2013北师大版八年级数学上册评价全册检测试卷及答案(26页)
2013-2014新北师大版八年级上数学期末试题及答案
2013-2014新北师大版八年级上数学期末试题及答案新北师大版八年级上册数学期末测试卷(完成时间;90分钟 满分120分) 命题:潘浩一、选择题(每小题2分,共30分) 1.25的相反数是( )A .5B .5-C .5±D .252.在给出的一组数0,π,5,3.14,39,722中,无理数有( ) A .1个 B .2个 C .3个 D .5个3. 某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( )A .42+=x yB .13-=x yC . 13+-=x yD .42+-=x y 4.为了让人们感受丢弃废旧电池对环境造成的影响,某班环保小组的6名同学记录了自己家中一个月内丢弃废电池的数量,结果如下(单位:个):7,5,6,4,8,6,如果该班有45名学生,那么根据提供的数据估计该月全班同学各家总共丢弃废旧电池的数量约为( )A.180B.225C.270D.315 5.下列各式中,正确的是( )A .16=±4B .±16=4C .327-= -3D .2(4)-= - 4 6.将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是( )A .将原图向左平移两个单位B .关于原点对称C .将原图向右平移两个单位D .关于y 轴对称 7.对于一次函数y =x +6,下列结论错误的是( )A . 函数值随自变量增大而增大B .函数图象与x 轴正方向成45°角C . 函数图象不经过第四象限D .函数图象与x 轴交点坐标是(0,6)8.如图,点O 是矩形ABCD 的对称中心,E 是AB 边上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC =3,则折痕CE =( )A .2 3B .332C . 3D .6A BCDE O(第8题图)9.正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针旋转90°后,B点的坐标为( )A 、(-2,2)B 、(4,1)C 、(3,1)D 、(4,0) 10.如图,某电信公司提供了A B ,两种方案的移动通讯费用y (元)与通话时间x (元)之间的关系,则以下说法错误..的是( ) A .若通话时间少于120分,则A 方案比B 方案便宜20元 B .若通话时间超过200分,则B 方案比A 方案便宜12元 C .若通讯费用为60元,则B 方案比A 方案的通话时间多D .若两种方案通讯费用相差10元,则通话时间是145分或185分11.三军受命,我解放军各部奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24km .如图是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是( )A.1B.2C.3D.412.两个一次函数y=ax +b 和y=bx+a ,它们在同一坐标系中的图象大致是( )13.一名学生骑自行车出行的图象如图,其中正确的信息是( ) A.整个过程的平均速度是760千米/时 B.前20分钟的速度比后半小时慢 C.该同学途中休息了10分钟 D.从起点到终点共用了50分钟甲队到达小镇用了6小时,途中停顿了1小时甲队比乙队早出发2小时,但他们同时到达乙队出发 2.5小时后追上甲队乙队到达小镇用了4小时,平均速度是6km /h1 2 3 4 5 6 时间(h )24 04.512路程(km ) 753120 170 200 250x (分)y (元)A 方案B 方案(第10题)xy oxy oxy o xy o A x /y /千米O 1 2 3 4 5 6 7 20 10 30 6014.若532+y x b a 与x y b a 2425-是同类项,则( )A .12x y =⎧⎨=⎩B .21x y =⎧⎨=-⎩C .02x y =⎧⎨=⎩D .31x y =⎧⎨=⎩15.如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么A D ′为( )A .10B .22C .7D .32 二、填空题(每小题2分,共24分)16.在ABC ∆中,,13,15==AC AB 高,12=AD 则ABC ∆的周长为 . 17.已知a 的平方根是8±,则它的立方根是 . 18.如图,已知直线y=ax+b 和直线y=kx 交于点P (-4,-2),则关于x ,y 的二元一次方程组,.y ax b y kx =+⎧⎨=⎩的解是________.19.四根小木棒的长分别为5 cm,8 cm,12 cm ,13 cm ,任选三根组成三角形,其中有________个直角三角形.20.已知O (0, 0),A (-3, 0),B (-1, -2),则△AOB 的面积为______.21小明家准备春节前举行80人的聚餐,需要去某餐馆订餐.据了解餐馆有10人坐和8人坐两种餐桌,要使所订的每个餐桌刚好坐满,则订餐方案共有_____种. 22.若一次函数()0≠+=k b kx y 与函数121+=x y 的图象关于X 轴对称,且交点在X 轴上,则这个函数的表达式为: .23.如图,已知b ax y +=和kx y =的图象交于点P ,根据图象可得关于X 、Y 的二元一次方程组⎩⎨⎧=-=+-00y kx b y ax 的解是 .24.直线y kx b =+经过点(20)A -,和y 轴正半轴上的一点B , 如果ABO △(O 为坐标原点)的面积为2,则b 的值为 . 25.点M (-2,k )在直线y =2x +1上,则点M 到x 轴的距离是 .26.已知一次函数的图象经过(-1,2),且函数y 的值随自变量x 的增大而减小,请写出一个符合上述条件的函数解析式 . 27.如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集AC B DD′(第18题图)是 .28.如图是某工程队在“村村通”工程中,修筑的公路长度y (米)与时间x (天)之间的关系图象.根据图象提供的信息,可知该公路的长度是______米. 29.符号“f ”表示一种运算,它对一些数的运算结果如下:(1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,… (2)122f ⎛⎫= ⎪⎝⎭,133f ⎛⎫= ⎪⎝⎭,144f ⎛⎫= ⎪⎝⎭,155f ⎛⎫= ⎪⎝⎭,…利用以上规律计算:1(2008)2008f f ⎛⎫-= ⎪⎝⎭ .30.对于数a ,b ,c ,d ,规定一种运算a bc d =ad -bc ,如12(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x=三、解答题 (60分)31. (1)化简 (本题3分,共12分)①1698149278253-⨯-+ ②实数b a 、在数轴上的位置如图所示,化简:2a b a --.(2)解下列方程组(本题10分每题5分)① ⎩⎨⎧=-=1553y x y x ② ⎩⎨⎧+=-+=-)5(3)1(55)1(3x y y xba32.已知:一次函数42-=x y .(1)在直角坐标系内画出一次函数42-=x y 的图象.(2)求函数42-=x y 的图象与坐标轴围成的三角形面积. (3)当x 取何值时,y>0.33.折叠矩形ABCD 的一边AD ,使点D 落在BC 边的F 点处,若AB=8cm ,BC=10cm ,求EC 的长.34.某校八年级(1)班50名学生参加2007年市数学质量监控考试,全班学生的成绩统计如下表:O1 23 4 5 6 6 5 4 3 2 1------------x y成绩(分) 71 74 78 80 82 83 85 86 88 90 91 92 94 人数1235453784332(1)该班学生考试成绩的众数是 . (2)该班学生考试成绩的中位数是 .(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.35.如图,直线PA 是一次函数1y x =+的图象,直线PB 是一次函数22y x =-+的图象.(1)求A 、B 、P 三点的坐标; (2)求四边形PQOB 的面积;36.如图,直线1l :1y x =+与直线2l :y mx n =+相交于点), 1(b P .(1)求b 的值;(2)不解关于y x ,的方程组100x y mx y n -+=⎧⎨-+=⎩请你直接写出它的解.37.甲、乙两件服装的成本共500元,商店老板为获取利润,决定甲服装按50℅的利润标价,乙服装按40%的利润标价出售.在实际出售时,应顾客要求,两件服装均按标价9O 1xy P b l l折出售,这样商店共获利157元,求两件服装的成本各是多少元?38.康乐公司在A B ,两地分别有同型号的机器17台和15台,现要运往甲地18台,乙地14台,从A B ,两地运往甲、乙两地的费用如下表:甲地(元/台)乙地(元/台)A 地 600 500B 地400800函数关系式;(2)请你为康乐公司设计一种最佳调运方案,使总费用最少,并说明理由。
2013-2014学年北师大版八年级数学上册期中检测题(含答案)
八年级数学上册期中检测题本检测题满分:120分,时间:120分钟一、选择题(每小题3分,共30分)1.下列说法正确的是( )①0是绝对值最小的有理数; ②相反数大于本身的数是负数;③数轴上原点两侧的数互为相反数; ④2是有理数.A.①②B.①③C.①②③D.①②③④2.下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .43.估计6+1的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间4.文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小1,若输入7,则输出的结果为( )A .5B .6C .7D .85.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( )A .12B .7+7C .12或7+7D .以上都不对7.如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2 m ,梯子的顶端B 到地面的距离为7 m ,现将梯子的底端A 向外移动到A ′,使梯子的底端A ′到墙根O 的距离等于3m ,同时梯子的顶端B 下降至B ′,那么BB ′( )A .小于1 mB .大于1 mC .等于1 mD .小于或等于1 m第7题图 第8题图8.将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( )A .h ≤17B .h ≥8C .15≤h ≤16D .7≤h ≤169.若点)3,(x A 与点),2(y B 关于x 轴对称,则( )A. x = -2, y =-3B.x =2, y =3C.x =-2, y =3D. x =2, y =-310.在平面直角坐标系中,△A BC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2),将△ABC 向左平移5个单位长度后,A 的对应点A 1的坐标是( )A .(0,5)B .(-1,5)C .(9,5)D .(-1,0)二、填空题(每小题3分,共24分)11.如果将电影票上“6排3号”简记为,那么“10排10号”可表示为;表示的含义是 .12.(2013·宁夏中考)点 P (a ,a -3)在第四象限,则a 的取值范围是 .13.(2013·贵州遵义中考)已知点P (3,-1)关于y 轴的对称点Q 的坐标是(a +b ,1-b ),则a b 的值为__________.14.已知在灯塔的北偏东的方向上,则灯塔在小岛的________的方向上.15.在△ABC 中,,,,则△ABC 是_________.16.已知直角三角形的两直角边长分别为和,则斜边上的高为 .17.若),(b a A 在第二、四象限的角平分线上, a 与b 的关系是_________.18.若10的整数部分为a ,小数部分为b ,则a =________,b =_______. 三、解答题(共66分)19.(8分)如图,已知等腰△的周长是,底边上的高的长是, 求这个三角形各边的长.20.(8分)计算:(1)44.1-21.1;(2)2328-+;(3(4)0)31(33122-++;(5)2)75)(75(++-;(6)2224145-. 21.(8分)某个图形上各点的横坐标不变,纵坐标变为原来的相反数,•此时图形却未发生任何改变,你认为可能吗?22.(8分)在平面直角坐标系中,顺次连接A (-2,1),B (-2,-1),C (2,-2),D (2,3)各点,你会得到一个什么图形?试求出该图形的面积.23.(8分)已知a 31-和︱8b -3︱互为相反数,求()2-ab -27 的值.24.(8分)阅读下列解题过程: 已知为△的三边长,且满足,试判断△的形状. 解:因为, ① 所以. ② 所以. ③ 所以△是直角三角形. ④回答下列问题:(1)上述解题过程,从哪一步开始出现错误?该步的序号为 ;(2)错误的原因为 ;(3)请你将正确的解答过程写下来.25.(8分)观察下列勾股数:C第19题图根据你发现的规律,请写出:(1)当时,求的值;(2)当时,求的值;(3)用(2)的结论判断是否为一组勾股数,并说明理由.26.(10分)一架云梯长25 m,如图所示斜靠在一面墙上,梯子底端C离墙7 m.(1)这个梯子的顶端A距地面有多高?(2)如果梯子的顶端下滑了4 m,那么梯子的底部在水平方向也是滑动了4 m吗?第26题图。
2012-2013学年度北师大版八年级上册数学期末期末教学质量检测(二)及答案
2012-2013学年度北师大版八年级上册数学期末期末教学质量检测(二)及答案一、选择题:(本题共10小题,每小题2分,共20分。
