人教版初二数学上学期期末复习测试卷(6)含答案优质版
人教版初二数学上测试卷
一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. 0.1010010001…B. 1/3C. 3D. -52. 已知a,b是方程x²-3x+2=0的两根,则a+b的值是()A. 2B. 3C. 4D. 53. 下列各式中,正确的是()A. 2x + 3y = 5B. 2x - 3y = 5C. 2x + 3y = 5xD. 2x - 3y = 5x4. 已知等腰三角形ABC中,AB=AC,BC=10,底边BC上的高AD=6,则腰AB的长度是()A. 8B. 10C. 12D. 145. 已知一次函数y=kx+b(k≠0)的图象经过点A(1,2)和B(-1,0),则k的值是()B. 2C. -1D. -26. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°7. 已知一元二次方程x²-6x+9=0的解是x₁和x₂,则x₁+x₂的值是()A. 3B. 6C. 9D. 128. 已知直角三角形ABC中,∠A=90°,AC=3,BC=4,则AB的长度是()A. 5B. 6C. 7D. 89. 已知一次函数y=kx+b(k≠0)的图象经过点P(2,-1)和点Q(-2,1),则k 的值是()A. 1B. 2C. -110. 在△ABC中,∠A=45°,∠B=90°,∠C=45°,则△ABC是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 梯形二、填空题(每题3分,共30分)11. 若一个数是正数,那么它的倒数是______。
12. 已知x²-5x+6=0,则x的值为______。
13. 已知等腰三角形ABC中,AB=AC,底边BC=8,腰AB的长度是______。
14. 在直角坐标系中,点P(-2,3)关于y轴的对称点是______。
人教版2020---2021学年度八年级数学(上)期末考试卷及答案(含两套题)
密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.若代数式4xx -有意义,则实数x 的取值范围是( ) A .x =0 B .x =4C .x ≠0D .x ≠42.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007平方毫米,将数字0.0000007用科学记数法可以表示为( ) A .6710-⨯ B .60.710-⨯C .7710-⨯D .87010-⨯3.下列式子,成立的是( ) A .a 2·a 3=a 6 B .(a 2)3=a 5C .a –1=–aD .(–a +b )(–a –b )=a 2–b 24.如果把分式xyx y+中的x 和y 都扩大2倍,那么分式的值( )A .扩大4倍B .扩大2倍C .不变D .缩小2倍5.若等腰三角形中有两边长分别为3和7,则这个三角形的周长为( ) A .13 B .13或17C .10D .176.在平面直角坐标系中,将点A (–1,2)向右平移4个单位长度得到点B ,则点B 关于y 轴的对称点B ′的坐标为( ) A .(–3,2) B .(3,–2) C .(3,2)D .(2,–3)7.如图,在△ABC 和△BDE 中,点C在边BD 上,边AC 交边BE 于点F ,若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠DB .∠EC .∠EBDD .∠ABF8.点O 在ABC △(非等边三角形)内,且OA OB OC ==,则点O为( )A .ABC △的三条角平分线的交点题号一 二 三 总分 得分B .ABC △的三条高线的交点C .ABC △的三条边的垂直平分线的交点D .ABC △的三条边上的中线的交点9.如图,AE ∥DF ,AE =DF ,则添加下列条件还不能使△EAC≌△FDB 的为( )A .AB =CD B .CE ∥BFC .∠E =∠FD .CE =BF10.如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,△ABC 的面积为10,AB =6,DE =2,则AC 的长是( )A .4B .4.5C .4.8D .5 11.从3-,2-,1-,32-,1,3这六个数中,随机抽取一个数,记为a .关于x 的方程211x ax +=-的解是正数,那么这6个数中所有满足条件的a 的值有( ) A .3个B .2个C .1个D .4个12.如图,在等边三角形ABC 中,BC 边上的中线AD =6,是AD 上的一个动点,F 是边AB 上的一个动点,在点F 运动的过程中,EB +EF 的最小值是A .5B .6C .7D .8第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.若23a b =,则a b b -=__________.14.若3a b +=,1ab =,则22ab +=__________.15.若一个多边形的内角和是900º,则这个多边形是__________边形.16.如图,依据尺规作图的痕迹,计算α∠=__________°.17.已知ABC ∆中,它的三边长a 、b 、c 都是正整数,其中a 是最长边,且满足22106340a b a b +--+=,则符合条件的c密线学校 班级 姓名 学号密 封 线 内 不 得 答 题值为__________.18.如图,∠ABC =∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD∥BC ;②∠ACB =2∠ADB ;③∠ADC =90°−12∠ABC ;④BD 平分∠ADC ;⑤∠BDC =12∠BAC .其中正确的结论有__________(填序号)三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分) (1)解方程:22+11x x x x+=+;(2)解方程:2227361x x x x x -=+--. 20.(本小题满分6分)(1)因式分解22(2)(22)1a ab b a b -++-++;(2)先化简,再求值24512(1)(),11a a a a a a-+-÷----其中1a =-. 21.(本小题满分6分)如图,点B 、C 、D 、E 在同一条直线上,已知AB =FC ,AD =FE ,BC =DE . (1)求证:△ABD ≌△FCE .(2)AB 与FC 的位置关系是_________(请直接写出结论)22.(本小题满分8分)如图,在△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC . (1)求∠ECD 的度数; (2)若CE =5,求BC 的长.23.(本小题满分8分)超市用2500元购进某品牌苹果,以每千克8元的单价试销.销售良好,超市又安排4500元补货.补货进价比上次每千克少0.5元,数量是上次的2倍.(1)求两次进货的单价分别是多少元.(2)当售出大部分后,余下200千克按7.5折售完,求两次销售苹果的毛利.24.(本小题满分10分)如图,△ABC 中,∠BAC =90°,AD⊥BC ,垂足为D .(1)求作∠ABC 的平分线,分别交AD ,AC 于E ,F 两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明:AE=AF.25.(本小题满分10分)如图,网格中有格点△ABC与△DEF.(1)△ABC与△DEF是否全等?(不说理由.)(2)△ABC与△DEF是否成轴对称?(不说理由)(3)若△ABC与△DEF成轴对称,请画出它的对称轴l.并在直线l上画出点P,使PA+PC最小.26.(本小题满分12分)探究下面的问题:(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是________(用式子表示),即乘法公式中的___________公式.(2)运用你所得到的公式计算:①10.7×9.3;②(23)(23)x y z x y z+---.27.(本小题满分12分)在△ABC中,∠BAC=100°,∠∠ACB,点D在直线BC上运动(不与点B、C点E在射线AC上运动,且∠ADE=∠AED,设∠DAC=(1)如图①,当点D在边BC上时,且n=36°BAD=__________,∠CDE=__________;(2)如图②,当点D运动到点B变,请猜想∠BAD和∠CDE(3)当点D运动到点C的右侧时,其他条件不变,∠和∠CDE还满足(2)中的数量关系吗?请画出图形,明理由.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一1 2 3 4 5 6 7 8 9 10 11 12 DCDBDACCDABB二、13.【答案】3-【解析】∵23a b =,∴设a =2k ,b =3k (k ≠0),则23133a b k k b k --==-, 故答案为:13-.14.【答案】7【解析】∵a +b =3,ab =1,∴22a b +=(a +b )2–2ab =9–2=7;故答案为7. 15.【答案】七【解析】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为:7. 16.【答案】56【解析】如图,∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠DAC =∠ACB =68°, ∵由作法可知,AF 是∠DAC 的平分线,∴∠EAF =12∠DAC =34°,∵由作法可知,EF 是线段AC 的垂直平分线,∴∠AEF =90°, ∴∠AFE =90°−34°=56°,∴∠α=56°.故答案为:56.17.【答案】6或7【解析】a 2+b 2–10a –6b +34=0, a 2–10a +25+b 2–6b +9=0,(a –5)2+(b –3)2=0, 则a –5=0,b –3=0,解得,a =5,b =3, 则5–3<c <3+5,即2<c <8,∴△ABC 的最大边c 的值为6或7, 故答案为:6或7. 18.【答案】①②③⑤【解析】∵AD 平分∠EAC ,∴∠EAC =2∠EAD , ∵∠EAC =∠ABC +∠ACB ,∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD ∥BC ,∴①正确; ∵AD ∥BC ,∴∠ADB =∠DBC ,∵BD 平分∠ABC ,∠ABC =∠ACB ,∴∠ABC =∠ACB =2∠DBC ,∴∠ACB =2∠ADB ,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=12∠EAC,∠DCA=12∠ACF,∵∠EAC=∠ABC+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°−(∠DAC+∠ACD)=180°−12(∠EAC+∠ACF)=180°−12(∠ABC+∠ACB+∠ABC+∠BAC)=180°−12(180°+∠ABC)=90°−12∠ABC,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°−12∠ABC,∴∠ADB不一定等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴∠BDC=12∠BAC,∴⑤正确;故答案为:①②③⑤.三、19.【解析】(1)方程两边都乘x(x+1),得x2+x2+x=2(x+1)2,解得:x=−23,检验:当x=−23时,x(x+1)≠0,∴x=−23是原方程的解.(3分)(2)去分母得:7x−7+3x+3=6x,解得:x=1,经检验x=1是增根,分式方程无解.(6分)20.【解析】(1)原式=(a2–2ab+b2)–(2a–2b)+1=(a–b)2–2(a–b)+1=(a–b–1)2.(3分)(2)原式()()()211452(2)111a a a a aa a a a+--+--=÷=---•()12a aa-=-a(a–2当a=–1时,原式=–1×(–1–2)=3.(6分)21.【解析】(1)∵BC=DE,∴BC+CD=DE+CD,即BD=CE.在△ABD和△FCE中,AB FCAD FEBD CE=⎧⎪=⎨⎪=⎩,∴△ABD≌△FCE(SSS).(4分)(2)AB∥FC.(6分)由(1)可知△ABD≌△FCE,∴∠B=∠FCE(全等三角形的对应角相等),∴AB∥FC(同位角相等,两直线平行).22.【解析】(1)∵DE垂直平分AC,∠A=36°,∴CE=AE,∴∠ECD=∠A=36°;(4分)(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠BEC =∠A +∠ECD =72°,∴∠BEC =∠B ,∴BC =EC =5.(8分)23.【解析】(1)设第一次进货的单价是x 元,则第二次进货的单价是(0.5)x -元,根据题意,得2500450020.5x x ⨯=-,解得5x =. 经检验:5x =是原方程的解.第二次进货的单价是:50.5 4.5()-=元.答:第一次进货的单价是5元,第二次进货的单价是4.5元.(4分)(2)两次销售苹果的毛利:25004500200820080.752500450046005 4.5⎛⎫+-⨯+⨯⨯--=⎪⎝⎭(元). 答:两次销售苹果的毛利为4600元.(8分) 24.【解析】(1)如图所示,射线BF 即为所求:(4分)(2)证明:∵AD ⊥BC ,∴∠ADB =90°,∴∠BED +∠EBD =90°,∵∠BAC =90°,∴∠AFE +∠ABF =90°,(7分) ∵∠EBD =∠ABF ,∴∠AFE =∠BED ,∵∠AEF =∠BED ,∴∠AEF =∠AFE ,∴AE =AF .(10分) 25.【解析】(1)全等.(3分)根据坐标系可以看出AB DEBC EFAC DF =⎧⎪=⎨⎪=⎩,∴△ABC ≅△DEF ;(2)成轴对称.(6分)根据坐标系可以看出△ABC 与△DEF 关于直线l 成轴对称; (3)如图所示:点P 即为所求.(10分)26.【解析】(1)a 2–b 2=(a +b )(a −b );平方差.(6分)由图知:大正方形减小正方形剩下的部分面积为a 2–b 2; 拼成的长方形的面积:(a +b )×(a −b ),所以得出:a 2–b 2=(a +b )(a −b );故答案为:a 2–b 2=(a +b )(a −b );平方差. (2)①原式=(10+0.7)×(10–0.7) =102–0.72 =100–0.49 =99.51.(9分)②原式=(x –3z +2y )(x –3z –2y ) =(x –3z )2–(2y )2 =x 2–6xz +9z 2–4y 2.(12分)27.【解析】(1)∠BAD =∠BAC –∠DAC =100°–36°=64°.∵在△ABC 中,∠BAC =100°,∠ABC =∠ACB , ∴∠ABC =∠ACB =40°,∴∠ADC =∠ABC +∠BAD =40°+64°=104°. ∵∠DAC =36°,∠ADE =∠AED , ∴∠ADE =∠AED =72°,∴∠CDE =∠ADC –∠ADE =104°–72°=32°. 故答案为64°,32°;(4分)(2)∠BAD =2∠CDE ,理由如下:(5分) 如图②,在△ABC 中,∠BAC =100°, ∴∠ABC =∠ACB =40°. 在△ADE 中,∠DAC =n ,∴∠ADE =∠AED =1802n︒-.(6分)∵∠ACB =∠CDE +∠AED ,∴∠CDE =∠ACB –∠AED =40°–1802n ︒-=1002n -︒. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =n –100°,∴∠BAD =2∠CDE ;(8分) (3)∠BAD =2∠CDE ,理由如下: 如图③,在△ABC 中,∠BAC =100°,∴∠ABC =∠ACB =40°,∴∠ACD =140°.(9分) 在△ADE 中,∠DAC =n , ∴∠ADE =∠AED =1802n︒-.(10分)∵∠ACD =∠CDE +∠AED , ∴∠CDE =∠ACD –∠AED =140°–1802n ︒-=1002n︒+. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =100°+n , ∴∠BAD =2∠CDE .(12分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.下列图形中,是轴对称图形的是( )A .B .C .D .2.下列分式中,属于最简分式的是( )A .1113xB .221xx +C .211x x +-D .11x x --3.以下列各组线段为边,能组成三角形的是( ) A .2cm ,5cm ,8cm B .3cm ,3cm ,6cm C .3cm ,4cm ,5cmD .1cm ,2cm ,3cm4.如果一个多边形的每一个内角都是108°,那么这个多边形是( ) A .五边形 B .六边形C .七边形D .八边形5.下列运算正确的是( ) A .236a a a ⋅= B .220a a ÷=C .2353()a b a b =D .752a a a ÷=6.下列各式分解因式正确的是( ) A .()()2919191x x x -=+- B .()()422111a a a -=+- C .()()228199a b a b a b --=--+D .()()()32a ab a a b a b -+=-+-7.已知ab ≠0,则坐标平面内四个点A (a ,b ),B (a ,–b ),C (–a ,b ),D (–a ,–b )中关于y 轴对称的是( ) A .A 与B ,C 与DB .A 与D ,B 与C C .A 与C ,B 与DD .A 与B ,B 与C8.如图,△ABC ≌△ADE ,若∠E =70°,∠D =30°,∠CAD =35°,则∠BAD 的度数为( )A .40°B .45°C .50°D .55°9.光明家具厂生产一批学生课椅,计划在30天内完成并交付题号一 二 三 总分 得分不得答题使用.若每天多生产100把,则23天完成且还多生产200把.设原计划每天生产x把,根据题意,可列分式方程为( )A.3020023100xx+=+B.3020023100xx-=+C.3020023100xx+=-D.3020023100xx-=-10.解关于x的方程6155x mx x-+=--(其中m为常数)产生增根,则常数m的值等于( )A.