直流电机调速
直流电动机调速系统
直流电动机调速系统的能耗分析
能效比
直流电动机的能效比通常较高,可以在较高的效率下运行,减少 能源浪费。
功率因数
直流电动机的功率因数较高,可以减少无功损耗,提高电网效率。
热效率
直流电动机的热效率也较高,可以在长时间运行下保持稳定的性 能。
直流电动机调速系统的稳定性分析
抗干扰能力
直流电动机的调速系统通常具有较强的抗干扰能力,可以在复杂 的工作环境下稳定运行。
直流电动机调速系统的调速性能
调速范围
直流电动机的调速范围通常较大,可以在较 宽的转速范围内实现平滑调节,满足不同工 况下的需求。
调速精度
直流电动机的调速精度较高,可以通过精确的控制 算法实现转速的精确控制,提高生产过程的稳定性 和产品质量。
动态响应
直流电动机的动态响应较快,可以在短时间 内达到稳定转速,满足动态负载变化的需求 。
输标02入题
调压调速是通过改变电枢电压来控制电动机的转速, 具有调节方便、平滑性好等优点,但调速过程中能量 损失较大。
01
03
串级调速是通过改变转子回路的电阻来控制电动机的 转速,具有调节方便、能量损失较小等优点,但调节
范围较小且对电机结构有特殊要求。
04
调磁调速是通过改变励磁电流来控制电动机的转速, 具有调节方便、能量损失较小等优点,但调节范围较 小。
系统调试
在系统集成完成后,进行全面的 调试,确保各部分工作正常,满 足设计要求。
性能测试
对系统的性能进行测试,包括调 速范围、动态响应、稳态精度等 指标,确保系统性能达标。
优化改进
根据测试结果和实际应用情况, 对系统进行必要的优化和改进, 提高系统的稳定性和可靠性。
04
直流电机调速原理
直流电机调速原理
直流电机调速原理是通过改变电机供电电压或改变电机的励磁,来调节电机的转速。
直流电机调速的主要原理有以下几种:
1. 电压调速:改变电机的供电电压,可以改变电机的转矩和转速。
降低电机的供电电压,可以降低电机的转速,增加电机的供电电压,可以提高电机的转速。
2. 电阻调速:在电机的励磁回路中串联一个可变电阻,通过改变电阻的阻值,可以改变电机的励磁电流和转速。
增加电阻的阻值,可以降低电机的励磁电流和转速,减小电阻的阻值,可以增加电机的励磁电流和转速。
3. 分栅调速:在电机的励磁回路中增加一个分栅电阻,并通过短路或开路分栅电阻来改变电机的转矩和转速。
短路分栅电阻,可以使电机的转矩和转速增大,开路分栅电阻,则可以使电机的转矩和转速减小。
4. 变极调速:改变电机的励磁磁场的极数,可以改变电机的转速。
增加励磁磁场的极数,可以提高电机的转速,减少励磁磁场的极数,则可以降低电机的转速。
5. 变频调速:通过改变电机供电的频率,可以改变电机的转速。
增加供电频率,可以提高电机的转速,减小供电频率,则可以降低电机的转速。
通过上述原理的组合和调节,可以实现直流电机的调速控制,满足不同工况下的需要。
《直流电机调速》课件
直流电机调速的分类
直流电机调速可以分为线性调速和PWM调速两种方式。线性调速是通过改变电 机的输入电压或电流来实现调速的,而PWM调速则是通过改变电机输入电压的 占空比来实现调速的。
PWM调速具有更高的调速精度和更小的电机发热量,因此在许多应用中得到了 广泛的应用。
02
直流电机调速的方法
改变电枢电压调速
总结词
通过改变电枢两端的电压,可以调节直流电机的转速。
详细描述
当电枢两端电压增加时,电机转速相应增加;反之,当电压减小时,电机转速 相应降低。这种方法调速范围广,但需要可调直流电源,控制电路相对复杂。
改变励磁电流调速
总结词
通过改变励磁绕组的电流,可以调节 直流电机的磁场强度,进而调节电机 转速。
详细描述
02
直流电机调速是一种常见的电机 调速方式,具有调速范围广、调 速线性度好、动态响应快等优点 。
直流电机调速的原理
直流电机调速的原理基于直流电机的电磁转矩与电枢电流成 正比的特性。通过改变电枢电流的大小,可以改变电机的输 出转矩,从而调节电机的转速。
另外,直流电机还具有电枢反电动势,它与电枢电流的大小 成正比。改变电机的输入电压或电流,可以改变电机的输入 功率,进一步调节电机的转速。
控制复杂度较高
直流电机调速系统的控制算法相对复 杂,需要专业的技术人员进行维护和 调试。
05
直流电机调速的发展趋势
高性能直流电机调速系统的研究
总结词
随着工业自动化水平的提高,对直流电机调 速系统的性能要求也越来越高,高性能直流 电机调速系统的研究成为重要的发展趋势。
详细描述
为了满足高精度、高动态响应的调速需求, 研究者们不断探索新的控制算法和优化策略 ,以提高直流电机调速系统的调节精度、稳 定性和动态响应能力。
直流电机的调速方法
直流电机的调速方法一、前言直流电机是工业生产中常用的驱动设备,它具有调速范围广、转矩平稳等优点。
在实际应用中,为了满足不同的工艺要求,需要对直流电机进行调速。
本文将介绍直流电机的调速方法。
二、基本原理直流电机的调速原理是通过改变电源电压和/或改变电枢回路中的电阻来改变电机的转速。
当电压增大或者回路阻值减小时,会使得转矩增大,从而使得转速提高;反之亦然。
三、调速方式1. 串联型调速串联型调速是通过改变外接串联在直流电机上的可变阻值来改变回路总阻值,从而达到降低转矩和减缓转速的目的。
具体步骤如下:(1)将可变阻器串联在直流电机中;(2)当可变阻器阻值增加时,回路总阻值增加,从而使得输出功率减小;反之亦然;(3)通过逐渐增加或减小可变阻器的阻值来实现调节。
