2016-2017学年上学期期中考试八年级数学(人教新课标)试卷及参考答案2016.12

合集下载

2016人教版八年级上期中数学试卷及答案

2016人教版八年级上期中数学试卷及答案

2016人教版八年级上期中数学模拟试卷及答案一、选择题(每题3分,共30分)1.下列平面图形中,不是轴对称图形的是()2.下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形3.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.3cm,3cm,6cm C.5cm,8cm,2cm D.4cm,5cm,6cm 4.以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是()5.点P(﹣1,2)关于y轴对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)6.十二边形的外角和是()A.180°B.360°C.1800°D.2160°7.已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或188.如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需()A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC9.如图所示,AC=BD,AB=CD,图中全等的三角形的对数是()A.2 B.3 C.4 D.510.如图,BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,BE、CF相交于D,则∠BDC的度数是()A.110°B.70° C.80° D.75°二、填空题(每题4分,共24分)11.三角形的两边长分别是3和7,则其第三边x的范围为.12.如果一个正多边形的内角和是720°,则这个正多边形是正边形.13.已知在△ABC中,∠A=40°,∠B﹣∠C=40°,则∠B= ,∠C= .14.如图,Rt△ABC中,∠A=30°,AB=12cm,则BC= cm.15.如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=20,则△PMN的周长为.16.如图,△ABD、△ACE都是正三角形,BE和CD交于O点,则DC= .(写等于哪条线段)三、解答题(一)(每题6分,共18分)17.利用关于坐标轴对称的点的坐标的特点,在下面坐标系中作出△ABC关于y轴对称的图形△A′B′C′,并写出A′,B′,C′的坐标.18.已知AB=CD,BE=CF,AE=DF.求证:AB∥CD.19.如图,在△ABC中,AB=AD=DC,∠BAD=20°,求∠C的度数?四、解答题(二)(每题7分,共21分)20.如图,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,求△ABC的周长.21.某地有两个村庄M、N和两条相交叉的公路OA,OB,现计划修建一个物资仓库,希望仓库到两个村庄的距离相等,到两条公路的距离也相等,请你用尺规作图的方法确定该点P.(注意保留作图痕迹,不用写作法)22.如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.五、解答题(三)(每题9分,共27分)23.如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:DE=DF;(2)若∠A=60°,BE=1,求△ABC的周长.24.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.25.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.参考答案一、选择题(每题3分,共30分)1.A.解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.2.C.解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.3.D.解:A、∵2+3=5,∴不能构成三角形,故本选项错误;B、∵3+3=6,∴不能构成三角形,故本选项错误C、∵5+2=7<8,∴不能构成三角形,故本选项错误;D、∵6﹣4<5<6+4,∴能构成三角形,故本选项正确.4.B.解:A、没有经过顶点A,不符合题意;B、高AD交BC的延长线于点D处,符合题意;C、垂足没有在BC上,不符合题意;D、AD不垂直于BC,不符合题意.5.A.解:点P(﹣1,2)关于y轴对称点的坐标为(1,2).6.B.解:十二边形的外角和是360°.7.解:∵等腰三角形的两边长分别是3和6,∴①当腰为6时,三角形的周长为:6+6+3=15;②当腰为3时,3+3=6,三角形不成立;∴此等腰三角形的周长是15.故选C.8.解:A、AB=DC,不能根据SAS证两三角形全等,故本选项错误;B、∵在△AOB和△DOC中,∴△AOB≌△DOC(SAS),故本选项正确;C、两三角形相等的条件只有OA=OD和∠AOB=∠DOC,不能证两三角形全等,故本选项错误;D、根据∠AOB=∠DOC和OA=OD,不能证两三角形全等,故本选项错误;故选B.9.解:∵AC=BD,AB=CD,BC=BC,∴△ABC≌△DCB,∴∠BAC=∠CDB.同理得△ABD≌△DCA.又因为AB=CD,∠AOB=∠COD,∴△ABO≌△DCO.故选B.10.解:∵BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,∴∠CBE=∠ABC=40°,∠FCB=∠ACB=30°,∴∠BDC=180°﹣70°=110°.故选A.二、填空题(每题4分,共24分)11.解:根据三角形的三边关系定理可得:7﹣3<x<7+3,故4<x<10,故答案为:4<x<10.12.解:设此多边形边数为n,由题意得:180(n﹣2)=720,解得:n=6,故答案为:六.13.解:∵∠A=40°,∴∠B+∠C=180°﹣∠A=140°①,∵∠B﹣∠C=40°②,①+②得:2∠B=180°,∴∠B=90°,①﹣②得:2∠C=100°,∴∠C=50°,故答案为:90°;50°.14解:∵Rt△ABC中,∠A=30°,AB=12cm,∴BC=AB=6cm,故答案为:6.15.解:∵点P关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+MN+PN=P1M+MN+P2N=P1P2,∵P1P2=20,∴△PMN的周长=20.故答案为:20.16.解:DC=BE,∵△ABD和△ACE都是等边三角形,∴AD=AB,AE=AC,∠BAD=∠EAC=60°,∴∠BAD+∠BAC=∠EAC+∠BAC∴∠DAC=∠BAE,∵在△DAC和△BAE中,,∴△DAC≌△BAE,(SAS)∴BE=CD.故答案为:BE.三、解答题(一)(每题6分,共18分)17.解:如图所示:A′(3,2),B′(4,﹣3),C′(1,﹣1).18.证明:由AB=CD,BE=CF,AE=DF得△ABE≌△DCF;即∠B=∠C,∴AB∥CD.19.解:∵∠BAD=20°,AB=AD=DC,∴∠ABD=∠ADB=80°,由三角形外角与外角性质可得∠ADC=180°﹣∠ADB=100°,又∵AD=DC,∴∠C=∠ADB=40°,∴∠C=40°.四、解答题(二)(每题7分,共21分)20.解:∵DE是AC的垂直平分线,AE=3cm,∴AD=CD,AC=2AE=2×3=6cm,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.21.解:点P为线段MN的垂直平分线与∠AOB的平分线的交点,则点P到点M、N的距离相等,到AO、BO的距离也相等,作图如下:22.解:∵AD是BC边上的高,∠EAD=5°,∴∠AED=85°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=85°﹣50°=35°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=70°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣70°=60°.五、解答题(三)(每题9分,共27分)23.(1)证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C(等边对等角).∵D是BC的中点,∴BD=CD.在△BED和△CFD中,,∴△BED≌△CFD(AAS).∴DE=DF(2)解:∵AB=AC,∠A=60°,∴△ABC为等边三角形.∴∠B=60°,∵∠BE D=90°∴∠BDE=30°,∴BE=12 BD,∵BE=1,∴BD=2,∴BC=2BD=4,∴△ABC的周长为12.24.证明:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三角形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,∴△OED≌△OEC(AAS),∴OC=OD;(3)在△DOE和△COE中,∵,∴△DOE≌△COE,∴DE=CE,∴OE是线段CD的垂直平分线.25.解:(1)△EAD≌△EA'D,其中∠EAD=∠EA'D,∠AED=∠A'ED,∠ADE=∠A'DE;(2)∠1=180°﹣2x,∠2=180°﹣2y;(3)∵∠1+∠2=360°﹣2(x+y)=360°﹣2(180°﹣∠A)=2∠A.规律为:∠1+∠2=2∠A.。

