(5分)(2012•安徽)若平面向量满足|2|≤3,则的最小值是.15.(5分)(2012•安徽)设△ABC的内角A,B,C所对边的长分别为a,b,c,则下列命题正确的是(写出所有正确命题的编号).①若ab>c2,则C<②若a+b>2c,则C<③若a3+b3=c3,则C<④若(a+b)c<2ab,则C>⑤若(a2+b2)c2<2a2b2,则C>.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.(12分)(2012•安徽)设函数f(x)=cos(2x+)+sin2x(Ⅰ)求f(x)的最小正周期;(Ⅱ)设函数g(x)对任意x∈R,有g(x+)=g(x),且当x∈[0,]时,g(x)=﹣f(x),求g(x)在区间[﹣π,0]上的解析式.17.(12分)(2012•安徽)某单位招聘面试,每次从试题库随机调用一道试题,若调用的是A类型试题,则使用后该试题回库,并增补一道A类试题和一道B类型试题入库,此次调题工作结束;若调用的是B类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有n+m道试题,其中有n道A类型试题和m道B类型试题,以X表示两次调题工作完成后,试题库中A类试题的数量.(Ⅰ)求X=n+2的概率;(Ⅱ)设m=n,求X的分布列和均值(数学期望)18.(12分)(2012•安徽)平面图形ABB1A1C1C如图4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC=,A1B1=A1C1=.现将该平面图形分别沿BC和B1C1折叠,使△ABC 与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A2A,A2B,A2C,得到如图2所示的空间图形,对此空间图形解答下列问题.(Ⅰ)证明:AA1⊥BC;(Ⅱ)求AA1的长;(Ⅲ)求二面角A﹣BC﹣A1的余弦值.19.(13分)(2012•安徽)设函数f(x)=ae x++b(a>0).(Ⅰ)求f(x)在[0,+∞)内的最小值;(Ⅱ)设曲线y=f(x)在点(2,f(2))处的切线方程为y=,求a,b的值.20.(13分)(2012•安徽)如图,点F1(﹣c,0),F2(c,0)分别是椭圆C:(a >b>0)的左右焦点,经过F1做x轴的垂线交椭圆C的上半部分于点P,过点F2作直线PF2垂线交直线于点Q.(Ⅰ)如果点Q的坐标是(4,4),求此时椭圆C的方程;(Ⅱ)证明:直线PQ与椭圆C只有一个交点.21.(13分)(2012•安徽)数列{x n}满足x1=0,x n+1=﹣x2n+x n+c(n∈N*).(Ⅰ)证明:{x n}是递减数列的充分必要条件是c<0;(Ⅱ)求c的取值范围,使{x n}是递增数列.2012年安徽省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)(2012•安徽)复数数z满足(z﹣i)(2﹣i)=5.则z=()A.﹣2﹣2i B.﹣2+2i C.2﹣2i D.2+2i考点:复数代数形式的混合运算.专题:计算题.分析:复数的乘法转化为除法,化简复数方程,利用复数的分子分母同乘分母的共轭复数,然后整理即可.解答:解:(z﹣i)(2﹣i)=5⇒z﹣i=⇒z=+i=+i=+i=2+2i.故选D.点评:本题考查复数的代数形式的混合运算,考查计算能力.2.(5分)(2012•安徽)下列函数中,不满足f(2x)=2f(x)的是()A.f(x)=|x| B.f(x)=x﹣|x| C.f(x)=x+1 D.f(x)=﹣x考点:进行简单的演绎推理.专题:计算题.分析:分别根据函数解析式求出f(2x)与2f(x),看其是否相等,从而可得到所求.解答:解:f(x)=|x|,f(2x)=|2x|=2|x|=2f(x),故满足条件;f(x)=x﹣|x|,f(2x)=2x﹣|2x|=2(x﹣|x|)=2f(x),故满足条件;f(x)=x+1,f(2x)=2x+1≠2(x+1)=2f(x),故不满足条件;f(x)=﹣x,f(2x)=﹣2x=2(﹣x)=2f(x),故满足条件;故选C点评:本题主要考查了进行简单的演绎推理,同时考查了运算求解的能力,属于基础题.3.(5分)(2012•安徽)如图所示,程序框图(算法流程图)的输出结果是()A.3B.4C.5D.8考点:循环结构.专题:计算题.分析:列出循环中x,y的对应关系,不满足判断框结束循环,推出结果.解答:解:由题意循环中x,y的对应关系如图:x 1 2 4 8y 1 2 3 4当x=8时不满足循环条件,退出循环,输出y=4.故选B.点评:本题考查循环结构框图的应用,注意判断框的条件的应用,考查计算能力.4.(5分)(2012•安徽)公比为的等比数列{a n}的各项都是正数,且a3a11=16,则log2a16=()A.4B.5C.6D.7考点:等比数列的通项公式;对数的运算性质.专题:等差数列与等比数列.分析:由公比为的等比数列{an}的各项都是正数,且a3a11=16,知,故a7=4,=32,由此能求出log2a16.解答:解:∵公比为的等比数列{a n}的各项都是正数,且a3a11=16,∴,∴a7=4,∴=32,∴log2a16=log232=5.故选B.点评:本题考查等比数列的通项公式的应用,是基础题.解题时要认真审题,仔细解答.5.(5分)(2012•安徽)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差考点:极差、方差与标准差;分布的意义和作用;众数、中位数、平均数.专题:计算题.分析:根据平均数公式分别求出甲与乙的平均数,然后利用方差公式求出甲与乙的方差,从而可得到结论.解答:解:=×(4+5+6+7+8)=6,=×(5+5+5+6+9)=6,甲的成绩的方差为×(22×2+12×2)=2,以的成绩的方差为×(12×3+32×1)=2.4.故选:C.点评:本题主要考查了平均数及其方差公式,同时考查了计算能力,属于基础题.6.(5分)(2012•安徽)设平面α与平面β相交于直线m,直线a在平面α内.直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断;平面与平面垂直的性质.专题:简易逻辑;立体几何.分析:通过两个条件之间的推导,利用平面与平面垂直的性质以及结合图形,判断充要条件即可.解答:解:由题意可知α⊥β,b⊥m⇒a⊥b,另一方面,如果a∥m,a⊥b,如图,显然平面α与平面β不垂直.所以设平面α与平面β相交于直线m,直线a在平面α内.直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的充分不必要条件.故选A.点评:本题考查必要条件、充分条件与充要条件的判断,平面与平面垂直的性质,考查空间想象能力与作图能力.7.(5分)(2012•安徽)(x2+2)()5的展开式的常数项是()A.﹣3 B.﹣2 C.2D.3考点:二项式定理的应用.专题:计算题.分析:(x2+2)()5的展开式的常数项是第一个因式取x2,第二个因式取;第一个因式取2,第二个因式取(﹣1)5,故可得结论.解答:解:第一个因式取x2,第二个因式取,可得=5;第一个因式取2,第二个因式取(﹣1)5,可得2×(﹣1)5=﹣2∴(x2+2)()5的展开式的常数项是5+(﹣2)=3故选D.点评:本题考查二项式定理的运用,解题的关键是确定展开式的常数项得到的途径.8.(5分)(2012•安徽)在平面直角坐标系中,点0(0,0),P(6,8),将向量绕点O 逆时针方向旋转后得向量,则点Q的坐标是()A.(﹣7,﹣)B.