–2 B.2C.–1 D.111.如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是( )A.6cm B.7cmC.8cm D.9cm12.如图,BP平分ABC∠交CD于点F,DP平分ADC∠交AB于点E,若40A∠=︒,38P∠=︒,则C∠的度数为( )A.36︒B.39︒C.38︒D.40︒第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.一种细菌的半径是0.00003厘米,数据0.00003数法表示为_________.14.计算:2232aa a a---=_________.15.若分式33xx--的值为零,则x=_________.16.如图,ABC∆中,90C∠=︒,30A∠=︒,AB的垂直平分线交于D,交AB于E,2CD=,则AC=_________.17.在等腰ABC∆中,一腰上的高与另一腰的夹角为26︒角的度数为__________.18.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC线与AB的垂直平分线交于点O,将∠C沿EF(E在上,F在AC上)折叠,点C与点O恰好重合,则∠为________度.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分)计算:(1)()()22x y x y x ---;(2)2344(1)11x x x x x ++-+÷++.20.(本小题满分6分)因式分解:(1)4x 2–16;(2)(x +y )2–10(x +y )+25.21.(本小题满分6分)如图,AD 与BC 交于E ,∠1=∠2=∠3,∠4=∠5.求证:BD =E C .22.(本小题满分8分)如图,五边形ABCDE 的内角都相等,EF 平分∠AED .求证:EF ⊥BC .23.(本小题满分8分)如图,△ABC 的顶点均在格点上.(1)分别写出点A ,点B ,点C 的坐标.(2)若△A 'B 'C '与△ABC 关于y 轴对称,在图中画出△A 'B 'C ',并写出相应顶点的坐标.24.(本小题满分10分)如图,ABC ∆与DCB ∆中,AC 与BD 交于点E ,且A D ∠=∠,AB DC =.(1)求证:ABC DCB ∆≅∆;(2)当50AEB ∠=︒,求EBC ∠的度数.25.(本小题满分10分)嘉嘉同学动手剪了如图①所示的正方形与长方形卡片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是________. (2)如果要拼成一个长为(a +2b ),宽为(a +b )的大长方形,则需要1号卡片________张,2号卡片________张,3号卡片________张.26.(本小题满分12分)市区某中学美化校园招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要30天;若由甲队先做10天,剩下的工程由甲、乙合做12天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元,若该工程计划在35天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?27.(本小题满分12分)如图,在ABC ∆中,已知45ABC ∠=,过点C 作CD AB ⊥于点D ,过点B 作BM AC ⊥于点M ,连接MD ,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题故答案为:11a --.15.【答案】–3【解析】依题意,得|x |–3=0且x –3≠0,解得x =–3.故答案是:–3.16.【答案】6【解析】连接BD ,∵在△ABC 中,∠C =90°,∠A =30°,∴∠ABC =60°, ∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴AD =BD ,DE ⊥AB ,∴∠ABD =∠A =30°,∴∠DBC =30°, ∵CD =2,∴BD =2CD =4,∴AD =4,∴AC =6.17.【答案】58°或32°【解析】①如图①,∵AB =AC ,∠ABD =26°,BD ⊥AC ,∴∠A =64°,∴∠ABC =∠C =(180°–64°)÷2=58°;②如图②,∵AB =AC ,∠ABD =26°,BD ⊥AC , ∴∠BAC =26°+90°=116°,∴∠ABC =∠C =(180°–116°)÷2=32°,故答案为:58°或32°.18.【答案】50°【解析】如图,连接OB ,OC ,∵∠BAC =50°,AO 为∠BAC 的平分线,∴∠BAO =12∠BAC =12×50°=25°.又∵AB =AC ,∴∠ABC =∠ACB =65°.∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =25°,∴∠OBC =∠ABC –∠ABO =65°–25°=40°.∵AO 为∠BAC 的平分线,AB =AC ,∴直线AO 垂直平分BC ,∴OB =OC ,∴∠OCB =∠OBC =40°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,题∴OE =CE .∴∠COE =∠OCB =40°;在△OCE 中,∠OEC =180°–∠COE –∠OCB =180°–40°–40°=100°,∴∠CEF =12∠CEO =50°.故答案为:50°. 三、19.【解析】(1)原式=22222x xy y xy x -+-+=2233x xy y -+;(3分)(2)原式=231x+11(2)x x x x --+⨯++()(1)=223111(2)x x x x -++⨯++=2(2)(2)11(2)x x x x x -++⨯++=22xx -+.(6分)20.【解析】(1)4x 2–16=4(x 2–4)=4(x +2)(x –2);(3分) (2)(x +y )2–10(x +y )+25 =(x +y –5)2.(6分) 21.【解析】1=2314,43AEC ABD ∠∠=∠∠=∠+∠∠=∠+∠,,∴AEC ABD ∠=∠.(2分)45∠=∠,AB AE =∴.在ABD △和AEC 中1=2AB AE ABD AEC ∠∠⎧⎪=⎨⎪∠=∠⎩,(4分)∴ABD AEC ≅.∴BD =EC .(6分)22.【解析】∵五边形ABCDE 的内角都相等,∴∠C =∠D =∠AED =180°×(5–2)÷5=108°,(2分)又EF 平分∠AED , ∴°1542FED AED ∠=∠=,(4分)∴在四边形DEFC 中360EFC D C FED ︒∠=-∠-∠-∠=90°,∴EF ⊥BC .(8分)23.【解析】(1)点A (3,4),B (1,2),C (5,1(3分)(2)如图所示,△A 'B 'C '即为所求,(5分)点A ′(﹣3,4),B ′(﹣1,2),C ′(﹣5,1).(8密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.【解析】(1)在△ABE 和△DCE中,A D AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴BE =EC ,∠ABE =∠DCE ,(4分)∴∠EBC =∠ECB ,∵∠EBC +∠ABE =∠ECB +∠DCE ,∴∠ABC =∠DBC ,(6分)在△ABC 和△DCB中,A DAB DC ABC DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DCB (ASA );(8分) (2)∵∠AEB =50°,∴∠EBC +∠ECB =50°, ∵∠EBC =∠ECB ,∴∠EBC =25°.(10分)25.【解析】(1)这个乘法公式是(a +b )2=a 2+2ab +b 2,故答案为:(a +b )2=a 2+2ab +b 2;(4分)(2)要拼成一个长为(a +2b ),宽为(a +b )的大长方形,根据(a +2b )(a +b )=a 2+3ab +2b 2,则需要1号卡片1张,2号卡片2张,3号卡片3张.故答案为:1;2;3.(10分)26.【解析】(1)设乙队单独完成这项工程需要x 天,依题意,得:101212130x ++=,解得x =45,经检验,x =45是所列分式方程的解,且符合题意. 答:乙队单独完成这项工程需要45天.(6分) (2)甲乙两队全程合作需要1÷(11+3045)=18(天),甲队单独完成该工程所需费用为3.5×30=105(万元); ∵乙队单独完成该工程需要45天,超过35天的工期, ∴不能由乙队单独完成该项工程;甲、乙两队全程合作完成该工程所需费用为(3.5+2)×18=99(万元).∵105>99,∴在不超过计划天数的前提下,由甲、乙两队全程合作完成该工程省钱.(12分) 27.【解析】(1)∵45ABC ∠=,CD AB ⊥,∴45ABC DCB ∠=∠=,∴BD DC =,∵90BDC MDN ∠=∠=,∴BDN CDM ∠=∠,(3分) ∵CD AB ⊥,BM AC ⊥, ∴90ABM A ACD ∠=-∠=∠,在DBN ∆和DCM ∆中,BDN CDM BD DCDBN DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DBN ∆≌DCM ∆;(6分) (2)结论:NEME CM ,证明:由(1)DBN ∆≌DCM ∆可得DM DN =. 作DF MN ⊥于点F , 又ND MD ⊥,∴DF FN =,在DEF ∆和CEM ∆中,DEF CEM DFE CMEDE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DEF ∆≌CEM ∆,∴EF EM =,DF CM =,∴CM DF FN NE FE NE ME ===-=-.(12分)。
期末初二数学测试卷
一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. 0.1010010001…B. -3C. 1/2D. √22. 若a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b < 0C. a - b > 0D. a + b < 03. 已知函数y = -2x + 3,当x = -1时,y的值为()A. -5B. -1C. 1D. 54. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)5. 下列各图中,能正确表示y = x²的函数图象的是()A.B.C.D.6. 下列方程中,解集为空集的是()A. x + 3 = 0B. 2x - 5 = 0C. 3x + 2 = 0D. 4x + 1 = 07. 已知等腰三角形ABC中,底边BC = 8cm,腰AB = AC = 10cm,则三角形ABC的周长为()A. 24cmB. 26cmC. 28cmD. 30cm8. 在梯形ABCD中,AD // BC,AB = CD,AD = 6cm,BC = 8cm,则梯形ABCD的高为()A. 4cmB. 6cmC. 8cmD. 10cm9. 下列各式中,能化简为最简二次根式的是()A. √(36a²)B. √(81a² - 1)C. √(49a² - 16)D. √(64a² - 9)10. 已知二次函数y = ax² + bx + c(a ≠ 0)的图象开口向上,且顶点坐标为(1,-2),则下列结论正确的是()A. a > 0,b > 0B. a > 0,b < 0C. a < 0,b > 0D. a < 0,b < 0二、填空题(每题5分,共50分)11. 若x² - 2x + 1 = 0,则x的值为______。
【精品】初二数学-第12章全等三角形 章末单元测试卷试题-八年级数学人教版(上册)(含答案)
(时间:90分钟满分:120分)【精品】一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列作图属于尺规作图的是A.用量角器画出∠AOB,使∠AOB等于已知角αB.用圆规和直尺作线段AB,使AB等于已知线段αC.用刻度尺作出线段AB等于2倍的已知线段mD.用三角板作45°的角2.如图,某同学不小心把一块三角形玻璃打碎成三块,现在要到玻璃店配一块与原来完全相同的玻璃,最省事的方法是A.带①和②去B.只带②去C.只带③去D.都带去3.山脚下有A、B两点,要测出A、B两点间的距离.在地上取一个可以直接到达A、B点的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB,连接DE.可以证△ABC≌△DEC,得DE=AB,因此,测得DE的长就是AB的长,判定△ABC≌△DEC的理由是A.SSS B.ASA C.SAS D.AAS4.下列条件中,能判定△ABC≌△DEF的是A.AB=DE,BC=EF,∠A=∠E B.∠A=∠E,AB=EF,∠B=∠DC.∠A=∠D,∠B=∠E,∠C=∠F D.∠A=∠D,∠B=∠E,AC=DF5.如图,AB=CD,AD=CB,那么下列结论中错误的是A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD6.如图,AD⊥OB,BC⊥OA,垂足分别为D、C,AD与BC相交于点P,若PA=PB,则∠1与∠2的大小是A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.无法确定7.如图,AB∥CD,BC∥AD,AB=CD,AE=CF,其中全等三角形共有对A.5 B.3 C.6 D.48.如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF ≌△CDE;③点D在∠BAC的平分线上.正确的是A.①B.②C.①②D.①②③9.如图,在等边△ABC中,D,E分别是BC,AC上的点,且BD=CE,AD与BE相交于点P,则∠1+∠2的度数是A.45°B.55°C.60°D.75°10.如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①DA 平分∠CDE ;②∠BAC =∠BDE ;③DE 平分∠ADB ;④BE +AC =AB ,其中正确的有A .4个B .3个C .2个D .1个二、填空题(本大题共10小题,每小题3分,共30分)11.若△ABC ≌△A ′B ′C ′,AB =3,∠A ′=30°,则A ′B ′=__________,∠A =__________°.12.如图,OC 为AOB ∠的平分线,CM OB ⊥,3CM =,则点C 到射线OA 的距离为__________.13.已知△ABC ≌△DEF ,且△ABC 的三边长分别为3,4,5,则△DEF 的周长为__________.14.如图,△ABC 的两条高AD ,BE 相交于点F ,请添加一个条件,使得△ADC ≌△BEC (不添加其他字母及辅助线),你添加的条件是__________.15.如图,在Rt △ABC 中,∠ACB =90°,BC =2 cm ,CD ⊥AB ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC 交CD 的延长线于点F .若EF =8 cm ,则AE =__________cm .16.如图,△ABC 中,D 是AB 的中点,DE ⊥AB ,∠ACE +∠BCE =180°,EF ⊥AC 交AC 于F ,AC =12,BC =8,则AF =________.17.如图,Rt △ABC 中,∠C =90°,BD 平分∠ABC 交边AC 于点D ,CD =4,△ABD 的面积为10,则AB 的长是__________.18.如图,AB =AC ,AD =AE ,∠BAC =∠DAE ,点D 在线段BE 上.若∠1=25°,∠2=30°,则∠3=__________.19.如图,五边形ABCDE 中,∠B =∠E =90°,AB =CD =AE =BC +DE =2,则这个五边形ABCDE 的面积是__________.20.如图,Rt △ABC 中,9083C AC BC ∠=︒==,,,AE AC P Q ⊥,,分别是AC AE ,上的动点,且PQ AB =,当AP =__________时,才能使ABC △和PQA △全等.三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤) 21.如图,已知∠1=∠2,∠B =∠D ,求证:CB =CD .22.如图,点E ,F 在AB 上,CE 与DF 交于点G ,AD =BC ,∠A =∠B ,AE =BF .求证:GE =GF .23.如图,12AC AE AB AD =∠=∠=,,.求证:BC DE =.24.如图,在Rt △ABC 中,∠C =90°.作∠BAC 的平分线AP 交边BC 于点D .(保留作图痕迹,不写作法).若∠BAC =28°,求∠ADB 的度数.25.如图,AD 是BAC ∠的平分线,点E 在AB 上,且AE AC =,EF BC ∥交AC 于点F .试说明:EC平分DEF ∠.26.如图,在△BCE 中,AC ⊥BE ,AB =AC ,点A 、点F 分别在BE 、CE 上,BE 、CF 相交于点D ,BD =CE .求证:AD =AE .27.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BA C.(1)求证:∠ABD=∠ACD;(2)若∠ACB=65°,求∠BDC的度数.28.如图,△ABC是边长为5 cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿射线AB,BC运动,且它们的速度都为2 cm/s.设点P的运动时间为t(s).(1)当t为何值时,△ABQ≌△CBP;(2)连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.3.【答案】C【解析】因为CD=CA,CE=CB,ACB DCE∠=∠,所以△ABC≌△DEC(SAS).故选C.4.【答案】D【解析】A.AB=DE,BC=EF,∠A=∠E,SSA不能确定全等;B.∠A=∠E,AB=EF,∠B=∠D,AB和EF不是对应边,不能确定全等;C.∠A=∠D,∠B=∠E,∠C=∠F,AAA不能确定全等;D.∠A=∠D,∠B=∠E,AC=DF,根据AAS,能判断△ABC≌△DEF.故选D.5.