人教版2016-2017年八年级上期中数学试卷含答案

人教版2016-2017年八年级上期中数学试卷含答案

八年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.因式分解x2﹣9的结果是()A.(x+9)(x﹣9)B.(x+3)(x﹣3)C.(3+x)(3﹣x)D.(x﹣3)22.有一组数据如下:3,5,4,6,7,那么这组数据的方差是()A.10 B. C.2 D.3.对与实数,﹣π,,3.1415,0.333…,2.010101…(相邻两个1之间0的个数逐个加1),其中无理数的个数是()A.3个B.4个C.5个D.6个4.对与3+的运算结果的估计正确的是()A.1<3+<2 B.2<3+<3 C.3<3+<4 D.4<3+<55.下列说法正确的是()A.﹣4是16的平方根B.的算术平方根是4C.0没有算术平方根D.2的平方根是6.直角三角形两边长分别是3、4,则这个直角三角形的第三边是()A.5 B.C.5或D.无法确定7.适合下列条件的△ABC的三边a、b、c,不能组成直角三角形的是()A.a=3,b=3,c=3 B.a=7,b=24,c=25C.a=8,b=15,c=17 D.a=,b=,c=8.如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.B.C.D.9.若实数x、y满足+(y+3)2=0,则x+y的值为()A.1 B.﹣1 C.7 D.﹣710.如表是某地区某月份的气温数据表,这组数据的中位数和众数分别是()A.21;21 B.21;21.5 C.21;22 D.22;2211.对于a2﹣2ab+b2﹣c2的分组中,分组正确的是()A.(a2﹣c2)+(﹣2ab+b2)B.(a2﹣2ab+b2)﹣c2C.a2+(﹣2ab+b2﹣c2)D.(a2+b2)+(﹣2ab﹣c2)12.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且a、b、c满足a4﹣b4=a2c2﹣b2c2,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形二、填空题(共6小题,每小题3分,满分18分)13.某同学在对关于x的二次三项式x2+3x﹣10分解因式时,正确的分解成了(x﹣b)(x﹣2),则b= .14.若二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,则m= .15.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是4、6、3、4,则最大正方形E的面积是.17.在△ABC中,AB=AC=10,BC=12,则△ABC的面积为.18.若a、b、c为△ABC的三边,且a、b、c满足a2+b2+c2+200=12a+16b+20c,则△ABC的最长边的高的长度等于.三、解答题19.(16分)计算化简(1)﹣(2)﹣(﹣2+)(3)×﹣5(4)()2.20.将下列各多项式因式分解(1)15a2+5a(2)x5﹣x3(3)a3b﹣4a2b2+4ab3(4)1﹣x2﹣y2+x2y2.21.已知:x=,y=,①x+y;②xy;③x2+y2;④(x2+x+2)(y2+y﹣2)22.根据平方根、立方根的定义解下列方程①x2=9;②(x﹣2)2=4;③(2x+1)2=12;④(x+1)3=﹣2.23.如图所示,在四边形ABCD中,AB⊥BC,AC⊥CD,以CD为直径作半圆O,AB=4cm,BC=3cm,AD=13cm.求图中阴影部分的面积:24.已知网格中每个小正方形的边长是1,在网格中作△ABC,使得AB=,BC=,CA=,.并求S△ABC25.探究题:.(1)在正△ABC中(图1),AB=2,AD⊥BC于D,求S△ABC(2)在正△AB1C1中(图2),B1C1=2,AB2⊥B1C1于B2,以AB2为边作正△AB2C2,AC1、B2C2交于B3,以AB3为边作正△AB3C3,依此类推.①写出第n个正三角形的周长;(用含n的代数式表示)②写出第n个正三角形的面积.(用含n的代数式表示)26.在正方形ABCD中,AB=4,E为BC的中点,F在CD上,DF=3CF,连结AF、AE、EF.(1)如图1,求出△AEF的三条边的长度;(2)判断△AEF的形状;并说明理由;(3)探究S△ECF +S△ABE与S△AEF的关系,并说明理由;(4)如图2,作EG⊥AF于G,①试求出FG、AG、EG的长度;②试探究EG2与FG×AG的关系?并说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分) 1.因式分解x 2﹣9的结果是( )A .(x+9)(x ﹣9)B .(x+3)(x ﹣3)C .(3+x )(3﹣x )D .(x ﹣3)2 【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式得出答案. 【解答】解:x 2﹣9=(x+3)(x ﹣3). 故选:B .【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.2.有一组数据如下:3,5,4,6,7,那么这组数据的方差是( )A .10B .C .2D .【考点】方差.【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算. 【解答】解: =(3+5+4+6=7)=5,S 2= [(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(7﹣5)2]=2, 故选:C .【点评】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 3.对与实数,﹣π,,3.1415,0.333…,2.010101…(相邻两个1之间0的个数逐个加1),其中无理数的个数是( )A.3个B.4个C.5个D.6个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣π,,2.010101…(相邻两个1之间0的个数逐个加1)是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.对与3+的运算结果的估计正确的是()A.1<3+<2 B.2<3+<3 C.3<3+<4 D.4<3+<5【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得的范围,根据不等式的性质1,可得答案.【解答】解:由被开方数越大算术平方根越大,得1<2,3+1<3+<2+3,故选:D.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出的范围是解题关键.5.下列说法正确的是()A.﹣4是16的平方根B.的算术平方根是4C.0没有算术平方根D.2的平方根是【考点】算术平方根;平方根.【分析】依据平方根和算术平方根的性质求解即可.【解答】解:A、﹣4是16的平方根,故A正确;B、=4,4的算术平方根是2,故B错误;C、0的算术平方根是0,故C错误;D、2的平方根是±.故选:A.【点评】本题主要考查的是算术平方根和平方根,掌握相关定义和性质是解题的关键.6.直角三角形两边长分别是3、4,则这个直角三角形的第三边是()A.5 B.C.5或D.无法确定【考点】勾股定理.【分析】已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为: =;②长为3、4的边都是直角边时:第三边的长为: =5;综上,第三边的长为:5或.故选C.【点评】此题主要考查的是勾股定理,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.7.适合下列条件的△ABC的三边a、b、c,不能组成直角三角形的是()A.a=3,b=3,c=3 B.a=7,b=24,c=25C.a=8,b=15,c=17 D.a=,b=,c=【考点】勾股定理的逆定理.【分析】根据直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能构成直角三角形.【解答】解:A、因为32+32=(3)2,所以能组成直角三角形;B、因为72+242=252,所以能组成直角三角形;C、因为82+152=172,所以能组成直角三角形;D、因为()2+()2≠()2,所以不能组成直角三角形;故选D.【点评】本题考查了直角三角形的判定,运用勾股定理的逆定理判定是解答此题的关键.8.如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.B.C.D.【考点】实数与数轴.【分析】设点C表示的数是x,然后根据中点公式列式求解即可.【解答】解:设点C表示的数是x,∵A,B两点表示的数分别为﹣1和,C,B两点关于点A对称,∴=﹣1,解得x=﹣2﹣.故选:A.【点评】本题考查了实数与数轴,根据点B、C关于点A对称列出等式是解题的关键.9.若实数x、y满足+(y+3)2=0,则x+y的值为()A.1 B.﹣1 C.7 D.﹣7【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列方程求出x、y的值,然后相加计算即可得解.【解答】解:∵ +(y+3)2=0,∴=0,(y+3)2=0,∴x+y﹣1=0,y+3=0,解得x=4,y=﹣3,故x+y=4+(﹣3)=1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.如表是某地区某月份的气温数据表,这组数据的中位数和众数分别是()A.21;21 B.21;21.5 C.21;22 D.22;22【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列为,最中间的数是第15、16个数的平均数,则中位数是: =22;∵22出现了8次,出现的次数最多,∴众数在22.故选D.【点评】此题考查了中位数和众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.11.对于a2﹣2ab+b2﹣c2的分组中,分组正确的是()A.(a2﹣c2)+(﹣2ab+b2)B.(a2﹣2ab+b2)﹣c2C.a2+(﹣2ab+b2﹣c2)D.(a2+b2)+(﹣2ab﹣c2)【考点】因式分解-分组分解法.【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题a2﹣2ab+b2是完全平方,再可利用平方差公式分解.【解答】解:a2﹣2ab+b2﹣c2=(a2﹣2ab+b2)﹣c2=(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c).故选B.【点评】本题考查了分组分解法分解因式.注意难点是采用两两分组还是三一分组.12.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且a、b、c满足a4﹣b4=a2c2﹣b2c2,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】因式分解的应用.【分析】将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.【解答】解:∵a4﹣b4=a2c2﹣b2c2,∴a4﹣b4﹣a2c2+b2c2=0,∴(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=0,∴(a2﹣b2)[(a2+b2)﹣c2]=0,则当a2﹣b2=0时,a=b;当a2﹣b2≠0时,a2+b2=c2;所以△ABC是等腰三角形或直角三角形.故选D.【点评】此题考查因式分解和勾股定理逆定理的实际运用,掌握平方差公式和完全平方公式是关键.二、填空题(共6小题,每小题3分,满分18分)13.某同学在对关于x的二次三项式x2+3x﹣10分解因式时,正确的分解成了(x﹣b)(x﹣2),则b= ﹣5 .【考点】因式分解-十字相乘法等.【分析】由题意二次三项式x2+3x﹣10分解因式的结果为(x﹣2)(x﹣b),将整式(x﹣b)(x﹣2)相乘,然后根据系数相等求出b.【解答】解:∵关于x的二次三项式x2+3x﹣10分解因式的结果为(x﹣b)(x﹣2),∴(x﹣b)(x﹣2)=x2﹣(b+2)x+2b=x2+3x﹣10,∴2b=﹣10,∴b=﹣5.故答案为﹣5.【点评】本题考查了因式分解的意义,紧扣因式分解的定义,是一道基础题.14.若二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,则m= 8或﹣4 .【考点】完全平方式.【专题】计算题;整式.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,∴m﹣2=±6,解得:m=8或﹣4.故答案为:8或﹣4.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.15.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是4.【考点】平面展开-最短路径问题.【分析】先将图形展开,再根据两点之间线段最短,由勾股定理可得出.【解答】解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•=4,CB=4.∴AC==4.故答案为:4.【点评】此题主要考查了平面展开图最短路径问题,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是4、6、3、4,则最大正方形E的面积是17 .【考点】勾股定理.【分析】根据正方形的面积公式,运用勾股定理可以证明:四个小正方形的面积和等于最大正方形的面积,由此即可解决问题.【解答】解:如图记图中两个正方形分别为P、Q.根据勾股定理得到:C与D的面积的和是Q的面积;A与B的面积的和是P的面积;而P,Q的面积的和是E的面积,即A、B、C、D的面积之和为E的面积,∴正方形E的面积=4+6+3+4=17,故答案为:17.【点评】本题考查了勾股定理的应用.能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.17.在△ABC中,AB=AC=10,BC=12,则△ABC的面积为48 .【考点】勾股定理;等腰三角形的性质.【分析】作底边上的高,构造直角三角形.运用等腰三角形性质及三角形的面积公式求解.【解答】解:如图,作AD⊥BC于点D,则BD=BC=6.在Rt△ABD,∵AD2=AB2﹣BD2,∴AD=8,∴△ABC的面积=BC•AD=×12×8=48.故答案为:48.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.18.若a、b、c为△ABC的三边,且a、b、c满足a2+b2+c2+200=12a+16b+20c,则△ABC的最长边的高的长度等于 4.8 .【考点】因式分解的应用.【分析】根据a2+b2+c2+200=12a+16b+20c,可以求得a、b、c的值,从而可以判断△ABC的形状,从而可以求得最长边上的高.【解答】解:∵a2+b2+c2+200=12a+16b+20c,∴a2+b2+c2+200﹣12a﹣16b﹣20c=0,∴(a﹣6)2+(b﹣8)2+(c﹣10)2=0,∴a﹣6=0,b﹣8=0,c﹣10=0,解得,a=6,b=8,c=10,∵62+82=102,∴△ABC是直角三角形,∴斜边上的高是: =4.8,故答案为:4.8.【点评】本题考查因式分解的应用,解题的关键是明确题意,找出所求问题需要.三、解答题19.计算化简(1)﹣(2)﹣(﹣2+)(3)×﹣5(4)()2.【考点】二次根式的混合运算.【分析】(1)直接利用二次根式的性质化简求出答案;(2)直接利用二次根式的性质化简,进而合并求出答案;(3)直接利用二次根式的乘法运算法则化简,进而求出答案;(4)直接利用二次根式乘法运算法则化简求出答案.【解答】解:(1)﹣=2﹣5=﹣3;(2)﹣(﹣2+)=3﹣(4﹣8+3)=﹣7+11;(3)×﹣5=6﹣5=1;(4)()2==1+.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.20.将下列各多项式因式分解(1)15a2+5a(2)x5﹣x3(3)a3b﹣4a2b2+4ab3(4)1﹣x2﹣y2+x2y2.【考点】因式分解-分组分解法;提公因式法与公式法的综合运用.【分析】(1)此多项式有公因式,应提取公因式5a,然后再整理即可.(2)先提取公因式x3,再利用平方差公式继续进行因式分解.(3)先提取公因式ab,再对余下的多项式利用完全平方公式继续分解.(4)用分组分解法,前两项一组,后两项一组,提取公因式,两组之间提取提取公因式,再用平方差公式分解,即可.【解答】解:(1)原式=5a(3a+1);(2)原式=x3(x2﹣1)=x3(x+1)(x﹣1);(3)原式=ab(a2﹣4ab+4b2)=ab(a﹣2b)2.(4)原式=(1﹣x2)﹣(y2﹣x2y2)=(1﹣x2)﹣y2(1﹣x2)=(1﹣x2)(1﹣y2)=(1+x)(1﹣x)(1+y)(1﹣y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.(4)用分组分解法,分组是解本小题的难点.21.已知:x=,y=,①x+y;②xy;③x2+y2;④(x2+x+2)(y2+y﹣2)【考点】二次根式的化简求值.【分析】①根据二次根式的乘法法则计算;②根据平方差公式计算;③根据完全平方公式把原式变形,代入计算;④把已知数据代入,根据二次根式的混合运算法则计算.【解答】解:①x+y=+=﹣1;②xy=×=﹣2;③x2+y2=(x+y)2﹣2xy=1+4=5;④(x2+x+2)(y2+y﹣2)=(++2)(+﹣2)=3×(﹣1)=﹣3.【点评】本题考查的是二次根式的化简求值,掌握二次根式的混合运算法则是解题的关键.22.根据平方根、立方根的定义解下列方程①x2=9;②(x﹣2)2=4;③(2x+1)2=12;④(x+1)3=﹣2.【考点】立方根;平方根.【分析】根据平方根、立方根,即可解答.【解答】解:①x2=9x=±3,②(x﹣2)2=4x﹣2=±2x=4或0.③(2x+1)2=12(2x+1)2=362x+1=±6x=或﹣.④(x+1)3=﹣2(x+1)3=﹣8x+1=﹣2x=﹣3.【点评】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.23.如图所示,在四边形ABCD中,AB⊥BC,AC⊥CD,以CD为直径作半圆O,AB=4cm,BC=3cm,AD=13cm.求图中阴影部分的面积:【考点】扇形面积的计算.【专题】计算题.【分析】要求阴影部分的面积,只需求CD,由于AD已知,只需求AC即可.【解答】解:∵AB⊥BC,AB=4,BC=3,∴AC=5.∵AC⊥CD,AC=5,AD=13,∴CD=12,=π×()2=18π,∴S阴影∴阴影部分的面积为18πcm2.【点评】本题主要考查了勾股定理、扇形的面积公式等知识,属于基础题.24.已知网格中每个小正方形的边长是1,在网格中作△ABC,使得AB=,BC=,CA=,.并求S△ABC【考点】勾股定理.【专题】作图题.【分析】直接利用勾股定理结合网格得出A,B,C的位置,进而利用△ABC所在矩形减去周围三角形面积求出答案.【解答】解:如图所示:S△ABC=12﹣×1×3﹣×1×4﹣×2×3=5.5.【点评】此题主要考查了勾股定理以及三角形面积求法,正确得出A,B,C的位置是解题关键.25.探究题:(1)在正△ABC中(图1),AB=2,AD⊥BC于D,求S△ABC.(2)在正△AB1C1中(图2),B1C1=2,AB2⊥B1C1于B2,以AB2为边作正△AB2C2,AC1、B2C2交于B3,以AB3为边作正△AB3C3,依此类推.①写出第n个正三角形的周长;(用含n的代数式表示)②写出第n个正三角形的面积.(用含n的代数式表示)【考点】等边三角形的性质.【分析】(1)由AD为边长为2的等边三角形ABC的高,利用三线合一得到D为BC的中点,求出BD的长,利用勾股定理求出AD的长,进而求出S,(2)根据(1)同理求出C2、S2,C3、S3依此类推,得到Cn、Sn.【解答】解:(1)在正△ABC 中,AB=2,AD ⊥BC 于D ,∴BD=1,∴AD==,∴S △ABC =BC •AD=×=; (2)由(1)可知AB 2=,∴C 1=3×2×()0,S 1=×2×2×;∵等边三角形AB 2C 2的边长为,AB 3⊥B 2C 2, ∴AB 3=,∴C 2=2×3×()1,S 2=×2××2××=×22×()3,∵等边三角形AB 3C 3的边长为,AB 4⊥B 3C 3,∴AB 4=,∴C 3=3×2×()2,S 3=×2×××2×××=×22×()5 依此类推,C n =6()n ﹣1S n =2()2n ﹣1.故第n 个正三角形的周长为6()n ﹣1,第n 个正三角形的面积是2()2n ﹣1. 【点评】此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.26.在正方形ABCD 中,AB=4,E 为BC 的中点,F 在CD 上,DF=3CF ,连结AF 、AE 、EF .(1)如图1,求出△AEF 的三条边的长度;(2)判断△AEF 的形状;并说明理由;(3)探究S△ECF +S△ABE与S△AEF的关系,并说明理由;(4)如图2,作EG⊥AF于G,①试求出FG、AG、EG的长度;②试探究EG2与FG×AG的关系?并说明理由.【考点】四边形综合题.【分析】(1)先求得EC、FC、DF、BE、AD的长,然后依据勾股定理可求得EF、EB、AE的长;(2)由勾股定理的逆定理可证明△EFA为直角三角形;(3)依据三角形的面积公式分别求得△AEF、△ECF、△ABE的面积,从而可得出问题的答案;(4)①依据三角形的面积公式可知S△AEF=AF•GE=5,从而可求得EG的长,然后再依据勾股定理可求得FG的长,然后可得到AG的长;②求得EG2、GF•AG的结果,从而可得到它们之间的关系.【解答】解:(1)∵ABCD为正方形,AB=4,∴AB=BC=DC=AD=4.∵E是BC的中点,∴BE=CE=2.∵CD=4,DF=3CF,∴FC=1,DF=3.依据勾股定理可知:EF==,AE==2,AF==5.(2)∵AF2=25,EF2=5,AE2=20,∴AF 2=EF 2+AE 2.∴△AEF 为直角三角形.(3)S △AEF =S △ECF +S △ABE .理由:∵S △ECF =FC •CE=×1×2=1,S △ABE =AB •BE=×4×2=4,S △AEF =EF •AE=××2=5,∴S △AEF =S △ECF +S △ABE .(4)①∵S △AEF =AF •GE=5,∴×5×EG=5.∴EG=2.在△EFG 中,由勾股定理可知:FG===1. AG=AF ﹣GF=5﹣1=4.②∵EG 2=22=4,GF •AG=1×4=4,∴EG 2=GF •AG .【点评】本题主要考查的是正方形的性质、勾股定理的应用、勾股定理的逆定理的应用、三角形的面积公式的应用,依据勾股定理的逆定理判断出△AEF 为直角三角形是解题的关键.。