(﹣7,)C.(﹣4,﹣2)D.(﹣4,2)考点:平面向量的坐标运算.专题:计算题.分析:由点0(0,0),P(6,8),知,设,则cosθ=,sinθ=,由向量绕点逆时针方向旋转后得向量,由此能求出结果.解答:解:∵点0(0,0),P(6,8),∴,设,则cosθ=,sinθ=,∵向量绕点逆时针方向旋转后得向量,设Q(x,y),则x=10cos(θ+)=10(cosθcos﹣sinθsin)=﹣7,y=10sin(θ+)=10(sinθcos+cosθsin)=﹣,∴=(﹣7,﹣).故选A.点评:本题考查平面向量的坐标运算,是基础题.解题时要认真审题,仔细解答.9.(5分)(2012•安徽)过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,则△AOB的面积为()A.B.C.D.2考点:直线与圆锥曲线的关系;抛物线的简单性质.专题:压轴题.分析:设直线AB的倾斜角为θ,利用|AF|=3,可得点A到准线l:x=﹣1的距离为3,从而cosθ=,进而可求|BF|,|AB|,由此可求AOB的面积.解答:解:设直线AB的倾斜角为θ(0<θ<π)及|BF|=m,∵|AF|=3,∴点A到准线l:x=﹣1的距离为3∴2+3cosθ=3∴cosθ=∵m=2+mcos(π﹣θ)∴∴△AOB的面积为S==故选C.点评:本题考查抛物线的定义,考查三角形的面积的计算,确定抛物线的弦长是解题的关键.10.(5分)(2012•安徽)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为()A.1或3 B.1或4 C.2或3 D.2或4考点:进行简单的合情推理;排列、组合及简单计数问题.专题:计算题;压轴题.分析:由题意,,再分类讨论:仅有甲与乙,丙没交换纪念品;仅有甲与乙,丙与丁没交换纪念品,即可得出收到4份纪念品的同学人数.解答:解:由题意,①设仅有甲与乙,丙没交换纪念品,则收到4份纪念品的同学人数为2人②设仅有甲与乙,丙与丁没交换纪念品,则收到4份纪念品的同学人数为4人综上所述,收到4份纪念品的同学人数为2或4人故选D.点评:本题考查组合知识,考查分类讨论的数学思想,属于基础题.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置.11.(5分)(2012•安徽)若x,y满足约束条件,则x﹣y的取值范围是[﹣3,0].考点:简单线性规划.专题:计算题.分析:画出约束条件表示的可行域,推出三角形的三个点的坐标,直接求出z=x﹣y的范围.解答:解:约束条件,表示的可行域如图,由解得A(0,3)、由解得B(0,)、由解得C(1,1);结合函数的图形可知,当直线y=x﹣z平移到A时,截距最大,z最小;当直线y=x ﹣z平移到B时,截距最小,z最大所以z=x﹣y在A点取得最小值,在C点取得最大值,最大值是1﹣1=0,最小值是0﹣3=﹣3;所以z=x﹣y的范围是[﹣3,0].故答案为:[﹣3,0]点评:本题考查简单的线性规划的应用,正确画出约束条件的可行域是解题的关键,常考题型.12.(5分)(2012•安徽)某几何体的三视图如图所示,该几何体的表面积是92.考点:由三视图求面积、体积.专题:计算题.分析:判断几何体的形状,利用三视图的数据,求出几何体的表面积即可.解答:解:几何体是底面为直角梯形高为4的直四棱柱,S上=S下=;S侧=.几何体的表面积为S==92.故答案为:92.点评:本题考查三视图求解几何体的表面积的方法,正确判断几何体的形状是解题的关键.13.(5分)(2012•安徽)在极坐标系中,圆ρ=4sinθ的圆心到直线θ=(ρ∈R)的距离是.考点:简单曲线的极坐标方程;点到直线的距离公式.专题:计算题.分析:将极坐标方程化为直角坐标方程,再用点到直线的距离公式,即可得到结论.解答:解:圆ρ=4sinθ化为直角坐标方程为x2+(y﹣2)2=4直线θ=化为直角坐标方程为x﹣y=0∴圆心到直线的距离是故答案为:点评:本题考查极坐标方程与直角坐标方程的互化,考查点到直线的距离公式,属于基础题.14.(5分)(2012•安徽)若平面向量满足|2|≤3,则的最小值是﹣.考点:平面向量数量积的坐标表示、模、夹角;平面向量数量积的运算.专题:计算题;压轴题.分析:由平面向量满足|2|≤3,知,故≥=4||||≥﹣4,由此能求出的最小值.解答:解:∵平面向量满足|2|≤3,∴,∴≥=4||||≥﹣4,∴,∴,故的最小值是﹣.故答案为:﹣.点评:本题考查平面向量数量积的求法,是基础题.解题时要认真审题,仔细解答.15.(5分)(2012•安徽)设△ABC的内角A,B,C所对边的长分别为a,b,c,则下列命题正确的是①②③(写出所有正确命题的编号).①若ab>c2,则C<②若a+b>2c,则C<③若a3+b3=c3,则C<④若(a+b)c<2ab,则C>⑤若(a2+b2)c2<2a2b2,则C>.考点:命题的真假判断与应用;余弦定理的应用.专题:证明题;压轴题.分析:①利用余弦定理,将c2放大为ab,再结合均值定理即可证明cosC>,从而证明C<;②利用余弦定理,将c2放大为()2,再结合均值定理即可证明cosC>,从而证明C<;③利用反证法,假设C≥时,推出与题设矛盾,即可证明此命题正确;④⑤只需举反例即可证明其为假命题,可举符合条件的等边三角形解答:解:①ab>c2⇒cosC=>=⇒C<,故①正确;②a+b>2c⇒cosC=>=≥=⇒C<,故②正确;③当C≥时,c2≥a2+b2⇒c3≥ca2+cb2>a3+b3与a3+b3=c3矛盾,故③正确;④举出反例:取a=b=c=2,满足(a+b)c≤2ab得:C=<,故④错误;⑤举出反例:取a=b=c=,满足(a2+b2)c2≤2a2b2,此时有C=,故⑤错误故答案为①②③点评:本题主要考查了解三角形的知识,放缩法证明不等式的技巧,反证法和举反例法证明不等式,有一定的难度,属中档题三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.(12分)(2012•安徽)设函数f(x)=cos(2x+)+sin2x(Ⅰ)求f(x)的最小正周期;(Ⅱ)设函数g(x)对任意x∈R,有g(x+)=g(x),且当x∈[0,]时,g(x)=﹣f(x),求g(x)在区间[﹣π,0]上的解析式.考点:三角函数中的恒等变换应用;三角函数的周期性及其求法.专题:计算题.分析:利用两角和的余弦函数以及二倍角公式化简函数的表达式,(1)直接利用周期公式求解即可.(2)求出函数g(x)的周期,利用x∈[0,]时,g(x)=﹣f(x),对x分类求出函数的解析式即可.解答:解:函数f(x)=cos(2x+)+sin2x=cos2x﹣sin2x+(1﹣cos2x)=﹣sin2x.(1)函数的最小正周期为T==π.(2)当x∈[0,]时g(x)==sin2x.当x∈[﹣]时,x+∈[0,],g(x)=g(x+)=sin2(x+)=﹣sin2x.当x∈[)时,x+π∈[0,],g(x)=g(x+π)=sin2(x+π)=sin2x.g(x)在区间[﹣π,0]上的解析式:g(x)=.点评:本题考查三角函数中的恒等变换应用,三角函数的周期性及其求法,三角函数的化简,考查计算能力.17.(12分)(2012•安徽)某单位招聘面试,每次从试题库随机调用一道试题,若调用的是A类型试题,则使用后该试题回库,并增补一道A类试题和一道B类型试题入库,此次调题工作结束;若调用的是B类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有n+m道试题,其中有n道A类型试题和m道B类型试题,以X表示两次调题工作完成后,试题库中A类试题的数量.