) 试试自己的能力,可别猜哦! 1、下列各式中计算正确的是( )A 、9)9(2-=- B 、525±= C 、1)1(33-=- D 、2)2(2-=-2、根据下列表述,能确定位置的是( )A 、某电影院2排B 、大桥南路C 、北偏东30°D 、东经118°,北纬40°3、给出下列5种图形:①平行四边形、②菱形、③正五边形、④正六边形、⑤等腰梯形.其中既是轴对称又是中心对称的图形有( ).A 、2种B 、3种C 、4种D 、5种 4、 下列四点中,在函数y=3x+2的图象上的点是( )A 、(-1,1)B 、(-1,-1)C 、(2,0)D 、(0,-1.5)5、把△ABC 各点的横坐标都乘以-1,纵坐标都乘以-1,符合上述要求的图是( )6、某中学科技馆铺设地面,已有正三角形形状的地砖,现打算购买另一种不同形状的正多边形地砖,与正三角形地砖在同一顶点处作平面镶嵌,则该学校不应该购买的地砖形状是( ) A 、正方形B 、正六边形C 、正八边形D 、正十二边形7、下列命题正确的是( )A 、正方形既是矩形,又是菱形B 、一组对边平行,另一组对边相等的四边形是等腰梯形C 、一个多边形的内角相等,则它的边一定都相等D 、矩形的对角线一定互相垂直8、已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而增大,则一次函数k x y +=的图象大致是( )A B C D 9、10名初中毕业生的中考体育考试成绩如下: 26 29 26 25 26 26 27 28 29 30 ,这些成绩的中位数是( )A 、25B 、26C 、26.5D 、3010*、甲、乙两人同时沿着一条笔直的公路朝同一方向前行,开始时,乙在甲前2千米处,甲、乙两人行走的路程S (千米)与时间t (时)的函数 图象(如图所示),下列说法正确的是( )A 、乙的速度为4千米/时B 、经过1小时,甲追上乙C 、经过0.5小时,乙行 走的路程约为2千米D 、经过1.5小时,乙在甲的前面二、填空题(每小题3分,共15分)11、若无理数a 满足14a <<,请你写出一个满足条件的无理数a :12、汽车开始行驶时,油箱中有油30升,如果每小时耗油4升,那么油箱中的剩余油量y(升)和工作时间x (时)之间的函数关系式是 ;xyxy xy xyOOOODy xCBAO Cy xC B AOBy x C B AO A y xCB AOS(千米)12 3 4 0.51乙甲 Ot (时)13、⎩⎨⎧==1,2y x 是方程2x -ay=5的一个解,则a = ;14、已知直角三角形两边的长分别为3cm,4cm, 则以第三边为边长的正方形的面积为 。
第1章 勾股定理 北师大版数学八年级上册综合素质评价(含答案)
第一章 综合素质评价一、选择题(每题3分,共30分)1.如图,在Rt △ABC 中,∠C =90°,AC =4,BC =5,则AB 的平方为( )(第1题)A .9B .16C .25D .412.下列各组数中,是勾股数的是( )A .0.3,0.4,0.5B .35,45,1C .4,5,6D .7,24,253.在△ABC 中,∠B =35°,BC 2-AC 2=AB 2,则∠C 的大小为( )A .35°B .55°C .65°D .90°4.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,以点A 为圆心,AC 长为半径画弧,交AB 于点D ,则BD 的长度是( )(第4题)A .2B .3C .4D .55.[情境题 生活应用]如图,在A 村与B 村之间有一座大山,原来从A 村到B 村,需沿道路A →C →B (∠C =90°)绕过村庄间的大山,打通A ,B 间的隧道后,就可直接从A 村到B 村.已知AC =9 km ,BC =12 km ,那么打通隧道后从A 村到B 村比原来减少的路程为( )(第5题)A.7kmB.6kmC.5kmD.2km6.如图,在Rt△ABC中,∠ACB=90°,若AB=15,则正方形ADEC 和正方形BCFG的面积和为( )(第6题)A.225B.200C.150D.无法计算7.[情境题生活应用母题教材P6习题T1]如图母题①,小霞将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端12米处,发现此时绳子底端距离打结处约6米,如图②,则滑轮到地面的距离为( )(第7题)A.9米B.12米C.15米D.24米8.[2024岳阳月考]如图,长为6cm的橡皮筋AB固定两端A和B后把中点C向上竖直拉升4cm至D点,则橡皮筋被拉长了( )(第8题)A .2 cmB .3 cmC .4 cmD .5 cm9.如图,在△ABC 中,AB =2,AC =3,AD ⊥BC 于点D ,E 为AD 上任意一点,则CE 2-BE 2=( )(第9题)A .1B .2C .4D .510.[新考向 数学文化]意大利著名画家达·芬奇用下图所示的方法证明了勾股定理.若设图①中空白部分的面积为S 1,图③中空白部分的面积为S 2,则下列等式成立的是( )(第10题)A . S 1=a 2+b 2+2abB . S 1=a 2+b 2+abC . S 2=c 2D . S 2=c 2+12ab 二、填空题(每题3分,共15分)11.[2024天津西青区期中]如图,阴影部分是一个正方形,则此正方形的面积为 cm 2.(第11题)12.已知三角形的三边长分别为5,12,13,则此三角形的最长边上的高等于 .13.如图,一座桥横跨一河,桥AB的长为40m,一艘小船自桥北头(A处)出发,向正南方驶去,因水流原因到达南岸(C处)后,发现已偏离桥南头(B处)9m,则小船实际行驶的路程为 m.(第13题)14.[母题教材P17复习题T5]如图,某港口P位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12n mile和16n mile,1h后两轮船分别位于点A,B处,且相距20n mile.如果知道甲轮船沿北偏西40°方向航行,则乙轮船沿 方向航行.15.[2024青岛期末]如图是某滑雪场U型池的示意图,该U型池可以看成是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为3m的半圆,其边缘AB=CD=16m,点E在CD上,CE=4m.一名滑雪爱好者从A点滑到E点时,他滑行的最短路程约为 m.(π取3)三、解答题(16题10分,17~19题每题12分,20题14分,21题15分,共75分)16.如图,∠B=90°,求x的值.17.如图,四边形ABCD中,∠ACB=90°,AB=15,BC=9,AD=5,DC=13.试说明△ACD是直角三角形.18.[2024赣州期末]图①是放置在水平面上的可折叠式护眼灯,其中底座的高AB=5cm,连杆BC=30cm,灯罩CD=20cm.如图②,转动BC,CD,使得∠BCD成平角,且灯罩端点D离桌面l的高度DH为45cm,求AH的距离.19.观察下列勾股数:①3,4,5,且32=4+5;②5,12,13,且52=12+13;③7,24,25,且72=24+25;④9,b,c,且92=b+c;…(1)请你根据上述规律,并结合相关知识求:b= ,c= ;(2)猜想第n组勾股数,并说明你的猜想正确.20.如图①,已知圆柱底面的周长为12,圆柱的高为8,在圆柱的侧面上,过点A,C嵌有一圈长度最短的金属丝.(1)现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是 ;A B C D(2)求该长度最短的金属丝的长;(3)如图②,若将金属丝从点B绕四圈到达点A,则所需金属丝的最短长度为m,则m2的值为 .21.“赵爽弦图”是四个全等的直角三角形与一个小正方形拼成的大正方形.赵爽利用几何图形的截、割、拼、补来证明代数式之间的恒等关系,验证勾股定理,为中国古代以形证数、形数统一,代数和几何紧密结合、互不可分的独特风格树立了一个典范.(1)如图①,是小琪制作的一个“赵爽弦图”纸板.①设AH=a,BH=b,AB=c,请你利用图①验证a2+b2=c2;②若大正方形ABCD的边长为13,小正方形EFGH的边长为7,求直角三角形两直角边之和为多少.(2)如图②,小昊把四个全等的直角三角板紧密地拼接在一起,已知外围轮廓(实线)的周长为48,OB=6,求这个图案的面积.答案详解详析一、1. D 2. D 3. B 4. A 5. B 6. A 7. A 8. C9. D【点拨】在Rt△ABD和Rt△ADC中,BD2=AB2-AD2,CD2=AC2-AD2,所以在Rt△BDE和Rt△CDE中,BE2=BD2+ED2=AB2-AD2+ED2,EC2=CD2+ED2=AC2-AD2+ED2,所以EC2-EB2=(AC2-AD2+ED2)-(AB2-AD2+ED2)=AC2-AB2=32-22=5.10. B 13.41二、11.64 12.601314.北偏东50°(或东偏北40°)【点拨】因为AP=1×12=12(nmile),PB=1×16=16(n mile),AB=20n mile,所以AP2+BP2=400=AB2,所以∠APB=90°.因为∠APN=40°,所以∠BPN=50°.因为∠EPN=90°,所以∠BPE=40°.所以乙轮船沿北偏东50°(或东偏北40°)方向航行.15.15【点拨】如图是U型池的内侧面展开图,则AD≈3×3=9(m),CD=16m,CE=4m.所以DE=CD-CE =16-4=12(m).在Rt△ADE中,AE2=AD2+DE2≈92+122=152,所以AE≈15 m.故他滑行的最短路程约为15m.三、16.【解】由勾股定理,得62+x2=(x+4)2,解得x=2.5.故x的值为2.5.17.【解】因为AB =15,BC =9,∠ACB =90°,所以AC 2=152-92=144.因为52+144=132,所以AD 2+AC 2=CD 2,所以∠DAC =90°,所以△ACD 是直角三角形.18.【解】由题意,得BD =BC +CD =50 cm .如图,过点B 作BE ⊥DH 于点E ,易得EH =AB =5 cm ,BE =AH ,所以DE =DH -EH =40 cm ,所以BE 2=BD 2-DE 2=302.所以BE =30 cm ,所以AH =30 cm .19.【解】(1)40;41(2)猜想第n 组勾股数为2n +1,2n 2+2n ,2n 2+2n +1.因为(2n +1)2+(2n 2+2n )2=4n 4+8n 3+8n 2+4n +1,(2n 2+2n +1)2=4n 4+8n 3+8n 2+4n +1,所以(2n +1)2+(2n 2+2n )2=(2n 2+2n +1)2.因为n 是正整数,所以2n +1,2n 2+2n ,2n 2+2n +1是一组勾股数.20.【解】(1)A(2)由(1)可知该长度最短的金属丝的长为2AC .因为圆柱底面的周长为12,所以BC =12×12=6.因为圆柱的高AB =8,所以AC2=62+82=100,所以AC=10,所以该长度最短的金属丝的长为2AC=2×10=20.(3)2368【点拨】若将金属丝从点B绕四圈到达点A,则m2=42×1222=2368.21.【解】(1)①设题图①中大、小两个正方形的面积分别为S1和S2,则S2=(b-a)2=a2+b2-2ab,S1=S2+4×12ab=a2+b2.又因为S1=c2,所以a2+b2=c2.②因为AB=13,EF=7,所以大正方形的面积是169,小正方形的面积是49,所以四个直角三角形的面积和为169-49=120,设AE为x,DE为y,则4×12xy=2xy=120,易知x2+y2=132=169,所以(x+y)2=x2+y2+2xy=169+120=289,所以x+y=17,所以直角三角形两直角边之和为17.(2)由题意,得AB+BC=48÷4=12,OH=OB=6.设AH=BC=x,则AB=12-x,OA=6+x,在Rt△AOB中,由勾股定理,得OB2+OA2=AB2,即62+(6+x)2=(12-x)2,解得x=2,所以OA=OH+AH=6+2=8,所以该图形的面积为4×12OB·OA=2OB·OA=2×6×8=96.。
2012-2013学年度北师大版八年级上册数学期末期末教学质量检测(一)及答案
2012-2013学年度北师大版八年级上册数学期末期末教学质量检测(一)及答案(全卷五大题25小题 满分:120分 时限:120分钟)一、选择题(每小题3分,共30分)下列各小题都给出了四个选项,其中只有一项是符合题目要求的,请把符合要求的选项前面的字母填写在Ⅱ卷上指定的位置. 1、12-的相反数是( )A 、12 B 、12-C 、2D 、2-2、下列交通标志中,不是轴对称图形的是( )3、如图,小明从A 处出发沿北偏东60°向行走至B 处,又沿北偏西20°方向行走至 C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A 、右转80°B 、左传80° (第五题)C 、右转100°D 、左传100°4、正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针旋转90°后,B 点的坐标为( ) A 、(-2,2) B 、(4,1) C 、(3,1) D 、(4,0) 5.若运算程序为:输出的数比该数的平方小1.则输入 ( ) A .10 B .11 C .12 D .13 6.下列各式运算正确的是( )A .m n mn =-33B .y y y =÷33C .623)(x x = D .632a a a =⋅7.如图,某电信公司提供了A B ,两种方案的移动通讯费用y (元)与通话时间x (元)之间的关系,则以下说法错误..的是( ) A .若通话时间少于120分,则A 方案比B 方案便宜20元 B .若通话时间超过200分,则B 方案比A 方案便宜12元 C .若通讯费用为60元,则B 方案比A 方案的通话时间多D .若两种方案通讯费用相差10元,则通话时间是145分或185分8.两个完全相同的长方体的长、宽、高分别为3、2、1,把它们叠放在一起组成一个新的长方体,在这些新长方体中,表面积最小值为 【 】DA .42 B . 38 C .20 D .329.下列说法:①对角线互相平分且相等的四边形是菱形;②计算2-的结果为1;③正六边形的中心角为60︒;④函数y =x 的取值范围是x ≥3. 其中正确的个数有 【 】 A .1个 B .2个 C .3个 D .4个10.三军受命,我解放军各部奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24km .如图是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是( ) A .1 B .2 C .3 D .4二、填空题(每小题3分,共15分)将答案填写在Ⅱ卷上指定的位置.11.如图,菱形ABCD 中,∠A =60º,对角线BD =8,则菱形ABCD 的周长等于______. 12.若等腰三角形的一个外角为70,则它的底角为 . 13.符号“f ”表示一种运算,它对一些数的运算结果如下: (1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122f ⎛⎫= ⎪⎝⎭,133f ⎛⎫= ⎪⎝⎭,144f ⎛⎫= ⎪⎝⎭,155f ⎛⎫= ⎪⎝⎭,… 利用以上规律计算:1(2008)2008f f ⎛⎫-=⎪⎝⎭ .14、根据如图2所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )15、如图是某工程队在“村村通”工程中,修筑的公路长度y(米)与时间x (天)之间的关系图象.根据图象提供的信息,(第12题)可知该公路的长度是______米.秋季学期八年级期末调研考试数 学 试 题Ⅱ卷 (解答题 共75分)三、解答题(每题6分,共24分)(1)1698149278253-⨯-+(2)已知()()213x x x y ---=-,求222x y xy +-的值.17、解方程组18、如图,在平面直角坐标系中,直线l 是第一、三象限的角平分线. 