2016-2017学年新人教版第一学期八年级(上册)期中测试卷 有答案

2016-2017学年新人教版第一学期八年级(上册)期中测试卷 有答案

2016-2017学年八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.下列图形中,不是轴对称图形的是( )A. B.C.D.2.下列运算正确的是( )A.a3•a4=a12 B.(a3)2=a5 C.(﹣3a2)3=﹣9a6D.(﹣a2)3=﹣a63.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线 D.垂线段最短4.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是( )A.5 B.6 C.7 D.85.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为( )A.16 B.18 C.20 D.16或206.用尺规作∠AOB的平分线的方法如下:以O为圆心,任意长为半径画弧交OA、OB于D、E,再分别以点D、E为圆心,以大于长为半径画弧,两弧交于点C,作射线OC,则OC为∠AOB的平分线.由作法得△OCD≌△OCE的根据是( )A.SSS B.SAS C.ASA D.AAS7.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是( )A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN8.将一副直角三角尺如图放置,已知AE∥BC,则∠AFD的度数是( )A.45°B.50°C.60°D.75°9.如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°10.如图所示,△ABC是等边三角形,AQ=PQ,PR⊥AB于R点,PS⊥AC于S点,PR=PS,则四个结论:①点P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP,正确的结论是( )A.①②③④B.只有①②,C.只有②③D.只有①③二、填空题(每小题3分,共30分)11.填空:()2014×52015=__________.12.如图所示∠A+∠B+∠C+∠D+∠E+∠F=__________.13.若等腰三角形一腰上的高与另一腰的夹角等于30°,则此三角形的顶角为__________度.14.点M(a,﹣5)与点N(﹣2,b)关于x轴对称,则a+b=__________.15.如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=12cm,BD=8cm,则点D到AB 的距离为__________cm.16.如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC=__________.17.如图是某时刻在镜子中看到准确时钟的情况,则实际时间是__________.18.已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若BC=10 cm,则△ODE的周长__________cm.19.如图,在△ABC中,∠C=90°,∠ABC=15°,点D、E分别在BC、AB上,且DE垂直平分AB,BD=5cm,则AC=__________cm.20.已知:如图,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加的一个条件是__________(只需填写一个你认为适合的条件).三、解答题(本大题共8个小题,共60分)21.计算(1)(﹣xyz)•x2y2•(﹣yz3)(2)(x+2)(x+3)﹣(x+6)(x﹣1)22.如图:已知BD=CD,BF⊥AC,CE⊥AB,求证:点D在∠BAC的平分线上.23.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.24.如图,已知:在△ABC中,D为BC边上一点,AB=AC=CD,BD=AD,求△ABC各角的度数.25.如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1.(2)写出A1,B1,C1的坐标(直接写出答案),A1__________;B1__________;C1__________.(3)△A1B1C1的面积为__________.26.如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:DE=DF;(2)若∠A=60°,BE=1,求△ABC的周长.27.如图,一艘轮船从点A向正北方向航行,每小时航行15海里,小岛P在轮船的北偏西15°,2小时后轮船航行到点B,小岛P此时在轮船的北偏西30°方向,在小岛P的周围18海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由.28.已知,如图△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.求证:(1)BF=AC;(2)CE=BF.2016-2017学年八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.下列图形中,不是轴对称图形的是( )A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A是中心对称图形,不是轴对称图形,B、C、D都是轴对称图形,故选:A.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴.2.下列运算正确的是( )A.a3•a4=a12 B.(a3)2=a5 C.(﹣3a2)3=﹣9a6D.(﹣a2)3=﹣a6【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据幂的乘方和积的乘方以及同底数幂的乘法法则求解.【解答】解:A、a3•a4=a7,计算错误,故本选项错误;B、(a3)2=a6,计算错误,故本选项错误;C、(﹣3a2)3=﹣27a6,计算错误,故本选项错误;D、(﹣a2)3=﹣a6,计算正确,故本选项正确.故选D.【点评】本题考查了幂的乘方和积的乘方以及同底数幂的乘法,掌握运算法则是解答本题的关键.3.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线 D.垂线段最短【考点】三角形的稳定性.【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.4.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是( )A.5 B.6 C.7 D.8【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,外角和都等于360°,故可列方程求解.【解答】解:设所求多边形边数为n,则(n﹣2)•180°=3×360°﹣180°,解得n=7.故选:C.【点评】本题考查根据多边形的内角和和外角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.5.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为( )A.16 B.18 C.20 D.16或20【考点】等腰三角形的性质;三角形三边关系.【专题】探究型.【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选:C.【点评】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.6.用尺规作∠AOB的平分线的方法如下:以O为圆心,任意长为半径画弧交OA、OB于D、E,再分别以点D、E为圆心,以大于长为半径画弧,两弧交于点C,作射线OC,则OC为∠AOB的平分线.由作法得△OCD≌△OCE的根据是( )A.SSS B.SAS C.ASA D.AAS【考点】全等三角形的判定;作图—基本作图.【分析】由作法可知:CD=CE,OD=OE,根据全等三角形的判定定理判断即可.【解答】解:由作法可知:CD=CE,OD=OE,又∵OC=OC,∴根据SSS可推出△OCD和△OCE全等,故选A.【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.7.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是( )A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN【考点】全等三角形的判定.【专题】几何图形问题.【分析】根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证.【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故B选项符合题意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本题是一道较为简单的题目.8.将一副直角三角尺如图放置,已知AE∥BC,则∠AFD的度数是( )A.45°B.50°C.60°D.75°【考点】三角形内角和定理;平行线的性质.【专题】计算题.【分析】本题主要根据直角尺各角的度数及三角形内角和定理解答.【解答】解:∵∠C=30°,∠DAE=45°,AE∥BC,∴∠EAC=∠C=30°,∠FAD=45﹣30=15°,在△ADF中根据三角形内角和定理得到:∠AFD=180﹣90﹣15=75°.故选D.【点评】本题主要考查两直线平行,内错角相等,以及三角形的内角和定理.9.如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°【考点】多边形内角与外角;翻折变换(折叠问题).【分析】本题利用了四边形内角和为360°和直角三角形的性质求解.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°,∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.【点评】本题是一道根据四边形内角和为360°和直角三角形的性质求解的综合题,有利于锻炼学生综合运用所学知识的能力.10.如图所示,△ABC是等边三角形,AQ=PQ,PR⊥AB于R点,PS⊥AC于S点,PR=PS,则四个结论:①点P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP,正确的结论是( )A.①②③④B.只有①②,C.只有②③D.只有①③【考点】等边三角形的性质;全等三角形的判定与性质.【分析】考查等边三角形的性质,在等边三角形中,角平分线即为中线,也为垂线,然后再利用全等,角相等进行判断.【解答】解:∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,∴①正确;由①可知,PB=PC,∠B=∠C,PS=PR,∴△BPR≌△CPS,∴AS=AR,②正确;∵AQ=PQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,③正确;由③得,△PQC是等边三角形,∴△PQS≌△PCS,又由②可知,④△BRP≌△QSP,④也正确∵①②③④都正确,故选A.【点评】熟练掌握等边三角形的性质.二、填空题(每小题3分,共30分)11.填空:()2014×52015=5.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:()2014×52015=(×5)2014×5=5.故答案为:5.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.12.如图所示∠A+∠B+∠C+∠D+∠E+∠F=360°.【考点】三角形内角和定理.【专题】计算题;三角形.【分析】利用外角性质及外角和定理求出所求即可.【解答】解:由外角性质理得到:∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∵∠1+∠2+∠3=360°(三角形外角和定理),∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故答案为:360°【点评】此题考查了三角形内角和定理,外角性质,熟练掌握定理及性质是解本题的关键.13.若等腰三角形一腰上的高与另一腰的夹角等于30°,则此三角形的顶角为60或120度.【考点】等腰三角形的性质.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是90°+30°=120°.故答案为:60或120.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出60°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.14.点M(a,﹣5)与点N(﹣2,b)关于x轴对称,则a+b=3.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得a、b的值,再计算a+b即可.【解答】解:∵点M(a,﹣5)与点N(﹣2,b)关于x轴对称,∴a=﹣2.b=5,∴a+b=﹣2+5=3.故答案为:3.【点评】本题考查了关于x轴、y轴对称的点的坐标:点P(a,b)关于x轴对称的点的坐标为(a,﹣b),关于y轴对称的点的坐标为(﹣a,b).15.如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=12cm,BD=8cm,则点D到AB 的距离为4cm.【考点】角平分线的性质.【分析】先过点D作DE⊥AB于点E,根据BC=12cm,BD=8cm求出DC的长,由∠C=90°可知,DC⊥AC,再根据AD平分∠BAC可得出DE=DC,故可得出结论.【解答】解:先过点D作DE⊥AB于点E,∵BC=12cm,BD=8cm,∴DC=12﹣8=4cm,∵∠C=90°,∴DC⊥AC,∵AD平分∠BAC,∴DE=DC=4cm.故答案为:4.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.16.如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC=80°.【考点】全等三角形的性质.【分析】先求出∠DAE,再根据全等三角形对应角相等可得∠BAC=∠DAE.【解答】解:∵∠BAE=120°,∠BAD=40°,∴∠DAE=∠BAE﹣∠BAD=120°﹣40°=80°,∵△ABC≌△ADE,∴∠BAC=∠DAE=80°.故答案为:80°.【点评】本题考查了全等三角形的性质,根据全等三角形对应顶点的字母写在对应位置上准确找出对应角是解题的关键.17.如图是某时刻在镜子中看到准确时钟的情况,则实际时间是4:40.【考点】镜面对称.【分析】根据镜面对称的性质求解,在平面镜中的像与现实中的事物恰好左右或上下顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,题中所显示的时刻成轴对称,所以此时实际时刻为4:40.故答案为:4:40.【点评】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.18.已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若BC=10 cm,则△ODE的周长10cm.【考点】角平分线的性质;平行线的性质;等腰三角形的性质.【专题】计算题.【分析】根据角平分线的性质以及平行线的性质,把△ODE三条边转移到同一条线段BC 上,即可解答.【解答】解:∵OC、OB分别是∠ACB、∠ABC的角平分线,∴∠5=∠6,∠1=∠2,∵OD∥AB,OE∥AC,∴∠4=∠6,∠1=∠3.∴∠4=∠5,∠2=∠3,即OD=BD,OE=CE.∴△ODE的周长=OD+DE+OE=BD+DE+CE=BC=10cm.故答案为:10.【点评】此题比较简单,利用的是角平分线的定义,平行线及等腰三角形的性质.19.如图,在△ABC中,∠C=90°,∠ABC=15°,点D、E分别在BC、AB上,且DE垂直平分AB,BD=5cm,则AC=2.5cm.【考点】含30度角的直角三角形;线段垂直平分线的性质.【分析】连接AD,由DE垂直平分AB,得出△ABD为等腰三角形,根据等腰三角形的性质求AD,根据外角的性质求∠ADC,在Rt△ACD中,利用含30°的直角三角形性质解题.【解答】解:连接AD,∵DE垂直平分AB,∴AD=BD=5cm,∠DAB=∠B=15°,∴∠ADC=∠DAB+∠B=30°,∴在Rt△ACD中,AC=AD=2.5cm,故答案为:2.5.【点评】本题考查了含30°的直角三角形,用到的知识点是含30°的直角三角形、线段垂直平分线的性质,其中含30°的直角三角形中,斜边等于30°角的对边的2倍.20.已知:如图,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加的一个条件是∠A=∠D 或∠ABC=∠DCB或BD=AC(只需填写一个你认为适合的条件).【考点】全等三角形的判定.【专题】开放型.【分析】已知一条公共边和一个角,有角边角或角角边定理,再补充一组对边相等或一组对角相等即可.【解答】解:添加∠A=∠D,∠ABC=∠DCB,BD=AC后可分别根据AAS、SAS、SAS判定△ABC≌△ADC.故填∠A=∠D或∠ABC=∠DCB或BD=AC.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.三、解答题(本大题共8个小题,共60分)21.计算(1)(﹣xyz)•x2y2•(﹣yz3)(2)(x+2)(x+3)﹣(x+6)(x﹣1)【考点】整式的混合运算.【分析】(1)根据单项式乘以单项式法则进行计算即可;(2)先算乘法,再合并同类项即可.【解答】解:(1)(﹣xyz)•x2y2•(﹣yz3)=x3y4z4;(2)(x+2)(x+3)﹣(x+6)(x﹣1)=x2+3x+2x+6﹣x2﹣6x+x+6=12.【点评】本题考查了整式的混合运算的应用,能正确运用整式的运算法则进行化简是解此题的关键,注意运算顺序.22.如图:已知BD=CD,BF⊥AC,CE⊥AB,求证:点D在∠BAC的平分线上.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】此题容易根据条件证明△BED≌△CFD,然后利用全等三角形的性质和角平分线的性质就可以证明结论.【解答】证明:∵BF⊥AC,CE⊥AB,∴∠BED=∠CFD=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF,又∵DE⊥AB,DF⊥AC,∴点D在∠BAC的平分线上.【点评】常用主要考查了全等三角形的判定与性质,角平分线的性质.由全等等到DE=DF 是解答本题的关键.23.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由∠1=∠2可得:∠EAD=∠BAC,再有条件AB=AE,∠B=∠E可利用ASA证明△ABC≌△AED,再根据全等三角形对应边相等可得BC=ED.【解答】证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即:∠EAD=∠BAC,在△EAD和△BAC中,∴△ABC≌△AED(ASA),∴BC=ED.【点评】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定方法:SSS、SAS、ASA、AAS、HL.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.24.如图,已知:在△ABC中,D为BC边上一点,AB=AC=CD,BD=AD,求△ABC各角的度数.【考点】等腰三角形的性质.【分析】由AD=BD得∠BAD=∠DBA,由AB=AC=CD得∠CAD=∠CDA=2∠DBA,∠DBA=∠C,从而可推出∠BAC=3∠DBA,根据三角形的内角和定理即可求得∠DBA的度数,从而不难求得各个内角的度数.【解答】解:∵AD=BD∴设∠BAD=∠DBA=x°,∵AB=AC=CD∴∠CAD=∠CDA=∠BAD+∠DBA=2x°,∠DBA=∠C=x°,∴∠BAC=3∠DBA=3x°,∵∠ABC+∠BAC+∠C=180°∴5x=180°,∴∠DBA=36°∴∠BAC=3∠DBA=108°,∠B=∠C=36°.【点评】此题主要考查学生对等腰三角形的性质及三角形内角和定理的综合运用能力;求得角之间的关系利用内角和求解是正确解答本题的关键.25.如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1.(2)写出A1,B1,C1的坐标(直接写出答案),A1(﹣1,2);B1(﹣3,1);C1(2,﹣1).(3)△A1B1C1的面积为4.5.【考点】作图-轴对称变换.【专题】作图题.【分析】(1)根据网格结构找出点A、B、C的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据平面直角坐标系写出各点的坐标;(3)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.【解答】解:(1)△A1B1C1如图所示;(2)△A1(﹣1,2),B1(﹣3,1),C1(2,﹣1);(3)△A1B1C1的面积=5×3﹣×1×2﹣×2×5﹣×3×3,=15﹣1﹣5﹣4.5,=15﹣10.5,=4.5.故答案为:(2)(﹣1,2),(﹣3,1),(2,﹣1);(3)4.5.【点评】本题考查了利用轴对称变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.26.如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:DE=DF;(2)若∠A=60°,BE=1,求△ABC的周长.【考点】等边三角形的判定与性质;全等三角形的判定与性质;直角三角形的性质.【专题】计算题;证明题.【分析】(1)根据DE⊥AB,DF⊥AC,AB=AC,求证∠B=∠C.再利用D是BC的中点,求证△BED≌△CFD即可得出结论.(2)根据AB=AC,∠A=60°,得出△ABC为等边三角形.然后求出∠BDE=30°,再根据题目中给出的已知条件即可算出△ABC的周长.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C(等边对等角).∵D是BC的中点,∴BD=CD.在△BED和△CFD中,,∴△BED≌△CFD(AAS).∴DE=DF(2)解:∵AB=AC,∠A=60°,∴△ABC为等边三角形.∴∠B=60°,∵∠BED=90°,∴∠BDE=30°,∴BE=BD,∵BE=1,∴BD=2,∴BC=2BD=4,∴△ABC的周长为12.【点评】此题主要考查学生对等边三角形的判定与性质、全等三角形的判定与性质直角三角形的性质等知识点的理解和掌握.27.如图,一艘轮船从点A向正北方向航行,每小时航行15海里,小岛P在轮船的北偏西15°,2小时后轮船航行到点B,小岛P此时在轮船的北偏西30°方向,在小岛P的周围18海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由.【考点】等腰三角形的判定与性质;方向角;含30度角的直角三角形.【专题】应用题.【分析】过P作PE⊥AB于E,根据题中所给的∠PAE=15°,∠PBE=30°,及船的航行速度可求出p到AB的距离,继而能判断出有无危险.【解答】解:如图,过P作PE⊥AB于E,由题意得:∠PAE=15°,∠PBE=30°,AB=30海里.∴AB=BP=30,在Rt△BPE中,∵∠PBE=30°,∴PE=BP=×30=15.又∵周围18海里都会有危险,∴轮船继续向北航行,有触礁危险.【点评】本题考查了等腰三角形的判定和性质,直角三角形的性质,方向角,熟练掌握等腰三角形的判定和性质是解题的关键.28.已知,如图△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.求证:(1)BF=AC;(2)CE=BF.【考点】全等三角形的判定与性质;三角形内角和定理;等腰三角形的判定与性质.【专题】证明题;压轴题.【分析】(1)根据三角形的内角和定理求出∠A=∠DFB,推出BD=DC,根据AAS证出△BDF≌△CDA即可;(2)推出∠AEB=∠CEB,∠ABE=∠CBE,根据ASA证出△AEB≌△CEB,推出AE=CE 即可.【解答】(1)证明:∵CD⊥AB,BE⊥AC,∴∠BDC=∠ADC=∠AEB=90°,∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,∴∠A=∠DFB,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°﹣45°=45°=∠DBC,∴BD=DC,在△BDF和△CDA中∵,∴△BDF≌△CDA(AAS),∴BF=AC;(2)证明:∵BE⊥AC,∴∠AEB=∠CEB,∵BE平分∠ABC,∴∠ABE=∠CBE,在△AEB和△CEB中∵,∴△AEB≌△CEB(ASA),∴AE=CE,即CE=AC,∵由(1)知AC=BF,∴CE=BF.【点评】本题考查了三角形的内角和定理,等腰三角形的性质和判定,全等三角形的性质和判定的应用,关键是推出△BDF≌△CDA和△AEB≌△CEB,题目综合性比较强.。

2016-2017学年人教版初二上册数学期中考试试卷含答案

2016-2017学年人教版初二上册数学期中考试试卷含答案

初二数学2016-2017学年度第一学期期中质量检测班级 姓名 学号1. 下列各式中,从左到右的变形是因式分解的是( )A. 224)2)(2(y x y x y x -=-+ B. 1)(122--=--y x xy xy y x C. a 2-4ab+4b 2=(a -2b )2 D. ax+ay+a=a (x+y ) 2.计算24-的结果是( )A .8-B .18-C .116-D .1163. 月球的平均亮度只有太阳的0.00000215倍。

0.00000215用科学记数法可表示为( ) A .52.1510-⨯ B . 62.1510-⨯ C .72.1510-⨯ D .621.510-⨯4.下列各式中,正确的是( ).A . 1a b b ab b ++=B .22x y x y -++=- C.23193x x x -=-- D .222()x y x y x y x y --=++ 5. 如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( )A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠D .90B D ==︒∠∠6.下列多项式能分解因式的有( )个2249y x +-; 2244b a ab +--; 296x x --; 1196422-+-y xy x A.0 B.1 C.2 D.37.若分式22xx -+的值是零,则x 的值是( )A .0x =B .2±=xC .2-=xD .2=x 8. 到三角形三条边距离相等的点是( )ABCDA.三条高线的交点B.三条中线的交点C.三个内角平分线的交点D.三边垂直平分线的交点 9.如图,在四边形ABCD 中,对角线AC 平分∠BAD ,AB >AC , 下列结论正确的是( )A .CD CB AD AB ->- B .CD CB AD AB -=-C .CD CB AD AB -<- D .AD AB -与CD CB -的大小关系不确定 10.若把一个正方形纸片按下图所示方法三次对折后再沿虚线剪开,则剩余部分展开后得到的图形是( )A B CD二、填空题(本题共20分,每小题2分) 11.当x __________时,分式11x-有意义. 12. 如果7,0-==+xy y x ,则22xy y x += . 13. 若92++mx x 是一个完全平方式,则m = .14. 计算:a aa -+-111的结果是 . 15. 若b a b a -=+111,则 的值是 .16. 如图,△ABC ≌△ADE ,∠CAD=10°,∠B=25°,∠EAB=120°,则∠DFB=____________. 17. 如图,在△ABC 中,∠C =90°,BD 平分∠CBA 交AC 于点D .若AB =a ,CD =b ,则△ADB 的面积为______________ .18. 如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有 种.C D A B ABDC3,111--+=-ba ab b a b a 则右下折沿虚线剪开剩余部分上折右折A(16) (17) (18)19. 已知b a 、满足等式2022++=b a x ,)2(4a b y -=,则y x 、的大小关系是 . 20.在平面直角坐标系中,已知点A (1,2),B (5,5),C (5,2),存在点E ,使△ACE 和△ACB 全等,写出所有满足条件的E 点的坐标 . 三、计算题(共27分,20-21每小题3分,22-23每小题4分)21.分解因式:(1) y xy y x 442+- (2) ()()2233y x y x ---22.计算: (1) 11(1)1a a a a -++⋅- (2) x y x yyx x ⎛⎫+-÷ ⎪⎝⎭(3)()32227812393x x yy x y --⎡⎤⋅÷⎢⎥⎣⎦23.先化简,再求值:21123369m m m m m ⎛⎫+÷ ⎪-+-+⎝⎭,其中(m+3)(m+2)=0. 24.解方程: (1)512552x x x+=-- (2)四、作图题. (本题3分)25.某地区要在区域..S .内. (即∠COD 内部..) 建一个超市M ,如图,按照要求,超市M 到两个新建的居民小区A ,B 的距离相等, 到两条公路OC ,OD 的距离也相等. 这个超市应该建在何处? (要求:尺规作图, 不写作法, 保留作图痕迹)五、解答题(共20分,每小题4分)26. 已知:如图,点B 在线段AD 上,BC DE ∥,AB ED =,BC DB =.求证:A E ∠=∠.27.列方程解应用题八年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达。