(Ⅰ)求X=n+2的概率;(Ⅱ)设m=n,求X的分布列和均值(数学期望)考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:计算题.分析:(Ⅰ)根据题意,可知X=n+2表示两次调题均为A类试题,故可求概率;(Ⅱ)设m=n,则每次调用的是A类型试题的概率为,随机变量X可取n,n+1,n+2,求出相应的概率,即可得到X的分布列和均值.解答:解:(Ⅰ)X=n+2表示两次调题均为A类试题,其概率为=(Ⅱ)设m=n,则每次调用的是A类型试题的概率为随机变量X可取n,n+1,n+2P(X=n)=(1﹣p)2=;P(X=n+1)=p(1﹣p(1﹣p)p=,P(X=n+2)=p2=分布列如下X n n+1 n+2P∴E(X)=n×+(n+1)×+(n+2)×=n+1点评:本题考查概率知识,考查离散型随机变量的分布列与均值,解题的关键是确定变量的取值,理解其含义.18.(12分)(2012•安徽)平面图形ABB1A1C1C如图4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC=,A1B1=A1C1=.现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A2A,A2B,A2C,得到如图2所示的空间图形,对此空间图形解答下列问题.(Ⅰ)证明:AA1⊥BC;(Ⅱ)求AA1的长;(Ⅲ)求二面角A﹣BC﹣A1的余弦值.考点:平面与平面垂直的性质;直线与平面垂直的性质;二面角的平面角及求法.专题:综合题.分析:(Ⅰ)证明AA1⊥BC,只需证明BC⊥平面OO1A1A,取BC,B1C1的中点为点O,O1,连接AO,OO1,A1O,A1O1,即可证得;(Ⅱ)延长A1O1到D,使O1D=OA,则可得AD∥OO1,AD=OO1,可证OO1⊥面A1B1C1,从而AD⊥面A1B1C1,即可求AA1的长;(Ⅲ)证明∠AOA1是二面角A﹣BC﹣A1的平面角,在△OAA1中,利用余弦定理,可求二面角A﹣BC﹣A1的余弦值.解答:(Ⅰ)证明:取BC,B1C1的中点为点O,O1,连接AO,OO1,A1O,A1O1,∵AB=AC,∴AO⊥BC∵平面ABC⊥平面BB1C1C,平面ABC∩平面BB1C1C=BC∴AO⊥平面BB1C1C同理A1O1⊥平面BB1C1C,∴AO∥A1O1,∴A、O、A1、O1共面∵OO1⊥BC,AO⊥BC,OO1∩AO=O,∴BC⊥平面OO1A1A∵AA1⊂平面OO1A1A,∴AA1⊥BC;(Ⅱ)解:延长A1O1到D,使O1D=OA,则∵O1D∥OA,∴AD∥OO1,AD=OO1,∵OO1⊥BC,平面A1B1C1⊥平面BB1C1C,平面A1B1C1∩平面BB1C1C=B1C1,∴OO1⊥面A1B1C1,∵AD∥OO1,∴AD⊥面A1B1C1,∵AD=BB1=4,A1D=A1O1+O1D=2+1=3∴AA1==5;(Ⅲ)解:∵AO⊥BC,A1O⊥BC,∴∠AOA1是二面角A﹣BC﹣A1的平面角在直角△OO1A1中,A1O=在△OAA1中,cos∠AOA1=﹣∴二面角A﹣BC﹣A1的余弦值为﹣.点评:本题考查线线垂直,考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定,正确作出面面角.19.(13分)(2012•安徽)设函数f(x)=ae x++b(a>0).(Ⅰ)求f(x)在[0,+∞)内的最小值;(Ⅱ)设曲线y=f(x)在点(2,f(2))处的切线方程为y=,求a,b的值.考点:利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.专题:综合题.分析:(Ⅰ)设t=e x(t≥1),则,求出导函数,再进行分类讨论:①当a≥1时,y′>0,在t≥1上是增函数;②当0<a<1时,利用基本不等式,当且仅当at=1(x=﹣lna)时,f(x)取得最小值;(Ⅱ)求导函数,利用曲线y=f(x)在点(2,f(2))处的切线方程为y=,建立方程组,即可求得a,b的值.解答:解:(Ⅰ)设t=e x(t≥1),则∴①当a≥1时,y′>0,∴在t≥1上是增函数,∴当t=1(x=0)时,f(x)的最小值为②当0<a<1时,,当且仅当at=1(x=﹣lna)时,f(x)的最小值为b+2;(Ⅱ)求导函数,可得)∵曲线y=f(x)在点(2,f(2))处的切线方程为y=,∴,即,解得.点评:本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性与最值,属于中档题.20.(13分)(2012•安徽)如图,点F1(﹣c,0),F2(c,0)分别是椭圆C:(a >b>0)的左右焦点,经过F1做x轴的垂线交椭圆C的上半部分于点P,过点F2作直线PF2垂线交直线于点Q.(Ⅰ)如果点Q的坐标是(4,4),求此时椭圆C的方程;(Ⅱ)证明:直线PQ与椭圆C只有一个交点.考点:直线与圆锥曲线的关系;椭圆的简单性质.专题:综合题;压轴题.分析:(Ⅰ)将点P(﹣c,y1)(y1>0)代入,可求得P,根据点Q的坐标是(4,4),PF1⊥QF2,即可求得椭圆C的方程;(Ⅱ)利用PF1⊥QF2,求得,从而可求,又,求导函数,可得x=﹣c时,y′==,故可知直线PQ与椭圆C只有一个交点.解答:(Ⅰ)解:将点P(﹣c,y1)(y1>0)代入得∴P∵点Q的坐标是(4,4),PF2⊥QF2∴∵∴a=2,c=1,b=∴椭圆C的方程为;(Ⅱ)证明:设Q,∵PF2⊥QF2∴∴y2=2a∴∵P,∴∵,∴∴y′=∴当x=﹣c时,y′==∴直线PQ与椭圆C只有一个交点.点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查导数知识的运用,综合性强.21.(13分)(2012•安徽)数列{x n}满足x1=0,x n+1=﹣x2n+x n+c(n∈N*).(Ⅰ)证明:{x n}是递减数列的充分必要条件是c<0;(Ⅱ)求c的取值范围,使{x n}是递增数列.考点:数列与函数的综合;必要条件、充分条件与充要条件的判断;数列的函数特性;数列递推式.专题:计算题;证明题;压轴题;转化思想.分析:(Ⅰ)通过证明必要条件与充分条件,推出{x n}是从递减数列的充分必要条件是c<0;(Ⅱ)由(I)得,c≥0,通过①当c=0时,②当c>0时,推出0<c<1,当c时,证明x n+1>x n.=⇔.当c时,说明数列{x n}是从递减数列矛盾.得到0<c时,数列{x n}是递增数列.解答:当c<0时,x n+1=﹣x2n+x n+c<x n,∴{x n}是单调递减数列充分条件当{x n}是单调递减数列时x1=0>x2=﹣x21+x1+c∴c<0综上{x n}是从递减数列的充分必要条件是c<0;(Ⅱ)由(I)得,c≥0①当c=0时,x n=x1=0,此时数列为常数列,不符合题意;②当c>0时,x2=c>x1=0,x3=﹣c2+2c>x2=c∴0<c<1⇔⇔0=x1≤x n<,=﹣(x n+1﹣x n)(x n+1+x n﹣1),当0<c时,⇒x n﹣x n+1+1>0⇔x n+2﹣x n+1﹣1<0,⇔x n+2﹣x n+1与x n+1﹣x n同号,由x2﹣x1=c>0⇒x n+1﹣x n>0⇔x n+1>x n.=⇔.当c时,存在N使x N⇒x N+x N+1>1⇒x N+2﹣x N+1与x N+1﹣x N异号,与数列{x n}是从递减数列矛盾.所以当0<c时,数列{x n}是递增数列.点评:本题考查数列与函数的综合应用,函数的单调性的证明,充要条件的证明,考查逻辑推理能力,计算能力.。