2. 并联型调速并联型调速是通过改变外接并联在直流电机上的可变阻值来改变电枢回路的总电阻,从而达到提高转矩和加快转速的目的。
具体步骤如下:(1)将可变阻器并联在直流电机中;(2)当可变阻器阻值增加时,电枢回路总电阻增加,从而使得输出功率减小;反之亦然;(3)通过逐渐增加或减小可变阻器的阻值来实现调节。
3. 电枢调速电枢调速是通过改变直流电机中的电枢回路中的电阻来改变回路总阻值,从而达到降低转矩和减缓转速的目的。
具体步骤如下:(1)将可变阻器连接在直流电机的电枢回路上;(2)当可变阻器阻值增加时,回路总阻值增加,从而使得输出功率减小;反之亦然;(3)通过逐渐增加或减小可变阻器的阻值来实现调节。
4. 磁通调速磁通调速是通过改变直流电机中励磁回路中串联在励磁线圈上的可变抵抗来改变磁通量大小,从而达到改变转速和转矩的目的。
具体步骤如下:(1)将可变抵抗串联在励磁线圈上;(2)当可变抵抗阻值增加时,回路总阻值增加,从而使得磁通量减小,输出功率减小;反之亦然;(3)通过逐渐增加或减小可变抵抗的阻值来实现调节。
四、注意事项1. 在进行调速时,应根据直流电机的额定参数和工作要求进行合理选择。
直流电动机的调速名词解释
直流电动机的调速名词解释引言直流电动机作为广泛应用于工业和民用领域的一种重要电机,其调速技术一直备受关注。
在直流电动机调速领域,涉及到许多专业名词和概念,本文将尝试对其中的一些名词进行解释,希望对读者有所帮助。
1. 额定转速额定转速是指直流电动机在额定电压下能够达到的稳定旋转速度。
电机设计时,通常会根据需要设定一个额定转速。
对于不同应用场景,额定转速的要求会有所不同。
一般来说,额定转速越高,电机的输出功率越大。
额定转速的单位通常为转/分钟(rpm)。
2. 机械特性曲线机械特性曲线描述了电机在负载下的机械性能。
通常以转速和输出转矩为坐标进行绘制。
机械特性曲线可以帮助我们了解电机在不同负载下的工作情况。
常见的机械特性曲线有励磁电流恒定曲线、最大转矩曲线等。
3. 调速范围调速范围是指电机能够稳定工作的转速范围。
调速范围受到电机自身特性和外部控制系统的限制。
一般来说,调速范围越宽,电机的应用领域越广泛。
在一些特殊应用中,如飞机起落架的缩放系统,对电机的调速范围有非常高的要求。
4. 开环控制开环控制是一种简单的控制方法,它通过设定电机的输入电压或电流来实现转速的调节。
在开环控制中,电机的实际转速并不直接参与控制回路。
这种控制方法通常具有成本低、结构简单等优点,但由于无法实时检测电机的转速,控制精度较低。
5. 闭环控制闭环控制是一种更为高级的控制方法,它通过不断监测电机的实际转速,并与设定值进行比较,来调整电机的输入信号。
闭环控制通常需要依靠转速传感器对转速进行实时监测。
相比于开环控制,闭环控制具有更高的控制精度和稳定性,但也更加复杂和昂贵。
6. 脉宽调制(PWM)脉宽调制是一种常用于直流电机调速的控制技术。
它通过改变电机的输入信号的占空比来控制电机的转速。
脉宽调制的原理基于平均电压不变的定律,根据需要改变电机每个周期内的通断比例,从而实现不同的转速调节。
7. 矢量控制矢量控制是一种先进的直流电动机调速方法,通过对电机的电流和磁场进行精确的控制,实现更高的性能。
直流电动机调速方法有
直流电动机调速方法有
直流电动机的调速方法主要有以下几种:
1. 变电压调速法:通过改变直流电机的输入电压来调整电机的转速。
增大输入电压可以提高电机的转速,减小输入电压可以降低电机的转速。
2. 变电流调速法:通过改变电机的励磁电流来调整电机的转速。
增大励磁电流可以提高电机的转速,减小励磁电流可以降低电机的转速。
3. 变极数调速法:通过改变电枢绕组和励磁绕组的并联组合方式来调整电机的转速。
增加并联绕组的极数可以提高电机的转速,减小并联绕组的极数可以降低电机的转速。
4. 变电阻调速法:通过改变电枢绕组或励磁绕组的电阻来调整电机的转速。
增大电阻可以降低电机的转速,减小电阻可以提高电机的转速。
5. 变频调速法:通过改变电机所接受的频率来调整电机的转速。
提高频率可以提高电机的转速,降低频率可以降低电机的转速。
这些调速方法可以单独应用,也可以结合使用,以实现更精确的电机转速调节。
简述直流电动机的调速方法。
简述直流电动机的调速方法。
直流电动机是一种无刷直流电机,其工作原理基于电枢的旋转,其调速方法
主要有以下几种:
1. 电阻调速:将直流电动机接入电阻器中,通过改变电阻的大小来控制电动机的转速。
这种方法的优点是调速范围宽,但缺点是调速效率低,而且电阻器易损坏。
2. 电容调速:在直流电动机的转轴上加装电容,通过改变电容的大小来控制电动机的转速。
这种方法的优点是调速效率高,但缺点是需要较大的电容,而且容易引起电动机故障。
3. 串激调速:在直流电动机的转轴上串联一个电阻和一个电感,通过改变它们的相对大小来控制电动机的转速。
这种方法的优点是调速范围宽,但缺点是需要复杂的电路,而且容易引起电动机故障。
4. 反相调速:在直流电动机的转轴上加装一个电容器和一个电阻,通过改变它们的相对大小来控制电动机的转速。
这种方法的优点是调速效率高,但缺点是需要较大的电容器,而且容易引起电动机故障。
除了以上几种调速方法外,还有一些其他的方法,例如脉冲调速、积分调速等。
这些方法在实际应用中要根据具体情况选择使用。
直流电动机的调速方法的选择应该考虑到调速范围、调速效率、电动机的性能和稳定性等因素。