【答案】B【解析】∵在△ABD和△CDB中,AB CD AD CB BD BD=⎧⎪=⎨⎪=⎩,∴△ABD≌△CDB,∴∠ADB=∠CBD,∠ABD=∠CDB,∠A=∠C,∴AD∥BC,AB∥CD,∴A、C、D选项正确.故选B.6.【答案】A【解析】∵AD⊥OB,BC⊥OA,垂足分别为D、C,AD与BC相交于点P,PA=PB,∠CPA=∠DPB,∴△CPA≌△∠DPB(AAS),∴PC=PD,∴∠1=∠2,故选A.7.【答案】B【解析】根据AB=CD,AE=CF,∠BAE=∠DCF可得:△ABE≌△CDF;根据CE=AF,∠DAF=∠BCE,∠DFA=∠BEC可得:△ADF≌△CBE;根据∠DAC=∠BCA,∠BAC=∠DCA,AC=CA可得:△ACD≌△CAB,共有3对全等三角形,故选B.8.【答案】D∵△ABE≌△ACF,∴AE=AF,∵△BDF≌△CDE,∴DF=DE,∵在△AFD和△AED中,AF AE AD AD DF DE=⎧⎪=⎨⎪=⎩,∴△AFD≌△AED(SSS),∴∠FAD=∠EAD,∴AD平分∠BAC,即点D在∠BAC的平分线上.综上所述,在本题给出的结论中,正确的是①②③.故选D.9.【答案】C【解析】∵在等边△ABC中,∠ABC=∠C=60°,AB=BC,BD=CE,∴△ABD≌△BCE,∴∠CBE=∠1,而∠CBE+∠2=60°,∴∠1+∠2=60°.故选C.10.【答案】B【解析】根据题中条件,结合图形及角平分线的性质得到:∵AD平分∠BAC,∴∠DAC=∠DAE,∵∠C=90°,DE⊥AB,∴∠C=∠E=90°,∵AD=AD,∴△DAC≌△DAE,∴∠CDA=∠EDA,∴①AD 平分∠CDE正确;无法证明∠BDE=60°,∴③DE平分∠ADB错误;∵BE+AE=AB,AE=AC,∴BE+AC=AB,∴④BE+AC=AB正确;∵∠BDE=90°-∠B,∠BAC=90°-∠B,∴∠BDE=∠BAC,∴②∠BAC=∠BDE正确.故选B.11.【答案】3;30【解析】由对应角相等,对应边相等,A′B′=AB ,∠A =30°.故答案为:3;30. 12.【答案】3【解析】如图,过C 作CF ⊥AO .∵OC 为∠AOB 的平分线,CM ⊥OB ,∴CM =CF .∵CM =3,∴CF =3.故答案为:3.角的余角相等),在△FCE 和△ABC 中,90ECF BEC BC ACB FEC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABC ≌△FCE (ASA ),∴AC =EF ,∵AE =AC -CE ,BC =2 cm ,EF =8 cm ,∴AE =8-2=6 cm ,故答案为:6. 16.【答案】10【解析】如图,连接AE ,BE ,过E 作EG ⊥BC 于G ,∵D是AB的中点,DE⊥AB,∴DE垂直平分AB,∴AE=BE,∵∠ACE+∠BCE=180°,∠ECG+∠BCE=180°,∴∠ACE=∠ECG,又∵EF⊥AC,EG⊥BC,∴EF=EG,∠FEC=∠GEC,∵CF⊥EF,CG⊥EG,∴CF=CG,在Rt△AEF和Rt△BEG中,AE BEEF EG=⎧⎨=⎩,∴Rt△AEF≌Rt△BEG(HL),∴AF=BG,设CF=CG=x,则AF=AC-CF=12-x,BG=BC+CG=8+x,∴12-x=8+x,解得x=2,∴AF=12-2=10.故答案为:10.17.【答案】5【解析】如图,过点D作DE⊥AB于点E.∵BD平分∠ABC.又∵DE⊥AB,DC⊥BC,∴DE=DC=4.∵△ABD的面积=12·AB·DE=12×AB×4=10,∴AB=5.故答案为:5.20.【答案】3或8【解析】分为两种情况:①当AP=3时,∵BC=3,∴AP=BC,∵∠C=90°,AE⊥AC,∴∠C=∠QAP=90°,∴在Rt △ABC 和Rt △QAP 中,AB PQ BC AP=⎧⎨=⎩,∴Rt △ABC ≌Rt △PQA (HL );②当AP =8时,∵AC =8,∴AP =AC ,∵∠C =90°,AE ⊥AC ,∴∠C =∠QAP =90°,∴在Rt △ABC 和Rt △QAP中,AB PQ AC AP =⎧⎨=⎩,∴Rt △ABC ≌Rt △QAP (HL ),故答案为:3或8.22.【解析】∵AE =BF ,∴AE +EF =BF +EF ,∴AF =BE ,在△ADF 与△BCE 中,=AD BC A B AF BE =⎧⎪⎨⎪=⎩∠∠,∴△ADF ≌△BCE (SAS ),∴∠CEB =∠DFA ,∴GE =GF .23.【解析】∵12∠=∠,∴12BAE BAE ∠+∠=∠+∠,即BAC DAE ∠=∠,在BAC △和DAE △中,AC AE BAC DAE AB AD =⎧⎪∠=∠⎨⎪=⎩,∴BAC △≌DAE △(SAS ),∴BC DE =.24.【解析】(1)如下图所示,AD 为所求的角平分线:(2)∵∠BAC 的平分线AP ,∠BAC =28°, ∴∠CAD =BAD =14°,又∵∠C =90°,∠ADB =∠C +∠CAD ,∴∠ADB =90°+14°=104°.26.【解析】∵AC ⊥BE ,∴∠BAD =∠CAE =90°,在Rt △ABD 和Rt △ACE 中,BD CE AB AC =⎧⎨=⎩, ∴Rt △ABD ≌Rt △ACE (HL ),∴AD =AE .27.【解析】(1)∵∠BAC =∠EAD ,∴∠BAC -∠EAC =∠EAD -∠EAC ,即:∠BAE=∠CAD,在△ABE和△ACD中,AB ACBAE CAD AE AD=⎧⎪∠=∠⎨⎪=⎩,28.【解析】(1)∵△ABQ≌△CBP,∴BQ=BP,∴2t=5-2t,∴t=54,∴t=54s时,△ABQ≌△CBP,(2)结论:∠CMQ=60°不变,理由:∵△ABC是等边三角形,∴∠ABQ=∠CAP,AB=CA,又∵点P,Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,AB CAABQ CAP AP BQ=⎧⎪∠=∠⎨⎪=⎩,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠CMQ=∠BAQ+∠MAC=∠BAC=60°.。
八年级上册期末考试数学试卷含参考答案(共5套,最新人教版)
初二年级第一学期期末考试数学试卷本试卷包括两道大题,共24道小题。
共6页。
全卷满分120分。
考试时间为120分钟。
考试结束后,将答题卡交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共24分)1.-64的立方根是()A.-4B.8C.-4和4D.-8和82.若3-m为二次根式,则m的取值为()A.m≤3B.m<3C.m≥3D.m>33.如图,在△ABC中,AB=AC,∠A=40︒,AB的垂直平分线交AB于点D,交AC于点E,连结BE,则∠CBE 的度数为()A.70︒B.80︒C.40︒D.30︒第3题图第5题图4.如果a、b、c是一个直角三角形的三边,则a,b,c可能为()A.1,2,4B.1,3,5C.3,4,7D.5,12,13, x15<x≤20S S5. 如图,要测量河两岸相对的两点 A 、B 的距离,先在 AB 的垂线 BF 上取两点 C 、D ,使 BC =CD ,再作出 BF的垂线 DE ,使点 A 、C 、E 在同一条直线上(如图所示) 可以说明△ ABC ≌△EDC ,得 AB =DE ,因此测得DE 的长就是 AB 的长,判定△ ABC ≌△EDC ,最恰当的理由是() A .边角边 B .角边角 C .边边边D .边边角AS 3S 2B S1 C第 6 题图第 8 题图6.如图,在□ABCD 中,AD =2AB ,CE 平分∠BCD 交 AD 边于点 E ,且 AE =3,则 AB 的长为().5 A .4B .3C .2D .27. 小 明统计了他家今年 11 月 份打电话的次数及通话时间,并列出了频数分布表:通话时间 x/min 0<x≤5 5<x≤10 10<x≤15 频数(通话次数)1916510则通话时间不超过 15min 的频率为( )A .0.1B .0.4C .0.5D .0.88.如图所示,以 △RtABC 的三边向外作正方形,其面积分别为 S 1,2,3 且 S 1 = 4, S 2 = 8, 则S 3 =()A .4B .8C .12D .32二、填空题(每小题 3 分,共 18 分)9.因式分解: am + an + ap = .10.计算: a 3 ⋅ a 5 =.11.25 的平方根是.12.若代数式 x - 2 - 2 - x 有意义,则 x 的值为.13.如图,△ABC 中,∠C = 90︒ ,AB =10,AD 是△ABC 的一条角平分线,若 CD =3,则△ABD 的面积为.16 - 9 ⎪• 4 18.因式分解 x 3 - 4 x2314.如图, ∠C = ∠ABD = 90︒, AC = 4, BC = 3, BD = 12 ,则 AD=.ACB D第 13 题图第 14 题图三、计算题(每小题 6 分,共 24 分)15. 3a •(a - 4)16.(x3y + 2 x 2 y 2 )÷ xy⎛ 1⎫17.⎝ 2 ⎭四、解答 题:(每小题 8 分,共 32 分)19..先化简,再求值 (x + y )2 - 2 x (x + y ),其中 x=3,y=2.320.已知:a+b=5,a2-b2=10,求a-b的值.21.如图,BD、CE△是ABC的高,且AE=AD,求证:AB=AC.第21题图22.如图,延长□A BCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A、E和C、F.求证:AE=CF.第22题图五、解答题(23题10分,24题12分,共22分)23.某校为了了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取了本校部分学生进行问卷调查(必选且只选一类节目),将调查结果进行整理后,绘制了如下不完整的条形统计图和扇形统计图,其中喜爱体育节目的学生人数比喜爱戏曲节目的学生人数的3倍还多1人.第23题图请根据所给信息解答下列问题:(1)求本次抽取的学生人数;(2)补全条形图,在扇形统计图中的横线上填上正确的数值;(3)该校有3000名学生,求该校喜爱娱乐节目的学生大约有多少人.24.如图,在△Rt ABC中,∠B=90,AB=7cm,AC=25cm.点P从点A沿AB方向以1cm/s的速度运动至点B,点Q从点B沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发.(1)求BC的长.(2)若运动2s时,求P、Q两点之间的距离.xk|b|1(3)P、Q两点运动几秒,AP=CQ.第24题图答案:一、1.A 2.A 3.D 4.D 5.A 6.B7.D8.C二、9.a(m+n+p)10.a811.±512.x=213.1514.13三、15.3a2-12a16.x2+2xy17.018.x(x+2)(x-2)四、19.-x2+y2,-520.221.略22.略五、23.(1)50(2)30%(3)108024.(1)24(2)13(3)24 72C.6D.9B B B八年级上册数学期末试题一.选择题45分1.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB△≌OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS1题图2题图3题图4题图2.某市准备在一块三条公路围成的平地△ABC上设立一个大型超市,要求超市到三条公路的距离相等,则超市应建立在△ABC的()A.两个内角的平分线的交点处C.两边中线的交点处B.两边高线的交点处D.两边的垂直平分线的交点处3.如图,已知∠BAC的平分线与BC的垂直平分线PQ相交于点P,PM⊥AC,PN⊥AB,垂足分别为M、N,AB=3,AC=7,则CM的长度为()A.4B.3C.2D.324.如图,在△ABC中,∠C=90°,AC=BC=6,D为AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合)且保持∠EDF=90°,连接EF,在此运动变化过程中,△SCEF的最大值为()A.3B.95.已知A、B两点的坐标分别为(-2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、关于y轴对称;③A、关于原点对称;④A、之间的距离为4,其中正确的有()A.1个B.2个C.3个D.4个6.若一个多边形的内角和与外角和之和是1800°,则此多边形是()边形A.八B.十C.十二D.十四7.六边形的对角线共有()A.9条B.15条C.12条D.6条8.妈妈问小欣现在几点了,小欣瞧见了镜子里的挂钟如图所示(分针正好指向整点位置)她就立刻告诉了妈妈正确的时间,请问正确的时间是()A.6点20分B.5点20分C.6点40分D.5点40分9.如图,∠A+∠B+∠C+∠D+∠E的度数为()A.90°B.180°C.270°D.360°10.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CHA.①②③④B.①②③C.②④D.①③11、下列正多边形中,不能铺满地面的是()A、正三角形C、正六边形B、正方形D、正七边形12、若一个三角形三个角度数的比为2:3:4,则这个三角形的()A、直角三角形C、钝角三角形B、锐角三角形D、正三角形13.如图,直线l1、l2、l3表示三条互相交叉的公路,现在建一个货物中转站,要求到三条公路的距离相等,则可选择的地址有()处A.一处B.两处C.三处D.四处14、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.30°或150°B.30°或150°C.60°或150°D.60°或120°15.下列因式分解结果正确的是()A.x2+2x-3=x(x+2)-3B.6p(p+q)-4q(p+q)=(p+q)(6p-4q)C.a2-2a+1=(a-1)2D.4x2-9=(4x+3)(4x-3)二、解答题16.如图,△ABC△和BDE中,AB=BC,BD=BE,∠ABC=∠EDB=90°,G、H分别为AD、CE 中点,试判断△BGH形状并证明17.如图,等边△ABC的边长为12cm,D为AC边上一动点,E为AB延长线上一动点,DE交CB于点P,点P为DE中点(1)求证:CD=BE(2)若DE⊥AC,求BP的长18.(7分)已知AB∥CD,点E为BC上一点,且AB=CD=BE,AE、DC的延长线交于点F,连BD(1)如图1,求证:CE=CF(2)如图2,若∠ABC=90°,G是EF的中点,求∠BDG的度数已知ABC△和DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB上,点F在射线AC上19.△(1)如图1,若∠BAC=60°,点F与点C重合,求证:AF=AE+AD(2)如图2,若AD=AB,求证:AF=AE+BC20.如图,AD△为ABC的高,点H为AC的垂直平分线与BC的交点,HC=AB(1)如图1,求证:∠B=2∠C(2)如图2,若2∠DAF=∠B-∠C①求证:AC=BF+BA②直接写出AC FC的值DF21.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F(1)说明BE=CF的理由(2)如果AB=a,AC=b,求AE、BE的长( , a + x a + 1nna (C. = , a ≠ 0)D. =B.=xx 2m ma八年级第一学期期末质量检测试卷数学(总分 150 分,答题时间 120 分钟)A 卷(100 分)一.选择题(每小题 3 分,共 30 分)题号 1 2 3 4 5x67 8 9 10答案1.1 纳米等于 0.0000000001 米,则 35 纳米用科学记数法表示为()A .35×10-9 米B .3.5×10-9 米C .3.5×10-10 米D .3.5×10-8 米2.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A .B. C. D.3.下列各式: 1 1- x ) 4 x , x 2 - y 2 , 1 + x, 5x2 其中分式共有( )个 5 π -3 2 x xA.2B.3C.4D.54.下列各式正确的是()A.5.若把分式 x + y中的 x 和 y 都扩大 3 倍,那么分式的值()2 x yA.扩大 3 倍B.不变C.缩小 3 倍D.缩小 6 倍6.若分式 x - 1x 2 - 3x + 2A.-1的值为 0,则 x 等于( )B.1C.-1 或 1D.1 或 27.A 、B 两地相距 48 千米,一艘轮船从 A 地顺流航行至 B 地,又立即从 B 地逆流返回 A 地,共用去 9 小时,已知水流速度为 4 千米/时,若设该轮船在静水中的速度为 x 千米/时,则可列方程()A.48+=9 B.+=9 C.+4=9 D.+=9CD12.①3a5xy10axy a2-4()y-z x+z x-y,,⎪5122132中得到巴尔末公式,从而打开484848489696x+4x-44+x4-x x x+4x-48.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cmB.7.5cmC.11cm或7.5cmD.以上都不对9.如图:∠EAF=15°,AB=BC=CD=DE=EF,则∠DEF等于()EA.90°B.75°C.70°D.60°A B F10.若平面直角坐标系中,△ABO关于x轴对称,点A的坐标为(1,-2),则点B的坐标为()A.(-1,2)B.(-1,-2)C.(1,2)D.(-2,1)二、填空题(每小题3分,共30分)11.如图1,AB,CD相交于点O,AD=△C B,请你补充一个条件,使得AOD≌△COB.你补充的条件是______.A C()a+21=,(a≠0)②=13.分式的最简公分母是。
(完整)人教版八年级数学上学期期末试卷(含答案),推荐文档