2012年高考理科数学安徽卷(含答案解析)

2012年高考理科数学安徽卷(含答案解析)

绝密★启用前2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1至第3页,第Ⅱ卷第4至第6页.全卷满分150分,考试时间120分钟. 考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效.............,.在.答题卷、草稿纸上答题无效............. 4.考试结束,务必将试题卷和答题卡一并上交. 参考公式:如果事件A 与B 互斥;则()()()P A B P A P B +=+ 如果事件A 与B 相互独立;则()()()P AB P A P B = 如果A 与B 是事件,且()0P B >;则()()()P AB P A B P B =第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z 满足:(i)(2i)5z --=;则z =( )A .22i --B .22i -+C .2-2iD .2+2i2.下列函数中,不满足(2)2()f x f x =的是 ( )A .()||f x x =B .()||f x x x =-C .()1f x x =+D .()f x x =-3.如图所示,程序框图(算法流程图)的输出结果是( )A .3B .4C .5D .84.公比为2的等比数列{}n a 的各项都是正数,且31116a a =,则210log =a ( )A .4B .5C .6D .75.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则 ( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差6.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥ 则“αβ⊥”是“a b ⊥”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.2521(2)(1)x x +-的展开式的常数项是( )A .3-B .2-C .2D .38.在平面直角坐标系中,(0,0),(6,8)O P ,将向量OP 绕点O 按逆时针旋转3π4后得到向量OQ ,则点Q 的坐标是( )A.(- B.(- C.(2)--D.(-9.过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,O 为是坐标原点.若3AF =,则AOB ∆的面积为 ( )ABCD.10.6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品,已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为 ( )A .1或3B .1或4C .2或3D .2或4姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上.11.若,x y 满足约束条件:0,23,23,x x y x y ⎧⎪+⎨⎪+⎩≥≥≤则x y -的取值范围为______.12.某几何体的三视图如图所示,该几何体的表面积是______.13.在极坐标系中,圆4sin ρθ=的圆心到直线π()6R θρ=∈的距离是______. 14.若平面向量a,b 满足:|2|3-≤a b ;则⋅a b 的最小值是______.15.设ABC ∆的内角,,A B C 所对的边为,,a b c ,则下列命题正确的是______(写出所有正确命题的编号).①若2ab c >;则π3C <②若2a b c +>;则π3C <③若333a b c +=;则π2C <④若()2a b c ab +<;则π2C >⑤若22222()2a b c a b +<;则π3C >三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)设函数2π())sin 24f x x x =++ (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)设函数()g x 对任意x ∈R ,有π()()2g x g x +=,且当π[0,]2x ∈时,1()()2g x f x =-.求()g x 在区间[π,0]-上的解析式.17.(本小题满分12分)某单位招聘面试,每次从试题库随机调用一道试题,若调用的是A 类型试题,则使用后该试题回库,并增补一道A 类试题和一道B 类型试题入库,此次调题工作结束;若调用的是B 类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有n m +道试题,其中有n 道A 类型试题和m 道B 类型试题,以X 表示两次调题工作完成后,试题库中A 类试题的数量.(Ⅰ)求2X n =+的概率;(Ⅱ)设m n =,求X 的分布列和均值(数学期望).18.(本小题满分12分)平面图形111ABB AC C 如图1所示,其中11BB C C 是矩形,12,4BC BB ==,AB AC =1111A B A C ==.现将该平面图形分别沿BC 和11B C 折叠,使ABC ∆与111A B C ∆所在平面都与平面11BB C C 垂直,再分别连接111,,A A A B AC ,得到如图2所示的空间图形.对此空间图形解答下列问题. (Ⅰ)证明:1AA BC ⊥; (Ⅱ)求1AA 的长;(Ⅲ)求二面角1A BC A --的余弦值.19.(本小题满分13分)设1()(0)x x f x ae b a ae =++>.(Ⅰ)求()f x 在[0,)+∞内的最小值;(Ⅱ)设曲线()y f x =在点(2,(2))f 的切线方程为32y x =;求a,b 的值.20.(本小题满分13分)如图,12(,0),(,0)F c F c -分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,过点1F 作x轴的垂线交椭圆C 的上半部分于点P ,过点2F 作直线2PF 的垂线交直线2a x c=于点Q .(Ⅰ)若点Q 的坐标为(4,4);求此时椭圆C 的方程; (Ⅱ)证明:直线PQ 与椭圆C 只有一个交点.21.(本小题满分13分)数列{}n x 满足:2*110,()n n n x x x x c n +==-++∈N(Ⅰ)证明:数列{}n x 是单调递减数列的充分必要条件是0c <; (Ⅱ)求c 的取值范围,使{}n x 是单调递增数列.2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)答案解析【解析】{}n a 是等比数列,且,又等比数列4=,16a ∴=log 32=log 【解析】1(45x =甲甲的成绩的平均数等于乙的成绩的平均数;甲的成绩的中位数甲的成绩的方差为甲的成绩的极差【解析】αβ⊥,”的充分条件,m ,则a ⊥故选A .【解析】第一个因式取【解析】(0,0)O ,设(10cos OP =5,又OP按旋转OQ,10cos OQ θ⎡=+⎢⎝⎭⎦∴【提示】由点,知(6,8)OP =,设(10cos OP =,由向量OP 绕点逆时针方向旋转后得向量OQ ,由此能求出结果.【考点】平面向量的坐标运算,||3AF =,即点)=a θ-,∴【解析】2613C -=丙、丁、戍、己6①设仅有甲与乙,丙没交换纪念品,则甲收到得最大值0;当0 x =,3y =时,取得最小值3-.|2|3a b -≤,22494a b a b ∴+≤+,又2244||||4a b a b a b +≥≥-,44a b a b ≥-,98a b -∴≥,a b ∴的最小值是98-.示】由平面向量a ,b 满足|2|3a b -≤,知22494a b a b +≤+,故22224244||||4a b a b a b a b +≥=≥-,由此能求出a b 的最小值.【考点】平面向量数量积【解析】①2ab c >,②2a b c +>,cos ∴③33a b +=2cos a C =确;④2a b ==以例27o sa C +=,又71082>-放大为ab ,再结合均值定理即可证明(Ⅰ)()f x =12=(Ⅱ)当 AB AC =面ABC AO ∴⊥面共面,又1OO BC ⊥1AO O =,BC ⊥面BC ;(Ⅱ)延长D OA =,连接,1AO AO ∥1O D OA ∴∥AD OO ∴∥1OO BC ⊥1OO ∴⊥面AD ∴⊥面(Ⅲ)AO BC ⊥1AOA 是二面角11Rt OO A ∆中,51AO O =,(Ⅱ)()f x a =,2PF QF ⊥244b a c c -⨯--又24a c=②,22a b =-由①②③解得:,则2PF QF ⊥,解得2y =又2222x y a b +2y b =-过点1n n x x +-。

