直流电动机设计方案
直流电机PWM控制系统设计

0 前言在电气时代的今天,电动机一直在现代化的生产和生活中起着十分重要的作用,无论在工业农业生产、交通运输、国防航空航天、医疗卫生、商务与办公设备,还是在日常生活中的家用电器,都在大量地使用着各式各样的电动机。
据资料统计,现在有的90%以上的动力源来自于电动机,电动机与人们的生活息息相关,密不可分。
随着现代化步伐的迈进,人们对自动化的需求越来越高,使电动机控制向更复杂的控制发展。
直流电动机具有优良的调速特性,调速平滑、方便,调速范围广,过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转,能满足生产过程自动化系统各种不同的特殊运行要求。
直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以替代。
直流电机的数字控制是直流电动机控制的发展趋势,用单片机的数字控制的发展趋势,用单片机进行控制是实现电动机数字控制的最常用的手段。
由于电网相控变流器供电的直流电机调速系统能够引起电网波形畸变、降低电网功率因数,除此之外,该系统还有体积大、价格高、电压电流脉动频率低、有噪声等缺点。
而采用直流电动机的PWM调速控制系统可以克服电网相控调速系统的上述诸多缺点。
电动机的控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、电动控制技术、微机应用技术的最新发展成果。
正是这些技术的进步使电机控制技术在近20多年内发生了翻天覆地的变化,其中电动机的控制部分已由模拟控制逐渐让位于以单片机为主的微处理器控制,形成数字和模拟的混合控制系统和纯数字控制的应用,并曾向全数字化控制方向快速发展。
电动机的驱动部分所用的功率器件经历了几次更新换代,目前开关速度更快、控制更容易的全控型功率器件MOSFET和IGBT成为主流。
功率器件控制条件的变化和微电子技术的使用也使新型的电动控制方法能够得到实现,脉宽调制控制方法(PWM和SPWM),变频技术在直流调速和交流调速中获得广泛的应用。
直流电动机调速设计

综述直流电机是人类最早发明的和应用的一种电机。
与交流电机相比,直流电机因结构复杂、维护困难、价格较贵等缺点制约了它的发展,应用不如交流电机广发。
但由于直流电动机具有优良的起动、调速和制动性能,因此在工业领域中仍占有一席之地。
随着电力电子技术的发展,直流发电机虽有可能被可控整流电源取代的趋势,但从供电的质量和可靠性来看,直流发电机仍具有一定的优势,因此在某些场合,例如化学工业中的电镀、电解等设备,直流电焊机和某些大型同步电机的励磁电源仍然使用直流发电机作为供电电源。
直流电动机主要分为四类:1他励直流电动机,2并励直流电动机,3串励直流电动机,4复励直流电动机。
本文对他励直流电动机的调速进行设计,主要介绍了他励直流电动机的调速原理以及调速方法。
1 直流电动机调速原理1.1直流电动机的定义输入为直流电能的旋转电动机,称为直流电动机,它是能实现直流电能向机械能转换的电动机。
1.2直流电动机的基本结构直流电机由定子和转子两部分组成,其间有一定的气隙。
其构造的主要特点是具有一个带换向器的电枢。
直流电机的定子由机座、主磁极、换向磁极、前后端盖和刷架等部件组成。
其中主磁极是产生直流电机气隙磁场的主要部件,由永磁体或带有直流励磁绕组的叠片铁心构成。
直流电机的转子则由电枢、换向器(又称整流子)和转轴等部件构成。
其中电枢由电枢铁心和电枢绕组两部分组成。
电枢铁心由硅钢片叠成,在其外圆处均匀分布着齿槽,电枢绕组则嵌置于这些槽中。
换向器是一种机械整流部件。
由换向片叠成圆筒形后,以金属夹件或塑料成型为一个整体。
各换向片间互相绝缘。
换向器质量对运行可靠性有很大影响。
图1-1直流电动机的基本结构1—直流电机总图;2—后端盖;3—通风器;4—定子总图;5—转子(电枢)总图;6—电刷装置;7—前端盖。
1.3直流电动机的工作原理直流发电机的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。
直流电动机教案精选

