函数与导数高考汇编
2024年高考数学真题分类汇编09:函数与导数(含详细答案解析)
函数与导数一、单选题1.(2024·全国)已知函数为f (x )=-x 2-2ax -a ,x <0e x+ln (x +1),x ≥0,在R 上单调递增,则a 取值的范围是()A.(-∞,0]B.[-1,0]C.[-1,1]D.[0,+∞)2.(2024·全国)已知函数为f (x )的定义域为R ,f (x )>f (x -1)+f (x -2),且当x <3时f (x )=x ,则下列结论中一定正确的是()A.f (10)>100B.f (20)>1000C.f (10)<1000D.f (20)<100003.(2024·全国)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.24.(2024·全国)设函数f (x )=(x +a )ln (x +b ),若f (x )≥0,则a 2+b 2的最小值为()A.18B.14C.12D.15.(2024·全国)曲线f x =x 6+3x -1在0,-1 处的切线与坐标轴围成的面积为()A.16B.32C.12D.-326.(2024·全国)函数f x =-x 2+e x -e -x sin x 在区间[-2.8,2.8]的大致图像为()A. B.C. D.7.(2024·全国)设函数f x =e x +2sin x1+x 2,则曲线y =f x 在0,1 处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.238.(2024·北京)已知x 1,y 1 ,x 2,y 2 是函数y =2x图象上不同的两点,则下列正确的是()A.log 2y 1+y 22>x 1+x22 B.log 2y 1+y 22<x 1+x22C.log 2y 1+y 22>x 1+x 2D.log 2y 1+y 22<x 1+x 29.(2024·天津)下列函数是偶函数的是()A.y=e x-x2x2+1B.y=cos x+x2x2+1C.y=e x-xx+1D.y=sin x+4xe|x|10.(2024·天津)若a=4.2-0.3,b=4.20.3,c=log4.20.2,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>a>bD.b>c>a11.(2024·上海)下列函数f x 的最小正周期是2π的是()A.sin x+cos xB.sin x cos xC.sin2x+cos2xD.sin2x-cos2x12.(2024·上海)已知函数f(x)的定义域为R,定义集合M=x0x0∈R,x∈-∞,x0,f x <f x0,在使得M =-1,1的所有f x 中,下列成立的是()A.存在f x 是偶函数B.存在f x 在x=2处取最大值C.存在f x 是严格增函数D.存在f x 在x=-1处取到极小值二、多选题13.(2024·全国)设函数f(x)=(x-1)2(x-4),则()A.x=3是f(x)的极小值点B.当0<x<1时,f(x)<f x2C.当1<x<2时,-4<f(2x-1)<0D.当-1<x<0时,f(2-x)>f(x)14.(2024·全国)设函数f(x)=2x3-3ax2+1,则()A.当a>1时,f(x)有三个零点B.当a<0时,x=0是f(x)的极大值点C.存在a,b,使得x=b为曲线y=f(x)的对称轴D.存在a,使得点1,f1为曲线y=f(x)的对称中心三、填空题15.(2024·全国)若曲线y=e x+x在点0,1处的切线也是曲线y=ln(x+1)+a的切线,则a=.16.(2024·全国)已知a>1,1log8a -1log a4=-52,则a=.17.(2024·全国)曲线y=x3-3x与y=-x-12+a在0,+∞上有两个不同的交点,则a的取值范围为.18.(2024·天津)若函数f x =2x2-ax-ax-2+1有唯一零点,则a的取值范围为.19.(2024·上海)已知f x =x,x>01,x≤0,则f3 =.四、解答题20.(2024·全国)已知函数f(x)=ln x2-x+ax+b(x-1)3(1)若b=0,且f (x)≥0,求a的最小值;(2)证明:曲线y=f(x)是中心对称图形;(3)若f (x )>-2当且仅当1<x <2,求b 的取值范围.21.(2024·全国)已知函数f (x )=e x -ax -a 3.(1)当a =1时,求曲线y =f (x )在点1,f (1) 处的切线方程;(2)若f (x )有极小值,且极小值小于0,求a 的取值范围.22.(2024·全国)已知函数f x =a x -1 -ln x +1.(1)求f x 的单调区间;(2)若a ≤2时,证明:当x >1时,f x <e x -1恒成立.23.(2024·全国)已知函数f x =1-ax ln 1+x -x .(1)当a =-2时,求f x 的极值;(2)当x ≥0时,f x ≥0恒成立,求a 的取值范围.24.(2024·北京)已知f x =x +k ln 1+x 在t ,f t t >0 处切线为l .(1)若切线l 的斜率k =-1,求f x 单调区间;(2)证明:切线l 不经过0,0 ;(3)已知k =1,A t ,f t ,C 0,f t ,O 0,0 ,其中t >0,切线l 与y 轴交于点B 时.当2S △ACO =15S △ABO ,符合条件的A 的个数为?(参考数据:1.09<ln3<1.10,1.60<ln5<1.61,1.94<ln7<1.95)25.(2024·天津)设函数f x =x ln x .(1)求f x 图象上点1,f 1 处的切线方程;(2)若f x ≥a x -x 在x ∈0,+∞ 时恒成立,求a 的取值范围;(3)若x 1,x 2∈0,1 ,证明f x 1 -f x 2 ≤x 1-x 2 12.26.(2024·上海)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.27.(2024·上海)对于一个函数f x 和一个点M a ,b ,令s x =(x -a )2+f x -b 2,若P x 0,f x 0 是s x取到最小值的点,则称P 是M 在f x 的“最近点”.(1)对于f (x )=1x(x >0),求证:对于点M 0,0 ,存在点P ,使得点P 是M 在f x 的“最近点”;(2)对于f x =e x ,M 1,0 ,请判断是否存在一个点P ,它是M 在f x 的“最近点”,且直线MP 与y =f (x )在点P 处的切线垂直;(3)已知y =f (x )在定义域R 上存在导函数f (x ),且函数g (x )在定义域R 上恒正,设点M 1t -1,f t -g t ,M 2t +1,f t +g t .若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,试判断f x 的单调性.参考答案:1.B【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【解析】因为f x 在R上单调递增,且x≥0时,f x =e x+ln x+1单调递增,则需满足--2a2×-1≥0-a≤e0+ln1,解得-1≤a≤0,即a的范围是[-1,0].故选:B.2.B【分析】代入得到f(1)=1,f(2)=2,再利用函数性质和不等式的性质,逐渐递推即可判断.【解析】因为当x<3时f(x)=x,所以f(1)=1,f(2)=2,又因为f(x)>f(x-1)+f(x-2),则f(3)>f(2)+f(1)=3,f(4)>f(3)+f(2)>5,f(5)>f(4)+f(3)>8,f(6)>f(5)+f(4)>13,f(7)>f(6)+f(5)>21,f(8)>f(7)+f(6)>34,f(9)>f(8)+f(7)>55,f(10)>f(9)+f(8)>89,f(11)>f(10)+f(9)>144,f(12)>f(11)+f(10)>233,f(13)>f(12)+f(11)>377f(14)>f(13)+f(12)>610,f(15)>f(14)+f(13)>987,f(16)>f(15)+f(14)>1597>1000,则依次下去可知f(20)>1000,则B正确;且无证据表明ACD一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用f(1)=1,f(2)=2,再利用题目所给的函数性质f(x)>f(x-1)+ f(x-2),代入函数值再结合不等式同向可加性,不断递推即可.3.D【分析】解法一:令F x =ax2+a-1,G x =cos x,分析可知曲线y=F(x)与y=G(x)恰有一个交点,结合偶函数的对称性可知该交点只能在y轴上,即可得a=2,并代入检验即可;解法二:令h x =f(x)-g x ,x∈-1,1,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a=2,并代入检验即可.【解析】解法一:令f(x)=g x ,即a(x+1)2-1=cos x+2ax,可得ax2+a-1=cos x,令F x =ax2+a-1,G x =cos x,原题意等价于当x∈(-1,1)时,曲线y=F(x)与y=G(x)恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y轴上,可得F0 =G0 ,即a-1=1,解得a=2,若a=2,令F x =G x ,可得2x2+1-cos x=0因为x∈-1,1,则2x2≥0,1-cos x≥0,当且仅当x=0时,等号成立,可得2x2+1-cos x≥0,当且仅当x=0时,等号成立,则方程2x2+1-cos x=0有且仅有一个实根0,即曲线y=F(x)与y=G(x)恰有一个交点,所以a=2符合题意;综上所述:a=2.解法二:令h x =f(x)-g x =ax2+a-1-cos x,x∈-1,1,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4.C【分析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,分类讨论-a 与-b ,1-b 的大小关系,结合符号分析判断,即可得b =a +1,代入可得最值;解法二:根据对数函数的性质分析ln (x +b )的符号,进而可得x +a 的符号,即可得b =a +1,代入可得最值.【解析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;若-a ≤-b ,当x ∈-b ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-b <-a <1-b ,当x ∈-a ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-a =1-b ,当x ∈-b ,1-b 时,可知x +a <0,ln x +b <0,此时f (x )>0;当x ∈1-b ,+∞ 时,可知x +a ≥0,ln x +b ≥0,此时f (x )≥0;可知若-a =1-b ,符合题意;若-a >1-b ,当x ∈1-b ,-a 时,可知x +a 0,ln x +b 0,此时f (x )<0,不合题意;综上所述:-a =1-b ,即b =a +1,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12;解法二:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;则当x ∈-b ,1-b 时,ln x +b <0,故x +a ≤0,所以1-b +a ≤0;x ∈1-b ,+∞ 时,ln x +b >0,故x +a ≥0,所以1-b +a ≥0;故1-b +a =0,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12.故选:C .【点睛】关键点点睛:分别求x +a =0、ln (x +b )=0的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.5.A【分析】先求出切线方程,再求出切线的截距,从而可求面积.【解析】f x =6x 5+3,所以f 0 =3,故切线方程为y =3(x -0)-1=3x -1,故切线的横截距为13,纵截距为-1,故切线与坐标轴围成的面积为12×1×13=16故选:A .6.B【分析】利用函数的奇偶性可排除A 、C ,代入x =1可得f 1 >0,可排除D .【解析】f -x =-x 2+e -x -e x sin -x =-x 2+e x -e -x sin x =f x ,又函数定义域为-2.8,2.8 ,故该函数为偶函数,可排除A 、C ,又f 1 =-1+e -1e sin1>-1+e -1e sin π6=e 2-1-12e >14-12e>0,故可排除D .故选:B .7.A【分析】借助导数的几何意义计算可得其在点0,1 处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【解析】fx =ex+2cos x 1+x 2 -e x +2sin x ⋅2x1+x 22,则f0 =e 0+2cos0 1+0 -e 0+2sin0 ×01+02=3,即该切线方程为y -1=3x ,即y =3x +1,令x =0,则y =1,令y =0,则x =-13,故该切线与两坐标轴所围成的三角形面积S =12×1×-13 =16.故选:A .8.A【分析】根据指数函数和对数函数的单调性结合基本不等式分析判断AB ;举例判断CD 即可.【解析】由题意不妨设x 1<x 2,因为函数y =2x 是增函数,所以0<2x 1<2x 2,即0<y 1<y 2,对于选项AB :可得2x1+2x 22>2x 1·2x 2=2x 1+x 22,即y 1+y 22>2x 1+x 22>0,根据函数y =log 2x 是增函数,所以log 2y 1+y 22>log 22x 1+x22=x 1+x22,故A 正确,B 错误;对于选项C :例如x 1=0,x 2=1,则y 1=1,y 2=2,可得log 2y 1+y 22=log 232∈0,1 ,即log 2y 1+y 22<1=x 1+x 2,故C 错误;对于选项D :例如x 1=-1,x 2=-2,则y 1=12,y 2=14,可得log 2y 1+y 22=log 238=log 23-3∈-2,-1 ,即log 2y 1+y 22>-3=x 1+x 2,故D 错误,故选:A .9.B【分析】根据偶函数的判定方法一一判断即可.【解析】对A ,设f x =e x -x 2x 2+1,函数定义域为R ,但f -1 =e -1-12,f 1 =e -12,则f -1 ≠f 1 ,故A 错误;对B ,设g x =cos x +x 2x 2+1,函数定义域为R ,且g -x =cos -x +-x 2-x 2+1=cos x +x 2x 2+1=g x ,则g x 为偶函数,故B 正确;对C ,设h x =e x -xx +1,函数定义域为x |x ≠-1 ,不关于原点对称,则h x 不是偶函数,故C 错误;对D ,设φx =sin x +4x e |x |,函数定义域为R ,因为φ1 =sin1+4e ,φ-1 =-sin1-4e ,则φ1 ≠φ-1 ,则φx 不是偶函数,故D 错误.故选:B .10.B【分析】利用指数函数和对数函数的单调性分析判断即可.【解析】因为y =4.2x 在R 上递增,且-0.3<0<0.3,所以0<4.2-0.3<4.20<4.20.3,所以0<4.2-0.3<1<4.20.3,即0<a <1<b ,因为y =log 4.2x 在(0,+∞)上递增,且0<0.2<1,所以log 4.20.2<log 4.21=0,即c <0,所以b >a >c ,故选:B 11.A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【解析】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .12.B【分析】对于ACD 利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B ,构造函数f x =-2,x <-1x ,-1≤x ≤11,x >1即可判断.【解析】对于A ,若存在y =f (x )是偶函数, 取x 0=1∈[-1,1],则对于任意x ∈(-∞,1),f (x )<f (1), 而f (-1)=f (1), 矛盾, 故A 错误;对于B ,可构造函数f x =-2,x <-1,x ,-1≤x ≤1,1,x >1,满足集合M =-1,1 ,当x <-1时,则f x =-2,当-1≤x ≤1时,f x ∈-1,1 ,当x >1时,f x =1,则该函数f x 的最大值是f 2 ,则B 正确;对C ,假设存在f x ,使得f x 严格递增,则M =R ,与已知M =-1,1 矛盾,则C 错误;对D ,假设存在f x ,使得f x 在x =-1处取极小值,则在-1的左侧附近存在n ,使得f n >f -1 ,这与已知集合M 的定义矛盾,故D 错误;故选:B .13.ACD【分析】求出函数f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数f x 在1,3 上的值域即可判断C ;直接作差可判断D .【解析】对A ,因为函数f x 的定义域为R ,而f x =2x -1 x -4 +x -1 2=3x -1 x -3 ,易知当x ∈1,3 时,f x <0,当x ∈-∞,1 或x ∈3,+∞ 时,f x >0函数f x 在-∞,1 上单调递增,在1,3 上单调递减,在3,+∞ 上单调递增,故x =3是函数f x 的极小值点,正确;对B ,当0<x <1时,x -x 2=x 1-x >0,所以1>x >x 2>0,而由上可知,函数f x 在0,1 上单调递增,所以f x >f x 2 ,错误;对C ,当1<x <2时,1<2x -1<3,而由上可知,函数f x 在1,3 上单调递减,所以f 1 >f 2x -1 >f 3 ,即-4<f 2x -1 <0,正确;对D ,当-1<x <0时,f (2-x )-f (x )=1-x 2-2-x -x -1 2x -4 =x -1 22-2x >0,所以f (2-x )>f (x ),正确;故选:ACD .14.AD【分析】A 选项,先分析出函数的极值点为x =0,x =a ,根据零点存在定理和极值的符号判断出f (x )在(-1,0),(0,a ),(a ,2a )上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,则f (x )=f (2b -x )为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,据此进行计算判断,亦可利用拐点结论直接求解.【解析】A 选项,f (x )=6x 2-6ax =6x (x -a ),由于a >1,故x ∈-∞,0 ∪a ,+∞ 时f (x )>0,故f (x )在-∞,0 ,a ,+∞ 上单调递增,x ∈(0,a )时,f (x )<0,f (x )单调递减,则f (x )在x =0处取到极大值,在x =a 处取到极小值,由f (0)=1>0,f (a )=1-a 3<0,则f (0)f (a )<0,根据零点存在定理f (x )在(0,a )上有一个零点,又f (-1)=-1-3a <0,f (2a )=4a 3+1>0,则f (-1)f (0)<0,f (a )f (2a )<0,则f (x )在(-1,0),(a ,2a )上各有一个零点,于是a >1时,f (x )有三个零点,A 选项正确;B 选项,f (x )=6x (x -a ),a <0时,x ∈(a ,0),f (x )<0,f (x )单调递减,x ∈(0,+∞)时f (x )>0,f (x )单调递增,此时f (x )在x =0处取到极小值,B 选项错误;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,即存在这样的a ,b 使得f (x )=f (2b -x ),即2x 3-3ax 2+1=2(2b -x )3-3a (2b -x )2+1,根据二项式定理,等式右边(2b -x )3展开式含有x 3的项为2C 33(2b )0(-x )3=-2x 3,于是等式左右两边x 3的系数都不相等,原等式不可能恒成立,于是不存在这样的a ,b ,使得x =b 为f (x )的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简f (1)=3-3a ,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,事实上,f (x )+f (2-x )=2x 3-3ax 2+1+2(2-x )3-3a (2-x )2+1=(12-6a )x 2+(12a -24)x +18-12a ,于是6-6a =(12-6a )x 2+(12a -24)x +18-12a即12-6a =012a -24=018-12a =6-6a,解得a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,f (x )=2x 3-3ax 2+1,f (x )=6x 2-6ax ,f (x )=12x -6a ,由f (x )=0⇔x =a 2,于是该三次函数的对称中心为a 2,f a2,由题意(1,f (1))也是对称中心,故a2=1⇔a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)f (x )的对称轴为x =b ⇔f (x )=f (2b -x );(2)f (x )关于(a ,b )对称⇔f (x )+f (2a -x )=2b ;(3)任何三次函数f (x )=ax 3+bx 2+cx +d 都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是f (x )=0的解,即-b 3a ,f -b3a 是三次函数的对称中心15.ln2【分析】先求出曲线y =e x +x 在0,1 的切线方程,再设曲线y =ln x +1 +a 的切点为x 0,ln x 0+1 +a ,求出y ,利用公切线斜率相等求出x 0,表示出切线方程,结合两切线方程相同即可求解.