实验与探究:(1) 由图观察易知A (0,2)关于直线l的对称点A '的坐标为(2,0),请在图中分别标明B (5,3) 、C (-2,5) 关于直线l 的对称点B '、C '的位置,并写出他们的坐标:B ' 、C ' ;归纳与发现:(2) 结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P (a ,b )关于第一、三象限的角平分线l 的对称点P '的坐标为(不必证明);运用与拓广:(3) 已知两点D (1,-3)、E (-1,-4),试在直线l 上确定一点Q ,使点Q 到D 、E 两点的距离之和最小,并求出Q 点坐标.(第22题图)19、(本题满分14分)如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.(1)求证:△BDE≌△BCF;(2)判断△BEF的形状,并说明理由;(3)设△BEF的面积为S,求S的取值范围.四、解答题(每小题7分,共21分)20.温州皮鞋畅销世界,享誉全球.某皮鞋专卖店老板对第一季度男女皮鞋的销售收入进行统计,并绘制了扇形统计图(如图).由于三月份开展促销活动,男、女皮鞋的销售收入分别比二月份增长了40%,60%.已知第一季度男女皮鞋的销售总收入为200万元.(1)一月份销售收入______________万元,二月份销售收入_____________万元,三月份销售收入__________万元;(2)二月份男、女皮鞋的销售收入各是多少万元?21.某校八年级(1)班50名学生参加2007年市数学质量监控考试,全班学生的成绩统计如下表:请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是.(2)该班学生考试成绩的中位数是.(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.22、如图,把矩形纸片A B C D沿E F折叠,使点B落在边A D上的点B'处,点A落在点A'处;(1)求证:B E BF'=;(2)设A E a A B b B F c===,,,试猜想a b c,,之间的一种关系,并给予证明.(第23题图)第一季度男女皮鞋ABCDFA'B' E五、解答题(每小题10分,共30分)23.(本题满分9分)(1)如图7,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小;(2)如图8,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.CBO D 图7ABAO DCE图825.某物流公司的快递车和货车每天往返于A 、B 两地,快递车比货车多往返一趟.图11表示快递车距离A 地的路程y (单位:千米)与所用时间x (单位:时)的函数图象.已知货车比快递车早1小时出发,到达B 地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A 地晚1小时. ⑴请在图11中画出货车距离A 地的路程y (千米)与所用时间x (时)的函数图象; ⑵求两车在途中相遇的次数(直接写出答案);⑶求两车最后一次相遇时,距离A 地的路程和货车从A 地出发了几小时?2010年秋季初中期末调研考试(时)八 年 级 数 学 试 题Ⅱ卷 (解答题 共75分)二、填空题(每小题3分,共15分)将答案填写在Ⅱ卷上指定的位置.16、计算 (1)1698149278253-⨯-+=1343(2)已知()()213x x x y ---=-,求222x y xy +-的值.17、解方程组18、.解:(1)如图:(3,5)B ',(5,2)C '-(2) (b ,a )(3)由(2)得,D (1,-3) 关于直线l 的对称点D ' 的坐标为(-3,1),连接D 'E 交直线l 于点 Q ,此时点Q 到D 、E 两点的距离之和最小设过D '(-3,1) 、E (-1,-4)为b kx y +=,则314k b k b -+=⎧⎨-+=-⎩,.∴52132k b ⎧=-⎪⎪⎨⎪=-⎪⎩,.∴51322yx =--.由51322y x y x ⎧=--⎪⎨⎪=⎩,. 得137137x y ⎧=-⎪⎪⎨⎪=-⎪⎩,.∴所求Q 点的坐标为(137-,137-)-----10分说明:由点E 关于直线l 的对称点也可完成求解.19、(第22题图)四、解答题(每小题7分,共21分)20.解:(1)50;60;90.(2)设二月份男、女皮鞋的销售收入分别为x 万元,y 万元, 根据题意,得60(140)(164)90x y x y +=⎧⎨+++=⎩%%,解得3525x y =⎧⎨=⎩.答:二月份男、女皮鞋的销售收入分别为35万元、25万元.21. (1)88分(2)86分(3)不能说张华的成绩处于中游偏上的水平因为全班成绩的中位数是86分,83分低 于全班成绩的中位数22.(1)证:由题意得B F BF '=,B FE BFE '∠=∠, 在矩形A B C D 中,AD BC ∥, B EF BFE '∴∠=∠,B FE B EF ''∴∠=∠. B F B E ''∴=. B E BF '∴=.(2)答:a b c ,,三者关系不唯一,有两种可能情况: (ⅰ)a b c ,,三者存在的关系是222a b c +=. 证:连结B E ,则BE B E '=.由(1)知B E B F c '==,B E c ∴=.在A B E △中,90A ∠=,222AE AB BE ∴+=.A E a = ,AB b =,222a b c ∴+=.(ⅱ)a b c ,,三者存在的关系是a b c +>. 证:连结B E ,则BE B E '=.由(1)知B E B F c '==,B E c ∴=. 在A B E △中,AE AB BE +>,a b c ∴+>.说明:1.第(1)问选用其它证法参照给分;2.第(2)问222a b c +=与a b c +>只证1种情况均得满分;3.a b c ,,三者关系写成a c b +>或b c a +>参照给分.23.解:(1)如图7.∵ △BOC 和△ABO 都是等边三角形, 且点O 是线段AD 的中点, ∴ OD=OC=OB=OA,∠1=∠2=60°, ∴ ∠4=∠5.又∵∠4+∠5=∠2=60°, ∴ ∠4=30°. 同理,∠6=30°. ∵ ∠AEB=∠4+∠6, ∴ ∠AEB=60°.(2)如图8.∵ △BOC 和△ABO 都是等边三角形, ∴ OD=OC, OB=OA,∠1=∠2=60°, 又∵OD=OA,∴ OD =OB ,OA =OC , ∴ ∠4=∠5,∠6=∠7. ∵ ∠DOB=∠1+∠3, ∠AOC=∠2+∠3,∴∠DOB=∠AOC.∵ ∠4+∠5+∠DOB=180°, ∠6+∠7+∠AOC=180°, ∴ 2∠5=2∠6, ∴ ∠5=∠6.又∵ ∠AEB=∠8-∠5, ∠8=∠2+∠6, ∴ ∠AEB =∠2+∠5-∠5=∠2, ∴ ∠AEB =60°. 24、图88765421EO DCBA3 ABCDFA 'B ' EABCDFA 'B ' E25。
新北师大版八年级数学上册期末测试卷含答案
----- ...双柏县 2013-2014 学年上学期末综合素质测评八年级数学试卷命题:双柏县教研室郎绍波120 分钟)分,考试时间 100 (全卷满分总三号一二分题分得一、选择题分得评卷人8 个小题,每小题只有一个正(本大题共3 分,满分24 分)确选项,每小题3 -.计算1)的结果是(2B. 3C.- 9A.- 3D.92.下列几组数能作为直角三角形的三边长的是()A.1,2,3B.2,3,4C.3,4,5D.4,5,63.下列说法正确的是() A .所有无限小数都是无理数B.所有无理数都是无限小数C.有理数都是有限小数D.不是有限小数的不是有理数4.已知一组数据: 12,5,9,5,14,下列说法不正确的是() A .平均数是 9B.中位数是 9C.众数是 5D.极差是 55.在平面直角坐标系中,已知点P 的坐标是( - 1,- 2),则点 P 关于 x 轴对称的点的坐标是()A.(- 1,2)B.(1,- 2)AC),21C.(),1D.(2°,E =35 CD,∠ D =∠∥6.如图, AB EB的度数为(则∠ B )°60A.°B.65D.°75°C.70D,当k<0,.一次函数7 b<0时的图象大致位置是() kx b yyyyyox oxoxoxWORD 格式整理-----------...A.B .C.D.8.下列计算正确的是().AB.23=2 32+3=5C.D. ( 4)( 9)=24922=2评卷人分得二、填空题(本大题共 6 个小题,每小题 3 分,满分 18 分)9. 25 的算术平方根是.=2 .化简:10.6335m3;后这个水池内.某水池有水,现打开进水管进水,进水速度/ h xh15m113,则 y 关于 x 有水 y m的关系式为..命题“对顶角相等”的条件是12,.结论是)在ba.如果 a、b 同号,则点 P(,13象限.5的解是.方程组14.x yy 12x评卷人分得三、解答题(本大题共有 9 个小题,满分58 分)15.(本小题() 4 分)计算:12483x1x0y2都是方程 ax- y=b 的解,和3y分)已知.(本小题 5 16的值. b a 求与WORD 格式整理-----------...17.(本小题 6 分)如图 ,直线 CD、EF 被直线 OA 、OB 所截,∠ 1 +∠ 2 =180°.求证:∠ 3=∠4.E C1OA234B D F18.(本小题 5 分)长方形的两条边长分别为4,6,建立适当的直角坐标系,使它的一个顶点的坐标为( - 2, - 3).请你写出另外三个顶点的坐标.(本小题5分)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场 19.调查榕树的单价比香樟树少 20 元,购买 3 棵榕树和 2 棵香樟树共需 340元.请问榕树和香樟树的单价各多少?WORD 格式整理-----------...20.(本小题 6 分)已知直线 y=2x 与 y=- x+b 的交点为( 1,a),试确定2 x y0方程组的解和 a、 b 的值.b 0x+y1x 的图象相 y分)已知一次函数 y=kx- 3 的图象与正比例函数21.(本小题 92).交于点( 2,a的值. a (1)求)求一次函数的表达式.(2)在同一坐标系中,画出这两个函数的图象.3(y654321-6 -5 -4 -3 -2 -1123456x O- 1- 2- 3- 4- 5- 6WORD 格式整理-----------...22.(本小题 9 分)甲、乙两名工人同时加工同一种零件,现根据两人7 天产品中每天出现的次品数情况绘制成如下不完整的统计图和表,依据图、表信息,解答下列问题:相关统计量表:众数中位数平均数方差102甲74111乙7次品数量统计表:第1天第2天第3天第4天第5天第6天第7天甲(件)2203124乙(件)012110(1)补全图、表.(2)判断谁出现次品的波动小.(3)估计乙加工该种零件30 天出现次品多少件?数量甲次品数量折线图乙43210 1 2 3 4 5 6 7日期WORD 格式整理-----------...23.(本小题 9 分)汽车出发前油箱有油50L,行驶若干小时后,在加油站加油若干升.图象表示的是从出发后,油箱中剩余油量 y ( L )与行驶时间 t(h)之间的关系.(1)汽车行驶h 后加油,中途加油L ;的函数关系式;y 与行驶时间 t (2)求加油前油箱剩余油量(3)已知加油前、后汽车都以 70km/h 匀速行驶,如果加油站距目的地210km,那么要到达目的地,油箱中的油是否够用?请说明理由.y/L50454030201410t/h2O486-----------WORD 格式整理-----------...2013-2014 学年上学期末综合素质测评八年级数学参考答案一、选择题(每小题只有一个正确的选项,每小题3 分,共 24 分)6.C2.5. A C3.B4. D7. C81. A.A二、填空题(每小题3 分,共18 分)11. y=5x+159. 51210. 2.如果两个角是对顶角,那么它们相等x 14..一或三132y3三、解答题(共 58 分)3 48 3 3 33312(分)解:15.(每小题4 )-2=)(=2=-6-4)×(x0的解 ax- y=b 都是方程和分)解:因为.(本小题 5 161x2y3yC E a3 b解得,5a所以,22bb15AO2分) 6 17.(本小题3是对顶角 5 证明:∵∠ 2 与∠4 5∠∴∠ 2=∵∠ 1 +∠ 2 =180°BD°∴∠ 1 +∠ 5 =180F∴ CD ∥EF y4∠∴∠ 3=18.(本小题 5 分)解:如图建立直角坐标系,因为长方形的一个顶点的CD)(坐标为 A- 2,- 3所以长方形的另外三个顶点的坐标分别为:B( 2, - 3), C( 2, 3), D (- 2, 3)(答案不唯一)Ox19.(本小题 5 分)解:设榕树的单价为x 元 /棵,香樟树的单价是 y 元/棵,则:BAWORD 格式整理-----------...x y20x60,解得803x+2yy34060 元 /棵, 80 元/棵答:榕树和香樟树的单价分别是20.(本小题 6 分)解:因为直线y=2x 与 y= - x+b 的交点为( 1, a),所以,解得aa22则有3ba1+b0x 1,解得 , 2 x y即2 x y 02x+y 3y0x+y31x, a、 b 的值分别是的解是2、30y2 x因此,方程组0bx+y y y265分)21.(本小题 9 413 x 的图象过点(y)a2,解:( 1)∵正比例函数221∴ a=1-6-5-4 -3-2- 1123456x O)的图象经过点(2)∵一次函数, 1y=kx- 3 ( 2- 1- 2 y=2x- 3∴ k=2∴∴ 1=2k- 3- 3)函数图像如右图 3(- 4- 5- 6分)22.(本小题 9解:( 1)补全的图如下。
北师大版八年级数学上册期末质量评估测试卷【含答案】