江苏省泰州市兴化市八年级数学上学期期中试卷(含解析) 新人教版-新人教版初中八年级全册数学试题

江苏省泰州市兴化市八年级数学上学期期中试卷(含解析) 新人教版-新人教版初中八年级全册数学试题

2016-2017学年某某省某某市兴化市八年级(上)期中数学试卷一、选择题1.我国每年都发行一套生肖邮票.下列生肖邮票中,动物的“脑袋”被设计成轴对称图案的是()A.B.C.D.2.下列各组线段能构成直角三角形的一组是()A.5cm,9cm,12cm B.7cm,12cm,13cmC.30cm,40cm,50cm D.3cm,4cm,6cm3.下列各数中,互为相反数的一组是()A.﹣2 与B.﹣2与C.﹣2与﹣D.|﹣2|与24.下列的式子一定是二次根式的是()A.B.C.D.5.下列条件不能证明△ABC和△DEF全等的是()A.AB=DE,AC=EF,BC=DF B.AB=DE,∠A=∠E,∠B=∠DC.AB=DE,∠A=∠D,AC=DF D.AB=DE,∠A=∠D,BC=EF6.在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,AE为BC边上的中线,且AE=4,AD=3,则△ABC的面积为()A.6 B.8 C.10 D.12二、填空题7.的立方根是.8.有意义,则a的取值X围为.×105精确到位.10.一个三角形的三边长分别为6,8,10,则这个三角形最长边上的高是.11.若实数m,n满足(m+1)2+=0,则=.12.在等腰三角形ABC中,∠A=80°,则∠B=.13.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+=9,则线段MN的长为.14.如图,已知△ABC中,∠ACB=90°,以△ABC的各边为边在△ABC外作三个正方形,S1、S2、S3分别表示这三个正方形的面积.若S1=81,S2=225,则S3=.15.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S:S△BCO:S△CAO=.△ABO16.如图,在三角形ABC中,∠BAC=70°,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA,则∠DAE=°.三、解答题(计102分)17.(10分)计算:(1)2﹣1+﹣+()0(2)﹣|2﹣|﹣.18.(10分)(1)化简求值÷3×,其中a=4.(2)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.19.(8分)如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹).(2)连结AP,如果AP平分∠CAB.求∠B的度数.20.(8分)已知a、b、c满足|a﹣|++(c﹣4)2=0.(1)求a、b、c的值;(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.21.(10分)如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)(1)请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;(2)请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形.22.(10分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.23.(10分)已知:如图,在△ABC中,D是BC上的点,AD=AB,E、F分别是AC、BD的中点,AC=6.求EF的长.24.(10分)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8.(1)求BE的长;(2)求△ADB的面积.25.(12分)如图,在△ABC中,∠ACB=90°,以AB长为一边作△ABD,∠ADB=90°,取AB中点E,连DE、CE、CD.(1)求证:DE=CE(2)当∠CAB+∠DBA=时,△DEC是等边三角形,并说明理由(3)当∠CAB+∠DBA=45°时,若CD=5,取CD中点F,求EF的长.26.(14分)在△ABC中(如图1),AB=17,BC=21,AC=10.(1)求△ABC的面积(某学习小组经过合作交流,给出了下面的解题思路,如图2,请你按照他们的解题思路完成解解答过程).(2)若点P在直线BC上,当△APC为直角三角形时,求CP的长.(利用(1)的方法)(3)若有一点Q在在直线BC上运动,当△AQC为等腰三角形时,求BQ的长.2016-2017学年某某省某某市兴化市昭阳湖中学八年级(上)期中数学试卷参考答案与试题解析一、选择题1.我国每年都发行一套生肖邮票.下列生肖邮票中,动物的“脑袋”被设计成轴对称图案的是()A.B.C.D.【考点】利用轴对称设计图案.【分析】根据轴对称图形的概念对各图形分析判断后即可求解.【解答】解:A中图形不是轴对称图形,故此选项错误;B中图形不是轴对称图形,故此选项错误;C中图形不是轴对称图形,故此选项错误;D中图形是轴对称图形,故此选项正确;故选:D.【点评】本题考查了轴对称图形,图形两部分沿对称轴折叠后可重合,轴对称图形的关键是寻找对称轴.2.下列各组线段能构成直角三角形的一组是()A.5cm,9cm,12cm B.7cm,12cm,13cmC.30cm,40cm,50cm D.3cm,4cm,6cm【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理进行判断,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.【解答】解:A.∵5cm,9cm,12cm不符合勾股定理的逆定理,∴不能构成直角三角形;B.∵7cm,12cm,13cm不符合勾股定理的逆定理,∴不能构成直角三角形;C.∵30cm,40cm,50cm符合302+402=502,∴能构成直角三角形;D.∵3cm,4cm,6cm不符合勾股定理的逆定理,∴不能构成直角三角形;故选:C.【点评】本题主要考查了勾股定理的逆定理的运用,要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.3.下列各数中,互为相反数的一组是()A.﹣2 与B.﹣2与C.﹣2与﹣D.|﹣2|与2【考点】实数的性质;立方根.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:A、都是﹣2,故A错误;B、只有符号不同的两个数互为相反数,故B正确;C、绝对值不同,故C错误;D、都是2,故D错误;故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.4.下列的式子一定是二次根式的是()A.B.C.D.【考点】二次根式的定义.【分析】根据二次根式的被开方数是非负数对每个选项做判断即可.【解答】解:A、当x=0时,﹣x﹣2<0,无意义,故本选项错误;B、当x=﹣1时,无意义;故本选项错误;C、∵x2+2≥2,∴符合二次根式的定义;故本选项正确;D、当x=±1时,x2﹣2=﹣1<0,无意义;故本选项错误;故选:C.【点评】本题考查了二次根式的定义.一般形如(a≥0)的代数式叫做二次根式.当a ≥0时,表示a的算术平方根;当a小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根).5.下列条件不能证明△ABC和△DEF全等的是()A.AB=DE,AC=EF,BC=DF B.AB=DE,∠A=∠E,∠B=∠DC.AB=DE,∠A=∠D,AC=DF D.AB=DE,∠A=∠D,BC=EF【考点】全等三角形的判定.【分析】根据全等三角形的判定方法对各选项分析判断后利用排除法求解.【解答】解:A、AB=DE,AC=EF,BC=DF,符合“SSS”,能判定△ABC和△DEF全等,故本选项不符合题意;B、AB=DE,∠A=∠E,∠B=∠D,符合“ASA”,能判定△ABC和△DEF全等,故本选项不符合题意;C、AB=DE,∠A=∠D,AC=DF,符合“SAS”,能判定△ABC和△DEF全等,故本选项不符合题意;D、AB=DE,∠A=∠D,BC=EF,不符合“SAS”,不能判定△ABC和△DEF全等,故本选项符合题意.故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS,熟记各方法是解题的关键.6.在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,AE为BC边上的中线,且AE=4,AD=3,则△ABC的面积为()A.6 B.8 C.10 D.12【考点】直角三角形斜边上的中线;三角形的面积.【分析】根据直角三角形的性质的性质即可得到结论.【解答】解:∵∠BAC=90°,AE为BC边上的中线,∴BC=2AE=8,∵AD⊥BC于点D,∴△ABC的面积=BC•AD=12,故选D.【点评】本题考查了直角三角形斜边上的中线,三角形的面积的计算,熟练掌握直角三角形的性质是解题的关键.二、填空题7.的立方根是 2 .【考点】立方根.【分析】根据算术平方根的定义先求出,再根据立方根的定义即可得出答案.【解答】解:∵ =8,∴的立方根是2;故答案为:2.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.8.有意义,则a的取值X围为a≥1 .【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件:被开方数大于或等于0,列不等式求解.【解答】解:根据二次根式有意义的条件,得a﹣1≥0,解得a≥1.故a的取值X围为a≥1.【点评】本题考查的知识点为:二次根式的被开方数是非负数.×105精确到百位.【考点】近似数和有效数字.【分析】一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位.【解答】×105中,2.428的小数点前面的2表示20万,则这一位是十万位,因而2.428的最后一位8应该是在百位上,因而这个数是精确到百位.【点评】对于用科学记数法表示的数,有效数字的计算方法以及精确到哪一位是需要识记的内容,经常会出错.10.一个三角形的三边长分别为6,8,10,则这个三角形最长边上的高是 4.8 .【考点】勾股定理的逆定理.【分析】根据已知先判定其形状,再根据三角形的面积公式求得其高.【解答】解:∵三角形的三边长分别为6,8,10,符合勾股定理的逆定理62+82=102,∴此三角形为直角三角形,则10为直角三角形的斜边,设三角形最长边上的高是h,根据三角形的面积公式得:×6×8=×10h,解得h=4.8.【点评】解答此题的关键是先判断出三角形的形状,再根据三角形的面积公式解答.11.若实数m,n满足(m+1)2+=0,则= 2 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列出算式,求出m、n的值,根据算术平方根的概念计算即可.【解答】解:由题意得,m+1=0,n﹣5=0,解得,m=﹣1,n=5,则===2,故答案为:2.【点评】本题考查的是非负数的性质,掌握非负数之和等于0时,各项都等于0是解题的关键.12.在等腰三角形ABC中,∠A=80°,则∠B= 50°或20°或80°.【考点】等腰三角形的性质.【分析】分∠A是顶角,∠B是顶角,∠C是顶角三种情况,根据等腰三角形的性质和内角和定理求解.【解答】解:已知等腰△ABC中∠A=80°,若∠A是顶角,则∠B=∠C,所以∠B=(180°﹣80°)=50°;若∠B是顶角,则∠A=∠C=80°,所以∠B=180°﹣80°﹣80°=20°;若∠C是顶角,则∠B=∠A=80°.故答案为:50°或20°或80°.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.13.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+=9,则线段MN的长为9 .【考点】等腰三角形的判定与性质;角平分线的定义;平行线的性质.【分析】由∠ABC、∠ACB的平分线相交于点O,∠MBE=∠EBC,∠E=∠ECB,利用两直线平行,内错角相等,利用等量代换可∠MBE=∠MEB,∠NEC=∠E,然后即可求得结论.【解答】解:∵∠ABC、∠ACB的平分线相交于点E,∴∠MBE=∠EBC,∠E=∠ECB,∵MN∥BC,∴∠EBC=∠MEB,∠NEC=∠ECB,∴∠MBE=∠MEB,∠NEC=∠E,∴BM=ME,EN=,∴MN=ME+EN,即MN=BM+.∵BM+=9∴MN=9,故答案为:9.【点评】题考查学生对等腰三角形的判定与性质和平行线性质的理解与掌握.此题关键是证明△BME,△E是等腰三角形.14.如图,已知△ABC中,∠ACB=90°,以△ABC的各边为边在△ABC外作三个正方形,S1、S2、S3分别表示这三个正方形的面积.若S1=81,S2=225,则S3= 144 .【考点】勾股定理.【分析】根据勾股定理求出BC2=AB2﹣AC2=144,即可得出结果.【解答】解:根据题意得:AB2=225,AC2=81,∵∠ACB=90°,∴BC2=AB2﹣AC2=225﹣81=144,则S3=BC2=144.故答案为:144.【点评】考查了勾股定理、正方形的性质、正方形的面积;熟练掌握勾股定理,由勾股定理求出BC的平方是解决问题的关键.15.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S:S△BCO:S△CAO= 4:5:6 .△ABO【考点】角平分线的性质.【分析】首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC 是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.【解答】解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.【点评】此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.16.如图,在三角形ABC中,∠BAC=70°,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA,则∠DAE= 35 °.【考点】等腰三角形的性质.【分析】由在△ABC中,∠BAC=70°,AB=AC,可求得∠ABC与∠ACB的度数,然后由BD=BA,CE=CA,分别求得∠BAD与∠CAE的度数,继而求得答案.【解答】解:∵∠BAC=70°,AB=AC,∴∠B=∠A CB=55°,∵AB=BD,AC=CE,∴∠BAD=∠BDA,∠E=∠CAE,∴∠BAD=(180°﹣55°)=62.5°,∴∠CAE=∠ACB=27.5°,∴∠DAC=∠BAC﹣∠BAD=70°﹣62.5°=7.5°,∴∠DAE=∠DAC+∠CAE=35°;故答案为:35【点评】此题考查等腰三角形的性质,内角和定理,外角性质等知识.多次利用外角的性质得到角之间的关系式正确解答本题的关键.三、解答题(计102分)17.(10分)(2016秋•兴化市校级期中)计算:(1)2﹣1+﹣+()0(2)﹣|2﹣|﹣.【考点】实数的运算;零指数幂;负整数指数幂.【分析】(1)原式利用零指数幂、负整数指数幂法则,平方根、立方根定义计算即可得到结果;(2)原式利用二次根式性质,绝对值的代数意义,以及立方根定义计算即可得到结果.【解答】解:(1)原式=+2﹣2+1=;(2)原式=5﹣2+﹣3=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(10分)(2016秋•兴化市校级期中)(1)化简求值÷3×,其中a=4.(2)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.【考点】实数的运算.【分析】(1)原式利用二次根式的乘除法则计算,将a的值代入计算即可求出值;(2)利用平方根及立方根定义求出x与y的值,即可求出原式的算术平方根.【解答】解:(1)原式=×==,当a=4时,原式=;(2)根据题意得:x﹣2=4,2x+y+7=27,解得:x=6,y=8,则x2+y2=100,100的算术平方根是10.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.19.如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹).(2)连结AP,如果AP平分∠CAB.求∠B的度数.【考点】作图—复杂作图;线段垂直平分线的性质.【分析】(1)如图,作AB的垂直平分线交BC于P,则点P满足条件;(2)由PA=PB得到∠B=∠PAB,再由AP平分∠CAB得到∠PAB=∠CAB,则∠CAB=2∠B,然后根据三角形内角和计算∠B.【解答】解:(1)如图,点P为所作;(2)∵PA=PB,∴∠B=∠PAB,∵AP平分∠CAB,∴∠PAB=∠CAB,∴∠CAB=2∠B,∵∠CAB+∠B=90°,即2∠B+∠B=90°,∴∠B=30°.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.已知a、b、c满足|a﹣|++(c﹣4)2=0.(1)求a、b、c的值;(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】(1)根据非负数的性质得到方程,解方程即可得到结果;(2)根据三角形的三边关系,勾股定理的逆定理判断即可.【解答】解:(1)∵a、b、c满足|a﹣|++(c﹣4)2=0.∴|a﹣|=0, =0,(c﹣4)2=0.解得:a=,b=5,c=4;(2)∵a=,b=5,c=4,∴a+b=+5>4,∴以a、b、c为边能构成三角形,∵a2+b2=()2+52=32=(4)2=c2,∴此三角形是直角三角形,∴S△==.【点评】本题考查了勾股定理的逆定理,非负数的性质,求三角形的面积,熟练掌握勾股定理的逆定理是解题的关键.21.(10分)(2016秋•太仓市期中)如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)(1)请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;(2)请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形.【考点】作图-轴对称变换.【分析】(1)做BO⊥CD于点O,并延长到B′,使B′O=BO,连接AB即可;(2)轴对称图形沿某条直线折叠后,直线两旁的部分能完全重合.【解答】解:所作图形如下所示:【点评】本题考查对称轴作图,掌握画图的方法和图形的特点是解题的关键.22.(10分)(2012•某某)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.【考点】全等三角形的判定与性质;等腰三角形的判定.【分析】(1)根据AC⊥BC,BD⊥AD,得出△ABC与△BAD是直角三角形,再根据AC=BD,AB=BA,得出Rt△ABC≌Rt△BAD,即可证出BC=AD,(2)根据Rt△ABC≌Rt△BAD,得出∠CAB=∠DBA,从而证出OA=OB,△OAB是等腰三角形.【解答】证明:(1)∵AC⊥BC,BD⊥AD,∴∠ADB=∠ACB=90°,在Rt△ABC和Rt△BAD中,∵,∴Rt△ABC≌Rt△BAD(HL),∴BC=AD,(2)∵Rt△ABC≌Rt△BAD,∴∠CAB=∠DBA,∴OA=OB,∴△OAB是等腰三角形.【点评】本题考查了全等三角形的判定及性质;用到的知识点是全等三角形的判定及性质、等腰三角形的判定等,全等三角形的判定是重点,本题是道基础题,是对全等三角形的判定的训练.23.(10分)(2016秋•宜兴市期中)已知:如图,在△ABC中,D是BC上的点,AD=AB,E、F分别是AC、BD的中点,AC=6.求EF的长.【考点】直角三角形斜边上的中线;等腰三角形的性质.【分析】连接AF,根据等腰三角形三线合一的性质可得AF⊥BD,在Rt△AFC中,再利用直角三角形斜边上的中线等于斜边的一半即可求出EF=AC.【解答】解:连接AF.∵AB=AD,F是BD的中点,∴AF⊥BD,又∵E是AC的中点,∴EF=AC(直角三角形斜边上的中线等于斜边的一半)∵AC=6,∴EF=3.故答案为:3.【点评】本题考查了等腰三角形三线合一的性质,直角三角形斜边上的中线等于斜边的一半的性质,作出辅助线构造出直角三角形是解题的关键.24.(10分)(2016秋•兴化市校级期中)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8.(1)求BE的长;(2)求△ADB的面积.【考点】勾股定理;角平分线的性质.【分析】(1)根据角平分线的性质和勾股定理得出AE=AC即可;(2)根据勾股定理得出方程求出DE,根据三角形的面积公式即可得到结论.【解答】解:(1)∵∠C=90°,AD平分∠CAB,DE⊥AB于E,∴CD=DE,AB==10,∴AD=AD,由勾股定理得:AE=AC=6,∴BE=1B﹣AE=4;(2)AB==10,设CD=DE=x,则BD=8﹣x,由勾股定理得:x2+42=(8﹣x)2,解得:x=3,∴DE=3,∴S△ABD=AB•DE=×10×3=15.【点评】本题主要考查角平分线的性质和勾股定理,找到CD、DE、BD之间的关系得到关于DE的方程是解题的关键.注意方程思想的应用.25.(12分)(2016秋•兴化市校级期中)如图,在△ABC中,∠ACB=90°,以AB长为一边作△ABD,∠ADB=90°,取AB中点E,连DE、CE、CD.(1)求证:DE=CE(2)当∠CAB+∠DBA= 60°,时,△DEC是等边三角形,并说明理由(3)当∠CAB+∠DBA=45°时,若CD=5,取CD中点F,求EF的长.【考点】等边三角形的判定;等腰三角形的性质.【分析】(1)由直角三角形斜边上的中线性质即可得出结论;(2)证明A、B、C、D四点共圆,E是圆心,由圆周角定理得出∠BEC=2∠CAB,∠AED=2∠DBA,得出∠BEC+∠AED=2×60°=120°,求出∠DEC=60°即可;(3)同(2)证出∠DEC=90°,由直角三角形斜边上的中线性质即可得出结论.【解答】(1)证明:∵∠ACB=∠ADB=90°,E是AB的中点,∴DE=AB,CE=AB,∴DE=CE;(2)解:当∠CAB+∠DBA=60°时,△DEC是等边三角形,理由如下:∵∠ACB=∠ADB=90°,∴A、B、C、D四点共圆,E是圆心,∴∠BEC=2∠CAB,∠AED=2∠DBA,∵∠CAB+∠DBA=60°,∴∠BEC+∠AED=2×60°=120°,∴∠DEC=60°,∵DE=CE,∴△DEC是等边三角形;故答案为:60°;(3)解:同(2)得:∠BEC=2∠CAB,∠AED=2∠DBA,∵∠CAB+∠DBA=45°,∴∠BEC+∠AED=2×45°=90°,∴∠DEC=90°,∵F是CD的中点,∴EF=CD=2.5.【点评】本题考查了等边三角形的判定与性质、四点共圆、圆周角定理、直角三角形斜边上的中线性质等知识;本题有一定难度.26.(14分)(2016秋•兴化市校级期中)在△ABC中(如图1),AB=17,BC=21,AC=10.(1)求△ABC的面积(某学习小组经过合作交流,给出了下面的解题思路,如图2,请你按照他们的解题思路完成解解答过程).(2)若点P在直线BC上,当△APC为直角三角形时,求CP的长.(利用(1)的方法)(3)若有一点Q在在直线BC上运动,当△AQC为等腰三角形时,求BQ的长.【考点】三角形综合题.【分析】(1)作AD垂直于BC,设BD=x,则有CD=21﹣x,分别利用勾股定理表示出AD2,列出关于x的方程,求出方程的解得到x的值,进而确定出AD的长,求出三角形ABC面积即可;(2)如图所示,分两种情况考虑:当△ACP2为直角三角形时;当△ACP1为直角三角形时,分别求出CP的长即可;(3)如图所示,分四种情况考虑:当AC=CQ1=10时;当AQ2=AC=10时;当AQ3=CQ3时;当AC=CQ4=10时,分别求出BQ的长即可.【解答】解:(1)作AD⊥BC,设BD=x,则有CD=21﹣x,在Rt△ABD中,根据勾股定理得:AD2=172﹣x2,在Rt△ACD中,根据勾股定理得:AD2=102﹣(21﹣x)2,可得289﹣x2=100﹣(21﹣x)2,整理得:42x=630,解得:x=15,∴AD=8,则S=BC•AD=84;(2)如图所示:当P2与D重合时,此时△APC2为直角三角形,CP2=6;当△AP1C为直角三角形时,AD2=P1D•CD,即64=6P1D,解得:P1D=,此时CP1=;(3)如图所示,分四种情况考虑:当AC=CQ1=10时,BQ1=21﹣10=11;当AQ2=AC=10时,CD=Q2D=6,此时BQ2=21﹣12=9;当AQ3=CQ3时,此时BQ3=;当AC=CQ4=10时,BQ4=21+10=31.【点评】此题属于三角形综合题,涉及的知识有:勾股定理,相似三角形的判定与性质,以及线段垂直平分线定理,熟练掌握定理是解本题的关键.。

