江苏省姜堰市娄庄区2017-2018年七年级下期中考试数学试题

合集下载

【最新】泰州市姜堰区2017七年级下册期中考试数学试题有答案

【最新】泰州市姜堰区2017七年级下册期中考试数学试题有答案

第二学期期中考试七年级数学试题(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效.一、选择题(每小题3分,共18分)1.如图所示的图案是一些汽车的车标,可以看作由“基本图案”经过平移得到的是A .B .C .D .2.下列每组数分别是三根木棒的长度,能用它们搭成三角形的是 A .2cm ,2cm ,4cmB .3cm ,9cm ,5cmC .5cm ,12cm ,13cmD .6cm ,10cm ,4cm3.下列运算中,正确的是A .2224ab a b =() B .2242a a a += C .236•a a a =D .632a a a ÷=4.若a b <,则下列各式一定成立的是 A .+3+3a b > B .22ab>C .11a b --<D .33a b > 5.下列各式从左边到右边的变形中,是因式分解的是A .a x y ax ay +=+()B .24444x x x x +=-+-() C .()()224x x x +-=-2D .2105521x x x x -=-()6.已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,则a ,b 的值为A .⎩⎨⎧==21b a B .⎩⎨⎧=-=26b a C .⎩⎨⎧==214b a D . ⎩⎨⎧-==614b a二、填空题(每空3分,共30分) 7.23-= ▲ .8.将0.00000034用科学记数法表示为 ▲ .9.一个多边形的内角和等于1080°,则这个多边形是 ▲ 边形.10.若2,3mna a ==,则m na -= ▲ .11.如果32x y =⎧⎨=⎩是方程632x by +=的解,则b = ▲ .12.若()()2153x mx x x n +-=++,则mn = ▲ . 13.计算:()20182017133⎛⎫-⨯= ⎪⎝⎭▲ .14.若3=+b a ,2=ab ,则=+22b a ▲ .15.已知关于x 的不等式()224m x m -->的解集为x <2,则m 的取值范围是 ▲ . 16.已知方程组1122a x y b a x y b +=⎧⎨+=⎩的解是24x y =⎧⎨=⎩,则关于x 、y 的方程组1112222222a x y a b a x y a b -=+⎧⎨-=+⎩的解是▲ .三、解答题(本大题共102分)17.(10分)(1)计算:()-201+232π⎛⎫---- ⎪⎝⎭;(2)先化简,再求值:()()()2333x y x y x y ++-﹣,其中3,2x y ==-.18.(10分)把下列各式因式分解:(1)29x - (2)32232a b a b ab +-19.(10分)解方程组:(1) 215x y x y +=⎧⎨-=-⎩ (2)22123x y x y +=⎧⎪⎨+=⎪⎩20.(10分)解下列不等式,并把它们的.....解集..在数轴上表示出来.......... (1)()2134x x +->(2)63421---x x >3121. (10分)(1)求x 的值:x 2·x-34·3281=+x;(2)已知2310x x --=,求代数式()()()2131+2+5x x x -+-的值.22.(8分)如图,D 、E 、F 分别在△ABC 的三条边上,DE∥AB,∠1+∠2=180°. (1)试说明:DF∥AC;(2)若∠1=110°,DF 平分∠BDE,求∠C 的度数.23.(8分)观察下列各式:21543⨯+=…………① 23745⨯+=…………② 25947⨯+=…………③……探索以上式子的规律: (1)试写出第6个等式;(2)试写出第n 个等式(用含n 的式子表示),并用你所学的知识说明第n 个等式成立.24. (10分)用二元一次方程组解决问题:某商场按定价销售某种商品时,每件可获利35元;按定价的八折销售该商品5件与将定价降低20元销售该商品8件所获得的利润相等.求该商品每件的进价、定价各是多少元?25. (12分)仔细阅读下列解题过程: 若2222690a ab b b ++-+=,求a 、b 的值. 解:∵2222690a ab b b ++-+=∴2222690a ab b b b +++-+= ∴()()2230a b b ++-= ∴+0,30a b b =-= ∴3,3a b =-=根据以上解题过程,试探究下列问题:(1)已知2222210x xy y y -+-+=,求2x y +的值; (2)已知2254210a b ab b +--+=,求a 、b 的值; (3)若=+4m n ,28200mn t t +-+=,求2m tn -的值.26.(14分)已知关于x 、y 的二元一次方程组23221x y k x y k-=-⎧⎨+=-⎩(k 为常数).(1)求这个二元一次方程组的解(用含k 的代数式表示); (2)若方程组的解x 、y 满足+x y >5,求k 的取值范围; (3)若()24+21yx =,直接写出k 的值;(4)若k ≤1,设23m x y =-,且m 为正整数,求m 的值.2019-2020学年度姜堰区七年级下学期数学期中试卷答案一、选择题(每小题3分,共18分)1.D2.C3.A4.C5.D6.C二、填空题(每小题3分,共30分)7. 8. 9.八 10. 11.7 12.1013. 14. 5 15. 16.三、解答题(本大题共102分)17.(本题满分10分,每小题5分)(1)(2),18.(本题满分10分,每小题5分)(1) (2)19.(本题满分10分,每小题5分)(1) (2)20.(本题满分10分,每小题5分)(1),略(2),略21.(本题满分10分,每小题5分)(1)(2),222.(本题满分8分)(1)略(2)70°23.(本题满分8分,每小题4分)(1)(2)理由:===24.(本题满分10分)设该商品每件的定价为元,进价为元,由题意得:,解得.答:该商品每件的定价为55元,进价为20元.25.(本题满分12分,每小题4分)(1)(2)(3)26.(本题满分14分)(1)(3分)(2)(3分)(3)(4分)(4)(4分)。

2018年泰州市姜堰市七年级下期中数学试卷及答案

2018年泰州市姜堰市七年级下期中数学试卷及答案

2017-2018学年江苏省泰州市姜堰市七年级(下)期中数学试卷一、选择题(每小题3分,共18分)1.(3分)如图所示的图案是一些汽车的车标,可以看做由“基本图案”经过平移得到的是()A. B.C.D.2.(3分)下列每组数分别是三根木棒的长度,能用它们搭成三角形的是()A.2cm,2cm,4cm B.3cm,9cm,5cmC.5cm,12cm,13cm D.6cm,10cm,4cm3.(3分)下列运算中,正确的是()A.(ab2)2=a2b4 B.a2+a2=2a4C.a2•a3=a6 D.a6÷a3=a24.(3分)若a<b,则下列各式一定成立的是()C.a﹣1<b﹣1 D.3a>3bA.a+3>b+3 B.5.(3分)下列各式由左边到右边的变形中,是分解因式的是()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.x4﹣16=(x2+4)(x2﹣4)D.10x2﹣5x=5x(2x﹣1)6.(3分)已知方程组和有相同的解,则a,b的值为()A.B.C.D.二、填空题(每空3分,共30分)7.(3分)3﹣2= .8.(3分)将0.00000034用科学记数法表示应为.9.(6分)一个多边形的内角和等于1080°,这个多边形是边形.10.(3分)若a m=2,a n=3,则a m﹣n的值为.11.(3分)如果是方程6x+by=32的解,则b= .12.(3分)若x2+mx﹣15=(x+3)(x+n),则mn的值为.13.(3分)计算:(﹣3)2017×()2018= .14.(3分)若a+b=3,ab=2,则a2+b2= .15.(3分)已知关于x的不等式(m﹣2)x>2m﹣4的解集为x<2,则m的取值范围是.16.(3分)已知方程组的解是,则关于x、y的方程组的解是三、解答题(本大题共102分)17.(10分)(1)计算:(﹣)﹣2+(π﹣2)0﹣|﹣3|;(2)先化简,再求值:(x+3y)2﹣(x+3y)(x﹣3y),其中x=3,y=﹣2.18.(10分)把下列各式因式分解:(1)x2﹣9(2)a3b﹣2a2b2+ab319.(10分)解方程组:(1)(2)20.(10分)解下列不等式,并把它们的解集在数轴上表示出来.(1)2(x+1)>3x﹣4(2)﹣>21.(10分)(1)求x的值:2x•43﹣x•81+x=32;(2)已知x2﹣3x﹣1=0,求代数式(x﹣1)(3x+1)﹣(x+2)2+5的值.22.(8分)如图,D、E、F分别在△ABC的三条边上,DE∥AB,∠1+∠2=180°.(1)试说明:DF∥AC;(2)若∠1=110°,DF平分∠BDE,求∠C的度数.23.(8分)观察下列各式:1×5+4=32…………①3×7+4=52…………②5×9+4=72…………③……探索以上式子的规律:(1)试写出第6个等式;(2)试写出第n个等式(用含n的式子表示),并用你所学的知识说明第n个等式成立.24.(10分)用二元一次方程组解决问题:某商场按定价销售某种商品时,每件可获利35元;按定价的八折销售该商品5件与将定价降低20元销售该商品8件所获得的利润相等.求该商品每件的进价、定价各是多少元?25.(12分)仔细阅读下列解题过程:若a2+2ab+2b2﹣6b+9=0,求a、b的值.解:∵a2+2ab+2b2﹣6b+9=0∴a2+2ab+b2+b2﹣6b+9=0∴(a+b)2+(b﹣3)2=0∴a+b=0,b﹣3=0∴a=﹣3,b=3根据以上解题过程,试探究下列问题:(1)已知x2﹣2xy+2y2﹣2y+1=0,求x+2y的值;(2)已知a2+5b2﹣4ab﹣2b+1=0,求a、b的值;(3)若m=n+4,mn+t2﹣8t+20=0,求n2m﹣t的值.26.(14分)已知关于x、y的二元一次方程组(k为常数).(1)求这个二元一次方程组的解(用含k的代数式表示);(2)若方程组的解x、y满足x+y>5,求k的取值范围;(3)若(4x+2)2y=1,直接写出k的值;(4)若k≤1,设m=2x﹣3y,且m为正整数,求m的值.2017-2018学年江苏省泰州市姜堰市七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共18分)1.(3分)如图所示的图案是一些汽车的车标,可以看做由“基本图案”经过平移得到的是()A. B.C.D.【解答】解:观察图形可知,图案D可以看作由“基本图案”经过平移得到.故选:D.2.(3分)下列每组数分别是三根木棒的长度,能用它们搭成三角形的是()A.2cm,2cm,4cm B.3cm,9cm,5cmC.5cm,12cm,13cm D.6cm,10cm,4cm【解答】解:A、2+2=4,故以这三根木棒不能构成三角形,不符合题意;B、3+5<9,故以这三根木棒不能构成三角形,不符合题意;C、5+12>13,故以这三根木棒可以构成三角形,符合题意;D、6+4=10,故以这三根木棒不能构成三角形,不符合题意.故选:C.3.(3分)下列运算中,正确的是()A.(ab2)2=a2b4 B.a2+a2=2a4C.a2•a3=a6 D.a6÷a3=a2【解答】解:A、(ab2)2=a2b4,故此选项正确;B、a2+a2=2a2,故此选项错误;C、a2•a3=a5,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:A.4.(3分)若a<b,则下列各式一定成立的是()A .a+3>b+3B .C .a ﹣1<b ﹣1D .3a >3b【解答】解:由a <b ,得到a+3<b+3,<,a ﹣1<b ﹣1,3a <3b ,故选:C .5.(3分)下列各式由左边到右边的变形中,是分解因式的是( )A .a (x+y )=ax+ayB .x 2﹣4x+4=x (x ﹣4)+4C .x 4﹣16=(x 2+4)(x 2﹣4)D .10x 2﹣5x=5x (2x ﹣1)【解答】解:根据因式分解的定义可知:D 选项为因式分解,故选:D .6.(3分)已知方程组和有相同的解,则a ,b 的值为()A .B .C .D .【解答】解:∵方程组和有相同的解,∴方程组的解也它们的解,解得:,代入其他两个方程得,解得:,故选:D .二、填空题(每空3分,共30分)7.(3分)3﹣2= .【解答】解:原式==.故答案为:.8.(3分)将0.00000034用科学记数法表示应为 3.4×10﹣7.【解答】解:0.00000034=3.4×10﹣7,故答案为:3.4×10﹣7.9.(6分)一个多边形的内角和等于1080°,这个多边形是8 边形.【解答】解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故答案为:8.10.(3分)若a m=2,a n=3,则a m﹣n的值为.【解答】解:a m﹣n=a m÷a n=2÷3=,故答案为:.11.(3分)如果是方程6x+by=32的解,则b= 7 .【解答】解:把x=3,y=2代入方程6x+by=32,得6×3+2b=32,移项,得2b=32﹣18,合并同类项,系数化为1,得b=7.12.(3分)若x2+mx﹣15=(x+3)(x+n),则mn的值为10 .【解答】解:由x2+mx﹣15=(x+3)(x+n)=x2+(3+n)x+3n,比较系数,得m=3+n,﹣15=3n,解得m=﹣2,n=﹣5,∴mn=(﹣2)×(﹣5)=10.13.(3分)计算:(﹣3)2017×()2018= ﹣.【解答】解:(﹣3)2017×()2018=(﹣3×)2017×=﹣.故答案为:﹣.14.(3分)若a+b=3,ab=2,则a2+b2= 5 .【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=9﹣4=5.故答案为:5.15.(3分)已知关于x的不等式(m﹣2)x>2m﹣4的解集为x<2,则m的取值范围是m<2 .【解答】解:不等式(m﹣2)x>2m﹣4的解集为x<2,∴m﹣2<0,m<2,故答案为:m<2.16.(3分)已知方程组的解是,则关于x、y的方程组的解是【解答】解:∵方程组的解是,∴,把∴代入,得,整理,得①﹣②,得(a1﹣a2)x=4(a1﹣a2),∴x=4.把x=4代入①,得4a1﹣2y=4a1+4所以y=﹣2∴原方程组的解为故答案为:三、解答题(本大题共102分)17.(10分)(1)计算:(﹣)﹣2+(π﹣2)0﹣|﹣3|;(2)先化简,再求值:(x+3y)2﹣(x+3y)(x﹣3y),其中x=3,y=﹣2.【解答】解:(1)原式=4+1﹣3=2;(2)原式=x2+6xy+9y2﹣(x2﹣9y2)=x2+6xy+9y2﹣x2+9y2=6xy+18y2,当x=3、y=﹣2时,原式=6×3×(﹣2)+18×(﹣2)2=﹣36+72=36.18.(10分)把下列各式因式分解:(1)x2﹣9(2)a3b﹣2a2b2+ab3【解答】解:(1)原式=(x+3)(x﹣3);(2)原式=ab(a2﹣2ab+b2)=ab(a﹣b)2.19.(10分)解方程组:(1)(2)【解答】解:(1),①﹣②得:3y=﹣4,解得:y=﹣,①+②×2得:3x=11,解得:x=,则方程组的解为;(2)方程组整理得:,①×2﹣②得:x=﹣2,把x=﹣2代入①得:y=6,则方程组的解为.20.(10分)解下列不等式,并把它们的解集在数轴上表示出来.(1)2(x+1)>3x﹣4(2)﹣>【解答】(本题满分(10分),每小题5分)解:(1)2(x+1)>3x﹣4,2x+2>3x﹣4,2x﹣3x>﹣4﹣2,﹣x>﹣6,x<6,在数轴上表示为:(2)﹣>,去分母得:3(x﹣1)﹣(4x﹣3)>2,去括号得:3x﹣3﹣4x+3>2,合并同类项得:﹣x>2,系数化为1得:x<﹣2.21.(10分)(1)求x的值:2x•43﹣x•81+x=32;(2)已知x2﹣3x﹣1=0,求代数式(x﹣1)(3x+1)﹣(x+2)2+5的值.【解答】解:(1)∵2x•43﹣x•81+x=32,∴2x•(22)3﹣x•(23)1+x=25,2x•26﹣2x•23+3x=25,2x+6﹣2x+3+3x=25,即22x+9=25,则2x+9=5,解得:x=﹣2;(2)原式=3x2+x﹣3x﹣1﹣(x2+4x+4)+5=3x2+x﹣3x﹣1﹣x2﹣4x﹣4+5=2x2﹣6x,∵x2﹣3x﹣1=0,∴x2﹣3x=1,则原式=2(x2﹣3x)=2.22.(8分)如图,D、E、F分别在△ABC的三条边上,DE∥AB,∠1+∠2=180°.(1)试说明:DF∥AC;(2)若∠1=110°,DF平分∠BDE,求∠C的度数.【解答】证明:(1)∵DE∥AB,∴∠A=∠2,∵∠1+∠2=180°.∴∠1+∠A=180°,∴DF∥AC;(2)∵DE∥AB,∠1=110°,∴∠FDE=70°,∵DF平分∠BDE,∴∠FDB=70°,∵DF∥AC,∴∠C=∠FDB=70°23.(8分)观察下列各式:1×5+4=32…………①3×7+4=52…………②5×9+4=72…………③……探索以上式子的规律:(1)试写出第6个等式;(2)试写出第n个等式(用含n的式子表示),并用你所学的知识说明第n个等式成立.【解答】解:(1)第6个等式为11×15+4=132;(2)由题意知(2n﹣1)(2n+3)+4=(2n+1)2,理由:左边=4n2+6n﹣2n﹣3+4=4n2+4n+1=(2n+1)2=右边,∴(2n﹣1)(2n+3)+4=(2n+1)2.24.(10分)用二元一次方程组解决问题:某商场按定价销售某种商品时,每件可获利35元;按定价的八折销售该商品5件与将定价降低20元销售该商品8件所获得的利润相等.求该商品每件的进价、定价各是多少元?【解答】解:设该商品每件的定价为x元,进价为y元,由题意得:,解得:.答:该商品每件的定价为55元,进价为20元.25.(12分)仔细阅读下列解题过程:若a2+2ab+2b2﹣6b+9=0,求a、b的值.解:∵a2+2ab+2b2﹣6b+9=0∴a2+2ab+b2+b2﹣6b+9=0∴(a+b)2+(b﹣3)2=0∴a+b=0,b﹣3=0∴a=﹣3,b=3根据以上解题过程,试探究下列问题:(1)已知x2﹣2xy+2y2﹣2y+1=0,求x+2y的值;(2)已知a2+5b2﹣4ab﹣2b+1=0,求a、b的值;(3)若m=n+4,mn+t2﹣8t+20=0,求n2m﹣t的值.【解答】解:(1)∵x2﹣2xy+2y2﹣2y+1=0∴x2﹣2xy+y2+y2﹣2y+1=0∴(x﹣y)2+(y﹣1)2=0∴x﹣y=0,y﹣1=0,∴x=1,y=1,∴x+2y=3;(2)∵a2+5b2﹣4ab﹣2b+1=0∴a2+4b2﹣4ab+b2﹣2b+1=0∴(a﹣2b)2+(b﹣1)2=0∴a﹣2b=0,b﹣1=0∴a=2,b=1;(3))∵m=n+4,∴n(n+4)+t2﹣8t+20=0∴n2+4n+4+t2﹣8t+16=0∴(n+2)2+(t﹣4)2=0∴n+2=0,t﹣4=0∴n=﹣2,t=4∴m=n+4=2∴n2m﹣t=(﹣2)0=1.26.(14分)已知关于x、y的二元一次方程组(k为常数).(1)求这个二元一次方程组的解(用含k的代数式表示);(2)若方程组的解x、y满足x+y>5,求k的取值范围;(3)若(4x+2)2y=1,直接写出k的值;(4)若k≤1,设m=2x﹣3y,且m为正整数,求m的值.【解答】解:(1)②+①,得4x=2k﹣1,即x=;②﹣①,得2y=﹣4k+3即y=所以原方程组的解为(2)方程组的解x、y满足x+y>5,所以+>5,整理得﹣6k>15,所以k<﹣;(3)由于a0=1(a≠0),(4x+2)2y=1,所以2y=0,即2×=0解得:k=;因为1n=1,(4x+2)2y=1,所以4x+2=1即4×+2=1解,得k=0.所以当k=0或时,(4x+2)2y=1.(4)m=2x﹣3y=2×﹣3×=7k﹣5由于m为正整数,所以m>0即7k﹣5>0,k>所以<k≤1当k=时,m=7k﹣5=1;当k=1时,m=7k﹣5=2.答:m的值为1或2.。