北师大版八年级数学上册期末质量评估测试卷一、选择题1. 下列各数是无理数的是( )A. B. 2D. 3−12. 某校举办了“送福迎新春,剪纸庆佳节”比赛.以下参赛作品中,是中心对称图形的是( ).A. B.C. D.3. 若点,都在一次函数的图象上,则与的大小关系是( (−1,y 1)(2,y 2)y =2x +1y 1y 2)A. B. y 1<y 2y 1=y 2C. D. y 1>y 2y 1≤y 4. 在平面直角坐标系中,若点与点B 关于x 轴对称,则点B 的坐标是( )A (2,−3)A. B. (2,−3)(2,3)C. D.(−2,−3)()2,3-5. 若,则下列式子一定成立的是( )a b >A. B. a +1<b +2a−2>b−2C. D. −2a >−2ba3<b36. 某天,孟孟与欢欢在讨论攀攀的年龄,欢欢说:“攀攀至多3岁.”而孟孟说:“攀攀的年龄一定大于1岁.”则攀攀年龄的取值范围在数轴上表示正确的是()A.B.C.D.7. 估计的值在( )2×(14−2)A. 2到3之间 B. 3到4之间C. 4到5之间D. 5到6之间8. 直线和在同一直角坐标系中的图象可能是( )l 1:y =kx−b l 2:y =−2kx +bA. B.C. D.9. 如图,四边形ABCD 是平行四边形,对角线AC 与BD 交于点O ,若,AC =2AB ,则的度数为( )∠BAO =94°AODA. 157°B. 147°C. 137°D. 127°10. 如图,在平面直角坐标系中,将等边绕点A 旋转180°,得到,再将∆OAB △O 1AB 1绕点旋转180°,得到,再将绕点旋转180°,得到△O 1AB 1O 1△O 1A 1B 2△O 1A 1B 2A 1,…,按此规律进行下去,若点,则点的坐标为()△O 2A 1B 3B (2,0)B 6A.B. ((6,83)C.D. (8,63)(8,83)11. 如图,在平面直角坐标系中,直线分别交x 轴,y 轴于A 、B 两点,C483l y x =-+:为线段OB 上一点,过点C 作轴交l 于点D ,若 的顶点E 恰好落在直线CD ∥x ▱CBDE 上,则点C 的坐标为( )y =13xA. B. (0,83)(0,163)C.D.(0,89)(0,409)12. 若整数m 使得关于x 的不等式组 有且只有三个整数解,且关于x ,y{2x +m 3−5x +m2≤15x−1<3(x +1)的二元一次方程组 的解为整数(x ,y 均为整数),则符合条件的所有m 的和为{3x−y =mx +y =−1( )A. 27B. 22C. 13D. 913. 的立方根是( )−8A. 2B. C. D. −222−2214. 下图是甲、乙两同学五次数学测试成绩的折线图,比较甲、乙的成绩,下列说法正确的是( )A. 甲平均分高,成绩稳定B. 甲平均分高,成绩不稳定C. 乙平均分高,成绩稳定D.乙平均分高,成绩不稳定15. 在直角坐标系中,点到原点的距离是( )A(3,2)A. B. C. D. 25111316. 下列四个命题中,假命题有( )①内错角相等,两直线平行;②若,则;−3x >−3y x >y ③三角形的一个外角大于任何一个与之不相邻的内角;④若,则a <−1a 2>1A. 1个B. 2个C. 3个D. 4个17. 已知点在第二象限,则m 的取值范围是( )P (2m−3,1)A. B.C.D.m >32m <32m ≥32m ≤3218. 如图,已知直线,,,则的度数为()m ∥n ∠1=140∘∠2=30∘∠3A. B. C. D. 80°70°60°50°19. 《九章算术》是中国传统数学的重要著作,书中有一道题“今有五雀六燕,集称之衡,雀俱重,燕俱轻;一雀一燕交而处,衡适平;并燕雀重一斤.问:燕雀一枚,各重几何?”译文:“五只雀、六只燕,共重1斤(古时1斤=16两).雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕重量各为多少?”设雀重x 两,燕重y 两,可列出方程组( )A. B. {5x +6y =164x +y =5y +x {5x +6y =104x +y =5y +x C. D. {5x +6y =105x +y =6y +x {5x +6y =165x +y =6y +x 20. 以下四条直线中,与直线相交于第三象限的是直线( )y =2x +3A. B.y =2x−1 y =x +3C. D. y =−x +2y =x−421. 甲无人机从地面起飞,乙无人机从距离地面高的楼顶起飞,两架无人机同时匀速20m 上升.甲、乙两架无人机所在的位置距离地面的高度(单位:)与无人机上升的时10s y m 间(单位:)之间的关系如图所示.下列说法正确的是( )x s A. 5s 时,两架无人机都上升了40m B. 10s 时,两架无人机的高度差为20m C. 乙无人机上升的速度为8m/sD. 10s 时,甲无人机距离地面的高度是60m22. 如图,正方形纸片的边长为12,点F 是上一点,将沿折叠,点D 落ABCD AD ∆CDF CF 在点G 处,连接并延长交于点E .若,则的长为()DG AB AE =5GE A. B. C. D. 8313349136013二、填空题23. 9的算术平方根是.24. 若二次根式有意义,则x 的取值范围为______.3−x 25. 若点在x 轴上,则m 的值为______.P (m,m +2)26. 在平面直角坐标系中,将线段AB 平移后得到线段,点的对应点的坐标为A 'B 'A (3,1)A ',则点的对应点的坐标为______.(5,−1)B (−1,3)B '27. 如图,直线与相交于点,则关于x ,y 的二元一次方程组y =x +1y =mx +n P (1,2)的解为______.{y =x +1y =mx +n28. 如图,翠屏公园有一块长为12m,宽为6m的长方形草坪,绿化部门计划在草坪中间修两条宽度均为2m的石子路(两条石子路的任何地方的水平宽度都是2m),剩余阴影区域计划种植鲜花,则种植鲜花的面积为______m2.(a−b)2−3(b−1)3=29. 实数a,b在数轴上的对应点如图所示,化简: ______.∠A=90°AC=AB3CD=2BD=2530. 如图,已知,,,,则点C到BD的距离为______.31. 一年一度的南开校运会即将开幕,“向阳”班的全体同学正在操场上进行开幕式的队列编排.如果安排三个同学走在队列前方举班牌和班旗,则剩下的同学正好可以编排成每行5人的长方形方阵.如果不举班旗,只由班主任兼数学老师李老师举班牌,并再邀请语文,英语和物理三科的任课老师一起参加,则这三位任课老师和所有同学正好可以编排成每行6人的长方形方阵.已知“向阳”班的学生人数超过40人但又不多于80人,则“向阳”班共有学生______名.▱ABCD∠C=60°DB⊥BC△ADB32. 如图所示,在中,,连接DB,,将绕点A按逆时针方向旋转至,过点作交直线于点E ,连接交于点F ,若△AD 'B 'B 'B 'E ∥DB D 'D BB 'D 'E ,,则______.B 'E =133DF =10AF =33. 函数中,自变量的取值范围是.y =x−3x 34. 比较大小:___(选填“”、“ ”、“ ” ).265>=<35. 若函数是关于x 的正比例函数,则该函数的图象经过第_________象限.y =(m−1)xm 236. 如图,已知函数和图象交于点A ,点A 的横坐标为,则关于y =−x−1y =kx +b −2x ,y 的方程的解是_________.{y =−x−1y =kx +b37. 若一组数据5,,2,x ,的极差为13,则x 的值为____________.−4−138. 已知是二元一次方程组的解,则代数式的值为{x =1y =3{ax−by =12ax +3by =5−a a 2−9b 2____________.39. 如图,在中,的内角和外角的角平分线交于点P ,已知△ABC △ABC ∠CAB ∠CBD ,则的度数为____________.∠APB =42°∠C40. 如图,四边形的顶点坐标分别为,,,,当过点ABCD A(−4,0)B(−2,−1)C (3,0)D (0,3)B 的直线l 将四边形的面积分成面积相等的两部分时,则直线l 的函数表达式为ABCD ____________.三、计算题41. 计算:(1); (2).18−612+3275×15+(2−3)242. 解下列方程组:(1)(2){y =x +1①x +5=3y②x−y−43=72①x−2(y−5)=3②43. 解下列不等式(组):(1); (2)7x−9≤2(x +3){x−3(x−2)<−7①x−32>10−x5②44 为了教育引导学生学习禁毒知识、远离毒品侵害,北关中学开展了“全民禁毒,共享幸福”知识竞赛活动.现从该校七、八年级中各随机抽取20名学生的竞赛成绩(满分10分)进行整理、描述和分析,下面给出了部分信息.七、八年级抽取的学生竞赛成绩相关数据如下表所示:请根据相关信息,回答以下问题:a=b=(1)直接写出表中a,b的值:______;______;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握“禁毒知识”较好?请说明理由(一条理由即可).▱ABCD AB>BC▱ABCD∆ADE45. 如图,在中,,点E为内一点,且为等边三角形.▱ABCD∆BCF(1)用尺规完成以下基本作图:以BC为边在内作等边.(保留作图痕迹,不写作法,不下结论)(2)在(1)所作图形中,连接CE 、AF ,猜想四边形AFCE 的形状,并证明你的猜想.46. 在函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数性质及其应用的部分过程,请按要求完成下列各小题.x …-4-3-2-101234…y 1…-4-12ab-214…(1)______,______,并在下面的平面直角坐标系中补全该函数的大致图象;a =b =(2)请根据这个函数的图象,写出该函数的一条性质:______;(3)已知直线与函数的图象有三个交点,则m 的取值范围为______.y 2=12x +my 147. 2022年翻开序章,冬奥集结号已吹响,冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”深受人民喜爱.2021年十一月初,奥林匹克官方旗舰店上架了“冰墩墩”和“雪容融”两款毛绒玩具,当月售出了“冰墩墩”200个和“雪容融”100个,销售总额为32000元.十二月售出了“冰墩墩”300个和“雪容融”200个,销售总额为52000元.(1)求“冰墩墩”和“雪容融”的销售单价;(2)已知“冰墩墩”和“雪容融”的成本分别为90元/个和60元/个.进入2022年一月后,这两款毛绒玩具持续热销,于是旗舰店再购进了这两款毛绒玩具共600个,其中“雪容融”的数量不超过“冰墩墩”数量的2倍,且购进总价不超过43200元.为回馈新老客户,旗舰店决定对“冰墩墩”降价10%后再销售,若一月份购进的这两款毛绒玩具全部售出,则“冰墩墩”购进多少个时该旗舰店当月销售利润最大,并求出最大利润.▱ABCD∠BCD=45°BC⊥BD48. 在中,,,E、F分别为AB、CD边上两点,FB平分∠EFC.AE=2EF=5(1)如图1,若,,求CD的长;∠GBF=∠EFD FG+2FD=AB(2)如图2,若G为EF上一点,且,求证:.49 如图,在平面直角坐标系中,,,直线与x 轴交于点C ,与A (−1,0)B (0,3)y =−13x +1直线AB 交于点D .(1)求直线AB 的解析式及点D 的坐标;(2)如图2,H 是直线AB 上位于第一象限内的一点,连接HC ,当时,点S △HCD =785M 、N 为y 轴上两动点,点M 在点N 的上方,且,连接HM 、NC ,求MN =1的最小值;HM +MN +NC (3)将绕平面内某点E 旋转90°,旋转后的三角形记为,若点落在△OAB △O 'A 'B 'O '直线AB 上,点落在直线CD 上,请直接写出满足条件的点的坐标以及对应的点E 的坐A 'O '标.50. 计算:(1)43−(2021−π)0+|3−2|(2)(13−4)(4+13)+18−48251.(1)解不等式:2x−13−5x+12>1(2)解方程组:{5x+2y=1x−y−13=252如图,网格中每个小正方形的边长都是1,若建立平面直角坐标系,则图中点A、B的坐标分别为,.(2,1)(4,−1)(1)请在图中建立满足条件的平面直角坐标系,并写出点C关于x轴对称的点的坐标:C'(2)你认为是直角三角形吗?并说明理由.△ACC'53今年9月,第十四届全国运动会将在陕西省举行本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集了西安市近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图:根据以上信息,回答下列问题:(1)这60天的日平均气温的中位数为______,众数为______;(2)求这60天的日平均气温的平均数;(3)若日平均气温在18℃~21℃的范围内(包含18℃和21℃)为“舒适温度”.请预估西安市今年9月份日平均气温为“舒适温度”的天数.54. 某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克)售价(元/千克)甲种58乙种913(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?55. 预备知识:(1)在一节数学课上,老师提出了这样一个问题:随着变量t 的变化,动点在平P (3t,2−t )面直角坐标系中的运动轨迹是什么?一番深思熟虑后,聪明的小明说:“是一条直线”,老师问:“你能求出这条直线的函数表达式吗?”小明的思路如下:设这条直线的函数表达式为,将点代入得:y =kx +b (k ≠0)P (3t,2−t ),整理得2−t =k ⋅3t +b (3k +1)t +b−2=0∵t 为任意实数,等式恒成立,∴,3k +1=0b−2=0∴,k =−13b =2∴这条直线的函数表达式为y =−13x +2请仿照小明的做法,完成问题:随着变量t 的变化,动点在平面直角坐标系中的P (3t,2−t )运动轨迹是直线l ,求直线l 的函数表达式.问题探究:(2)如图1,在平面直角坐标系中,已知,,且,,则A (2,0)B (5,9)∠BAC =90∘AB =AC 点C 的坐标为_________.结论应用:(3)如图2,在平面直角坐标系中,已知点,Q 是直线上的一个动点,P (1,0)y =−12x +2连接,过点P 作,且,连接,求线段的最小值。
全新北师大版八年级数学上册课时检测试题(全册 共141页 附答案)
目录
第一章 勾股定理 1.1 探索勾股定理(1) 1.1 探索勾股定理(2) 1.2 一定是直角三角形吗 1.3 勾股定理的应用 第二章 实数 2.1 认识无理数(一) 2.1 认识无理数(二) 2.2 平方根(1) 2.2 平方根(2) 2.3 立方根 2.4 公园有多宽 2.5 用计算器开方 2.6 实 数(1) 2.7 二次根式(1) 2.7 二次根式(2) 2.7 二次根式(3) 3.1 确定位置 3.2 平面直角坐标系(1) 3.2 平面直角坐标系(2) 3.2 平面直角坐标系(3) 3.3 轴对称与坐标变化 第四章 一次函数 4.1 函数 4.2 一次函数与正比例函数 4.3 一次函数的图象(1) 4.3 一次函数的图象(2) 4.4 一次函数的应用(1) 4.4 一次函数的应用(2、3) 第五章 二元一次方程组 5.1 认识二元一次方程组 5.2 求解二元一次方程组(1) 5.2 求解二元一次方程组(2) 5.3 鸡兔同笼 5.4 增收节支 5.5 里程碑上的数 5.6 5.7 二元一次方程与一次函数 及用二元一次方程确定一次函数 表达式 6.1 平均数(1) 6.1 平均数(2) 6.2 中位数和众数 6.3 从数据图分析数据的集中趋势 6.4 数据的离散程度(1) 6.4 数据的离散程度(2) 7.1 为什么要证明 7.2 定义与命题 7.2 定义与命题(2) 7.3 平行线的判定 7.4 平行线的性质 7.5 三角形内角和定理(1) 7.5 三角形内角和定理(2)
15.如图,在一棵树的 10 米高处有两只猴子,一只猴子爬下树走到离树 20 米处的池塘的 A 处. 另一只爬到树顶 D 后直接跃到 A 处, 距离以直线计算, 如果两只猴子所经过的距离相等, 则这棵树高 米.