【解析】由y =e x +x 得y =e x +1,y |x =0=e 0+1=2,故曲线y =e x +x 在0,1 处的切线方程为y =2x +1;由y =ln x +1 +a 得y =1x +1,设切线与曲线y =ln x +1 +a 相切的切点为x 0,ln x 0+1 +a ,由两曲线有公切线得y =1x 0+1=2,解得x 0=-12,则切点为-12,a +ln 12 ,切线方程为y =2x +12 +a +ln 12=2x +1+a -ln2,根据两切线重合,所以a -ln2=0,解得a =ln2.故答案为:ln216.64【分析】将log 8a ,log a 4利用换底公式转化成log 2a 来表示即可求解.【解析】由题1log 8a -1log a 4=3log 2a -12log 2a =-52,整理得log 2a 2-5log 2a -6=0,⇒log 2a =-1或log 2a =6,又a >1,所以log 2a =6=log 226,故a =26=64故答案为:64.17.-2,1【分析】将函数转化为方程,令x 3-3x =-x -1 2+a ,分离参数a ,构造新函数g x =x 3+x 2-5x +1,结合导数求得g x 单调区间,画出大致图形数形结合即可求解.【解析】令x 3-3x =-x -1 2+a ,即a =x 3+x 2-5x +1,令g x =x 3+x 2-5x +1x >0 ,则g x =3x 2+2x -5=3x +5 x -1 ,令g x =0x >0 得x =1,当x ∈0,1 时,g x <0,g x 单调递减,当x ∈1,+∞ 时,g x >0,g x 单调递增,g 0 =1,g 1 =-2,因为曲线y =x 3-3x 与y =-x -1 2+a 在0,+∞ 上有两个不同的交点,所以等价于y =a 与g x 有两个交点,所以a ∈-2,1.故答案为:-2,1 18.-3,-1 ∪1,3【分析】结合函数零点与两函数的交点的关系,构造函数g x =2x 2-ax 与h x =ax -3,x ≥2a1-ax ,x <2a,则两函数图象有唯一交点,分a =0、a >0与a <0进行讨论,当a >0时,计算函数定义域可得x ≥a 或x ≤0,计算可得a ∈0,2 时,两函数在y 轴左侧有一交点,则只需找到当a ∈0,2 时,在y 轴右侧无交点的情况即可得;当a <0时,按同一方式讨论即可得.【解析】令f x =0,即2x 2-ax =ax -2 -1,由题可得x 2-ax ≥0,当a =0时,x ∈R ,有2x 2=-2 -1=1,则x =±22,不符合要求,舍去;当a >0时,则2x 2-ax =ax -2 -1=ax -3,x ≥2a1-ax ,x <2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a有唯一交点,由x 2-ax ≥0,可得x ≥a 或x ≤0,当x ≤0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =2时,即4x +1=0,即x =-14,当a ∈0,2 ,x =-12+a 或x =12-a>0(正值舍去),当a ∈2,+∞ 时,x =-12+a <0或x =12-a<0,有两解,舍去,即当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≤0时有唯一解,则当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≥a 时需无解,当a ∈0,2 ,且x ≥a 时,由函数h x =ax -3,x ≥2a1-ax ,x <2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在1a ,2a上单调递减,在2a ,3a上单调递增,令g x =y =2x 2-ax ,即x -a 2 2a 24-y 2a 2=1,故x ≥a 时,g x 图象为双曲线x2a 24-y 2a2=1右支的x 轴上方部分向右平移a2所得,由x2a 24-y 2a2=1的渐近线方程为y =±aa 2x =±2x ,即g x 部分的渐近线方程为y =2x -a 2,其斜率为2,又a ∈0,2 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x ≥2a 时的斜率a ∈0,2 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在a ,+∞ 上单调递增,故有1a <a 3a>a,解得1<a <3,故1<a <3符合要求;当a <0时,则2x 2-ax =ax -2 -1=ax -3,x ≤2a1-ax ,x >2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≤2a1-ax ,x >2a有唯一交点,由x 2-ax ≥0,可得x ≥0或x ≤a ,当x ≥0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =-2时,即4x -1=0,即x =14,当a ∈-2,0 ,x =-12+a <0(负值舍去)或x =12-a0,当a ∈-∞,2 时,x =-12+a >0或x =12-a>0,有两解,舍去,即当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≥0时有唯一解,则当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≤a 时需无解,当a ∈-2,0 ,且x ≤a 时,由函数h x =ax -3,x ≤2a1-ax ,x >2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在2a ,1a上单调递减,在3a ,2a上单调递增,同理可得:x ≤a 时,g x 图象为双曲线x 2a 24-y 2a 2=1左支的x 轴上方部分向左平移a2所得,g x 部分的渐近线方程为y =-2x +a 2,其斜率为-2,又a ∈-2,0 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x <2a 时的斜率a ∈-2,0 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在-∞,a 上单调递减,故有1a >a 3a<a,解得-3<a <-1,故-3<a <-1符合要求;综上所述,a ∈-3,-1 ∪1,3 .故答案为:-3,-1 ∪1,3 .【点睛】关键点点睛:本题关键点在于将函数f x 的零点问题转化为函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a的交点问题,从而可将其分成两个函数研究.19.3【分析】利用分段函数的形式可求f 3 .【解析】因为f x =x ,x >01,x ≤0, 故f 3 =3,故答案为:3.20.(1)-2(2)证明见解析(3)b ≥-23【分析】(1)求出f x min =2+a 后根据f (x )≥0可求a 的最小值;(2)设P m ,n 为y =f x 图象上任意一点,可证P m ,n 关于1,a 的对称点为Q 2-m ,2a -n 也在函数的图像上,从而可证对称性;(3)根据题设可判断f 1 =-2即a =-2,再根据f (x )>-2在1,2 上恒成立可求得b ≥-23.【解析】(1)b =0时,f x =ln x2-x+ax ,其中x ∈0,2 ,则f x =1x +12-x =2x 2-x+a ,x ∈0,2 ,因为x 2-x ≤2-x +x 2 2=1,当且仅当x =1时等号成立,故f x min =2+a ,而f x ≥0成立,故a +2≥0即a ≥-2,所以a 的最小值为-2.,(2)f x =ln x2-x+ax +b x -1 3的定义域为0,2 ,设P m ,n 为y =f x 图象上任意一点,P m ,n 关于1,a 的对称点为Q 2-m ,2a -n ,因为P m ,n 在y =f x 图象上,故n =ln m2-m+am +b m -1 3,而f 2-m =ln 2-m m +a 2-m +b 2-m -1 3=-ln m2-m +am +b m -1 3 +2a ,=-n +2a ,所以Q 2-m ,2a -n 也在y =f x 图象上,由P 的任意性可得y =f x 图象为中心对称图形,且对称中心为1,a .(3)因为f x >-2当且仅当1<x<2,故x=1为f x =-2的一个解,所以f1 =-2即a=-2,先考虑1<x<2时,f x >-2恒成立.此时f x >-2即为lnx2-x+21-x+b x-13>0在1,2上恒成立,设t=x-1∈0,1,则ln t+11-t-2t+bt3>0在0,1上恒成立,设g t =ln t+11-t-2t+bt3,t∈0,1,则g t =21-t2-2+3bt2=t2-3bt2+2+3b1-t2,当b≥0,-3bt2+2+3b≥-3b+2+3b=2>0,故g t >0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当-23≤b<0时,-3bt2+2+3b≥2+3b≥0,故g t ≥0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当b<-23,则当0<t<1+23b<1时,g t <0故在0,1+2 3b上g t 为减函数,故g t <g0 =0,不合题意,舍;综上,f x >-2在1,2上恒成立时b≥-2 3 .而当b≥-23时,而b≥-23时,由上述过程可得g t 在0,1递增,故g t >0的解为0,1,即f x >-2的解为1,2.综上,b≥-2 3 .【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.21.(1)e-1x-y-1=0(2)1,+∞【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析a≤0和a>0两种情况,利用导数判断单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可;解法二:求导,可知f (x)=e x-a有零点,可得a>0,进而利用导数求f x 的单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可.【解析】(1)当a=1时,则f(x)=e x-x-1,f (x)=e x-1,可得f(1)=e-2,f (1)=e-1,即切点坐标为1,e-2,切线斜率k=e-1,所以切线方程为y-e-2=e-1x-1,即e-1x-y-1=0.(2)解法一:因为f(x)的定义域为R,且f (x)=e x-a,若a≤0,则f (x)≥0对任意x∈R恒成立,可知f (x )在R 上单调递增,无极值,不合题意;若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,则g a =2a +1a>0,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ ;解法二:因为f (x )的定义域为R ,且f (x )=e x -a ,若f (x )有极小值,则f (x )=e x -a 有零点,令f (x )=e x -a =0,可得e x =a ,可知y =e x 与y =a 有交点,则a >0,若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,符合题意,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,因为则y =a 2,y =ln a -1在0,+∞ 内单调递增,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ .22.(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当x >1时,e x -1-2x +1+ln x >0即可.【解析】(1)f (x )定义域为(0,+∞),f (x )=a -1x =ax -1x当a ≤0时,f (x )=ax -1x <0,故f (x )在(0,+∞)上单调递减;当a >0时,x ∈1a,+∞ 时,f (x )>0,f (x )单调递增,当x ∈0,1a时,f (x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,+∞)上单调递减;a >0时,f (x )在1a ,+∞ 上单调递增,在0,1a上单调递减.(2)a ≤2,且x >1时,e x -1-f (x )=e x -1-a (x -1)+ln x -1≥e x -1-2x +1+ln x ,令g (x )=e x -1-2x +1+ln x (x >1),下证g (x )>0即可.g (x )=e x -1-2+1x ,再令h (x )=g (x ),则h (x )=e x -1-1x2,显然h (x )在(1,+∞)上递增,则h (x )>h (1)=e 0-1=0,即g (x )=h (x )在(1,+∞)上递增,故g (x)>g (1)=e0-2+1=0,即g(x)在(1,+∞)上单调递增,故g(x)>g(1)=e0-2+1+ln1=0,问题得证23.(1)极小值为0,无极大值.(2)a≤-12【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就a≤-12、-12<a<0、a≥0分类讨论后可得参数的取值范围.【解析】(1)当a=-2时,f(x)=(1+2x)ln(1+x)-x,故f (x)=2ln(1+x)+1+2x1+x-1=2ln(1+x)-11+x+1,因为y=2ln(1+x),y=-11+x+1在-1,+∞上为增函数,故f (x)在-1,+∞上为增函数,而f (0)=0,故当-1<x<0时,f (x)<0,当x>0时,f (x)>0,故f x 在x=0处取极小值且极小值为f0 =0,无极大值.(2)f x =-a ln1+x+1-ax1+x-1=-a ln1+x-a+1x1+x,x>0,设s x =-a ln1+x-a+1x1+x,x>0,则s x =-ax+1-a+11+x2=-a x+1+a+11+x2=-ax+2a+11+x2,当a≤-12时,sx >0,故s x 在0,+∞上为增函数,故s x >s0 =0,即f x >0,所以f x 在0,+∞上为增函数,故f x ≥f0 =0.当-12<a<0时,当0<x<-2a+1a时,sx <0,故s x 在0,-2a+1 a上为减函数,故在0,-2a+1a上s x <s0 ,即在0,-2a+1 a上f x <0即f x 为减函数,故在0,-2a+1 a上f x <f0 =0,不合题意,舍.当a≥0,此时s x <0在0,+∞上恒成立,同理可得在0,+∞上f x <f0 =0恒成立,不合题意,舍;综上,a≤-1 2 .【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.24.(1)单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)证明见解析(3)2【分析】(1)直接代入k=-1,再利用导数研究其单调性即可;(2)写出切线方程y-f(t)=1+k1+t(x-t)(t>0),将(0,0)代入再设新函数F(t)=ln(1+t)-t1+t,利用导数研究其零点即可;(3)分别写出面积表达式,代入2S △ACO =15S ABO 得到13ln (1+t )-2t -15t1+t=0,再设新函数h (t )=13ln (1+t )-2t -15t1+t(t >0)研究其零点即可.【解析】(1)f (x )=x -ln (1+x ),f (x )=1-11+x =x1+x(x >-1),当x ∈-1,0 时,f x <0;当x ∈0,+∞ ,f x >0;∴f (x )在(-1,0)上单调递减,在(0,+∞)上单调递增.则f (x )的单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)f (x )=1+k 1+x ,切线l 的斜率为1+k1+t,则切线方程为y -f (t )=1+k1+t (x -t )(t >0),将(0,0)代入则-f (t )=-t 1+k 1+t,f (t )=t 1+k1+t ,即t +k ln (1+t )=t +t k 1+t ,则ln (1+t )=t 1+t ,ln (1+t )-t1+t =0,令F (t )=ln (1+t )-t1+t,假设l 过(0,0),则F (t )在t ∈(0,+∞)存在零点.F (t )=11+t -1+t -t (1+t )2=t(1+t )2>0,∴F (t )在(0,+∞)上单调递增,F (t )>F (0)=0,∴F (t )在(0,+∞)无零点,∴与假设矛盾,故直线l 不过(0,0).(3)k =1时,f (x )=x +ln (1+x ),f (x )=1+11+x =x +21+x>0.S △ACO =12tf (t ),设l 与y 轴交点B 为(0,q ),t >0时,若q <0,则此时l 与f (x )必有交点,与切线定义矛盾.由(2)知q ≠0.所以q >0,则切线l 的方程为y -t -ln t +1 =1+11+t x -t ,令x =0,则y =q =y =ln (1+t )-tt +1.∵2S △ACO =15S ABO ,则2tf (t )=15t ln (1+t )-t t +1,∴13ln (1+t )-2t -15t 1+t =0,记h (t )=13ln (1+t )-2t -15t1+t(t >0),∴满足条件的A 有几个即h (t )有几个零点.h(t )=131+t -2-15(t +1)2=13t +13-2t 2+2t +1 -15(t +1)2=2t 2+9t -4(t +1)2=(-2t +1)(t -4)(t +1)2,当t ∈0,12 时,h t <0,此时h t 单调递减;当t ∈12,4 时,h t >0,此时h t 单调递增;当t ∈4,+∞ 时,h t <0,此时h t 单调递减;因为h (0)=0,h 120,h (4)=13ln5-20 13×1.6-20=0.8>0,h (24)=13ln25-48-15×2425=26ln5-48-725<26×1.61-48-725=-20.54<0,所以由零点存在性定理及h (t )的单调性,h (t )在12,4 上必有一个零点,在(4,24)上必有一个零点,综上所述,h (t )有两个零点,即满足2S ACO =15S ABO 的A 有两个.【点睛】关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题.25.(1)y =x -1(2)2(3)证明过程见解析【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到a =2,再证明a =2时条件满足;(3)先确定f x 的单调性,再对x 1,x 2分类讨论.【解析】(1)由于f x =x ln x ,故f x =ln x +1.所以f 1 =0,f 1 =1,所以所求的切线经过1,0 ,且斜率为1,故其方程为y =x -1.(2)设h t =t -1-ln t ,则h t =1-1t =t -1t,从而当0<t <1时h t <0,当t >1时h t >0.所以h t 在0,1 上递减,在1,+∞ 上递增,这就说明h t ≥h 1 ,即t -1≥ln t ,且等号成立当且仅当t =1.设g t =a t -1 -2ln t ,则f x -a x -x =x ln x -a x -x =x a 1x -1-2ln 1x=x ⋅g 1x.当x ∈0,+∞ 时,1x的取值范围是0,+∞ ,所以命题等价于对任意t ∈0,+∞ ,都有g t ≥0.