2017-2018学年度七年级(下)期中数学试卷(有答案和解析)

2017-2018学年度七年级(下)期中数学试卷(有答案和解析)

2017-2018学年七年级(下)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.下列计算正确的是()A.a2+a3=a5B.a3•a3=a9C.(a3)2=a6D.(ab)2=ab22.下列长度的3条线段,能首尾依次相接组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.1cm,3cm,4cm3.已知如图直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠2+∠5=180°4.多项式x2﹣4分解因式的结果是()A.x(x﹣4)B.(x﹣2)2C.(x+4)(x﹣4)D.(x+2)(x﹣2)5.给定下列条件,不能判定△ABC三角形是直角三角形的是()A.∠A=35°,∠B=55°B.∠A+∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=2∠C6.已知x2+mx+25是完全平方式,则m的值为()A.10B.±10C.20D.±207.如图,在边长为a的正方形中裁掉一个边长为b的小正方形(如图Ⅰ),将剩余部分沿虚线剪开后拼接(如图Ⅱ),通过计算,用接前后两个图形中阴影部分的面积可以验证等式()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a+2b)(a﹣b)=a2+ab﹣2b2D.(a﹣b)2=a2﹣2ab+b28.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为6、7、8,四边形DHOG面积为()A.6B.7C.8D.9二、填空题(每小题3分,共30分)9.计算:y6÷y2=.10.已知某种植物花粉的直径为0.00035cm,将数据0.00035用科学记数法表示为.11.分解因式:a2﹣2a=.12.一个多边形的内角和等于1260°,则这个多边形是边形.13.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为.14.若a m=3,a n=4,则a m﹣n=.15.如图所示,小华从A点出发,沿直线前进12米后向左转24°,再沿直线前进12米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是米.16.已知:a﹣b=3,ab=5,则代数式a2+b2的值是.17.如图,△ABC两内角的平分线AO、BO相交于点O,若∠AOB=112°,则∠C=.18.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……请你猜想(a+b)11的展开式第三项的系数是.三、解答题(本题共9题,满分96分)19.(20分)计算(1)()﹣2﹣(﹣)﹣1+()0(2)m3•m3•m2+(m4)2+(﹣2m2)4(3)(1+2x﹣y)(1﹣2x+y)(4)(3a+1)(﹣1+3a)﹣(3a+1)220.(15分)因式分解(1)4x2﹣64(2)2ax2﹣4axy+2ay2(3)16m4﹣8m2n2+n421.(7分)先化简,再求值:(2x+2)(2﹣2x)+5x(x+1)﹣(x﹣1)2,其中x=﹣2.22.(7分)画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC平移后得到△A′B′C′,图中点B′为点B的对应点.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出△ABC中AB边上的中线CD;(3)画出△ABC中BC边上的高线AE;(4)△A′B′C′的面积为.23.(7分)如图,某校有一块长为(5a+b)米,宽为(3a+b)米的长方形空地,中间是边长(a﹣b)米的正方形草坪,其余为活动场地,学校计划将活动场地(阴影部分)进行硬化.(1)用含a,b的代数式表示需要硬化的面积并化简;(2)当a=5,b=2时,求需要硬化的面积.24.(8分)如图,直线AC∥BD,BC平分∠ABD,DE⊥BC,∠MAB=80°,求∠EDB的度数.25.(8分)已知:如图∠1=∠2,∠C=∠D,请证明:∠A=∠F.26.(10分)当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2可得等式:.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)利用图3中的纸片(足够多),画出一种拼图,使该拼图可将多项式2a2+5ab+2b2因式分解,并写出分解结果.27.(14分)如图1,直线AB∥CD,直线l与直线AB,CD相交于点E,F,点P是射线EA上的一个动点(不包括端点E),将△EPF沿PF折叠,使顶点E落在点Q处.(1)若∠PEF=48°,点Q恰好落在其中的一条平行线上,请直接写出∠EFP的度数.(2)若∠PEF=75°,∠CFQ=∠PFC,求∠EFP的度数.2017-2018学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.【分析】根据合并同类项法则,同底数幂的乘法法则、幂的乘方法则、积的乘方法则,对各选项分析判断后得结论.【解答】解:因为a2与a3不是同类项,所以选项A不正确;a3•a3=a6≠a9,所以选项B不正确;(a3)2=a3×2=a6,所以选项C正确;(ab)2=a2b2≠ab2,所以选项D不正确.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、积的乘方法则,熟练掌握运算性质和法则是解题的关键.2.【分析】根据三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,分别判断出即可.【解答】解:∵三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,∴A.1cm,2cm,4cm,∵1+2<4,∴无法围成三角形,故此选项A错误;B.8cm,6cm,4cm,∵4+6>8,∴能围成三角形,故此选项B正确;C.12cm,5cm,6cm,∵5+6<12,∴无法围成三角形,故此选项C错误;D.1cm,3cm,4cm,∵1+3=4,∴无法围成三角形,故此选项D错误.故选:B.【点评】此题主要考查了三角形三边关系,此定理应用比较广泛,同学们应熟练应用此定理.3.【分析】由同位角相等两直线平行,根据∠1=∠2,判定出a与b平行.【解答】解:∵∠1=∠2(已知),∴a∥b(同位角相等,两直线平行).而∠2=∠3,∠1=∠4,∠2+∠5=180°都不能判断a∥b,故选:A.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.4.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4=(x+2)(x﹣2).故选:D.【点评】此题主要考查了公式法因式分解,正确应用公式是解题关键.5.【分析】根据三角形的内角和定理即可求得三角形中最大的角,即可作出判断.【解答】解:A、∠C=180°﹣∠A﹣∠B=180°﹣35°﹣55°=90°,则是直角三角形;B、∠A+∠B=∠C,则∠C=90°,是直角三角形;C、最大角∠C=×180°=90°,是直角三角形;D、∠A=∠B=2∠C,又∠A+∠B+∠C=180°,则∠A=∠B=72°,∠C=36°,不是直角三角形.故选:D.【点评】本题考查了三角形的内角和定理,求出各选项中的最大角是解题的关键.6.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+25是完全平方式,∴m=±10,故选:B.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7.【分析】易求出图(1)阴影部分的面积=a2﹣b2,图(2)中阴影部分进行拼接后,长为a+b,宽为a﹣b,面积等于(a+b)(a﹣b),由于两图中阴影部分面积相等,即可得到结论.【解答】解:图(1)中阴影部分的面积等于两个正方形的面积之差,即为a2﹣b2;图(2)中阴影部分为矩形,其长为a+b,宽为a﹣b,则其面积为(a+b)(a﹣b),∵前后两个图形中阴影部分的面积,∴a2﹣b2=(a+b)(a﹣b).故选:A.【点评】本题考查了利用几何方法验证平方差公式:根据拼接前后不同的几何图形的面积不变得到等量关系.8.【分析】连接OC ,OB ,OA ,OD ,易证S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,S △OAE =S △OBE ,所以S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,所以可以求出S 四边形DHOG .【解答】解:连接OC ,OB ,OA ,OD ,∵E 、F 、G 、H 依次是各边中点,∴△AOE 和△BOE 等底等高,所以S △OAE =S △OBE ,同理可证,S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,∴S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,∵S 四边形AEOH =6,S 四边形BFOE =7,S 四边形CGOF =8,∴6+8=7+S 四边形DHOG ,解得S 四边形DHOG =7.故选:B .【点评】此题主要考查了三角形面积,解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.二、填空题(每小题3分,共30分)9.【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:y 6÷y 2=y 4.故答案为:y 4.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将数据0.00035用科学记数法表示为3.5×10﹣4,故答案为:3.5×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】观察原式,找到公因式a,提出即可得出答案.【解答】解:a2﹣2a=a(a﹣2).故答案为:a(a﹣2).【点评】提公因式法的直接应用,此题属于基础性质的题.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.12.【分析】这个多边形的内角和是1260°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1260,解得n=9.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.13.【分析】先根据平行线的性质,得出∠1=∠3=34°,再根据AB⊥BC,即可得到∠2=90°﹣34°=56°.【解答】解:∵a∥b,∴∠1=∠3=34°,又∵AB⊥BC,∴∠2=90°﹣34°=56°,故答案为:56°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.14.【分析】根据a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n)进行计算即可.【解答】解:a m﹣n=a m÷a n=3÷4=,故答案为:.【点评】此题主要考查了同底数幂的除法,关键是掌握同底数幂的除法法则:底数不变,指数相减.15.【分析】多边形的外角和为360°,每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走的路程:15×12=180米.故答案是:180.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.16.【分析】直接利用完全平方公式将原式变形进而得出答案.【解答】解:∵a﹣b=3,ab=5,∴(a﹣b)2=a2﹣2ab+b2=9,∴a2+b2=9+2×5=19.故答案为:19.【点评】此题主要考查了完全平方公式,正确将已知变形是解题关键.17.【分析】根据三角形内角和定理求出∠OAB+∠OBA,根据角的平分线定义得出∠CAB=2∠OAB,∠CBA=2∠OBA,求出∠CAB+∠CBA,根据三角形内角和定理求出即可.【解答】解:∵∠AOB=112°,∴∠OAB+∠OBA=180°﹣∠AOB=68°,∵△ABC两内角的平分线AO、BO相交于点O,∴∠CAB=2∠OAB,∠CBA=2∠OBA,∴∠CAB+∠CBA=2(∠OAB+∠OBA)=136°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣136°=44°,故答案为:44°.【点评】本题考查了三角形内角和定理和角平分线定义,能求出∠CAB+∠CBA的度数是解此题的关键.18.【分析】利用所给展开式探求各项系数的关系,特别是上面的展开式与下面的展开式中的各项系数的关系,可推出(a+b)11的展开式第三项的系数.【解答】解:∵(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……∴依据规律可得到:(a+b)2第三个数为1,(a+b)3第三个数为3=1+2,(a+b)4第三个数为6=1+2+3,…(a+b)11第三个数为:1+2+3+…+9+10==55.故答案为:55.【点评】本题考查了完全平方公式,各项是按a的降幂排列的,它的两端都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.三、解答题(本题共9题,满分96分)19.【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用同底数幂的乘法法则,幂的乘方与积的乘方运算法则计算,合并即可得到结果;(3)原式利用平方差公式,以及完全平方公式化简即可得到结果;(4)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果.【解答】解:(1)原式=9+4+1=14;(2)原式=m8+m8+16m8=18m8;(3)原式=[1+(2x﹣y)][1﹣(2x﹣y)]=1﹣4x2+4xy﹣y2;(4)原式=9a2﹣1﹣9a2﹣6a﹣1=﹣6a﹣2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.【分析】(1)直接提取公因式4,再利用平方差公式分解因式即可;(2)直接提取公因式2a,再利用完全平方公式分解因式即可;(3)直接利用完全平方公式分解因式,进而利用平方差公式分解因式即可.【解答】解:(1)4x2﹣64=4(x2﹣16)=4(x+4)(x﹣4);(2)2ax2﹣4axy+2ay2=2a(x2﹣2xy+y2)=2a(x﹣y)2;(3)16m4﹣8m2n2+n4=(4m2﹣n2)2=(2m+n)2(2m﹣n)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.21.【分析】根据整式的运算法则即可求出答案.【解答】解:当x=﹣2时,原式=4﹣4x2+5x2+5x﹣x2+2x﹣1=7x+3=﹣14+3=﹣11【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.22.【分析】(1)直接利用得出平移后对应点位置进而得出答案;(2)直接利用中线的定义得出答案;(3)直接利用高线的作法得出答案;(4)直接利用三角形面积求法得出答案.【解答】解:(1)如图所示:△A′B′C′,即为所求;(2)如图所示:CD即为所求;(3)如图所示:AE即为所求;(4))△A′B′C′的面积为:×4×4=8.故答案为:8.【点评】此题主要考查了平移变换以及三角形面积求法和三角形中线、高线的作法,正确把握相关定义是解题关键.23.【分析】(1)根据题意和长方形面积公式即可求出答案.(2)将a与b的值代入即可求出答案.【解答】解:(1)硬化总面积为(5a+b)(3a+b)﹣(a﹣b)2=15a2+8ab+b2﹣a2+2ab﹣b2=14a2+10ab;(2)当a=5、b=2时,14a2+10ab=14×52+10×5×2=450,答:需要硬化的面积为450米2.【点评】本题考查代数式求值,解题的关键是根据题意列出代数式,本题属于基础题型.24.【分析】直接利用平行线的性质,结合角平分线的定义,得出∠CBD=∠ABD=40°,进而得出答案.【解答】解:∵AC∥BD,∠MAB=80°,∴∠ABD=∠MAB=80°,∵BC平分∠ABD,∴∠CBD=∠ABD=40°,∵DE⊥BC,∴∠BED=90°,∴∠EDB=90°﹣∠CBD=50°.【点评】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠CBD的度数是解题关键.25.【分析】由∠1=∠2,∠1=∠DGH,根据同位角相等,两直线平行,易证得DB∥EC,又由∠C=∠D,易证得AC∥DF,继而证得结论.【解答】证明:∵∠1=∠2(已知),又∵∠1=∠DGH(对顶角相等),∴∠2=∠DGH(等量代换).∴DB∥EC(同位角相等,两直线平行).∴∠ABD=∠C(两直线平行,同位角相等)∵∠C=∠D(已知)∴∠ABD=∠D(等量代换)∴AC∥DF(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等).【点评】本题考查平行线的性质与判定,解题的关键是灵活运用平行线的性质与判定,本题属于基础题型.26.【分析】(1)根据图2,利用直接求与间接法分别表示出正方形面积,即可确定出所求等式;(2)根据(1)中结果,求出所求式子的值即可;(3)根据已知等式,做出相应图形,如图所示.【解答】解:(1)∵由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2∴由图2可得等式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)如图所示:∴2a2+5ab+2b2=(2a+b)(a+2b)【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.27.【分析】(1)①如图1,当点Q落在AB上,根据三角形的内角和即可得到结论;①如图2,当点Q落在CD上,由折叠的性质得到PF垂直平分EQ,得到∠1=∠2,根据平行线的性质即可得到结论;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x根据平行线的性质即可得到结论;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC 得,∠PFC=2x根据平行线的性质即可得到结论.【解答】解:(1)①如图1,当点Q落在AB上,∴FP⊥AB,∴∠EFP=90°﹣∠PEF=42°,①如图2,当点Q落在CD上,∵将△EPF沿PF折叠,使顶点E落在点Q处,∴PF垂直平分EQ,∴∠1=∠2,∵AB∥CD,∴∠QFE=180°﹣∠PEF=132°,∴∠PFE=QFE=66°;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x,∵∠CFQ=PFC,∴∠PFQ=∠CFQ=x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴75°+x+x+x=180°,∴x=35°,∴∠EFP=35°;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC得,∠PFC=2x,∴∠PFQ=3x,由折叠得,∠PFE=∠PFQ=3x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴2x+3x+75°=180°,∴x=21°,∠EFP=3x=63°,综上所述,∠EFP的度数是35°或63°.【点评】本题考查了平行线的性质,折叠的性质,正确的作出图形是解题的关键.。