期末考试八年级数学试卷一、精心选一选(本大题共 10 小题,每小题 4 分,共 40 分,在每小题给出的四个选项中只有一项是符合题目要求的,请将正确的答案选出来,填在题后的括号内)1.(4 分)在平面直角坐标系中,点P(﹣1,4)一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.(4 分)如果两个三角形全等,则不正确的是()A.它们的最小角相等B.它们的对应外角相等C.它们是直角三角形 D.它们的最长边相等3.(4 分)如图,李老师骑自行车上班,最初以某一速度匀速行进,路途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程 y(千米)与行进时间 t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()A.B.C.D.4.(4 分)下列语句不是命题的是()A.x 与 y 的和等于 0 吗B.不平行的两条直线有一个交点C.两点之间线段最短D.对顶角不相等5.(4 分)在如图中,正确画出AC 边上高的是()A.B.C.D.6.(4 分)下列图形中,为轴对称图形的是()A.B.C.D.7.(4 分)下列每组数分别是三根木棒的长度,不能用它们摆成三角形的是()A.5cm、8cm、12cm B.6cm、8cm、12cm C.5cm、6cm、8cm D.5cm、6cm、12cm 8.(4 分)如图,直线y=kx+b 交坐标轴于A、B 两点,则不等式kx+b>0 的解集是()A.x>﹣2 B.x>3 C.x<﹣2 D.x<39.(4 分)已知如图,AC⊥BC,DE⊥AB,AD 平分∠BAC,下面结论错误的是()A.BD+ED=BC B.DE 平分∠ADB C.AD 平分∠EDC D.ED+AC>AD10.(4 分)如图所示,表示一次函数y=ax+b 与正比例函数y=abx(a,b 是常数,且ab≠0)的图象是()A.B.C.D.二、细心填一填(本大题共 4 小题,每小题 5 分,满分 20 分)11.(5 分)通过平移把点A(2,﹣1)移到点A1(3,2),按同样的平移方式,点B(﹣2,3)移动到点B1,则点B1的坐标是.12.(5 分)如图,△ABC 中,DE 是 AC 的垂直平分线,AE=4cm,△ABD 的周长为 15cm,则△ABC的周长为cm.13.(5 分)2008 年罕见雪灾发生之后,灾区急需帐篷.某车间的甲,乙两名工人分别同时生产同种帐篷上的同种零件,他们一天生产零件 y(个)与生产时间 t(时)的函数关系如图所示.①甲,乙中先完成一天的生产任务,在生产过程中因机器故障停止生产小时.②当t= 时,甲,乙生产的零件个数相等.14.(5 分)如图所示,△ABC 中,BD,CD 分别平分∠ABC 和外角∠ACE,若∠D﹦24°,则∠A﹦度.三、用心做一做(本大题共 9 小题,满分 90 分)15.(8 分)如图,A 点坐标为(3,4),将△ABC先向左平移 3 个单位得到△A1B1C1,再将△A1B1C1向下平移 4 个单位得到△A2B2C2.①请你在图上画出△A1B1C1和△A2B2C2.②观察所画的图形写出 A1和 A2的坐标.16.(8 分)已知一次函数的图象过(3,5)和(﹣4,﹣9)两点.(1)求此一次函数的解析式;(2)试判断点(﹣1,﹣3)是否在此一次函数的图象上.17.(8 分)如图,已知:AD 是 BC 上的中线,且 DF=DE.求证:BE∥CF.18.(8 分)已知等腰三角形周长为 24cm,若底边长为 y(cm),一腰长为 x(cm),(1)写出 y 与x 的函数关系式(2)求自变量 x 的取值范围(3)画出这个函数的图象.19.(10 分)已知:如图,A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣ 1)(1)继续填写:A6(),A7(),A8(),A9(),A10(),A11()(2)试写出点A2017(),A2018()20.(10 分)已知,如图,△ABC 中,∠ABC=66°,∠ACB=54°,BE、CF 是两边 AC、AB 上的高,它们交于点 H.求∠ABE 和∠BHC 的度数.21.(12 分)如图所示,在△ABC中,AB﹦AC,BD、CE 分别是所在角的平分线,AN⊥BD于N 点,AM⊥CE于M 点.求证:AM=AN.22.(12 分)如图,在平面直角坐标系 xOy 中,直线 l 是第一、三象限的角平分线.(1)由图观察易知点A(0,2)关于直线l 的对称点A′的坐标为(2,0),请在图中分别标出点B(5,3)、C(﹣2,5)关于直线l 的对称点B′、C′的位置,然后写出他们的坐标:B′,C′;(2)结合图形观察以上三组点的坐标,可以发现:坐标平面内任意一点P(a,b)关于第一、三象限的角平分线l 的对称点P′的坐标为(不必证明);(3)已知两点 D(1,﹣3)、E(﹣2,﹣4),试在直线 l 上确定一点 Q,使点 Q 到D、E 两点的距离之和最小,并求出点 Q 的坐标.23.(14 分)一手机经销商计划购进某品牌的 A 型、B 型、C 型三款手机共 60 部,每款手机至少要购进 8 部,且恰好用完购机款 61000 元.设购进 A 型手机 x 部,B 型手机 y 部.三款手机的进价和预售价如下表:手机型号 A 型 B 型 C 型进价(单位:元/部)900 1200 1100预售价(单位:元/部)1200 1600 1300(1)用含 x,y 的式子表示购进 C 型手机的部数;(2)求出 y 与x 之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共 1500 元.①求出预估利润 P(元)与 x(部)的函数关系式;(注:预估利润 P=预售总额﹣购机款﹣各种费用)②求出预估利润的最大值,并写出此时购进三款手机各多少部.参考答案1-10、BCCAC DDABA11、(-1,6)12、2313、甲甲 2 3 或5.514、4815、16、17、18、19、20、21、22、23、“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
初二数学上下册期末测试卷
一、选择题(每题2分,共20分)1. 下列各数中,是负数的是()A. -2B. 0C. 2D. 52. 下列各数中,是整数的是()A. 1.2B. 3.5C. -1.8D. 23. 如果a<b,那么下列不等式中正确的是()A. a+b<b+cB. a-b<b-cC. a+b>b+cD. a-b>b-c4. 下列各式中,是同类项的是()A. 2xyB. 3x^2C. 4y^2D. 5x^2y5. 下列各式中,是分式的是()A. 3/4B. 5/2C. 1/3D. 2/56. 下列各式中,是方程的是()A. 2x+3=7B. 3x-5=0C. 4x^2+2x-3=0D. 5x+2y=107. 下列各式中,是二次根式的是()A. √9B. √16C. √25D. √368. 下列各式中,是绝对值的是()A. |3|B. |-5|C. |0|D. |2|9. 下列各式中,是指数式的是()A. 2^3B. 3^2C. 4^3D. 5^210. 下列各式中,是开方式的是()A. √9B. √16C. √25D. √36二、填空题(每题2分,共20分)11. 下列各数中,是正数的是()A. -2B. 0C. 2D. 512. 下列各数中,是整数的是()A. 1.2B. 3.5C. -1.8D. 213. 如果a<b,那么下列不等式中正确的是()A. a+b<b+cB. a-b<b-cC. a+b>b+cD. a-b>b-c14. 下列各式中,是同类项的是()A. 2xyB. 3x^2C. 4y^2D. 5x^2y15. 下列各式中,是分式的是()A. 3/4B. 5/2C. 1/3D. 2/516. 下列各式中,是方程的是()A. 2x+3=7B. 3x-5=0C. 4x^2+2x-3=0D. 5x+2y=1017. 下列各式中,是二次根式的是()A. √9B. √16C. √25D. √3618. 下列各式中,是绝对值的是()A. |3|B. |-5|C. |0|D. |2|19. 下列各式中,是指数式的是()A. 2^3B. 3^2C. 4^3D. 5^220. 下列各式中,是开方式的是()A. √9B. √16C. √25D. √36三、解答题(每题10分,共30分)21. 解方程:3x-2=722. 解不等式:2x+3<523. 简化下列各式:(1)2a^2b^3c^2 ÷ 2a^2b^2c(2)(a+b)^2 - 2ab四、应用题(每题10分,共20分)24. 某工厂生产一批产品,计划每天生产120件,实际每天生产150件。
新人教版八年级数学上册数学期末测试卷含答案(精选六套)
八年级(上)数学期末测试卷一、选择题(本题包括10小题,每小题4分,共40分)1、在实数722、-3、0.101001、π、39、 3.14中,无理数有( )A .6个B .5个C .4个D .3个 2、如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )A.SSSB.SASC. ASA D .AAS 3、函数xx y 1+=的自变量的取值范围是 ( ) A x ≥-1 B x ≥-1且x ≠0 C. x >0 D x >-1且x ≠ 04.如图,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB = BC = CD = DE = EF ,若∠A =18°,则∠GEF 的度数是( ) A .108° B.100°C.90°D.80第2题 第4题5、如果2592++kx x 是一个完全平方式,那么k 的值是( )A 、30B 、±30C 、15D ±156、如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )O yx-2- 4A DC B O 42y O2- 4yxO 4- 2 y x取相反数×2 -4第6题图输入x 输出yEDCABH FG7.已知点A1(-5,y )和点B2(-4,y )都在直线7y x b =-+上,且则1y 与2y 的大小关系为( )A.>12y yB.=12y yC.<12y yD.不能确定8、将一张长方形纸片按如图所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( ) A .60° B .75° C .90° D .95°9、如图,△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于D ,DE⊥AB 于E ,且AB=6cm ,则△DEB 的周长是 ( ) A 、6cm B 、4cm C 、10cm D 、以上都不对10、(4)班同学在探究弹簧的长度跟外力的变化关系时,实验记录得到的相应数据如下表: 砝码的质量x(克) 0 50 100 150200 250 300 400 500 指针位置y(厘米)2345677.57.57.5则y 关于x 的函数图象是( ).二、填空题(本题包括5小题,每小题5分,满分25分)11、16 的算术平方根是 .12、在平面镜里看到背后墙上,电子钟示数如图所示,这时的实际时间应该是______.第12题第13题13、如图,ABC ∆中,∠C=90°,∠ABC=60°,BD 平分∠ABC ,若AD=6,则CD= 。
人教版初二数学上学期期末复习测试卷(3)含答案
初二数学上学期期末复习测试卷(3)(满分:100分时间:90分钟)一、选择题(每题2分,共16分)1.在下列各数中,3.14159,-38,0.131131113…,-π,25,-17无理数的个数是( )A.1 B.2 C.3 D.42.下列表情图属于轴对称图形的是( )3.如图,在△ABC和△DEC中,已知AB=DE,还需要添加两个条件才能使△ABC ≌△DEC,不能添加的一组是( )A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D4.如图,在△,ABC中,∠ABC=45°,AC=8cm.若F是高AD和BE的交点,则BF的长是( )A.4cm B.6cm C.8cm D.9cm5.若等腰三角形的一个角是80°,则它的顶角的度数是( )A.80°B.80°或20°C.80°或50°D.20°6.若一个三角形的三边a,b,c满足a2+b2+c2=10a+24b+26c-338,则这个三角形一定是( )A.直角三角形B.锐角三角形C.等腰三角形D.等腰直角三角形7.张师傅驾车从甲地到乙地,两地相距500km,汽车出发前油箱有油25L,途中加油若干升,加油前、后汽车都以100km/h的速度匀速行驶.已知油箱中剩余油量y(L)与行驶时间t(h)之间的关系如图所示.则以下说法错误的是( )A.加油前油箱中剩余油量y(L)与行驶时间t(h)之间的函数关系式是y=-8t+25B.途中加油21LC.汽车加油后还可行驶4hD.汽车到达乙地时油箱中还余油6L8.如图,在平面直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,0) B.(0,1)C.(0,2) D.(0,3)二、填空题(每题2分,共20分)9.平方根等于本身的数是_______.10.在△ABC中,∠A=40°,当∠B=_______时,△ABC是等腰三角形.11.如图,∠AOB=70°,QC⊥OA,QD⊥OB,垂足分别为点C,D.若OC=OD,则∠AOQ=_______.12.如图,AB∥CD,AE=AF,CE交AB于点F.若∠C=110°,则∠A=_______.13.给出下列函数:①y=2x+8;②y=-2+4x;③y=-2x+8;④y=4x.其中y 随x的增大而减小的函数是_______.(填序号)14.写出一个过点(0,3)且函数值y随自变量x的增大而减小的一次函数关系式:_______.(写一个答案即可)15.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D.若BC=15,且BD=9,则△ADC与△ADB的面积比为_______.16.钓鱼岛自古就是中国的领土,中国政府已对钓鱼岛展开常态化巡逻.某天,为按计划准点到达指定海域,某巡逐艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准时到达,该艇行驶韵路程y(海里)与所用时间t(小时)的函数图像如图所示,该巡逻艇原计划准点到达的时刻是_______.17.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位长度,得到点A1(0,1)、A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n是自然数)的坐标为_______.18.如图,在长方形ABCD 中,AB =3,BC =4,点E 是边BC 上的一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当△CEB'为直角三角形时,BE 的长为_______.三、解答题(共64分)19.(本题6分)计算下列各题,. (1).4-23÷2-×(-7+5);(2)()3392322-+---.20.(本题6分)下图是单位长度为1的正方形网格.(1)在图1中画出一条长度10为的线段AB ;(2)在图2中画出一个以格点为顶点、面积为5的正方形.21.(本题6分)在△ABC 中,∠BAC =90°,AB =20,AC =15,AD ⊥BC ,垂足为点D ,(1)求BC 的长;(2)求AD 的长.22.(本题10分)如图,在△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A =∠D ,AB =DC .(1)求证:△ABF ≌△DCE ;(2)当∠AEB =50°,求∠EBC 的度数.23.(本题10分)如图,△ABC 是等边三角形,D 是边AB 上的一点,以CD 为边作等边兰角形CDE ,使点E ,A 在直线DC 的同侧,连接AE .求证:AE ∥BC .24.(本题9分)已知一次函数y=kx+b的图像经过点(-1,-5),且与正比例函数y=12x的图像相交于点(2,m).(1)求m的值;(2)求一次函数y=kx+b的解析式;(3)求这两个函数图像与x轴所围成的三角形的面积.25.(本题8分)某生物小组观察-植物生长,得到植物高度y( cm)与观察时间x(天)的关系,并画出如图所示的图像(AC是线段,直线CD平行于x轴).(1)该植物从观察时起,多少天以后停止长高?(2)求直线AC的解析式,并求该植物最高长多少厘米.26.(本题8分)如图,△ABC是边长为6的等边三角形,P是边AC上一动点、,由点A向点C运动(与点A,C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由点B向CB延长线方向运动(点Q不与点B重合),过点P作PE⊥AB,垂足为点E,连接PQ交AB于点D.(1)当∠BQD=30°时,求AP的长.(2)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生改变,请说明理由.27.(本题9分)如图1,A,B,C为三个超市,在从A通往C的道路(粗实线部分)上有一点D,D与B有道路(细实线部分)相通,A与D、D与C、D与B之间的路程分别为25km,10km,5km.现计划在A通往C的道路上建一个配货中心H,每天有一辆货车只为这三个超市送货,该货车每天从H出发,单独为A送货1次,为B 送货1次,为C送货2次,货车每次仅能给一家超市送货,每次送货后均返回配货中心H.设H到A的路程为xkm,这辆货车每天行驶的路程为ykm.(1)用含有x的代数式填空:当0≤x≤25时,货车从H到A往返1次的路程为2xkm,货车从H到B往返1次的路程为_______km,货车从H到C往返2次的路程为_______km,这辆货车每天行驶的路程y=_______km;当25<x≤35时,这辆货车每天行驶的路程y=_______.(2)请在图2中画出y与x(0≤x≤35)的函数图像.(3)配货中心H建在哪段可使这辆货车每天行驶的路程最短?参考答案一、选择题1.B2.D3.C4.C5.B6.A7.C8.D二、填空题9.0 10.40°,70°或100 11.35°12.40°13.③14.答案不唯一,如y=-x+315.2:3 16.7:00 17.(2n,1) 18.3或3 2三、解答题19.(1)10 (2)-120.图略21.(1)BC的长为25 (2)AD的长为12 22.(1)略(2)25°23.略24.(1)m=1(2)y=2x-3 (3)3 425.(1)50天以后停止长高(2)16cm26.(1)2 (2)DE的长不变27.(1)60-2x 140-4x -4x+200 100 (2)函数图像如图所示:(3)建在CD上路程最短.。
【人教版】初二数学上期末试题(含答案)