一方面,若对任意t ∈0,+∞ ,都有g t ≥0,则对t ∈0,+∞ 有0≤g t =a t -1 -2ln t =a t -1 +2ln 1t ≤a t -1 +21t -1 =at +2t-a -2,取t =2,得0≤a -1,故a ≥1>0.再取t =2a ,得0≤a ⋅2a +2a 2-a -2=22a -a -2=-a -2 2,所以a =2.另一方面,若a =2,则对任意t ∈0,+∞ 都有g t =2t -1 -2ln t =2h t ≥0,满足条件.综合以上两个方面,知a 的取值范围是2 .(3)先证明一个结论:对0<a <b ,有ln a +1<f b -f ab -a<ln b +1.证明:前面已经证明不等式t -1≥ln t ,故b ln b -a ln a b -a =a ln b -a ln ab -a +ln b =ln b a b a -1+ln b <1+ln b ,且b ln b -a ln a b -a =b ln b -b ln a b -a +ln a =-ln a b 1-a b +ln a >-ab-1 1-a b+ln a =1+ln a ,所以ln a +1<b ln b -a ln ab -a <ln b +1,即ln a +1<f b -f a b -a<ln b +1.由f x =ln x +1,可知当0<x <1e 时f x <0,当x >1e时f x >0.所以f x 在0,1e 上递减,在1e,+∞ 上递增.不妨设x 1≤x 2,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1e≤x 1≤x 2<1时,有f x 1 -f x 2 =f x 2 -f x 1 <ln x 2+1 x 2-x 1 <x 2-x 1<x 2-x 1,结论成立;情况二:当0<x 1≤x 2≤1e时,有f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2.对任意的c ∈0,1e,设φx =x ln x -c ln c -c -x ,则φx =ln x +1+12c -x.由于φx 单调递增,且有φ c 2e1+12c=ln c2e1+12c+1+12c -c2e1+12c<ln1e1+12c+1+12c -c2=-1-12c +1+12c=0,且当x ≥c -14ln 2c-1 2,x >c 2时,由12c -x≥ln 2c -1可知φ x =ln x +1+12c -x >ln c 2+1+12c -x =12c -x-ln 2c -1 ≥0.所以φ x 在0,c 上存在零点x 0,再结合φ x 单调递增,即知0<x <x 0时φ x <0,x 0<x <c 时φ x >0.故φx 在0,x 0 上递减,在x 0,c 上递增.①当x 0≤x ≤c 时,有φx ≤φc =0;②当0<x <x 0时,由于c ln 1c =-2f c ≤-2f 1e =2e <1,故我们可以取q ∈c ln 1c,1 .从而当0<x <c1-q 2时,由c -x >q c ,可得φx =x ln x -c ln c -c -x <-c ln c -c -x <-c ln c -q c =c c ln 1c-q <0.再根据φx 在0,x 0 上递减,即知对0<x <x 0都有φx <0;综合①②可知对任意0<x ≤c ,都有φx ≤0,即φx =x ln x -c ln c -c -x ≤0.根据c ∈0,1e和0<x ≤c 的任意性,取c =x 2,x =x 1,就得到x 1ln x 1-x 2ln x 2-x 2-x 1≤0.所以f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2≤x 2-x 1.情况三:当0<x 1≤1e ≤x 2<1时,根据情况一和情况二的讨论,可得f x 1 -f 1e≤1e -x 1≤x 2-x 1,f 1e -f x 2 ≤x 2-1e ≤x 2-x 1.而根据f x 的单调性,知f x 1 -f x 2 ≤f x 1 -f 1e 或f x 1 -f x 2 ≤f 1e-f x 2 .故一定有f x 1 -f x 2 ≤x 2-x 1成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合f x 的单调性进行分类讨论.26.(1)x |1<x <2(2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【解析】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.27.(1)证明见解析(2)存在,P 0,1 (3)严格单调递减【分析】(1)代入M (0,0),利用基本不等式即可;(2)由题得s x =(x -1)2+e 2x ,利用导函数得到其最小值,则得到P ,再证明直线MP 与切线垂直即可;(3)根据题意得到s 1 x 0 =s 2 x 0 =0,对两等式化简得f x 0 =-1g (t ),再利用“最近点”的定义得到不等式组,即可证明x 0=t ,最后得到函数单调性.【解析】(1)当M (0,0)时,s x =(x -0)2+1x -0 2=x 2+1x2≥2x 2⋅1x 2=2,当且仅当x 2=1x 2即x =1时取等号,故对于点M 0,0 ,存在点P 1,1 ,使得该点是M 0,0 在f x 的“最近点”.(2)由题设可得s x =(x -1)2+e x -0 2=(x -1)2+e 2x ,则s x =2x -1 +2e 2x ,因为y =2x -1 ,y =2e 2x 均为R 上单调递增函数,则s x =2x -1 +2e 2x 在R 上为严格增函数,而s 0 =0,故当x <0时,s x <0,当x >0时,s x >0,故s x min =s 0 =2,此时P 0,1 ,而f x =e x ,k =f 0 =1,故f x 在点P 处的切线方程为y =x +1.而k MP =0-11-0=-1,故k MP ⋅k =-1,故直线MP 与y =f x 在点P 处的切线垂直.(3)设s 1x =(x -t +1)2+f x -f t +g t 2,s 2x =(x -t -1)2+f x -f t -g t 2,而s 1x =2(x -t +1)+2f x -f t +g t f x ,s 2x =2(x -t -1)+2f x -f t -g t f x ,若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,设P x 0,y 0 ,则x 0既是s 1x 的最小值点,也是s 2x 的最小值点,因为两函数的定义域均为R ,则x 0也是两函数的极小值点,则存在x0,使得s 1 x 0 =s 2 x 0 =0,即s 1 x 0 =2x 0-t +1 +2f x 0 f x 0 -f (t )+g (t ) =0①s 2 x 0 =2x 0-t -1 +2f x 0 f x 0 -f (t )-g (t ) =0②由①②相等得4+4g (t )⋅f x 0 =0,即1+f x 0 g (t )=0,即f x 0 =-1g (t ),又因为函数g (x )在定义域R 上恒正,则f x 0 =-1g (t )<0恒成立,接下来证明x 0=t ,因为x 0既是s 1x 的最小值点,也是s 2x 的最小值点,则s 1x 0 ≤s (t ),s 2x 0 ≤s (t ),即x 0-t +1 2+f x 0 -f t +g t 2≤1+g t 2,③x 0-t -12+f x 0 -f t -g t 2≤1+g t 2,④③+④得2x 0-t 2+2+2f x 0 -f (t ) 2+2g 2(t )≤2+2g 2(t )即x 0-t 2+f x 0 -f t 2≤0,因为x 0-t 2≥0,f x 0 -f t 2≥0则x 0-t =0f x 0 -f t =0,解得x 0=t ,则f t =-1g (t )<0恒成立,因为t 的任意性,则f x 严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到f x 0 =-1g (t ),再利用最值点定义得到x 0=t 即可.。
历年(2020-2023)全国高考数学真题分类(导数及其应用)汇编(附答案)
历年(2020‐2023)全国高考数学真题分类(导数及其应用)汇编【2023年真题】1. (2023·新高考II 卷 第6题) 已知函数()ln x f x ae x =-在区间(1,2)单调递增,则a 的最小值为( ) A. 2eB. eC. 1e -D. 2e -2.(2023·新课标I 卷 第11题)(多选) 已知函数()f x 的定义域为R ,22()()()f xy y f x x f y =+,则( ) A. (0)0f = B. (1)0f =C. ()f x 是偶函数D. 0x =为()f x 的极小值点3.(2023·新课标II 卷 第11题)(多选)若函数2()ln (0)b cf x a x a x x=++≠既有极大值也有极小值,则( ) A. 0bc >B. 0ab >C. 280b ac +>D. 0ac < 4. (2023·新课标I 卷 第19题) 已知函数(1)讨论()f x 的单调性;(2)证明:当0a >时,3()2ln a+.2f x >5.(2023·新高考II 卷 第22题)(1)证明:当01x <<时,2x x sinx x -<<;(2)已知函数2()(1)f x cosax ln x =--,若0x =是()f x 的极大值点,求a 的取值范围.【2022年真题】6.(2022·新高考I 卷 第7题)设0.10.1a e =,19b =,ln 0.9c =-,则( ) A. a b c <<B. c b a <<C. c a b <<D. a c b <<7.(2022·新高考I 卷 第10题)(多选)已知函数3()1f x x x =-+,则( )A. ()f x 有两个极值点B. ()f x 有三个零点C. 点(0,1)是曲线()y f x =的对称中心D. 直线2y x =是曲线()y f x =的切线8.(2022·新高考I 卷 第15题)若曲线()x y x a e =+有两条过坐标原点的切线,则a 的取值范围是__________. 9.(2022·新高考II 卷 第15题)曲线ln ||y x =经过坐标原点的两条切线方程分别为__________,__________.10.(2022·新高考I 卷 第22题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在y b =直线,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.11.(2022·新高考II 卷 第22题)已知函数().ax x f x xe e =-(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求实数a 的取值范围; (3)设*n N ∈ln(1).n ++>+【2021年真题】12.(2021·新高考I 卷 第7题)若过点(,)a b 可以作曲线e x y =的两条切线,则( ) A. e b a <B. e a b <C. 0e b a <<D. 0e a b <<13.(2021·新高考I 卷 第15题)函数()|21|2ln f x x x =--的最小值为__________. 14.(2021·新高考II 卷 第16题)已知函数,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是__________.15.(2021·新高考I 卷 第22题)已知函数()(1ln ).f x x x =-(1)讨论()f x 的单调性.(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112.e a b<+< 16.(2021·新高考II 卷 第22题)已知函数2()(1).x f x x e ax b =--+(1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 有一个零点.①21,222e a b a <>…; ②10,2.2a b a <<…【2020年真题】17.(2020·新高考I 卷 第21题、II 卷 第22题)已知函数1()ln ln .x f x ae x a -=-+(1)当a e =时,求曲线()y f x =在点(1,(1))f 处的切线与两坐标轴围成的三角形的面积; (2)若()1f x …,求a 的取值范围.参考答案1. (2023·新高考II 卷 第6题) 解:由题意,1()0xf x ae x'=-…对(1,2)x ∀∈恒成立, 1x a xe ∴…,由于1()xg x xe =在(1,2)单调递减,1()(1)g x g e∴<=,1.a e ∴…故答案选:.C2.(2023·新课标I 卷 第11题)(多选)解:选项A ,令0x y ==,则(0)0(0)0(0)f f f =⨯+⨯,则(0)0f =,故A 正确; 选项B ,令1x y ==,则(1)1(1)1(1)f f f =⨯+⨯,则(1)0f =,故B 正确; 选项C ,令1x y ==-,则22(1)(1)(1)(1)(1)f f f =-⨯-+-⨯-,则(1)0f -=, 再令1y =-,则22()(1)()(1)f x f x x f -=-+-,即()()f x f x -=,故C 正确; 选项D ,不妨设()0f x =为常函数,且满足原题22()()()f xy y f x x f y =+, 而常函数没有极值点,故D 错误. 故选:.ABC3.(2023·新课标II 卷 第11题)(多选) 解:因为2()ln (0)b cf x a x a x x=++≠,所以定义域为(0,)+∞, 得232()ax bx c f x x'--=,由题意知220ax bx c --=有两个不相等的正解12,.x x 则,易得0.bc <故选.BCD4. (2023·新课标I 卷 第19题) 解:(1)()1x f x ae '=-,当0a =时()10f x '=-<,()f x 在(,)-∞+∞单调递减, 当0a <时0x ae <,()0f x '<,()f x 在(,)-∞+∞单调递减,当0a >时,令()0f x '=,=-ln x a ,(,ln )x a ∈-∞-时,()0f x '<,()f x 单调递减. (ln ,)x a ∈-+∞时()0f x '>,()f x 单调递增, 故当0a …时()f x 在(,)-∞+∞单调递减,当0a >时, () f x 在区间(,ln )a -∞-单调递减,在区间(ln ,)a -+∞单调递增.(2)由(1)知当0a >时, () f x 在区间(,ln )a -∞-单调递减,在区间(ln ,)a -+∞单调递增.故,令,221()a g a a -'=,令()0g a '=,因为0a >,故2a =,() g a 在区间(0,2单调递减,在区间(,)2+∞单调递增,,即 >?0,()?>?0a g a 时恒成立, 即min 3()2ln 2f x a >+,即当0a >时,3()2ln a+.2f x > 5.(2023·新高考II 卷 第22题)(1)证明:构造函数2()g x sinx x x =-+,则()12g x cosx x '=-+, 令()()h x g x =', 则()20h x sinx '=-+>,所以()h x 在(0,1)上单调递增,则()(0)0g x g '>'=,所以()g x 在(0,1)上单调递增,所以()(0)0g x g >=,即2x x sinx -<;构造函数()G x x sinx =-,则()10G x cosx '=->,所以()G x 在(0,1)上单调递增,则()(0)0G x G >=,即sinx x <, 综上,当01x <<时,2x x sinx x -<<;(2)解:由210x ->,得函数()f x 的定义域为(1,1).-又()()f x f x -=,所以()f x 是偶函数,所以只需考虑区间(0,1).22()1xf x asinax x'=-+-, 令()()F x f x =',则222222()(1)x F x a cosax x +'=-+-, 其中,①若,记a <<时,易知存在0δ>,使得(0,)x δ∈时,,()f x ∴'在(0,)δ上递增,()(0)0f x f ∴'>'=,()f x ∴在(0,)δ上递增,这与0x =是()f x 的极大值点矛盾,舍去.②若,记a <或a >存在0δ'>,使得(,)x δδ∈-''时,,()f x ∴'在(,)δδ-''上递减,注意到(0)0f '=,∴当0x δ-'<<时,当0x δ<<'时,,满足0x =是()f x 的极大值点,符合题意.③若,即a =时,由()f x 为偶函数,只需考虑a =.此时22())1xf x x '=+-,(0,1)x ∈时, 2221()22(1)011x f x x x x x'>-+=->--,()f x ∴在(0,1)上递增, 这与0x =是()f x 的极大值点矛盾,舍去.综上:a 的取值范围为(,).-∞⋃+∞ 6.(2022·新高考I 卷 第7题)解:0.10.1a e =,0.110.1b =-,ln(10.1)c =--,①ln ln 0.1ln(10.1)a b -=+-, 令()ln(1),(0,0.1],f x x x x =+-∈ 则1()1011x f x x x-'=-=<--, 故()f x 在(0,0.1]上单调递减,可得(0.1)(0)0f f <=,即ln ln 0a b -<,所以a b <; ②0.10.1ln(10.1)a c e -=+-, 令()ln(1),(0,0.1],x g x xe x x =+-∈则1(1)(1)1()11x xxx x e g x xe e x x+--'=+-=--, 令()(1)(1)1x k x x x e =+--,所以2()(12)0x k x x x e '=-->, 所以()k x 在(0,0.1]上单调递增,可得()(0)0k x k >=,即()0g x '>,所以()g x 在(0,0.1]上单调递增,可得(0.1)(0)0g g >=,即0a c ->,所以.a c > 故.c a b <<7.(2022·新高考I 卷 第10题)(多选)解:32()1()31f x x x f x x =-+⇒'=-,令()0f x '=得:3x =±,()03f x x '>⇒<-或3x >;()033f x x '<⇒-<<,所以()f x 在(,3-∞-上单调递增,在(,)33-上单调递减,在(,)3+∞上单调递增,所以()f x 有两个极值点(3x =为极大值点,3x =为极小值点),故A 正确;又((1103939f -=---+=+>,(1103939f =-+=->, 所以()f x 仅有1个零点(如图所示),故B 错;又3()1()()2f x x x f x f x -=-++⇒-+=,所以()f x 关于(0,1)对称,故C 正确;对于D 选项,设切点00(,)P x y ,在P 处的切线为320000(1)(31)()y x x x x x --+=--, 即2300(31)21y x x x =--+,若2y x =是其切线,则2030312210x x ⎧-=⎪⎨-+=⎪⎩,方程组无解,所以D 错. 8.(2022·新高考I 卷 第15题)解:(1)x y x a e '=++,设切点为00(,)x y , 故0000(1)x y x a e x =++, 即0000()(1).x x x a e x a e x +=++ 由题意可得,方程(1)x a x x a +=++在(,0)(0,)-∞⋃+∞上有两个不相等的实数根.化简得,20x ax a +-=,240a a =+> ,解得4a <-或0a >,显然此时0不是根,故满足题意. 9.(2022·新高考II 卷 第15题)解:当0x >时,点111(,ln )(0)x x x >上的切线为1111ln ().y x x x x -=- 若该切线经过原点,则1ln 10x -=,解得x e =, 此的切线方程为.x y e=当0x <时,点222(,ln())(0)x x x -<上的切线为()()2221ln y x x x x --=-若该切线经过原点,则2ln()10x --=,解得x e =-, 此时切线方程为.x y e=-10.