七年级下数学期中测试题及答案.docx

七年级下数学期中测试题及答案.docx

2017-2018 学年第二学期初一级期中考试数学试卷一、选择题:(本大题10 小题,每小题 3 分,共 30 分,请将正确答案在答题卡的相应位置填涂。

)1.如图所示,1和 2 是对顶角的是()1 1211222A B C D2.下列各式中 , 正确的是 ().A.4=±2B.± 4 =2C. 3 -64 =-4D.(-2) 2 =-23. 比较大小(1)233()1 0.5 ,(2)32A.>,>B.<,<C.>,<D.<,>4.平面直角坐标系下, A 点到 x 轴的距离为3,到 y 轴的距离为5,且在第二象限,则 A 点的坐标是()A.( 3,5) ?B.(5,3) C.(-3,5)? D.(-5,3)5.线段 CD是由 AB平移得到, A(-1 ,4)的对应点为C(3,6) ,则点 B(3 ,-1)的对应点D的坐标为()A. (5 , 1) B.(5,-3) C.(7,1) D.(7,-3)6.下列五个命题:( 1)零是最小的实数;(2)-27的立方根是±3( 3)数轴上的点不能表示所有的实数;(4)无理数都是带根号的数;( 5)一个正数的平方根有两个,它们互为相反数.其中正确的有()A.0个B.1个C.2 个D.3 个7. 已知 a 2 b 320, 则abc()c 1A.- 6B. 6C. 9D. - 38.如图,下列判断正确的是( )A. 若∠ 1=∠ 2,则AD∥BCB. 若∠ 1=∠ 2. 则AB∥CDC. 若∠A=∠ 3,则AD∥ BCD. 若∠A+∠ADC= 180°,则AD∥BC9.如,已知直AB∥CD,∠ C=115°,∠ A=25°,∠ E=()A. 25°B. 65°C. 90°D. 115°10.如,把一个方形片沿EF折叠后,点 D、C分落在 D′、 C′的位置,若∠ EFB=70°,∠ AED′等于()A. 40°B. 50°C. 60°D.70°(第 8 )(第9)(第10)二、填空:(本大 6 小,每小 4 分,共 24 分)1211.算的平方根 ______.412.将命“同角的角相等”改写成“如果⋯那么⋯”形式_________________.13.若一个正数x 的平方根2+2a 和 1-a ,个数是 ______.14.如图,想在河堤两岸搭建一座桥,图中搭建方式中,最短的是PB,理由是.15.如图,将周长为8 的△ABC沿BC方向向右平移1 个单位得到△DEF,P A D则四边形 ABFD的周长为.A B C DB EC F(第 14 题图)(第 15题图)16.若a13 b, 且a, b 为连续正整数,则b2a2__ ____.三、解答题(一):(本大题共 3 小题,每小题 6 分,共 18 分)3217.解方程:(1)x +3 +1 = 0(2) x-29 018.计算:(1)120184(2)523272225 132 12219.把下列各数的序号填入相应的集合内...①-1,②16,③39,④0,⑤-,⑥,⑦,32⑧⋯ ( 相两个 8 之 9 的个数逐次加1).无理数集合{⋯ } ;正数集合{⋯ } ;整数集合{⋯ } ;四、解答(二)(本大共 3 小,每小7 分,共 21 分)20.已知:如,∠,∠B=∠D.直 AD与 BE平行?直AB与 DC平行?明理由( 在下面的解答程的空格内填空或在括号内填写理由 ).解:直 AD与 BE,直AB与DC.A D理由如下:FB C E∵∠ DAE=∠ E,(已知)∴∥,()∴∠ D=∠ DCE. ()又∵∠ B=∠ D,(已知)∴∠ B=∠ DCE.,(等量代换)∴∥.()21.已知 2a﹣1 的平方根是± 3,3a+b﹣1 的算术平方根是4.求 a+2b 的算术平方根 .22.在如图所示的直角坐标系中,解答下列问题:A( 1)将△ ABC向左平移 3 个单位长度,再向上平移 5 个C单位长度得到△A1 B1 C1,画出△ A1 B1 C1;B(2)求△ A1B1C1的面积 .五、解答(三)(本大共 3 小,每小9 分,共 27E分)A C 23.如,已知∠ 1=∠BDC,∠ 2+∠ 3=180° .23的位置关系,并明理由;F 1(1) 你判断与B DDA CE(2)若 DA平分∠ BDC, CE⊥AE于 E,∠1=70°,求∠ FAB的度数.24.小明在学了平面直角坐系后,突奇想,画出了的形(如),他把形与 x 正半的交点依次作A(1 1,0), A(2 5, 0)⋯⋯ A n,形与 y 正半的交点依次作(,)(,)B1 02, B20 6 ⋯⋯ B n,形与x半的交点依次作C(1 -3 , 0),C(2 -7,0)⋯⋯ C n,形与y半的交点依次作,⋯⋯D n ,其中包含了一定D(10,-4 ) D(20,-8 )的数学律。

泰州市姜堰市七年级下期中数学试卷及答案

泰州市姜堰市七年级下期中数学试卷及答案

2017-2018学年江苏省泰州市姜堰市七年级(下)期中数学试卷一、选择题(每小题3分,共18分)1.(3分)如图所示的图案是一些汽车的车标,可以看做由“基本图案”经过平移得到的是()A.B. C.D.2.(3分)下列每组数分别是三根木棒的长度,能用它们搭成三角形的是()A.2cm,2cm,4cm B.3cm,9cm,5cmC.5cm,12cm,13cm D.6cm,10cm,4cm3.(3分)下列运算中,正确的是()A.(ab2)2=a2b4B.a2+a2=2a4C.a2•a3=a6 D.a6÷a3=a24.(3分)若a<b,则下列各式一定成立的是()C.a﹣1<b﹣1 D.3a>3bA.a+3>b+3 B.5.(3分)下列各式由左边到右边的变形中,是分解因式的是()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.x4﹣16=(x2+4)(x2﹣4)D.10x2﹣5x=5x(2x﹣1)6.(3分)已知方程组和有相同的解,则a,b的值为()A.B.C.D.二、填空题(每空3分,共30分)7.(3分)3﹣2= .8.(3分)将0.00000034用科学记数法表示应为.9.(6分)一个多边形的内角和等于1080°,这个多边形是边形.10.(3分)若a m=2,a n=3,则a m﹣n的值为.11.(3分)如果是方程6x+by=32的解,则b= .12.(3分)若x2+mx﹣15=(x+3)(x+n),则mn的值为.13.(3分)计算:(﹣3)2017×()2018= .14.(3分)若a+b=3,ab=2,则a2+b2= .15.(3分)已知关于x的不等式(m﹣2)x>2m﹣4的解集为x<2,则m的取值范围是.16.(3分)已知方程组的解是,则关于x、y的方程组的解是三、解答题(本大题共102分)17.(10分)(1)计算:(﹣)﹣2+(π﹣2)0﹣|﹣3|;(2)先化简,再求值:(x+3y)2﹣(x+3y)(x﹣3y),其中x=3,y=﹣2.18.(10分)把下列各式因式分解:(1)x2﹣9(2)a3b﹣2a2b2+ab319.(10分)解方程组:(1)(2)20.(10分)解下列不等式,并把它们的解集在数轴上表示出来.(1)2(x+1)>3x﹣4(2)﹣>21.(10分)(1)求x的值:2x•43﹣x•81+x=32;(2)已知x2﹣3x﹣1=0,求代数式(x﹣1)(3x+1)﹣(x+2)2+5的值.22.(8分)如图,D、E、F分别在△ABC的三条边上,DE∥AB,∠1+∠2=180°.(1)试说明:DF∥AC;(2)若∠1=110°,DF平分∠BDE,求∠C的度数.23.(8分)观察下列各式:1×5+4=32…………①3×7+4=52…………②5×9+4=72…………③……探索以上式子的规律:(1)试写出第6个等式;(2)试写出第n个等式(用含n的式子表示),并用你所学的知识说明第n个等式成立.24.(10分)用二元一次方程组解决问题:某商场按定价销售某种商品时,每件可获利35元;按定价的八折销售该商品5件与将定价降低20元销售该商品8件所获得的利润相等.求该商品每件的进价、定价各是多少元?25.(12分)仔细阅读下列解题过程:若a2+2ab+2b2﹣6b+9=0,求a、b的值.解:∵a2+2ab+2b2﹣6b+9=0∴a2+2ab+b2+b2﹣6b+9=0∴(a+b)2+(b﹣3)2=0∴a+b=0,b﹣3=0∴a=﹣3,b=3根据以上解题过程,试探究下列问题:(1)已知x2﹣2xy+2y2﹣2y+1=0,求x+2y的值;(2)已知a2+5b2﹣4ab﹣2b+1=0,求a、b的值;(3)若m=n+4,mn+t2﹣8t+20=0,求n2m﹣t的值.26.(14分)已知关于x、y的二元一次方程组(k为常数).(1)求这个二元一次方程组的解(用含k的代数式表示);(2)若方程组的解x、y满足x+y>5,求k的取值范围;(3)若(4x+2)2y=1,直接写出k的值;(4)若k≤1,设m=2x﹣3y,且m为正整数,求m的值.2017-2018学年江苏省泰州市姜堰市七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共18分)1.(3分)如图所示的图案是一些汽车的车标,可以看做由“基本图案”经过平移得到的是()A.B. C.D.【解答】解:观察图形可知,图案D可以看作由“基本图案”经过平移得到.故选:D.2.(3分)下列每组数分别是三根木棒的长度,能用它们搭成三角形的是()A.2cm,2cm,4cm B.3cm,9cm,5cmC.5cm,12cm,13cm D.6cm,10cm,4cm【解答】解:A、2+2=4,故以这三根木棒不能构成三角形,不符合题意;B、3+5<9,故以这三根木棒不能构成三角形,不符合题意;C、5+12>13,故以这三根木棒可以构成三角形,符合题意;D、6+4=10,故以这三根木棒不能构成三角形,不符合题意.故选:C.3.(3分)下列运算中,正确的是()A.(ab2)2=a2b4B.a2+a2=2a4C.a2•a3=a6 D.a6÷a3=a2【解答】解:A、(ab2)2=a2b4,故此选项正确;B、a2+a2=2a2,故此选项错误;C、a2•a3=a5,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:A.4.(3分)若a<b,则下列各式一定成立的是()C.a﹣1<b﹣1 D.3a>3bA.a+3>b+3 B.【解答】解:由a<b,得到a+3<b+3,<,a﹣1<b﹣1,3a<3b,故选:C.5.(3分)下列各式由左边到右边的变形中,是分解因式的是()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.x4﹣16=(x2+4)(x2﹣4)D.10x2﹣5x=5x(2x﹣1)【解答】解:根据因式分解的定义可知:D选项为因式分解,故选:D.6.(3分)已知方程组和有相同的解,则a,b的值为()A.B.C.D.【解答】解:∵方程组和有相同的解,∴方程组的解也它们的解,解得:,代入其他两个方程得,解得:,故选:D.二、填空题(每空3分,共30分)7.(3分)3﹣2= .【解答】解:原式==.故答案为:.8.(3分)将0.00000034用科学记数法表示应为 3.4×10﹣7.【解答】解:0.00000034=3.4×10﹣7,故答案为:3.4×10﹣7.9.(6分)一个多边形的内角和等于1080°,这个多边形是8 边形.【解答】解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故答案为:8.10.(3分)若a m=2,a n=3,则a m﹣n的值为.【解答】解:a m﹣n=a m÷a n=2÷3=,故答案为:.11.(3分)如果是方程6x+by=32的解,则b= 7 .【解答】解:把x=3,y=2代入方程6x+by=32,得6×3+2b=32,移项,得2b=32﹣18,合并同类项,系数化为1,得b=7.12.(3分)若x2+mx﹣15=(x+3)(x+n),则mn的值为10 .【解答】解:由x2+mx﹣15=(x+3)(x+n)=x2+(3+n)x+3n,比较系数,得m=3+n,﹣15=3n,解得m=﹣2,n=﹣5,∴mn=(﹣2)×(﹣5)=10.13.(3分)计算:(﹣3)2017×()2018= ﹣.【解答】解:(﹣3)2017×()2018=(﹣3×)2017×=﹣.故答案为:﹣.14.(3分)若a+b=3,ab=2,则a2+b2= 5 .【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=9﹣4=5.故答案为:5.15.(3分)已知关于x的不等式(m﹣2)x>2m﹣4的解集为x<2,则m的取值范围是m <2 .【解答】解:不等式(m﹣2)x>2m﹣4的解集为x<2,∴m﹣2<0,m<2,故答案为:m<2.16.(3分)已知方程组的解是,则关于x、y的方程组的解是【解答】解:∵方程组的解是,∴,把∴代入,得,整理,得①﹣②,得(a1﹣a2)x=4(a1﹣a2),∴x=4.把x=4代入①,得4a1﹣2y=4a1+4所以y=﹣2∴原方程组的解为故答案为:三、解答题(本大题共102分)17.(10分)(1)计算:(﹣)﹣2+(π﹣2)0﹣|﹣3|;(2)先化简,再求值:(x+3y)2﹣(x+3y)(x﹣3y),其中x=3,y=﹣2.【解答】解:(1)原式=4+1﹣3=2;(2)原式=x2+6xy+9y2﹣(x2﹣9y2)=x2+6xy+9y2﹣x2+9y2=6xy+18y2,当x=3、y=﹣2时,原式=6×3×(﹣2)+18×(﹣2)2=﹣36+72=36.18.(10分)把下列各式因式分解:(1)x2﹣9(2)a3b﹣2a2b2+ab3【解答】解:(1)原式=(x+3)(x﹣3);(2)原式=ab(a2﹣2ab+b2)=ab(a﹣b)2.19.(10分)解方程组:(1)(2)【解答】解:(1),①﹣②得:3y=﹣4,解得:y=﹣,①+②×2得:3x=11,解得:x=,则方程组的解为;(2)方程组整理得:,①×2﹣②得:x=﹣2,把x=﹣2代入①得:y=6,则方程组的解为.20.(10分)解下列不等式,并把它们的解集在数轴上表示出来.(1)2(x+1)>3x﹣4(2)﹣>【解答】(本题满分(10分),每小题5分)解:(1)2(x+1)>3x﹣4,2x+2>3x﹣4,2x﹣3x>﹣4﹣2,﹣x>﹣6,x<6,在数轴上表示为:(2)﹣>,去分母得:3(x﹣1)﹣(4x﹣3)>2,去括号得:3x﹣3﹣4x+3>2,合并同类项得:﹣x>2,系数化为1得:x<﹣2.21.(10分)(1)求x的值:2x•43﹣x•81+x=32;(2)已知x2﹣3x﹣1=0,求代数式(x﹣1)(3x+1)﹣(x+2)2+5的值.【解答】解:(1)∵2x•43﹣x•81+x=32,∴2x•(22)3﹣x•(23)1+x=25,2x•26﹣2x•23+3x=25,2x+6﹣2x+3+3x=25,即22x+9=25,则2x+9=5,解得:x=﹣2;(2)原式=3x2+x﹣3x﹣1﹣(x2+4x+4)+5=3x2+x﹣3x﹣1﹣x2﹣4x﹣4+5=2x2﹣6x,∵x2﹣3x﹣1=0,∴x2﹣3x=1,则原式=2(x2﹣3x)=2.22.(8分)如图,D、E、F分别在△ABC的三条边上,DE∥AB,∠1+∠2=180°.(1)试说明:DF∥AC;(2)若∠1=110°,DF平分∠BDE,求∠C的度数.【解答】证明:(1)∵DE∥AB,∴∠A=∠2,∵∠1+∠2=180°.∴∠1+∠A=180°,∴DF∥AC;(2)∵DE∥AB,∠1=110°,∴∠FDE=70°,∵DF平分∠BDE,∴∠FDB=70°,∵DF∥AC,∴∠C=∠FDB=70°23.(8分)观察下列各式:1×5+4=32…………①3×7+4=52…………②5×9+4=72…………③……探索以上式子的规律:(1)试写出第6个等式;(2)试写出第n个等式(用含n的式子表示),并用你所学的知识说明第n个等式成立.【解答】解:(1)第6个等式为11×15+4=132;(2)由题意知(2n﹣1)(2n+3)+4=(2n+1)2,理由:左边=4n2+6n﹣2n﹣3+4=4n2+4n+1=(2n+1)2=右边,∴(2n﹣1)(2n+3)+4=(2n+1)2.24.(10分)用二元一次方程组解决问题:某商场按定价销售某种商品时,每件可获利35元;按定价的八折销售该商品5件与将定价降低20元销售该商品8件所获得的利润相等.求该商品每件的进价、定价各是多少元?【解答】解:设该商品每件的定价为x元,进价为y元,由题意得:,解得:.答:该商品每件的定价为55元,进价为20元.25.(12分)仔细阅读下列解题过程:若a2+2ab+2b2﹣6b+9=0,求a、b的值.解:∵a2+2ab+2b2﹣6b+9=0∴a2+2ab+b2+b2﹣6b+9=0∴(a+b)2+(b﹣3)2=0∴a+b=0,b﹣3=0∴a=﹣3,b=3根据以上解题过程,试探究下列问题:(1)已知x2﹣2xy+2y2﹣2y+1=0,求x+2y的值;(2)已知a2+5b2﹣4ab﹣2b+1=0,求a、b的值;(3)若m=n+4,mn+t2﹣8t+20=0,求n2m﹣t的值.【解答】解:(1)∵x2﹣2xy+2y2﹣2y+1=0∴x2﹣2xy+y2+y2﹣2y+1=0∴(x﹣y)2+(y﹣1)2=0∴x﹣y=0,y﹣1=0,∴x=1,y=1,∴x+2y=3;(2)∵a2+5b2﹣4ab﹣2b+1=0∴a2+4b2﹣4ab+b2﹣2b+1=0∴(a﹣2b)2+(b﹣1)2=0∴a﹣2b=0,b﹣1=0∴a=2,b=1;(3))∵m=n+4,∴n(n+4)+t2﹣8t+20=0∴n2+4n+4+t2﹣8t+16=0∴(n+2)2+(t﹣4)2=0∴n+2=0,t﹣4=0∴n=﹣2,t=4∴m=n+4=2∴n2m﹣t=(﹣2)0=1.26.(14分)已知关于x、y的二元一次方程组(k为常数).(1)求这个二元一次方程组的解(用含k的代数式表示);(2)若方程组的解x、y满足x+y>5,求k的取值范围;(3)若(4x+2)2y=1,直接写出k的值;(4)若k≤1,设m=2x﹣3y,且m为正整数,求m的值.【解答】解:(1)②+①,得4x=2k﹣1,即x=;②﹣①,得2y=﹣4k+3即y=所以原方程组的解为(2)方程组的解x、y满足x+y>5,所以+>5,整理得﹣6k>15,所以k<﹣;(3)由于a0=1(a≠0),(4x+2)2y=1,所以2y=0,即2×=0解得:k=;因为1n=1,(4x+2)2y=1,所以4x+2=1即4×+2=1解,得k=0.所以当k=0或时,(4x+2)2y=1.(4)m=2x﹣3y=2×﹣3×=7k﹣5由于m为正整数,所以m>0即7k﹣5>0,k>所以<k≤1当k=时,m=7k﹣5=1;当k=1时,m=7k﹣5=2.答:m的值为1或2.11。