全新北师大版八年级数学上册各单元测试卷(全册 共61页 附答案)
全新北师大版八年级数学上册各单元测试卷(全册共61页附答案)目录第一章达标测试卷一、选择题(每题3分,共30分)1.把一个直角三角形的两直角边长同时扩大到原来的3倍,则斜边长扩大到原来的( ) A.2倍B.3倍C.4倍D.5倍2.下列各组线段能构成直角三角形的一组是( )A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,63.已知一个直角三角形的两直角边长分别为5和12,则第三边长的平方是( ) A.169 B.119 C.13 D.1444.如图,阴影部分是一个长方形,则长方形的面积是( )A.3 cm2B.4 cm2C.5 cm2D.6 cm2(第4题) (第7题) (第10题)5.满足下列条件的△ABC,不是直角三角形的为( )A.∠A=∠B-∠C B.∠A∶∠B∶∠C=1∶1∶2C.b2=a2-c2D.a∶b∶c=2∶3∶46.已知一轮船以18 n mile/h的速度从港口A出发向西南方向航行,另一轮船以24 n mile/h 的速度同时从港口A出发向东南方向航行,离开港口1.5 h后,两轮船相距( ) A.30 n mile B.35 n mile C.40 n mile D.45 n mile7.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB,垂足为点E,则DE等于( )A.1013B.1513C.6013D.75138.若△ABC的三边长a,b,c满足(a-b)(a2+b2-c2)=0,则△ABC是( ) A.等腰三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形9.已知直角三角形的斜边长为5 cm,周长为12 cm,则这个三角形的面积是( ) A.12 cm2B.6 cm2C.8 cm2D.10 cm210.如图,分别以直角三角形的三条边为边向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是( )A.S1+S2>S3B.S1+S2=S3C.S1+S2<S3D.无法确定二、填空题(每题3分,共24分)11.如图,在等腰三角形ABC中,AB=AC,AD是底边上的高,若AB=5 cm,BC=6 cm,则AD=__________.(第11题) (第12题) (第13题)12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B 300 m,结果他在水中实际游了500 m,则该河流的宽度为________.13.如图,在Rt△ABC中,∠B=90°,AB=3 cm,AC=5 cm,将△ABC折叠,使点C与点A 重合,得折痕DE,则△ABE的周长等于________.14.已知a,b,c是△ABC的三边长,且满足关系式(a2-c2-b2)2+||c-b=0,则△ABC的形状为_________________________________________.15.如图是一个长方体,则AB=________,阴影部分的面积为________.(第15题) (第16题)16.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,且AH∶AE=3∶4.那么AH等于________.17.红方侦察员小马的正前方400 m处有一条东西走向的公路,突然发现一辆蓝方汽车在公路上行驶,他拿出红外线测距仪测得汽车与他相距400 m,10 s后又测得汽车与他相距500 m,则蓝方汽车的速度是________m/s.18.在一根长90 cm的灯管上缠满了彩色丝带,已知可近似地将灯管看成圆柱体,且底面周长为4 cm,彩色丝带均匀地缠绕了30圈(如图为灯管的部分示意图),则彩色丝带的总长度为__________.(第18题)三、解答题(19~22题每题9分,其余每题10分,共66分)19.某消防部队进行消防演练.在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12 m,如图,即AD=BC=12 m,此时建筑物中距地面12.8 m高的P处有一被困人员需要救援.已知消防云梯车的车身高AB是3.8 m,问此消防车的云梯至少应伸长多少米?20.如图,在4³4的正方形网格中,每个小正方形的边长都是1.线段AB,AE分别是图中两个1³3的长方形的对角线,请你说明:AB⊥AE.21.如图,四边形ABCD是边长为a的正方形,点E在CD上,DE=b,AE=c,延长CB至点F,使BF=b,连接AF,试利用此图说明勾股定理.22.如图,一根12 m的电线杆AB用铁丝AC,AD固定,现已知用去的铁丝AC=15 m,AD=13 m,又测得地面上B,C两点之间的距离是9 m,B,D两点之间的距离是5 m,则电线杆和地面是否垂直,为什么?23.如图,∠AOB=90°,OA=9 cm,OB=3 cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球,如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?24.如图,在长方形ABCD中,DC=5 cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设落点为F,若△ABF的面积为30 cm2,求△ADE的面积.25.有一个如图所示的长方体透明玻璃水缸,其长AD=8 cm,高AB=6 cm,水深为AE=4 cm,在水面线EF上紧贴内壁G处有一粒食物,且EG=6 cm,一只小虫想从水缸外的A处沿水缸壁爬进水缸内的G处吃掉食物.(1)小虫应该沿怎样的路线爬才能使爬的路线最短呢?请你画出它爬行的最短路线,并用箭头标注.(2)求小虫爬行的最短路线长(不计缸壁厚度).答案一、1.B 2.A 3.A 4.C 5.D 6.D 7.C 8.D 9.B 10.B二、11.4 cm 12.400 m 13.7 cm 14.等腰直角三角形 15.13;30 16.6 17.3018.150 cm 点拨:因为灯管可近似看成圆柱,而圆柱的侧面展开图是一个长方形,所以假设把灯管的侧面展开后,得到一个由30个完全相同的小长方形组成的大长方形,且每个小长方形的长等于灯管的底面周长,小长方形的高等于灯管长度的130,则丝带的长度等于小长方形对角线长的30倍. 三、19.解:因为CD =AB =3.8 m ,所以PD =PC -CD =9 m. 在Rt △ADP 中,AP 2=AD 2+PD 2, 得AP =15 m.所以此消防车的云梯至少应伸长15 m.20.解:如图,连接BE .(第20题)因为AE 2=12+32=10,AB 2=12+32=10,BE 2=22+42=20,所以AE 2+AB 2=BE 2.所以△ABE 是直角三角形,且∠BAE =90°,即AB ⊥AE .21.解:在△ADE 和△ABF 中,⎩⎪⎨⎪⎧AD =AB =a ,∠D =∠ABF ,DE =BF =b ,所以△ADE ≌△ABF .所以AE =AF =c ,∠DAE =∠BAF ,S △ADE =S △ABF .所以∠EAF =∠EAB +∠BAF =∠EAB +∠DAE =∠DAB =90°,S 正方形ABCD =S 四边形AECF .连接EF ,易知S 四边形AECF =S △AEF +S △ECF =12[c 2+(a -b )(a +b )]=12(a 2+c 2-b 2),S 正方形ABCD=a 2,所以12(a 2+c 2-b 2)=a 2.所以a 2+b 2=c 2. 22.解:垂直.理由如下:因为AB =12 m ,AC =15 m ,BC =9 m , 所以AC 2=BC 2+AB 2. 所以∠CBA =90°. 又因为AD =13 m ,AB =12 m ,BD =5 m ,所以AD 2=BD 2+AB 2. 所以∠ABD =90°, 因此电线杆和地面垂直.点拨:要判定电线杆和地面垂直,只需说明AB ⊥BD 且AB ⊥BC 即可,利用勾股定理的逆定理即可判定△ABD 和△ABC 为直角三角形,从而得出电线杆和地面垂直. 23.解:根据题意,BC =AC =OA -OC =9-OC .因为∠AOB =90°,所以在Rt △BOC 中,根据勾股定理,得OB 2+OC 2=BC 2, 所以32+OC 2=(9-OC )2, 解得OC =4 cm. 所以BC =5 cm.24.解:由折叠可知AD =AF ,DE =EF .由S △ABF =12BF ²AB =30 cm 2,AB =DC =5 cm ,得BF =12 cm.在Rt △ABF 中,由勾股定理,得AF =13 cm ,所以BC =AD =AF =13 cm. 设DE =x cm ,则EC =(5-x )cm ,EF =x cm ,FC =13-12=1(cm).在Rt △ECF 中,由勾股定理,得EC 2+FC 2=EF 2,即(5-x )2+12=x 2,解得x =135.所以S △ADE =12AD ²DE =12³13³135=16.9 (cm 2).25.解:(1)如图,作点A 关于BC 的对称点A ′,连接A ′G 与BC 交于点Q ,则AQ +QG 为最短路线.(第25题)(2)因为AE =4 cm ,AA ′=12 cm ,所以A ′E =8 cm.在Rt △A ′EG 中,EG =6 cm ,A ′E =8 cm ,A ′G 2=A ′E 2+EG 2=102, 所以A ′G =10 cm ,所以AQ +QG =A ′Q +QG =A ′G =10 cm. 所以最短路线长为10 cm.第二章达标测试卷一、选择题(每题3分,共30分) 1.8的平方根是( )A .4B .±4C .2 2D .±2 2的立方根是( )A .-1B .0C .1D .±13.有下列各数:0.456,3π2,(-π)0,3.14,0.801 08,0.101 001 000 1…(相邻两个1之间0的个数逐次加1),4,12.其中是无理数的有( ) A .1个B .2个C .3个D .4个4.有下列各式:①2;②13;③8x >0).其中,最简二次根式有( )A .1个B .2个C .3个D .4个5.下列语句不正确的是( )A .数轴上的点表示的数,如果不是有理数,那么一定是无理数B .大小介于两个有理数之间的无理数有无数个C .-1的立方是-1,立方根也是-1D .两个实数,较大者的平方也较大 6.下列计算正确的是( )A.12=2 3B.32=32==x7.设n 为正整数,且n <65<n +1,则n 的值为( )A .5B .6C .7D .88.如图,在数轴上表示-5和19的两点之间表示整数的点有( )A .7个B .8个C .9个D .6个(第8题)(第10题)9(y +3)2=0,则x -y 的值为( )A .-1B .1C .-7D .710.按如图所示的程序计算,若开始输入的n 值为2,则最后输出的结果是( )A .14B .16C .8+52D .14+2二、填空题(每题3分,共24分)11 ________ 5 (填“>”或“<”).12.利用计算器计算12³3-5时,正确的按键顺序是________________,显示器上显示的数是________.13.如图,数轴上表示数3的是点________.。
第1章 勾股定理 北师大版数学八年级上册综合素质评价卷(含答案)
第一章综合素质评价八年级数学上(BS版) 时间:90分钟 满分:120分一、选择题(每题3分,共30分)1.在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c.若a2=5,b2=12,则c2的值为( )A.13 B.17 C.7 D.1692. (2024重庆江津区期末) 已知△ABC的三边分别是a,b,c,下列条件中不能判断△ABC为直角三角形的是( )A.a2+b2=c2B.∠A∶∠B∶∠C=3∶4∶5C.∠A=∠C-∠B D.a=8,b=15,c=173. (教材P7习题T2变式) 历史上对勾股定理的一种验证方法采用了如图所示的图形,其中两个全等直角三角形的边AE,EB在一条直线上,验证勾股定理用到的面积相等的关系式是( )A.S△EDA=S△CEB B.S△EDA+S△CEB=S△CDEC.S四边形CDAE=S四边形CDEB D.S△EDA+S△CDE+S△CEB=S四边形ABCD4.如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为( )A.5 B.6 C.7 D.85. (2023日照) 已知直角三角形的三边a,b,c满足c>a>b,分别以a,b,c为边作三个正方形,把两个较小的正方形放置在最大正方形内,如图,设三个正方形无重叠部分的面积为S1,均重叠部分的面积为S2,则( )A.S1>S2B.S1<S2C.S1=S2D.S1,S2大小无法确定6.(2023天津) 如图,在△ABC中,分别以点A和点C为圆心,大于12AC的长为半径作弧(弧所在圆的半径都相等),两弧相交于M,N两点,直线MN分别与边BC,AC相交于点D,E,连接A D.若BD=DC,AE=4,AD=5,则AB的长为( )A.9 B.8 C.7 D.67.(2023泸州) 《九章算术》是中国古代重要的数学著作,该著作中给出了勾股数a,b,c的计算公式:a=12(m2-n2),b=mn,c=12(m2+n2),其中m>n>0,m,n是互质的奇数.下列四组勾股数中,不能由该勾股数计算公式直接得出的是( )A.3,4,5 B.5,12,13 C.6,8,10 D.7,24,258. (新考向数学文化)《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,纵之不出二尺,斜之适出.问户高、广、斜各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为( )A.2x2=(x-4)2+(x-2)2B.x2=(x-4)2+(x-2)2C.x2=(x-4)2+22D.x2=42+(x-2)29.如图,某超市为了吸引顾客,在超市门口离地高4.5 m的墙上,装有一个由传感器控制的门铃A,人只要移至该门口4 m及4 m以内时,门铃就会自动发出语音“欢迎光临”.一个身高1.5 m的学生刚走到D处,门铃恰好自动响起,则该学生头顶C到门铃A的距离为( )(第9题)A.7 m B.6 m C.5 m D.4 m10.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是( )A.1.5 B.1.8 C.2 D.2.5二、填空题(每题3分,共24分)11.如图,AC⊥CE,AD=BE=13,BC=5,DE=7,那么AC=________.12.已知a,b,c是△ABC的三边长,且满足关系式(a2-c2-b2)2+|c-b|=0,则△ABC的形状为____________________.13.(2023东营) 一艘船由A港沿北偏东60°方向航行30 km至B港,然后再沿北偏西30°方向航行40 km至C港,则A,C两港之间的距离为________km. 14.如图所示的象棋盘中,各个小正方形的边长均为1.“马”从图中的位置出发,不走重复路线,按照“马走日”的规则,走两步后的落点与出发点间的最短距离的平方为________.(第14题)15.如图,在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径向外作半圆,半圆形的面积分别记为S1,S2,则S1+S2的值为________.(第15题) (第16题)16.如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE 沿AE折叠,点B恰好落在线段DE上的点F处,则BE的长为________.17.(新情境环境保护)如图,这是某路口处草坪的一角,当行走路线是A→C→B时,有人为了抄近道而避开路的拐角∠ACB(∠ACB=90°),于是在草坪内走出了一条捷径A B.某学习实践小组通过测量可知,AC的长为6米,BC的长为8米,为了提醒居民爱护草坪,他们想在A,B处设立“踏破青白可惜,多行数步无妨”的提示牌,则提示牌上的“多行数步”是指多行________米.(第17题)18.“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边为边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为________.三、解答题(每题11分,共66分)19.(2024合肥蜀山区期末) 如图所示,在每个小正方形的边长为单位1的网格中,△ABC是格点图形,求△ABC中AB边上的高.20.某消防部队进行消防演练.在模拟演练现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12 m,如图,即AD=BC=12 m,此时建筑物中距地面12.8 m高的P处有一被困人员需要救援.