在实际应用中,需要根据具体的情况和要求选择合适的调速方法。
直流电机调速的三种方法及公式
直流电机调速的三种方法及公式嘿,朋友们!今天咱来聊聊直流电机调速的那些事儿。
直流电机调速啊,就好比是驾驭一匹烈马,得有合适的方法和技巧才能让它乖乖听话,按照咱的心意跑起来。
先来说说第一种方法,那就是改变电枢电压啦。
就像给马调整缰绳的松紧一样,通过改变电枢电压,就能控制电机的速度。
这就好比你开车的时候,踩油门轻重不一样,车速也就不一样啦。
这其中的公式呢,就是转速和电枢电压成正比关系哦。
再讲讲第二种方法,改变电枢回路电阻。
这就像是给马走的路设置不同的阻力,电阻大了,电机转得就慢些;电阻小了,电机就跑得快啦。
不过这种方法不太常用哦,毕竟改变电阻有时候不太方便呢。
最后说说第三种,改变励磁电流。
这就好像是调整马的精神状态,励磁电流一变,电机的速度也跟着变啦。
咱举个例子啊,想象一下,直流电机就像是一个大力士,电枢电压就是他的力量源泉,决定他能使多大劲儿;电枢回路电阻就是他脚下的绊脚石,多了就跑不快;励磁电流呢,就是他的心情,心情好干劲足,速度就快。
这三种方法各有各的特点和用处呢。
有时候我们根据实际情况,选择最合适的那种来给直流电机调速。
就像我们出门,得根据天气、路程等因素选择是走路、骑车还是开车一样。
在实际应用中,可不能马虎哦。
要仔细研究电机的特性,根据需要来选择调速方法。
不然啊,就像是让马乱了套,可就不好啦。
所以啊,直流电机调速可不是一件简单的事儿,得好好琢磨琢磨。
要把这三种方法都掌握好,就像有了三把钥匙,能打开不同情况下电机调速的大门。
朋友们,你们说是不是这个理儿呀?咱可得把这直流电机调速给玩转咯,让它为我们的各种设备好好服务呀!这就是直流电机调速的三种方法及公式啦,大家都记住了吗?。
直流电机调速方法
1.改变电枢回路电阻调速当负载一定时,随着串入的外接电阻R的增大,电枢回路总电阻增大,电动机转速就降低。
2.改变电枢电压调速连续改变电枢供电电压,可以使直流电动机在很宽的范围内实现无级调速。
3.采用晶闸管变流器供电的调速方法变电枢电压调速是直流电机调速系统中应用最广的一种调速方法。
4.采用大功率半导体器件的直流电动机脉宽调速方法我比较喜欢这种调速方法。
5.改变励磁电流调速当电枢电压恒定时,改变电动机的励磁电流也能实现调速。
电动机的转速与磁通Ф(也就是励磁电流)成反比,即当磁通减小时,转速升高;反之,则降低。
由于电动机的转矩是磁通和电枢电流的乘积,电枢电流不变时,随着磁通的减小,其转速升高,转矩也会相应地减小。
典型恒功率调速。
2.从调整的部位来讲有:1.调整电枢电流。
2.调整励磁电流。
从调整电流的方式来讲有:1.电阻调速。
2.斩波调速。
常用的有:磁场消弱,磁极减对,电枢串联电阻降压。
直流电动机分为有换向器和无换向器两大类。
直流电动机调速系统最早采用恒定直流电压给直流电动机供电,通过改变电枢回路中的电阻来实现调速。
这种方法简单易行、设备制造方便、价格低廉;但缺点是效率低、机械特性软,不能得到较宽和平滑的调速性能。
该法只适用在一些小功率且调速范围要求不大的场合。
30年代末期,发电机-电动机系统的出现才使调速性能优异的直流电动机得到广泛应用。
这种控制方法可获得较宽的调速范围、较小的转速变化率和平滑的调速性能。
但此方法的主要缺点是系统重量大、占地多、效率低及维修困难。
近年来,随着电力电子技术的迅速发展,由晶闸管变流器供电的直流电动机调速系统已取代了发电机-电动机调速系统,它的调速性能也远远地超过了发电机-电动机调速系统。
特别是大规模集成电路技术以及计算机技术的飞速发展,使直流电动机调速系统的精度、动态性能、可靠性有了更大的提高。
电力电子技术中IGBT等大功率器件的发展正在取代晶闸管,出现了性能更好的直流调速系统。
直流电动机调速原理
直流电动机调速原理直流电动机是一种常见的电动机,广泛应用于各种机械设备中。
为了实现对直流电动机的调速,可以采用不同的方法,其中最常见的就是采用调节电压的方式来实现调速。
本文将介绍直流电动机调速的原理及实现方法。
直流电动机调速的原理主要是通过改变电动机的输入电压来改变其转速。
一般来说,直流电动机的转速与电压成正比,即电压越高,转速越快;电压越低,转速越慢。
因此,通过调节电动机的输入电压,可以实现对电动机转速的调节。
实现直流电动机调速的方法有很多种,其中比较常见的包括:电阻调速、串联调速、分流调速和PWM调速。
1. 电阻调速:电阻调速是最简单的调速方法之一,通过串联接入电阻来减小电动机的输入电压,从而降低电动机的转速。
这种方法成本低廉,但效率较低,且需消耗较多的能量。
2. 串联调速:串联调速是通过在电动机的电路中串联接入一个可变电阻,通过改变电阻值来改变电动机的输入电压,从而实现调速。
这种方法比电阻调速效率要高一些,但仍然存在能量消耗较多的问题。
3. 分流调速:分流调速是通过在电动机的电路中并联接入一个可变电阻,通过改变电阻值来改变电动机的输入电压,从而实现调速。
这种方法比串联调速效率更高一些,但仍然存在一定的能量损耗。
4. PWM调速:PWM调速是通过脉宽调制技术来实现对电动机的调速。
通过改变PWM信号的占空比来改变电动机的平均输入电压,从而控制电动机的转速。
这种方法效率高,能量损耗小,是目前应用较广泛的调速方法之一。
总的来说,直流电动机调速原理主要是通过改变电动机的输入电压来改变其转速。