2017-2018学年七年级数学下期中考试卷及答案

2017-2018学年七年级数学下期中考试卷及答案

2017-2018学年七年级数学下期中考试卷及答案2017 — 2018 学年度第二学期初一年级数学学科期中检测试卷(全卷满分150 分,答题时间120 分钟)一、选择题(共8 小题,每题 3 分,共 24 分)1.以下图形中,能将此中一个图形平移获得另一个图形的是(▲)A. B.c. D.2 .以下计算正确的选项是(▲)A. B.c. D.3 .以下长度的 3 条线段,能首尾挨次相接构成三角形的是(▲)A .1c,2c, 4cB. 8c,6c, 4cc .15c, 5c, 6cD. 1c, 3c,4c4 .以下各式能用平方差公式计算的是(▲)A. B.c. D.5 .若 , ,则的值为(▲)A . 6B. 8c. 11D. 186 .如图, 4 块完整同样的长方形围成一个正方形. 图中阴影部分的面积能够用不一样的代数式进行表示,由此能考证的等式是(▲)A. B.c. D.7 .当 x=﹣6, y=时,的值为(▲)A.﹣ 6B. 6c.D.8.如图,四边形 ABcD中, E、 F、 G、 H 挨次是各边中点,o 是形内一点,若四边形AEoH、四边形BFoE、四边形cGoF 的面积分别为 7、 9、 10,则四边形DHoG面积为(▲)A . 7B. 8c. 9D.10二、填空题(共10 小题,每题 3 分,共 30 分)9.随意五边形的内角和与外角和的差为度.10.已知一粒米的质量是 0.000021 千克,这个数字用科学记数法表示为.11 .假如一个完整平方式,则=.12.已知,,则的值是 ______.13.假如( x+1)( x+)的乘积中不含 x 的一次项,则的值为.14 .若,则= .15. 若 { █ (x=3@y=-2) 是方程组 { █ (ax+by=1@ax-by=5) 的解,则 a+b=________.16.已知,且,那么的值为.17.如图,将△ ABc 沿 DE、 EF 翻折,极点 A,B 均落在点o 处,且 EA与 EB重合于线段 Eo,若∠ cDo+∠ cFo= 78°,则∠ c 的度数为 =.18.如图,长方形 ABcD中, AB=4c,Bc=3c,点 E 是 cD 的中点,动点 P 从 A 点出发,以每秒 1c 的速度沿 A→B→ c→ E运动,最后抵达点 E.若点 P 运动的时间为 x 秒,那么当x=_________ 时,△ APE的面积等于.三、解答题(本大题共有 10 小题,共 96 分.请在答题卡指定地区内作答)19 .计算(每题 4 分,共 16 分)(1)(2)(3)(4)( a-b+ 1)( a+ b- 1)20.解方程组(每题 4 分,共 8 分)(1)(2)21.(此题满分 8 分)绘图并填空:如图,每个小正方形的边长为 1 个单位,每个小正方形的极点叫格点.(1)将△ ABc 向左平移 8 格,再向下平移 1 格.请在图中画出平移后的△ A′ B′ c′(2)利用网格线在图中画出△ ABc 的中线 cD,高线 AE;(3)△ A′ B′ c′的面积为 _____.22.(此题满分 6 分)已知:如图, AB∥ cD,EF 交 AB于 G,交 cD 于 F,FH均分∠ EFD,交 AB于 H,∠ AGE=40°,求∠ BHF 的度数.23.(此题满分 10 分)已知:如图 , 在△ ABc 中,BD⊥ Ac 于点 D,E 为 Bc 上一点 , 过 E 点作 EF⊥ Ac, 垂足为 F, 过点 D作 DH ∥Bc 交 AB于点 H.(1) 请你补全图形。

2017-2018学年度第二学期苏科版七年级期中考试数学试卷

2017-2018学年度第二学期苏科版七年级期中考试数学试卷

…………外…………订……_______考号:_…内…………○…………○……………绝密★启用前 2017-2018学年度第二学期 苏科版七年级期中考试数学试卷 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.本卷23题,答卷时间100分,满分120分一、单选题(计40分) 1.(本题4分)下列图形中,可以由其中一个图形通过平移得到的是( ) A. B. C. D. 2.(本题4分)一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表示 为( ) A. 432× B. 4.32× C. 4.32× D. 0.432× 3.(本题4分)一个多边形的每个内角均为140°,则这个多边形是( ) A .七边形 B .八边形 C .九边形 D .十边形 4.(本题4分)若等腰三角形有两条边的长分别是3和1,则此等腰三角形的周长是( )A .5B .7C .5或7D .6 5.(本题4分)2017201823 的计算结果的末位数字是( ) A. 7 B. 5 C. 3 D. 1 6.(本题4分)已知一个二元一次方程组的解是 则这个二元一次方程组可能是( ) A. B. C. D. 7.(本题4分)如图,直线AB ,CD 相交于点O ,OE ⊥AB 于O ,若∠BOD=40°,则不正确的结论是( ) A. ∠AOC=40° B. ∠COE=130° C. ∠BOE=90° D. ∠EOD=40°……外………………订………………线……线※※内※※答※※……○………○…8.(本题4分)已知2{ 3x y ==-是二元一次方程4x+ay=7的一组解,则a 的值为( )A. 13B. 5C. ﹣5D. ﹣139.(本题4分)根据以下对话,可以求得小红所买的笔和笔记本的价格分别是( )A. 0.8元/支,2.6元/本B. 0.8元/支,3.6元/本C. 1.2元/支,2.6元/本D. 1.2元/支,3.6元/本10.(本题3分)如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 的外部时,则A ∠与1∠和2∠ 之间有一种数量关系始终保持不变,你发现的规律是( )A. 212A ∠=∠-∠B. ()3212A ∠=∠-∠C. 3212A ∠=∠-∠D. 12A ∠=∠-∠二、填空题(计40分)11.(本题5分)分解因式: =__________________.12.(本题5分)若x +y =3,则 的值为_________.13.(本题5分)比较大小: ________ .(填“>”“=”或“<”)14.(本题5分)若4x 2-kx +9(k 为常数)是完全平方式,则k =________.15.(本题5分)如上图,直角三角板内部三角形的一个顶点恰好在直线a 上(三角板内部三角形的三边分别与三角板的三边平行),若∠2=30°,∠3=50°,则∠1=_______°.16.(本题5分)16.(本题5分)如图,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是 ______________________.……线…………○………………○……装…………○… 17.(本题5分)17.(本题5分)将直角三角形ABC 沿CB 方向平移BE 的距离后,得到直角三角形DEF ,已知AG =4,BE =6,DE =12,求阴影部分的面积. 18.(本题5分)若方程组352{ 23x y k x y k +=++= 的解x 、y 的和为0,则k 的值为______. 三、解答题(计40分) 19.(本题8分)解方程组: (1)3{ 3814x y x y -=-= (2)()()231{ 34243217x y x y x y -=--+=………○………………○…………线………※※请※※不※题※※ ○…………○…20.(本题8分)如图,BE 是△ABC 的角平分线,点D 是AB 边上一点,且∠DEB =∠DBE . ⑴ DE 与BC 平行吗?为什么?⑵ 若∠A =40°,∠ADE =60°,求∠C 的度数.21.(本题8分)如图,EF ∥AD ,∠1=∠2,∠BAC=80°.将求∠AGD 的过程填写完整.解:因为EF ∥AD ,所以∠2= ( ).又因为∠1=∠2,所以∠1=∠3( ).所以AB ∥ ( ).所以∠BAC+ =180°( ).因为∠BAC=80°,所以∠AGD= .22.(本题8分)如图,MF ⊥NF 于F ,MF 交AB 于点E ,NF 交CD 于点G ,∠1=140°,线…………○………○…………装…………○…23.(本题8分)2008 年北京奥运会,中国运动员获得金、银、铜牌共 100 枚,金牌数位列世界第一。

泰州市姜堰区七年级下期中考试数学试题有答案-精校

泰州市姜堰区七年级下期中考试数学试题有答案-精校

2017年春学期七年级数学期中试题(考试时间:150分钟 满分:150分)一.选择题(每题3分,共18分)1.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007用科学记数法表示为( ▲ )A .0.7×10﹣3B .7×10﹣3C .7×10﹣4D .7×10﹣52.下列计算正确的是( ▲ )A .a 2•a 3=a 6B .2a +3b =5abC .a 8÷a 2=a 6D .(a 2b )2=a 4b 3.下列分解因式正确的是( ▲ )A .﹣ma ﹣m =﹣m (a ﹣1)B .a 2﹣1=(a ﹣1)2C .a 2﹣6a +9=(a ﹣3)2D .a 2+2a +4=(a +2)24.一个多边形的内角和是外角和的2倍,这个多边形的边数为( ▲ ) A .5 B .6 C .7 D .85.如图,在△ABC 中,∠ACB =90°,CD ∥AB ,∠ACD =40°,则∠B 的度数为( ▲ ) A .40° B .50° C .60° D .70°6.二元一次方程组22 1.x y x y +=⎧⎨-=⎩,的解是( ▲ )A .0,2x y =⎧⎨=⎩;B .1,1x y =⎧⎨=⎩;C .-1,-1x y =⎧⎨=⎩;D .2,0.x y =⎧⎨=⎩二.填空题(每题3分,共30分)7.计算:113-⎛⎫- ⎪⎝⎭= ▲ .8. 计算:()()242x x +-= ▲ .9. 在方程728x y -=中,用含x 的代数式表示y 为:y = ▲ .10. 如果三角形的两条边长分别为23cm 和10cm ,第三边与其中一边的长相等,那么第三边的长为 ▲ cm . 11.如图,将面积为5的△ABC 沿BC 方向平移至△DEF 的位置,平移的距离是边BC 长的两倍,那么图中的四边形ACED 的面积为 ▲ .12.人们以分贝为单位来表示声音的强弱.通常说话的声音是50分贝,它表示声音的强度是105;摩托车发出的声音是110分贝,它表示声音的强度是1011.飞机发动机的声音强度是130分贝,则飞机发动机的声音强度是说话声音强度的 ▲倍.13.已知:()()223522x x x a x b -+=-+-+,则a b += ▲ .14.若实数m ,n 满足21201704m m n -+++=,则20m n -- = ▲ . 15.已知a ﹣b =1,则a 2﹣b 2﹣2b 的值为 ▲ . 16.如图,在△ABC 中E 是BC 的中点,点D 是AC 的中点,四边形CDFE 的面积为7,则△ABC 的面积= ▲ . 三.解答题(共102分) 17.(本题满分8分)计算:(1)()042312423-⎛⎫⨯+--- ⎪⎝⎭.(2)(x ﹣1)2﹣x (x ﹣3)+(x +2)(x ﹣2). 18.(本题满分8分)把下列各式进行因式分解: (1)()()36x a b y b a --- (2)()()2221x xx +-+19. (本题满分8分)解方程组第11题图第5题图第16题图(1)212316.x y x y -=⎧⎨+=⎩, (2)2722 5.3xy y x ⎧+=⎪⎪⎨⎪+=⎪⎩,20.(本题满分10分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示.现将△ABC 平移, 使点A 平移到点D ,点E 、F 分别是B 、C 的对应点. (1)请画出平移后的△DEF,并求△DEF 的面积= , (2)在AB 上找一点M ,使CM 平分△ABC 的面积; 21.(本题满分10分)在△ABC 中,∠ABC =∠ACB ,BD 是AC 边上的高,且∠ABD =15°,求∠ACB 的度数。

2017-2018学年苏科版初一下期中考试数学试题含答案

2017-2018学年苏科版初一下期中考试数学试题含答案

2017-2018学年下学期期中考试初一数学试题(考试时间:120分钟 满分:100 分)一、选择题(每题2分,共12分)1.下列图形中,可以由其中一个图形通过平移得到的是A. B. C. D.2.下列计算正确的是A. x 2•x 4=x 8B. a 10÷a 2=a 5C. m 3+m 2=m 5D. (−a 2)3=−a 6 3.某球形流感病毒的直径约为0.000 000 085m ,用科学记数法表示该数据为 A. 8.5−8 B. 85×10−9 C. 0.85×10−7 D. 8.5×10−8 4.若M =2(x −3)(x −5),N =(x −2)(x −14),则M 与N 的关系为A. M >NB. M <NC. M =ND. M 与N 的大小由x 的取值而定 5.实数a ,b ,c 在数轴上对应点的位置如图所示,则下列不等式成立的是C. ab<cbD. ab 2<cb 2 6.已知⎩⎨⎧==1719y x 是方程组⎩⎨⎧-=+=+15ay bx by ax 的解,则9−3a +3b 的值是二、填空题(每题2分,共20分) 7.计算3x 2•2xy 2的结果是___________. 8.写出一个解为⎩⎨⎧=-=21y x 的二元一次方程组 ______________.9.若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是________cm .10.某校男子100m 校运动会记录是12s ,在今年的校田径运动会上,小刚的100m 跑成绩是ts ,打破了该项记录,则t 与12的关系用不等式可表示为_________. 11.0.52017×(-2)2018=__________.12.若(a -2)x1a -+3y =1是二元一次方程,则a =________.13.若x 2+(m −2)x +9是一个完全平方式,则m 的值是________.14.已知a 、b 、c 为一个三角形的三条边长,则代数式(a −b )2−c 2的值一定为________(选填“正数”、“负数”、“零”) .15.如图,△ABC 的两条中线AM 、BN 相交于点O ,已知△ABO 的面积为6,则四边形MCNO 的面积为_________.16.设有n 个数a 1,a 2,…a n ,其中每个数都可能取0,1,−3这三个数中的一个,且满足下列等式:a 1+a 2+…+a n =0,a 21+a 22+…+a 2n =24,则a 31+a 32+…+a 3n 的值是______. 三、解答题(共68分) 17.(6分)计算:(1) −12018+π0-(-3)-2 (2)(a +b -2)(a −b +2)18.(6分)把下列各式分解因式:(1)2x 3y -18xy (2)(x 2+4)2−16x 219.(6分)解方程组:(1)⎩⎨⎧=-=-52302y x y x20.(6分)先化简,再求值:已知(x+a)(x -3)的结果中不含关于字母x 的一次项,求(a+2)2-(1+a)(a -1)的值.21.(6分)小明学习了“第八章 幂的运算”后做这样一道题:若(a−1)a +3=1,求a 的值.他解出来的结果为a =2,老师说小明考虑问题不全面,聪明的你能帮助小明解决这个问题吗?小明解答过程如下: 解:因为1的任何次幂为1,所以a−1=1,a =2.且2+3=5故(a−1)a +3=(2-1)2+3=15=1,所以a =2.你的解答是:22. (6分)观察下列式子: ①1×3+1=4, ②3×5+1=16, ③5×7+1=36,(2)写出第○n 个等式,并说明其正确性.23.(6分)请认真观察图形,解答下列问题:(1) 根据图中条件,试用两种不同方法表示两个阴影图形的面积的和.(3)利用(2)中结论解决下面的问题:如图,两个正方形边长分别为a 、b ,如果a +b =ab =7, 求阴影部分的面积.24.(8分)已知,关于x ,y 的方程组⎩⎨⎧-=+-=-a y x a y x 5234的解为x 、y 。