已知消防车的车身高AB是3.8 m,问此消防车的云梯至少应伸长多少米?21.(新视角新定义题)定义:如图,点M,N把线段AB分割成AM,MN,NB,若以AM,MN,NB为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N把线段AB分割成AM,MN,NB,若AM=5,MN=13,BN=12,则点M,N是线段AB的勾股分割点吗?请说明理由.(2)已知点M,N是线段AB的勾股分割点,且AM为直角边,若AB=12,AM=5,求BN的长.22.(2024开封龙亭区期末) 如图,一工厂位于点C,河边原有两个取水点A,B,其中AB=AC,由于某种原因从工厂C到取水点A的路受阻,为了取水更方便,工厂新建一个取水点H(点A,H,B在一条直线上),并新修一条路CH,测得CB=2.5 km,CH=2 km,BH=1.5 km.(1)CH是否为从工厂C到河边最近的一条路(即CH与AB是否垂直)?请说明理由.(2)求AC的长.23.(教材P15习题T4变式) 如图,长方体的底面(正方形)边长为3 cm,高为5cm.若一只蚂蚁从点A开始经过四个侧面爬行一圈到达点B,求蚂蚁爬行的最短路径有多长.24.如图,在长方形ABCD中,DC=5 cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设落点为F.若△ABF的面积为30 cm2,求△ADE的面积.答案一、1.B 2.B 3.D4.B 点拨:如图,连接ED 交AC 于点F .因为四边形ABCD 是正方形,所以点B 与点D 关于AC 对称.所以BF =DF .所以△BFE 的周长=BF +EF +BE =DE +BE ,此时△BFE 的周长最小.根据勾股定理易求得DE =5,所以△BFE 的周长最小为DE +BE =5+1=6.5.C 点拨:因为直角三角形的三边a ,b ,c 满足c >a >b ,所以该直角三角形的斜边为c ,所以c 2=a 2+b 2,即c 2-a 2-b 2=0.所以S 1=c 2-a 2-b 2+b (a +b -c )=ab +b 2-bc ,因为S 2=b (a +b -c )=ab +b 2-bc ,所以S 1=S 2.6.D 点拨:由题意得MN 是AC 的垂直平分线,所以AC =2AE =8,DA =DC ,所以∠DAC =∠C .因为BD =CD ,所以BD =AD ,所以∠B =∠BAD ,因为∠B +∠BAD +∠C +∠DAC =180°,所以2∠BAD +2∠DAC =180°.所以∠BAD +∠DAC =90°,即∠BAC =90°.在Rt △ABC 中,BC =BD +CD =2AD =10,所以AB 2=BC 2-AC 2=102-82=62,所以AB =6.7.C 点拨:因为当m =3,n =1时,a =12(m 2-n 2)=12×(32-12)=4,b =mn =3×1=3,c =12(m 2+n 2)=12×(32+12)=5,所以选项A 不符合题意;因为当m =5,n =1时,a =12(m 2-n 2)=12×(52-12)=12,b =mn =5×1=5,c =12(m 2+n 2)=12×(52+12)=13,所以选项B 不符合题意;因为当m =7,n =1时,a =12(m 2-n 2)=12×(72-12)=24,b =mn =7×1=7,c =12(m 2+n 2)=12×(72+12)=25,所以选项D 不符合题意;因为没有符合条件的m ,n 使a ,b ,c 各为6,8,10,所以选项C 符合题意,故选C.8.B 9.C10.A 点拨:如图,连接DF ,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4.所以AB 2=AC 2+BC 2=32+42=52,所以AB =5.因为AD =AC =3,AF ⊥CD ,所以CE =DE ,BD =AB -AD =2,所以CF =DF .在△ADF 和△ACF 中, {AD =AC ,DF =CF ,AF =AF ,所以△ADF ≌△ACF (SSS ),所以∠ADF =∠ACF =90°,所以∠BDF =90°.设 CF =DF =x ,则 BF =4-x .在Rt △BDF 中,由勾股定理得DF 2+BD 2=BF 2,即 x 2+22=(4-x )2,解得x =1.5,所以CF =1.5.二、11.12 12.等腰直角三角形13.50 14.2 15.2π 16.4 17.418.127 点拨:因为第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),……所以第六代勾股树中正方形有1+2+22+23+24+25+26=127(个).三、19.解:设AB 边上的高为h ,因为AB 2=32+42=52,所以AB =5,所以12×5h =12×3×3,解得h =95,即AB 边上的高是95.20.解:由题意知PC =12.8 m ,CD =AB =3.8 m ,所以PD =PC -CD =12.8-3.8=9(m).在Rt △ADP 中,AP 2=AD 2+PD 2,所以AP 2=122+92.所以AP =15 m.故此消防车的云梯至少应伸长15 m.21.解:(1)是.理由如下:因为AM 2+BN 2=52+122=169,MN 2=132=169,所以AM 2+BN 2=MN 2.所以以AM ,MN ,NB 为边的三角形是一个直角三角形.故点M ,N 是线段AB 的勾股分割点.(2)设BN =x ,则MN =AB -AM -BN =7-x ,①当MN 为最长线段时,MN 2=AM 2+BN 2,即(7-x )2=x 2+25,解得x =127;②当BN 为最长线段时,BN 2=AM 2+MN 2,即x 2=25+(7-x )2,解得x =377.综上所述,BN 的长为127或377.22.解:(1)CH 是从工厂C 到河边最近的一条路.理由如下:在△CHB 中,因为CH 2+BH 2=22+1.52=6.25,BC 2=2.52=6.25,所以CH 2+BH 2=BC 2,所以△CHB 是直角三角形,且∠CHB =90°,所以CH 与AB 垂直,即CH 是从工厂C 到河边最近的一条路;(2)设AC =x km ,则AB =AC =x km.因为∠CHB =90°,所以∠CHA =90°.在Rt △ACH 中,AH =(x -1.5)km ,CH =2 km ,由勾股定理得AC 2=AH 2+CH 2,所以x 2=(x -1.5)2+22,解这个方程,得x =2512.所以AC 的长为2512 km.23.解:将长方体的侧面展开如图所示,连接AB ′.因为在Rt △AA ′B ′中,AA ′=12 cm ,A ′B ′=5 cm ,所以AB ′2=AA ′2+A ′B ′2=169. 所以AB ′=13 cm.所以蚂蚁爬行的最短路径长为13 cm.24.解:由折叠可知AD =AF ,DE =EF .由S △ABF =12BF ·AB =30 cm 2,AB =DC =5 cm ,得BF =12 cm.在Rt △ABF 中,由勾股定理得AF 2=AB 2+BF 2=52+122=169,所以AF =13 cm.所以BC =AD =AF =13 cm.设DE =x cm ,则EC =(5-x )cm ,EF =x cm.在Rt △ECF 中,FC =13-12=1(cm),由勾股定理得EC 2+FC 2=EF 2,即(5-x )2+12=x 2,解得x =135.所以DE =135cm.所以△ADE 的面积为12AD ·DE =12×13×135=16.9 (cm 2).。
北师大版八年级数学上册第三章综合素质评价试卷 附答案 (1)
北师大版八年级数学上册第三章综合素质评价一、选择题(每题3分,共30分)1.云南是一个神奇美丽的地方,这里有美丽的边疆、美丽的城市、美丽的村庄、美丽的风情,云南的省会城市昆明更有着四季如春的美誉,下列表示昆明市地理位置最合理的是( )A.在中国西南地区B.在云贵高原的中部C.距离北京2 600千米D.东经102°、北纬24°2.如图,科考队探测到目标位于图中阴影区域内,则目标的坐标可能是( ) A.(20,30)B.(15,-28)C.(-40,-10)D.(-35,19)例题】某镇初级中学在镇政府的南偏西60°方向上,且距离镇3.【母题:教材P54政府1 500 m,则如图所示的表示法正确的是( )4.【2023·济宁任城区校级月考】已知点A(m-1,3)与点B(2,n-1)关于x轴对称,则m+n的值为( )A.0 B.1 C.-1 D.3 5.【2023·天津中学月考】已知点A(-1,-4),B(-1,3),则( ) A.点A,B关于x轴对称B.点A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴6.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为( ) A.2 B.-4 C.-1 D.37.若点P(1,a)与点Q(b,2)关于x轴对称,则代数式(a+b)2 023的值为( ) A.-1 B.1 C.-2 D.28.【2023·常州实验中学月考】如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E 的坐标是( )A.(2,-3)B.(2,3)C.(3,2)D.(3,-2)9.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是( )A.(3,3) B.(3,-3)C.(6,-6) D.(3,3)或(6,-6)10.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2,…,第n次移动到点A n,则点A2 024的坐标是( )A.(1 011,0) B.(1 011,1) C.(1 012,0) D.(1 012,1) 二、填空题(每题3分,共24分)11.点(0,-2)在________轴上.12.点(4,5)关于x轴对称的点的坐标为__________.13.一个英文单词的字母顺序分别对应如图中的有序数对:(5,3),(6,3),(7,3),(4,1),(4,4),则这个英文单词翻译成中文为__________.14.已知点A,B,C的坐标分别为(2,4),(6,0),(8,0),则△ABC的面积是________.15.【母题:教材P71复习题T1(3)】若点P到x轴的距离为4,到y轴的距离为5,且点P在y轴的左侧,则点P的坐标为________________.16.已知点N的坐标为(a,a-1),则点N一定不在第________象限.17.【2023·苏州一中月考】如图,一束光线从点A(3,3)出发,经过y轴上的点C 反射后经过点B(1,0),则光线从点A到点B经过的路径长为________.18.【规律探索题】【2022·毕节】如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位长度,再向右平移1个单位长度,得到点A1(1,1);把点A1向上平移2个单位长度,再向左平移2个单位长度,得到点A2(-1,3);把点A2向下平移3个单位长度,再向左平移3个单位长度,得到点A3(-4,0);把点A3向下平移4个单位长度,再向右平移4个单位长度,得到点A4(0,-4),…;按此做法进行下去,则点A10的坐标为________.三、解答题(19,23,24题每题12分,其余每题10分,共66分)19.【母题:教材P60随堂练习】2023年亚运会将在杭州举行,如图是杭州李华同学家附近的一些地方.(1)根据图中所建立的平面直角坐标系,写出学校、邮局的坐标.(2)某星期日早晨,李华同学从家里出发,沿着(-2,-1)→(-1,-2)→(1,-2)→(2,-1)→(1,-1)→(1,3)→(-1,0)→(0,-1)→(-2,-1)的路线转了一圈,依次写出他路上经过的地方.(3)连接(2)中各点,所形成的路线构成了什么图形?20.已知点P (2m -6,m +2).(1)若点P 在y 轴上,则点P 的坐标为__________; (2)若点P 的纵坐标比横坐标大6,则点P 在第几象限?21.若点P ,Q 的坐标分别是(x 1,y 1),(x 2,y 2),则线段PQ 的中点坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22.如图,已知点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),利用上述结论分别求出线段AC ,BC 的中点D ,E 的坐标,并判断DE 与AB 的位置关系.22.【2023·吉林一中月考】已知点P (2x ,3x -1)是平面直角坐标系内的点. (1)若点P 在第三象限,且到两坐标轴的距离和为11,求x 的值;(2)已知点A (3,-1),点B (-5,-1),点P 在直线AB 的上方,且到直线AB 的距离为5,求x 的值.23.如图,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4,OA=5,DE=2,动点P从点A出发,沿A→B→C的路线运动到点C停止;动点Q从点O出发,沿O→E→D的路线运动到点D停止.若P,Q两点同时出发,且P,Q运动的速度均为每秒一个单位长度.(1)直接写出B,C,D三个点的坐标;(2)当P,Q两点出发6 s时,试求三角形POQ的面积.24.【存在性问题】已知A(-3,0),C(0,4),点B在x轴上,且AB=4.(1)求点B的坐标.(2)在y轴上是否存在点P,使得以A,C,P为顶点的三角形的面积为9?若存在,求出点P的坐标;若不存在,请说明理由.(3)在y轴上是否存在点Q,使得△ACQ是等腰三角形?若存在,请画出点Q的位置,并直接写出点Q的坐标;若不存在,请说明理由.答案一、1.D 【提示】表示昆明市地理位置最合理的是东经102°、北纬24°. 2.D 【提示】图中阴影区域在第二象限,故选D.3.A 【提示】A.镇初级中学在镇政府的南偏西60°方向上,且距离镇政府1 500 m,故本选项符合题意;B.镇初级中学在镇政府的南偏西30°方向上,且距离镇政府1 500 m,故本选项不符合题意;C.镇政府在镇初级中学的南偏西60°方向上,且距离镇初级中学1 500 m,故本选项不符合题意;D.镇政府在镇初级中学的南偏西30°方向上,且距离镇初级中学1 500 m,故本选项不符合题意.故选A.4.B 【提示】因为点A(m-1,3)与点B(2,n-1)关于x轴对称,所以m-1=2,n-1=-3,解得m=3,n=-2,所以m+n=1.5.C 【提示】把A(-1,-4),B(-1,3)在平面直角坐标系中画出,并连接AB,可知AB平行于y轴.6.C 【提示】因为直线AB∥x轴,所以A、B两点的纵坐标相等,所以-2=m -1,解得m=-1.7.A 【提示】因为P(1,a)与Q(b,2)关于x轴对称,所以b=1,a=-2,所以(a+b)2 023=(-2+1)2 023=-1.8.C 【提示】因为点A的坐标为(0,a),所以点A在该平面直角坐标系的y轴上.因为点C,D的坐标分别为(b,m),(c,m),所以点C,D关于y轴对称.因为正五边形ABCDE是轴对称图形,所以该平面直角坐标系经过点A的y轴是正五边形ABCDE的一条对称轴,所以点B,E也关于y轴对称.因为点B的坐标为(-3,2),所以点E的坐标为(3,2).9.D 【提示】因为点P到两坐标轴的距离相等,所以|2-a|=|3a+6|,所以2-a=3a+6或2-a=-(3a+6),解得a=-1或a=-4,所以点P 的坐标为 (3,3)或(6,-6).10.C 【提示】A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),A7(3,0),A8(4,0),…,2 024÷4=506,所以A2 024的坐标为(506×2,0),则A2 024的坐标是(1 012,0).二、11.y【提示】横坐标为0,所以点(0,-2)在y轴上.12.(4,-5) 【提示】因为关于x轴对称的点横坐标变,纵坐标互为相反数,所以点(4,5)关于x轴对称的点的坐标为(4,-5).13.学习【提示】根据有序数对对应的字母即可求解.14.4 【提示】把点A,B,C在平面直角坐标系中标出来,可知BC=2,△ABC的边BC上的高为4,所以△ABC的面积为12×4×2=4.15.(-5,4)或(-5,-4) 【提示】由点P到两坐标轴的距离可知,点P有4个.因为点P在y轴的左侧,所以点P的坐标为(-5,4)或(-5,-4).16.二【提示】当a>1时,a-1是正数,所以点P在第一象限,当a<1时,a-1为负数,所以点P在第三象限或第四象限.