不同的调速方法有各自的特点和适用范围,可以根据具体的需求选择合适的调速方法。
希望本文能够帮助读者更好地理解直流电动机调速的原理及实现方法。
直流电动机的三种调速方法
直流电动机的三种调速方法嘿,你知道直流电动机不?那家伙可有三种超厉害的调速方法呢!咱先说说调压调速吧。
这就好比开车时控制油门大小,通过改变电压来调节电机转速。
步骤嘛,就是用调压器啥的来改变加到电机上的电压。
那可不得注意别把电压调得太高或太低,不然电机可能就耍脾气不干啦!安全性方面呢,得确保调压器稳定可靠,别整出啥电火花吓人一跳。
稳定性也很重要呀,要是电压波动大,电机转速也跟着乱晃悠可不行。
这种方法在需要精确控制转速的场合很管用,比如一些精密加工设备。
就像雕刻大师手里的刻刀,得稳稳地控制速度才能雕出精美的作品呢!再说说调磁调速。
这就像驯马师控制马的缰绳,通过改变磁场强度来调速。
步骤就是调整励磁电流。
但可得小心别把磁场调得太弱,不然电机没力气干活啦!安全性上要注意防止磁场突然变化对周围设备的影响。
稳定性方面呢,励磁电流得稳定,不然电机转速也会忽上忽下。
这种方法在需要大范围调速的场合有优势,比如起重机啥的。
想象一下,起重机吊起重重的货物,得根据不同情况灵活调整速度,调磁调速就派上用场啦!还有串电阻调速。
这就像给跑步的人加上不同重量的沙袋,通过在电路中串入电阻来改变电机转速。
步骤就是选择合适的电阻接入电路。
可别乱串电阻,不然电机可能累趴下。
安全性要注意电阻别过热起火。
稳定性嘛,电阻得选得合适,不然转速不稳定。
这种方法在一些简单的调速场合挺好用,比如小风扇啥的。
就像夏天的小风扇,根据自己的需要调整风速,串电阻调速就能搞定。
总之,直流电动机这三种调速方法各有千秋。
根据不同的需求选择合适的方法,就能让直流电动机乖乖听话,为我们服务。
咱可得好好利用这些方法,让生活变得更美好呢!我的观点结论就是:直流电动机的三种调速方法都有其独特之处和适用场景,只要用得好,就能发挥大作用。
直流电机的调速方法
直流电机的调速方法
一、概述
一是调节电枢电压,二是调节励磁电流,
1、常见的微型直流电机,其磁场都是固定的,不可调的永磁体,
所以只好调节电枢电压。
调节电枢电压方法:
常用的一是可控硅调压法,再就是脉宽调制法(PWM)。
PWM的H型属于调压调速。
PWM的H桥只能实现大功率调速。
国内的超大功率调速还要依靠可控硅实现可控整流来实现直流电机的调压调速。
2、弱磁调速,通过适当减弱励磁磁场的办法也可以调速。
二、直流电机与交流电机调速比较
最大的优点就是直流电机可以实现“平滑而经济的调速”;直流电机的调速不需要其它设备的配合,可通过改变输入的电压/电流,或者励磁电压/电流来调速。
交流永磁同步的调速是靠改变频率来实现的,需要变频器。
直流电机虽不需要其它的设备来帮助调速,但自身的结构复杂,制造成本高;在大功率可控晶闸管大批量使用之前,直流电动机用于大多的调速场合。
在大功率可控晶闸管工业生产化后,交流电动机的调速变得更简单了,交流电动机的制造成本低廉,使用寿命长等优点就表现出来。
三、直流电机的调速方法的优缺点
不同的需要,采用不同的调速方式,应该说各有什么特点。
1.在全磁场状态,调电枢电压,适合应用在零至基速以下范围内调速。
不能达到电机的最高转速。
2.在电枢全电压状态,调激磁电压,适合应用在基速以上,弱磁升速。
不能得到电机的较低转速。
3.在全磁场状态,调电枢电压,电枢全电压之后,弱磁升速。
适合应用在调速范围大的情况。
这是直流电机最完善的调速方式,但设备复杂,造价高。
直流电动机的调速方法
直流电动机的调速方法直流电动机是一种常见的电动机,广泛应用于工业生产和家用电器中。
在实际应用中,往往需要对直流电动机进行调速,以满足不同工况下的需求。
下面将介绍几种常见的直流电动机调速方法。
一、电压调制调速。
电压调制调速是通过改变电动机的供电电压来实现调速的方法。
当电动机的供电电压改变时,电动机的转速也会相应地改变。
这种方法简单易行,成本低廉,但是调速范围有限,且效果不够理想。
二、串联电阻调速。
串联电阻调速是通过串联电阻来改变电动机的电枢电流,从而实现调速的方法。
串联电阻越大,电动机的电枢电流越小,转速也会相应地减小。
这种方法调速范围较大,但是效率较低,且需要考虑电阻的散热和功率损耗的问题。
三、场励调速。
场励调速是通过改变电动机的励磁电流来实现调速的方法。
当励磁电流增大时,磁场增强,电动机的转速也会增大。
这种方法调速范围广,效率较高,但是需要专门的励磁设备和控制系统。
四、PWM调速。
PWM调速是通过改变电动机的供电脉冲宽度来实现调速的方法。
通过控制开关器件的导通时间,可以改变电动机的平均电压,从而实现调速。
这种方法调速范围广,效率高,但是需要专门的PWM控制器和反馈系统。
五、变频调速。
变频调速是通过改变电动机的供电频率来实现调速的方法。
通过变频器控制电源的频率,可以实现电动机的调速。
这种方法调速范围广,效率高,但是设备成本较高。
综上所述,直流电动机有多种调速方法,每种方法都有其适用的场合和特点。
在实际应用中,需要根据具体情况选择合适的调速方法,以实现最佳的调速效果。
希望本文对直流电动机的调速方法有所帮助。
直流电机的调速方法
-----精品文档------
三、直流电动机调速的方法
(1)改变电枢回路总电阻Ra; (2)改变电源电压调速Ua; (3)改变励磁Ф。