(2022·新高考I 卷 第22题) 解:(1)由题知()x f x e a '=-,1()g x a x'=-, ①当0a …时,()0f x '>,,()0g x '<,则两函数均无最小值,不符题意; ②当0a >时,()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增;()g x 在1(0,a单调递减,在1(,)a +∞单调递增;故min ()(ln )ln f x f a a a a ==-,min 11()()1ln g x g a a==-,所以1ln 1ln a a a a -=-,即1ln 01a a a --=+, 令1()ln 1a p a a a -=-+,则222121()0(1)(1)a p a a a a a +'=-=>++, 则()p a 在(0,)+∞单调递增,又(1)0p =,所以 1.a =(2)由(1)知,()x f x e x =-,()ln g x x x =-,且()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增;()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,且min min ()() 1.f x g x ==①1b <时,此时min min ()()1f x g x b ==>,显然y b =与两条曲线()y f x =和()y g x = 共有0个交点,不符合题意;②1b =时,此时min min ()()1f x g x b ===,故y b =与两条曲线()y f x =和()y g x =共有2个交点,交点的横坐标分别为0和1; ③1b >时,首先,证明y b =与曲线()y f x =有2个交点, 即证明()()F x f x b =-有2个零点,()()1x F x f x e '='=-, 所以()F x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 又因为()0b F b e --=>,(0)10F b =-<,()20b F b e b =->,(令()2b t b e b =-,则()20b t b e '=->,()(1)20)t b t e >=->所以()()F x f x b =-在(,0)-∞上存在且只存在1个零点,设为1x ,在(0,)+∞上存在且只存在1个零点,设为2.x其次,证明y b =与曲线和()y g x =有2个交点, 即证明()()G x g x b =-有2个零点,1()()1G x g x x'='=-, 所以()(0,1)G x 上单调递减,在(1,)+∞上单调递增,又因为()0b b G e e --=>,(0)10G b =-<,(2)ln 20G b b b =->,(令()ln 2b b b μ=-,则1()10b bμ'=->,()(1)1ln 20)b μμ>=-> 所以()()G x g x b =-在(0,1)上存在且只存在1个零点,设为3x ,在(1,)+∞上存在且只存在1个零点,设为4.x再次,证明存在b ,使得23:x x =因为23()()0F x G x ==,所以2233ln x b e x x x =-=-, 若23x x =,则2222ln x e x x x -=-,即2222ln 0x e x x -+=, 所以只需证明2ln 0x e x x -+=在(0,1)上有解即可, 即()2ln x x e x x ϕ=-+在(0,1)上有零点,因为313312()30e e e eϕ=--<,(1)20e ϕ=->,所以()2ln x x e x x ϕ=-+在(0,1)上存在零点,取一零点为0x ,令230x x x ==即可, 此时取00x b ex =-则此时存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点, 最后证明1402x x x +=,即从左到右的三个交点的横坐标成等差数列, 因为120304()()()0()()()F x F x F x G x G x G x ====== 所以100()()(ln )F x G x F x ==,又因为()F x 在(,0)-∞上单调递减,10x <,001x <<即0ln 0x <,所以10ln x x =, 同理,因为004()()()xF xG e G x ==,又因为()G x 在(1,)+∞上单调递增,00x >即01x e >,11x >,所以04xx e =,又因为0002ln 0xe x x -+=,所以01400ln 2x x x ex x +=+=,即直线y b =与两条曲线()y f x =和()y g x =从左到右的三个交点的横坐标成等差数列.11.(2022·新高考II 卷 第22题)解:(1)1()(1)()x x x x a f x xe e x e f x xe =⇒=-=-⇒'= 当(,0)x ∈-∞时,()0f x '<,()f x 单调递减; 当(0,)x ∈+∞时,()0f x '>,()f x 单调递增.(2)令()()11(0)()(0)0ax x g x f x xe e x g x g =+=-+⇒=厔对0x ∀…恒成立 又()(0)0ax ax x g x e axe e g ''=+-⇒=令()()()()(2)ax ax ax x ax ax x h x g x h x ae a e axe e a e axe e ='⇒'=++-=+-,则(0)21h a '=- ①若(0)210h a '=->,即12a >,00()(0)()(0)limlim 00x x g x g g x h x x ++'→→'-''==>- 所以00,x ∃>使得当时,有()0()0()g x g x g x x'>⇒'>⇒单调递增0()(0)0g x g ⇒>=,矛盾 ②若(0)210h a '=-…,即12a …时,1111ln(1)ln(1)2222()0()x x x x ax ax x ax ax xxx g x e axe e ee eeee g x +++'++=+-=---=⇒剟在[0,)+∞上单调递减,()(0)0g x g =…,符合题意.综上所述,实数a 的取值范围是1.2a …(3)求导易得12ln(1)t t tt->>令112ln ln(1tn =⇒->⇒>+111231ln(ln()ln(ln(1)12n nk kn k nnn k n==+++⇒>⇒>=⋅=+∑()ln1n++⋅⋅⋅>+,证毕.12.(2021·新高考I卷第7题)解:设切点为根据两点之间斜率和导数的几何意义,易知xxe bex a-=-,整理得:000x x xe b x e ae--+=有两解,令()x x xg x e b xe ae=--+,()()xg x a x e'=-,易知()g x最大值为().g a即,解得bae>,又因为当x趋近正无穷时()0g x<,当x趋近负无穷时,()g x趋近0b-<,则0.b>综上,a0b e<<故选.D13.(2021·新高考I卷第15题)解:已知函数,易知函数定义域为(0,)+∞,①:当1(0,]2x∈时,,所以2()2f xx'=--,在1(0,]2x∈单调递减,②当1(,)2x∈+∞时,,所以22(1)()2xf xx x-'=-=,所以()f x在1(,1]2x∈单调递减,在(1,)x∈+∞单调递增,又因为12ln 2<,所以最小值为1. 故答案为1.14.(2021·新高考II 卷 第16题) 解:由题意,,则,所以点和点,12,xxAM BN k e k e =-=,所以12121,0xx e e x x -⋅=-+=,所以,所以,同理,所以故答案为:15.(2021·新高考I 卷 第22题)(1)解:的定义域为,,由解得1x >, 由解得01x <<, 在上单调递增,在上单调递减;(2)证明:由ln ln b a a b a b -=-可得ln ln 11a b a b b a-=-, 整理得:11lnln 11a b a a b b -=-,即,不妨设1211,x x a b==,且120x x <<,即,即证明122x x e <+<, 由在上单调递增,在上单调递减,且,可得1201x x <<<,()f x ()f x先证明122x x +>, 令,02x <<,,在上单调递增,又1201x x <<< ,,,即,由(1)可知在上单调递减,212x x ∴>-,即122x x +>;下面再证明12x x e +<, 不妨设21,x tx = 则1t >,由可得,化简1ln ln 11t tx t =-- , 要证12x x e +<,即证,即证,即证,即证, 设,1t >,,令,1t >, ,, 在上单调递减, ,,在上单调递减,()fx,即,12x x e ∴+<,故112.e a b<+< 16.(2021·新高考II 卷 第22题) 解:(1)由函数的解析式可得:, 当0a …时,若,则单调递减,若,则单调递增; 当102a <<时,若,则单调递增,若,则单调递减, 若,则单调递增; 当12a =时,在R 上单调递增; 当12a >时,若,则单调递增,若,则单调递减, 若,则单调递增;(2)若选择条件①:由于2122e a <…,故212a e <…,则,又((1)0f e=<,由(1)可知函数在区间上单调递增,故函数在区间上有一个零点.,由于212a e <…,故,(0,)x ∈+∞(0,)x ∈+∞结合函数的单调性可知函数在区间上没有零点.综上可得,()f x 有一个零点. 若选择条件②: 由于102a <<,故021a <<,则,当0b …时,24,42e a ><,,而函数在区间上单调递增,故函数在区间上有一个零点. 当0b <时,构造函数,则,当时,单调递减, 当时,单调递增,注意到,故恒成立,从而有:1x e x +…,此时:,当x >,取01x =+,则,即:,而函数在区间上单调递增,故函数在区间上有一个零点.,由于102a <<,021a <<,故,结合函数的单调性可知函数在区间上没有零点.综上可得,()f x 有一个零点.17.(2020·新高考I 卷 第21题、II 卷 第22题)(0,)x ∈+∞解:(1)当a e =,()ln 1x f x e x =-+,1(),(1)1,(1)1x f x e k f e f e x'=-='=-=+,所以切线方程为:1(1)(1)y e e x --=--, 即(1)2y e x =-+,所以切线在y 轴上的截距为2,在x 轴上的截距为21-e, 所以三角形的面积1222.211S e e =⨯⨯=-- 1ln 1(2)()ln ln ln ln x a x f x ae x a e x a -+-=-+=-+,要使()1f x …,只需ln 1ln ln 1a x e x a +--+…,即ln 1ln -1ln a x e a x +-+…,即ln 1ln ln -1+ln ln a x x e a x x x e x +-++=+…, 令()x g x e x =+,,()g x 单调递增,故只需(ln 1)(ln )g a x g x +-…, 因为()g x 为增函数, 只需证ln 1ln a x x +-…,即ln ln 1a x x +-…, 设()ln 1h x x x =+-,11()1xh x x x-'=-=, 所以()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,max ()(1)0h x h ==,所以ln 0a …,1a …, 即a 的取值范围为[1,).+∞。
2024全国高考真题数学汇编:导数在研究函数中的应用
2024全国高考真题数学汇编导数在研究函数中的应用一、单选题1.(2024上海高考真题)已知函数()f x 的定义域为R ,定义集合 0000,,,M x x x x f x f x R ,在使得 1,1M 的所有 f x 中,下列成立的是()A .存在 f x 是偶函数B .存在 f x 在2x 处取最大值C .存在 f x 是严格增函数D .存在 f x 在=1x 处取到极小值二、多选题2.(2024全国高考真题)设函数2()(1)(4)f x x x ,则()A .3x 是()f x 的极小值点B .当01x 时, 2()f x f xC .当12x 时,4(21)0f xD .当10x 时,(2)()f x f x 3.(2024全国高考真题)设函数32()231f x x ax ,则()A .当1a 时,()f x 有三个零点B .当0a 时,0x 是()f x 的极大值点C .存在a ,b ,使得x b 为曲线()y f x 的对称轴D .存在a ,使得点 1,1f 为曲线()y f x 的对称中心三、填空题4.(2024全国高考真题)曲线33y x x 与 21y x a 在 0, 上有两个不同的交点,则a 的取值范围为.四、解答题5.(2024全国高考真题)已知函数3()e x f x ax a .(1)当1a 时,求曲线()y f x 在点 1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.6.(2024全国高考真题)已知函数 1ln 1f x ax x x .(1)当2a 时,求 f x 的极值;(2)当0x 时, 0f x ,求a 的取值范围.7.(2024全国高考真题)已知函数 1ln 1f x a x x .(1)求 f x 的单调区间;(2)当2a 时,证明:当1x 时, 1e x f x 恒成立.8.(2024上海高考真题)对于一个函数 f x 和一个点 ,M a b ,令 22()()s x x a f x b ,若 00,P x f x 是 s x 取到最小值的点,则称P 是M 在 f x 的“最近点”.(1)对于1()(0)f x x x,求证:对于点 0,0M ,存在点P ,使得点P 是M 在 f x 的“最近点”;(2)对于 e ,1,0x f x M ,请判断是否存在一个点P ,它是M 在 f x 的“最近点”,且直线MP 与()y f x 在点P 处的切线垂直;(3)已知()y f x 在定义域R 上存在导函数()f x ,且函数()g x 在定义域R 上恒正,设点11,M t f t g t , 21,M t f t g t .若对任意的t R ,存在点P 同时是12,M M 在 f x 的“最近点”,试判断 f x 的单调性.9.(2024北京高考真题)设函数 ln 10f x x k x k ,直线l 是曲线 y f x 在点 ,0t f t t 处的切线.(1)当1k 时,求 f x 的单调区间.(2)求证:l 不经过点 0,0.(3)当1k 时,设点 ,0A t f t t , 0,C f t , 0,0O ,B 为l 与y 轴的交点,ACO S 与ABO S 分别表示ACO △与ABO 的面积.是否存在点A 使得215ACO ABO S S △△成立?若存在,这样的点A 有几个?(参考数据:1.09ln31.10 ,1.60ln51.61 ,1.94ln71.95 )10.(2024天津高考真题)设函数 ln f x x x .(1)求 f x 图象上点 1,1f 处的切线方程;(2)若 f x a x 在 0,x 时恒成立,求a 的值;(3)若 12,0,1x x ,证明 121212f x f x x x .11.(2024全国高考真题)已知函数3()ln (1)2x f x ax b x x (1)若0b ,且()0f x ,求a 的最小值;(2)证明:曲线()y f x 是中心对称图形;(3)若()2f x 当且仅当12x ,求b 的取值范围.参考答案1.B【分析】对于ACD 利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B ,构造函数2,1,111,1x f x x x x即可判断.【详解】对于A ,若存在()y f x 是偶函数,取01[1,1]x ,则对于任意(,1),()(1)x f x f ,而(1)(1)f f ,矛盾,故A 错误;对于B ,可构造函数 2,1,,11,1,1,x f x x x x满足集合 1,1M ,当1x 时,则 2f x ,当11x 时, 1,1f x ,当1x 时, 1f x ,则该函数 f x 的最大值是 2f ,则B 正确;对C ,假设存在 f x ,使得 f x 严格递增,则M R ,与已知 1,1M 矛盾,则C 错误;对D ,假设存在 f x ,使得 f x 在=1x 处取极小值,则在1 的左侧附近存在n ,使得 1f n f ,这与已知集合M 的定义矛盾,故D 错误;故选:B.2.ACD【分析】求出函数 f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数 f x 在 1,3上的值域即可判断C ;直接作差可判断D.【详解】对A ,因为函数 f x 的定义域为R ,而 22141313f x x x x x x ,易知当 1,3x 时, 0f x ,当 ,1x 或 3,x 时, 0f x 函数 f x 在 ,1 上单调递增,在 1,3上单调递减,在 3, 上单调递增,故3x 是函数 f x 的极小值点,正确;对B ,当01x 时, 210x x x x ,所以210x x ,而由上可知,函数 f x 在 0,1上单调递增,所以 2f x f x ,错误;对C ,当12x 时,1213x ,而由上可知,函数 f x 在 1,3上单调递减,所以 1213f f x f ,即 4210f x ,正确;对D ,当10x 时, 222(2)()12141220f x f x x x x x x x ,所以(2)()f x f x ,正确;故选:ACD.3.AD【分析】A 选项,先分析出函数的极值点为0,x x a ,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a 上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的,a b ,使得x b 为()f x 的对称轴,则()(2)f x f b x 为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a 为()f x 的对称中心,则()(2)66f x f x a ,据此进行计算判断,亦可利用拐点结论直接求解.【详解】A 选项,2()666()f x x ax x x a ,由于1a ,故 ,0,x a 时()0f x ,故()f x 在 ,0,,a 上单调递增,(0,)x a 时,()0f x ,()f x 单调递减,则()f x 在0x 处取到极大值,在x a 处取到极小值,由(0)10 f ,3()10f a a ,则(0)()0f f a ,根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a ,3(2)410f a a ,则(1)(0)0,()(2)0f f f a f a ,则()f x 在(1,0),(,2)a a 上各有一个零点,于是1a 时,()f x 有三个零点,A 选项正确;B 选项,()6()f x x x a ,a<0时,(,0),()0x a f x ,()f x 单调递减,,()0x 时()0f x ,()f x 单调递增,此时()f x 在0x 处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b 为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x ,即32322312(2)3(2)1x ax b x a b x ,根据二项式定理,等式右边3(2)b x 展开式含有3x 的项为303332C (2)()2b x x ,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立,于是不存在这样的,a b ,使得x b 为()f x 的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简(1)33f a ,若存在这样的a ,使得(1,33)a 为()f x 的对称中心,则()(2)66f x f x a ,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a ,于是266(126)(1224)1812a a x a x a即126012240181266a a a a,解得2a ,即存在2a 使得(1,(1))f 是()f x 的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax ,2()66f x x ax ,()126f x x a ,由()02a f x x ,于是该三次函数的对称中心为,22a a f ,由题意(1,(1))f 也是对称中心,故122a a ,即存在2a 使得(1,(1))f 是()f x 的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)()f x 的对称轴为()(2)x b f x f b x ;(2)()f x 关于(,)a b 对称()(2)2f x f a x b ;(3)任何三次函数32()f x ax bx cx d 都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x 的解,即,33b b f aa是三次函数的对称中心4. 2,1 【分析】将函数转化为方程,令 2331x x x a ,分离参数a ,构造新函数 3251,g x x x x 结合导数求得 g x 单调区间,画出大致图形数形结合即可求解.【详解】令 2331x x x a ,即3251a x x x ,令 32510,g x x x x x 则 2325351g x x x x x ,令 00g x x 得1x ,当 0,1x 时, 0g x , g x 单调递减,当 1,x 时, 0g x , g x 单调递增, 01,12g g ,因为曲线33y x x 与 21y x a 在 0, 上有两个不同的交点,所以等价于y a 与 g x 有两个交点,所以 2,1a .