2016年人教版八年级上册期中数学试卷及答案

2016年人教版八年级上册期中数学试卷及答案

2016年人教版八年级上册期中数学试卷及答案2016年秋季学期八年级数学期中考试试卷本试卷共24小题,满分120分,考试时间为120分钟。

考试分为试题卷和答题卡两部分,请将答案写在答题卡上的对应答题区域内,写在试题卷上无效。

考试结束后,请将试题卷和答题卡一并上交。

一、选择题(每小题3分,共计45分)1.下列图形中,是轴对称图形的是()。

A。

锐角三角形B。

钝角三角形C。

直角三角形D。

锐角三角形或钝角三角形2.点P(1,-2)关于x轴对称的点的坐标是()。

A。

(1,2)B。

(1,-2)C。

(-1,2)D。

(-1,-2)3.已知△ABC有一个内角为100°,则△ABC一定是()。

4.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()。

A。

5B。

6C。

11D。

165.若三角形三个内角度数的比为1∶2∶3,则这个三角形的最小角是()。

A。

30°B。

45°C。

60°D。

90°6.一个多边形的每个内角都等于108°,则这个多边形的边数为()。

A。

5B。

6C。

7D。

87.已知直角三角形中有一个角是30°,它对的直角边长是2厘米,则斜边的长是()。

A。

2厘米B。

4厘米C。

6厘米D。

8厘米8.若等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()。

A。

7cmB。

3cmC。

7cm或3cmD。

8cm9.若等腰三角形的一个外角是80°,则底角是()。

A。

80°或50°B。

80°或40°C。

100°或50°D。

100°或40°10.如图,△ABC中,点D在BC上,△ACD和△ABD 面积相等,线段AD是三角形的()。

11.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()。

2016-2017学年人教版八年级上期中数学试卷含答案解析

2016-2017学年人教版八年级上期中数学试卷含答案解析
4.计算﹣ (﹣ 3a2b3)4 的结果是( )
第 5 页(共 15 页)
2.下面四个图形中,线段 BD 是△ABC 的高的是( )
A.
B.
分线、中线和高. 【分析】根据三角形高的定义进行判断. 【解答】解:线段 BD 是△ABC 的高,则过点 B 作对边 AC 的垂线,则垂线段 BD 为△ ABC 的高. 故选 A.
3.三角形三条边大小之间存在一定的关系,以下列各组线段为边,能组成三角形的是 () A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cm C.1 cm,1 cm,3 cm D.3 cm,4 cm,9 cm 【考点】三角形三边关系. 【分析】根据三角形的三边关系对各选项进行逐一分析即可. 【解答】解:A、∵2+3=5,∴不能组成三角形,故本选项错误; B、∵10﹣ 5<6<10+5,∴能组成三角形,故本选项正确; C、∵1+1=2<3,∴不能组成三角形,故本选项错误; D、∵3+4=7<9,∴不能组成三角形,故本选项错误. 故选 B.
2016-2017 学年重庆市 XX 中学八年级(上)期中数学试卷
一.选择题(每小题 3 分,共 30 分) 1.计算(﹣ x)2•x3 所得的结果是( ) A.x5 B.﹣ x5 C.x6 D.﹣ x6 2.下面四个图形中,线段 BD 是△ABC 的高的是( )
A.
B.
C.
D.
3.三角形三条边大小之间存在一定的关系,以下列各组线段为边,能组成三角形的是 () A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cm C.1 cm,1 cm,3 cm D.3 cm,4 cm,9 cm 4.计算﹣ (﹣ 3a2b3)4 的结果是( ) A.81a8b12 B.12a6b7 C.﹣ 12a6b7 D.﹣ 81a8b12 5.如图,将两根钢条 AA′、BB′的中点 O 连在一起,使 AA′、BB′可以绕着点 O 自由转 动,就做成了一个测量工件,由三角形全等得出 A′B′的长等于内槽宽 AB;那么判定△ OAB≌△OA′B′的理由是( )

最新2016-2017人教版八年级上册数学期中考试试卷及答案--正版

最新2016-2017人教版八年级上册数学期中考试试卷及答案--正版

2016-2017 人教版第一學期 八年級數學期中試卷一.用心選一選:(每小題3分,共30分)1.下列各式是因式分解且完全正確の是( )A .ab +ac +d =b a (+c )+dB .)1(23-=-x x x x C .(a +2)(a -2)=2a -4 D .2a -1=(a +1)(a -1) 2.醫學研究發現一種新病毒の直徑約為0.000043毫米,這個數用科學記數法表 示為( )A. 41043.0-⨯ B. 41043.0⨯ C. 5103.4-⨯ D. 5103.4⨯3. 下列各式:()xxx x y x x x 2225,1,2 ,34 ,151+---π其中分式共有( )個。

A .2 B. 3 C. 4 D. 5 4. 多項式 2233449-18-36a x a x a x 各項の公因式是( )A .22a xB .33a xC .229a xD .449a x5. 如圖,用三角尺可按下面方法畫角平分線:在已知の∠AOBの兩邊上分別取點M 、N ,使OM =ON ,再分別過點M 、N 作OA 、OB の垂線,交點為P ,畫射線OP .可證得△POM ≌△PON ,OP 平分∠AOB .以上依畫法證明 △POM ≌△PON 根據の是( ) A .SSS B .HL C .AAS D .SAS6. 甲、乙二人做某種機械零件,已知甲每小時比乙多做6個,甲做90個所用の時間與乙做60個所用の時間相等。

如果設甲每小時做x 個零件,那麼下面所列方程中正確の是( ). A.9060-6x x = B. 90606x x =+ C. 90606x x =+ D. 9060-6x x=7. 如圖,已知△ABC ,則甲、乙、丙三個三角形中和△ABC 全等の是( )baca cc aa丙72︒50︒乙50︒甲50︒CBA50︒72︒58︒A. 只有乙B. 乙和丙C. 只有丙D. 甲和乙8. 下列各式中,正確の是( )A .122b a b a =++ B .2112236d cd cd cd++= C . -a b a bc c++= D .222-4-2(-2)a a a a += 9.如圖,正方形ABCD の邊長為4,將一個足夠大の直角三角板の直角頂點放於點A 處,該三角板の兩條直角邊與CD 交於點F ,與CB 延長線交於點E .四邊形AECF の面積是( )A. 16 B .4 C .8 D. 1210.在數學活動課上,小明提出這樣一個問題:如右圖, ∠B =∠C = 90︒, E 是BC の中點, DE 平分∠ADC, ∠CED = 35︒, 則∠EAB の度數 是 ( )A .65︒B .55︒C .45︒D .35︒二.細心填一填:(每小題3分,共24分) . 11.計算:2220042003-= .ED CBA12. 04= 212-⎛⎫- ⎪⎝⎭= ()312a b -=13. 如果分式 242x x -+ の值是零,那麼x の值是 _________________ .14. 將一張長方形紙片按如圖所示の方式折疊,BC BD ,為折痕, 則CBD ∠の度數為_ _.15. 計算: 2422x x x --- = __________________. 16. 如圖,AC 、BD 相交於點O ,∠A =∠D ,請你再補充一個條件, 使得△AOB ≌△DOC ,你補充の條件是 .17. 如圖,點P 是∠BAC の平分線AD 上一點,PE ⊥AC 於點E . 已知PE =3,則點P 到AB の距離是_________________.18. 在平面直角坐標系中,已知點A (1,2),B (5,5),C (5,2),存在點E , 使△ACE 和△ACB 全等,寫出所有滿足條件のE 點の坐標 .三.用心做一做(19、20題每題3分,21、22、23題每題4分,共26分)19.因式分解: 24a -32a +64 20.計算:3222)()(---⋅a ab (結果寫成分式)21.計算: (1) 22819369269a a a a a a a --+÷⋅++++ (2) (m 1+n1)÷nn m +22.解分式方程:(1)3221+=x x (2)214111x x x +-=--23. 先化簡: 21x +21+x +1x -1⎛⎫÷ ⎪⎝⎭,再選擇一個恰當の數代入求值.四.應用題(本題5分)24. 甲乙兩站相距1200千米,貨車與客車同時從甲站出發開往乙站,已知客車の速度是貨車速度の2倍,結果客車比貨車早6小時到達乙站,求客車與貨車の速度分別是多少?解:DCB五、作圖題(本題2分)25.畫圖 (不用寫作法,要保留作圖痕跡......)尺規作圖:求作AOB∠の角平分線OC.六、解答題:(28題5分,其他每題4分,共17分)26.已知,如圖,在△AFD和△CEB中,點A,E,F,C在同一直線上,AE=CF,DF=BE,AD=CB. 求證:AD∥BC.27.已知:如圖,AB=AD,AC=AE,且BA⊥AC,DA⊥AE.求證:(1)∠B=∠D (2) AM=AN.28.如圖,已知∠1=∠2,P為BN上の一點,PF⊥BC於F,PA=PC,求證:∠PCB+∠BAP=180º.29. 已知:在平面直角坐標系中,△ABCの頂點A、C別在y軸、x軸上,且∠ACB=90°,AC=BC.(1)如圖1,當(0,2),(1,0)A C-,點B則點Bの坐標為;(2)如圖2,當點C在x軸正半軸上運動,點A在y軸正半軸上運動,點B在第四象限時,作BD⊥y軸於點D,試判斷OABDOC+與OABDOC-哪一個是定值,並說明定值是多少?請證明你の結論.F CFDCBAEO附加題1.選擇題:以右圖方格紙中の3個格點為頂點,有多少個不全等の三角形( ) A .6 B .7 C .8 D .92.填空題:考察下列命題:(1)全等三角形の對應邊上の中線、高線、角平分線對應相等;(2)兩邊和其中一邊上の中線對應相等の兩個三角形全等;(3)兩邊和第三邊上の中線對應相等の兩個三角形全等;(4)兩角和其中一角の角平分線對應相等の兩個三角形全等;(5)兩角和第三角の角平分線對應相等の兩個三角形全等;(6)兩邊和其中一邊上の高線對應相等の兩個三角形全等;(7)兩邊和第三邊上の高線對應相等の兩個三角形全等;其中正確の命題是 (填寫序號).3.解答題:我們知道,假分數可以化為帶分數. 例如: 83=223+=223. 在分式中,對於只含有一個字母の分式,當分子の次數大於或等於分母の次數時,我們稱之為“假分式”;當分子の次數小於分母の次數時,我們稱之為“真分式”. 例如:11x x -+,21x x -這樣の分式就是假分式;31x + ,221xx + 這樣の分式就是真分式 . 類似の,假分式也可以化為帶分式(即:整式與真分式和の形式). 例如:1(1)22=1111x x x x x -+-=-+++; 22111(1)1111111x x x )x x x x x x -++-+===++----(. (1)將分式12x x -+化為帶分式; (2)若分式211x x -+の值為整數,求x の整數值;解:參考答案1-5 DCACB 6-10 ABDBD 11 . 4007 12. 1, 4, 338a b - 13. -2 14 . 90︒ 15. 2 16. OC OB ,或CD AB ,或===OD OA17. 3 18.(5,-1),(1,5),(1,-1) 19. 2)4(4-a 20. 48b a21. (1)-2 (2)1m 22. (1) x=1 (2)無解 23. -1 24. x=625.略 26. SSS 證全等 27.(1)SAS 證全等 (2)ASA 證全等 28. 過點P 作PE 垂直BA 於點E ,HL 證全等. 29.(1) (3,-1) (2)OC BDOA-是定值.附加題1.選擇題: C2.填空題: 正確の命題是 1,2,3,4 ,5 3.解答題:解:(1)12331222x x x x x -(+)-==-+++; (2)2121332111x x x x x -(+)-==-+++. 當211x x -+為整數時,31x +也為整數.1x ∴+可取得の整數值為1±、3±.x ∴の可能整數值為0,-2,2,-4.。

2016-2017学年八年级(上)期中数学试卷...

2016-2017学年八年级(上)期中数学试卷...