2012年安徽省高考数学试卷(理 科)答案与解析

2012年安徽省高考数学试卷(理    科)答案与解析
考 极差、方差与标准差;分布的意义和作用;众数、中位数、平均 点: 数.菁优网版权所有 专 计算题. 题: 分 根据平均数公式分别求出甲与乙的平均数,然后利用方差公式求 析: 出甲与乙的方差,从而可得到结论. 解 解: 答:
=
×(4+5+6+7+8)=6,
=
×(5+5+5+6+9)=6, 甲的成绩的方差为
①若ab>c2,则C<
②若a+b>2c,则C<
③若a3+b3=c3,则C<
④若(a+b)c<2ab,则C>
⑤若(a2+b2)c2<2a2b2,则C>
. 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过 程或演算步骤.解答写在答题卡上的指定区域内. 16.(12分)(2012•安徽)设函数f(x)=
18.(12分)(2012•安徽)平面图形ABB1A1C1C如图4所示,其中 BB1C1C是矩形,BC=2,BB1=4,AB=AC=
,A1B1=A1C1=
.现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在 平面都与平面BB1C1C垂直,再分别连接A2A,A2B,A2C,得到如图
13.(5分)(2012•安徽)在极坐标系中,圆ρ=4sinθ的圆心到直线θ=
(ρ∈R)的距离是 . 14.(5分)(2012•安徽)若平面向量
满足|2
|≤3,则
的最小值是 . 15.(5分)(2012•安徽)设△ABC的内角A,B,C所对边的长分别为 a,b,c,则下列命题正确的是 (写出所有正确命题的编 号).
析: 果.
解 解:由题意循环中x,y的对应关系如图: 答: x 1 2 4 8

安徽省皖南八校2012届高三数学第一次联考 理

安徽省皖南八校2012届高三数学第一次联考 理

皖南八校2012届高三第一次联考数学试题(理科)考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分,考试时间120分钟。

2.考生作答时,请将答案答在答题卡上。

第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;第Ⅱ卷请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷,草稿纸上作答无效。