故答案为:2,1 5.(1) e 110x y (2)1, 【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析0a 和0a 两种情况,利用导数判断单调性和极值,分析可得2ln 10a a ,构建函数解不等式即可;解法二:求导,可知()e x f x a 有零点,可得0a ,进而利用导数求 f x 的单调性和极值,分析可得2ln 10a a ,构建函数解不等式即可.【详解】(1)当1a 时,则()e 1x f x x ,()e 1x f x ,可得(1)e 2f ,(1)e 1f ,即切点坐标为 1,e 2 ,切线斜率e 1k ,所以切线方程为 e 2e 11y x ,即 e 110x y .(2)解法一:因为()f x 的定义域为R ,且()e x f x a ,若0a ,则()0f x 对任意x R 恒成立,可知()f x 在R 上单调递增,无极值,不合题意;若0a ,令()0f x ,解得ln x a ;令()0f x ,解得ln x a ;可知()f x 在 ,ln a 内单调递减,在 ln ,a 内单调递增,则()f x 有极小值 3ln ln f a a a a a ,无极大值,由题意可得: 3ln ln 0f a a a a a ,即2ln 10a a ,构建 2ln 1,0g a a a a ,则 120g a a a,可知 g a 在 0, 内单调递增,且 10g ,不等式2ln 10a a 等价于 1g a g ,解得1a ,所以a 的取值范围为 1, ;解法二:因为()f x 的定义域为R ,且()e x f x a ,若()f x 有极小值,则()e x f x a 有零点,令()e 0x f x a ,可得e x a ,可知e x y 与y a 有交点,则a ,若0a ,令()0f x ,解得ln x a ;令()0f x ,解得ln x a ;可知()f x 在 ,ln a 内单调递减,在 ln ,a 内单调递增,则()f x 有极小值 3ln ln f a a a a a ,无极大值,符合题意,由题意可得: 3ln ln 0f a a a a a ,即2ln 10a a ,构建 2ln 1,0g a a a a ,因为则2,ln 1y a y a 在 0, 内单调递增,可知 g a 在 0, 内单调递增,且 10g ,不等式2ln 10a a 等价于 1g a g ,解得1a ,所以a 的取值范围为 1, .6.(1)极小值为0,无极大值.(2)12a 【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就12a 、102a 、0a 分类讨论后可得参数的取值范围.【详解】(1)当2a 时,()(12)ln(1)f x x x x ,故121()2ln(1)12ln(1)111x f x x x x x,因为12ln(1),11y x y x在 1, 上为增函数,故()f x 在 1, 上为增函数,而(0)0f ,故当10x 时,()0f x ,当0x 时,()0f x ,故 f x 在0x 处取极小值且极小值为 00f ,无极大值.(2) 11ln 11ln 1,011a x ax f x a x a x x x x,设 1ln 1,01a x s x a x x x,则222111211111a a x a a ax a s x x x x x ,当12a 时, 0s x ,故 s x 在 0, 上为增函数,故 00s x s ,即 0f x ,所以 f x 在 0, 上为增函数,故 00f x f .当102a 时,当0x 0s x ,故 s x 在210,a a 上为减函数,故在210,a a上 0s x s ,即在210,a a上 0f x 即 f x 为减函数,故在210,a a上 00f x f ,不合题意,舍.当0a ,此时 0s x 在 0, 上恒成立,同理可得在 0, 上 00f x f 恒成立,不合题意,舍;综上,12a .【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.7.(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当1x 时,1e 21ln 0x x x 即可.【详解】(1)()f x 定义域为(0,) ,11()ax f x a x x当0a 时,1()0ax f x x,故()f x 在(0,) 上单调递减;当0a 时,1,x a时,()0f x ,()f x 单调递增,当10,x a时,()0f x ,()f x 单调递减.综上所述,当0a 时,()f x 的单调递减区间为(0,) ;0a 时,()f x 的单调递增区间为1,a ,单调递减区间为10,a.(2)2a ,且1x 时,111e ()e (1)ln 1e 21ln x x x f x a x x x x ,令1()e 21ln (1)x g x x x x ,下证()0g x 即可.11()e 2x g x x ,再令()()h x g x ,则121()e x h x x,显然()h x 在(1,) 上递增,则0()(1)e 10h x h ,即()()g x h x 在(1,) 上递增,故0()(1)e 210g x g ,即()g x 在(1,) 上单调递增,故0()(1)e 21ln10g x g ,问题得证8.(1)证明见解析(2)存在,0,1P (3)严格单调递减【分析】(1)代入(0,0)M ,利用基本不等式即可;(2)由题得 22(1)e x s x x ,利用导函数得到其最小值,则得到P ,再证明直线MP 与切线垂直即可;(3)根据题意得到 10200s x s x ,对两等式化简得 01()f xg t ,再利用“最近点”的定义得到不等式组,即可证明0x t ,最后得到函数单调性.【详解】(1)当(0,0)M 时, 222211(0)02s x x x x x ,当且仅当221x x 即1x 时取等号,故对于点 0,0M ,存在点 1,1P ,使得该点是 0,0M 在 f x 的“最近点”.(2)由题设可得 2222(1)e 0(1)e x x s x x x ,则 2212e x s x x ,因为 221,2e x y x y 均为R 上单调递增函数,则 2212e xs x x 在R 上为严格增函数,而 00s ,故当0x 时, 0s x ,当0x 时, 0s x ,故 min 02s x s ,此时 0,1P ,而 e ,01x f x k f ,故 f x 在点P 处的切线方程为1y x .而01110MP k ,故1MP k k ,故直线MP 与 y f x 在点P 处的切线垂直.(3)设 221(1)()s x x t f x f t g t ,222(1)()s x x t f x f t g t ,而 12(1)2()s x x t f x f t g t f x , 22(1)2()s x x t f x f t g t f x ,若对任意的t R ,存在点P 同时是12,M M 在 f x 的“最近点”,设 00,P x y ,则0x 既是 1s x 的最小值点,也是 2s x 的最小值点,因为两函数的定义域均为R ,则0x 也是两函数的极小值点,则存在0x ,使得 10200s x s x ,即 10000212()()0s x x t f x f x f t g t ① 20000212()()0s x x t f x f x f t g t ②由①②相等得 044()0g t f x ,即 01()0f x g t ,即 01()f x g t,又因为函数()g x 在定义域R 上恒正,则 010()f xg t 恒成立,接下来证明0x t ,因为0x 既是 1s x 的最小值点,也是 2s x 的最小值点,则 1020(),()s x s t s x s t ,即 2220011x t f x f t g t g t ,③ 2220011x t f x f t g t g t ,④③ ④得 222200222()2()22()x t f x f t g t g t 即 22000x t f x f t ,因为 2200,00x t f x f t 则 0000x t f x f t,解得0x t ,则 10()f tg t 恒成立,因为t 的任意性,则 f x 严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到 01()f x g t,再利用最值点定义得到0x t 即可.9.(1)单调递减区间为(1,0) ,单调递增区间为(0,) .(2)证明见解析(3)2【分析】(1)直接代入1k ,再利用导数研究其单调性即可;(2)写出切线方程()1()(0)1k y f t x t t t,将(0,0)代入再设新函数()ln(1)1t F t t t ,利用导数研究其零点即可;(3)分别写出面积表达式,代入215ACO ABO S S 得到13ln(1)21501t t t t ,再设新函数15()13ln(1)2(0)1t h t t t t t研究其零点即可.【详解】(1)1()ln(1),()1(1)11x f x x x f x x x x,当 1,0x 时, 0f x ;当 0,x ,()0f x ¢>;()f x 在(1,0) 上单调递减,在(0,) 上单调递增.则()f x 的单调递减区间为(1,0) ,单调递增区间为(0,) .(2)()11k f x x ,切线l 的斜率为11k t,则切线方程为()1()(0)1k y f t x t t t,将(0,0)代入则()1,()111k k f t t f t t t t,即ln(1)1k t k t t tt ,则ln(1)1t t t ,ln(1)01t t t ,令()ln(1)1t F t t t,假设l 过(0,0),则()F t 在(0,)t 存在零点.2211()01(1)(1)t t t F t t t t ,()F t 在(0,) 上单调递增,()(0)0F t F ,()F t 在(0,) 无零点, 与假设矛盾,故直线l 不过(0,0).(3)1k 时,12()ln(1),()1011x f x x x f x x x.1()2ACO S tf t ,设l 与y 轴交点B 为(0,)q ,0t 时,若0q ,则此时l 与()f x 必有交点,与切线定义矛盾.由(2)知0q .所以0q ,则切线l 的方程为 111ln 1x t y t t t,令0x ,则ln(1)1t y q y t t.215ACO ABO S S ,则2()15ln(1)1t tf t t t t,13ln(1)21501t t t t ,记15()13ln(1)2(0)1th t t t t t, 满足条件的A 有几个即()h t 有几个零点.2222221313221151315294(21)(4)()21(1)(1)(1)(1)t t t t t t t h t t t t t t ,当10,2t时, 0h t ,此时 h t 单调递减;当1,42t时, 0h t ,此时 h t 单调递增;当 4,t 时, 0h t ,此时 h t 单调递减;因为1(0)0,0,(4)13ln 520131.6200.802h h h,15247272(24)13ln 254826ln 548261.614820.5402555h,所以由零点存在性定理及()h t 的单调性,()h t 在1,42上必有一个零点,在(4,24)上必有一个零点,综上所述,()h t 有两个零点,即满足215ACO ABO S S 的A 有两个.【点睛】关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题.10.(1)1y x (2)2(3)证明过程见解析【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到2a ,再证明2a 时条件满足;(3)先确定 f x 的单调性,再对12,x x 分类讨论.【详解】(1)由于 ln f x x x ,故 ln 1f x x .所以 10f , 11f ,所以所求的切线经过 1,0,且斜率为1,故其方程为1y x .(2)设 1ln h t t t ,则 111t h t t t,从而当01t 时 0h t ,当1t 时 0h t .所以 h t 在 0,1上递减,在 1, 上递增,这就说明 1h t h ,即1ln t t ,且等号成立当且仅当1t .设 12ln g t a t t ,则ln 1f x a x x x a x x a x g .当 0,x0, ,所以命题等价于对任意 0,t ,都有 0g t .一方面,若对任意 0,t ,都有 0g t ,则对 0,t 有112012ln 12ln 1212g t a t t a t a t at a t t t,取2t ,得01a ,故10a .再取t,得2022a a a,所以2a .另一方面,若2a ,则对任意 0,t 都有 212ln 20g t t t h t ,满足条件.综合以上两个方面,知a 的值是2.(3)先证明一个结论:对0a b ,有 ln 1ln 1f b f a a b b a.证明:前面已经证明不等式1ln t t ,故lnln ln ln ln ln ln 1ln 1bb b a a a b a aa b b b b b a b a a,且1lnln ln ln ln ln ln ln 1ln 11a a b b a a b b b a b b a a a a a a b a b a b b,所以ln ln ln 1ln 1b b a a a b b a,即 ln 1ln 1f b f a a b b a.由 ln 1f x x ,可知当10e x 时 0f x ,当1ex 时()0f x ¢>.所以 f x 在10,e上递减,在1,e上递增.不妨设12x x ,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1211ex x 时,有122122121ln 1f x f x f x f x x x x x x ,结论成立;情况二:当1210e x x 时,有 12121122ln ln f x f x f x f x x x x x .对任意的10,e c,设ln ln x x x c cln 1x x 由于 x单调递增,且有1111111ln 1ln11102e2e ec c,且当2124ln 1x c c,2cx2ln 1c 可知2ln 1ln 1ln 102c x x c.所以 x 在 0,c 上存在零点0x ,再结合 x 单调递增,即知00x x 时 0x ,0x x c 时 0x .故 x 在 00,x 上递减,在 0,x c 上递增.①当0x x c 时,有 0x c ;②当00x x112221e e f f c,故我们可以取1,1q c .从而当201cx q1ln ln ln ln 0x x x c c c c c c q c.再根据 x 在 00,x 上递减,即知对00x x 都有 0x ;综合①②可知对任意0x c ,都有 0x ,即ln ln 0x x x c c .根据10,e c和0x c 的任意性,取2c x ,1x x,就得到1122ln ln 0x x x x .所以12121122ln ln f x f x f x f x x x x x 情况三:当12101e x x时,根据情况一和情况二的讨论,可得11e f x f21e f f x而根据 f x 的单调性,知 1211e f x f x f x f或 1221e f x f x f f x .故一定有12f x f x 成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合 f x 的单调性进行分类讨论.11.(1)2 (2)证明见解析(3)23b【分析】(1)求出 min 2f x a 后根据()0f x 可求a 的最小值;(2)设 ,P m n 为 y f x 图象上任意一点,可证 ,P m n 关于 1,a 的对称点为 2,2Q m a n 也在函数的图像上,从而可证对称性;(3)根据题设可判断 12f 即2a ,再根据()2f x 在 1,2上恒成立可求得23b .【详解】(1)0b 时, ln 2xf x ax x,其中 0,2x ,则112,0,222f x a a x x x x x,因为 22212x x x x,当且仅当1x 时等号成立,故 min 2f x a ,而 0f x 成立,故20a 即2a ,所以a 的最小值为2 .,(2) 3ln12x f x ax b x x的定义域为 0,2,设 ,P m n 为 y f x 图象上任意一点,,P m n 关于 1,a 的对称点为 2,2Q m a n ,因为 ,P m n 在 y f x 图象上,故 3ln 12m n am b m m,而 3322ln221ln 122m m f m a m b m am b m a m m,2n a ,所以 2,2Q m a n 也在 y f x 图象上,由P 的任意性可得 y f x 图象为中心对称图形,且对称中心为 1,a .(3)因为 2f x 当且仅当12x ,故1x 为 2f x 的一个解,所以 12f 即2a ,先考虑12x 时, 2f x 恒成立.此时 2f x 即为 3ln21102x x b x x在 1,2上恒成立,设 10,1t x ,则31ln201t t bt t在 0,1上恒成立,设 31ln2,0,11t g t t bt t t,则2222232322311t bt b g t bt t t,当0b ,232332320bt b b b ,故 0g t 恒成立,故 g t 在 0,1上为增函数,故 00g t g 即 2f x 在 1,2上恒成立.当203b 时,2323230bt b b ,故 0g t 恒成立,故 g t 在 0,1上为增函数,故 00g t g 即 2f x 在 1,2上恒成立.当23b ,则当01t 时, 0g t故在 上 g t 为减函数,故 00g t g ,不合题意,舍;综上, 2f x 在 1,2上恒成立时23b .而当23b 时,而23b 时,由上述过程可得 g t 在 0,1递增,故 0g t 的解为 0,1,即 2f x 的解为 1,2.综上,23b .【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.。
20112019高考数学函数与导数分类汇编文.docx