2016-2017学年八年级(上)期中数学试卷一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每题3分,计45分)1.若一个三角形的两边长分别为3和7,则第三边长可能是()A.2 B.3 C.5 D.112.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.3.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.4.如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130°D.140°5.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()5题图4题图A.1个B.2个C.3个D.4个6.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()6题图9题图A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD7.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90° C.72° D.60°8.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或209.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个10.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()10题图11题图A.15 B.30 C.45 D.6011.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°12.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.1913.如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()13题图14题图12题图A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM14.如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC15.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()15题图 A.1个 B.2个 C.3个 D.4个二.解答题(共9小题)16.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=80°,∠ABC=70°.求∠BAD,∠AOF.17.如图,AB=AD,CB=CD,求证:AC平分∠BAD.18.如图,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求证:BC=DE.19.如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.20.如图,一艘轮船以18海里/时的速度由西向东航行,在A处测得小岛C在北偏东75°方向上,两小时后,轮船在B处测得小岛C在北偏东60°方向上,在小岛周围15海里处有暗礁,若轮船仍然按18海里/时的速度向东航行,请问是否有触礁危险?并说明理由.21.如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB于点G.求证:CG垂直平分AB.22.如图,在等边△ABC中,点F是AC边上一点,延长BC到点D,使BF=DF,若CD=CF,求证:(1)点F为AC的中点;(2)过点F作FE⊥BD,垂足为点E,请画出图形并证明BD=6CE.23.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P 作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.24.在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是BC边上一点,BN⊥AD交AD的延长线于点N.(1)如图1,若CM∥BN交AD于点M.①直接写出图1中所有与∠MCD相等的角:;(注:所找到的相等关系可以直接用于第②小题的证明过程②过点C作CG⊥BN,交BN的延长线于点G,请先在图1中画出辅助线,再回答线段AM、CG、BN有怎样的数量关系,并给予证明.(2)如图2,若CM∥AB交BN的延长线于点M.请证明:∠MDN+2∠BDN=180°.2016-2017学年八年级(上)期中数学试卷一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每题3分,计45分)1.若一个三角形的两边长分别为3和7,则第三边长可能是( C )A.2 B.3 C.5 D.112.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( D )A.B.C.D.3.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是( A )A.B.C.D.4.如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是( B )A.110°B.120°C.130°D.140°5.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( C )A.1个B.2个C.3个D.4个6.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( A )A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD7.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( C )A.108°B.90° C.72° D.60°8.一个等腰三角形的两边长分别为4,8,则它的周长为( C )A.12 B.16 C.20 D.16或209.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有( D )A.0个B.1个C.2个D.3个10.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是( B )A.15 B.30 C.45 D.6011.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是(B)A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°12.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为( B )A.13 B.15 C.17 D.1913.如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是( B )A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM14.如图,AD是△ABC的角平分线,则AB:AC等于( A )A.BD:CD B.AD:CD C.BC:AD D.BC:AC15.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有( D )A.1个B.2个C.3个D.4个二.解答题(共9小题)16.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=80°,∠ABC=70°.求∠BAD,∠AOF.【解答】解:∵AD是高,∠ABC=70°,∴∠BAD=90°﹣70°=20°,∵AE、BF是角平分线,∠BAC=80°,∠ABC=70°,∴∠ABO=35°,∠BAO=40°,∴∠AOF=∠ABO+∠BAO=75°.17.如图,AB=AD,CB=CD,求证:AC平分∠BAD.【解答】解:在△BAC和△DAC中,,∴△BAC≌△DAC(SAS),∴∠BAC=∠DAC,∴AC平分∠BAD.18.如图,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求证:BC=DE.【解答】证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC.即∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(AAS).∴BC=DE.19.如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.【解答】证明:证法一:连接AD.∵AB=AC,点D是BC边上的中点∴AD平分∠BAC(三线合一性质),∵DE、DF分别垂直AB、AC于点E和F.∴DE=DF(角平分线上的点到角两边的距离相等).证法二:在△ABC中,∵AB=AC∴∠B=∠C(等边对等角)…(1分)∵点D是BC边上的中点∴BD=DC …(2分)∵DE、DF分别垂直AB、AC于点E和F∴∠BED=∠CFD=90°…在△BED和△CFD中∵,∴△BED≌△CFD(AAS),∴DE=DF(全等三角形的对应边相等).20.如图,一艘轮船以18海里/时的速度由西向东航行,在A处测得小岛C在北偏东75°方向上,两小时后,轮船在B处测得小岛C在北偏东60°方向上,在小岛周围15海里处有暗礁,若轮船仍然按18海里/时的速度向东航行,请问是否有触礁危险?并说明理由.【解答】解:作CE⊥AB于E,∵A处测得小岛P在北偏东75°方向,∴∠CAB=15°,∵在B处测得小岛P在北偏东60°方向,∴∠ACB=15°,∴AB=PB=2×18=36(海里),∵∠CBD=30°,∴CE=BC=18>15,∴船不改变航向,不会触礁.21.如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB于点G.求证:CG垂直平分AB.【解答】证明:∵CA=CB∴∠CAB=∠CBA∵△AEC和△BCD为等腰直角三角形,∴∠CAE=∠CBD=45°,∠FAG=∠FBG,∴∠FAB=∠FBA,在三角形ACF和△CBF中,,∴△AFC≌△BCF(SSS),∴∠ACF=∠BCF∴AG=BG,CG⊥AB(三线合一),即CG垂直平分AB.22.如图,在等边△ABC中,点F是AC边上一点,延长BC到点D,使BF=DF,若CD=CF,求证:(1)点F为AC的中点;(2)过点F作FE⊥BD,垂足为点E,请画出图形并证明BD=6CE.【解答】解:(1)∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵CF=CD,∴∠CFD=∠D,∴∠ACB=2∠D,即∠D=∠ACB=30°,∵FB=FD,∴∠FBD=∠D=30°,∴BF平分∠ABC,∴AF=CF,即点F为AC的中点;(2)如图,在Rt△EFC中,CF=2CE,而CD=CF,∴CF=2CE,在Rt△BCF中,BC=2CF,∴BD=6CE.23.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P 作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.【解答】解:(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°,∵∠BQD=30°,∴∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,∴QC=QB+BC=6+x,∵在Rt△QCP中,∠BQD=30°,∴PC=QC,即6﹣x=(6+x),解得x=2,∴AP=2;(2)当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:作QF⊥AB,交直线AB于点F,连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,在△APE和△BQF中,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,,∴△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EB+AE=BE+BF=AB,∴DE=AB,又∵等边△ABC的边长为6,∴DE=3,∴点P、Q同时运动且速度相同时,线段DE的长度不会改变.24.在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是BC边上一点,BN⊥AD交AD的延长线于点N.(1)如图1,若CM∥BN交AD于点M.①直接写出图1中所有与∠MCD相等的角:∠CAD,∠CBN ;(注:所找到的相等关系可以直接用于第②小题的证明过程②过点C作CG⊥BN,交BN的延长线于点G,请先在图1中画出辅助线,再回答线段AM、CG、BN有怎样的数量关系,并给予证明.(2)如图2,若CM∥AB交BN的延长线于点M.请证明:∠MDN+2∠BDN=180°.【解答】解:(1)①∵CM∥BN,BN⊥AN,∴∠CMD=∠N=90°,∠MCD=∠CBN,∵∠ACB=90°,∴∠ACM+∠CAD=90°,∠MCD+∠ACM=90°,∴∠MCD=∠CAD,故答案为∠CAD、∠CBN.②在图1中画出图形,如图所示,结论:AM=CG+BN,证明:在△ACM和△BCG中,,∴△ACM≌△BCG,∴CM=CG,AM=BG,∵∠CMN=∠MNG=∠G=90°,∴四边形MNGC是矩形,∴CM=GN=CG,∴AM=BG=BN+GN=BN+CG.(2)过点C作CE平分∠ACB,交AD于点E.∵在△ACD和△BDN中,∠ACB=90°,AN⊥ND ∴∠4+∠ADC=90°=∠5+∠BDN又∵∠ADC=∠BDN∴∠4=∠5,∵∠ACB=90°,AC=BC,CE平分∠ACB,∴∠6=45°,∠2=∠3=45°又∵CM∥AB,∴∠1=∠6=45°=∠2=∠3,在△ACE和△BCM中,,∴△ACE≌△BCM(ASA)∴CE=CM又∵∠1=∠2,CD=CD∴∠CDE=∠CDM又∵∠BDN=∠CDE,∠MDN+∠CDE+∠CDM=180°∴∠MDN+2∠BDN=180°.。

2017人教版八年级数学(上)期中试卷及答案

2017人教版八年级数学(上)期中试卷及答案

AC D第8题图 第1题图第9题图 2017新人教版八年级数学(上)期中考试卷(考试用时:120分钟 ; 满分: 120分)一、选择题(共12小题,每小题3分,共36分. 在每小题给出的四个选项中只有一项是符合要求的,请将正确答案的序号填入对应题目后的括号内)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( ).2. 对于任意三角形的高,下列说法不正确的是( )A .锐角三角形有三条高B .直角三角形只有一条高C .任意三角形都有三条高D .钝角三角形有两条高在三角形的外部3. 一个三角形的两边长为3和8,第三边长为奇数,则第三边长为( ) A. 5或7 B. 7或9 C. 7 D. 94. 等腰三角形的一个角是80°,则它的底角是( )A. 50°B. 80°C. 50°或80°D. 20°或80°5. 点M (3,2)关于y 轴对称的点的坐标为 ( )。

A.(—3,2) B.(-3,-2) C. (3,-2) D. (2,-3)6. 如图,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( )。

A .30° B. 40° C. 50° D. 60°7. 现有四根木棒,长度分别为4cm ,6cm ,8cm ,10cm.从中任取 三根木棒,能组成三角形的个数为( )A .1个B .2个C .3个D .4个 8. 如图,△ABC 中,AB=AC ,D 为BC 的中点,以下结论: (1)△ABD ≌△ACD ; (2)AD ⊥BC ;(3)∠B=∠C ; (4)AD 是△ABC 的角平分线。

其中正确的有( )。

A .1个 B. 2个 C. 3个 D. 4个9. 如图,△ABC 中,AC =AD =BD ,∠DAC =80º, 则∠B 的度数是( ) A .40º B .35º C .25º D .20º10. 如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角是 ( ) A .30º B .36º C .60º D .72º11.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块, )去.A .①B .②C .③D .①和②B C D第16题图 第12题图 第17题图第15题图 第14题图 12.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n 个图案中正三角形的个数为A .2n+1 B. 3n +2 C. 4n+2 D. 4n -2二、填空题(本大题共6小题,每小题3分,共18分.请把答案填写在相应题目后的横线上) 13. 若A (x ,3)关于y轴的对称点是B (-2,y ),则x =____ ,y =______ , 点A 关于x 轴的对称点的坐标是___________ 。