一、选择题1.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ayy y++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4B .5C .6D .32.关于代数式221a a +的值,以下结论不正确的是( ) A .当a 取互为相反数的值时,221a a +的值相等 B .当a 取互为倒数的值时,221a a +的值相等 C .当1a >时,a 越大,221a a+的值就越大 D .当01a <<时,a 越大,221a a+的值就越大3.2020年5月1日,北京市正式实施《北京市生活垃圾管理条例》,生活垃圾按照厨余垃圾,可回收物,有害垃圾,其他垃圾进行分类.小红所住小区5月和12月的厨余垃圾分出量和其他三种垃圾的总量的相关信息如下表所示:厨余垃圾分出量如果厨余垃圾分出率=100%⨯生活垃圾总量(生活垃圾总量=厨余垃圾分出量+其他三种垃圾的总量),且该小区12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍,那么下面列式正确的是( )A .660840014710x x ⨯=B .6608400147660840010x x⨯=++C .660840014147660840010x x⨯=⨯++ D .7840066010146608400x x++⨯=4.2222x y x y x y x y-+÷+-的结果是( )A .222()x y x y ++ B .222()x y x y +- C .222()x y x y -+ D .222()x y x y ++5.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( ) A .52-B .52C .5D .-56.下列因式分解正确的是( ) A .24414(1)1m m m m -+=-+ B .a 2+b 2=(a +b )2 C .x 2-16y 2=(x +8y )(x -8y ) D .-16x 2+1=(1+4x )(1-4x )7.下列计算正确的是( ) A .(a +b )(a ﹣2b )=a 2﹣2b 2 B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 28.下列运算正确的是( ) A .3515x x x ⋅= B .()3412x x -=C .()32628y y =D .623x x x ÷=9.如图,已知30MON ︒∠=,点123,,...A A A 在射线ON 上,点123,,B B B …在射线OM 上,112223334,,...A B A A B A A B A ∆∆∆1n n n A B A +∆均为等边三角形,若11OA =,则778A B A ∆的边长为( )A .16B .32C .64D .12810.如图,已知AD 为ABC 的高线,AD BC =,以AB 为底边作等腰Rt ABE △,且点E 在ABC 内部,连接ED ,EC ,延长CE 交AD 于F 点,下列结论:①EBD DAE ∠=∠;②ADE BCE ≌△△;③BD AF =;④BDE ACE S S =△△,其中正确的结论有( )A .1个B .2个C .3个D .4个11.用三角尺画角平分线:如图,先在AOB ∠的两边分别取OM ON =,再分别过点M ,N 作OA ,OB 的垂线,交点为P .得到OP 平分AOB ∠的依据是( )A .HLB .SSSC .SASD .ASA 12.正十边形每个外角等于( )A .36°B .72°C .108°D .150°二、填空题13.计算:222213699211-+-+⋅⋅=--++x x x x x x x x ___________.14.九年级()1班学生周末从学校出发到某实践基地研学旅行,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地,已知快车的速度是慢车速度的1.2倍,如果设慢车的速度为x 千米/时,根据题意列方程为________.15.若2|1|0++-=a b ,则2020()a b +=_________.16.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是:__________;(请选择正确的一个) A .2222()a ab b a b -+=- B .22()()a b a b a b -=+- C .2()a ab a a b +=+(2)应用:利用所选(1)中等式两边的等量关系,完成下面题目:若46x y +=,45x y -=,则221664x y -+的值为__________.17.如图,在△ABC 中,AD 平分∠BAC ,交BC 于点D ,BE ⊥AD 于E ,AB =6,AC =14,∠ABC =3∠C ,则BE =____.18.已知等边三角形ABC .如图,(1)分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧相交于M ,N 两点; (2)作直线MN 交AB 于点D ; (3)分别以点A ,C 为圆心,大于12AB 的长为半径作弧,两弧相交于H ,L 两点; (4)作直线HL 交AC 于点E ;(5)直线MN 与直线HL 相交于点O ; (6)连接OA ,OB ,OC .根据以上作图过程及所作图形,下列结论:①2OC OD =;②2AB OA =;③OA OB OC ==;④120DOE ∠=︒,正确的是____________.19.如图,∠1=∠2,要使△ABC ≌△ADC ,还需添加条件:_____.(填写一个你认为正确的即可)20.如图,BD 是ABC 的中线,点E 、F 分别为BD 、CE 的中点,若AEF 的面积为23cm ,则ABC 的面积是______2cm .三、解答题21.已知点()0,A y 在y 轴正半轴上,以OA 为边作等边OAB ,其中y 是方程31222y +-31y =-的解. (1)求点A 的坐标;(2)如图1,点P 在x 轴正半轴上,以AP 为边在第一象限内作等边APQ ,连QB 并延长交x 轴于点C ,求证:OC BC =;(3)如图2,若点M 为y 轴正半轴上一动点,点M 在点A 的上边,连MB ,以MB 为边在第一象限内作等边MBN △,连NA 并延长交x 轴于点D ,当点M 运动时,DN AM -的值是否发生变化?若不变,求出其值;若变化,求出其变化的范围.22.计算与求值 (1)计算:)()(215510π-+-+-;(2)求)(2316x +=中x 的值.23.因式分解:(1)222x - (2)32244x x y xy -+ 24.如图,在平面直角坐标系xOy 中点(6,8)A ,点(6,0)B .(1)只用直尺(没有刻度)和圆规,求作一个点P ,使点P 同时满足下列两个条件(要求保留作图痕迹,不必写出作法);①点P到A,B两点的距离相等;的两边的距离相等.②点P到xOy(2)在(1)作出点P后,直接写出点P的坐标______.25.小敏在学习了几何知识后,对角的知识产生了兴趣,进行了如下探究:(1)如图1,∠AOB=90°,在图中动手画图(不用写画法).在∠AOB内部任意画一条射线OC;画∠AOC的平分线OM,画∠BOC的平分线ON;用量角器量得∠MON=______.(2)如图2,∠AOB=90°,将OC向下旋转,使∠BOC=30°,仍然分别作∠AOC,∠BOC 的平分线OM,ON,能否求出∠MON的度数,若能,求出其值,若不能,试说明理由.26.如图,A、O、B三点在同一直线上,OE,OF分别是∠BOC与∠AOC的平分线.求:(1)当∠BOC=30°时,∠EOF的度数;(2)当∠BOC=60°时,∠EOF等于多少度?(3)当∠BOC=n°时,∠EOF等于多少度?(4)观察图形特点,你能发现什么规律?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a的值,求出之和即可.【详解】关于x 的一元一次不等式组整理得:325x a x ≤⎧⎪+⎨≥⎪⎩,∵325x a x ≤⎧⎪+⎨≥⎪⎩恰有3个整数解,∴2015a+<≤,即:23a -<≤, 关于y 的分式方程3133y ay y y ++=--,整理得:6y a=, ∵3133y ay y y ++=--有正整数解且63a≠, ∴满足条件的整数a 的值为:1,3 ∴所有满足条件的整数a 的值之和是4, 故选A . 【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键.2.D解析:D 【分析】根据相反数的性质,倒数的性质以及不等式的性质来解决代数式的值即可; 【详解】当a 取互为相反数的值时,即取m 和-m ,则-m+m=0, 当a 取m 时,①222211=m a a m ++ ,当a 取-m 时,②()()222222111a m m a m m +=-+=+- , ①=②,故A 正确;B 、当a 取互为倒数的值时,即取m 和1m ,则11m m⨯= , 当a 取m 时,①222211=m a a m ++,当a 取1m时,②2222221111m 1m a m a m ⎛⎫+=+=+ ⎪⎝⎭⎛⎫⎪⎝⎭①=②,故B 正确;C 、可举例判断,由a >1得,取a=2,3(2<3)则22112=424++< 22113=939++ , 故C 正确;D 、可举例判断,由01a <<得,取a=12,13(12>13) 2222111111=4+=924391123⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭< , 故D 错误; 故选:D . 【点睛】本题考查了相反数的性质,倒数的性质,不等式的性质和代数式求值的知识,正确理解题意是解题的关键.3.B解析:B 【分析】根据公式列出12月与5月厨余垃圾分出率,根据12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍列方程即可. 【详解】5月份厨余垃圾分出率=660660x+,12月份厨余垃圾分出率=84007840010x + ,∴由题意得6608400147660840010x x⨯=++,故选:B . 【点睛】此题考查分式方程的实际应用,正确理解题意是解题的关键.4.C解析:C 【分析】根据分式的除法法则计算即可. 【详解】2222x y x y x y x y -+÷+-()()22x y x y x y x y x y +--=⨯++222()x y x y -=+ 【点睛】此题考查分式的除法法则:先把除式的分子分母颠倒位置,再化为最简分式即可.5.B解析:B 【分析】把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值. 【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项, ∴5-2a=0,∴a=52. 故选B . 【点睛】本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.6.D解析:D 【分析】把各式分解得到结果,即可作出判断. 【详解】解: A 、()224412-1-+=m m m ,原选项错误,不符合题意; B 、a 2+b 2不能分解,不符合题意;C 、x 2-16y 2=(x +4y )(x -4y ),原选项错误,不符合题意;D 、-16x 2+1=(1+4x )(1-4x ) ,原选项正确,符合题意; 故选:D . 【点睛】此题考查了运用公式法分解因式,熟练掌握因式分解的方法是解本题的关键.7.D解析:D 【分析】根据整式的乘法逐项判断即可求解. 【详解】解:A. (a +b )(a ﹣2b )=a 2﹣4b 2,原题计算错误,不合题意; B. (a ﹣12)2=a 2﹣a +14,原题计算错误,不合题意; C. ﹣2a (3a ﹣1)=﹣6a 2+2a ,原题计算错误,不合题意; D. (a ﹣2b )2=a 2﹣4ab +4b 2,计算正确,符合题意. 故选:D 【点睛】本题考查了单项式乘以多项式,平方差公式,完全平方式,熟练掌握单项式乘以多项式的法则、乘法公式是解题的关键.8.C解析:C 【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断. 【详解】A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误;C 、()32628y y =,故该项正确;D 、624x x x ÷=,故该项错误; 故选:C .【点睛】本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.9.C解析:C 【分析】根据三角形的外角性质以及等边三角形的判定和性质得出OA 1=B 1A 1=1,OA 2=B 2A 2=2,OA 3=B 3A 3=224=,OA 4=B 4A 4=328=,…进而得出答案. 【详解】 如图,∵△A 1B 1A 2是等边三角形, ∴A 1B 1=A 2B 1,∠2=60°, ∵∠MON=30°, ∴∠MON=∠1=30°, ∴OA 1=A 1B 1=1, ∴A 2B 1= A 1A 2=1, ∵△A 2B 2A 3是等边三角形, 同理可得:OA 2=B 2A 2=2, 同理;OA 3=B 3A 3=224=,OA 4=B 4A 4=328=,OA 5=B 5A 5=4216=,…,以此类推:所以OA 7=B 7A 7=6264=,故选:C .【点睛】本题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出OA 2=B 2A 2=2, OA 3=B 3A 3=224=,OA 4=B 4A 4=328=,…进而发现规律是解题的关键.10.D解析:D【分析】由AD 为△ABC 的高线,可得∠CBE+∠ABE+∠BAD=90°,Rt △ABE 是等腰直角三角形, 可得90ABE BAD DAE ∠+∠+∠=︒,从而可判断①;由等腰Rt ABE △可得AE BE =,结合AD BC =,∠DAE=∠CBE ,可判断②;由△ADE ≌△BCE ,可得,ADE BCE ∠=∠ 再证明∠BDE=∠AFE ,结合EBD DAE ∠=∠,AE BE =, 证明△AEF ≌△BED ,可判断③;由△ADE ≌△BCE ,可得,DE CE = 由△AEF ≌△BED ,,EF DE = 证明,EF CE =从而可判断④.【详解】解:∵AD 为△ABC 的高线,∴∠CBE+∠ABE+∠BAD=90°,∵Rt △ABE 是等腰直角三角形,∴90ABE BAD DAE ∠+∠+∠=︒,∴∠DAE=∠CBE ,即EBD DAE ∠=∠,故①正确;∵Rt △ABE 是以AB 为底等腰直角三角形,∴AE=BE ,在△ADE 和△BCE 中,AE BE DAE CBE AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BCE (SAS ); 故②正确;△ADE ≌△BCE ,,ADE BCE ∴∠=∠∵∠BDE=∠ADB+∠ADE ,∠AFE=∠ADC+∠ECD ,90ADB ADC ∠=∠=︒,∴∠BDE=∠AFE ,在△AEF 和△BED 中,FAE DBE AFE BDE AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BED (AAS ),∴AF BD =; 故③正确;∵△ADE ≌△BCE ,∴,DE CE =△AEF ≌△BED ,,,AEF BED EF DE SS ∴== ,EF CE ∴=∴,AEF ACE SS = ∴ ,BDE ACE S S =故④正确;综上:正确的有①②③④.故选:D .【点睛】本题考查的是三角形的内角和定理,三角形的中线与高的性质,三角形全等的判定与性质,等腰直角三角形的性质,掌握以上知识是解题的关键.11.A解析:A【分析】利用垂直得到90PMO PNO ∠=∠=,再由OM ON =,OP OP =即可根据HL 证明()HL ≌PMO PNO △△,由此得到答案.【详解】∵PM OA ⊥,PN OB ⊥,∴90PMO PNO ∠=∠=.∵OM ON =,OP OP =,∴()HL ≌PMO PNO △△, ∴POA POB ∠=∠,故选:A .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据题中的已知条件确定对应相等的边或角,由此利用以上五种方法中的任意一种证明两个三角形全等.12.A解析:A【分析】根据正十边形的外角和等于360︒,每一个外角等于多边形的外角和除以边数,即可得解.【详解】3601036︒÷=︒,∴正五边形的每个外角等于36︒,故选:A .【点睛】本题考查了正多边形的外角和、边数、外角度数之间的关系,熟记正多边形以上三者之间的关系是解题的关键.二、填空题13.【分析】先将分子和分母分解因式再计算乘法并将结果化为最简分式【详解】【点睛】此题考查分式的乘法计算法则:分子相乘作积的分子分母相乘作积的分母 解析:31x x -- 【分析】先将分子和分母分解因式,再计算乘法,并将结果化为最简分式.【详解】2222221369(1)(1)3(3)39211(3)(3)(1)11-+-++-+--⋅=⋅⋅=--+++--+-x x x x x x x x x x x x x x x x x x . 【点睛】此题考查分式的乘法计算法则:分子相乘作积的分子,分母相乘作积的分母.14.【分析】设慢车的速度为x 千米/小时则快车的速度为12x 千米/小时根据题意可得走过150千米快车比慢车少用小时列方程即可【详解】解:设慢车的速度为则快车的速度为根据题意得:故答案为:【点睛】本题考查了 解析:15011502 1.2x x-= 【分析】设慢车的速度为x 千米/小时,则快车的速度为1.2x 千米/小时,根据题意可得走过150千米,快车比慢车少用12小时,列方程即可. 【详解】解:设慢车的速度为xkm /h ,则快车的速度为1.2xkm /h , 根据题意得:1501150x 2 1.2x-=. 故答案为:1501150x 2 1.2x-=. 【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出合适的等量关系,列方程.15.1【分析】根据算术平方根的非负性及绝对值的非负性求出a=-2b=1代入计算即可【详解】∵且∴a+2=0b-1=0∴a=-2b=1∴故答案为:1【点睛】此题考查代数式的求值正确掌握算术平方根的非负性及解析:1【分析】根据算术平方根的非负性及绝对值的非负性求出a=-2,b=1,代入计算即可.【详解】∵|1|0-=b 0,|1|0b -≥,∴a+2=0,b-1=0,∴a=-2,b=1,∴202020201()(21)a b +-+==,故答案为:1.【点睛】此题考查代数式的求值,正确掌握算术平方根的非负性及绝对值的非负性求出a=-2,b=1是解题的关键.16.B ;【分析】(1)先求出图1中剩余部分的面积为a2-b2再求出图2中图形的面积即可列得等式;(2)利用平方差公式分解因式后代入求值即可【详解】(1)图1中边长为a 的正方形的面积为:a2边长为b 的正方解析:B ; 94【分析】(1)先求出图1中剩余部分的面积为a 2-b 2,再求出图2中图形的面积即可列得等式; (2)利用平方差公式分解因式后代入求值即可.