直流电动机教案精选教案直流电动机教学内容:本节课的教学内容来自于初中物理教材第八章第三节“直流电动机”。
本节课主要内容包括:直流电动机的构造、工作原理、性能和应用。
通过学习,使学生了解直流电动机的工作原理,掌握其性能和特点,并能够运用所学知识分析解决实际问题。
教学目标:1. 了解直流电动机的构造、工作原理、性能和应用。
2. 能够运用所学知识分析解决实际问题。
3. 培养学生的动手操作能力和观察能力。
教学难点与重点:难点:直流电动机的工作原理及其性能。
重点:掌握直流电动机的构造和应用。
教具与学具准备:教具:直流电动机模型、电源、开关、电线等。
学具:笔记本、尺子、电表等。
教学过程:一、实践情景引入(5分钟)教师通过展示一辆电动汽车,让学生观察并思考:电动汽车是如何运动的?其动力来源于哪里?二、知识讲解(10分钟)刷等部分。
2. 讲解直流电动机的工作原理,即线圈在磁场中受到力的作用,从而产生转动。
3. 介绍直流电动机的性能,如电压、电流、功率、转速等。
4. 讲解直流电动机的应用,如电动汽车、电风扇、洗衣机等。
三、例题讲解(10分钟)教师出示例题:一辆电动汽车的电动机额定电压为220V,额定功率为300W,求其额定电流。
学生独立思考并解答,教师进行讲解和点评。
四、随堂练习(10分钟)学生自主完成练习题:一辆电风扇的电动机额定电压为220V,额定功率为40W,求其额定电流。
教师进行讲解和点评。
五、动手操作(10分钟)学生分组进行实验,观察直流电动机的转动情况,并测量其电压、电流、功率等参数。
六、板书设计(5分钟)教师在黑板上板书直流电动机的构造、工作原理、性能和应用。
七、作业设计(5分钟)1. 描述直流电动机的构造、工作原理、性能和应用。
2. 计算一辆电动汽车的电动机额定电流。
作业答案:其工作原理是线圈在磁场中受到力的作用,从而产生转动。
直流电动机的性能包括电压、电流、功率、转速等。
应用方面,直流电动机可以用于电动汽车、电风扇、洗衣机等。
BLDC电动机本体设计及控制原理(详细版)

BLDC电动机本体设计及控制原理(详细版)一、引言直流无刷电动机(Brushless DC Motor,BLDC)是近年来研究与应用领域日益扩大的电机类型。
它具有高效率、高转矩、低噪音、长使用寿命等优点,广泛应用于电动汽车、航空航天、家用电器、微型机器人等领域。
本文主要论述BLDC电动机本体设计及控制原理。
二、BLDC电动机结构及工作原理BLDC电动机主要由转子、定子、传感器、电路控制系统等部分组成。
1. 转子转子是BLDC电动机的核心部分,主要由磁铁和轴组成。
磁铁通常采用强磁性永磁体,由于磁阻较小、磁延迟性小,因此稳定性好,容易控制。
轴材料通常为钢铁材料,既满足强度要求,又具备较高的刚度。
转子采用永磁体的励磁方式,可以降低电机的故障率。
2. 定子定子是BLDC电动机的外部部分,主要由铁芯和绕组组成。
定子铁芯通常由硅钢片穿插叠压而成,目的是避免铁芯中涡流的损耗。
绕组则由若干个线圈组成,其数量与定子极数有关。
3. 传感器传感器主要包括霍尔元件和编码器。
霍尔元件主要用于检测转子磁极位置,编码器用于检测转子具体位置。
这些传感器输出的信号可以通过控制器计算得到电机的精确位置和转速。
4. 电路控制系统电路控制系统主要由驱动电路和控制器组成。
由于BLDC电机是三相交流电机,因此需要采用三相桥式电路进行驱动。
这种电路可以通过PWM技术实现精确的电机控制。
BLDC电动机的工作原理是依靠磁场作用产生电动力矩,具体而言,是依靠定子电流的旋转磁场作用与永磁体产生相互作用力而产生电动力矩的。
BLDC电机通过不断改变定子电流方向和大小来控制电机的转速和方向。
三、BLDC电动机控制原理1. 电机转速控制为了实现BLDC电动机的精确控制,需要对电机的转速进行控制。
一般采用PID控制算法对电机进行控制。
PID算法通过将实际转速与设定值进行比较,计算出误差,然后根据误差大小来调整控制电压的大小和方向。
这种方法可以有效地降低电机的振动和噪声,提高电机的精度和稳定性。
直流电动机双闭环调速系统设计