湖北省黄冈市八年级数学上学期期中试卷(含解析) 新人教版-新人教版初中八年级全册数学试题

湖北省黄冈市八年级数学上学期期中试卷(含解析) 新人教版-新人教版初中八年级全册数学试题

2016-2017学年某某省黄冈市八年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.下列图形是轴对称图形的有()A.1个B.2个C.3个D.4个2.一个三角形的两边长分别是3cm和8cm,则此三角形的第三边的长可能是()A.3cm B.5cm C.8cm D.11cm3.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组4.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD5.如图,在△ABC中,BC=12,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于()A.12 B.13 C.14 D.156.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直,若AD=8,则点P到BC的距离是()A.2 B.4 C.6 D.87.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处 B.二处 C.三处 D.四处8.如图,已知AF=AB,∠FAB=60°,AE=AC,∠EAC=60°,CF和BE交于O点,则下列结论:①CF=BE;②∠AMO=∠ANO;③OA平分∠FOE;④∠COB=120°,其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共21分)9.如果一个多边形的每一个外角都等于60°,则它的内角和是.10.点(2,﹣3)关于y轴对称的点的坐标是.11.如图,CD⊥AB于D,BE⊥AC于E,BE与CD交于O,OB=OC,则图中全等三角形共有对.12.如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=50°,则∠BOC=.13.如图,已知AB=AC,DE垂直平分AB交AB、AC于D、E两点,若AB=12cm,BC=8cm,则△BCE的周长为cm.14.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=8,则PQ的最小值为.15.已知A(0,1),B(3,1),C(4,3),如果在平面直角坐标系中存在一点D,使得△ABD 与△ABC全等,那么点D的坐标为.三、解答题(共75分)16.如图,点A,F,C,D在同一直线上,点B与点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC,求证:BC=EF.17.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).(1)将△ABC向右平移6个单位,再向下平移3个单位得到△A1B1C1,图中画出△A1B1C1,平移后点A对应点A1的坐标是.(2)将△ABC沿y轴翻折得△A2B2C2,图中画出△A2B2C2,翻折后点A对应点A2坐标是.(3)若将△ABC向左平移2个单位,求:△ABC扫过的面积.18.如图,点D在BC上,∠1=∠2,AE=AC,下面三个条件:①AB=AD;②BC=DE;③∠E=∠C,请你从所给条件①②③中选一个条件,使△ABC≌△ADE,并证明两三角形全等.19.数学来源于生活又服务于生活,利用数学中的几何知识可以帮助我们解决许多实际问题.李明准备与朋友合伙经营一个超市,经调查发现他家附近有两个大的居民区A、B,同时又有相交的两条公路,李明想把超市建在到两居民区的距离、到两公路距离分别相等的位置上,绘制了如下的居民区和公路的位置图.聪明的你一定能用所学的数学知识帮助李明在图上确定超市的位置!请用尺规作图确定超市P的位置.(作图不写作法,但要求保留作图痕迹.)20.如图,已知:∠B=∠C=90°,M是BC的中点,DM平分∠ADC.求证:(1)AM平分∠DAB;(2)AD=AB+CD.21.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)求证:BE=CF;(2)如果AB=8,AC=6,求AE、BE的长.22.课间,小明拿着老师的等腰直角三角板的三角板玩,不小心掉到两墙之间,如图所示.(1)求证:△ADC≌△CEB;(2)从三角板的刻度可知DE=42cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等)23.如图①,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系;(不用证明)(2)如图②,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图③,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系,并说明理由;②你能求出BD与AC所夹的锐角的度数吗?如果能,请直接写出这个锐角的度数;如果不能,请说明理由.24.如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(m,0)、B(0,n)且|m﹣n﹣4|+=0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P运动时间为t秒.(1)求OA、OB的长;(2)连接PB,若△POB的面积不大于4且不等于0,求t的X围;(3)过P作直线AB的垂线,垂足为C,直线PC与y轴交于点D,在点P运动的过程中,是否存在这样的点P,使△DOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.2016-2017学年某某省黄冈市八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.下列图形是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此作答.【解答】解:从左起第1,3,4,5是轴对称图形,符合题意,故一共有4个图形是轴对称图形.故选:D.2.一个三角形的两边长分别是3cm和8cm,则此三角形的第三边的长可能是()A.3cm B.5cm C.8cm D.11cm【考点】三角形三边关系.【分析】根据已知边长求第三边x的取值X围为:5<x<11,因此只有选项C符合.【解答】解:设第三边长为xcm,则8﹣3<x<3+8,5<x<11,故选C.3.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组【考点】全等三角形的判定.【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【解答】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.4.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.【分析】先根据角平分线的性质得出PC=PD,再利用HL证明△OCP≌△ODP,根据全等三角形的性质得出∠CPO=∠DPO,OC=OD.【解答】解:∵OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,∴PC=PD,故A正确;在Rt△OCP与Rt△ODP中,,∴△OCP≌△ODP,∴∠CPO=∠DPO,OC=OD,故C、D正确.不能得出∠CPD=∠DOP,故B错误.故选B.5.如图,在△ABC中,BC=12,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于()A.12 B.13 C.14 D.15【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质得到DB=DA,EC=EA,根据三角形的周长公式计算即可.【解答】解:∵AB的中垂线交BC于D,AC的中垂线交BC于E,∴DB=DA,EC=EA,∴△ADE的周长=AD+AE+DE=BD+DE+EC=BC=12,故选:A.6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直,若AD=8,则点P到BC的距离是()A.2 B.4 C.6 D.8【考点】角平分线的性质;平行线的性质.【分析】作PE⊥BC于E,根据角平分线的性质得到PA=PE,PE=PD,得到答案.【解答】解:作PE⊥BC于E,∵AB∥CD,AD⊥AB,∴AD⊥CD,∵BP平分∠ABC,PE⊥BC,AD⊥AB,∴PA=PE,同理,PE=PD,∴PE=AD=4,故选:B.7.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处 B.二处 C.三处 D.四处【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边的距离相等作出图形即可得解.【解答】解:如图所示,加油站站的地址有四处.故选D.8.如图,已知AF=AB,∠FAB=60°,AE=AC,∠EAC=60°,CF和BE交于O点,则下列结论:①CF=BE;②∠AMO=∠ANO;③OA平分∠FOE;④∠COB=120°,其中正确的有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质.【分析】如图先证明△ABE≌△AFC,得到BE=CF,S△ABE=S△AFC,得到AP=AQ,利用角平分线的判定定理得AO平分∠EOF,再利用“8字型”证明∠CON=∠CAE=60°,由此可以解决问题.【解答】解:∵△ABF和△ACE是等边三角形,∴AB=AF,AC=AE,∠FAB=∠EAC=60°,∴∠FAB+∠BAC=∠EAC+∠BAC,即∠FAC=∠BAE,在△ABE与△AFC中,,∴△ABE≌△AFC(SAS),∴BE=FC,故①正确,∠AEB=∠ACF,∵∠EAN+∠ANE+∠AEB=180°,∠CON+∠O+∠ACF=180°,∠ANE=∠O∴∠CON=∠CAE=60°=∠MOB,∴∠BOC=180°﹣∠CON=120°,故④正确,连AO,过A分别作AP⊥CF与P,AM⊥BE于Q,如图,∵△ABE≌△AFC,∴S△ABE=S△AFC,∴•CF•AP=•BE•AQ,而CF=BE,∴AP=AQ,∴OA平分∠FOE,所以③正确,∵∠AMO=∠MOB+∠ABE=60°+∠ABE,∠ANO=∠CON+∠ACF=60°+∠ACF,显然∠ABE与∠ACF不一定相等,∴∠AMO与∠ANO不一定相等,故②错误,综上所述正确的有:①③④.故选C.二、填空题(每小题3分,共21分)9.如果一个多边形的每一个外角都等于60°,则它的内角和是720°.【考点】多边形内角与外角.【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n﹣2)•180°,因而代入公式就可以求出内角和.【解答】解:多边形边数为:360°÷60°=6,则这个多边形是六边形;∴内角和是:(6﹣2)•180°=720°.故答案为:720°.10.点(2,﹣3)关于y轴对称的点的坐标是(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数.【解答】解:点(2,﹣3)关于y轴对称的点的坐标是(﹣2,﹣3).11.如图,CD⊥AB于D,BE⊥AC于E,BE与CD交于O,OB=OC,则图中全等三角形共有 4 对.【考点】全等三角形的判定.【分析】根据全等三角形的判定定理进行判断即可.【解答】解:在△BOD和△COE中,,∴△BOD≌△COE,同理△ABO≌△ACO,△ADO≌△AEO,△ADC≌△AEB,故答案为:4.12.如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=50°,则∠BOC= 115°.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】求出∠ABC+∠ACB=130°,根据角平分线定义得出∠OBC=∠ABC,∠OCB=∠ACB,求出∠OBC+∠OCB=×(∠ABC+∠ACB)=65°,根据三角形的内角和定理得出∠BOC=180°﹣(∠OBC+∠OCB),代入求出即可.【解答】解;∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠B和∠C的平分线交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=×(∠ABC+∠ACB)=×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,故答案为:115°.13.如图,已知AB=AC,DE垂直平分AB交AB、AC于D、E两点,若AB=12cm,BC=8cm,则△BCE的周长为20 cm.【考点】线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.【解答】解:∵DE垂直平分AB,∴EA=EB,∴△BCE的周长=BC+CE+BE=BC+CE+EA=BC+AC=BC+AB=20cm,故答案为:20.14.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=8,则PQ的最小值为8 .【考点】角平分线的性质;垂线段最短.【分析】过P作PE⊥OM于E,当Q和E重合时,PQ的值最小,根据角平分线性质得出PE=PA,即可求出答案.【解答】解:过P作PE⊥OM于E,当Q和E重合时,PQ的值最小,∵OP平分∠MON,PA⊥ON,PA=8,∴PE=PA=8,即PQ的最小值是8,故答案为:8.15.已知A(0,1),B(3,1),C(4,3),如果在平面直角坐标系中存在一点D,使得△ABD 与△ABC全等,那么点D的坐标为(﹣1,3)或(﹣1,﹣1)或(4,﹣1).【考点】全等三角形的判定;坐标与图形性质.【分析】根据三边对应相等的三角形全等可确定D的位置,再根据平面直角坐标系可得D 的坐标.【解答】解:如图所示:点D的坐标为(﹣1,3)或(﹣1,﹣1)或(4,﹣1).故答案为(﹣1,3)或(﹣1,﹣1)或(4,﹣1).三、解答题(共75分)16.如图,点A,F,C,D在同一直线上,点B与点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC,求证:BC=EF.【考点】全等三角形的判定与性质.【分析】证出AC=DF,由SAS推出△ABC≌△DEF,由全等三角形的性质推出即可.【解答】证明:∵AF=DC,∴AF+CF=DC+CF,即AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF.17.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).(1)将△ABC向右平移6个单位,再向下平移3个单位得到△A1B1C1,图中画出△A1B1C1,平移后点A对应点A1的坐标是(4,0).(2)将△ABC沿y轴翻折得△A2B2C2,图中画出△A2B2C2,翻折后点A对应点A2坐标是(2,3).(3)若将△ABC向左平移2个单位,求:△ABC扫过的面积.【考点】作图-轴对称变换;翻折变换(折叠问题);作图-平移变换.【分析】(1)根据网格结构找出点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标;(2)根据网格结构找出点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标;(3)作出平移后的△ABC的位置,然后根据扫过的面积等于△ABC的面积加上一个平行四边形的面积,列式计算即可得解.【解答】解:(1)△A1B1C1如图所示,平移后点A的对应点A1的坐标是:(4,0);(2)△A2B2C2如图所示,翻折后点A对应点A2坐标是:(2,3);(3)将△ABC向左平移2个单位,则△ABC扫过的面积为:S△A′B′C′+S平行四边形A′C′CA=×3×5+2×3=13.5.故答案为:(1)(4,0);(2)(2,3).18.如图,点D在BC上,∠1=∠2,AE=AC,下面三个条件:①AB=AD;②BC=DE;③∠E=∠C,请你从所给条件①②③中选一个条件,使△ABC≌△ADE,并证明两三角形全等.【考点】全等三角形的判定.【分析】根据∠1=∠2结合三角形内角和定理可得∠E=∠C,再有条件AE=AC,添加BC=DE 可利用SAS定理判定△ABC≌△ADE.【解答】解:选②BC=DE,∵∠1=∠2,∠3=∠4,∴∠E=∠C,在△ADE和△ABC中,,∴△ABC≌△ADE(SAS).19.数学来源于生活又服务于生活,利用数学中的几何知识可以帮助我们解决许多实际问题.李明准备与朋友合伙经营一个超市,经调查发现他家附近有两个大的居民区A、B,同时又有相交的两条公路,李明想把超市建在到两居民区的距离、到两公路距离分别相等的位置上,绘制了如下的居民区和公路的位置图.聪明的你一定能用所学的数学知识帮助李明在图上确定超市的位置!请用尺规作图确定超市P的位置.(作图不写作法,但要求保留作图痕迹.)【考点】线段垂直平分线的性质;角平分线的性质.【分析】先画角的平分线,再画出线段AB的垂直平分线,两线的交点就是P.【解答】解:20.如图,已知:∠B=∠C=90°,M是BC的中点,DM平分∠ADC.求证:(1)AM平分∠DAB;(2)AD=AB+CD.【考点】全等三角形的判定与性质.【分析】(1)过点M作ME⊥AD,垂足为E,先求出ME=MC,再求出ME=MB,从而证明AM平分∠DAB;(2)证Rt△DCM≌Rt△DEM,推出CD=DE,同理得出AE=AB,即可得出答案.【解答】(1)证明:过点M作ME⊥AD于E,∵∠B=∠C=90°,∴MB⊥AB,MC⊥CD,∵DM平分∠ADC,ME⊥AD,MC⊥CD,∴ME=MC,∵M是BC的中点,∴MC=MB,∴MB=ME,又∴MB⊥AB,ME⊥AD,∴AM平分∠DAB.(2)∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt△DCM和Rt△DEM中,,∴Rt△DCM≌Rt△DEM(HL),∴CD=DE,同理AE=AB,∵AE+DE=AD,∴CD+AB=AD.21.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)求证:BE=CF;(2)如果AB=8,AC=6,求AE、BE的长.【考点】全等三角形的判定与性质;角平分线的性质;线段垂直平分线的性质.【分析】(1)连接DB、DC,先由角平分线的性质就可以得出DE=DF,再证明△DBE≌△DCF 就可以得出结论;(2)由条件可以得出△ADE≌△ADF就可以得出AE=AF,进而就可以求出结论.【解答】解:(1)证明:接DB、DC,∵DG⊥BC且平分BC,∴DB=DC.∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF.∠AED=∠BED=∠ACD=∠DCF=90°在Rt△DBE和Rt△DCF中,Rt△DBE≌Rt△DCF(HL),∴BE=CF.(2)在Rt△ADE和Rt△ADF中,∴Rt△ADE≌Rt△ADF(HL).∴AE=AF.∵AC+CF=AF,∴AE=AC+CF.∵AE=AB﹣BE,∴AC+CF=AB﹣BE,∵AB=8,AC=6,∴6+BE=8﹣BE,∴BE=1,∴AE=8﹣1=7.即AE=7,BE=1.22.课间,小明拿着老师的等腰直角三角板的三角板玩,不小心掉到两墙之间,如图所示.(1)求证:△ADC≌△CEB;(2)从三角板的刻度可知DE=42cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等)【考点】全等三角形的应用;等腰直角三角形.【分析】(1)根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可.(2)利用(1)中全等三角形的性质进行解答.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);(2)解:由题意得:∵一块墙砖的厚度为a,∴AD=4a,BE=3a,由(1)得:△ADC≌△CEB,∴DC=BE=3a,AD=CE=4a,∴DC+CE=BE+AD=7a=42,∴a=6,答:砌墙砖块的厚度a为6cm.23.如图①,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系;(不用证明)(2)如图②,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图③,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系,并说明理由;②你能求出BD与AC所夹的锐角的度数吗?如果能,请直接写出这个锐角的度数;如果不能,请说明理由.【考点】几何变换综合题.【分析】(1)可以证明△BDE≌△ACE推出BD=AC,BD⊥AC.(2)如图2中,不发生变化.只要证明△BED≌△AEC,推出BD=AC,∠BDE=∠ACE,由∠DEC=90°,推出∠ACE+∠EOC=90°,因为∠EOC=∠DOF,所以∠BDE+∠DOF=90°,可得∠DFO=180°﹣90°=90°,即可证明.(3)①如图3中,结论:BD=AC,只要证明△BED≌△AEC即可.②能;由△BED≌△AEC可知,∠BDE=∠ACE,推出∠DFC=180°﹣(∠BDE+∠EDC+∠DCF)=180°﹣(∠ACE+∠EDC+∠DCF)=180°﹣(60°+60°)=60°即可解决问题.【解答】解:(1)结论:BD=AC,BD⊥AC.理由:延长BD交AC于F.∵AE⊥CB∴∠AEC=∠BED=90°.在△AEC和△BED中,,∴△AEC≌△BED,∴AC=BD,∠CAE=∠EBD,∵∠AEC=90°,∴∠C+∠CAE=90°,∴∠CBF+∠C=90°,∴∠BFC=90°,∴AC⊥BD.(2)如图2中,不发生变化,设DE与AC交于点O,BD与AC交于点F.理由是:∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF,∴∠BDE+∠DOF=90°,∴∠DFO=180°﹣90°=90°,∴BD⊥AC;(3)①如图3中,结论:BD=AC,理由是:∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC.②能;设BD与AC交于点F,由△BED≌△AEC可知,∠BDE=∠ACE,∴∠DFC=180°﹣(∠BDE+∠EDC+∠DCF)=180°﹣(∠ACE+∠EDC+∠DCF)=180°﹣(60°+60°)=60°,即BD与AC所成的锐角的度数为60°.24.如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(m,0)、B(0,n)且|m﹣n﹣4|+=0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P运动时间为t秒.(1)求OA、OB的长;(2)连接PB,若△POB的面积不大于4且不等于0,求t的X围;(3)过P作直线AB的垂线,垂足为C,直线PC与y轴交于点D,在点P运动的过程中,是否存在这样的点P,使△DOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.【考点】三角形综合题.【分析】(1)利用非负性求出m,n即可确定出OA,OB,(2)分点P在OA和点P在AO的延长线上表示出面积即可得出t的X围;(3)分点P在OA和AO延长线延长线上即可得出结论.【解答】解:(1)∵|m﹣n﹣4|+=0,∴m﹣n﹣4=0,2n﹣8=0,解得:n=4,m=8,∴OA=8,OB=4;(2)分为两种情况:①当P在线段OA上时,AP=t,PO=8﹣t,∴S△BOP=×(8﹣t)×4=﹣2t+16,∵若△POB的面积不大于4且不等于0,∴0<﹣2t+16≤4,解得:6≤t<8;②当P在线段AO的延长线上时,AP=t,PO=t﹣8,∴S△BOP=×(t﹣8)×4=2t﹣16,∵若△POB的面积不大于4且不等于0,∴0<2t﹣16≤4,解得:8<t≤10;即t的X围是6≤t≤10且t≠8;(3)当OP=OB=4时,①当P在线段OA上时,t=4,②当P在线段AO的延长线上时,t=OA+OP=12;即存在这样的点P,使△DOP≌△AOB,t的值是4或12。

2016--2017八年级数学期中考试试题及答案

2016--2017八年级数学期中考试试题及答案

八年级数学试卷(满分:90分答题时间:100分钟)题号一二三四五六总分得分一、得分选择题(每小题2分,共12分)1.下列交通标志中,是轴对称图形的是()2.在△ABC中,若∠B=∠C=2∠A,则∠A的度数为()A.72°B.45°C.36°D.30°3.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有()A.3个B.2个C.1个D.0个4.如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=ACB.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=DC第4题第5题5.如图,DE⊥AC,垂足为E,CE=AE.若AB=12cm,BC=10cm,则△BCD的周长是()A.22cmB.16cmC.23cmD.25cm6.等腰三角形的两边分别为3和6,则这个三角形的周长是()A.12B.15C.9D.12或15二、填空题(每小题3分,共24分)7.若点P(m,m-1)在x 轴上,则点P 关于x 轴对称的点的坐标为 . 8.一个多边形的每一个外角都等于36°,则该多边形的内角和等于 . 9.如图,PM ⊥OA ,PN ⊥OB ,垂足分别为M 、N.PM =PN ,若∠BOC =30°,则∠AOB = . 10.如图,在△ABC 和△FED 中,AD =FC ,AB =FE ,当添加条件 时,就可得到 △ABC ≌△FED.(只需填写一个你认为正确的条件)11.从长为3cm 、5cm 、7cm 、10cm 的四根木条中选出三根组成三角形,共有 种选法. 12.若等腰三角形一腰上的高与另一腰的夹角为40°,则它的底角为 . 13.如图,△ABC 为等边三角形,AD 为BC 边上的高,E 为AC 边上的一点,且AE=AD ,则 ∠EDC = .14.如图,在等边△ABC 中,点D 、E 分别在边AB 、BC 上.把△BDE 沿直线DE 翻折,使点 B 落在点B ′处,DB ′、EB ′分别与AC 交于点F 、G.若∠ADF =80°,则∠EGC = .三、解答题(每小题5分,共20分) 15.如图,两个四边形关于直线 对称,∠C =90°, 16.试写出a ,b 的长度,并求出∠G 的度数. 第14题第13题得分 第9题第10题得分 第15题16.如图,已知AD、BC相交于点O,AB=CD,AD=CB.求证:∠A=∠C.17.如图,16个相同的小正方形拼成一个正方形网格,现将其中的两个小方格涂黑.请你用两种不同的方法分别在图中再涂黑两个小方格,使它们成为轴对称图形.18.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写出答案).A1B1C1(3)△A1B1C1的面积为 .第16题第17题第18题19.在△ABC 中,∠BAC =50°,∠B=45°,AD 是△ABC 的一条角平分线,求∠ADB 的度数.四、解答题(每小题7分,共28分) 20.如图:△ABC 和△EAD 中,∠BAC =∠DAE ,AB =AE ,AC =AD ,连接BD ,CE. 求证:△ABD ≌△AEC. 第19题得分 第20题 八年级数学试卷 第3页 (共8页)八年级数学试卷第4页(共8页)21.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的结论.(2)选择(1)中你写出的一个正确结论,说明它正确的理由.第21题22.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证△ADC≌△CEB. (2)AD=5cm,DE=3cm,求BE的长度.第22题五、解答题(每小题8分,共16分) 23.已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF ∥BC 交AB 于点E ,交 AC 于点F.求证:BE+CF =EF.24.如图14,ABC △中,∠B =∠C ,D ,E ,F 分别在AB ,BC ,AC 上,且BD CE ,=DEF B ∠∠求证:=ED EF .得分 第23题八年级数学试卷 第5页 (共8页)ADE CB图24F六、解答题(每小题10分,共20分)得分25.两个等腰直角三角形的三角板如图①所示放置,图②是由它抽象出的几何图形,点B、C、E在同一条直线上,连接DC、EC.(1)请找出图②中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)求证:DC⊥BE.第25题26.如图,△ABC是等边三角形,点M是BC上任意一点,点N是CA上任意一点,且BM=CN,直线BN与AM相交于点Q,就下面给出的两种情况,猜测∠BQM等于多少度,并利用图②说明结论的正确性.第26题八年级数学答案一、1.A 2.C 3.C 4.D 5.A 6.B 二、(7)(1,0) (8) 1440° (9) 60° (10)答案不唯一 (11)二种 (12) 65°或25°(13) 15° (14) 80°三、 15.cm a 5= cm b 4= ∠G=55° 16.连接BD ∵△ABD ≌△CDB (SSS) ∴∠A=∠C等. 18.(2)A(-1,2) B(-3,1) C(2,-1)(3)面积为4.5 19.∠ADB=70°20.证明:∵∠BAC=∠EAD ∴∠BAC-∠BAE=∠EAD-∠BAE ∴∠BAD=∠EAC △BAD ≌ △EAC(SAS)21.(1) ① 、③=② ② ③=① (2)略22.(1)∵∠ACB=90° ∴∠ACD+∠BCE=90° ∵AD ⊥CE ∴∠ACD+∠CAD=90° ∴∠BCE=∠CAD 又∵AC=BC △ADC ≌△CEB (AAS ) (2) ∵△ADC ≌△CEB ∴BE=CD AD=CE=500cm 又∵DE=3cm ∴CD=2cm ∴BE=2cm23.证明 ∵BD 是∠ABC 解平分线 ∴∠EBD=∠CBD 又∵EF ∥BC ∴∠CBD=∠EDB ∴∠EDB=∠EBD ∴BE=DE 同理 DF=CF ∴BE+CF=DE+DF=EF八年级数学试卷 第8页 (共8页)24.AD=AG AD⊥AG 证明:∵BE、CF是AC、AB边上高∴∠AFC=∠AEB=90°∴∠ABE+∠BAC=∠ACF+∠BAC ∴∠ABE=∠ACF 又∵AB=CG BD=AC ∴△ABD≌△ACG ∵AD=AG ∴∠BAD=∠CGA ∵∠CGA+∠GAF=90°∵∠BAD+∠GAF=90°∴AG⊥AD25.(1)△ABE≌△ACD 证明:∵∠BAC=∠EAD ∴∠BAC+∠CAE=∠EAD+∠CAE∴∠BAE=∠CAD 又∵AB=AC AD=AE ∴△ABE≌△ACD(SAS)(2)∠ADC=∠AEB (AE、DC交点为P)∠APD=∠CPE ∴∠APD+∠ADC=90°∴∠AEB+∠CPE=90°∴DC⊥BE 26.∠BQM=60°证明:∵△ABC是等边三角形∴AB=AC ∠ABC=∠BCA=∠ACB=60°又 BM=CN ∵△ABM≌△BCN(SAS) ∴∠M=∠N又∠NAQ=∠MAC ∴∠BQM=∠N+∠NAQ=∠M+∠MAC=∠ACB=60°。