【详解】(1)图1中,边长为a 的正方形的面积为:a 2,边长为b 的正方形的面积为:b 2,∴图1中剩余部分面积为:a 2-b 2,图2中长方形的长为:a+b ,长方形的宽为:a-b ,∴图2长方形的面积为:(a+b )(a-b ),故选:B ;(2)∵46x y +=,45x y -=,∴221664x y -+=(4)(4)64x y x y +-+=6564⨯+=94,故答案为:94.【点睛】此题考查几何图形中平方差公式的应用,利用平方差公式进行计算,掌握平方差计算公式是解题的关键.17.【分析】如图延长交于证明可得再求解再证明:可得从而可得答案【详解】解:如图延长交于AD 平分∠BAC 故答案为:【点睛】本题考查的是三角形的内角和定理三角形的外角的性质角平分线的定义等腰三角形的判定与性 解析:4.【分析】如图,延长BE ,交AC 于G , 证明,AGB ABG ∠=∠ 可得,AG AB = ,GE BE = 再求解CG ,再证明:C CGB ∠=∠, 可得,BG CG = 从而可得答案. 【详解】解:如图,延长BE ,交AC 于G ,AD 平分∠BAC ,,GAE BAE ∴∠=∠,BE AD ⊥90AEG AEB ∴∠=∠=︒,,AGB ABG ∴∠=∠6AG AB ∴==,,GE BE = 14AC =,8CG ∴=,,AGB C CBG ∠=∠+∠2,ABC ABG CBG AGB CBG C CBG ∴∠=∠+∠=∠+∠=∠+∠3,ABC C ∠=∠32,C C CBG ∴∠=∠+∠,C CBG ∴∠=∠8BG CG ∴==,1 4.2BE BG ∴== 故答案为:4.【点睛】本题考查的是三角形的内角和定理,三角形的外角的性质,角平分线的定义,等腰三角形的判定与性质,掌握以上知识是解题的关键.18.①③④【分析】根据题意可得点O是三边中垂线的交点从而结合等边三角形的性质以及中垂线的性质进行逐项分析即可【详解】由题可得点O为等边三角形ABC三边中垂线的交点即:MN⊥ABHL⊥AC∴根据等边三角形解析:①③④【分析】根据题意可得点O是三边中垂线的交点,从而结合等边三角形的性质以及中垂线的性质进行逐项分析即可.【详解】由题可得点O为等边三角形ABC三边中垂线的交点,即:MN⊥AB,HL⊥AC,∴根据等边三角形的性质可得:∠DAO=∠EAO=30°,AD=AE,∴△ADO≌△AEO,∴OD=OE,又根据中垂线的性质得∠EAO=∠ECO=30°,∴在Rt△COE中,OC=2OE,∴OC=2OD,故①正确;在Rt△ABE中,显然AB=2AE,而OA>AE,∴AB≠2OA,故②错误;根据中垂线性质可得OA=OB,OA=OC,∴OA=OB=OC,故③正确;在四边形ADOE中,∠ADO=∠AEO=90°,∠DAE=60°,∴∠DOE=360°-90°×2-60°=120°,故④正确;故答案为:①③④.【点睛】本题考查等边三角形的性质以及垂直平分线的画法和性质,以及全等三角形判定与性质,理解题意中所作图形的本质是解题关键.19.AB=AD(答案不唯一)【分析】根据题目中条件和图形可以得到∠1=∠2AC=AC然后即可得到使得△ABC≌△ADC需要添加的条件本题得以解决【详解】由已知可得∠1=∠2AC=AC∴若添加条件AB=A解析:AB=AD(答案不唯一)【分析】根据题目中条件和图形,可以得到∠1=∠2,AC=AC,然后即可得到使得△ABC≌△ADC 需要添加的条件,本题得以解决.【详解】由已知可得,∠1=∠2,AC=AC,∴若添加条件AB=AD,则△ABC≌△ADC(SAS);若添加条件∠ACB =∠ACD ,则△ABC ≌△ADC (ASA );若添加条件∠ABC =∠ADC ,则△ABC ≌△ADC (AAS );故答案为:AB =AD (答案不唯一).【点睛】本题考查全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答. 20.12【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可【详解】∵F 是CE 的中点∴∵E 是BD 的中点∴∴∴△ABC 的面积=故答案为:12【点睛】本题考查了三角形的面积主要利用了三角形的中线解析:12【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】∵ F 是CE 的中点,23AEF S cm ∆=∴ 226ACE AEF S S cm ∆∆== ,∵ E 是BD 的中点,∴ ADE ABE S S ∆∆= ,CDE BCE S S ∆∆= , ∴12ACE ABC S S ∆∆= , ∴△ABC 的面积=212cm .故答案为:12.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.三、解答题21.(1)()0,4A ;(2)见解析;(3)DN AM -的值不变,其值为12.【分析】(1)解分式方程求出y 即可知道A 点坐标;(2)证明△AOP ≌△ABQ ,进而得到∠ABQ=∠AOP=90°,再由∠AOB=∠ABO=60°得到∠BOC=∠OCB=30°,由此可以证明CO=CB ;(3)证明△ABN ≌△OBM ,得到OM AN =,60BAN BOM ∠=∠=︒,进而求出∠DAO=60°,在Rt △DAO 中求出DA=2AO=8,最后DN-AM=(DA+AN)-(MO-AO)= (DA+AN)-(AN-AO)=8+4=12.【详解】解:(1)∵y 是方程3132221y y +=--的解, 方程两边同时乘以最简公分母2(1)-y :解得4y =经检验4y =是原方程的解∴点()0,4A .(2)∵APQ 、ABO 都是等边三角形∴AO AB =,AP AQ =,60BAO PAQ ∠=∠=︒,∴PAO BAQ ∠=∠,∴()≌PAO QAB SAS △△,∴90QBA POA ∠=∠=︒, ∵ABO 是等边三角形,∴60AOB ABO ∠=∠=︒,∴30COB CBO ∠=∠=︒∴CO BC =.(3)其值不会变化,且12DN AM -=,理由如下:∵AOB ∆、MBN ∆都是等边三角形,∴4BO AB AO ===,MB BN =,60BAO ABO MBN ∠=∠=∠=︒,∴OBM ABN ∠=∠,∴()ABN OBM SAS ≌△△, ∴OM AN =,60BAN BOM ∠=∠=︒,∴4AN OM OA AM AM ==+=+,∵18060OAD OAB BAN ∠=︒-∠-∠=︒,∴30ADO ∠=︒∴28AD AO ==∴4812DN AM AN AD AM AM AM -=+-=++-=即DN AM -的值不变,其值为12. 【点睛】本题是三角形综合题,考查了分式方程的解法,等边三角形性质,全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力.22.(155;(2)1x =或7x =-【分析】(1)先进行绝对值、开方、0指数运算,再相加即可;(1)先开方,再解一元一次方程即可.【详解】解:(1))()0215510π+-515155=++=(2))(2316x +=开方得,34x +=±, 343-4x x +=+=或,解得,1x =或7x =-.【点睛】本题考查了绝对值、平方根和0指数,掌握基本知识点,熟练运用绝对值法则、0指数的意义和开平方运算是解题关键.23.(1)2(1)(1)x x +-;(2)2(2)-x x y .【分析】(1)首先提公因式2,再利用平方差公式进行分解即可;(2)首先提公因式x ,再利用完全平方公式进行分解即可.【详解】(1)原式()221x =- 2(1)(1)x x =+-.(2)原式()2244x x xy y =-+2(2)x x y =-.【点睛】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解. 24.(1)作图见解析;(2)(4,4)【分析】(1)作AB 的垂轴平分线和∠xOy 的角平分线,它们的交点即为P 点;(2)由于点P 在AB 的垂轴平分线上,则P 点的纵坐标为4,再利用点P 在第一象限的角平分线上,则点P 的横纵坐标相同,从而得到P 点坐标.【详解】(1)如图,点P 为所作;(2)P 点坐标为(4,4).故答案为(4,4).【点睛】本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.25.(1)作图见解析,45;(2)能,45【分析】(1)以点O 为圆心,任意长为半径,画圆弧,并分别交OA 、OC 于点H 、点G ;再分别以点H 、点G 为圆心,以大于12HG 的长度为半径画圆弧并相较于点P ,过点P 作射线OM 即为∠AOC 的平分线;同理得∠BOC 的平分线ON ;通过量角器测量即可得到∠MON ; (2)根据题意,得114522COM AOC BOC ∠=∠=+∠,12CON BOC ∠=∠,结合MON COM CON ∠=∠-∠,经计算即可得到答案.【详解】(1)作图如下用量角器量得:∠MON =45故答案为:45;(2)∵∠AOC ,∠BOC 的平分线OM ,ON ,且∠AOB =90° ∴()11145222COM AOC AOB BOC BOC ∠=∠=∠+∠=+∠ 12CON BOC ∠=∠ ∴11454522MON COM CON BOC BOC ∠=∠-∠=+∠-∠=. 【点睛】本题考查了角平分线、射线的知识;解题的关键是熟练掌握角平分线、角的运算的性质,从而完成求解.26.(1)∠EOF=90°;(2)∠EOF=90°;(3)∠EOF=90°;(4)∠EOF 的度数与∠BOC 的大小无关,互为邻补角的两个角的角平分线所组成的角是一个直角.【分析】根据∠BOC 求得∠AOC ,再由∠BOC 和∠AOC 的角平分线,即可求得;【详解】解:(1)∵∠BOC=30°,∴∠AOC=180°-30°=150°,∵OE平分∠BOC,OF平分∠AOC,∴∠EOC=12∠BOC=15°,∠COF=12∠COA=75°,∴∠EOF=75°+15°=90°;(2)∵∠BOC=60°,∴∠AOC=180°-60°=120°,∵OE平分∠BOC,OF平分∠AOC,∴∠EOC=12∠BOC=30°,∠COF=12∠COA=60°,∴∠EOF=60°+30°=90°;(3)∵∠BOC=n,∴∠AOC=180°-n,OE平分∠BOC,OF平分∠AOC,∴∠EOC=12∠BOC=90°-12n,∠COF=12∠COA=12n,∴∠EOF=90°-12n+12n=90°;(4)∠EOF的度数与∠BOC的大小无关,互为邻补角的两个角的角平分线所组成的角是一个直角.【点睛】本题考查角平分线和规律的总结与归纳,掌握角平分线的性质是解题的关键.。
人教版八年级数学上册期末综合复习测试题(含答案)
八年级数学上册期末综合复习测试题(含答案)一、选择题(本大题10小题,每小题3分,共30分) 1.下列图形中具有稳定性的是( ) A .正方形 B .长方形 C .直角三角形 D .平行四边形 2.计算:a 6÷a 3=( ) A .a 2 B .a 3 C .1 D .0 3.点(-3,-2)关于x 轴对称的点是( )A .(3,-2)B .(-3,2)C .(3,2)D .(-2,-3) 4.若分式x +3x -2的值为0,则x 的值为( ) A .x =-3 B .x =2 C .x ≠-3 D .x ≠25.如图1,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,再添加一个条件,仍不能判定△ABC ≌△BAD 的是( )图1A .AC =BDB .AD =BC C .∠ABD =∠BAC D .∠CAD =∠DBC 6.若x 2+2mx +9是一个完全平方式,则m 的值是( ) A .6 B .±6 C .3 D .±3 7.如图2,在△ABC 中,D ,E 分别是边BC ,AB 的中点.若△ABC 的面积是8,则△BDE 的面积是( )图2A.2 B .3 C .4 D .5 8.已知2m +3n =3,则9m ·27n 的值是( ) A .9 B .18 C .27 D .819.某生产小组计划生产3 000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务.设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( )A .3 000x -3 000x +2=5 B .3 0002x -3 000x =5C .3 000x +2-3 000x =5D .3 000x -3 0002x=510.如图3,在平面直角坐标系中,点A ,B 分别在y 轴、x 轴上,∠ABO =60°,在坐标轴上找一点P ,使得△P AB 是等腰三角形,则符合条件的点P 的个数是( )图3A .5个B .6个C .7个D .8个 二、填空题(本大题7小题,每小题4分,共28分)11.人体淋巴细胞的直径大约是0.000 009米,将0.000 009用科学记数法表示为__________.12.如果等腰三角形的一个内角是80°,那么它的顶角的度数是__________.13.当a =4b 时,a 2+b 2ab的值是__________.14.如图4,在△ABC 中,分别以点A 和点C 为圆心,大于12 AC 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交BC ,AC 于点D ,E ,若△ABC 的周长为23 cm ,△ABD 的周长为13 cm ,则AE 的长为__________cm.图415.若x +y =6,xy =-3,则2x 2y +2xy 2=__________.16.如图5,在△ABC 中,AB =BC ,BE 平分∠ABC ,AD 为BC 边上的高,且AD =BD ,则∠DAC =__________°.图517.如图6,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点, P 是AD 上一动点,当PC 与PE 的和最小时,∠ACP 的度数是__________.图6三、解答题(一)(本大题3小题,每小题6分,共18分)18.解方程:4x 2-9 -x3-x =1.19.先化简,再求值:(-x -y )2-(-y +x )(x +y )+2xy ,其中x =-2,y =12.20.如图7,在△ABC 中,∠BAC =60°,∠C =80°,AD 是△ABC 的角平分线,E 是AC 上一点,且∠ADE =12∠B ,求∠CDE 的度数.图7四、解答题(二)(本大题3小题,每小题8分,共24分)21.在平面直角坐标系中,△ABC 的三个顶点的位置如图8所示.(1)请画出△ABC 关于y 轴对称的△A ′B ′C ′;(其中A ′,B ′,C ′分别是A ,B ,C 的对应点,不写画法)(2)请直接写出点A ′,B ′,C ′的坐标; (3)求出△A ′B ′C ′的面积.图822.如图9,点B ,C ,E ,F 在同一条直线上,点A ,D 在BC 的异侧,AB =CD ,BF =CE ,∠B =∠C .(1)求证:AE ∥DF ; (2)若∠A +∠D =144°,∠C =30°,求∠AEC 的度数.图923.随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8 000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.(1)使用智能分拣设备后,每人每小时可分拣快件多少件?(2)已知某快递中转站平均每天需要分拣10万件快件,每天工作时间为8小时,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作?五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图10①,把一个长为2m 、宽为2n 的矩形,沿图中虚线用剪刀均分成四块小矩形,然后拼成一个如图10②所示的正方形.(1)请用两种不同的方法求图10②中阴影部分的面积.(直接用含m ,n 的式子表示) 方法1:____________________________; 方法2:____________________________.(2)根据(1)中结论,下列三个式子(m +n )2,(m -n )2,mn 之间的等量关系为____________________.(3)根据(2)中的等量关系,解决如下问题:已知x +1x =3,请求出x -1x的值.图1025.(1)【问题发现】如图11①,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一条直线上,连接BE ,求∠AEB 的度数.(2)【拓展探究】如图11②,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一条直线上,CM 为△DCE 中DE 边上的高,连接BE .请求出∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.图11答案1.C 2.B 3.B 4.A 5.D 6.D 7.A 8.C 9.D 10.B11.9×10-6 12.80°或20° 13.174 14.5 15.-36 16.22.5 17.30°18.解:方程两边乘(x -3)(x +3),得4+x (x +3)=x 2-9.解得x =-133.检验:当x =-133 时,(x -3)(x +3)≠0.所以,原分式方程的解是x =-133.19.解:原式=x 2+y 2+2xy -(x 2-y 2)+2xy =x 2+y 2+2xy -x 2+y 2+2xy =2y 2+4xy . 当x =-2,y =12 时,原式=2×⎝⎛⎭⎫12 2 +4×(-2)×12 =-72 .20.解:在△ABC 中,∠BAC =60°,∠C =80°,∴∠B =180°-60°-80°=40°. ∵AD 平分∠BAC ,∴∠BAD =12 ∠BAC =30°.∴∠ADC =∠B +∠BAD =70°.∵∠ADE =12 ∠B =20°,∴∠CDE =∠ADC -∠ADE =70°-20°=50°.21.解:(1)如答图1,△A ′B ′C ′即为所求.答图1(2)A ′(3,3),B ′(-1,-3),C ′(0,4).(3)由图可得S △A ′B ′C ′=4×7-12 ×1×7-12 ×3×1-12 ×4×6=11.22.