2011-2019 新课标文科高考《函数与导数》分类汇编一、选择题【 2019 新课标 1 】 3.已知 a log 2 0.2,b 20.2, c 0.20.3,则()A . a b cB . a c bC . c a bD . b c a【答案】 B】 5.函数 f(x)= sin x【 2019 新课标 1x 在[ —π,π ] 的图像大致为cos xx2A .B .C .D .【答案】 D【 2019 新课标 2 】6.设 f(x) 为奇函数,且当 x ≥0时, f(x)= e x1,则当 x<0时, f(x)= ( )A . ex1B . ex1C . ex1D . ex1【答案】 D【 2019 新课标 2 】10 .曲线 y=2sinx+cosx 在点 ( π,– 1) 处的切线方程为( )A . x y1 0B . 2x y 2 1 0C . 2x y 2 1 0D . x y1 0【答案】 Ce xln在点 1, ae【 2019 新课标 3】 7. 已知曲线处的切线方程为 y2 xb ,则()yaxxA. a e, b1B. ae,b1C. ae 1,b 1D. a e 1, b1【答案】 D【详解】详解:y/aexln x1, k = y /|x=1 = ae+ 1= 2a = e- 1将 (1,1) 代入 y2 xb 得 2 b1,b1 ,故选 D .【点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要 “慢 ”,计算要准,是解答此类问题的基本要求.【 2019 新课标 3】 12. 设 fx 是定义域为R 的偶函数,且在0,单调递减,则( )132123A. ff 22f 23B. ff 23f 22log 5log 841413223C. f22f 23flog 5D. f23f22f log 5441【答案】 C【详解】fx是 R 的偶函数,flog 3 1f log 3 4.423,又 f x2 3log 3 41在 (0,+∞) 单调递减,f log 3 4f 2 3f 2 2,22321f log 3,故选 C .f 22f 234【点睛】本题主要考查函数的奇偶性、单调性,考查学生转化与化归及分析问题解决问题的能力.【 2018 新课标 1 】6.设函数f ( x)x 3 ( a 1)x 2ax . 若 f ( x) 为奇函数,则曲线y f (x) 在点 (0,0)处的切线方程为()A . y2x B . yxC . y 2 xD . y x【答案】 D【 2018 新课标】 12 .设函数 f (x)x≤2 , x则满足 f (x 1) f (2 x)的 x 的取值范围是()0,1, x0,A .( ,1]B . (0, )C . ( 1,0)D . (,0)【答案】 D【 2018 新课标 2 】3.函数f (x)e xe x的图象大致为()x 2【答案】 B【 2018 新课标 2 】12 .已知 f ( x)是定义域为( ,) 的奇函数,满足 f (1x) f (1 x) .若 f)1( 2,则()A .50B.0C.2D.50【答案】 C【 2018 新课标 3 】7.下列函数中,其图像与函数y ln x 的图像关于直线x 1 对称的是()A .y ln 1xB .y ln 2x C.y ln 1x D .y ln 2x【答案】 B2【 2018 新课标 3 】9.函数 yx 4 x 22 的图像大致为()【答案】 D【 2017 新课标 1 】9.已知函数 f (x)lnxln(2x) ,则(C )A . f (x) 在( 0,2 )单调递增B . f (x) 在( 0,2 )单调递减C . y= f (x) 的图像关于直线 x=1 对称D . y= f (x) 的图像关于点(1,0)对称【 2017 新课标 2 】8. 函数 f ( x) ln( x22x8) 的单调递增区间是(D )A.(- ,-2)B. (- ,-1)C.(1, +) D.(4,+)【解析】由x 2﹣ 2x ﹣ 8> 0 得: x ∈(﹣ ∞,﹣ 2)∪( 4, +∞),令 t=x 2﹣ 2x ﹣ 8,则 y=lnt ,∵ x ∈(﹣ ∞,﹣ 2 )时, t=x 2﹣ 2x ﹣ 8 为减函数;x ∈( 4 ,+∞)时, t=x 2﹣2x﹣ 8 为增函数; y=lnt 为增函数,故函数 f ( x ) =ln ( x 2﹣ 2x ﹣8)的单调递增区间是(4 , +∞),故选: D .【 2017 新课标 3 】7. 函数 y 1x的部分图像大致为(x sin 2D )xB .C .D .【新课标 】 已知函数() 22( x1x1)2017 3 12. fxxxa ee有唯一零点,则 a()1B11D 1A3C22【解析】'() 22( x1e x 1)0 ,得1fxxa ex即 x1 为函数的极值点,故f (1)则 122a0 , a12【 2016 新课标 1 】( 8)若 a>b>0 , 0<c<1 ,则( B) (A ) log a b c ccc ( D ) c ab c<logc ( B ) log a<log b ( C ) a <b >c【 2016 新课标 1 】( 9)函数 y=2x 2–e|x|在 [–2,2] 的图像大致为(D )A. B. C.D.31【2016 新课标 1】( 12 )若函数 f ( x)x -sin2 x a sin x 在,单调递增, 则 a 的取值范围是( C)31(C )11(D )1( A )1,1(B )1,,1,3333y=10lgx【 2016 新课标 2】10. 下列函数中, 其定义域和值域分别与函数 的定义域和值域相同的是( D)( A ) y=x( B ) y=lg x( C ) y=2x( D ) y1x【解析】 y10lg xx ,定义域与值域均为0,,只有 D 满足,故选D .【 2016 新课标 2】12. 已知函数 f(x) ( x ∈R )满足 f(x)=f(2-x) ,若函数 y=|x 2-2x-3|与 y=f(x) 图像的交点为( x 1 ,y 1), (x 2 2m,y ), ?,( x ,ymm ),则x i= (B)i 1(A)0(B) m(C) 2m(D) 4 m1 对称,当 m| x 2【解析】因为 yf ( x), y 2 x 3| 都关于 x 1 对称,所以它们交点也关于x 为偶数时,其和为2mm ,当 m 为奇数时,其和为2m 1 1 m ,因此选 B. 22421【 2016 新课标 3 】( 7 )已知 a 23, b33, c25 3,则( A)(A)b<a<c(B) a<b<c(C) b<c<a(D) c<a<b【 2016 新课标 3】( 4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图 .图中 A 点表示十月的平均最高气温约为15 ℃, B 点表示四月的平均最低气温约为5℃ .下面叙述不正确的是(D )( A )各月的平均最低气温都在0℃以上( B )七月的平均温差比一月的平均温差大( C )三月和十一月的平均最高气温基本相同( D)平均最高气温高于20 ℃的月份有 5 个【 2015 新课标 1】(10)已知函数,且f(a)=-3,则f(6-a)=(A) 7531( A)-(B)-(C)-(D)-4444【 2015新课标 1】( 12)设函数 y=f ( x)的图像关于直线y=-x 对称,且f( -2 ) +f ( -4) =1 ,则a= (C)( A)-1(B)1(C)2(D )411) 成立的x的取 1 + x 2【 2015新课标 2 】12.设函数 f ( x) = ln(1 + x ) -,则使得 f ( x) > f (2x -值范围是(A)41B. (,1(1,)1111A. ( ,1)) C. (, ) D.(,)( ,)333333[解析 ]因为函数f ( x)ln(1x )12 ,是偶函数,x[ 0,)时函数是增函数1x(2x 1)2,解得1f ( x) f ( 2x 1)x2x1,x 2x 1. 故选A.3【 2015 新课标 2 】11. 如图,长方形的边AB=2 , BC=1,O 是 AB 的中点,点P 沿着边 BC,CD, 与 DA 运动,记∠ BOP=x,将动点P 到 A,B 两点的距离之和表示为函数 f (x),则 f(x) 的图像大致为(B)P C DxO B AY Y YY2222O π π3 ππX O π π3π ππ π 3ππXπ π3ππXO O2X 42442424444 A B C D[解析 ]如图,当点P 在 BC 上时,∵DBOP= x,PB= tan x,PA= 4 + tan2 x ,PA+ PB= tan x + 4 + tan2 x , 当 x时取得最大值1 5 ,以A,B为焦点C,D为椭圆上两4定点作椭圆,显然,当点 P 在 C,D 之间移动时 PA+PB< 1 5 .又函数 f ( x)不是一次函数,故选B.【 2014 新课标 1 】5. 设函数 f (x), g( x) 的定义域为R ,且f (x)是奇函数,g (x) 是偶函数,则下列结论中正确的是(C)A. f (x)g ( x)是偶函数B. | f ( x) | g( x)是奇函数C. f ( x) | g( x) |是奇函数D. | f ( x) g (x) |是奇函数【参考答案】:设 F ( x) f ( x) g ( x),则 F ( x)f( x) g( x) ,∵f ( x)是奇函数,g( x) 是偶函数,∴ F (x) f (x) g(x) F ( x) ,F ( x)为奇函数,选 C.【解题方法】:①把四个选项逐一分析,②利用性质f ( x) 奇, | f ( x) | 为偶,奇奇 =偶,奇偶 =奇。
全国卷历年高考函数与导数真题归类分析(含答案)
全国卷历年高考函数与导数真题归类分析(含答案)全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套)函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数$f(x)=x\ln(x+a+x^2)$为偶函数,则$a=$解析】由题知$y=\ln(x+a+x^2)$是奇函数,所以$\ln(x+a+x^2)+\ln(-x+a+x^2)=\ln(a+x-x)=\ln a$,解得$a=1$。
考点:函数的奇偶性。
2.(2018年2卷11)已知$$f(x)=\begin{cases}\frac{x+1}{x},x<0\\ax^2,x\geq0\end{cases}$$ 是定义域为$(-\infty,0)\cup[0,+\infty)$的奇函数,满足$f(\frac{1}{2})=1$。
若,$f'(-1)=-2$,则$a=$解:因为$f(x)$是奇函数,所以$f(-\frac{1}{2})=-1$,$f(0)=0$。
又因为$f'(-1)=-2$,所以$f'(-x)|_{x=1}=2$,$f'(0+)=0$,$f'(0-)=0$。
由此可得$$\begin{aligned}a&=\lim\limits_{x\to 0^+}\frac{f(x)-f(0)}{x-0}\\&=\lim\limits_{x\to 0^+}\frac{ax^2}{x}\\&=\lim\limits_{x\to0^+}ax\\&=\lim\limits_{x\to 0^-}ax\\&=-\frac{1}{2}\end{aligned}$$ 故选B。
3.(2016年2卷12)已知函数$f(x)(x\in R)$满足$f(-x)=2-f(x)$,若函数$y=\sum\limits_{i=1}^m(x_i+y_i)$的图像的交点为$(x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)$,则$\sum\limits_{i=1}^m(x_i+y_i)=( )$解析】由$f(x)$的奇偶性可得$f(0)=1$,又因为$f(x)$是偶函数,所以$f'(0)=0$。
函数与导数压轴题题型与解题方法(高考必备)
函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。
下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。
其中描述正确的个数有(。
)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。
当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。
当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。
当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。
因此,答案为$\boxed{\textbf{(C) }2}$。
高中高考数学函数与导数分类汇编文.docx
2011-2019新课标文科高考《函数与导数》一、选择题【 2019 新课标10.20.3)】 3.已知a log20.2, b 2 ,c0.2 ,则(A .a b cB .a c b C.c a b 【答案】 B【 2019 新课标1sin x x】 5.函数 f(x)=2在 [ —π,π]的图像大致为cos x xA .B .C. D .【答案】D【 2019新课标 2 】 6.设 f(x) 为奇函数,且当xx≥0时, f(x)= e 1,则当x1x xA .eB .e1C .e1【答案】D【2019 新课标 2 】 10.曲线 y=2sinx+cosx 在点 ( π,–1)处的切线方程为(A .x y 1 0 B .2 x y 2 1 0 C.2 x y 2 1 0 D .x y 1 0【答案】 Cy x x x1, ae 处的切线方程【 2019新课标3】 7.已知曲线a在点e lnA. a e, b1B. a e, b 1C. a e 1 ,b 1【答案】C【详解】f x 是 R 的偶函数,f log 31f log 3 4 .43 f x 在 (0, +∞)单调递减, f log 3 42,又 log 3 4 1 2 23 21f 22f 23f log 3,故选 C .4【点睛】本题主要考查函数的奇偶性、单调性,考查学生转化与化归及分析问题力.【 2018 新课标 1 】6 .设函数3 2f ( x) x ( a 1) xax . 若 f ( x) 为奇函数,处的切线方程为()A . y2 x B . yxC . y2 x D .【答案】 D【 2018 新课标】 12.设函数A . (, 1] B .【答案】 D2 x,x ≤ 0, 1) f (2f ( x )则满足 f (x1,x 0,(0,)C . ( 1,0)D .xx【 2018 新课标 2 】 3.函数ee)f (x )x 2的图象大致为(【 2018 新课标 3 】 9.函数y x4x2 2 的图像大致为()【答案】 D【 2017 新课标 1 】 9.已知函数 f ( x )ln x ln(2x),则(C)A . f ( x)在( 0,2)单调递增B .f (x )在( 0,2 )单C. y= f (x )的图像关于直线x=1 对称 D . y= f (x)的图像关【 2017 新课标 2 】 8. 函数f ( x)ln( x 2的单调递增区间是(2 x 8)A.(-,-2)B. (-,-1)C.(1, +)D. (4, +)2【解析】由 x ﹣ 2x﹣ 8> 0 得: x∈(﹣∞,﹣ 2)∪( 4, +∞),令 t=x2﹣ 2x ﹣ 8,则 y=lnt ,∵ x∈(﹣∞,﹣ 2)时, t=x2﹣ 2x ﹣ 8为减x ∈( 4 , +∞)时, t=x 2﹣ 2x ﹣ 8 为增函数;y=lnt 为增函数,故函数 f ( x) =ln ( x2﹣ 2x ﹣ 8)的单调递增区间是(4, +∞),故选:【 2017 新课标 3 】 7. 函数y1x sin x的部分图像大致为(D 2xB .C.【 2017 新课标 3 】 12. 已知函数2x 1x 1f ( x ) x 2 x a(e e ) 有唯一111A B C D 1【 2016新 1 】( 12)若函数 f ( x)x -1a sin x 在, sin2 x3是(C)( A )1,1 (B)1,111( D )1( C)3,1,333y=10 lg【 2016新 2 】10. 下列函数中,其定域和域分与函数( D)( A ) y=x( B) y=lg xx( D )y ( C) y=2【解析】 y 10lg x x ,定域与域均0,,只有 D 足,故【 2016新 2 】 12. 已知函数f(x) ( x∈ R)足 f(x)=f(2-x),若函数m交点( x1,y 1), (x2,y2 ),⋯,(x m,y m),x i =(B)i 1(A)0(B)m(C) 2m(D) 4m 【解析】因 y f ( x), y| x 2 2 x 3| 都关于x 1 称,所以它交点偶数,其和2mm ,当 m 奇数,其和m11 m ,222421【 2016新 3 】( 7)已知a 2 3 , b33 , c 25 3,(A)(A)b<a<c(B) a<b<c(C) b<c<a(D) c<a<b 【2016 新 3 】( 4)某旅游城市向游客介本地的气温情况,制了一年中各月平均最高气温和平均最低气温的雷达 .中 A 点表示十月的平均最高气温15℃, B 点表示四月的平均最低气温5℃ .下面叙述不正确的是( D )( A )各月的平均最低气温都在0℃以上( B )七月的平均温差比一月的平均温差大1B. (,1(1,) C. (11) D.A. ( ,1))3,333[解析 ] 因为函数 f ( x)ln(1x )12 , 是偶函数, x[ 0,)时函x1f ( x) f ( 2 x 1)x 2 x1,2(2 x211.故x1) , 解得x3【 2015新课标 2 】 11.如图,长方形的边AB=2 , BC=1,O是 AB 的中P 沿着边 BC,CD, 与 DA 运动,记∠ BOP=x ,将动点P 到 A,B 两点的距和表示为函数 f (x ),则 f(x) 的图像大致为(B)Y Y Y2222O ππ3π πX O ππ3π πππ 3 ππXXO424424244CA B[解析 ] 如图,当点P 在 BC 上时,∵DBOP= x,PB=tan x,PA=4+ t2时取得最大值 15 PA+ PB= tan x + 4 + tan x ,当x4定点作椭圆,显然,当点 P 在 C,D 之间移动时 PA+PB< 15 B.,以 A .又函数【 2014 新课标 1 】5. 设函数 f ( x ), g( x ) 的定义域为R ,且 f (x )是奇函列结论中正确的是(C)A. f ( x) g ( x) 是偶函数B.| f ( x) | g ( x) 是奇函数C. f ( x) | g ( x) | 是奇函数D.| f ( x) g ( x ) | 是奇函数【参考答案】:设 F ( x) f ( x) g ( x) ,则 F ( x) f ( x) g ( x) ,∵当 a 0时, x,20; x2,0 , f ( x) 0; x0, , f ( x)aa要使 f ( x) 有唯一的零点24 ,a x0且 x0>0,只需 f (2) 0 ,即aa[解析 2]由已知a0 , f ( x )=ax32有唯一的正零点,等价于3 x11,则问题又等价于a33t有唯一的正零根有唯一的正零根,令 t tx有唯一的交点且交点在在y 轴右侧,记f (t)33t , f (t )2 t3tt, 1 , f (t)0; t1,1, f (t )0; , t1,, f (t )0,正零根,只需a f ( 1) 2 ,选C【 2014新课标 2 】 3. 函数f x在 x x0处导数存在,若p : f( x0 )点,则(C)( A )p是q的充分必要条件( B )p是q的充分条件,但不是( C)p是q的必要条件,但不是q 的充分条件( D )p既不是q的充分条件,也不是q 的必要条件【 2014新课标 2 】( 11)若函数 f ( x)kx ln x 在区间(1,+)单调( D )( A ), 2(B), 1(C)2,(D)1,【 2013 新课标 1 】 12.已知函数f(x) =20,若x 2 x, xln( x1), x0.|f(x)|≥ax,则a的取值范围是( D ).A . ( -∞, 0)B . (-∞, 1)C . [ - 2,1]D . [ - 2,0]【解析】可画出|f(x)| 的图象如图所示.当 a> 0 时, y= ax 与 y = |f(x)| 恒有公共点,所以排除B, C;【 2013 新课标 2 】 11.已知函数3 2f(x) = x + ax + bx + c ,下列结论中错误A . ? x 0 ∈ R , f(x 0)= 0B .函数 y = f(x) 的图像是中心对称图形C .若 x 0 是 f(x) 的极小值点,则 f(x) 在区间 ( -∞, x 0)单调递减D .若 x 0 是 f(x) 的极值点,则 f ′0 )= 0(x [解析 ] 若 x 0 是 f(x) 的极小值点,则 y = f(x) 的图像大致如下图所示,则在 (-∞, x 0)上不单调,故C 不正确.【 2013 新课标 2 】 12. 若存在正数 x 使 2x(x - a)< 1 成立,则 a 的取值范围是 ( D).A . ( -∞,+ ∞ )B . (- 2,+ ∞ )C . (0,+ ∞ )D . (- 1,+ ∞)1xx[解析 ] 由题意可得, a x1,该函数2(x > 0).令 f(x) = x2可知 f(x) 的值域为 (- 1,+ ∞),故 a >- 1 时,存在正数 x 使原不等式成【 2012 新课标 1 】 11.当 0< x ≤1xlog a x ,则 a 的取值范围是时, 42A . (0 ,2) B . ( 222, 1)C . (1 , 2 )D . ( 2 , 2)a1[解析 ] :由指数函数与对数函数的图像知11,解得 0alog a4 22【 2012 新课标 2 】 2.函数 yx1( x1)的反函数为(A)21( x 0)B . y x221( x 0)DA . y x 1( x 1) C . yx【解析】由yx1x12x21,而 x1,故 yyy21( x0) ,故选答案Ay x1【 2012新课标 2 】 11.已知x ln, y log 5 2 ,z e 2 ,则(【 2011新课标1】 (5) 下面四个条件中,使a b 成立的充分而不必要的条2233( A )a>b 1( B )a>b 1( C)a>b( D )a>b【解析】即寻找命题P ,使 P a b ,且 a b 推不出 P ,逐项验证知可【 2011 新课标1】(10)设 f( x ) 是周期为2的奇函数,当0x 1 时,f ((A)(A) -1(B)11(D)1 24(C)24【解析】由f( x ) 是周期为 2 的奇函数 ,利用周期性和奇偶性得:f (5f (5f (111(111 )2)) f ( )2)2 222222【 2011新课标2】 3.下列函数中,既是偶函数又在( 0,+)单调递增A .y x3B .y | x | 1C .y x21D .y 2 [解析 ] 可以直接判断: A 是奇函数, B 是偶函数,又是(0, +∞)的【 2011新课标2】 10.在下列区间中,函数f(x)=e x+4x-3 的零点所在的A .(1,0)B.(0,1)C.(1,1) D .(1,3)444224[解析 ] :只需验证端点值,凡端点值异号就是答案. 故选 C.【 2011新课标2】 12.已知函数y = f (x) 的周期为2,当 x ∈ [-1,1] 时 f 的图像与函数y = |lgx| 的图像的交点共有(A)A . 10 个B. 9 个C. 8 个 D . 1 个[解析 ] :本题可用图像法解,易知共10 个交点,故选 A.1二、填空题【 2019 新课标 1 】 13.曲线y 3(x 2x) e x在点(0,0)处的切线方程为【答案】y=3x【 2018新课标1】 13.已知函数 f ( x )log 2 ( x 2a) .若 f (3) 1 ,则 a 【答案】 -7【 2018新课标2】 13.曲线y2ln x 在点(1,0)处的切线方程为_____【答案】 y=2x –2【 2018新课标3】 16.已知函数f x ln12x 1 , f a 4 ,x【答案】 -2【 2016新课标3】( 16)已知 f (x) 为偶函数,当x0 时, f ( x)x e(1,2) 处的切线方程式__ y 2 x ________【 2015新课标1】( 14)已知函数f(x)=ax 3 +x+1的图像在点(1, f(1) a= 1.【 2015新课标2】( 13)已知函数 f (x)ax 3 2 x的图像过点( - 1,【 2015新课标2】( 16)已知曲线y x ln x 在点(1,1)处的切线与曲y ax 2(a2)x1相切,则 a8。