-----精品文档------
(1)改变电枢回路总电阻Ra
电枢回路串电阻调速的原理及调速过程可用下图说明。设电动机拖动恒转矩负载TL在固有特性 上A点运行,其转速为nN。若电枢回路串入电阻Rs1,则达到新的稳态后,工作点变为人为 特性上的B点,转速下降到n1。从图中可以看出,串入的电阻值越大,稳态转速就越低。现 以转速由nN降至n1为例,说明其调速过程。电动机原来在A点稳定运行时,Tem=TL, n=nN,当串入Rs1后,电动机的机械特性变为直线n0B,因串电阻瞬间转速不突变,故Ea不 突变,于是Ia及Tem突变减小,工作点平移到A/点。在A/点,Tem<TL,所以电动机开始减速 ,随着n的减小,Ea减小,Ia及Tem增大,即工作点沿A/B方向移动,当到达B点时, Tem=TL,达到了新的平衡,电动机便在n1转速下稳定运行。调速过程中转速n和电流ia(或 Tem)随时间的变化规律下图所示。
-----精品文档------
(2)改变电源电压(Ua)调速
电动机的工作电压不允许超过额定电压,因此电枢电压只能在额定电压以下进行调节。降低电源电 压调速的原理及调速过程可用下图说明。
降低电压调速 设电动机拖动恒转矩负载TL在固有特性上A点运行,其转速为nN。若电源电压由UN下降至U1,则达到 新的稳态后,工作点将移到对应人为特性曲线上的B点,其转速下降为n1。从图中可以看出,电压越 低,稳态转速也越低。 转速由nN下降至n1的调速过程如下:电动机原来在A点稳定运行时,Tem=TL,n=nN。当电压降至U1后 ,电动机的机械特性变为直线n01B。在降压瞬间,转速n不突变,Ea不突变,所以Ia和Tem突变减小 ,工作点平移到A/点。在A/点,Tem<TL,电动机开始减速,随着n减小,Ea减小,Ia和Tem增大,工 作点沿A/B方向移动,到达B点时,达到了新的平衡:Tem=TL,此时电动机便在较低转速n1下稳定运 行。降压调速过程与电枢串电阻调速过程类似,调速过程中转速和电枢电流(或转矩)随时间的变 化曲线也与图1—40类似。
直流调速方法
n U IR Ke
(1-1)
式中 n — 转速(r/min);
U — 电枢电压(V);
I — 电枢电流(A); R — 电枢回路总电阻( ); — 励磁磁通(Wb); Ke — 由电机结构决定的电动势常数。
由式(1-1)可以看出,有三种方法调 节电动机的转速:
(1)调节电枢供电电压 U; (2)减弱励磁磁通 ; (3)改变电枢回路电阻 R。
n0
调节过程:
增加电阻 Ra R
nN
n1
Ra
n2 n3
R1
R2
R n ,n0不变;
R3
调速特性:
O
IL
IБайду номын сангаас
转速下降,机械特性
曲线变软。
调阻调速特性曲线
(3)调磁调速
工作条件:
n
保持电压 U =UN ; 保持电阻 R = R a ; 调节过程:
n3
n0
nn12 nN
N
减小励磁 N
1
n , n0
调速特性: 转速上升,机械特性
O
TL
2 3
Te
曲线变软。
调磁调速特性曲线
▪ 三种调速方法的性能与比较
对于要求在一定范围内无级平滑调速 的系统来说,以调节电枢供电电压的方式 为最好。改变电阻只能有级调速;减弱磁 通虽然能够平滑调速,但调速范围不大, 往往只是配合调压方案,在基速(即电机 额定转速)以上作小范围的弱磁升速。
因此,自动控制的直流调速系统往往以 调压调速为主。
(1)调压调速
工作条件:
n
保持励磁 = N ;
n0
保持电阻 R = Ra
调节过程:
直流电机调速方法
直流电机的调速主要是调节电枢电压【调压调速】,虽然也有调节励磁的,但一般作为升速调节【弱磁调速】,且调节范围小,常作为辅助调速方案。
比较成熟的是用三相全桥可控硅整流电源来对直流电机作调速控制,可控硅整流调压可以方便地通过改变可控硅导通角实现。
补充:1、直流电动机,固定励磁,电机转速与电枢电压成正比,所以,应采用【调压调速】;2、三相可控硅全桥整流电路,可以获得脉动直流电源(可调节);3、采用移相触发电路对可控硅的导通角进行控制,触发角可以用【电压】信号进行调节;4、那个控制【电压】可以用【手动】设定或通过【给定】与【转速反馈】之差进行【自动】调节,调节器可以进行PID运算;5、简单的无反馈调速系统,就是通过【给定】电位器改变【移相控制电压】,从而改变可控硅导通角、改变整流输出电压、改变电机转速;6、简单无反馈的系统,电机实际转速与给定值之间有偏差,并且系统不能自动减小这个偏差,对于要求不高的场合可以直接应用;7、可控硅全桥整流电路及其移相控制和触发单元,可以直接从教科书上得到。
如《可控硅变流技术》。
直流电机的调速方案一般有下列3种方式:1、改变电枢电压;2、改变激磁绕组电压;3、改变电枢回路电阻。
最常用的是调压调速系统,即1(改变电枢电压)直流电机与交流电机比较,最大的优点就是直流电机可以实现“平滑而经济的调速”;直流电机的调速不需要其它设备的配合,可通过改变输入的电压/电流,或者励磁电压/电流来调速。
交流永磁同步的调速是靠改变频率来实现的,需要变频器。
直流电机虽不需要其它的设备来帮助调速,但自身的结构复杂,制造成本高;在大功率可控晶闸管大批量使用之前,直流电动机用于大多的调速场合。
在大功率可控晶闸管工业生产化后,交流电动机的调速变得更简单了,交流电动机的制造成本低廉,使用寿命长等优点就表现出来。
直流电动机调速原理
直流电动机调速原理