故点N一定不在第二象限.17.5 【提示】作点A关于y轴的对称点A′(-3,3),过A′作垂直于x轴于点D,连接A′,D,B构成△A′DB,所以A′D=3,DB=4,所以A′B=A′D2+BD2=5,即光线从点A到点B经过的路径长为5.18.(-1,11) 【提示】由题图可知A5(5,1);将点A5向上平移6个单位长度,再向左平移6个单位长度,可得A6(-1,7);将点A6向下平移7个单位长度,再向左平移7个单位长度,可得A7(-8,0);将点A7向下平移8个单位长度,再向右平移8个单位长度,可得A8(0,-8);将点A8向上平移9个单位长度,再向右平移9个单位长度,可得A9(9,1);将点A9向上平移10个单位长度,再向左平移10个单位长度,可得A10(-1,11).三、19.【解】(1)学校的坐标为(1,3),邮局的坐标为(0,-1).(2)商店、公园、汽车站、水果店、学校、娱乐城、邮局.(3)图略,所形成的路线构成了一条帆船图形.20.【解】(1)(0,5)(2)根据题意,得2m -6+6=m +2,解得m =2. 所以点P 的坐标为(-2,4). 所以点P 在第二象限.21.【解】由题中所给结论及点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),得点D (-2,2),E (2,2).因为点D ,E 的纵坐标相等,且不为0, 所以DE ∥x 轴. 又因为AB 在x 轴上, 所以DE ∥AB .22.【解】(1)因为点P 在第三象限,所以点P 到x 轴的距离为1-3x ,到y 轴的距离为-2x .因为点P 到两坐标轴的距离和为11, 所以1-3x -2x =11,解得x =-2. (2)易知直线AB ∥x 轴.由点P 在直线AB 的上方且到直线AB 的距离为5,得3x -1-(-1)=5,解得x =53. 23.【解】(1)B (4,5),C (4,2),D (8,2).(2)当P ,Q 两点出发6 s 时,P 点的坐标为(4,3),Q 点的坐标为(6,0), 所以S 三角形POQ =12×6×3=9.24.【解】(1)因为点B 在x 轴上,所以设点B 的坐标为(x ,0).因为A (-3,0),AB =4, 所以|x -(-3)|=4, 解得x =-7或x =1.所以点B 的坐标为(-7,0)或(1,0).(2)在y 轴上存在点P ,使得以A ,C ,P 为顶点的三角形的面积为9.设点P 的坐标为(0,y ),当点P 在点C 的上方时,S △ACP =(y -4)×|-3|2=9,解得y =10;当点P 在点C 的下方时,S △ACP =(4-y )×|-3|2=9,解得y =-2.综上所述,点P 的坐标为(0,10)或(0,-2). (3)在y 轴上存在点Q ,使得△ACQ 是等腰三角形.如图,点Q 的坐标为(0,9)或(0,-4)或⎝⎛⎭⎪⎫0,78或(0,-1).。
(完整word版)新北师大版八年级数学(上册)期末测试卷含答案
双柏县2013—2014学年上学期末综合素质测评八年级数学试卷命题:双柏县教研室郎绍波(全卷满分100分,考试时间120分钟)一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)1.计算的结果是()A.-3 B.3 C.—9 D.92.下列几组数能作为直角三角形的三边长的是()A.1,2,3 B.2,3,4C.3,4,5 D.4,5,63.下列说法正确的是()A.所有无限小数都是无理数B.所有无理数都是无限小数C.有理数都是有限小数D.不是有限小数的不是有理数4.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9 B.中位数是9C.众数是5 D.极差是55.在平面直角坐标系中,已知点P的坐标是(—1,-2),则点P关于x轴对称的点的坐标是( )A.(-1,2)B.(1,—2)C.(1,2)D.(2,1)6.如图,AB∥CD,∠D=∠E=35°,BA CDE则∠B的度数为()A.60°B.65°C.70°D.75°7.一次函数y kx b=-,当k<0,b<0时的图象大致位置是( )8.下列计算正确的是( )A BC.2D49-二、填空题(本大题共6个小题,每小题3分,满分18分)9.25的算术平方根是.10.化简= .11.某水池有水15m3,现打开进水管进水,进水速度5m3/ h;x h后这个水池内有水y m3,则y关于x的关系式为.12.命题“对顶角相等”的条件是,结论是.13.如果a、b同号,则点P(a,b)在象限.14.方程组521x yx y+=⎧⎨-=⎩的解是。
三、解答题(本大题共有9个小题,满分58分)OAB DF3412C E15.(本小题416.(本小题5分)已知13x y =⎧⎨=⎩ 和02x y =⎧⎨=-⎩都是方程ax -y=b 的解,求a 与b 的值.17.(本小题6分)如图,直线CD 、EF 被直线OA 、OB 所截,∠1 +∠2 =180°.求证:∠3=∠4.18.(本小题5分)长方形的两条边长分别为4,6,建立适当的直角坐标系,使它的一个顶点的坐标为(-2,—3).请你写出另外三个顶点的坐标.19.(本小题5分)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.请问榕树和香樟树的单价各多少?20.(本小题6分)已知直线y=2x 与y=-x +b 的交点为(1,a ),试确定方程组2y 0+y 0x x b -=⎧⎨-=⎩ 的解和a 、b 的值.21.(本小题9分)已知一次函数y=kx —3的图象与正比例函数12y x =的图象相交于点(2,a ). (1)求a 的值.(2)求一次函数的表达式.(3)在同一坐标系中,画出这两个函数的图象.x22.(本小题9分)甲、乙两名工人同时加工同一种零件,现根据两人7天产品中每天出现的次品数情况绘制成如下不完整的统计图和表,依据图、表信息,解答下列问题: 相关统计量表:众数中位数平均数 方差甲2 107 乙1 1147次品数量统计表:第1天 第2天 第3天 第4天 第5天 第6天 第7天 甲(件) 2 2 0 3 1 2 4乙(件)1211(1)补全图、表.(2)判断谁出现次品的波动小.(3)估计乙加工该种零件30天出现次品多少件?甲 乙数量23.(本小题9分)汽车出发前油箱有油50L,行驶若干小时后,在加油站加油若干升.图象表示的是从出发后,油箱中剩余油量y(L)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70km/h匀速行驶,如果加油站距目的地210km,那么要到达目的地,油箱中的油是否够用?请说明理由.O 2 4 6 8 t/hOABDF342C E1 52013—2014学年上学期末综合素质测评八年级数学 参考答案一、选择题(每小题只有一个正确的选项,每小题3分,共24分)1.A 2.C 3.B 4.D 5.A 6.C 7.C 8.A二、填空题(每小题3分,共18分)9.5 10.2 11.y=5x +15 12.如果两个角是对顶角,那么它们相等 13.一或三 14.2y 3x =⎧⎨=⎩ 三、解答题(共58分)15.(每小题4分)解(—16.(本小题5分)解:因为13x y =⎧⎨=⎩ 和02x y =⎧⎨=-⎩都是方程ax -y=b 的解 所以,35,22a b a b b -==⎧⎧⎨⎨==⎩⎩解得 17.(本小题6分) 证明:∵∠2与∠5是对顶角∴∠2=∠5 ∵∠1 +∠2 =180° ∴∠1 +∠5 =180° ∴CD ∥EF ∴∠3=∠418.(本小题5分) 解:如图建立直角坐标系, 因为长方形的一个顶点的 坐标为A (-2,—3)所以长方形的另外三个顶点 的坐标分别为:B (2,-3),C(2,3),D (-2,3) (答案不唯一)19.(本小题5分)解:设榕树的单价为x 元/棵,香樟树的单价是y 元/棵,则:y 203+2y 340x x =-⎧⎨=⎩,解得60y 80x =⎧⎨=⎩ 答:榕树和香樟树的单价分别是60元/棵,80元/棵20.(本小题6分)解:因为直线y=2x 与y=-x +b 的交点为(1,a ),所以221+3a a a b b ==⎧⎧⎨⎨=-=⎩⎩,解得 则有 2y 02y 01,,+y 30+y 3y 2x x x x x -=-==⎧⎧⎧⎨⎨⎨-===⎩⎩⎩即解得 因此,方程组2y 0+y 0x x b -=⎧⎨-=⎩ 的解是1y 2x =⎧⎨=⎩,a 、b21.(本小题9分) 解:(1)∵ 正比例函数12y x =的图象过点(2∴ a =1 (2)∵一次函数y=kx —3的图象经过点(∴1=2k —3 ∴k =2 ∴y=2x —3 (3)函数图像如右图22.(本小题9分) 解:x(1)补全的图如下。
北师大版八年级数学上册第二章综合素质评价试卷 附答案 (1)
北师大版八年级数学上册第二章综合素质评价一、选择题(每题3分,共30分)1.下列各数中,是无理数的是( )A.3.141 5 B. 4 C.227D. 62.在-4,-2,0,4这四个数中,最小的数是( )A.4 B.0 C.- 2 D.-43.若式子x-1x-2在实数范围内有意义,则x的取值范围是( )A.x≥1且x≠2 B.x≤1 C.x>1且x≠2 D.x<1 4.【2023·南师附中树人学校月考】下列二次根式中,是最简二次根式的是( )A.15B.10 C.50 D.0.55.【2022·重庆】估计54-4的值在( )A.6到7之间B.5到6之间C.4到5之间D.3到4之间6.【2023·太原小店区校级月考】下列各式的化简正确的是( ) A.(-4)×(-49)=-4×-49=(-2)×(-7)=14B.32=25+7=25×7=57C.419=379=379=373D.0.7=710=7107.如图所示,数轴上表示2和5的对应点分别为C和B,若点C是AB的中点,则点A表示的数是( )A.- 5 B.2- 5 C.4- 5 D.5-28.【母题:教材P39议一议】小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A 作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于( )A.1和2之间B.2和3之间C.3和4之间D.4和5之间9.已知a=3+22,b=3-22,则a2b-ab2的值为( )A.1 B.17 C.4 2 D.-4 2 10.【探究规律题】如图所示,已知△ABC是腰长为1的等腰直角三角形,以等腰直角三角形ABC的斜边AC为直角边,画第2个等腰直角三角形ACD,再以等腰直角三角形ACD的斜边AD为直角三边,画第3个等腰直角三角形ADE……以此类推,第2 024个等腰直角三角形的斜边长是( )A. 2 024B.21 0122C.21 012D.2 024二、填空题(每题3分,共24分)11.实数-2的相反数是________,绝对值是________.12.【2022·山西】计算:18×12的结果为________.13.一个正数的平方根分别是x+1和x-5,则x=__________.14.【母题:教材P34习题T2(1)】比较大小:10-13________23(填“>”“<”或“=”).15.【2023·天津南开中学模拟】对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b=a+ba-b,如:3⊕2=3+23-2=5,那么12⊕4=________.16.若利用计算器求得 6.619≈2.573,66.19≈8.136,则估计6 619的算术平方根是________.17.如图,在△ABC中,若AB=AC=6,BC=4,D是BC的中点,则AD的长为________.18.已知a,b,c在数轴上对应点的位置如图所示,化简a2-(a+b)2+(c-a)2+(b+c)2的结果是________.三、解答题(19题16分,其余每题10分,共66分)19.【母题:教材P50复习题T8】计算下列各题:(1)【2022·泰州】18-3×23;(2)⎝⎛⎭⎪⎫-12-1-214-3(-1)2 023;(3)(6-215)×3-612; (4)48÷3-215×30+(22+3)2.20.已知5是2a-3的算术平方根,1-2a-b的立方根为-4.(1)求a和b的值;(2)求3b-2a-2的平方根.21.【2023·沈阳实验中学月考】一个正方体的表面积是2 400 cm2.(1)求这个正方体的体积;(2)若该正方体的表面积变为原来的一半,则体积变为原来的多少?22.已知7+5和7-5的小数部分分别为a,b,试求代数式ab-a+4b-3的值.23.拦河坝的横断面是梯形,如图,其上底是8 m,下底是32 m,高是 3 m.(1)求横断面的面积;(2)若用300 m3的土,可修多长的拦河坝?24.【母题:教材P48习题T4】先阅读材料,再回答问题.已知x=3-1,求x2+2x-1的值.计算此题时,若将x=3-1直接代入,则运算非常麻烦.仔细观察代数式,发现由x=3-1得x+1=3,所以(x +1)2=3.整理,得x2+2x=2,再代入求值会非常简便.解答过程如下:解:由x=3-1,得x+1=3,所以(x+1)2=3.整理,得x2+2x=2,所以x2+2x-1=2-1=1.请仿照上述方法解答下面的题目:已知x=5+2,求6-2x2+8x的值.答案一、1.D 【提示】由无理数的定义判断即可.2.D 【提示】由实数的性质可知,正数大于一切负数,而且-4<-2,故选D. 3.A 【提示】由题意知,x-1≥0,x-2≠0,所以x≥1且x≠2.4.B 【提示】15=55,故A错误;10是最简二次根式,故B正确;50=52,故C错误;0.5=12=22,故D错误,故选B.5.D 【提示】因为49<54<64,所以7<54<8,所以3<54-4<4.6.C 【提示】A.(-4)×(-49)=4×49=2×7=14,故A不符合题意;B.32=16×2=42,故B不符合题意;C.419=379=373,故C符合题意;D.0.7=710=7010,故D不符合题意.故选C.7.C 【提示】由已知得CB=5-2,OB=5,因为C是AB的中点,所以AB =2CB=2(5-2),所以OA=OB-AB=5-2(5-2)=4-5,所以点A表示的数是4- 5.8.C 【提示】由题意知OB=OA2+AB2=22+32=13,因为3<13<4,所以点P所表示的数介于3和4之间.9.C 【提示】因为a=3+22,b=3-22,所以a2b-ab2=ab(a-b)=(3+22) (3-22)[3+22-(3-22)]=[(3)2-(22)2]×42=(9-8)×42=4 2.10.C 【提示】因为△ABC是腰长为1的等腰直角三角形,所以斜边AC=12+12= 2.同理,可得第2个等腰直角三角形的斜边AD=AC2+CD2=2=(2)2,第3个等腰直角三角形的斜边长为22+22=22=(2)3,以此类推,第n个等腰直角三角形的斜边长为(2)n,其中n为正整数,则第2 024个等腰直角三角形的斜边长为(2)2 024=[(2)2]1 012=21 012.二、11.2; 2 【提示】根据相反数的定义和绝对值的定义可知答案.12.3 【提示】18×12=18×12=9=3.13.2 【提示】因为一个正数的平方根是x+1和x-5,所以两个平方根的和为0,即x+1+x-5=0,解得x=2.14.>【提示】10-13-23=10-33,因为10≈3.33,所以10>3,所以10-33>0,即10-13-23>0,所以10-13>23.15. 2 【提示】根据新定义可得12⊕4=12+412-4=168= 2.16.81.36 【提示】被开方数的小数点向右移动两位,所得结果的小数点向右移动一位,故 6 619≈81.36.17.4 2 【提示】因为AB=AC=6,所以△ABC为等腰三角形.因为D为BC的中点,所以BD=12BC=2,AD是△ABC的高.在Rt△ABD中,AD=AB2-BD2=62-22=4 2.18.-a【提示】由题图可知,b<a<0<c,|c|<|b|,所以原式=|a|-|a+b|+ (c-a)+|b+c|=-a+(a+b)+(c-a)-(b+c)=-a+a+b+c -a-b-c=-a.三、19.【解】(1)原式=18-3×23=32-2=22;(2)原式=-2-94-3-1=-2-32+1=-52;(3)原式=18-245-6×22=32-65-32=-65; (4)原式=16-26+11+46=15+2 6.20.【解】(1)因为5是2a -3的算术平方根,1-2a -b 的立方根为-4,所以2a -3=25,1-2a -b =-64.所以a =14,b =37.(2)由(1)知a =14,b =37,所以3b -2a -2=3×37-2×14-2=81.所以3b -2a -2的平方根为±81=±9.21.【解】(1)设这个正方体的棱长为a cm(a >0).由题意得6a 2=2 400,解得a =20(负值舍去).则这个正方体的体积为203=8 000(cm 3).(2)若该正方体的表面积变为原来的一半,则有6a 2=1 200,解得a =102(负值舍去). 所以体积为(102)3=2 0002(cm 3). 因为2 00028 000=24, 所以体积变为原来的24. 22.【解】因为5的整数部分为2,所以7+5=9+a ,7-5=4+b , 即a =-2+5,b =3- 5.所以ab -a +4b -3=(-2+5)(3-5)-(-2+5)+4(3-5)-3=-11+55+2-5+12-45-3=0.23.【解】(1)S =12(8+32)×3=12(22+42)×3=12×62×3=36(m 2).答:横断面的面积为3 6 m 2. (2)3003 6=1006=100 66×6=100 66=50 63(m). 答:可修5063m 长的拦河坝. 24.【解】由x =5+2得x -2=5,所以(x -2)2=5.整理,得x 2-4x =1.所以6-2x 2+8x =6-2(x 2-4x )=6-2×1=4.。