【中学数学试题】2016-2017学年八年级上学期期中考试数学试题

【中学数学试题】2016-2017学年八年级上学期期中考试数学试题

第6题一.填空题(本题共10小题,每小题3分,共30分)
1.下列四个图形中,是轴对称图形的是()
A .
B .
C .[来源学科网Z.X.X.K]
D .
2.把三角形的面积分为相等的两部分的是()
A .三角形的中线
B .三角形的角平分线
C .三角形的高
D .以上都不对
3.下列命题是真命题的是()
A .经过三角形一边中点的线段是三角形的中线
B .三角形的角平分线是一条射线
C .三角形的高线一定在三角形的内部
D .三角形同一边上的中线、高和这边所对角的角平分线,最短的线段一定是高
4..如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,且
CD 、BE 相交于一点P ,
若∠A=50°,则∠BPC=(
) A 、150°
B 、130°
C 、120°
D 、100°5.直角三角形纸片的两直角边长分别为
6,8,现将△ABC 如图那样折叠,使点A 与点B 重合,则折
痕DE 的长是( ) A .425
B .415
C .225
D .2
156.如图,已知在△ABC 中,BD 是AC 边上的高线,CE 平分∠ACB ,交
BD 于点E ,BC=5,DE =2,则△BCE 的面积等于(
)A .10;B .7;C .5;D .3. A
B
C D
E
P 第4题第5题。

新人教版新八年级上册数学2016期中考试试题答卷及参考答案

新人教版新八年级上册数学2016期中考试试题答卷及参考答案

八年级数学试题一.选择题(36分)1.下列结论正确的是?(????? )(A)有两个锐角相等的两个直角三角形全等;(B)一条斜边对应相等的两个直角三角形全等;(C)顶角和底边对应相等的两个等腰三角形全等;(D)两个等边三角形全等.2.下列四个图形中,不是轴对称图形的是()A B C D3.已知,如图1,AD=AC,BD=BC,O为AB上一点,那么,图中共有()对全等三角形.A. 1B. 2C.3D.4图14.如图2,AD是ABC△的中线,E,F分别是AD和AD延长线上的点,且DE DF,连结BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个5.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等6.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20B.120C.20或120D.367.如图4,已知点O是△ABC内一点,且点O到三边的距离相等,∠A=40,则∠BOC=()A. 0110 B.0120 C.0130 D.01408.圆、正方形、长方形、等腰梯形中有唯一条对称轴的是()A. 圆B. 正方形C. 长方形D. 等腰梯形9.点(3,-2)关于x轴的对称点是( )A. (-3,-2)B. (3,2)C. (-3,2)D. (3,-2)10.下列长度的三线段,能组成等腰三角形的是()A. 1,1,2B. 2,2,5C. 3,3,5D. 3,4,511.等腰三角形的一个角是80°,则它的底角是()A. 50°B. 80°C. 50°或80°D. 20°或80°12.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是()A. 75°或30°B. 75°C. 15°D. 75°和15°二.填空题(18分)AD CB图2EFCOAB图413.如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等, 如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等.(填“一定”或“不一定”或“一定不”)14.点P (-1,2)关于x 轴对称点P 1的坐标为( ).15.如左下图.△ABC ≌△ADE ,则,AB=??????? ,∠E=∠?????? .若∠BAE=120°∠BAD=40°.则∠BAC=???? ? .16.如图3,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______.17.点M (-2,1)关于x 轴对称的点N 的坐标是________,直线MN 与x 轴的位置关系是___________.18.如图4,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △的面积为______.三.作图题(6分)19.近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村之间建一座定点医疗站P ,张、李两村座落在两相交公路内(如图所示).医疗站必须满足下列条件:①使其到两公路距离相等,②到张、李两村的距离也相等,请你通过作图确定P 点的位置.(不写作法,要保留作图痕迹)四.解答题(40分)20(本题8分).如图,AB=DF ,AC=DE ,BE=FC ,问:ΔABC 与ΔDEF 全等吗?AB 与DF 平行吗?请说明你的理由。

【最新】2016-2017学年最新人教版八年级(上册)期中数学测试卷及答案

【最新】2016-2017学年最新人教版八年级(上册)期中数学测试卷及答案

) 5,底边长为 3
∴5, 5, 3 能组成三角形, 则它的周长等于: 5+5+3=13 , 若底边长为 3,腰长为 5,
∵3+3=6 > 5, ∴3, 3, 5 能组成三角形. ∴它的周长为 11 或 13. 故选 D . 【点评】 此题考查了等腰三角形的性质.此题难度不大,注意掌握分类讨论思想的应用.
∴AD=AB , AC=AE , 又∵∠ DAB+ ∠ BAC= ∠ EAC+ ∠ BAC , ∴∠ DAC= ∠ BAE ,
∴△ ADC ≌△ ABE ( SAS). 故选 B . 【点评】 本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:
SSS、SAS、
ASA 、 AAS 、 HL .注意: AAA 、 SSA 不能判定两个三角形全等,判定两个三角形全等时, 必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
B、带 ② 去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故 项错误;
B选
C、带 ③ 去,不但保留了原三角形的两个角还保留了其中一个边,符合 项正确;
ASA 判定,故 C 选
D、带 ① 和 ② 去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角
形,故 D 选项错误.
2.如图, AB ∥ CD , AD ∥ BC, OE=OF , 则图中全等三角形的组数是 (
)
A . 3 B. 4 C. 5 D. 6 【考点】 全等三角形的判定. 【 分析】 先根据题意 AB ∥ CD,AD ∥ BC ,可得多对角相等,再利用平行四边形的性质可得 线段相等,所以有 △ AFO ≌△ CEO,△ AOD ≌△ COB ,△ FOD ≌△ EOB,△ ACB ≌△ ACD , △ABD ≌△ DCB ,△ AOB ≌△ COD 共 6 对. 【解答】 解:∵ AB ∥CD , AD ∥ BC ∴∠ ABD= ∠ CDB ,∠ ADB= ∠ CDB 又∵ BD=DB ∴△ ABD ≌△ CDB ∴AB=CD , AD=BC ∵OA=OC , OB=OD ∴△ ABO ≌△ CDO , △ BOC≌△ DOA ∵OB=OD ,∠ CBD= ∠ADB ,∠ BOF= ∠DOE ∴△ BFO ≌△ DEO ∴OE=OF ∵OA=OC ,∠ COF= ∠ AOE

(新人教版)2016-2017八年级数学上册期中试卷

(新人教版)2016-2017八年级数学上册期中试卷

八年级数学上册期中测试(考试时间:100分钟 试卷总分:120分) 一、选择题(30分) 1.下列图形是轴对称图形的有( )A.2个B.3个C.4个D.5个2.下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有( )A.3个B.2个C.1个D.0个 3.等腰三角形的一个角是70︒,则它的底角是( )A. 70︒B. 70︒或55︒C.80︒和100︒D.110︒4.如图,某人把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,最省事的办法是( ) A.带①去B.带②去C.带③去D.带①和②去图25.下列各组图形中,是全等形的是( )A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角 6.已知点(x,y)与点(-2,-3)关于x 轴对称,那么x+y=( )A. -5B. 6C.1D.5 7.如图2,从下列四个条件:①BC =B ′C , ②AC =A ′C ,③∠A ′CA =∠B ′CB ,④AB =A ′B ′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是( ) A .1个 B .2个C .3个D .4个8.将一张长方形纸片按如图3所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( )A .60°B .75°C .90°D .95°9.等腰三角形的两边分别为4和6,则这个三角形的周长是 ( )A. 14B. 16C. 24 D .14或16 10.下列叙述正确的语句是( )A.等腰三角形两腰上的高相等B.等腰三角形的高、中线、角平分线互相重合AEC 图 3B A ′E ′ D图1P OMACB D图3A CFEBC.顶角相等的两个等腰三角形全等D.两腰相等的两个等腰三角形全等 二、填空题(每小题4分,共24分)11. 若点P (m,m-1)在x 轴上,则点P 关于x 轴对称的点为___________.12. 一个多边形的每一个外角都等于360,则该多边形的内角和等于 .13. 若三角形的两条边长分别为6cm 和8cm ,且第三边的边长为偶数,则第三边长14. 从十二边形的一个顶点作对角线,把这个十二边形分成三角形的个数是 ,十二边形的对角线的条数是15.如图1,P M =P N ,∠B O C =30°,则∠A O B = .16.如图3,在△ABC 和△FED , A D =FC ,AB =FE ,当添加条件 时,就可得到 △ABC ≌△FED .(只需填写一个你认为正确的条件)三、解答题17.(9分)如图5,在平面直角坐标系中,A (1, 2),B (1)在图中作出ABC △关于y 轴对称的111A B C △ (2)写出点111A B C ,,的坐标(直接写答案)A 1 ______________B 1 ______________C 1 ____________ (3)111A B C △的面积为__________18.(6分)如图所示,CD=CA ,∠1=∠2,EC=BC19.(7分)如图,已知AD、BC相交于点O,AB=CD,AD=CB. 求证:∠A =∠CODC AADEF BC20.(10分)如图所示,在△ABC 中,AD 是角平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F , 求证:(1)AE=AF ,(2)DA 平分∠EDF21.(8分)已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交 AB 于点E ,交AC 于点F .求证:BE+CF=EF .22.(8分)如图:△ABC 和△CDE 是等边三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年上学期期中考试
八年级数学(人教新课标)试卷及参考答案2016.12
一 选择题:本大题共10小题,每小题3分,共30分。

1.下列长度的三根小木棒能构成三角形的是( )
A.2cm,3cm,5cm
B.7cm,4cm,2cm
C.3cm,4cm,8cm
D.3cm,3cm,4cm
2.甲骨文是我国的一种古代文字,是汉子的早期形式,下列甲骨文中,不是轴对称图形的是( )
3.平面直角坐标系中,点P(-2,3)关于x 轴对称的点的坐标为( )
A.(-2,-3)
B.(2,-3)
C.(-3,-2)
D.(3,-2)
4.如图,AE//DF,AE=DF,要使△EAC ≌△FDB,组要添加下列选项中的( )
A.AB=CD
B.EC=BF
C.∠A=∠D
D.AB=BC
5.一个等腰三角形的两边长分别为4,8,则它的周长为( )
A.12
B.16
C.20
D.16或20
6.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC ⊥BD;②AO=CO=
AC 2
1;③△ABD ≌△CBD.其中正确的结论有( )
A.0个
B.1个
C.2个
D.3个
7.如图,在Rt △ABC 中,∠C=900,以顶点A 为圆心,适当长为半径画弧,分别交AC,AB 于点M,N,再分别以M,N
为圆心,大于MN 21的长为半径画弧,两弧交于点P,作射线AP 交边BC 于D,若CD=4,AB=15,则△ABD 面积是( )
A.15
B.30
C.45
D.60
8.如果,在△ABC 中,∠B=550,∠C=300,分别以点A 和点C 为圆心,大于AC 2
1的长为半径画弧,两弧相交于点M ,N,作直线MN ,交BC 于点D ,连接AD ,则∠BAD 的度数为( )
A.650
B.600
C.550
D.450
9.如图所示,小华从A点出发,沿直线前进10米后左转240,再沿直线前进10米,又向左转240,...,照这样走下去,他第一次回到出发地A点时,一共走的路程是()
A.140米
B.150米
C.160米
D.240米
10.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C 三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是( )
A.(0,0)
B.(0,1)
C.(0,3)
D.(0,2)
二填空题:本大题共5小题,每小题3分,共15分。

11.如图,△ABC≌△A/B/C/,其中∠A=360,∠C/=240,则∠B=.
12.将一副三角尺如图所示的方式放置,使含300角的三角尺的短直角边和含450角的三角尺的一条直角边重合,则∠1的度数是 .
13.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是.
14.如图,已知直线L1//L2,将等边三角形如图放置,若∠ɑ=400,则∠β等于.
15.已知∠AOB=300,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是.
三解答题:本大题共7小题,共55分。

16. (6分)如图,在△ABC中,∠A=700,∠B=500,CD平分∠ACB.求∠ACD的度数.
17.(6分)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.
18.(7分)如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.
(1)求证:AC//DE;
(2)若BF=13,CE=5,求BC的长.
19.(8分)证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证。

已知:如图,∠AOC=∠BOC,点P在OC上,.
求证:.
请你补全已知和求证,并写出证明过程.
20.(9分)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.
(1)画出△ABC关于x轴的对称图形△A1B1C1;
(2) 将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.
21.(9分)如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O.
(1)求证:OB=OC; (2)若∠ABC=500,求∠BOC的度数.
22.(9分)如图,已知△ABC中,AB=AC,∠BAC=900,点D为BC的中点,点E、F分别在直线AB、AC上运动,且始终保持AE=CF.
(1)如图1,若点E、F分别在线段AB、AC上,求证:DE=DF且DE⊥DF;
(2)如图2,若点E、F分别在线段AB、CA的延长线上,(1)中的结论是否依然成立?说明理由.
2016-2017学年上学期期中考试
八年级数学(人教新课标)试卷参考答案2016.12
1.D
2.D
3.A
4.A
5.C
6.D
7.B
8.A
9.B 10.C
11.1200
12.750
13.BC=CD
14.200
15.2
16.解:因为∠A=700,∠B=500,所以∠ACB=600.因为CD 平分∠ACB ,所以∠ACD=
2
1∠ACB=300. 17.证明:因为CE ⊥AB,BD ⊥AC 所以∠AEC=∠ADB=900
在△ABD 与△ACE 中,⎪⎩⎪⎨⎧∠=∠=∠=∠AEC ADB AE AD EAC DAB ,所以△ABD ≌△ACE(ASA),所以AC=AB,所以CD=BE.
18.证明:(1)在△ABC 与△DFE 中⎪⎩
⎪⎨⎧=∠=∠=DE AC D A DF AB ,所以△ABC ≌△DFE(SAS),所以∠ACB=∠DEF,所以AC//DE.
(2)因为△ABC ≌△DFE ,所以BC=EF,所以BE=CF,所以BE+CF=13-5=8,所以BE=4,所以BC=4+5=9.
19.已知PD ⊥OA,PE ⊥OB.求证:PD=PE.
证明:因为PD ⊥OA,PE ⊥OB ,所以∠ODP=∠OEP=900.因为OC 平分∠AOB ,所以∠DOP=∠EOP
在△OPD 与△OPE 中,⎪⎩
⎪⎨⎧=∠=∠∠=∠OP OP EOP DOP OEP ODP ,所以△OPD ≌△OPE(AAS),所以PD=PE.
20.略.
21.(1)∵AB=AC ,∴∠ABC=∠ACB ,∴BD 、CE 分别为△ABC 的高,∴∠BEC=∠BDC=90°,
∴在△BEC 和△CDB 中,
’∴△BEC ≌△CDB ,∴∠OBC=∠OCB ,∴OB=OC . (2)1000.
22.(1) 连结AD.
∵AB=AC,∠BAC =90°,为BC 的中点 ∴AD ⊥BC ,BD =AD ∴∠B =∠DAC =45°
又∵BE =AF ∴△BDE ≌△ADF (SAS ) ∴ED =FD ,∠BDE =∠ADF
∴∠EDF =∠EDA +∠ADF =∠EDA +∠BDE =∠BDA =90°∴△DEF 为等腰直角三角形;
(2)若E ,F 分别是AB ,CA 延长线上的点,如图所示,连结AD
∵AB=AC,∠BAC=90°,D为BC的中点∴AD=BD,AD⊥BC ∴∠DAC=∠ABD=45°∴∠DAF=∠DBE=135°
又AF=BE∴△DAF≌△DBE(SAS)∴FD=ED,∠FDA=∠EDB ∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°
∴△DEF仍为等腰直角三角形.。

相关文档
最新文档