调速是指改变电机的工作频率,使其能够轻松地承受任何负荷,以达到最佳运行效果的一种技术。
直流电动机调速技术是指通过改变直流电动机的电压或频率来改变电机的转速和输出功率的技术。
二、调速原理
1、改变电压调速
直流电动机的转速与电压成正比,因此,通过改变电压来改变直流电动机的转速。
直流电动机的工作频率与它的电压成反比,因此,通过改变电压来改变直流电动机的工作频率。
2、改变频率调速
当变频器的输出频率改变时,电机的转速也会相应的改变。
这是由于电机的转速与频率成反比,因此,可以通过改变变频器的输出频率来控制直流电动机的转速。
三、调速方式
1、电压调速
电压调速是指改变直流电动机的输入电压来改变电机的转速的
一种调速方式。
电压调速可以通过变压器、控制开关或变频器来实现。
2、变频调速
变频调速是通过改变调速装置的输出频率来控制电机转速的一
种调速方式。
常用的变频调速装置有变频器、分频装置和旋钮式调速装置等。
总结:直流电动机调速是指通过改变直流电动机的电压或频率来
改变电机的转速和输出功率的技术。
改变直流电动机的电压可以实现电压调速,而改变直流电动机的频率可以实现变频调速,从而达到最佳的运行效果。
直流电机的调速方法有哪些
直流电机的调速方法有哪些直流电机的调速方法有许多种,以下是一些常见的调速方法:1. 电压调速方法:通过改变电源电压的大小来调整电机的转速。
这种方法简单可行,但对电机的负载能力影响较大,不适用于需要大范围调速的场合。
2. 变极调速方法:利用电枢绕组和磁场绕组之间的电磁耦合原理,通过调节电枢绕组的绕组连接方式,改变电机的磁通量,从而实现调速。
这种调速方法的优点是结构简单,速度调节范围较大,但调速性能较差。
3. 变频调速方法:利用频率变换器将交流电源转换为不同频率的交流电源供给直流电机,通过改变频率来控制电机的转速。
这种调速方法具有调速范围广、调速性能好等优点,但设备价格较高。
4. 串电阻调速方法:通过在电枢电路中串联电阻,降低电枢电压,从而调速。
这种调速方法简单易行,适用于轻载和小功率的直流电机调速。
5. 并电阻调速方法:通过在电枢电路中并联电阻,降低电枢回路的电阻,从而调节电枢电流和转速。
这种调速方法比串电阻调速方法具有调速范围广、对电机性能影响较小等优点。
6. 脉宽调制(PWM)调速方法:利用脉冲宽度调制技术,调节电机的平均电压值,控制电机的转速。
这种调速方法具有调速范围广、调速稳定等优点,被广泛应用于直流电机调速控制系统中。
7. 电流反馈调速方法:通过测量电机的电流信号,对电机控制系统进行反馈控制,使得输出速度与设定速度保持一致。
这种调速方法具有调速精度高、控制稳定等优点,适用于对速度要求较高的场合。
8. 矢量控制调速方法:利用矢量控制技术,对电机的磁场和电压进行分别控制,使电机既能调速,又能提供较大的转矩。
这种调速方法具有快速响应、控制精度高等优点,被广泛应用于高性能调速系统中。
总之,直流电机的调速方法有电压调速、变极调速、变频调速、串电阻调速、并电阻调速、脉宽调制调速、电流反馈调速和矢量控制调速等多种。
不同的调速方法适用于不同的场合,根据实际需要选择合适的调速方案。
直流电动机的调速方法
直流电动机的调速方法1.改变牵引电动机端电压U D :U D=D A U FA D ——主电路每条之路串联的电动机台数;上式说明:改变每条支路电动机台数叫串并联转换。
若两台电动机是串联 A D =2;若两台电动机是并联 A D =1;电动机端电压增加一倍,电动机转速n D 就可以提高一倍。
故提高电动机端电压可以通过主电路中串并联转换,也可以通过调节发电机的端电压U F 进行。
2.电动机的磁场削弱:直流电动机的速率特性DL D D D D C R I U n Φ-= U D ——端电压(V );I D ——电枢电流(A );R D ——电动机内部电阻;C E ——与电机有关常数;D φ——电动机的励磁磁通(wb )下图说明磁场削弱原理,串励绕组两端并联一级或数级分路电阻。
a.削弱前 b.削弱后a.磁场削弱进行之前削弱接触器X C 没有闭合,磁场削弱电阻对串励绕阻W 不起作用,即串励绕阻的绕阻电流等于电枢电流 I D =I DL ,这种状态为“满磁场”。
b. 磁场削弱接触器X C 闭合后,磁场削弱电阻对串励绕阻W 起分路作用,所流过绕阻电流若是小于电枢电流,即,I DL <I D 这种状态就是磁场削弱。
电动机励磁电流I DL 与电枢电流比值β%表示磁场削弱的深度,β称电动机磁场削弱系数。
β=D DL I I (%)在恒压情况下, 按n D=D e DD D C R I U φ- D φ减小,n D 增加说明由恒电压电源供电的电动机,磁场削弱后电动机的稳定转速要高于磁场削弱前电动机的转速。
但n D 是靠从电源取得更大的功率来保证。
3.变压下的磁场削弱时的速率特性和转矩特性对于串励电动机,在磁场削弱的情况下,励磁电流只是电枢电流的一部分,即I DL = β I D 若电动机的磁通D φ与励磁电流DL I 成正比从n D=De D D D C R I U φ-看出,同一D I 下n D 提高了β1倍。
从D M D I C M D φ=(C M ——电动机有关常数)可以看出转矩M D 减小了β倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 前言现在电气传动的主要方向之一是电机调速系统采用微处理器实现数字化控制。