(1)证明:∵BF =CE ,∴BF +EF =CE +EF ,即BE =CF . 在△ABE 和△DCF 中,⎩⎪⎨⎪⎧AB =DC ,∠B =∠C ,BE =CF ,∴△ABE ≌△DCF (SAS).∴∠AEB =∠DFC .∴AE ∥DF .(2)解:∵△ABE ≌△DCF ,∴∠A =∠D ,∠B =∠C =30°. ∵∠A +∠D =144°,∴∠A =72°. ∴∠AEC =∠A +∠B =72°+30°=102°.23.解:(1)设使用传统分拣方式,每人每小时可分拣快件x 件,则使用智能分拣设备后,每人每小时可分拣快件25x 件.依题意,得 8 00020x -8 0005×25x=4.解得x =84.经检验,x =84是原方程的解,且符合题意.∴25x =2 100.答:使用智能分拣设备后,每人每小时可分拣快件2 100件. (2)100 000÷8÷2 100=52021 (名),5+1=6(名).答:每天只需要安排6名工人就可以完成分拣工作. 24.解:(1)(m +n )2-4mn (m -n )2. (2)(m -n )2=(m +n )2-4mn .(3)∵x +1x =3,∴⎝⎛⎭⎫x -1x 2 =⎝⎛⎭⎫x +1x 2 -4x ·1x =9-4=5.∴x -1x=±5 .25.解:(1)∵△ACB 和△DCE 均为等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =∠CDE =∠CED =60°. ∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴∠ADC =∠BEC .∵点A ,D ,E 在同一条直线上,∴∠ADC =180°-∠CDE =120°. ∴∠BEC =120°.∴∠AEB =∠BEC -∠CED =60°. (2)∠AEB =90°,AE =BE +2CM .理由:∵△ACB 和△DCE 均为等腰直角三角形, ∴CA =CB ,CD =CE ,∠ACB =∠DCE =90°.∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧CA =CB ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴AD =BE ,∠ADC =∠BEC . ∵△DCE 为等腰直角三角形, ∴∠CDE =∠CED =45°.∵点A ,D ,E 在同一条直线上, ∴∠ADC =180°-∠CDE =135°. ∴∠BEC =135°.∴∠AEB =∠BEC -∠CED =90°. ∵CD =CE ,CM ⊥DE , ∴DM =ME ,∠DCM =90°-∠CDE =45°. ∴∠DCM =∠CDE . ∴DM =ME =CM .∴AE =AD +DE =BE +2CM。
人教版初二数学上学期期末复习测试卷(6)含答案(精美版)
初二数学上学期期末复习测试卷(6)(时间:100分钟 满分:100分)一、选择题(每小题2分,共16分)1.下列各数中是无理数的是 ( )A .3B .227C D 2.点(3,2)关于x 轴的对称点为 ( )A .(3,-2)B .(-3,2)C .(-3,一2)D .(2,-3)3.下列一次函数中,y 的值随着x 值的增大而减小的是 ( )A .y =xB .y =x -1C .y =x +1D .y =-x 4.0.49的算术平方根的相反数是 ( )A .0.7B .-0.7C .±0.7D .05.如图,△ABC 中,∠A =90°,AB =AC ,BD 平分∠ABE ,DE ⊥BC ,若△DEC 的周长是10 cm ,则BC =( )A .8 cmB .10 cmC .11 cmD .12 cm6.在同一坐标系中,对于以下几个函数:①y =-x -1;②y =x +1;③y =-x +1;④y =-2(x +1)的图像有四种说法:(1)过点(-1,0)的是①和③;(2)②和④的交点在),轴上;(3)互相平行的是①和③;(4)关于x 轴对称的是②和③.那么正确的说法有 ( )A .1个B .2个C .3个D .4个7.如图,给出下列四组条件:①AB =DE ,BC =EF ,AC =DF ;②AB =DE ,∠B =∠E ,BC =EF ;③∠B =∠E ,BC =EF ,∠C =∠F ;④AB =DE ,AC =DF ,∠B =∠E .其中,能使△ABC ≌△DEF 的条件共有 ( )A .1组B .2组C .3组D .4组8.如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD 的边上有一动点P ,沿A →B →C →D →A 运动一周,则点P 的纵坐标y 与P 所走过的路程S 之间的函数关系用图像表示大致是 ( )二、填空题(每小题2分,共20分) 9.科学家发现某病毒的长度约为1.60×10-2 mm ,这个近似数精确到_______.10.通过找出这组图形符号中所蕴含的内在规律,在空白处的横线上填上恰当的图形.11.若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为_______.12.如图,在△ABC中,BC=6,AD是BC边上的高,D为垂足,将△ABC折叠使点A与点D重合,则折痕EF的长为_______.13.如图,在△ABC中,AC=8,AC=6,∠BAC=90°,AD是BC边上的高,D为垂足,将△ABC折叠使点A与点D重合,则折痕EF的长为_______.14.已知x,y为两个连续的整数,且,则5x+y的平方根为_______.15.有一个最多能称10 kg的弹簧秤,称重发现,弹簧的长度与物体重量满足一定的关系,如下表,那么,在弹簧秤的称重范围内,弹簧最长为_______cm.16.如图,折叠矩形纸片ABCD,先折出折痕BD,再折叠使AD边与对角线BD 重合,得折痕DG,若AB=2,BC=1,则AG的长是_______.17.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于( )A.2 B.8 C.D.18.如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.若在y 轴上存在点P,且满足FE=FP,则P点坐标为_______.三、解答题:(共64分)19.(6分)(1)(2)解方程:(2x-1)2-16=0.20.(7分)如图,已知∠AOB.(1)利用直尺和圆规在图①中画图:在OA,OB上分别截取OC,OD,并且使OC =OD,连接CD,过点D作OP⊥CD垂足为P;(2)根据(1)的作图,试说明∠AOP=∠BOP;(3)运用你所学的数学知识,在图②中再设计一种方法,作出∠AOB的平分线.(上述(1)的方法除外,不必说明理由,只在图中保留作图痕迹)21.(8分)如图,在平面直角坐标系xOy 中,直线AB 与x ,y 轴分别交于点A(83,0),B(0,2).(1)求直线AB 的解析式;(2)求点O 到直线AB 的距离;(3)求点M(-1,-1)到直线AB 的距离.22.(8分)如图,在△ABC 中,AB =AC ,点D ,E 分别在AB ,AC 上,BE ,CD 相交于点O .(1)若BD =CE ,试说明OB =OC ;(2)若BC =10.BC 边上的中线AM =12,试求AC 的长.23.(8分)如图,直线l 1:y =3x +1与直线l 2:y =mx +n 相交于点P(1,b).(1)求b 的值;(2)不解关于x ,y 的方程组31y x y mx n =+⎧⎨=+⎩请你直接写出它的解; (3)直线l 3:y =nx +m 是否也经过点P?请说明理由.24.(9分)如图,在△ABC 中,AB =AC =2,∠B =∠C =40°,点D 在线段BC 上运动(D 不与B ,C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于点E .(1)当∠BDA =115°时,∠EDC =_______°,∠DEC =_______°;点D 从B 向C 运动时,∠BDA 逐渐变_______(填“大”或“小”);(2)当DC 等于多少时,△ABD ≌△DCE ,请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数;若不可以,请说明理由.25.(9分)小伟和小剑沿同一条路同时从学校出发到图书馆查阅资料,学校与图书馆之间的路程是4 km,小伟骑自行车,小剑步行,当小伟从原路回到学校时,小剑刚好到达图书馆,图中折线O-A-B-C和线段OD分别表示两人离学校的路程y(km)与所经过的时间x( min)之间的函数关系,请根据图像回答下列问题:(1)小伟在图书馆查阅资料的时间为_______min,小伟返回学校的速度为_______km/min;(2)请你求出小剑离开学校的路程y(km)与所经过的时间x(min)之间的函数关系;(3)当小伟与小剑迎面相遇时,他们离学校的路程是多少千米?26.(9分)在矩形纸片ABCD中,AB=6,BC=8.(1)将矩形纸片沿BD折叠,使点A落在点E处(如图①所示),连接DE,DE 和BC相交于点F,试说明△BDF为等腰三角形,并求BF的长;(2)将矩形纸片折叠,使B与D重合(如图②所示),求折痕GH的长.参考答案1.D 2.A 3.D 4.B 5.B 6.A 7.C 8.D 9.万分位10.略,正确即可11.50°或80°12.3 13.5 14.±5 15.13.5 1617.D 18.(0,4)或(0,0)19.(1)52.(2)x1=52,x2=-3220.画图略,可以依据等腰三角形三线合一证明,画图可以依据全等设计.21.(1)y=-34x+2 (2)1.6 (3)322.(1)略(2)13.23.(1)b=4.(2)14xy=⎧⎨=⎩(3)直线l3经过点P.理由略.24.(1)25 115 小(2)当DC=2时,△ABD≌△DCE.理由略.(3)110°或80°25.(1)15415(2)y=445x(0≤x≤45).(3)3 km.26.(1)说明略,BF的长为254(2)152。
人教版初二数学上学期期末复习测试卷(1)含答案
初二数学上学期期末复习测试卷(1)(满分:100分时间:90分钟)一、选择题(每题2分,共16分)1.下列四个图形中轴对称图形的个数是( )A.1 B.2 C.3 D.42.如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△ACD的条件是( )A.AB=AC B.∠BAC=90°C.BD=AC D.∠B=45°+的结果为3.实数a,b在数轴上的位置如图所示,若a>b a b( )A.2a+b B.-2a+b C.b D.2a-b4.用四舍五入法按要求对0.05049分别取近似值,其中错误的是( ) A.0.1(精确到0.1)B.0.05(精确到千分位)C.0.05(精确到百分位)D.0.050(精确到0.001)5.卞列各式化简结果为无理数的是( )A B.1)0C D6.如图,在△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D.若点E为AC的中点,连接DE,则△CDE的周长为( )A.20 B.12 C.14 D.137.周一的升旗仪式上,同学们看到匀速上升的旗子,下面能反映其高度与时间关系的大致图像是( )8.已知两个变量和y,它们之间的3组对应值如下表所示:则y与之间的函数关系式可能是A.y=B.y=2+1 C.y=2++1 D.3 yx =二、填空题(每题2分,共20分)9.在平面直角坐标系中,点(1,2)位于第_______象限.10.若一个汽车牌在水中的倒影为,则该车牌照号码为_______.11.在平面直角坐标系中,点(-3,4)关于y轴对称的点的坐标是_______.12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D.若CD =4,则点D到AB的距离为_______.13.如图,已知△ABC是等边三角形,点B,C,D,E在同一直线上.若CG=CD,DF=DE,则∠E=_______.14.一次函数y=-+1的图像不经过第_______象限.15.已知(2a+1)20,则-a2+b2004=_______.16.在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形的边长为7cm,则正方形a,b,c,d的面积之和是_______cm2.17.如图,已知函数y=-2和y=-2+1的图像交于点P,根据图像可得方程组221x y x y -=⎧⎨+=⎩的解是_______.18.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用了45min ,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60m/h ,两车的距离y(m)与货车行驶的时间(h)之间的函数图像如图所示.现有以下4个结论: ①快递车从甲地到乙地的速度为100m/h ; ②甲、乙两地之间的距离为120m ; ③图中点B 的坐标为(334,75); ④快递车从乙地返回时的速度为90m/h . 其中正确的是_______.(填序号)三、解答题(共64分)19.(本题6分)计算下列各题.(1)()01232π--+--(2)12-.20.(本题5分)如图,在△ABC 中,∠BAC 的平分线与BC 的垂直平分线PQ 相交于点P ,过点P 分别作PN ⊥LAB ,PM ⊥AC ,垂足分别为点N ,M .求证:BN =CM .21.(本题6分)如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离B0=5m.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4m吗?为什么?22.(本题5分)如图所示是一个正比例函数与一个一次函数的图像,它们交于点A(4,3),一次函数的图像与y轴交于点B,且OA=OB,求这两个函数的解析式.23.(本题6分)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE 并延长交CB的延长线于点F,点G在边BC上,且么GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系,并说明理由.24.(本题5分)小明根据某个一次函数的关系式填写了下面这张表.其中有一格不慎被墨迹遮住了,想想看,该空格里原填的数是多少?说明你的理由.25.(本题8分)一农民带上若千千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出土豆的千克数与他手中持有的钱数(含备用零钱)韵关系如图所示,结合图像回答下列问题:(1)农民自带的零钱是多少?(2)试求降价前y与之间的函数关系式;(3)由表达式你能求出降价前每千克土豆的价格是多少吗?(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?26.(本题9分)已知点P是直角三角形ABC斜边AB上一动点(不与A、B重合),分别过点A,B向直线CP作垂线,垂足分别为点E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是_______,QE与QF 的数量关系是_______.(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,(2)中的结论是否成立?请画出图形并给予证明.27.(本题9分)在社会主义新农村建设电,菜乡镇决定对A,B两材之间的公路进行改造,并由甲工程队从A村向B村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工,乙工程队施工几天后因另有任务提前离开,余下的任务由甲工队单独完成,直到公路修通.下图是甲、乙两个工程队修公路的长度y(米)与施工时间(天)之间的函数关系图像,请根据图像所提供的信息解答下列问题:(1)乙工程队每天修公路多少米?(2)分别求、出甲、乙两工程队修公路的长度y(米)与施工时间(天)之间的函数关系式.(3)若该工程由甲、乙两工程队一直合作施工,需几天完成?参考答案一、选择题1.C2.A3.C4.B5.C6.C7.D8.B二、填空题9.一10.M17936 11.(3,4) 12.4 13.15°14.三15.3416.4917.11 xy=⎧⎨=-⎩18.①③④三、解答题19.(1)-12(2)原式=120.略21.(1)12m(2)4m22.y=2-523.(1)略(2)EG⊥DF24.-2.25.(1)5元(2)y=0.5+5 (3)0.5元/千克(4)45千克26.(1)AE//BF,QE=QF (2)QE=QF.(3)(2)中结论仍然成立.27.(1)120米(2)y甲=60 (3)9天完成。
人教版初二第一学期数学期末复习测试卷 (一)及答案优质版
2019—2020学年初二数学期末复习测试卷 (一)(满分:100分时间:120分钟)一、选择题 (每题2分,共20分)1.在以下绿色食品、回收、节能、节水四个标志中,轴对称图形是 ( )2.用直尺和圆规作一个角的平分线的示意图如图所示,下面能说明∠AOC=∠BOC的依据是 ( ) A.SSS B.ASAC.AAS D.角平分线上的点到角两边的距离相等3.边长为m的正方形的面积是7.如图,表示m的点在数轴上表示时,在哪两个字母之间 ( ) A.C与D B.A与B C.A与C D.B与C4.若m是任意实数,则点P (m-4,m+1) 一定不在 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限5.下列四幅图像近似刻画了两个变量之间的关系,图像与下列四种情景对应排序正确的是 ( )①一辆汽车在公路上匀速行驶 (汽车行驶的路程与时间的关系);②向锥形瓶中匀速注水 (水面的高度与注水时间的关系);③将常温下的温度计插入一杯热水中 (温度计的读数与时间的关系);④一杯越来越凉的水 (水温与时间的关系).A.①②④③ B.③④②① C.①④②③ D.③②④①6.如图,直线y=-x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,-1),则关于x的不等式-x+2≥ax+b的解集为( )A.x≥-1 B.x≥3C.x≤-1 D.x≤37.若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为( )A.7 B.6 C.5 D.48.在平面直角坐标系中,点P (-3,2) 关于直线y=x对称的点的坐标是 ( )A .(-3,-2)B .(3,2)C .(2,-3)D .(3,-2)9.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为1S 、2S 、3S ;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为4S 、5S 、6S 。