《历年高考专题汇编》函数与导数
绝密★启用前《历年高考专题汇编》—>函数与导数试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题(题型注释)1.2510+50.25=A 、0B 、1C 、2D 、42.22(1cos )x dx ππ-+⎰等于( )A.πB.2C.π-2D.π+23.设f(x)为定义在R 上的奇函数,当x ≥0时,f(x)=2x+2x+b(b 为常数),则f(-1)= (A) 3 (B) 1 (C)-1 (D)-34.设定义在R 上的函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( ) (A)13 (B)2 (C)132 (D)21375.已知函数3()2x f x +=,1()fx -是()f x 的反函数,若16mn =(m n ∈+R ,),则11()()f m f n --+的值为( )A .2-B .1C .4D .106.设正数a,b 满足4)(22lim =-+→b ax xx , ) A .0 B .17.已知函数y M ,最小值为m8.已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c = (A )-2或2 (B )-9或3 (C )-1或1 (D )-3或19.已知以4T =为周期的函数(1,1]()12,(1,3]x f x x x ⎧∈-⎪=⎨--∈⎪⎩,其中0m >。
若方程3()f x x =恰有5个实数解,则m 的取值范围为( )A .8)3B .C .48(,33D .4(310.已知函数2()22(4)1f x mx m x =--+,()g x mx =,若对于任一实数x ,()f x 与()g x 至少有一个为正数,则实数m 的取值范围是A . (0,2)B .(0,8)C .(2,8)D . (,0)-∞11.定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为 (A )0(B )1(C )3(D )512.若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()xf xg x e -=,则有()A .(2)(3)(0)f f g <<B .(0)(3)(2)g f f <<C .(2)(0)(3)f g f <<D .(0)(2)(3)g f f <<13.设a ∈R ,若函数3,axy e x x =+∈R 有大于零的极值点,则A .3a >-B .3a <-C D 14.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,解集为( ) A .(10)(1)-+∞ ,, B .(1)(01)-∞- ,, C .(1)(1)-∞-+∞ ,,D .(10)(01)- ,,15.函数f (xA .(- ∞,-4)[∪2,+ ∞]B .(-4,0) ∪(0,1)C .[-4,0]∪(0,1)]D .[-4,0∪(0,1)16,②2()(2)f x x =-,③()cos(2)f x x =+,判断如下三个命题的真假:命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 命题丙:(2)()f x f x +-在()-∞+∞,上是增函数. 能使命题甲、乙、丙均为真的所有函数的序号是( ) A.①③ B.①② C.③ D.②17.设()()sin f x x ωϕ=+,其中0ω>,则()f x 是偶函数的充要条件是() (A)()01f = (B)()00f = (C)()'01f =(D)()'00f=18.设点P 在曲线上,点Q 在曲线ln(2)y x =上,则 ) A.1ln 2- C.1ln 2+ 19.将函数21x y =+的图象按向量a 平移得到函数12x y +=的图象,则( ) A .(11)=--,a B .(11)=-,aC .(11)=,aD .(11)=-,a第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题(题型注释)20.函数()f x 对于任意实数x 满足条若()15,f =-则()()5f f =_______________。
高考数学分类汇编函数(包含导数)
高考数学分类汇编函数(包含导数)一、选择题1.(市回民中学2008-2009学年度上学期高三第二次阶段测试文科) 函数x x x f ln )(+=的零点所在的区间为 ( )A .(-1,0)B .(0,1)C .(1,2)D .(1,e )答案:B.2(市回民中学2008-2009学年度上学期高三第二次阶段测试文科)具有性质:1()()f f x x =-的函数,我们称为满足“倒负”变换的函数,下列函数:①1y x x=-;②1y x x =+;③,(01)0,(1)1(1)x x y x x x⎧⎪<<⎪==⎨⎪⎪->⎩中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .只有① 答案:B.3.(二中2009届高三期末数学试题) 已知0||2||≠=b a ,且关于x 的函数x b a x a x x f ⋅++=23||2131)(在R 上有极值,则与的夹角围为( ) A .)6,0[π B .],6(ππC .],3(ππD .2[,]33ππ答案:C.4.(二中2009届高三期末数学试题)已知函数()f x 是定义在R 上的偶函数,且对任意x ∈R ,都有(1)(3)f x f x -=+。
当[4,6]x ∈时,()21x f x =+,设函数()f x 在区间[2,0]-上的反函数为1()f x -,则1(19)f -的值为 A .2log 3- B .22log 3- C .212log 3-D .232log 3-答案:D.5.(省二中2008—2009学年上学期高三期中考试)已知),(,)1(log )1()3()(+∞-∞⎩⎨⎧≥<--=是x x x ax a x f a 上是增函数,那么实数a 的取值围是()A .(1,+∞)B .(3,∞-)C .)3,23[D .(1,3)答案:C.6.(省二中2008—2009学年上学期高三期中考试) 若关于x 的方程,01)11(2=+++xx a ma (a>0,且1≠a )有解,则m 的取值围是() A .)0,31[- B .]1,0()0,31[ - C .]31,(--∞D .),1(+∞答案:A.7.(省二中2008—2009学年上学期高三期中考试)已知函数)(x f 是定义在R 上的偶函数,且对任意R x ∈,都有)3()1(+=-x f x f 。
(完整word)高考数学-函数与导数(知识点归纳+习题),推荐文档
专题六函数导数专题【命题趋向】函数是高考考查能力的重要素材,以函数为基础编制的考查能力的试题在历年的高考试卷中占有较大的比重. 这部分内容既有以选择题、 填空题形式出现的试题, 也有以解答题形式出现的试题. 一 般说来,选择题、填空题主要考查函数的概念、单调性与奇偶性、函数图象、导数的几何意义等重要知识,关 注函数知识的应用以及函数思想方法的渗透,着力体现概念性、思辨性和应用意识.解答题大多以基本初等函数为载体,综合应用函数、导数、方程、不等式等知识,并与数学思想方法紧密结合,对函数与方程思想、数 形结合思想、分类与整合思想、有限与无限思想等进行较为深入的考查, 体现了能力立意的命题原则.这些综合地统揽各种知识、应用各种方法和能力的试题充分显示了函数与导数的主干知识地位.在中学引入导数知识,为研究函数的性质提供了简单有效的方法.解决函数与导数结合的问题, 一般有规范的方法,利用导数判断函数的单调性也有规定的步骤, 具有较强的可操作性.高考中,函数与导数的结合,往往不是简单地考查公式的应用,而是与数学思想方法相结合,突出考查函数与方程思想、有限与无限思想等,所考查的问题具有一定的综合性.在一套高考试卷中一般有 2-3个小题有针对性地考查函数与导数的重要知识和方法, 合考查函数与导数,特别是导数在研究函数问题中的应用,这道解答题是试卷的把关题之一.图象与性质,函数与方程,函数模型及其应用,点评:本题考查分段函数的概念和运算能力.解决的关键是由内到外逐步有选择”的代入函数解析式, 求出函数值.1例2如图,函数f x 的图象是曲线 OAB ,其中点O,A,B 的坐标分别为 0,0 ,(1,2),(3,1),则f —f 3的值等于 ______ .分析:从图象上理解自变量与函数值的对应关系.解析:对于 f (3) 1, f (1) 2 .题型2函数的图象与性质【考点透析】函数和导数的主要考点包括函数的概念、 导数及其应用、微积分及微积分基本定理等.【例题解析】题型1函数的概念及其表示 例1(2008高考山东文5) 设函数 f (x)2,1,1- 的值为()f(2)1527A .B .1616分析:由内向外逐步计算. 18解析: 24, 12上 1上1, 1 15 ff 1 -f 24 416有一道解答题综2.答案A .4,故x 1分析:图象的对称性反应在函数性质上就是这个函数是奇函数,根据奇函数对定义域内任意x都有f x点特点可得一个关于x的恒等式,根据这个恒等式就可以确定m的值,特别地f 0 f 0 f 00也可以解决问题.解析:对于函数y ln( mx1)的图象关于原点中心对称,则对于f 0 0,因此有1ln( m 1)0, m 11,m 2 .答案2.点评:函数的奇偶性是函数的重要性质之一,这两个性质反应了函数图象的某种对称性,这二者之间是可以相互转换的.0.2 11 -例 4 设a log13,b ,c 23,则()23A. a b c B . c b a C . cab D . b a c 分析:以0和1为分界线,根据指数函数与对数和的性质解决.10.2 1解析:对于a log13 0,1 b - o,c 231,因此a b c .答案A.2 3点评:大小比较问题,可以归结为某个函数就归结为一个函数、禾U用函数的单调性比较,不能归结为某个函数一般就是找分界线.题型3函数与方程X2X31 x 的零点的个数是2 3A . 0B . 1C . 2分析:这是一个三次函数,可以通过研究这个函数的单调性与极值,结合函数图象的基本特征解决.2 1 23解析:对于fx 1xx2(x )0,因此函数fx在R上单调递增,而对于2 45 23f( 2)- 0, f (2)0,因此其零点的个数为1个.答案B .3 3点评:本例和例9在本质方法上是一致的,其基本道理就是单调函数至多有一个零点”,再结合连续函数的零点定理,探究问题的答案.例6 .函数f x mx22x 1有且仅有一个正实数的零点,则实数m的取值范围是A. ,1 B . ,0 U 1 C . ,0 U 0,1 D . ,1分析:函数中的二次项系数是个参数,先要确定对其分类讨论,再结合一次函数、二次函数的图象布列不等式解决.1解析:当m 0时,x —为函数的零点;当m 0是,若0,即m 1时,x 1是函数唯一的零点,2若0 ,显然函数x 0不是函数的零点,这样函数有且仅有一个正实数零点等价与方程2f x mx 2x 1 0有一个正根一个负根,即mf 0 0,即m 0.综合知答案B .点评:分类讨论思想、函数与方程思想是高考所着重考查的两种数学思想,在本题体现的淋漓尽致. 还要注意函数的零点有变号零点”和不变号零点”,如本题中的x 1就是函数的不变号零点”,对于不变号零点”,函例5.函数题型4简单的函数模型及其应用例7.经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g t 80 2t (件),价格近似满足f(t) 20 -|t 10| (元).2(1)试写出该种商品的日销售额 y 与时间t ( 0 t 20 )的函数表达式;(2 )求该种商品的日销售额y 的最大值与最小值.分析:函数模型就是销售量乘以价格, 价格函数带有绝对值, 去掉绝对值后本质上是一个分段函数,建立起这个分段函数模型后,求其最值即可. 1解析:(1) y g(t) f (t) (80 2t) (20 |t 10|)(40 t)(40 |t 10 |)2_ (30 t)(40t), (0< t 10),(40 t)(50 t), (10 W t W 20).(2) 当0 t 10时,y 的取值范围是1200,1225,在t 5时,y 取得最大值为1225; 解析:答案:In2 1 .点评:本题考查导数几何意义的应用, 口是切点坐标,这也是解决曲线的切线问题时的一个重要思维策略.在解题中不少考生往往忽视 切线上”这个简单的事实,要引以为戒.当10t 201时,y 的取值范围是 600,1200,20时,y 取得最小值为600 •答案: 总之,第5天,日销售额y 取得最大为1225元;第20天,日销售额y 取得最小为600元. 点评: 对值的解析式统一表达, 对值号再把它化为分段函数. 题型5导数的意义、运算以及简单应用18)直线y x b 是曲线y In x(x 0)的一条切线,则实数2分段函数模型是课标的考试大纲所明确提出要求的一个, 分段函数在一些情况下可以用一个带有绝要知道带有绝对值的函数本质上是分段函数,可以通过零点分区”的方法去掉绝例8.( 2008咼考江苏1分析:切线的斜率是1 2,就可以确定切点的坐标,切点在切线上,就求出来 b 的值. 1方法一 y ' ,令yxb In 2 1.2,即切点的横坐标是 2,则纵坐标是In 2,切线过点 2,1 n2,所以方法二:设曲线上一点点坐标是x 0,Inx 0,由y 1知道过该点的曲线的切线的斜率是x1x ;,故过该点 的曲线的切线方程是 y In x °x X °,即y 丄In X 。
高考文科数学导数真题汇编(带答案)
高考文科数学导数真题汇编(带答案)高考数学文科导数真题汇编答案一、客观题组4.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=-2处取得极小值,则函数y=xf'(x)的图象可能是。
5.设函数f(x)=x^2-2x,则f(x)的单调递减区间为。
7.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=2处取得极大值,则函数y=xf'(x)的图象可能是。
8.设函数f(x)=1/(2x-lnx),则x=2为f(x)的极小值点。
9.函数y=1/(2x-lnx)的单调递减区间为(0,1]。
11.已知函数f(x)=x^2+bx+c的图象经过点(1,2),且在点(2,3)处的切线斜率为4,则b=3.12.已知函数f(x)=ax^2+bx+c的图象过点(1,1),且在点(2,3)处的切线斜率为5,则a=2.二、大题组2011新课标】21.已知函数f(x)=aln(x/b)+2,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.(1) 求a、b的值;(2) 证明:当x>1,且x≠b时,f(x)>2ln(x/b)。
解析】1) f'(x)=a/(xlnb)+2/x,由于直线x+2y-3=0的斜率为-1/2,且过点(1,f(1)),解得a=1,b=1.2) 由(1)知f(x)=ln(x)+1,所以f(x)-2ln(x/b)=ln(x/b)+1>0,当x>1,且x≠b时,f(x)>2ln(x/b)成立。
2012新课标】21.设函数f(x)=ex-ax-2.(1) 求f(x)的单调区间;(2) 若a=1,k为整数,且当x>0时,(x-k)f'(x)+x+1>0,求k的最大值。
解析】1) f(x)的定义域为(-∞,+∞),f'(x)=ex-a,若a≤0,则f'(x)>0,所以f(x)在(-∞,+∞)单调递增。
函数与导数知识点总结高考必备)
函数与导数知识点总结高考必备)一、函数的概念与性质1.函数:函数是一种将一个数域的数值和另一个数域的数值结合起来的关系。
记作y=f(x),其中y是函数值,x是自变量。
2.定义域和值域:函数的定义域是自变量x的取值范围,值域是函数所有可能的函数值的集合。
3.奇偶性:如果对于函数f(x),有f(-x)=f(x),则函数是偶函数;如果对于函数f(x),有f(-x)=-f(x),则函数是奇函数。
4.单调性:函数在定义域上的取值随着自变量的增大而增大,或随着自变量的减小而减小,则函数是单调递增的;函数在定义域上的取值随着自变量的增大而减小,或随着自变量的减小而增大,则函数是单调递减的。
二、导数的定义与性质1.导数的定义:函数y=f(x)在点x处的导数记作f'(x),定义为当自变量x的增量趋近于0时,函数值的增量与自变量增量的比值的极限。
2.导数的几何意义:导数表示函数曲线在该点处的切线斜率。
切线斜率越大,函数曲线越陡峭;切线斜率越小,函数曲线越平缓。
3.导函数:函数的导数也被称为导函数。
函数f(x)的导函数记作f'(x),如果导数存在。
4.导数的四则运算:(常数乘以函数)导数等于常数乘以函数的导数;(两个函数的和)导数等于两个函数的导数之和;(两个函数的差)导数等于两个函数的导数之差。
5.高阶导数:函数的导数的导数叫做高阶导数。
高阶导数也可以通过导数的定义来求解。
6.导数与函数图像的性质:函数在特定点处可导,则在该点处函数图像的切线与曲线相切;函数在特定点处导数不存在,则在该点处函数图像可能有尖点、垂直切线或间断点。
三、导数的求法1.基本初等函数的导数:常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数的导数可以通过一些公式来求解。
2.利用导数的四则运算:通过导数的四则运算性质,可以求得由基本初等函数组成的复合函数的导数。
3.链式法则:如果y=f(g(x))是由两个函数复合而成的复合函数,则其导数可以通过链式法则求解:f(g(x))'=f'(g(x))*g'(x)。
高考数学压轴专题新备战高考《函数与导数》全集汇编附解析