............................参考公式: 锥体体积公式:Sh V 31=,其中S 是锥体的底面积,h 是锥体的高。

如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B )第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合}1)1(log |{},2|1||{2≤-=≤-∈=x x B x Z x A ,则集合A ∩B 的元素个数为( )A .0B .2C .5D .82.设i 为虚数单位,复数iia ++1是纯虚数,则实数a 等于 ( )A .-1B .1C .2D .2-3.已知双曲线)0,0(12222>>=-b a by a x 的右焦点为F ,若过点且斜率为33的直线与双曲线渐近线平行,则此双曲线离心率是( )A .332 B .3C .2D .324.设2121,,,b b a a ,均不为0,则“2121b b a a =”是“关于x 的不等式002211>+>+b x a b x a 与的解集相同”的( ) A .充分必要条件 B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.若变量y x ,满足约束条件|2|,10103x y z y y x y x -=⎪⎩⎪⎨⎧≥≥+-≤-+则的最大值为( ) A .6 B .5 C .4 D .3 6.计算机是将信息转化为二进制数进行处理的,二进制即“逢二进一”,若1011(2)表示二进制数,将它转换成十进制数式是11212120210123=⨯+⨯+⨯+⨯了么二进制数2011111(2)转换成十进制数形式是( )A .22010-1B .22011-1C .22012-1D .22013-17.已知0x 是函数x xx f ln 11)(+-=的一个零点,若),(),,1(0201+∞∈∈x x x x ,则 ( )A .0)(,0)(21<<x f x fB .0)(,0)(21>>x f x fC .0)(,0)(21<>x f x fD .0)(,0)(21><x f x f8.已知函数)(x f 的图象如图,则|)(|x f 的图象为( )A .①B .②C .③D .①②③图都不对 9.如图,已知三点A ,B ,E 在平面α内,点C ,D 在α外,并且α⊥AC ,AB BD DE ⊥⊥,α。

安徽省合肥 八中2012届高三第五次段考数学理.pdf

安徽省合肥 八中2012届高三第五次段考数学理.pdf

实验中学语文教学设计 课题总第 课时本单元 课时授课日期 课型导读课主备人复备人:审核人一、教学目标: 1.把握文章脉络,理解思想内容。

2.了解信客的职业道德和优秀品格。

3.培养学生诚实守信品质,树立诚信为本的做人理念。

二、教学重点难点分析1.了解信客的职业道德和优秀品格。

2.培养学生诚实守信品质。

三、教学过程教师活动学生活动时 间复备由歌曲《父亲》导入 父亲是平凡的,又是伟大的。

下面我们就来学习讴歌父亲的文章:《台阶》。

四、教师明确小说的结构:?小说的故事情节,一般由开端、发展、高潮、结局四个部分组成,本文是一篇结构完整的小说,根据这一点我们可以分析本文的结构:?开端:父亲觉得自己家的台阶低,要造高台阶的新屋。

?发展:父亲开始了漫长的准备。

?高潮:终于造起了有九集台阶的新屋。

?结局:新屋落成了,人也老了,身体也垮了。

五、学生交流讨论后教师归纳小结父亲的形象 小结主旨:本文叙述了父亲建造高台阶的过程,表现了父亲为实现理想而不懈追求、坚韧不拔、不知疲倦的精神,也表达了作者对“父亲”的崇敬和怜悯。

《台阶》暗寓了中国一般农民人生的奋斗过程。

小结:这两篇文章所写的事情,都是日常生活中司空见惯的,但是作者却能挖掘深邃的内涵来。

所以我们在平时的生活中,要留心身边发生的事情,体会意蕴,从中受到教益。

二、学生快速的阅读课文,注意解决下面两个问题:(1)注意下列词语的形、音:?门槛、烦躁、晌午、瞬间、尴尬、烟瘾、黏性、涎水、微不足道、大庭广众、 (2)使用第三人称说说本文的故事梗概: 三、请你跳读——把握故事情节 1、父亲为什么要造一栋高台阶的新屋? 2、父亲是怎样造起一栋高台阶的新屋的? 3、新屋造好后,父亲与过去比,有哪些变化? 四、请你品读——分析父亲形象1、父亲为什么总觉得我们家的台阶低?从那些细节中我们可以看出父亲对高台阶的渴慕?表现出父亲怎样的性格??2、父亲为了建造新屋以及台阶作了哪些准备?从中我们可以看出什么??3、作新屋和造台阶时父亲是怎样操劳的?划出这些句子,体会父亲的性格特征。

合肥八中高三“一模”适应性考试数学(理)试题无答案

合肥八中高三“一模”适应性考试数学(理)试题无答案

考试说明:1.本试卷分第I 卷(选择题)和第II 卷(非选择题),试题分值:150分,考试时间:120分钟。

2.所有答案均要答在答题卷上,否则无效,考试结束后只交答题卷。

第I 卷 选择题(共50分)一、选择题(本题包括10小题,每小题5分,共50分。

每小题只有一个选项符合题意)1.设a 是实数,且112a i i -++是实数,则a = A .12B .1C .—1D .2 2.已知全集U=R ,集合1{|0},2U x A x C A x +=≤-则集合等于A .{|12}x x x <->或B .{|12}x x x ≤->或C .{|12}x x x ≤-≥或D .{|12}x x x <-≥或 3.不等式2210ax x -+<的解集非空的一个必要而不充分条件是A .1a <B .1a ≤C .01a <<D .0a <4.已知数列{},{}n n a b 为等差数列为等比数列,且满足:10001013114,2,a a b b π+==-则1201278tan 1a a b b +-= A .1 B .-1 C .33 D 35.如右图,在△ABC 中,AB=BC=4,∠ABC=30°,AD 是边BC 上的高,则AD AC ⋅u u u r u u u r 的值等于A .4B .-4C .8D .06.若00,2x y x y z x y y a -≤⎧⎪+≥=+⎨⎪≤⎩若的最大值为3,则a 的值是A .1B .2C .3D .4 7.在2101()x x -的展开式中系数最大的项是 A .第5、7项 B .第6、7项 C .第4、6项 D .第6项8.双曲线E 的中心为原点,P (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为A .22136x y -= B .22163x y -=C .22145x y -= D .22154x y -= 9.若如图所给程序框图运行的结果恰为2012,2013s >那么判断框 中可以填入的关于k 的判断条件是A .2013k >B .2012k >C .2013k <D .2012k < 10.定义函数(),y f x x D =∈,若存在常数C ,对任意的12,x D x D ∈∈存在唯一的,使得12()()f x f x C =,则称函数()f x 在D 上的几何平均数为C 。