江苏省姜堰市2017-2018学年七年级下期中考试数学试题附答案

江苏省姜堰市2017-2018学年七年级下期中考试数学试题附答案

2017~2018学年度第二学期期中考试七年级数学试题(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效.一、选择题(每小题3分,共18分)1.如图所示的图案是一些汽车的车标,可以看作由“基本图案”经过平移得到的是A .B .C .D .2.下列每组数分别是三根木棒的长度,能用它们搭成三角形的是 A .2cm ,2cm ,4cm B .3cm ,9cm ,5cm C .5cm ,12cm ,13cmD .6cm ,10cm ,4cm3.下列运算中,正确的是A .2224ab a b =() B .2242a a a += C .236•a a a =D .632a a a ÷=4.若a b <,则下列各式一定成立的是 A .+3+3a b > B .22ab>C .11a b --<D .33a b > 5.下列各式从左边到右边的变形中,是因式分解的是A .a x y ax ay +=+() B .24444x x x x +=-+-() C .()()224x x x +-=-2D .2105521x x x x -=-()6.已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,则a ,b 的值为A .⎩⎨⎧==21b aB .⎩⎨⎧=-=26b a C .⎩⎨⎧==214b a D .⎩⎨⎧-==614b a二、填空题(每空3分,共30分) 7.23-= ▲ .8.将0.00000034用科学记数法表示为 ▲ .9.一个多边形的内角和等于1080°,则这个多边形是 ▲ 边形.10.若2,3mna a ==,则m na -= ▲ .11.如果32xy=⎧⎨=⎩是方程632x by+=的解,则b=▲.12.若()()2153x mx x x n+-=++,则mn=▲.13.计算:()20182017133⎛⎫-⨯=⎪⎝⎭▲.14.若3=+ba,2=ab,则=+22ba▲.15.已知关于x的不等式()224m x m-->的解集为x<2,则m的取值范围是▲.16.已知方程组1122a x y ba x y b+=⎧⎨+=⎩的解是24xy=⎧⎨=⎩,则关于x、y的方程组1112222222a x y a ba x y a b-=+⎧⎨-=+⎩的解是▲.三、解答题(本大题共102分)17.(10分)(1)计算:()-21+232π⎛⎫----⎪⎝⎭;(2)先化简,再求值:()()()2333x y x y x y++-﹣,其中3,2x y==-.18.(10分)把下列各式因式分解:(1)29x-(2)32232a b a b ab+-19.(10分)解方程组:(1)215x yx y+=⎧⎨-=-⎩(2)22123x yx y+=⎧⎪⎨+=⎪⎩20.(10分)解下列不等式,并把它们的解集在数轴上表示出来.................(1)()2134x x+->(2)63421---xx>3121.(10分)(1)求x的值:x2·x-34·3281=+x;(2)已知2310x x--=,求代数式()()()2131+2+5x x x-+-的值.22.(8分)如图,D、E、F分别在△ABC的三条边上,DE∥AB,∠1+∠2=180°.(1)试说明:DF∥AC;(2)若∠1=110°,DF平分∠BDE,求∠C的度数.23.(8分)观察下列各式:21543⨯+=…………①23745⨯+=…………②25947⨯+=…………③……探索以上式子的规律:(1)试写出第6个等式;(2)试写出第n个等式(用含n的式子表示),并用你所学的知识说明第n个等式成立.24.(10分)用二元一次方程组解决问题:某商场按定价销售某种商品时,每件可获利35元;按定价的八折销售该商品5件与将定价降低20元销售该商品8件所获得的利润相等.求该商品每件的进价、定价各是多少元?25. (12分)仔细阅读下列解题过程: 若2222690a ab b b ++-+=,求a 、b 的值. 解:∵2222690a ab b b ++-+=∴2222690a ab b b b +++-+= ∴()()2230a b b ++-= ∴+0,30a b b =-= ∴3,3a b =-=根据以上解题过程,试探究下列问题:(1)已知2222210x xy y y -+-+=,求2x y +的值; (2)已知2254210a b ab b +--+=,求a 、b 的值; (3)若=+4m n ,28200mn t t +-+=,求2m tn -的值.26.(14分)已知关于x 、y 的二元一次方程组23221x y k x y k-=-⎧⎨+=-⎩(k 为常数).(1)求这个二元一次方程组的解(用含k 的代数式表示); (2)若方程组的解x 、y 满足+x y >5,求k 的取值范围; (3)若()24+21yx =,直接写出k 的值;(4)若k ≤1,设23m x y =-,且m 为正整数,求m 的值.2017-2018学年度姜堰区七年级下学期数学期中试卷答案一、选择题(每小题3分,共18分) 1.D 2.C 3.A 4.C 5.D 6.C 二、填空题(每小题3分,共30分)7. 19 8.73.410-⨯ 9.八 10. 2311.7 12.10 13.13- 14. 5 15.2m < 16.42x y =⎧⎨=-⎩三、解答题(本大题共102分)17.(本题满分10分,每小题5分)(1)2(2)2618xy y +,3618.(本题满分10分,每小题5分)(1)()()33x x +- (2)()2ab a b -19.(本题满分10分,每小题5分)(1) 32x y =-⎧⎨=⎩ (2)26x y =-⎧⎨=⎩20.(本题满分10分,每小题5分)(1)6x <,略 (2)x <-2,略 21.(本题满分10分,每小题5分)(1)2x =- (2)226x x -,2 22.(本题满分8分)(1) 略 (2)70°23.(本题满分8分,每小题4分)(1)21115413⨯+= (2)()()()22123421n n n -++=+理由:()()21234n n -++=246234n n n +--+=2441n n ++=()221n +24.(本题满分10分)设该商品每件的定价为x 元,进价为y 元,由题意得:()()3550.8820x y x y x y -=⎧⎪⎨-=--⎪⎩,解得5520x y =⎧⎨=⎩. 答:该商品每件的定价为55元,进价为20元.25.(本题满分12分,每小题4分)(1)2=3x y + (2)2,1a b == (3)126.(本题满分14分)(1)214342k x k y -⎧=⎪⎪⎨-⎪=⎪⎩ ……(3分)(2)52k <- …… (3分)(3)304k =或 ……(4分)(4)12m =或……(4分)。

2017-2018第二学期七年级数学期中考试卷(附参考答案)

2017-2018第二学期七年级数学期中考试卷(附参考答案)



20.阅读下面文字,回答问题 大家知道 是无理数,而无理数是无限不循环小数,因此 的小数部分我们不可能全部 地写出来,但是由于 1< <2,所以 的整数部分为 1,将 减去其整数部分 1,所得 的差就是其小数部分 ﹣1.请你根据以上知识,解答下列问题: (1) 的整数部分是 ,小数部分是 ; (2) ﹣1 的整数部分是 ,小数部分是 ; (3)设 的小数部分是 x,1+ 的小数部分是 y,求|x+y﹣ |的值.
即 CG 平分 OCD (2)结论:当 O=60 时
法一:当 O=60 时
,.C…D…平…分……OC…F….……………………………
∵DE//OB,
∴ ∠DCO=∠O=60 .
∴ ∠ACD=120 .
又 ∵CF 平分 ACD
∴ ∠D CF=60 ,
∴ DCO DCF
即 CD 平分 法二:若 CD 平分
6. 数轴上表示 1, 的对应点分别为 A,B,点 B 关于点 A 的对称点为 C,则点 C 所表示 的数是( )
A. ﹣1 B.1﹣
C.2﹣
D. ﹣2
二、填空题(本大题共 6 小题,每小题 3 分,共 18分)
7.在数轴上与原点的距离是 的点所表示的实数是

8.命题“等角的余角相等”的题设是
,结论
OOCCFF.…………
∴ DCO DCF
∵ ACF FDC ∴ ACF FDC ∵ AOC 180 ∴ DCO 60
∵DE//OB
DCO
∴ O DOC
∴ O 60
F
D
G
C
O
A E
B
四、解答题(本大题共 3 小题,每小题 8 分,共 24分) 18.解:(1)∵22=4,52=25,62=36,

2017-2018学年苏科版七年级数学下册期中试卷含答案解析

2017-2018学年苏科版七年级数学下册期中试卷含答案解析

2017-2018学年七年级(下)期中数学试卷一、填空题:(每题2分,共24分)1.PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为______.2.计算:﹣3x2•2x=______;(﹣0.25)12×411=______.3.多项式2ax2﹣12axy中,应提取的公因式是______.4.若a+b=2,a﹣b=﹣3,则a2﹣b2=______.5.一个多边形的内角和等于它的外角和的3倍,它是______边形.6.若(x+m)与(x+2)的乘积中,不含x的一次项,则常数m的值是______.7.若2x=3,4y=5,则2x﹣2y的值为______.8.如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED=______.9.如图,将一副三角板的两个直角重合,使点B在EC上,点D在AC上,已知∠A=45°,∠E=30°,则∠BFD的度数是______.10.如图,在长方形ABCD中,AB=10cm,BC=6cm,若此长方形以2cm/S的速度沿着A→B 方向移动,则经过______S,平移后的长方形与原来长方形重叠部分的面积为24.11.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为______.12.已知:(n=1,2,3,…),记b1=2(1﹣a1),b2=2(1﹣a1)(1﹣a2),…,b n=2(1﹣a1)(1﹣a2)…(1﹣a n),则通过计算推测出b n的表达式b n=______.(用含n的代数式表示)二、选择题:(每题3分,共15分)13.下列各组图形可以通过平移互相得到的是()A.B.C.D.14.已知三角形两边的长分别是4和9,则此三角形第三边的长可能是()A.4 B.5 C.12 D.1315.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)16.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B的度数是()A.80°B.100°C.90°D.95°17.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正确的结论有()A.2个B.3个C.4个D.5个三、解答题(本大题共8题,共计61分)18.计算:(1)(2)(a+2)(a﹣2)﹣a(a﹣1)(3)(﹣2a2b3)4+(﹣a8)•(2b4)3(4)(2x+y﹣3)(2x﹣y﹣3)19.因式分解:(1)ax2﹣4axy+4ay2(2)(3)(a2+b2)2﹣4a2b2(4)4x2﹣4x+1﹣y2.20.已知ab=3,求b(2a3b2﹣3a2b+4a)的值.21.已知x+y=2,xy=﹣1,求下列代数式的值:(1)5x2+5y2;(2)(x﹣y)2.22.如图,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′根据下列条件,利用网格点和三角板画图:(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为______.23.如图,已知∠1+∠2=180°,∠DAE=∠BCF.(1)试判断直线AE与CF有怎样的位置关系?并说明理由;(2)若∠BCF=70°,求∠ADF的度数.24.如图,在长方形ACDF中,AC=DF,点B在CD上,点E在DF上,BC=DE=a,AC=BD=b,AB=BE=c,且AB⊥BE.(1)用两种不同的方法表示长方形ACDF的面积S方法一:S=______方法二:S=______(2)求a,b,c之间的等量关系(需要化简)(3)请直接运用(2)中的结论,求当c=5,a=3,S的值.25.课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C=______;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案______.3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)七年级(下)期中数学试卷参考答案与试题解析一、填空题:(每题2分,共24分)1.PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.2.计算:﹣3x2•2x=﹣6x3;(﹣0.25)12×411=.【考点】单项式乘单项式;幂的乘方与积的乘方.【分析】根据单项式乘单项式的法则计算可得,由原式变形可得=×()11×411,再逆用积的乘方运算法则即可得.【解答】解:﹣3x2•2x=﹣6x3,(﹣0.25)12×411=(﹣)12×411=×()11×411=×(×4)11=;故答案为:﹣6x3,.3.多项式2ax2﹣12axy中,应提取的公因式是2ax.【考点】公因式.【分析】找出系数的最大公约数,相同字母的最低指数次幂,即可确定出公因式.【解答】解:∵2ax2﹣12axy=2ax(x﹣6y),∴应提取的公因式是2ax.4.若a+b=2,a﹣b=﹣3,则a2﹣b2=﹣6.【考点】因式分解-运用公式法.【分析】原式利用平方差公式分解后,将已知等式代入计算即可求出值.【解答】解:∵a+b=2,a﹣b=﹣3,∴a2﹣b2=(a+b)(a﹣b)=﹣6.故答案为:﹣6.5.一个多边形的内角和等于它的外角和的3倍,它是八边形.【考点】多边形内角与外角.【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故答案为:8.6.若(x+m)与(x+2)的乘积中,不含x的一次项,则常数m的值是﹣2.【考点】多项式乘多项式.【分析】直接利用多项式乘法去括号,进而得出一次项系数为0,求解即可.【解答】解:∵x+m与x+2的乘积中不含x的一次项,∴(x+m)(x+2)=x2+(2+m)x+2m,中2+m=0,∴m=﹣2.故答案为:﹣2.7.若2x=3,4y=5,则2x﹣2y的值为.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】所求式子中有22y,根据所给条件可得22y的值,所求式子中的指数是相减的关系,那么可整理为同底数幂相除的形式.【解答】解:∵4y=5,∴22y=5,∴2x﹣2y=2x÷22y=.故答案为.8.如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED=68°.【考点】平行线的性质.【分析】根据两直线平行,内错角相等求出∠ABC,再根据角平分线的定义求出∠ABE,然后利用两直线平行,内错角相等求解即可.【解答】解:∵AB∥CD,∠C=34°,∴∠ABC=∠C=34°,∵BC平分∠ABE,∴∠ABE=2∠ABC=2×34°=68°,∵AB∥CD,∴∠BED=∠ABE=68°.故答案为:68°.9.如图,将一副三角板的两个直角重合,使点B在EC上,点D在AC上,已知∠A=45°,∠E=30°,则∠BFD的度数是165°.【考点】三角形的外角性质.【分析】根据直角三角形的性质可得∠ABC=45°,根据邻补角互补可得∠EBF=135°,然后再利用三角形的外角的性质可得∠BFD=135°+30°=165°.【解答】解:∵∠A=45°,∴∠ABC=45°,∴∠EBF=135°,∴∠BFD=135°+30°=165°,故答案为:165°.10.如图,在长方形ABCD中,AB=10cm,BC=6cm,若此长方形以2cm/S的速度沿着A→B 方向移动,则经过3S,平移后的长方形与原来长方形重叠部分的面积为24.【考点】平移的性质;矩形的性质.【分析】先用时间表示已知面积的矩形的长和宽,并以面积作为相等关系解关于时间x的方程即可.【解答】解:设x秒后,平移后的长方形与原来长方形重叠部分的面积为24cm2,则6(10﹣2x)=24,解得x=3,即3秒时平移后的长方形与原来长方形重叠部分的面积为24cm2.故答案为:3.11.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为18°或36°.【考点】三角形内角和定理.【分析】根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可.【解答】解:当108°的角是另一个内角的3倍时,最小角为180°﹣108°﹣108÷3°=36°,当180°﹣108°=72°的角是另一个内角的3倍时,最小角为72°÷(1+3)=18°,因此,这个“梦想三角形”的最小内角的度数为36°或18°.故答案为:18°或36°.12.已知:(n=1,2,3,…),记b1=2(1﹣a1),b2=2(1﹣a1)(1﹣a2),…,b n=2(1﹣a1)(1﹣a2)…(1﹣a n),则通过计算推测出b n的表达式b n=.(用含n的代数式表示)【考点】规律型:数字的变化类.【分析】根据题意按规律求解:b1=2(1﹣a1)=2×(1﹣)==,b2=2(1﹣a1)(1﹣a2)=×(1﹣)==,….所以可得:b n的表达式b n=.【解答】解:根据以上分析b n=2(1﹣a1)(1﹣a2)…(1﹣a n)=.二、选择题:(每题3分,共15分)13.下列各组图形可以通过平移互相得到的是()A.B.C.D.【考点】生活中的平移现象.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是C.【解答】解:观察图形可知图案C通过平移后可以得到.故选:C.14.已知三角形两边的长分别是4和9,则此三角形第三边的长可能是()A.4 B.5 C.12 D.13【考点】三角形三边关系.【分析】已知三角形的两边长分别为3和9,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围.【解答】解:设第三边长为x,则由三角形三边关系定理得9﹣4<x<9+4,即5<x<13.因此,本题的第三边应满足5<x<13,把各项代入不等式符合的即为答案.只有12符合不等式,故答案为12.故选C.15.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)【考点】平方差公式.【分析】原式利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式计算的是(﹣x+1)(﹣x﹣1).故选B.16.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B的度数是()A.80°B.100°C.90°D.95°【考点】平行线的性质.【分析】根据两直线平行,同位角相等求出∠BMF、∠BNF,再根据翻折的性质求出∠BMN 和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°;故选D.17.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正确的结论有()A.2个B.3个C.4个D.5个【考点】三角形的外角性质;平行线的判定与性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠EAC=∠ABC+∠ACB=2∠ABC,根据角平分线的定义可得∠EAC=2∠EAD,然后求出∠EAD=∠ABC,再根据同位角相等,两直线平行可得AD∥BC,判断出①正确;根据两直线平行,内错角相等可得∠ADB=∠CBD,再根据角平分线的定义可得∠ABC=2∠CBD,从而得到∠ACB=2∠ADB,判断出②正确;根据两直线平行,内错角相等可得∠ADC=∠DCF,再根据三角形的一个外角等于与它不相邻的两个内角的和和角平分线的定义整理可得∠ADC=90°﹣∠ABD,判断出③正确;根据三角形的外角性质与角平分线的定义表示出∠DCF,然后整理得到∠BDC=∠BAC,判断出⑤正确,再根据两直线平行,内错角相等可得∠CBD=∠ADB,∠ABC与∠BAC不一定相等,所以∠ADB与∠BDC不一定相等,判断出④错误.【解答】解:由三角形的外角性质得,∠EAC=∠ABC+∠ACB=2∠ABC,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD,∴∠EAD=∠ABC,∴AD∥BC,故①正确,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABC=2∠CBD,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确;∵AD∥BC,∴∠ADC=∠DCF,∵CD是∠ACF的平分线,∴∠ADC=∠ACF=(∠ABC+∠BAC)===90°﹣∠ABD,故③正确;由三角形的外角性质得,∠ACF=∠ABC+∠BAC,∠DCF=∠BDC+∠DBC,∵BD平分∠ABC,CD平分∠ACF,∴∠DBC=∠ABC,∠DCF=∠ACF,∴∠BDC+∠DBC=(∠ABC+∠BAC)=∠ABC+∠BAC=∠DBC+∠BAC,∴∠BDC=∠BAC,故⑤正确;∵AD∥BC,∴∠CBD=∠ADB,∵∠ABC与∠BAC不一定相等,∴∠ADB与∠BDC不一定相等,∴BD平分∠ADC不一定成立,故④错误;综上所述,结论正确的是①②③⑤共4个.故选C.三、解答题(本大题共8题,共计61分)18.计算:(1)(2)(a+2)(a﹣2)﹣a(a﹣1)(3)(﹣2a2b3)4+(﹣a8)•(2b4)3(4)(2x+y﹣3)(2x﹣y﹣3)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据幂的乘方、负整数指数幂、零指数幂可以解答本题;(2)根据平方差公式、单项式乘以多项式可以解答本题;(3)根据积的乘方,然后合并同类项即可解答本题;(4)根据平方差公式和完全平方公式可以解答本题.【解答】解:原式===﹣2+=﹣1;(2)原式=a2﹣4﹣a2+a=a﹣4;(3)原式=16a8b12+(﹣a8)•(8b12)=16a8b12﹣8a8b12=8a8b12;(4)原式=[(2x﹣3)+y][(2x﹣3)﹣y]=(2x﹣3)2﹣y2=4x2﹣12x+9﹣y2.19.因式分解:(1)ax2﹣4axy+4ay2(2)(3)(a2+b2)2﹣4a2b2(4)4x2﹣4x+1﹣y2.【考点】提公因式法与公式法的综合运用.【分析】(1)直接提取公因式a,再利用完全平方公式分解因式得出答案;(2)直接提取公因式,再利用完全平方公式分解因式得出答案;(3)直接利用平方差公式分解因式,再结合完全平方公式分解因式即可;(4)将前三项利用完全平方公式分解因式,进而利用平方差公式分解因式即可.【解答】解:(1)原式=a(x2﹣4xy+4y2)=a(x﹣2y)2;(2)原式=(m2﹣6mn+9n2)=(m﹣3n)2;(3)原式=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2;(4)原式=(2x﹣1)2﹣y2=(2x﹣1+y)(2x﹣1﹣y).20.已知ab=3,求b(2a3b2﹣3a2b+4a)的值.【考点】整式的混合运算—化简求值.【分析】原式利用单项式乘以多项式法则计算,将ab=3代入即可求出值.【解答】解:b(2a3b2﹣3a2b+4a)=2a3b3﹣3a2b2+4ab,当ab=3时,原式=2×(ab)3﹣3(ab)2+4ab=2﹣3×32+4×3=39.21.已知x+y=2,xy=﹣1,求下列代数式的值:(1)5x2+5y2;(2)(x﹣y)2.【考点】完全平方公式.【分析】(1)原式提取5,利用完全平方公式变形,将x+y与xy的值代入计算即可求出值;(2)原式利用完全平方公式变形,将x+y与xy的值代入计算即可求出值.【解答】解:(1)∵x+y=2,xy=﹣1,∴5x2+5y2=5(x2+y2)=5[(x+y)2﹣2xy]=5×[22﹣2×(﹣1)]=30;(2)∵x+y=2,xy=﹣1,∴(x﹣y)2=(x+y)2﹣4xy=22﹣4×(﹣1)=4+4=8.22.如图,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′根据下列条件,利用网格点和三角板画图:(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为8.【考点】作图—复杂作图.【分析】(1)连接BB′,过A、C分别做BB′的平行线,并且在平行线上截取AA′=CC′=BB′,顺次连接平移后各点,得到的三角形即为平移后的三角形;(2)作AB的垂直平分线找到中点D,连接CD,CD就是所求的中线.(3)从A点向BC的延长线作垂线,垂足为点E,AE即为BC边上的高;(4)根据三角形面积公式即可求出△A′B′C′的面积.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)如图所示:CD就是所求的中线;(3)如图所示:AE即为BC边上的高;(4)4×4÷2=16÷2=8.故△A′B′C′的面积为8.故答案为:8.23.如图,已知∠1+∠2=180°,∠DAE=∠BCF.(1)试判断直线AE与CF有怎样的位置关系?并说明理由;(2)若∠BCF=70°,求∠ADF的度数.【考点】平行线的判定与性质.【分析】(1)求出∠1=∠BDC,根据平行线的判定推出即可;(2)根据平行线的性质得出∠BCF=∠CBE,求出∠DAE=∠CBE,根据平行线的判定推出AD∥BC,根据平行线的性质得出即可.【解答】解:(1)AE∥CF,理由是:∵∠1+∠2=180°,∠BDC+∠2=180°,∴∠1=∠BDC,∴AE∥CF;(2)∵AE∥CF,∴∠BCF=∠CBE,又∵∠DAE=∠BCF,∴∠DAE=∠CBE,∴AD∥BC,∴∠ADF=∠BCF=70°.24.如图,在长方形ACDF中,AC=DF,点B在CD上,点E在DF上,BC=DE=a,AC=BD=b,AB=BE=c,且AB⊥BE.(1)用两种不同的方法表示长方形ACDF的面积S方法一:S=ab+b2方法二:S=ab+b2﹣a2+c2.(2)求a,b,c之间的等量关系(需要化简)(3)请直接运用(2)中的结论,求当c=5,a=3,S的值.【考点】整式的混合运算;整式的混合运算—化简求值.【分析】(1)方法一,根据矩形的面积公式就可以直接表示出S;方法二,根据矩形的面积等于四个三角形的面积之和求出结论即可;(2)根据方法一与方法二的S相等建立等式就可以表示出a,b,c之间的等量关系;(3)先由(2)的结论求出b的值,然后代入S的解析式就可以求出结论.【解答】解:(1)由题意,得方法一:S1=b(a+b)=ab+b2方法二:S2=ab+ab+(b﹣a)(b+a)+c2,=ab+b2﹣a2+c2.(2)∵S1=S2,∴ab+b2=ab+b2﹣a2+c2,∴2ab+2b2=2ab+b2﹣a2+c2,∴a2+b2=c2.(3)∵a2+b2=c2.且c=5,a=3,∴b=4,∴S=3×4+16=28.答:S的值为28.故答案为:ab+b2,ab+b2﹣a2+c2.25.课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= 50°;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案∠P=90°﹣∠A.3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)【考点】三角形的外角性质;三角形内角和定理.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠DBC+∠ECB,再利用三角形内角和定理整理即可得解;(2)根据(1)的结论整理计算即可得解;(3)表示出∠DBC +∠ECB ,再根据角平分线的定义求出∠PBC +∠PCB ,然后利用三角形内角和定理列式整理即可得解;(4)延长BA 、CD 相交于点Q ,先用∠Q 表示出∠P ,再用(1)的结论整理即可得解.【解答】解:(1)∠DBC +∠ECB=180°﹣∠ABC +180°﹣∠ACB=360°﹣(∠ABC +∠ACB )=360°﹣=180°+∠A ;(2)∵∠1+∠2=∠180°+∠C ,∴130°+∠2=180°+∠C ,∴∠2﹣∠C=50°;(3)∠DBC +∠ECB=180°+∠A ,∵BP 、CP 分别平分外角∠DBC 、∠ECB ,∴∠PBC +∠PCB=(∠DBC +∠ECB )=,在△PBC 中,∠P=180°﹣=90°﹣∠A ;即∠P=90°﹣∠A ;故答案为:50°,∠P=90°﹣∠A ;(4)延长BA 、CD 于Q ,则∠P=90°﹣∠Q ,∴∠Q=180°﹣2∠P ,∴∠BAD +∠CDA=180°+∠Q ,=180°+180°﹣2∠P ,=360°﹣2∠P .2016年9月24日。