从上世纪80年代中后期起,世界各大电气公司如ABB、通用、西屋、西门子等都在竞相开发数字式调速传动装置,经过二十几年的发展,当前直流调速已发展到一个很高的技术水平:功率元件采用可控硅;控制板采用表面安装技术;控制方式采用电源换相、相位控制[1]。
特别是采用了微处理器及其他先进电力电子技术,使数字式直流调速装置在精度的准确性、控制性能的优良性和抗干扰的性能有很大的提高和发展,在国内外得到广泛的应用。
数字化直流调速装置作为目前最新控制水平的传动方式显示了强大优势。
全数字化直流调速系统不断升级换代,为工程应用和工业生产提供了优越的条件。
采用微处理器控制,使整个调速系统的数字化程度,智能化程度有很大改观;采用微处理器控制,使调速系统在结构上简单化,可靠性提高,操作维护变得简捷,电机稳态运行时转速精度等方面达到较高水平。
由于微处理器具有较佳的性价比,所以微处理器在工业过程及设备控制中得到日益广泛的应用。
近年来,尽管交流调速系统发展很快,但是直流电机凭借其良好的启动、制动性能,在金属切削机床、轧钢机、海洋钻机、挖掘机、造纸机、矿井卷扬机、电镀、高层电梯等需要广泛范围内平滑调速的高性能可控电力拖动领域中仍得到了广泛的应用。
现阶段,我国还没有自主的全数字化直流调速控制装置生产商,而国外先进的控制器价格昂贵,且技术转让受限,为此研究及更好的使用国外先进的控制器,吸收国外先进的数字化直流电机调速装置的优点,具有重要的实际意义和重大的经济价值。
20世纪70年代以来,直流电机传动经历了重大的技术、装备变革。
整流器的更新换代,以晶闸管整流装置取代了习用已久的直流发电机电动机组及水银整流装置使直流电气传动完成了一次大的跃进[1]。
同时,高集成化、小型化、高可靠性及低成本成为控制的电路的发展方向。
使直流调速系统的性能指标大幅提高,应用范围不断扩大。
直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以替代。
早期直流传动的控制系统采用模拟分离器件构成,由于模拟器件有其固有的缺点,如存在温漂、零漂电压,构成系统的器件较多,使得模拟直流传动系统的控制精度及可靠性较低[2]。
随着计算机控制技术的发展,微处理器已经广泛使用于直流传动系统,实现了全数字化控制。
由于微处理器以数字信号工作,控制手段灵活方便,抗干扰能力强。
所以,全数字直流调速控制精度、可靠性和稳定性比模拟直流调速系统大大提高。
所以,直流传动控制采用微处理器实现全数字化,使直流调速系统进入一个崭新的阶段。
微处理器诞生于上个世纪七十年代,随着集成电路大规模及超大规模集成电路制造工艺的迅速发展,微处理器的性价比越来越高。
此外,由于电力电子技术的发展,制作工艺的提升,使得大功率电子器件的性能迅速提高。
为微处理器普遍用于控制电机提供了可能,利用微处理器控制电机完成各种新颖的、高性能的控制策略,使电机的各种潜在能力得到充分的发挥,使电机的性能更符合工业生产使用要求],还促进了电机生产商研发出各种如步进电机、无刷直流电机、开关磁阻电动机等便于控制且实用的新型电机,使电机的发展出现了新的变化。
对于简单的微处理器控制电机,只需利用用微处理器控制继电器、电子开关元器件,使电路开通或关断就可实现对电机的控制。
现在带微处理器的可编程控制器,已经在各种的机床设备和各种的生产流水线中普遍得到应用,通过对可编程控制器进行编程就可以实现对电机的规律化控制。
对于复杂的微处理器控制电机,则要利用微处理器控制电机的电压、电流、转矩、转速、转角等,使电机按给定的指令准确工作。
通过微处理器控制,可使电机的性能有很大的提高。
目前相比直流电机和交流电机他们各有所长,如直流电机调速性能好,但带有机械换向器,有机械磨损及换向火花等问题;交流电机,不论是异步电机还是同步电机,结构都比直流电机简单,工作也比直流电机可靠,但在频率恒定的电网上运行时,它们的速度不能方便而经济地调节[2]。
高性能的微处理器如DSP的出现,为采用新的控制理论和控制策略提供了良好的物质基础,使电机传动的自动化程度大为提高。
在先进的数控机床等数控位置伺服系统,已经采用了如DSP等的高速微处理器,其执行速度可达数百万兆以上每秒,且具有适合的矩阵运算。
c r c n R UTC C C φφ=-内2 总体方案设计2.1直流电机的调速工作原理直流电动机根据励磁方式不同,直流电动机分为自励和他励两种类型。
不同励磁方式的直流电动机机械特性曲线有所不同。
但是对于直流电动机的转速有以下公式:其中:U —电压;R 内—励磁绕组本身的电阻;φ—每极磁通(Wb);Cc —电势常数;Cr —转矩常量[3]。
由上式可知,直流电机的速度控制既可采用电枢控制法,也可采用磁场控制法。
磁场控制法控制磁通,其控制功率虽然较小,但低速时受到磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制[4],而且由于励磁线圈电感较大,动态响应较差[5]。
所以在工业生产过程中常用的方法是电枢控制法。
电枢控制是在励磁电压不变的情况下,把控制电压信号加到电机的电枢上,以控制电机的转速。
传统的改变电压方法是在电枢回路中串联一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低、平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大[6]。