2024学年安徽省合肥八中等高三下学期数学试题5月份月考试卷

2024学年安徽省合肥八中等高三下学期数学试题5月份月考试卷

2024学年安徽省合肥八中等高三下学期数学试题5月份月考试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知P 为圆C :22(5)36x y -+=上任意一点,(5,0)A -,若线段PA 的垂直平分线交直线PC 于点Q ,则Q 点的轨迹方程为( ) A .221916x y += B .221916x y -= C .221916x y -=(0x <) D .221916x y -=(0x >) 2.已知随机变量X 的分布列如下表:其中a ,b ,0c >.若X 的方差()13D X ≤对所有()0,1a b ∈-都成立,则( ) A .13b ≤ B .23b ≤ C .13b ≥ D .23b ≥ 3.设1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过2F 的直线交椭圆于A ,B 两点,且120AF AF ⋅=,222AF F B =,则椭圆E 的离心率为( )A .23B .34CD 4.中国古典乐器一般按“八音”分类.这是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于《周礼·春官·大师》,分为“金、石、土、革、丝、木、匏(páo )、竹”八音,其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器.现从“八音”中任取不同的“两音”,则含有打击乐器的概率为( )A .314B .1114C .114D .275.如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若(,)CA CE DB R λμλμ=+∈,则λ+μ的值为()A.65B.85C.2D.836.做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X的期望为()A.B.C.1 D.27.“角谷猜想”的内容是:对于任意一个大于1的整数n,如果n为偶数就除以2,如果n是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入10n=,则输出i的()A.6 B.7 C.8 D.98.设复数z满足z iiz i-=+,则z=()A.1 B.-1 C.1i-D.1i+9.复数21i-(i为虚数单位)的共轭复数是A.1+i B.1−i C.−1+i D.−1−i10.M、N是曲线y=πsinx与曲线y=πcosx的两个不同的交点,则|MN|的最小值为()A.πB2πC3πD.2π11.某高中高三(1)班为了冲刺高考,营造良好的学习氛围,向班内同学征集书法作品贴在班内墙壁上,小王,小董,小李各写了一幅书法作品,分别是:“入班即静”,“天道酬勤”,“细节决定成败”,为了弄清“天道酬勤”这一作品是谁写的,班主任对三人进行了问话,得到回复如下:小王说:“入班即静”是我写的;小董说:“天道酬勤”不是小王写的,就是我写的;小李说:“细节决定成败”不是我写的.若三人的说法有且仅有一人是正确的,则“入班即静”的书写者是( )A .小王或小李B .小王C .小董D .小李12.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设22DF AF ==,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是( )A .413B .1313C .926D .31326二、填空题:本题共4小题,每小题5分,共20分。

安徽省合肥八中2012届高三第五次阶段性检测数学(理)试题

安徽省合肥八中2012届高三第五次阶段性检测数学(理)试题

本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分。

考试时间120分钟。

第I卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填常委会在答题卡上。

1.复数的共轭复数是()A.B.C.D.2.在各项都为正数的等比数列中,,前三项的和为21,则= ()A.33 B.72 C.84 D.1893.如图所示,茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数学被污损,则甲的平均成绩超过乙的平均成绩的概率为()A.B.C.D.4.已知m,n是不重合的直线,α、β是不重合的平面,有下列命题:①若②若③若④若其中正确的命题个数是()A.1 B.2 C.3 D.45.一个正方体被过其中三个顶点的平面割去一个角余下的几何体如图所示,则它的正视图应为()6.定义行列式运算:将函数的图象向左平移m个单位,所得图像对应的函数为偶函数,则m的最小值是()A.B.C.D.7.设函数,若,则的取值范围是()A.B.C.D.8.设M是内任一点,且,设的面积分别为x,y,z,且,则在平面直角中坐标系中,以x,y为坐标的点的轨迹图形是()9.对于集合P、Q,定义,设,则等于()A.B.C.D.10.已知是定义在(-3,3)上的奇函数,当时,那么不等式的解集是()A.B.C.D.第II卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分,请将答案填在答题卷的题号中的横线上。

11.如果的展开式的常数项等于1120,那么实数a的值为。

12.为了了解“预防禽流感疫苗”的使用情况,某市卫生部门对本地区9月份至11月份注射疫苗的所有养鸡场进行了调查,根据下图表提供的信息,可以得出这三个月本地区每月注射了疫苗的鸡的数量平均为万只。

13.函数上的最大值为。

14.下图为一个算法流程图,若给出实数为,输出的结果为b,则实数x的取值范围是。

2024安徽省合肥市高三高考适应性联考数学试题及答案

2024安徽省合肥市高三高考适应性联考数学试题及答案

安徽省合肥市部分学校2024届高三下学期高考适应性考试数学试题考生注意:1.本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。

3.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。

4.本卷命题范围:高考范围。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}24,{1,0,1,2,3}A x x B =∈=-N ∣…,则A B ⋂=A .{1,2}B .{0,1,2}C .{2,1,0,1,2,3}--D .{1,0,1,2}-2.已知(i 3)2z z -=+,则z =A .42i 99+B .42i 99-C .42i 99-+D .42i 99--3.已知某圆锥的侧面展开图是一个半径为8的半圆,则该圆锥的体积为A .48πB .16πC .D 4.为弘扬我国优秀的传统文化,某市教育局对全市所有中小学生进行了言语表达测试,经过大数据分析,发现本次言语表达测试成绩服从(70,64)N ,据此估计测试成绩不小于94的学生所占的百分比为参考数据:()0.6827,(22)0.9545,(3P X P X P X μσμσμσμσμσ-<<+≈-<<+≈-<<3)0.9973μσ+≈A .0.135%B .0.27%C .2.275%D .3.173%5.某银行大额存款的年利率为3%,小张于2024年初存入大额存款10万元,按照复利计算8年后他能得到的本利和约为(单位:万元,结果保留一位小数)A .B 12.6.C 12.7.D 12.8.12.96.已知定义在R 上的偶函数()f x 满足(0)1f =且()(2)4f x f x +-=,则20240()i f i ==∑A .4049B .2025C .4048D .20247.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,圆222:O x y a +=与C 的渐近线在第二象限的交点为P ,若tan FPO ∠=C 的离心率为A .2B C .3D 8.如图,正四面体ABCD 的棱长为2,AED 是以E 为直角顶点的等腰直角三角形.现以AD 为轴,点E 绕AD 旋转一周,当三棱锥E BCD -的体积最小时,直线CE 与平面BCD 所成角为α,则2sinα=A B .13C D 二、选择题:本题共3小题,每小题6分,共18分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽合肥八中2012届高三5月高考适应性考试数学理试题
考试说明:
1.本试卷分第I 卷(选择题)和第II 卷(非选择题),试题分值:150分,考试时间:120分钟.
2.所肴答案均要答在答题卷上,否则无效,考试结束后只突答题卷。