数学《函数与导数》知识点练习一、选择题1.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( ) ABCD【答案】B 【解析】 【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】22222sin 2sin cos 2cos 2sin cos1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭. 令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫= ⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >. 故()min 33f x f π⎛⎫== ⎪⎝⎭. 故选:A 【点睛】本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.2.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是 A .M N N =I B .()U M N =∅I ð C .M N U =U D .()U M N ⊆ð【答案】A 【解析】 【分析】求函数定义域得集合M ,N 后,再判断. 【详解】由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I . 故选A . 【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.3.已知3215()632f x x ax ax b =-++的两个极值点分别为()1212,x x x x ≠,且2132x x =,则函数12()()f x f x -=( ) A .1- B .16C .1D .与b 有关【答案】B 【解析】 【分析】求出函数的导数,利用韦达定理得到12,,a x x 满足的方程组,解方程组可以得到12,,a x x ,从而可求()()12f x f x -. 【详解】()2'56f x x ax a =-+,故125x x a +=,126x x a =,且225240a a ->,又2132x x =,所以122,3x a x a ==,故266a a =,解得0a =(舎)或者1a =. 此时122,3x x ==, ()3215632f x x x x b =-++, 故()()()()()1215182749623326f x f x -=⨯---+-= 故选B . 【点睛】如果()f x 在0x 处及附近可导且0x 的左右两侧导数的符号发生变化,则0x x =必为函数的极值点且()00f x =.极大值点、极小值点的判断方法如下:(1)在0x 的左侧附近,有()'0f x >,在0x 的右侧附近,有()'0f x <,则0x x =为函数的极大值点;(2)在0x 的左侧附近,有()'0f x <,在0x 的右侧附近()'0f x >,有,则0x x =为函数的极小值点.4.已知()(1)|ln |xf x x x =≠,若关于x 方程22[()](21)()0f x m f x m m -+++=恰有4个不相等的实根,则实数m 的取值范围是( ) A .1,2(2,)e e⎛⎫⋃ ⎪⎝⎭B .11,e e ⎛⎫+⎪⎝⎭C .(1,)e e -D .1e e ⎛⎫ ⎪⎝⎭,【答案】C 【解析】 【分析】由已知易知()f x m =与()1f x m =+的根一共有4个,作出()f x 图象,数形结合即可得到答案. 【详解】由22[()](21)()0f x m f x m m -+++=,得()f x m =或()1f x m =+,由题意()f x m =与()1f x m =+两个方程的根一共有4个,又()f x 的定义域为(0,1)(1,)⋃+∞,所以()|ln |ln x x f x x x ==,令()ln x g x x=,则'2ln 1()(ln )x g x x -=,由'()0g x >得x e >, 由'()0g x <得1x e <<或01x <<,故()g x 在(0,1),(1,)e 单调递减,在(,)e +∞上单调递 增,由图象变换作出()f x 图象如图所示要使原方程有4个根,则01m em e <<⎧⎨+>⎩,解得1e m e -<<.故选:C 【点睛】本题考查函数与方程的应用,涉及到方程根的个数问题,考查学生等价转化、数形结合的思想,是一道中档题.5.曲线21x y e -=+在点(0,2)处的切线与直线y 0=和y x =所围成图形的面积( ) A .1 B .13C .23D .12【答案】B 【解析】 【分析】利用导数的几何意义,求得曲线在点(0,2)处的切线方程,再求得三线的交点坐标,利用三角形的面积公式,即可求解,得到答案. 【详解】 由题意,曲线21xy e -=+,则22x y e -'=-,所以200|2|2x x x y e -=='=-=-,所以曲线21xy e-=+在点(0,2)处的切线方程为22(0)y x -=--,即220x y +-=,令0y =,解得1x =,令y x =,解得23x y ==, 所以切线与直线y 0=和y x =所围成图形的面积为1211233⨯⨯=,故选B .【点睛】本题主要考查了利用导数研究曲线在某点处的切线方程,以及两直线的位置关系的应用,着重考查了推理与运算能力,属于基础题.6.三个数2233ln a b c e ===,的大小顺序为( ) A .b <c <a B .b <a <cC .c <a <bD .a <b <c【答案】D 【解析】 【分析】 通过证明13a b c <<<,由此得出三者的大小关系. 【详解】132221ln 63a e e =<==,由于6123e e ⎛⎫= ⎪⎝⎭,6328==,所以13e <,所以131ln 3e =<13a b <<.而66113232228,339⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,所以113223<,所以11321ln 2ln 3ln 33<=,即b c <,所以a b c <<.故选:D 【点睛】本小题主要考查指数式、对数式比较大小,考查指数运算和对数运算,属于中档题.7.设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=L ( ) A .222e e + B .25050e e + C .2100100e e + D .222e e --【答案】A 【解析】 【分析】由()()22f x f x -=+可得对称轴,结合奇偶性可知()f x 周期为8;可将所求式子通过周期化为()()()()1234f f f f +++,结合解析式可求得函数值. 【详解】由()()22f x f x -=+得:()f x 关于2x =对称又()f x Q 为R 上的奇函数 ()f x ∴是以8为周期的周期函数()()()()()()()()()1281241240f f f f f f f f f ++⋅⋅⋅+=++⋅⋅⋅++-+-+⋅⋅⋅+-=Q 且()()()()2123422f f f f e e +++=+()()()()()()()()()()12100121281234f f f f f f f f f f ∴++⋅⋅⋅+=++⋅⋅⋅+++++⎡⎤⎡⎤⎣⎦⎣⎦222e e =+故选:A 【点睛】本题考查利用函数的奇偶性、对称性和周期性求解函数值的问题,关键是能够利用奇偶性和对称轴得到函数的周期,并求得基础区间内的函数值.8.已知定义在R 上的函数()f x 满足()()3221f x f x -=-,且()f x 在[1, )+∞上单调递增,则( )A .()()()0.31.130. 20.54f f log f << B .()()()0.3 1.130. 240.5f f f log <<C .()()()1.10.3340.20.5f f f log << D .()()()0.3 1.130.50.24f log f f << 【答案】A 【解析】 【分析】由已知可得()f x 的图象关于直线1x =对称.因为0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增,即可得解.【详解】解:依题意可得,()f x 的图象关于直线1x =对称. 因为()()()0.31.1330.20,1,0.5 2 1,,044,8log log ∈=-∈-∈,则0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增, 所以()()()0.31.130.20.54f f log f <<.故选:A. 【点睛】本题考查了函数的对称性及单调性,重点考查了利用函数的性质判断函数值的大小关系,属中档题.9.已知函数在区间上有最小值,则函数在区间上一定( )A .有最小值B .有最大值C .是减函数D .是增函数【答案】D 【解析】 【分析】 由二次函数在区间上有最小值得知其对称轴,再由基本初等函数的单调性或单调性的性质可得出函数在区间上的单调性.【详解】 由于二次函数在区间上有最小值,可知其对称轴,.当时,由于函数和函数在上都为增函数,此时,函数在上为增函数;当时,在上为增函数;当时,由双勾函数的单调性知,函数在上单调递增,,所以,函数在上为增函数.综上所述:函数在区间上为增函数,故选D.【点睛】本题考查二次函数的最值,同时也考查了型函数单调性的分析,解题时要注意对的符号进行分类讨论,考查分类讨论数学思想,属于中等题.10.已知函数()ln xf x x=,则使ln ()()()f x g x a f x =-有2个零点的a 的取值范围( ) A .(0,1) B .10,e ⎛⎫ ⎪⎝⎭C .1,1e ⎛⎫ ⎪⎝⎭D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B 【解析】 【分析】 令()ln xt f x x==,利用导数研究其图象和值域,再将ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解求解. 【详解】 令()ln x t f x x ==,当01x <<时,()0ln xt f x x==<, 当1x >时,()2ln 1()ln x t f x x -''==,当1x e <<时,0t '<,当x e >时,0t '>, 所以当x e =时,t 取得最小值e ,所以t e ≥, 如图所示:所以ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解,令ln t m t =,21ln 0t m t -'=≤,所以ln tm t=在[),e +∞上递减, 所以10m e<≤, 所以10a e <≤,当1a e=时,x e =,只有一个零点,不合题意, 所以10a e<< 故选:B 【点睛】本题主要考查导数与函数的零点,还考查了数形结合的思想和运算求解的能力,属于中档题.11.已知函数())lnf x x =,设()3log 0.2a f =,()0.23b f -=,()1.13c f =-,则( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】D 【解析】∵())lnf x x =∴())f x x ==∴())f x x -=∵当0x >1x >;当0x <时,01x <∴当0x >时,())))f x x x x ==-=,())f x x -=;当0x <时()))f x x x ==;()))f x x x -=-=.∴()()f x f x =- ∴函数()f x 是偶函数∴当0x >时,易得())f x x =为增函数∴33(log 0.2)(log 5)a f f ==, 1.1 1.1(3)(3)c f f =-=∵31log 52<<,0.2031-<<, 1.133>∴ 1.10.23(3)(log 5)(3)f f f ->>∴c a b >> 故选D.12.已知定义在R 上的奇函数()y f x =满足()()80f x f x ++=,且()55f =,则()()20192024f f +=( )A .-5B .5C .0D .4043【答案】B 【解析】 【分析】根据(8)()0f x f x ++=得函数的周期为16,结合()55f =,(0)0f =即可求解. 【详解】由(8)()0f x f x ++=,得(8)()f x f x +=-,所以(16)(8)()f x f x f x +=-+=.故函数()y f x =是以16为周期的周期函数. 又在(8)()0f x f x ++=中,令0x =,得(8)(0)0f f +=, 且奇函数()y f x =是定义在R 上的函数,所以(0)0f =.故(8)0f =.故(2024)(161268)(8)0f f f =⨯+==. 又在(8)()0f x f x ++=中,令3x =-,得(5)(3)0f f +-=.得(5)(3)(3)5f f f =--==,则(2019)(161263)(3)5f f f =⨯+==. 所以(2019)(2024)5f f +=. 故选:B. 【点睛】此题考查根据函数的周期性求抽象函数的函数值,关键在于根据函数关系准确得出函数周期,结合定义在R 上的奇函数的特征求值.13.已知函数()f x 为偶函数,当x <0时,2()ln()f x x x =--,则曲线()y f x =在x =1处的切线方程为( ) A .x -y =0 B .x -y -2=0 C .x +y -2=0 D .3x -y -2=0【答案】A 【解析】 【分析】先求出当0x >时,()f x 的解析式,再利用导数的几何意义计算即可得到答案. 【详解】当0x >时,0x -<,2()ln f x x x -=-,又函数()f x 为偶函数,所以2()ln f x x x =-,(1)1f =,所以'1()2f x x x=-,'(1)1f =,故切线方程为11y x -=-,即y x =.故选:A . 【点睛】本题考查导数的几何意义,涉及到函数的奇偶性求对称区间的解析式,考查学生的数学运算能力,是一道中档题.14.二次函数,二次方程,一元二次不等式三个二次的相互转换是解决一元二次不等式问题的常用方法,数形结合是解决函数问题的基本思想.15.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,2()4f x x x =-,则不等式(2)5f x +<的解集为( )A .(3,7)-B .()4,5-C .(7,3)-D .()2,6-【答案】C 【解析】 【分析】首先求出当0x ≥时不等式的解集,在根据偶函数的对称性求出当0x <时不等式的解集,从而求出()5f x <的解集,则525x -<+<,即可得解. 【详解】当0x ≥时,2()45f x x x =-<的解为05x <≤;当0x <时,根据偶函数图像的对称性知不等式()5f x <的解为5x 0-<<, 所以不等式()5f x <的解集为{}55x x -<<,所以不等式(2)5f x +<的解集为{}{}52573x x x x -<+<=-<<. 故选:C 【点睛】本题考查偶函数的性质,涉及一元二次不等式,属于基础题.16.若函数()f x 的定义域为R ,其导函数为()f x '.若()3f x '<恒成立,()20f -=,则()36f x x <+ 解集为( )A .(),2-∞-B .()2,2-C .(),2-∞D .()2,-+∞【答案】D 【解析】 【分析】设()()36g x f x x =--,求导后可得()g x 在R 上单调递减,再结合()20g -=即可得解. 【详解】设()()36g x f x x =--,Q ()3f x '<,∴()()30g x f x ''=-<,∴()g x 在R 上单调递减,又()()22660g f -=-+-=,不等式()36f x x <+即()0g x <,∴2x >-,∴不等式()36f x x <+的解集为()2,-+∞.故选:D. 【点睛】本题考查了导数的应用,关键是由题意构造出新函数,属于中档题.17.设123log 2,ln 2,5a b c -===则 A .a b c << B .b c a <<C .c a b <<D .c b a <<【答案】C 【解析】 【分析】 由ln 2ln 2ln 3a b =<=及311log 3,2254a c >==<=可比较大小. 【详解】∵2031a ln ln =>,>,∴ln 2ln 2ln 3a b =<=,即a b <. 又3311log 2log 3,2254a c =>==<=.∴a c >.综上可知:c a b << 故选C. 【点睛】本题主要考查了指数与对数的运算性质及对数函数的单调性比较大小,属于中档题.18.函数2ln x x y x=的图象大致是( )A .B .C .D .【答案】D 【解析】 【分析】根据函数为偶函数排除B ,当0x >时,利用导数得()f x 在1(0,)e上递减,在1(,)e+∞上递增,根据单调性分析,A C 不正确,故只能选D . 【详解】令2ln ||()||x x f x x =,则2()ln ||()()||x x f x f x x ---==-, 所以函数()f x 为偶函数,其图像关于y 轴对称,故B 不正确,当0x >时,2ln ()ln x xf x x x x==,()1ln f x x '=+,由()0f x '>,得1x e >,由()0f x '<,得10x e<<, 所以()f x 在1(0,)e上递减,在1(,)e +∞上递增,结合图像分析,,A C 不正确. 故选:D 【点睛】本题考查了利用函数的奇偶性判断函数的图象,考查了利用导数研究函数的单调性,利用单调性判断函数的图象,属于中档题.19.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43n a ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭, 若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭,()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭,即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造.故选:D . 【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.20.设1130,,a b xdx c x dx ===⎰⎰,则,,a b c 的大小关系为( )A .b c a >>B .b a c >>C .a c b >>D .a b c >>【答案】D 【解析】根据微积分定理,3120022|33a x ⎛⎫=== ⎪⎝⎭,121011|22b xdx x ⎛⎫=== ⎪⎝⎭⎰,13410011|44c x dx x ⎛⎫=== ⎪⎝⎭⎰,所以a b c >>,故选择D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数与导数
一.选择题:
(2010.8)设偶函数()f x 满足3()8(0)f x x x =-≥,则{|(2)0}x f x ->=
(A) {|24}x x x <->或
(B) {|04}x x x <>或 (C) {|06}x x x <>或 (D) {|22}x x x <->或
(2010.11)已知函数|lg |,010,()16,10.2
x x f x x x <≤⎧⎪=⎨-+>⎪⎩若,,a b c 互不相等,且()()(),f a f b f c ==则abc 的取值范围是
(A) (1,10) (B) (5,6) (C) (10,12) (D) (20,24)
(2011.9)设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫-
= ⎪⎝⎭ (A) 12- (B) 14- (C) 14 (D) 12
(2012.10)已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =
(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1
(2014.8) 设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=
A .0
B .1
C .2
D .3
(2015.5)设函数f (x )=⎩⎨⎧≥++-1
,2,1),2(log 112x x x x <,则f (-2)+ f (log 212) =
(A )3 (B )6 (C )9 (D )12
(2015.12)设函数f ’(x)是奇函数f (x )(x ∈R)的导函数,f (-1)=0,当x>0时,x f ’(x )-f (x )<0,则使得f (x ) >0成立的x 的取值范围是
(A) (-∞,-1)∪(0,1) (B) (-1,0)∪(1,+∞)
(C) (-∞,-1)∪(-1,0) (D) (0,1)∪(1,+∞)
(2017.11)若2x =-是函数21`()(1)x f x x ax e
-=+-的极值点,则()f x 的极小值为( ) A.1- B.32e -- C.35e - D.1
二.填空题:
(2014.15) 已知偶函数f(x)在[0,)+∞上单调递减,f(2)=0,若f(x-1)>0,则x 的取值范围是 (2016.16)若直线y=kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b = 。
三.解答题:
(2009.22)设函数()()21f x x aIn x =++有两个极值点12x x 、,且12x x < (I )求a 的取值范围,并讨论()f x 的单调性;
(II )证明:()21224
In f x -> (2010.21)设函数2()1x f x e x ax =---。
(1)若0a =,求()f x 的单调区间;
(2)若当0x ≥时()0f x ≥,求a 的取值范围
(2012.20)设函数f (x )=ax+cosx ,x ∈[0,π]。
(Ⅰ)讨论f (x )的单调性;
(Ⅱ)设f (x )≤1+sinx ,求a 的取值范围。
(2013.21)已知函数f (x )=e x -ln(x +m ).
(1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性;
(2)当m ≤2时,证明f (x )>0.
(2014.21)已知函数f(x)=2x x e e x ---
(I) 讨论f(x)的单调性。
(II) 设g(x)=f(2x)-4bf(x).当x>0时,g(x)>0,求b 的最大值。
(III) 已知估计ln2的近似值。
(精确到0.001) (2015.21)设函数f(x)=e mx +x 2
-mx . (Ⅰ)证明:f (x)在(-∞,0)单调递减,在(0,+∞)单调递增; (Ⅱ)若对于任意x 1, x 2∈[-1,1],都有|f (x 1)- f (x 2)|≤e -1,求m 的取值范围 (2016.21)(I)讨论函数
的单调性,并证明当 >0时,
(II)证明:当
时,函数 有最小值.设g (x )的最小值为,求函数 的值域.
(2017.21)已知函数2()ln ,f x ax ax x x =--且()0f x ≥.
(1)求a ;
(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<.。