北师大版八年级数学上册测试题及答案
北师大版八年级上册数学评价检测试卷第四章 一次函数班级 姓名 学号 评价等级一、选择题1.父亲节,某学校“文苑”专栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还。
”如果用纵轴y 表示父亲和学子在行进中离家的距离,横轴t 表示离家的时间,那么下面的图象与上述诗意大致相吻合的是( )2.已知一次函数y kx k =-,若y 随着x 的增大而减小,则该函数图象经过( ) (A )第一、二、三象限 (B )第一、二、四象限 (C )第二、三、四象限 (D )第一、三、四象限 3.若函数y=28(3)m m x --是正比例函数,则常数m 的值是( ) (A )-7 (B )±7 (C )士3 (D )-34.某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图象如图1所示,由图中给出的信息可知,营销人员没有销售时的收入是( )(A )310元 (B )300元 (C )290元 (D )280元 5.直线42--=x y 与两坐标轴围成的三角形面积是( )(A )6.下列图形中,表示一次函数y = mx + n 与正比例函数y = mnx (m 、n 为常数, 且mn ≠0)的图象的是( )7.如图2所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t ,大正方形内除去小正方形部分的面积为S (阴影部分),那么S 与t 的大致图象应为()8.已知一次函数b kx y +=(k 、b 是常数,且k ≠0),x 与y 的部分对应值如下表所示,那么k 、b 的值分别是( )(A )1,1 (B )1,-1(C )-1,1(D )-1,-19.点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x + 3 图象上的两个点, 且x 1<x 2,则y 1与y 2的大小关系是( ).(A )y 1>y 2 (B )y 1>y 2 >0 (C )y 1<y 2 (D )y 1=y 210.在一定范围内,某种产品的购买量y 吨与单价x 元之间满足一次函数关系,若购买1000吨,每吨为800元;购买2000吨,每吨为700元,一客户购买400吨单价应该是( ) (A )820元 (B )840元 (C )860元 (D )880元二、填空题11.函数y =kx 的图象经过点P (3,-1),则k 的值为 。
新北师大版八年级上册数学期中评价检测试卷及答案
新北师大版八年级上册数学期中评价检测试卷及答案一、选择题(每题3分;共30分)1、91的平方根是( ) (A) 31(B) 31- (C) 31± (D) 811±2、 长方形的一条对角线的长为10cm ;一边长为6cm ;它的面积是( ). (A )60cm 2(B )64 cm 2(C )24 cm 2(D )48 cm 23、若一个三角形三边满足ab c b a 2)(22=-+;则这个三角形是( )(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对 4、估计;56 的大小应在( ).(A )5~6之间 (B )6~7之间 (C )8~9之间 (D )7~8之间 5、已知y x ,为实数;且()02312=-+-y x ;则y x -的值为( )(A ) 3 (B ) 3- (C ) 1 (D ) 1- 6、如果点P ()1,3++m m 在x 轴上;则点P 的坐标为( )(A) (0;2) (B) (2;0) (C) (4;0) (D) (0;)4- 7、已知点P 的坐标为()63,2+-a a ;且点P 到两坐标轴的距离相等;则点P 的坐标为( ) (A) (3;3) (B) (3; )3- (C) (6; )6- (D) (3;3)或(6; )6- 8、已知一次函数y kx k =-;若y 随着x 的增大而减小;则该函数图象经过( ) (A )第一、二、三象限 (B )第一、二、四象限 (C )第二、三、四象限 (D )第一、三、四象限9、下列图形中;表示一次函数y = mx + n 与正比例函数y = mnx (m 、n 为常数; 且mn ≠0)的图象的是( )(A )(B )(C )10、点P 1(x 1;y 1);点P 2(x 2;y 2)是一次函数y =-4x + 3 图象上的两个点; 且x 1<x 2;则y 1与y 2的大小关系是( ).(A )y 1>y 2 (B )y 1>y 2 >0 (C )y 1<y 2 (D )y 1=y 2二、填空题(每空2分;共20分)11、点 P (2;a -3)在第四象限;则a 的取值范围是 . 12、函数y =kx 的图象经过点P (3;-1);则k 的值为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013北师大版八年级上册数学评价检测试卷第一章勾股定理班级 姓名 学号 评价等级一、选择题1.以下列各组数据为三角形三边,能构成直角三角形的是( ) (A )4cm ,8cm ,7cm (B ) 2cm ,2cm ,2cm (C ) 2cm ,2cm ,4cm (D )13cm ,12 cm ,5 cm2.一个三角形的三边长分别为15cm ,20cm ,25cm ,则这个三角形最长边上的高为( ) (A )12cm (B )10cm (C )12.5cm (D )10.5cm3.Rt ∆ABC 的两边长分别为3和4,若一个正方形的边长是∆ABC 的第三边,则这个正方形的面积是( ) (A )25 (B )7 (C )12 (D )25或74.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,可搭成(首尾连接)直角三角形的个数为 ( ) (A )1个 (B )2个 (C )3个 (D )4个5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是( ) (A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上结论都不对 6.在△ABC 中,AB =12cm , AC =9cm ,BC =15cm ,下列关系成立的是( ) (A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠ (C )B C A ∠+∠<∠ (D )以上都不对7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( )(A )2m (B )2.5cm (C )2.25m (D )3m 8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( )(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对 9.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( ) (A )150cm(B )90cm(C )80cm(D )40cm10.三角形三边长分别为12+n 、n n 222+、1222++n n (n 为自然数),则此三角形是( ) (A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对二、填空题11.写四组勾股数组.______,______,______,______.12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________。
13.如图1,某宾馆在重新装修后,准备在大厅 的主楼梯上铺上红色地毯,已知这种地毯每平 方米售价20元,主楼梯宽2米。
则购地毯至少 需要 元.14.有一个长为l2cm ,宽为4cm ,高为3cm 的长方形铁盒,在其内部要放一根笔直的铅笔,则铅笔最长是 cm15.直角三角形有一条直角边为11,另外两条边长是自然数,则周长为________。
三、解答题16.如图2,一次“台风”过后,一根旗杆被台风从离地面2.8米处吹断裂,倒下的旗杆的顶端落在离旗杆底部9.6米处,那么这根旗杆被吹断裂前有多高?(旗杆粗细、断裂磨损忽略不计)17.一个零件的形状如图3所示,工人师傅按规定做得AB =3,BC =4,AC =5,CD =12,AD =13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?18.如图4是一块地,已知AD=8m ,CD=6m ,∠D=090,AB=26m ,BC=24m ,求这块地的面积。
19.“中华人民共和国道路交通管理条例”规定:小汽车在城市街路上的行驶速度不得超过70千米/时,如图5,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了2秒后,测得小汽车与车速检测仪问的距离变为50米。
这辆小汽车超速了吗?20.学校校内有一块如图6所示的三角形空地ABC ,计划将这块空地建成一个花园,以美化校园环境,预计花园每平方米造价为30元,学校修建这个花园需要投资多少元?北师大版八年级上册数学评价检测试卷(图6)第二章 实 数班级 姓名 学号 评价等级一、选择题1.在下列实数中,是无理数的为( ) (A ) 0 (B )-3.5 (C )(D )2.A 为数轴上表示-1的点,将点A 沿数轴移动3个单位到点B ,则点B 所表示的实数为( ). (A )3 (B )2 (C )-4 (D )2或-4 3.一个数的平方是4,这个数的立方是( )(A )8 (B )-8 (C )8或-8 (D )4或-4 4.实数m 、n 在数轴上的位置如图1所示,则下列不等关系正确的是( ) (A )n <m (B ) n 2<m 2(C )n 0<m 0(D )| n |<| m | 5.下列各数中没有平方根的数是( ) (A )-(-2)3(B )33- (C )0a (D )-(a 2+1)6.下列语句错误的是( )(A )41的平方根是±21(B )-41的平方根是-21(C )41的算术平方根是21(D )41有两个平方根,它们互为相反数 7.下列计算正确的是( ). (A )628=- (B1==(C)(21= (D= 1 8.估计56 的大小应在( ).(A )5~6之间 (B )6~7之间 (C )8~9之间 (D )7~8之间9.已知a a = ,那么=a ( )(A ) 0 (B ) 0或1 (C )0或-1 (D ) 0,-1或1 10.已知y x ,为实数,且()02312=-+-y x ,则y x -的值为( )(A ) 3 (B ) 3- (C ) 1 (D ) 1-二、填空题11.8116的平方根是____________,(21-)2的算术平方根是____________。
12.下列实数:21,16-,3π-,︱-1︱,722,39 ,0.1010010001……中无理数的个数有 个。
13.写出一个3到4之间的无理数 。
14.计算:______28=+。
15.52-的相反数是_____ _,绝对值是____ __。
三、解答题16.计算:(1)18282-+ (2)3127112-+(3))632(3- (4))2332)(2332(-+17.某位同学的卧室有25 平方米,共用了64块正方形的地板砖,问每块砖的边长是多少?18.如图2,一只蚂蚁沿棱长为a 的正方体表面从顶点A 爬到顶点B ,则它走过的最短路程为多少?19.如图3,一架长2.50.7米,如果梯子的顶端B A沿墙下滑0.4米,那么梯子的低端将滑出多少米?20.学校要在一块长方形的土地上进行绿化,已知这块长方形土地的长a=510m, 宽b=415m(1)求该长方形土地的面积.(精确到0.01)(2)若绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金为多少元?北师大版八年级上册数学评价检测试卷第三章 位置与坐标班级 姓名 学号 评价等级一、选择题1.如图1,小手盖住的点的坐标可能是( ) (A )(5,2) (B )(-6,3) (C )(―4,―6) (D )(3,-4)2.在平面直角坐标系中,下列各点在第二象限的是( )(A )(2,1) (B )(2,-1) (C )(-2,1)3.点P (—2 ,3) 关于 y 轴对称的点的坐标是( )(A )(—2 ,—3) (B )(3 ,—2) (C )(2 ,3) (D )(2 ,—3) 4.平面直角坐标系内,点A (n ,n -1)一定不在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 5.如果点P ()1,3++m m 在x 轴上,则点P 的坐标为( )(A) (0,2) (B) (2,0) (C) (4,0) (D) (0,)4-6.已知点P 的坐标为()63,2+-a a ,且点P 到两坐标轴的距离相等,则点P 的坐标为( ) (A) (3,3) (B) (3, )3- (C) (6, )6- (D) (3,3)或(6, )6-7.已知点A (2,0)、点B (-12,0)、点C (0,1),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点不可能在( ) (A )第一象限(B )第二象限 (C )第三象限 (D )第四象限8.若P (b a ,)在第二象限,则Q (a b ,)在( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限9.如图2是某战役中缴获敌人防御工程的坐标地图碎片, 依稀可见:一号暗堡的坐标为(1,2),四号暗堡的坐标为(-3,2).另有情报得知:指挥部坐标为(0,0),你认为敌军指挥部的位置大约是( ) (A )A 处(B )B 处(C )C 处(D )D 处10.以边长为4的正方形的对角线建立平面直角坐标系,其中一个顶点位于y 轴的负半轴上,则该点坐标为( ) (A )(2,0)(B )(0,-2)(C )(0,(D )(0,-)二、填空题11.点A 在y 轴上,且与原点的距离为5,则点A 的坐标是__ ______. 12.如图3,每个小方格都是边长为1个单位 长度的正方形,如果用(0,0)表示A 点的 位置,用(3,4)表示B 点的位置,那么 用 表示C 点的位置.13.已知点M ),(b a ,将点M 向右平移)0(>c c 个单位长度得到N为___ _____.14.第三象限内的点()P x y ,,满足5x =,29y =,则点P 的坐标是 . 15.如图4,将∆AOB 绕点O 逆时针旋转900, 得到''OB A ∆。
若点A 的坐标为(b a ,),则 点'A 的坐标为________。
三、解答题16.△ABC 在直角坐标系内的位置如图5所示。
(1)分别写出A 、B 、C 的坐标 (2)请在这个坐标系内画出△A 1B 1C 1,使△A 1B 1C 1与△ABC 关于y 轴对称,并写出B 1的坐标; (3)请在这个坐标系内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 关于原点对称,并写出A 2的坐标;;17.小亮要从A 地赶往CC 三地,但地图被墨迹污染,C 地具体位置看不清楚了,只知道C 地在A 地的南偏西55°,在B 的北偏西70°. (1)请帮助小亮确定C 地的位置; (2)若地图的比例尺是l :10000000, 从A 地到C 地的实际距离约是多少千米?18.在平面直角坐标系中,将坐标为(0,0),(2,1),(2,4),(0,3)的点依次连结起来形成一个图案.BC A •••图6(1) 这四个点的横坐标保持不变,纵坐标变成原来的21,将所有的四个点用线段依次连结起来,所得的图案与原图案相比有什么变化? (2) 纵、横坐标分别变成原来的2倍呢?19.小明的生日快要到了,小军决定送给他一件小礼物,他告诉小明,他已将礼物藏在学校体育场内。