其中161=S ,452=S ,115=S ,146=S ,则=+43S SA .86B .64C .54D .4810.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )A .B .2C .D .10﹣5二、填空题 (每题2分,共20分)11.如图,已知△ABE ≌△ACF ,∠E=∠F =90°,∠CMD =70°,则∠2= .第11题 第13题12.某市2015年财政收入取得重大突破,地方公共财政收入用四舍五入取近似值后为27.39亿元,这个数值精确到了 位.13.如图,在正方形ODBC 中,若OC=1,OA=OB ,则数轴上点A 表示的数是 .14.如图,把一张矩形纸片ABCD 沿EF 折叠,点C ,D 分别落在点C ',D'的位置上,EC'交AD 于点G .如果∠EFG =56°,那么∠BEG = .第14题 第15题15.如图,在△ACB 中,∠ACB =90°,AC=BC ,点C 的坐标为(-2,0),若点A 的坐标为(-6,3),则点B 的坐标是 .16.如图,在△ABC 中,AB=AD=DC ,若∠BAD =20°,则∠C = .17=a +b ,其中a 是整数,0<b <l ,则(a -b )(4)= .18.在平面直角坐标系中,若将点P (-1,4) 向右平移2个单位长度后,再向下平移3个单位长度,得到点P 1,则点P 1的坐标为 .第16题 第19题 第20题19.如图,射线OA ,BA 分别表示甲、乙两人骑自行车运动过程的一次函数的图像,图中s ,t 分别表示行驶距离和时间,则这两人骑自行车的速度相差 km /h .20.如图,在△ABC 中,AB=AC ,D ,E 是△ABC 内的两点,AE 是平分∠BAC ,∠D =∠DBC =60°,若 BD =5cm ,DE =3 cm ,则BC 的长是 cm .三、解答题 (共60分)21.(本题4分) 计算:(-1)2-7-(2016-π)0+113-⎛⎫ ⎪⎝⎭.22.(本题4分) 如图,木工师傅做一个“人”字形屋梁,上弦AB=AC =4m ,跨度BC 为6m .现有一根木料打算做中柱AD (AD 是△ABC 的中线),请你通过计算求出中柱AD 的长度.(只考虑长度,不计损耗)23.(本题6分) 如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫作格点,以格点为顶点分别按下列要求画图形.(1) 在图1中,画一个三角形,使它的三边长都是有理数;(2) 在图2中,画一个直角三角形,使它们的三边长都是无理数;(3) 在图3中,画一个正方形,使它的面积是10.24.(本题6分) 如图,点A ,C ,B ,D 在同一条直线上,BE ∥DF ,∠A=∠F ,AB=FD .求证:AE=FC .25.(本题6分) 如图,在三角形纸片ABC 中,∠C=90°,AC =6,折叠该纸片使点C 落在AB 边上的D点处,折痕BE 与AC 交于点E ,若AD=BD ,求折痕BE 的长.26.(本题6分) 如图,在平面直角坐标系中,已知点A (0,3),B (2,4),C (4,0),D (2,-3),E (0,-4).写出点D ,C ,B 关于y 轴的对称点F ,G ,H 的坐标,并画出点F ,G ,H .顺次而平滑地连接A ,B ,C ,D ,E ,F ,G ,H ,A 各点.观察你画出的图形说明它具有怎样的性质并说明它像我们熟知的什么图形.27.(本题8分) 如图,直线y =-43x +8与x 轴、y 轴分别相交于点A ,B ,设M 是OB 上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B'处.求:(1) 点B'的坐标;(2) 直线AM所对应的函数关系式.28.(本题10分) 国家推行“节能减排,低碳经济”政策后,某企业推出一种“CNG”的改烧汽油为天然气的装置,每辆车的改装费为6元.据市场调查知:每辆车改装前、后的燃料费 (含改装费) y0,y1 (元) 与正常营运时间x(天) 之间分别满足关系式y0=ax,y1=b+50x,函数图像如图所示. (1) 每辆车改装前每天的燃料费a= 元,每辆车的改装费b= 元,正常营运天后,就可以从节省的燃料费中收回改装成本;(2) 某出租汽车公司一次性改装了100辆出租车,那么正常营运多少天后共节省燃料费40万元?29.(本题10分) 某文具商店销售功能相同的A,B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1) 求这两种品牌计算器的价格.(2) 学校毕业前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌的计算器按原价的八折销售,若购买B品牌的计算器5个以上,超出部分按原价的七折销售.设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1,y2关于x的函数关系式.(3) 小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算? 请说明理由.参考答案一、选择题1.A 2.A 3.A 4.D 5.D 6.D 7.C 8.C [提示:先求出经过点P且与y =x 垂直的直线的解析式,然后求出两条直线的交点M (-12,-12),最后求点P 关于点M 的对称点,即为所求点的坐标] 9.C 10.B二、填空题11.20° 12.百万 13.14.68° 15.(1,4) 16.40° 17.11 18.(1,1) 19.4 20.8 [提示:延长BD 交AE 于点F ,连接CF ,延长DE 交BC 于点G .∵ ∠BDE=∠DBC =60°,∴ △DBG 为等边三角形.又∵ AB=AC ,AE 平分∠BAC ,∴ ∠BFE =∠CFE ,BF=CF ,∴ △BCF 为等边三角形,∴ ∠BFE=∠EFC =30°,又∵ ∠DEF=∠BDE -∠DFE =30°,∴ DF=DE =3,∴ BC=BF=BD +DF =5+3=8 (cm)]三、解答题21.原式=1-7+2+3=-122.∵ AB=AC =4m ,AD 是△ABC 的中线,BC =6m ,∴ AD ⊥BC ,BD =12BC =3m .由勾股定理,得AD ,即这根中柱AD23.(1) 三边长分别为3,4,5 (如图1) (2) 如图2) (3) 画(如图3)24.∵ BE ∥DF ,∴ ∠ABE=∠D .在△ABE 和△FDC 中,∠ABE=∠D ,AB=FD ,∠A =∠F ,∴ △ABE ≌△FDC ,∴ AE=FC25.在△ABC 中,∠C =90°,又BC=BD=DA ,∴∠A =30°,同时可证明△BDE ≌△ADE ,∠A=∠EBD =30°,∴ ∠CBE =30°,∴ BE =2CE .设BE =x ,则CE =12x ,又AE=BE ,∴ 6=12x =x ,解得x =4,即折痕BE 的长为426.F (-2,-3),G (-4,0),H (-2,4),图形是关于y 轴成轴对称的图形,像心形或苹果形 (其他也可)27.(1) y =-43x +8,令x =0,则y =8;令y =0,则x =6,∴ A (6,0),B (0,8),∴ OA =6,OB =8,AB =10.∵ AB'=AB =10,∴ OB'=10-6=4,∴ B'的坐标为 (-4,0) (2) 设OM=m ,则B'M=BM =8-m ,在Rt △OMB'中,m 2+42=(8-m )2,解得m =3,∴ M 的坐标为 (0,3),设直线AM 的解析式为y =kx +b ,则6k +b =0,b =3,解得k =-12,b =3,故直线AM 的解析式为y =-12x +3 28.(1) 90 4000 100 (2) 设x 天后共节省燃料费40万元,解法一:依题意及图像得100×(90-50)x =400000+100×4000,解得x =200 解法二:依题意,可得400000100÷(90-50)+100=200 正常营运200天后共节省燃料费40万元29.(1) 设A 品牌的计算器的价格为x 元,B 品牌的计算器的价格为y 元,则23156,3122,x y x y +=⎧⎨+=⎩ 解得30,32,x y +⎧⎨=⎩即A 品牌的计算器的价格为30元,B 品牌的计算器的价格为32元 (2) 由题意得y 1=0.8×30x ,即y 1=24x .当0≤x ≤5时,y 2=32x ;当x >5时,y 2=32×5+32(x -5)×0.7,即y 2=22.4x +48 (3) 当购买数量超过5个时,y 2=22.4x +48.①当y 1<y 2时,24x <22.4x +48,解得x <30,即购买计算器的数量超过5个但不足30个时,购买A 品牌的计算器更合算;②当y 1=y 2时,24x =22.4x +48,解得x =30,即购买计算器的数量为30个时,购买A 品牌的计算器和B 品牌的计算器花费相同;③当y 1>y 2时,24x >22.4x +48,解得x >30,即购买计算器的数量超过30个时,购买B 品牌的计算器更合算.。
初二数学期末综合测试卷
初二数学期末综合测试卷一、选择题(每题3分,共30分)1. 有理数a与b互为相反数,则a+b的值为()A. 0B. aC. bD. 12. 下列数中,绝对值最小的是()A. -3B. 0C. 2D. -13. 下列等式中,正确的是()A. 2^3 = 3^2B. √9 = 3C. 3^4 = 4^3D. √16 = 44. 下列运算中,正确的是()A. (3 + 4) × 2 = 14B. (3 - 4) ÷ 2 = -1C. (3 × 4) ÷ 2 = 6D. (3 ÷ 4) × 2 = 1.55. 已知a = 3,b = -2,则a^2 - b^2的值为()A. 1C. 7D. 96. 下列函数中,正比例函数是()A. y = 3x + 2B. y = 3x^2C. y = 3/xD. y = 3x7. 下列图形中,中心对称图形是()A. 矩形B. 正方形C. 梯形D. 平行四边形8. 下列说法中,正确的是()A. 两个锐角相加一定大于90°B. 两个钝角相加一定大于180°C. 一个锐角和一个钝角相加一定小于180°D. 一个直角和一个钝角相加一定大于90°9. 下列数中,是无理数的是()A. √2B. √9C. √16D. √110. 下列各数中,与0.3333...(3无限循环)相等的是()A. 1/3B. 1/4C. 1/5二、填空题(每题3分,共30分)11. 若a = 4,b = -5,则a - b = _______。
12. 下列等式中,正确的有________个:3^2 = 9,√9 = 3,2^3 = 3^2,√16 = 4。
13. 若a = 5,b = 2,则a ÷ b - b ÷ a = _______。
14. 已知x + y = 5,x - y = 1,求x的值为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学上学期期末复习测试卷(6)
(时间:100分钟 满分:100分)
一、选择题(每小题2分,共16分)
1.下列各数中是无理数的是 ( )
A .3
B .227
C D 2.点(3,2)关于x 轴的对称点为 ( ) A .(3,-2) B .(-3,2) C .(-3,一2) D .(2,-3)
3.下列一次函数中,y 的值随着x 值的增大而减小的是 ( )
A .y =x
B .y =x -1
C .y =x +1
D .y =-x 4.0.49的算术平方根的相反数是 ( )
A .0.7
B .-0.7
C .±0.7
D .0 5.如图,△ABC 中,∠A =90°,AB =AC ,BD 平分∠AB
E ,DE ⊥BC ,若△DEC 的周长是10 cm ,则BC =( )
A .8 cm
B .10 cm
C .11 cm
D .12 cm
6.在同一坐标系中,对于以下几个函数:①y =-x -1;②y =x +1;③y =-x +1;④y =-2(x +1)的图像有四种说法:(1)过点(-1,0)的是①和③;(2)②和④的交点在),轴上;(3)互相平行的是①和③;(4)关于x 轴对称的是②和③.那么正确的说法有 ( )
A .1个
B .2个
C .3个
D .4个
7.如图,给出下列四组条件:①AB =DE ,BC =EF ,AC =DF ;②AB =DE ,∠B =∠E ,BC =EF ;③∠B =∠E ,BC =EF ,∠C =∠F ;④AB =DE ,AC =DF ,∠B =∠E .其中,能使△ABC ≌△DEF 的条件共有 ( )
A .1组
B .2组
C .3组
D .4组
8.如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD 的边上有一动点P ,沿A →B →C →D →A 运动一周,则点P 的纵坐标y 与P 所走过的路程S 之间的函数关系用图像表示大致是 ( )
二、填空题(每小题2分,共20分)
9.科学家发现某病毒的长度约为1.60×10-2 mm,这个近似数精确到_______.10.通过找出这组图形符号中所蕴含的内在规律,在空白处的横线上填上恰当的图形.
11.若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为_______.12.如图,在△ABC中,BC=6,AD是BC边上的高,D为垂足,将△ABC折叠使点A 与点D重合,则折痕EF的长为_______.
13.如图,在△ABC中,AC=8,AC=6,∠BAC=90°,AD是BC边上的高,D为垂足,将△ABC折叠使点A与点D重合,则折痕EF的长为_______.
14.已知x,y为两个连续的整数,且,则5x+y的平方根为_______.
15.有一个最多能称10 kg的弹簧秤,称重发现,弹簧的长度与物体重量满足一定的关系,如下表,那么,在弹簧秤的称重范围内,弹簧最长为_______cm.
16.如图,折叠矩形纸片ABCD,先折出折痕BD,再折叠使AD边与对角线BD重合,得折痕DG,若AB=2,BC=1,则AG的长是_______.
17.有一个数值转换器,原理如下:
当输入的x=64时,输出的y等于( )
A.2 B.8 C.D.
18.如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y 轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.若在y轴上存在点P,且满足FE
=FP ,则P 点坐标为_______.
三、解答题:(共64分)
19.(6分)(1)(2)解方程:(2x -1)2-16=0. 20.(7分)如图,已知∠AOB .
(1)利用直尺和圆规在图①中画图:在OA ,OB 上分别截取OC ,OD ,并且使OC =OD ,连接CD ,过点D 作OP ⊥CD 垂足为P ;
(2)根据(1)的作图,试说明∠AOP =∠BOP ;
(3)运用你所学的数学知识,在图②中再设计一种方法,作出∠AOB 的平分线.(上述(1)的方法除外,不必说明理由,只在图中保留作图痕迹)
21.(8分)如图,在平面直角坐标系xOy 中,直线AB 与x ,y 轴分别交于点A(83
,0),B(0,2).
(1)求直线AB 的解析式;
(2)求点O 到直线AB 的距离;
(3)求点M(-1,-1)到直线AB 的距离.
22.(8分)如图,在△ABC 中,AB =AC ,点D ,E 分别在AB ,AC 上,BE ,CD 相交于点O .
(1)若BD =CE ,试说明OB =OC ;
(2)若BC =10.BC 边上的中线AM =12,试求AC 的长.
23.(8分)如图,直线l 1:y =3x +1与直线l 2:y =mx +n 相交于点P(1,b).
(1)求b 的值;
(2)不解关于x,y的方程组
31
y x
y mx n
=+
⎧
⎨
=+
⎩
请你直接写出它的解;
(3)直线l3:y=nx+m是否也经过点P?请说明理由.
24.(9分)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.
(1)当∠BDA=115°时,∠EDC=_______°,∠DEC=_______°;点D从B向C运动时,∠BDA逐渐变_______(填“大”或“小”);
(2)当DC等于多少时,△ABD≌△DCE,请说明理由;
(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.
25.(9分)小伟和小剑沿同一条路同时从学校出发到图书馆查阅资料,学校与图书馆之间的路程是4 km,小伟骑自行车,小剑步行,当小伟从原路回到学校时,小剑刚好到达图书馆,图中折线O-A-B-C和线段OD分别表示两人离学校的路程y(km)与所经过的时间x( min)之间的函数关系,请根据图像回答下列问题:
(1)小伟在图书馆查阅资料的时间为_______min,小伟返回学校的速度为_______km/min;
(2)请你求出小剑离开学校的路程y(km)与所经过的时间x(min)之间的函数关系;
(3)当小伟与小剑迎面相遇时,他们离学校的路程是多少千米?
26.(9分)在矩形纸片ABCD中,AB=6,BC=8.
(1)将矩形纸片沿BD折叠,使点A落在点E处(如图①所示),连接DE,DE和BC 相交于点F,试说明△BDF为等腰三角形,并求BF的长;
(2)将矩形纸片折叠,使B与D重合(如图②所示),求折痕GH的长.
参考答案
1.D 2.A 3.D 4.B 5.B 6.A 7.C 8.D 9.万分位 10.略,正确即可 11.50°
或80° 12.3 13.5 14.±5 15.13.5 16.D 18.(0,4)或(0,0)
19.(1)5
2
.(2)x1=
5
2
,x2=-
3
2
20.画图略,可以依据等腰三角形三线合一证明,画图可以依据全等设计.
21.(1)y=-3
4
x+2 (2)1.6 (3)3
22.(1)略 (2)13.
23.(1)b=4.(2)
1
4
x
y
=
⎧
⎨
=
⎩
(3)直线l3经过点P.理由略.
24.(1)25 115 小 (2)当DC=2时,△ABD≌△DCE.理由略. (3)110°或80°
25.(1)15
4
15
(2)y=
4
45
x(0≤x≤45).(3)3 km.
26.(1)说明略,BF的长为25
4
(2)
15
2。