江苏省姜堰市七年级下期中考试数学试题有答案-推荐

江苏省姜堰市七年级下期中考试数学试题有答案-推荐

2017~2018学年度第二学期期中考试七年级数学试题(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效.一、选择题(每小题3分,共18分)1.如图所示的图案是一些汽车的车标,可以看作由“基本图案”经过平移得到的是A .B .C .D .2.下列每组数分别是三根木棒的长度,能用它们搭成三角形的是 A .2cm ,2cm ,4cm B .3cm ,9cm ,5cmC .5cm ,12cm ,13cmD .6cm ,10cm ,4cm3.下列运算中,正确的是A .2224ab a b =() B .2242a a a += C .236•a a a = D .632a a a ÷=4.若a b <,则下列各式一定成立的是A .+3+3a b >B .22a b>C .11a b --<D .33a b > 5.下列各式从左边到右边的变形中,是因式分解的是A .a x y ax ay +=+()B .24444x x x x +=-+-() C .()()224x x x +-=-2D .2105521x x x x -=-()6.已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,则a ,b 的值为A .⎩⎨⎧==21b a B .⎩⎨⎧=-=26b a C .⎩⎨⎧==214b a D . ⎩⎨⎧-==614b a二、填空题(每空3分,共30分) 7.23-= ▲ .8.将0.00000034用科学记数法表示为 ▲ .9.一个多边形的内角和等于1080°,则这个多边形是 ▲ 边形.10.若2,3mna a ==,则m na -= ▲ .11.如果32x y =⎧⎨=⎩是方程632x by +=的解,则b = ▲ .12.若()()2153x mx x x n +-=++,则mn = ▲ .13.计算:()20182017133⎛⎫-⨯= ⎪⎝⎭▲ .14.若3=+b a ,2=ab ,则=+22b a ▲ .15.已知关于x 的不等式()224m x m -->的解集为x <2,则m 的取值范围是 ▲ .16.已知方程组1122a x y b a x y b +=⎧⎨+=⎩的解是24x y =⎧⎨=⎩,则关于x 、y 的方程组1112222222a x y a b a x y a b -=+⎧⎨-=+⎩的解是▲ .三、解答题(本大题共102分)17.(10分)(1)计算:()-201+232π⎛⎫---- ⎪⎝⎭;(2)先化简,再求值:()()()2333x y x y x y ++-﹣,其中3,2x y ==-.18.(10分)把下列各式因式分解:(1)29x - (2)32232a b a b ab +-19.(10分)解方程组:(1) 215x y x y +=⎧⎨-=-⎩ (2)22123x y x y +=⎧⎪⎨+=⎪⎩20.(10分)解下列不等式,并把它们的解集在数轴上表示出来................. (1)()2134x x +-> (2)63421---x x >3121. (10分)(1)求x 的值:x 2·x-34·3281=+x;(2)已知2310x x --=,求代数式()()()2131+2+5x x x -+-的值.22.(8分)如图,D 、E 、F 分别在△ABC 的三条边上,DE∥AB,∠1+∠2=180°. (1)试说明:DF∥AC;(2)若∠1=110°,DF 平分∠BDE,求∠C 的度数.23.(8分)观察下列各式:21543⨯+=…………① 23745⨯+=…………② 25947⨯+=…………③……探索以上式子的规律: (1)试写出第6个等式; (2)试写出第n 个等式(用含n 的式子表示),并用你所学的知识说明第n 个等式成立.24. (10分)用二元一次方程组解决问题:某商场按定价销售某种商品时,每件可获利35元;按定价的八折销售该商品5件与将定价降低20元销售该商品8件所获得的利润相等.求该商品每件的进价、定价各是多少元?25. (12分)仔细阅读下列解题过程: 若2222690a ab b b ++-+=,求a 、b 的值. 解:∵2222690a ab b b ++-+=∴2222690a ab b b b +++-+= ∴()()2230a b b ++-= ∴+0,30a b b =-= ∴3,3a b =-=根据以上解题过程,试探究下列问题:(1)已知2222210x xy y y -+-+=,求2x y +的值; (2)已知2254210a b ab b +--+=,求a 、b 的值; (3)若=+4m n ,28200mn t t +-+=,求2m tn -的值.26.(14分)已知关于x 、y 的二元一次方程组23221x y k x y k -=-⎧⎨+=-⎩(k 为常数).(1)求这个二元一次方程组的解(用含k 的代数式表示); (2)若方程组的解x 、y 满足+x y >5,求k 的取值范围;(3)若()24+21yx =,直接写出k 的值;(4)若k ≤1,设23m x y =-,且m 为正整数,求m 的值.2017-2018学年度姜堰区七年级下学期数学期中试卷答案一、选择题(每小题3分,共18分) 1.D 2.C 3.A 4.C 5.D 6.C二、填空题(每小题3分,共30分) 7. 19 8.73.410-⨯ 9.八 10. 2311.7 12.10 13.13- 14. 5 15.2m < 16.42x y =⎧⎨=-⎩三、解答题(本大题共102分)17.(本题满分10分,每小题5分)(1)2(2)2618xy y +,3618.(本题满分10分,每小题5分)(1)()()33x x +- (2)()2ab a b -19.(本题满分10分,每小题5分)(1) 32x y =-⎧⎨=⎩ (2)26x y =-⎧⎨=⎩20.(本题满分10分,每小题5分)(1)6x <,略 (2)x <-2,略 21.(本题满分10分,每小题5分)(1)2x =- (2)226x x -,2 22.(本题满分8分)(1) 略 (2)70°23.(本题满分8分,每小题4分)(1)21115413⨯+= (2)()()()22123421n n n -++=+理由:()()21234n n -++=246234n n n +--+=2441n n ++=()221n +24.(本题满分10分)设该商品每件的定价为x 元,进价为y 元,由题意得:()()3550.8820x y x y x y -=⎧⎪⎨-=--⎪⎩,解得5520x y =⎧⎨=⎩. 答:该商品每件的定价为55元,进价为20元.25.(本题满分12分,每小题4分)(1)2=3x y + (2)2,1a b == (3)126.(本题满分14分)(1)214342k x k y -⎧=⎪⎪⎨-⎪=⎪⎩ ……(3分)(2)52k <- …… (3分)(3)304k =或 ……(4分)(4)12m =或……(4分)。

【最新】2017-2018学年新人教版初一(下册)期中数学试卷及答案

【最新】2017-2018学年新人教版初一(下册)期中数学试卷及答案
第 4 页(共 15 页)
(2)若 a=30, b=10, c=22, d=9,求阴影部分的面积; (3)若∠ 1=∠ 2,那么∠ 3 与∠ 4 有怎样的关系,并说明理由.
第 4 页(共 15 页)
(2)若 a=30, b=10, c=22, d=9,求阴影部分的面积; (3)若∠ 1=∠ 2,那么∠ 3 与∠ 4 有怎样的关系,并说明理由.
第 4 页(共 15 页)
11.如图,直线 a、 b 被直线 c 所截,若 a∥b,∠ 1=50°,∠ 2=65°,则∠ 3 的度数为(

A . 110°B. 115°C. 120°D. 130° 12.小明在学习之余去买文具,打算购买 5 支单价相同的签字笔和 3 本单价相同的笔记本, 期间他与售货员对话如下: 请你判断在单价没有弄反的情况下, 购买 1 支签字笔和 1 本笔记
本应付(

A . 10 元 B. 11 元 C. 12 元 D. 13 元
二、填空题:本题工 5 小题,每小题 4 分,满分 20 分
13.若∠ 1=35°21′,则∠ 1 的余角是 ______. 14.如图,把一根直尺与一块三角尺如图放置,若么∠
1=55°,则∠ 2 的度数为 ______°.
15.如果方程组
第 4 页(共 15 页)
(2)若 a=30, b=10, c=22, d=9,求阴影部分的面积; (3)若∠ 1=∠ 2,那么∠ 3 与∠ 4 有怎样的关系,并说明理由.
第 4 页(共 15 页)
(2)若 a=30, b=10, c=22, d=9,求阴影部分的面积; (3)若∠ 1=∠ 2,那么∠ 3 与∠ 4 有怎样的关系,并说明理由.
19.解下列方程组:
(1)