第I 卷 选择题(共50分)
一、选择题(本题包括10小题,每小题5分,共50分。

每小题只有一个选项符合题意。


把正确答案填在答题卷的答题栏内。


1.复数()12a i z a R i
=∈-对应的点在复平面的第四象限,且|z|=
a 的值为
A .5
B .-5
C
D .2.已知集合2
21{|lo g ,2},{|,12},2A y y x x B y y x x ==<<==-≤≤则()R C A B
A .∅a
B .1
[0,)2
C .[1,4]
D .1
[,4]2
3.双曲线线
2
2
212
x
y
-=的渐近线与圆22
()1x y a ++=相切,则正实数a 的值为
A 4
B 17
C 52
D 4 2
4.若()f x 是R 上周期为5的奇函数,当20x -≤≤时,3()2log (1)(x
f x x a a =+-+为
常数),则(2012)f =
A .14
-
B .
14
C .—3
D .3
5.由直线14x y y x
===
与曲线所围成的封闭图形的面积为
A .
212ln 22
-
B .
172
C .
142ln 23
-
D .
83
6.已知{n a }是公差不为0的等差数列,a 1 =1,若a 2,a 5,a 7三项分别加上l 后,按原顺序
构成等比数列,则21
1
(1)i
i i a =-∑=
A .5
B .1
C .-2
D .-21
7.已知向量,a b 满足||1,||2,(2)()6,|2|a b a b a b a b ==+-=--
则=
A .3 B
C .13 D
8.一个空间几何体的三视图如右图所示, 则该几何体的表面积为 A .
2+
B .
6+ C
.8+
B
.16++
9.用数字0,1,2,3,4,5组成没有重复数字的六位数,要求它能被5整除,且数字1,
2相邻的有 A .36个 B .42个 C .84个 D .96个 10.函数4
32
32()2(,),()043
f x x a x x b a b R f x x =
+
++∈=若仅在处有极值,则a 的取
值范围是
A
.[- B
.(,)-∞-+∞ C
.[-
D
.(,)-∞-+∞
第Ⅱ卷(非选择题共100分)
二、填空题(本题5小题,每小题5分,共25分。

请把正确答 11.执行右边的程序框图,最后输出的结果是____.
12.正实数x ,y ,a ,满足x+y=l ,若“存在实数x ,y ,使得
19a x y
+<成立”为假命题,则实数a 的取值范围是____.
13
.若6
3
(1)(2a x x
-
-
的展开式中各项系数的和为0,
则该展开式中常数项为 (用数字作答)
14.设m>l ,在约束条件001x y m x y x y -≤⎧⎪
-≥⎨⎪+≤⎩
下,目标函数z=x+5y 的最大值为4,则所的值为
15.以下是关于函数2
4||()1
x f x x =
+的四个命题:
①f (x )的图像关于y 轴对称;
②f (x )在区间[1,0][1,)-+∞ 上单调递减;
③f (x )在x= -1处取得极小值,在x=l 处取得极大值; ④f (x )的有最大值,无最小值; ⑤若方程f (x )—k=0至少有三个不同的实根,则实数k 的取值范围是(0,2).
其中为真命题的是____ (请填写你认为是真命题的序号).
三、解答题(本题6小题,共75分。

解答应写出必要的文字说明、证明过程或演算步骤。

把解题过程和步骤写在答题卷上。

) 16.(本小题满分12分)
函数()sin ()(0,0,||)2
f x A x A πωϕωϕ=+>><其中的图象与x 轴的交点中,相邻两个交点之间的距离为2
π,且图象上一个最低点为2(
,2)3
P π-
(1)求f (x )的解析式;
(2)在△ABC 中,若(
)1,2A f A C A B =
==
求边BC .
17.(本小题满分12分)
某次测试共有10道选择题!每道选择题有4个选项,其中只有一个选项是正确的,评分标准为:“每题只有一个选项是正确的,选对得5分,不选或选错得0分”。

某考生每道题都给出一个答案,前7道题比较简单,已确定所选答案是正确的,而其余3道题中,有一道题可确定出两个选项是错误的,有一道题可以确定出一个选项是错误的,还有一道题 难度太大就乱猜,设求该考生的最后得分为ξ。

(1)求ξ的分布列; (2)求ξ的数学期望. 18.(本小题满分12分)
如图,四棱锥P- ABCD ,底面ABCD 是边长为2的菱形,PA ⊥平面ABCD ,且PA
=2,
∠ABC=60°,E ,F 分别是BC ,PC 的中点. (1)求证:平面:PBC ⊥平面PAE :
(2)求二面角F-AE-C 的平面角的余弦值.
19.(本小题满分13分)
在数列{n a }中,*
112,(2)2()n n n a a a n N λλ+==+-∈,其中实数λ>0. (I )求数列{}n a 的通项公式; (II
)设*
1221111
2lo g (),,: 1.2n n n n n
b T b b b a n N T b b +++=∈=⋅> 求证
20.(本小题满分13分)
已知函数2
()2ln 1()f x x a x a R =-+∈ (1)求函数f (x )的单调性;
(2)若a>0,对∀x>0,都有3
2ln ln x ax x x x a -+>恒成立,求a 的取值范围. 21.(本小题满分13分)
已知F 1、F 2分别为椭圆2212
2
:
1(0)y x C a b a
b
+
=>>的上、下焦点,其中F 1也是抛
物线2
2:4C x y =的焦点,点M 是C 1与C 2在第二象限的交点,且15||.3
M F =
(1)求椭圆的方程;
(2)已知点P (1,3)和圆O :2
2
2
x y b +=,过点P 的动直线l 与圆O 相交于不同的
两点A ,B ,在线段AB 取一点Q ,满足:,(01)A P P B A Q Q B λλλλ=-=≠≠±
且。

求证:点Q 总在某定直线上。

相关文档
最新文档