随着电力电子的发展,出现了许多新的电枢电压控制方法。
如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM )调压等等。
调压调速法具有平滑度高,能耗少,精度高等优点。
在工业生产中广泛使用其中脉宽调制(PWM )应用更为广泛。
脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上电压的“占空比”来改变平均电压的大小,从而控制电动机的转速,因此,PWM 又被称为“开关驱动装置”。
图1-2电枢电压占空比和平均电压的关系图根据图1,如果电机始终接通电源时,电机转速最大为max V ,占空比为D=1t /T ,则电机的平均速度为:D max V =V *D ,可见只要改变占空比D ,就可以得到不同的电机速度,从而达到调速的目的[7]。
2.2 调速方案比较与选择方案一:采用专用PWM 集成芯片、IR2110 功率驱动芯片构成整个系统的核心,现在市场上已经有很多种型号,如Tl 公司的TL494芯片,东芝公司的ZSK313I 芯片等。
这些芯片除了有PWM 信号发生功能外,还有“死区”调节功能、过流过压保护功能等。
这种专用PWM 集成芯片可以减轻单片机的负担,工作更可靠,但其价格相对较高,难于控制工业成本不宜采用。
方案二:采用MC9SXS128B 单片机、电机驱动芯片MC33886构成直流调速装置。
33886是一个单一的H 桥控制电机驱动芯片。
该IC 集成了内部控制逻辑,电荷泵,门驱动器,输出电路低RDS (on )MOSFET 的。
在33886能够控制直流负载连续电感电流高达5.0A:可以输出负载脉宽调制- ED)的工作频率(高达10千赫的PWM方案三:采用MC51单片机、IR2110功率驱动芯片构成整个系统的核心实现对直流电机的调速。
MC51具有两个定时器T0和T1[9]。
通过控制定时器初值T0和T1,从而可以实现从任意端口输出不同占空比的脉冲波形。
MC51控制简单,价格廉价,且利用MC51构成单片机最小应用系统,可缩小系统体积,提高系统可靠性,降低系统成本。
IR2110是专门的MOSFET管和IGBT的驱动芯片,带有自举电路和隔离作用,有利于和单片机联机工作,且IGBT的工作电流可达50A,电压可达1200V[10],适合工业生产应用本次设计采用方案2,在于其的便利性2.3 系统组成及原理本系统采用MC9SXS128为控制核心,配以四个独立键盘和光电编码器,通过对直流电机的转速脉冲进行计数和速度采集实现过压保护、调速。
同时利用MC9SXS128产生的PWM经过33886为驱动核心,本系统的控制部分为5V的弱电而驱动电路和负载电路为7.2V以上的直流电压因此在强弱电之间。
具体电路框图如下图2-1图2.1 系统组成原理框图3 系统硬件设计3.1 控制模块设计3.1.1 芯片MC9SXS128B介绍该单片机内部资源相当丰富,在此仅仅介绍这次设计中将用到的主要模块,这次运用到了包括ECT模块(增强型捕捉定时器模块),PWM模块(脉冲调制模块) CRG(时钟复位和产生模块)ECT模块的结构:一个16位向上带可编程预分频的主计数器;一个16位的带可编程预分频的模数向下计数器8个独立的定时器通道,每个通道具备输入捕捉和输出比较功能;4个8位脉冲累加器,也可设置成2个16位脉冲累加器;通过对寄存器编程可以实现不同的功能。
PWM模块:8个带周期占空比可程控的PWM独立通道;4个可程控选择的时钟源;每个PWM通道有专用的计数器;PWM每个通道脉冲极性可以选择每个PWM通道可使能/禁止;周期和占空比双缓冲;每个通道有中心对齐和边缘对齐方式;分辨率: 8位(8通道), 16位(4通道);带中断功能的紧急切断CRG模块大致分为3部分,有时钟的产生,复位以及3种中断:实时中断,锁相环中断以及自时钟模式;实时中断这次主要用于采集一定时间内的脉冲数方便与测速,本次设计还不需要用到锁相环倍频,最小系统设计时采用的就是16M的晶振;自时钟中断会在本身不起振的情况下工作。
3.1.2 单片机的选择本次设计选用的是80脚的封装选用了其PWM模块来产生PWM波;选用了其CRG模块来采集数据;选用了其ECT模块来对按键进行中断;3.2驱动模块的设计3.2.1 驱动芯片MC33886的简介33886是一个单一的H桥控制电机驱动芯片。
该IC集成了内部控制逻辑,电荷泵,门驱动器,输出电路低RDS(on)MOSFET的,33886能够控制直流负载连续电感电流高达5.0A:可以输出负载脉宽调制- ED)的工作频率(高达10千赫的PWM)报告的故障状态输出欠压,短路,过热和条件。
两个独立的输入控制两个半桥图腾柱输出。
两个禁用投入力量的H桥输出三态(呈现高阻态)参数化的33886是在一个指定的温度范围内-40°C ≤ TA ≤ 125°C, 5.0 V ≤ V+ ≤ 28 V.该集成电路还可以操作高达40 V的规格降额的。
该IC提供一个表面贴装功率封装的散热垫与接触。
图3.2.1 33886简化内部框图3.2.2 驱动电路的设计在MC3386的资料中有其33886简化应用图如下:我在对驱动电路进行设计的时候做了如下改进改进后:有两块MC33886分别连接直流电机的两端,由其内部简化结构图,我们可以很明显看出只要MC33886有一半是正常工作,则电机驱动不会受影响,保证其正常工作;如果只由一块驱动,假设坏了一部分,则无法工作,无法起到了稳定工作的效果。