江苏省姜堰市七年级下期中考试数学试题有答案-精选

江苏省姜堰市七年级下期中考试数学试题有答案-精选

2017~2018学年度第二学期期中考试七年级数学试题(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效.一、选择题(每小题3分,共18分)1.如图所示的图案是一些汽车的车标,可以看作由“基本图案”经过平移得到的是A .B .C .D . 2.下列每组数分别是三根木棒的长度,能用它们搭成三角形的是A .2cm ,2cm ,4cmB .3cm ,9cm ,5cmC .5cm ,12cm ,13cmD .6cm ,10cm ,4cm 3.下列运算中,正确的是A .2224ab a b =() B .2242a a a += C .236•a a a = D .632a a a ÷=4.若a b <,则下列各式一定成立的是A .+3+3a b >B .22a b>C .11a b --<D .33a b > 5.下列各式从左边到右边的变形中,是因式分解的是A .a x y ax ay +=+()B .24444x x x x +=-+-() C .()()224x x x +-=-2D .2105521x x x x -=-()6.已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,则a ,b 的值为A .⎩⎨⎧==21b aB .⎩⎨⎧=-=26b a C .⎩⎨⎧==214b a D . ⎩⎨⎧-==614b a二、填空题(每空3分,共30分)7.23-= ▲ .8.将0.00000034用科学记数法表示为 ▲ .9.一个多边形的内角和等于1080°,则这个多边形是 ▲ 边形.10.若2,3mna a ==,则m na -= ▲ .11.如果32x y =⎧⎨=⎩是方程632x by +=的解,则b = ▲ .12.若()()2153x mx x x n +-=++,则mn = ▲ . 13.计算:()20182017133⎛⎫-⨯= ⎪⎝⎭▲ .14.若3=+b a ,2=ab ,则=+22b a ▲ .15.已知关于x 的不等式()224m x m -->的解集为x <2,则m 的取值范围是 ▲ .16.已知方程组1122a x y b a x y b +=⎧⎨+=⎩的解是24x y =⎧⎨=⎩,则关于x 、y 的方程组1112222222a x y a b a x y a b -=+⎧⎨-=+⎩的解是▲ .三、解答题(本大题共102分)17.(10分)(1)计算:()-201+232π⎛⎫---- ⎪⎝⎭;(2)先化简,再求值:()()()2333x y x y x y ++-﹣,其中3,2x y ==-.18.(10分)把下列各式因式分解:(1)29x - (2)32232a b a b ab +-19.(10分)解方程组:(1) 215x y x y +=⎧⎨-=-⎩ (2)22123x y x y +=⎧⎪⎨+=⎪⎩20.(10分)解下列不等式,并把它们的解集在数轴上表示出来................. (1)()2134x x +-> (2)63421---x x >3121. (10分)(1)求x 的值:x 2·x -34·3281=+x;(2)已知2310x x --=,求代数式()()()2131+2+5x x x -+-的值.22.(8分)如图,D 、E 、F 分别在△ABC 的三条边上,DE∥AB,∠1+∠2=180°. (1)试说明:DF∥AC;(2)若∠1=110°,DF 平分∠BDE,求∠C 的度数.23.(8分)观察下列各式:21543⨯+=…………① 23745⨯+=…………② 25947⨯+=…………③……探索以上式子的规律: (1)试写出第6个等式;(2)试写出第n 个等式(用含n 的式子表示),并用你所学的知识说明第n 个等式成立.24. (10分)用二元一次方程组解决问题:某商场按定价销售某种商品时,每件可获利35元;按定价的八折销售该商品5件与将定价降低20元销售该商品8件所获得的利润相等.求该商品每件的进价、定价各是多少元?25. (12分)仔细阅读下列解题过程: 若2222690a ab b b ++-+=,求a 、b 的值. 解:∵2222690a ab b b ++-+=∴2222690a ab b b b +++-+= ∴()()2230a b b ++-= ∴+0,30a b b =-= ∴3,3a b =-=根据以上解题过程,试探究下列问题:(1)已知2222210x xy y y -+-+=,求2x y +的值; (2)已知2254210a b ab b +--+=,求a 、b 的值; (3)若=+4m n ,28200mn t t +-+=,求2m tn -的值.26.(14分)已知关于x 、y 的二元一次方程组23221x y k x y k -=-⎧⎨+=-⎩(k 为常数).(1)求这个二元一次方程组的解(用含k 的代数式表示); (2)若方程组的解x 、y 满足+x y >5,求k 的取值范围;(3)若()24+21yx =,直接写出k 的值;(4)若k ≤1,设23m x y =-,且m 为正整数,求m 的值.2017-2018学年度姜堰区七年级下学期数学期中试卷答案一、选择题(每小题3分,共18分) 1.D 2.C 3.A 4.C 5.D 6.C 二、填空题(每小题3分,共30分) 7. 19 8.73.410-⨯ 9.八 10. 2311.7 12.10 13.13- 14. 5 15.2m < 16.42x y =⎧⎨=-⎩三、解答题(本大题共102分)17.(本题满分10分,每小题5分)(1)2(2)2618xy y +,3618.(本题满分10分,每小题5分)(1)()()33x x +- (2)()2ab a b -19.(本题满分10分,每小题5分)(1) 32x y =-⎧⎨=⎩ (2)26x y =-⎧⎨=⎩20.(本题满分10分,每小题5分)(1)6x <,略 (2)x <-2,略 21.(本题满分10分,每小题5分)(1)2x =- (2)226x x -,2 22.(本题满分8分)(1) 略 (2)70°23.(本题满分8分,每小题4分)(1)21115413⨯+= (2)()()()22123421n n n -++=+理由:()()21234n n -++=246234n n n +--+=2441n n ++=()221n +24.(本题满分10分)设该商品每件的定价为x 元,进价为y 元,由题意得:()()3550.8820x y x y x y -=⎧⎪⎨-=--⎪⎩,解得5520x y =⎧⎨=⎩. 答:该商品每件的定价为55元,进价为20元.25.(本题满分12分,每小题4分)(1)2=3x y + (2)2,1a b == (3)126.(本题满分14分)(1)214342k x k y -⎧=⎪⎪⎨-⎪=⎪⎩ ……(3分)(2)52k <- …… (3分)(3)304k =或 ……(4分)(4)12m =或……(4分)。

江苏省姜堰市七年级下期中考试数学试题有答案-精编

江苏省姜堰市七年级下期中考试数学试题有答案-精编

2017~2018学年度第二学期期中考试七年级数学试题(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效.一、选择题(每小题3分,共18分)1.如图所示的图案是一些汽车的车标,可以看作由“基本图案”经过平移得到的是A .B .C .D . 2.下列每组数分别是三根木棒的长度,能用它们搭成三角形的是A .2cm ,2cm ,4cmB .3cm ,9cm ,5cmC .5cm ,12cm ,13cmD .6cm ,10cm ,4cm 3.下列运算中,正确的是A .2224ab a b =() B .2242a a a += C .236•a a a = D .632a a a ÷=4.若a b <,则下列各式一定成立的是A .+3+3a b >B .22a b>C .11a b --<D .33a b > 5.下列各式从左边到右边的变形中,是因式分解的是A .a x y ax ay +=+()B .24444x x x x +=-+-() C .()()224x x x +-=-2D .2105521x x x x -=-()6.已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,则a ,b 的值为A .⎩⎨⎧==21b a B .⎩⎨⎧=-=26b a C .⎩⎨⎧==214b a D . ⎩⎨⎧-==614b a二、填空题(每空3分,共30分)7.23-= ▲ .8.将0.00000034用科学记数法表示为 ▲ .9.一个多边形的内角和等于1080°,则这个多边形是 ▲ 边形.10.若2,3mna a ==,则m na -= ▲ .11.如果32x y =⎧⎨=⎩是方程632x by +=的解,则b = ▲ .12.若()()2153x mx x x n +-=++,则mn = ▲ .13.计算:()20182017133⎛⎫-⨯= ⎪⎝⎭▲ .14.若3=+b a ,2=ab ,则=+22b a ▲ .15.已知关于x 的不等式()224m x m -->的解集为x <2,则m 的取值范围是 ▲ . 16.已知方程组1122a x y b a x y b +=⎧⎨+=⎩的解是24x y =⎧⎨=⎩,则关于x 、y 的方程组1112222222a x y a b a x y a b -=+⎧⎨-=+⎩的解是▲.三、解答题(本大题共102分)17.(10分)(1)计算:()-201+232π⎛⎫---- ⎪⎝⎭;(2)先化简,再求值:()()()2333x y x y x y ++-﹣,其中3,2x y ==-.18.(10分)把下列各式因式分解:(1)29x - (2)32232a b a b ab +-19.(10分)解方程组:(1) 215x y x y +=⎧⎨-=-⎩ (2)22123x y x y +=⎧⎪⎨+=⎪⎩20.(10分)解下列不等式,并把它们的解集在数轴上表示出来................. (1)()2134x x +-> (2)63421---x x >3121. (10分)(1)求x 的值:x2·x-34·3281=+x; (2)已知2310x x --=,求代数式()()()2131+2+5x x x -+-的值.22.(8分)如图,D 、E 、F 分别在△ABC 的三条边上,DE∥AB,∠1+∠2=180°. (1)试说明:DF∥AC;(2)若∠1=110°,DF 平分∠BDE,求∠C 的度数.23.(8分)观察下列各式:21543⨯+=…………① 23745⨯+=…………② 25947⨯+=…………③……探索以上式子的规律: (1)试写出第6个等式;(2)试写出第n 个等式(用含n 的式子表示),并用你所学的知识说明第n 个等式成立.24. (10分)用二元一次方程组解决问题:某商场按定价销售某种商品时,每件可获利35元;按定价的八折销售该商品5件与将定价降低20元销售该商品8件所获得的利润相等.求该商品每件的进价、定价各是多少元?25. (12分)仔细阅读下列解题过程: 若2222690a ab b b ++-+=,求a 、b 的值. 解:∵2222690a ab b b ++-+=∴2222690a ab b b b +++-+= ∴()()2230a b b ++-= ∴+0,30a b b =-= ∴3,3a b =-=根据以上解题过程,试探究下列问题:(1)已知2222210x xy y y -+-+=,求2x y +的值; (2)已知2254210a b ab b +--+=,求a 、b 的值; (3)若=+4m n ,28200mn t t +-+=,求2m tn -的值.26.(14分)已知关于x 、y 的二元一次方程组23221x y k x y k -=-⎧⎨+=-⎩(k 为常数).(1)求这个二元一次方程组的解(用含k 的代数式表示);(2)若方程组的解x 、y 满足+x y >5,求k 的取值范围; (3)若()24+21yx =,直接写出k 的值;(4)若k ≤1,设23m x y =-,且m 为正整数,求m 的值.2017-2018学年度姜堰区七年级下学期数学期中试卷答案一、选择题(每小题3分,共18分) 1.D 2.C 3.A 4.C 5.D 6.C 二、填空题(每小题3分,共30分) 7. 19 8.73.410-⨯ 9.八 10. 2311.7 12.10 13.13- 14. 5 15.2m < 16.42x y =⎧⎨=-⎩三、解答题(本大题共102分)17.(本题满分10分,每小题5分)(1)2(2)2618xy y +,3618.(本题满分10分,每小题5分)(1)()()33x x +- (2)()2ab a b -19.(本题满分10分,每小题5分)(1) 32x y =-⎧⎨=⎩ (2)26x y =-⎧⎨=⎩20.(本题满分10分,每小题5分)(1)6x <,略 (2)x <-2,略 21.(本题满分10分,每小题5分)(1)2x =- (2)226x x -,2 22.(本题满分8分)(1) 略 (2)70°23.(本题满分8分,每小题4分)(1)21115413⨯+= (2)()()()22123421n n n -++=+理由:()()21234n n -++=246234n n n +--+=2441n n ++=()221n +24.(本题满分10分)设该商品每件的定价为x 元,进价为y 元,由题意得:()()3550.8820x y x y x y -=⎧⎪⎨-=--⎪⎩,解得5520x y =⎧⎨=⎩. 答:该商品每件的定价为55元,进价为20元.25.(本题满分12分,每小题4分)(1)2=3x y + (2)2,1a b == (3)126.(本题满分14分)(1)214342k x k y -⎧=⎪⎪⎨-⎪=⎪⎩ ……(3分)(2)52k <- …… (3分)(3)304k =或 ……(4分)(4)12m =或……(4分)。

2018年苏科版七年级数学下册期中试卷含答案解析

2018年苏科版七年级数学下册期中试卷含答案解析

2017-2018学年七年级(下)期中数学试卷一、选择题(本大题共有6小题,每小题3分,共18分)1.计算x5•x,结果正确的是()A.x5B.2x5C.x6D.2x62.计算(﹣2x2y)3,结果正确的是()A.﹣8x6y B.﹣6x2y3C.﹣6x6y3D.﹣8x6y33.下列算式的计算结果等于x2﹣5x﹣6的是()A.(x﹣6)(x+1)B.(x+6)(x﹣1)C.(x﹣2)(x+3)D.(x+2)(x﹣3)4.下列从左到右的变形属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1 B.x2﹣9=(x+3)(x﹣3)C.x2﹣4+3x=(x+2)(x﹣2)+3x D.(x+2)(x﹣2)=x2﹣45.在数轴上表示不等式﹣x+2≥1的解集,正确的是()A.B.C.D.6.甲、乙两个人关于年龄有如下对话,甲说:“我是你现在这个年龄时,你是10岁”.乙说:“我是你现在这个年龄时,你是25岁”.设现在甲x岁,乙y岁,下列方程组正确的是()A.B.C.D.二、填空题(本大题共有10小题,每小题3分,共30分)7.人体中红细胞的直径大约是0.0000077m,用科学记数法来表示红细胞的直径是m.8.计算:(x2)3•x=.9.计算:(﹣s)7÷=﹣s5.10.已知方程2x﹣y=3,用含x的代数式表示y是.11.已知a>b,则﹣3﹣2a﹣3﹣2b.(填>、=或<)12.若(x﹣1)与(2﹣kx)的乘积中,不含x的一次项,则常数k的值是.13.若m=3n﹣2,则m2﹣6mn+9n2的值是.14.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为.15.若三项式4a2﹣2a+1加上一个单项式后是一个多项式的完全平方,请写出一个这样的单项式.16.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个小袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.用适当的不等式表示下列数量关系:(1)x与﹣6的和大于2;(2)x的2倍与5的差是负数;(3)x的与﹣5的和是非负数;(4)y的3倍与9的差不大于﹣1.18.计算:(1)﹣2﹣2+20160+(﹣3)2;(2)(2x﹣3y)2﹣(y+3x)(3x﹣y).19.解不等式x﹣1≤x﹣,把它的解集在数轴上表示出来,并求出这个不等式的负整数解.20.分解下列因式:(1)(x+y)2﹣4x2;(2)3m2n﹣12mn+12n.21.解方程组:(1)(2).22.先化简,再求值:(1)(﹣2x2y)2•(﹣xy3)﹣(﹣x3)3÷x4•y5,其中xy=﹣1.(2)(2a+3)(a﹣2)﹣a(2a﹣3),其中a=﹣2.23.已知A=x﹣y+1,B=x+y+1,C=(x+y)(x﹣y)+2x,两同学对x、y分别取了不同的值,求出的A、B、C的值不同,但A×B﹣C的值却总是一样的.因此两同学得出结论:无论x、y取何值,A×B﹣C的值都不发生变化.你认为这个结论正确吗?请你说明理由.24.某校组织学生乘汽车去自然保护区野营,先以60km/h的速度走平路,后又以30km/h的速度爬坡,共用了6.5h;返回时,汽车以40km/h的速度下坡,又以50km/h的速度走平路,共用了6h.学校距自然保护区有多远?(1)写出题目中的两个等量关系;(2)给出上述问题的完整解答过程.25.(1)观察下列各式:32﹣12=8×1,52﹣32=8×2,72﹣52=8×3,…,探索以上式子的规律,试写出第n个等式;(2)运用所学的数学知识说明你所写式子的正确性;(3)请用文字语言表达这个规律,并用这个规律计算:20172﹣20152.26.某汽车制造厂开发了一种新式电动汽车,计划一年生成安装240辆.由于抽调不出足够的熟练工来完成这种新式电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和每名新工人每月分别可安装多少辆电动汽车?(2)设工厂招聘n(0<n<10)名新工人,为使招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪些招聘方案?(3)在(2)的条件下,工厂给每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,要求新工人的数量多于熟练工,为使工厂每月支出的工资总额W(元)尽可能少,工厂应招聘多少名新工人?七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分)1.计算x5•x,结果正确的是()A.x5B.2x5C.x6D.2x6【考点】同底数幂的乘法.【分析】根据同底数幂的乘法,即可解答.【解答】解:x5•x=x6,故选:C.2.计算(﹣2x2y)3,结果正确的是()A.﹣8x6y B.﹣6x2y3C.﹣6x6y3D.﹣8x6y3【考点】幂的乘方与积的乘方.【分析】根据积的乘方等于乘方的积,可得答案.【解答】解:原式=﹣8x6y3,故选:A.3.下列算式的计算结果等于x2﹣5x﹣6的是()A.(x﹣6)(x+1)B.(x+6)(x﹣1)C.(x﹣2)(x+3)D.(x+2)(x﹣3)【考点】多项式乘多项式.【分析】多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.【解答】解:A、(x﹣6)(x+1)=x2﹣5x﹣6;B(x+6)(x﹣1)=x2+5x﹣6;C、(x﹣2)(x+3)=x2+x﹣6;D、(x+2)(x﹣3)=x2﹣x﹣6.故选A.4.下列从左到右的变形属于因式分解的是( )A .x 2+5x ﹣1=x (x +5)﹣1B .x 2﹣9=(x +3)(x ﹣3)C .x 2﹣4+3x=(x +2)(x ﹣2)+3xD .(x +2)(x ﹣2)=x 2﹣4【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A 、没把一个多项式转化成几个整式积的形式,故A 错误; B 、把一个多项式转化成几个整式积的形式,故B 正确;C 、没把一个多项式转化成几个整式积的形式,故C 错误;D 、是整式的乘法,故D 错误;故选:B .5.在数轴上表示不等式﹣x +2≥1的解集,正确的是( )A .B .C .D . 【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】移项后系数化为1求得不等式解集,根据大于向右、小于向左,包括该数用实心点、不包括该数用空心点表示其解集即可.【解答】解:移项,得:﹣x ≥﹣1,系数化为1,得:x ≤1,故选:D .6.甲、乙两个人关于年龄有如下对话,甲说:“我是你现在这个年龄时,你是10岁”.乙说:“我是你现在这个年龄时,你是25岁”.设现在甲x 岁,乙y 岁,下列方程组正确的是( )A .B .C .D .【考点】由实际问题抽象出二元一次方程组.【分析】设现在甲x 岁,乙y 岁,那么现在甲、乙两人的年龄差为x ﹣y ;由甲说:“我是你现在这个年龄时,你是10岁”得出此时甲、乙两人的年龄差为y﹣10;由乙说:“我是你现在这个年龄时,你是25岁”得出此时甲、乙两人的年龄差为25﹣x;根据两人的年龄差不变列出方程组即可.【解答】解:设现在甲x岁,乙y岁,由题意得,.故选A.二、填空题(本大题共有10小题,每小题3分,共30分)7.人体中红细胞的直径大约是0.0000077m,用科学记数法来表示红细胞的直径是7.7×10﹣6m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:红细胞的直径大约是0.0000077m,用科学记数法来表示红细胞的直径是7.7×10﹣6m,故答案为:×10﹣6.8.计算:(x2)3•x=x7.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】首先根据幂的乘方的运算方法:(a m)n=a mn,求出(x2)3的值是多少;然后用(x2)3的值乘x,求出(x2)3•x的值是多少即可.【解答】解:(x2)3•x=x6•x=x7.故答案为:x7.9.计算:(﹣s)7÷s2=﹣s5.【考点】同底数幂的除法.【分析】依据除数=被除数÷商列出算式,然后再依据同底数幂的除法法则计算即可.【解答】解:(﹣s)7÷(﹣s)5=(﹣s)2=s2.故答案为:s2.10.已知方程2x﹣y=3,用含x的代数式表示y是y=2x﹣3.【考点】解二元一次方程.【分析】把x看作一个常数,解关于y的一元一次方程即可.【解答】解:移项得,﹣y=3﹣2x,系数化为1得,y=2x﹣3.故答案为:y=2x﹣3.11.已知a>b,则﹣3﹣2a<﹣3﹣2b.(填>、=或<)【考点】不等式的性质.【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【解答】解:a>b,则﹣3﹣2a<﹣3﹣2b,故答案为:<.12.若(x﹣1)与(2﹣kx)的乘积中,不含x的一次项,则常数k的值是﹣2.【考点】多项式乘多项式.【分析】线依据多项式乘多项式法则展开,然后合并同类项,最后依据x的一次项系数为0求解即可.【解答】解:原式=﹣kx2+kx+2x﹣2═﹣kx2+(k+2)x﹣2.∵(x﹣1)与(2﹣kx)的乘积中,不含x的一次项,∴k+2=0.解得:k=﹣2.故答案为:﹣2.13.若m=3n﹣2,则m2﹣6mn+9n2的值是4.【考点】因式分解﹣运用公式法.【分析】原式利用完全平方公式分解后,将已知等式变形后代入计算即可求出值.【解答】解:∵m=3n﹣2,即m﹣3n=﹣2,∴原式=(m﹣3n)2=(﹣2)2=4,故答案为:414.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为4.【考点】解一元一次不等式.【分析】先根据不等式的基本性质把不等式去分母、去括号、再移项、合并同类项求出x的取值范围,再与已知解集相比较即可求出m的取值范围.【解答】解:去分母得,x﹣m>3(3﹣m),去括号得,x﹣m>9﹣3m,移项,合并同类项得,x>9﹣2m,∵此不等式的解集为x>1,∴9﹣2m=1,解得m=4.故答案为:4.15.若三项式4a2﹣2a+1加上一个单项式后是一个多项式的完全平方,请写出一个这样的单项式答案不唯一,如﹣3a2或﹣2a或6a或﹣.【考点】完全平方式.【分析】利用完全平方公式的结构特征判断即可.【解答】解:三项式4a2﹣2a+1加上一个单项式后是一个多项式的完全平方,这样的单项式可以为:答案不唯一,如﹣3a2或﹣2a或6a或﹣;故答案为:答案不唯一,如﹣3a2或﹣2a或6a或﹣16.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个小袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.【考点】三元一次方程组的应用.【分析】可设应该安排x名工人缝制衣袖,y名工人缝制衣身,z名工人缝制衣领,才能使每天缝制出的衣袖,衣身、衣领正好配套,根据等量关系:①一共210名工人;②小袖的个数:衣身的个数:衣领的个数=2:1:1;依此列出方程组求解即可.【解答】解:设应该安排x名工人缝制衣袖,y名工人缝制衣身,z名工人缝制衣领,才能使每天缝制出的衣袖,衣身、衣领正好配套,依题意有,解得.故应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.故答案为:120.三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.用适当的不等式表示下列数量关系:(1)x与﹣6的和大于2;(2)x的2倍与5的差是负数;(3)x的与﹣5的和是非负数;(4)y的3倍与9的差不大于﹣1.【考点】由实际问题抽象出一元一次不等式.【分析】(1)根据x与﹣6的和得出x﹣6,再根据x与﹣6的和大于2得出x﹣6>2;(2)先表示出x的2倍为2x,再表示出与5的差为2x﹣5,再根据关键词“是负数”,列出不等式即可;(3)先表示出x的是x,与﹣5的和为x﹣5,是非负数得出x﹣5≥0;(4)先表示出y的3倍是3y,再表示出与9的差3y﹣9,然后根据不大于﹣1即为小于等于,列出不等式即可.【解答】解:(1)根据题意得:x﹣6>2;(2)由题意得:2x﹣5<0;(3)根据题意得:x﹣5≥0;(4)根据题意得:3y﹣9≤﹣1.18.计算:(1)﹣2﹣2+20160+(﹣3)2;(2)(2x﹣3y)2﹣(y+3x)(3x﹣y).【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据零指数幂和负整数指数幂的意义计算;(2)先利用完全平方公式和平方差公式计算,然后合并即可.【解答】解:(1)原式=﹣+1+9=;2)原式=(4x2﹣12xy+9y2)﹣(9x2﹣y2)=4x2﹣12xy+9y2﹣9x2+y2=﹣5x2﹣12xy+10y2.19.解不等式x﹣1≤x﹣,把它的解集在数轴上表示出来,并求出这个不等式的负整数解.【考点】一元一次不等式的整数解;在数轴上表示不等式的解集;解一元一次不等式.【分析】先去分母,再去括号,移项,合并同类项,把化系数为1即可求出x的取值范围,再在数轴上表示出不等式的解集,找出符合条件的x的负整数解即可.【解答】解:去分母,得3x﹣6≤4x﹣3,移项、合并同类项,得﹣x≤3,系数化为1,得x≥﹣3.解集在数轴上表示如图,其负整数解为﹣1,﹣2,﹣3.20.分解下列因式:(1)(x+y)2﹣4x2;(2)3m2n﹣12mn+12n.【考点】提公因式法与公式法的综合运用.【分析】(1)利用平方差公式分解因式,然后整理即可;(2)先提取公因式3n,再对余下的多项式利用完全平方公式继续分解.【解答】解:(1)(x+y)2﹣4x2,=(x+y)2﹣(2x)2,=[(x+y)+2x][(x+y)﹣2x],=﹣(3x+y)(x﹣y);(2)3m2n﹣12mn+12n,=3n(m2﹣4m+4),=3n(m﹣2)2.21.解方程组:(1)(2).【考点】解二元一次方程组.【分析】(1)代入法求解:把①代入②求得x的值,再把x的值代入①求得y即可;(2)代入法求解:由方程②可得y=x+3,代入方程①求得x,再将x的值代回y=x+3求得y即可.【解答】解:(1)解方程组,①代入②有,3x+2(2x﹣3)=8,解得:x=2,把x=2代入①,得到y=1,∴;(2)解方程组,由②有:y=x+3,代入①有:3x﹣5(x+3)=﹣9,解得:x=﹣3,将x=﹣3代入yx+3得:y=0,∴.22.先化简,再求值:(1)(﹣2x2y)2•(﹣xy3)﹣(﹣x3)3÷x4•y5,其中xy=﹣1.(2)(2a+3)(a﹣2)﹣a(2a﹣3),其中a=﹣2.【考点】整式的混合运算—化简求值.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算得到最简结果,把xy的值代入计算即可求出值;(2)原式利用多项式乘多项式,单项式乘多项式法则计算,去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:(1)原式=4x4y2•(﹣xy3)﹣(﹣x9)÷x4•y5=﹣x5y5+x5y5=﹣x5y5,当xy=﹣1时,原式=;(2)原式=2a2﹣4a+3a﹣6﹣2a2+3a=2a﹣6,当a=﹣2时,原式=﹣10.23.已知A=x﹣y+1,B=x+y+1,C=(x+y)(x﹣y)+2x,两同学对x、y分别取了不同的值,求出的A、B、C的值不同,但A×B﹣C的值却总是一样的.因此两同学得出结论:无论x、y取何值,A×B﹣C的值都不发生变化.你认为这个结论正确吗?请你说明理由.【考点】整式的混合运算.【分析】先计算A×B﹣C,根据整式的运算法则,A×B﹣C的结果中不含x、y,故其值与x、y无关.【解答】解:正确.A×B﹣C=(x﹣y+1)(x+y+1)﹣[(x+y)(x﹣y)+2x]=(x+1﹣y)(x+1+y)﹣(x2﹣y2+2x)=(x+1)2﹣y2﹣x2+y2﹣2x=x2+2x+1﹣y2﹣x2+y2﹣2x,=1;所以x、y的取值与A×B﹣C的值无关.24.某校组织学生乘汽车去自然保护区野营,先以60km/h的速度走平路,后又以30km/h的速度爬坡,共用了6.5h;返回时,汽车以40km/h的速度下坡,又以50km/h的速度走平路,共用了6h.学校距自然保护区有多远?(1)写出题目中的两个等量关系;(2)给出上述问题的完整解答过程.【考点】二元一次方程组的应用.【分析】(1)根据题意可以写出题目中的两个等量关系;(2)根据(1)中等量关系可以列出相应的二元一次方程组,从而可以解答本题.【解答】解:(1)由题意可得,第一个等量关系:以60km/h的速度走平路用的时间+以30km/h的速度爬坡用的时间=6.5h,第二个等量关系:以40km/h的速度下坡用的时间+以50km/h的速度走平路用的时间=6h;(2)设平路长为xkm,山坡长为ykm,,解得,,∴x+y=270,即学校距自然保护区270km.25.(1)观察下列各式:32﹣12=8×1,52﹣32=8×2,72﹣52=8×3,…,探索以上式子的规律,试写出第n个等式;(2)运用所学的数学知识说明你所写式子的正确性;(3)请用文字语言表达这个规律,并用这个规律计算:20172﹣20152.【考点】因式分解的应用.【分析】(1)观察提供的等式,然后找到规律写出来即可;(2)将得到的规律用平方差公式展开计算即可进行验证;(3)利用平方差公式展开计算即可.【解答】解:(1)第n个等式为(2n+1)2﹣(2n﹣1)2=8n(n为正整数);(2)验证:(2n+1)2﹣(2n﹣1)2=[(2n+1)+(2n﹣1)][(2n+1)﹣(2n﹣1)] =2×4n=8n;(3)两个连续奇数的平方差是8的整数倍;由20172﹣20152可知2n+1=2017,解得n=1008,∴20172﹣20152=8×1008=8064.26.某汽车制造厂开发了一种新式电动汽车,计划一年生成安装240辆.由于抽调不出足够的熟练工来完成这种新式电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和每名新工人每月分别可安装多少辆电动汽车?(2)设工厂招聘n(0<n<10)名新工人,为使招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪些招聘方案?(3)在(2)的条件下,工厂给每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,要求新工人的数量多于熟练工,为使工厂每月支出的工资总额W(元)尽可能少,工厂应招聘多少名新工人?【考点】一次函数的应用;二元一次方程的应用;二元一次方程组的应用.【分析】(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车.根据“1名熟练工和2名新工人每月可安装8辆电动汽车”和“2名熟练工和3名新工人每月可安装14辆电动汽车”列方程组求解.(2)设工厂有a名熟练工.根据新工人和抽调的熟练工刚好能完成一年的安装任务,根据a,n都是正整数和0<n<10,进行分析n的值的情况;(3)建立函数关系式,根据使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少,两个条件进行分析.【解答】解:(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车.根据题意,得,解得:.答:每名熟练工和新工人每月分别可以安装4、2辆电动汽车.(2)设工厂有a名熟练工.根据题意,得12(4a+2n)=240,2a+n=10,n=10﹣2a,又a,n都是正整数,0<n<10,所以n=8,6,4,2.即工厂有4种新工人的招聘方案.①n=8,a=1,即新工人8人,熟练工1人;②n=6,a=2,即新工人6人,熟练工2人;③n=4,a=3,即新工人4人,熟练工3人;④n=2,a=4,即新工人2人,熟练工4人.(3)结合(2)知:要使新工人的数量多于熟练工,则n=8,a=1;或n=6,a=2;或n=4,a=3.根据题意,得W=2000a+1200n=2000a+1200(10﹣2a)=12000﹣400a.要使工厂每月支出的工资总额W(元)尽可能地少,则a应最大.显然当n=4,a=3时,工厂每月支出的工资总额W(元)尽可能地少.2017年3月4日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017~2018学年度第二学期姜堰市娄庄区期中考试
七年级数学试卷
时间:120分钟 满分:150分
一、选择题:(每小题3分,共24分。


1.计算 ()3
2a
-的结果是( )
A .-a 6
B .a 6
C .-a 5
D .a 5 2.四边形的内角和为( ) A .90°
B .360°
C .180°
D . 720°
3.下列运算正确的是( ) A .ab b a 532=+
B .()b a b a -=-422
C .()()2
2
b a b a b a -=-+ D .()222
b a b a +=+
4.计算 -99
2+100
2
的结果是( )
A . 2
B . -99
2 C . 100
2
D .99
2
5.如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a >b ),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为( )
A .()2
222a b a ab
b -=-+
B .()2
22
2a b a ab b +=++
C .22()()a b a b a b -=+-
D .2()a ab a a b +=+
6.已知a m =3,a n =2,那么a m+n+2的值为( )
E
A . 8
B . 7
C . 6a 2
D . 6+a 2
7.如图,在△ABC 中,∠C =90°.若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是( )
A .40°
B . 60°
C .70°
D .80°
8.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,那么这张纸片原来的形状不.可能..
是( )
A .六边形
B .五边形
C .四边形
D .三角形 二、填空题:(每小题3分,共30分。

) 9.如右图,a ∥b ,∠1=50°,则∠2= 。

10. 因式分解x 2-4y 2= 。

11.从八边形的—个顶点可以引___________条对角线。

12.一张薄的金箔的厚度为0.000000091m ,用科学记数法可表示________________m 。

13.已知一个多边形的内角和是它的外角和的2倍,则这个多边形的边数为__________。

14.若等腰三角形有两边长为2cm 、5cm ,则第三边长为____________cm 。

15.请你编制一道有一个解是⎩⎨⎧==2
1y x 的二元一次方程 。

16.若一个三角形三个内角度数的比为2︰3︰4,那么最小角的度数是 。

17.若x 2-mxy+9y 2是完全平方式,则m 的值为___________________。

18.若x 2
+4x +y 2
-2y +5 = 0,则xy =_________。

三、解答题:(本大题共有9大题,计96分。

) 19.计算题(每题4分,计16分):
(1) 30+2
)4(-÷2)
2
1(--
(2) (3a 2)3·(a 4) 2-(﹣5a 5)2·(a 2) 2
(3) (x+2)(x-2)(x 2
+4) (4) (a+3)2(a -3)2
20.分解因式(每题4分,计8分):
(1)2m 2—16m +32 (2)2)(b a -—42)(b a +
21.用简便方法计算(每题4分,计8分):
(1)237.1+263.837.1⨯⨯+2
63.8 (2) 2011
)
4
1(- 2012
4

22. 解方程组(每题5分,计10分):
⑴⎩⎨
⎧=-=+)2(1
32)1(42y x y x ⑵⎪⎩⎪⎨⎧=-+=)
2(0
943)1(32y x y
x
H
F
E D
C B
A
23.(本题8分)已知:a+b=5,ab=4,求下列各式的值: (1)a 2
b+ab 2
(2)a 2
+b 2
24.(本题8分)已知方程组⎩⎨⎧=+=-b y ax y x 72和方程组⎩
⎨⎧=+=+83y x a
by x 有相同的解,求a 、b 的值。

25. (本题8分)两个直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB=12,DH=3,平移距离为4,求阴影部分的面积.
26.(本题8分)如图,若∠1=∠2,AB ∥CD ,问∠E=∠F 吗?请说明理由。

27.(本题10分)探究应用:
(1)计算:(x +2)(x 2
-2x +4)= 。

(2x +y )(4x 2
-2xy +y 2
)= 。

(2)上面的整式乘法计算结果很简洁,你能发现一个新的乘法公式是:。

(请用含a 、b 的字母表示)。

(3)下列各式能用你发现的乘法公式计算的是( ) A (a +3)(a 2
+3a +9) B (2m +n )(2m 2
-2mn +n 2
) C (4+x )(16-4x + x 2
) D (m +n )(m 2
-2mn +n 2

(4)直接用公式计算:(3x +2y )(9x 2
-6xy +4y 2
)= 。

D C
B
A
F
E
1
2
28.(本题12分)已知△ABC。

(1)若∠BAC=400,画∠BAC和外角∠ACD的角平分线相交于O1点(如图①),求∠B O1C的度数;
(2)在(1)的条件下,再画∠O1BC和∠O1CD的角平分线相交于O2点(如图②),求∠B O2C的度数;
(3)若∠BAC=n0,按上述规律继续画下去,请直接写出∠B O2012C的度数。

A
B C D
O1
O2○1○2

2011~2012学年度第二学期姜堰市娄庄区期中考试
七年级数学试卷答案
答案仅供参考
一、选择题:(每小题3分,共24分。


二、填空题:(每小题3分,共30分。


9.∠2= 1300, 10. (x+2y) (x-2y), 11.5条, 12.9.1×10-8
m , 13.6, 14.5 cm ,
15.x+y=3 (本题答案不唯一), 16.400, 17.m =±6 , 18.-2 。

三、解答题:(本大题共有9大题,计96分。

) 19.计算题(每题4分,计16分):
(1)5 (2) 2a 14 (3) x 4
-16 (4) a 4-18a 2+81
20.分解因式(每题4分,计8分):
(1)2(m-4) 2 (2)(3a+b)(-a-3b) 21.用简便方法计算(每题4分,计8分): (1)100 (2) - 4
22. 解方程组(每题5分,计10分):
⑴⎩⎨⎧==12x y ⑵⎪⎩
⎪⎨⎧==231
y x
23.(本题8分) (1)20
(2)17
24.(本题8分)本题可先求出方程组的解⎩⎨⎧-==13x y ,再构造a 、b 的方程组求出⎩⎨⎧==2
1
a b
25. (本题8分) 阴影部分的面积是42
26.(本题8分) ∠E=∠F (说明理由略)
27.(本题10分) (1)x 3
+8 , 8x 3
+y 3
, (2)(a +b )(a 2
-ab +b 2
)=a 3
+b 3
, (3)C , (4)27x 3
+8y 3。

28.(本题12分)
(1)∠B O 1C=200, (2)∠B O 2C =100, (3)∠B O 2012C=n 2012)2
1(0 。

相关文档
最新文档