1 设计方案论证电流环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。
方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。
转速环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。
方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。
2双闭环调速控制系统电路设计及其原理综述随着现代工业的开展,在调速领域中,双闭环控制的理念已经得到了越来越广泛的认同与应用。
相对于单闭环系统中不能随心所欲地控制电流和转矩的动态过程的弱点。
双闭环控制那么很好的弥补了他的这一缺陷。
双闭环控制可实现转速和电流两种负反应的分别作用,从而获得良好的静,动态性能。
其良好的动态性能主要表达在其抗负载扰动以及抗电网电压扰动之上。
正由于双闭环调速的众多优点,所以在此有必要对其最优化设计进展深入的探讨和研究。
本次课程设计目的就是旨在对双闭环进展最优化的设计。
整流电路本次课程设计的整流主电路采用的是三相桥式全控整流电路,它可看成是由一组共阴接法和另一组共阳接法的三相半波可控整流电路串联而成。
共阴极组VT1、VT3和VT5在正半周导电,流经变压器的电流为正向电流;共阳极组VT2、VT4和VT6在负半周导电,流经变压器的电流为反向电流。
变压器每相绕组在正负半周都有电流流过,因此,变压器绕组中没有直流磁通势,同时也提高了变压器绕组的利用率。
三相桥式全控整流电路多用于直流电动机或要求实现有源逆变的负载。
为使负载电流连续平滑,有利于直流电动机换向及减小火花,以改善电动机的机械特性,一般要串入电感量足够大的平波电抗器,这就等同于含有反电动势的大电感负载。
三相桥式全控整流电路的工作原理是当a=0°时的工作情况。
无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例一. 主要技术指标1. 额定功率:W 30P N =2. 额定电压:V U N 48=,直流3. 额定电流:A I N 1<3. 额定转速:m in /10000r n N =4. 工作状态:短期运行5. 设计方式:按方波设计6. 外形尺寸:m 065.0036.0⨯φ二. 主要尺寸的确定 1. 预取效率63.0='η、 2. 计算功率i P '直流电动机 W P K P NNm i 48.4063.03085.0'=⨯==η,按陈世坤书; 长期运行 N i P P ⨯''+='ηη321 短期运行 N i P P ⨯''+='ηη431 3. 预取线负荷m A A s /11000'= 4. 预取气隙磁感应强度T B 55.0'=δ 5. 预取计算极弧系数8.0=i α 6. 预取长径比L/D λ′=27.计算电枢内径m n B A P D N s i i i 23311037.110000255.0110008.048.401.61.6-⨯=⨯⨯⨯⨯⨯=''''='λαδ 根据计算电枢内径取电枢内径值m D i 21104.1-⨯= 8. 气隙长度m 3107.0-⨯=δ 9. 电枢外径m D 211095.2-⨯= 10. 极对数p=111. 计算电枢铁芯长 m D L i 221108.2104.12--⨯=⨯⨯='='λ根据计算电枢铁芯长取电枢铁芯长L= m 2108.2-⨯12. 极距 m p D i 221102.22104.114.32--⨯=⨯⨯==πτ 13. 输入永磁体轴向长m L L m 2108.2-⨯==三.定子结构 1. 齿数 Z=6 2. 齿距 m z D t i 22110733.06104.114.3--⨯=⨯⨯==π3. 槽形选择梯形口扇形槽,见下图;4. 预估齿宽: m K B tB b Fe t t 2210294.096.043.155.010733.0--⨯=⨯⨯⨯==δ ,t B 可由设计者经验得,t b 由工艺取m 210295.0-⨯5. 预估轭高: m B K B a K lB h j Fe i Fe j j 211110323.056.196.0255.08.02.222-⨯=⨯⨯⨯⨯=≈Φ=δδτ1j B 可由设计者经验得,1j h 由工艺取m 210325.0-⨯根据齿宽和轭高作出下图,得到具体槽形尺寸6. 气隙系数 135.1)5()5(2010101=-++=b b t b t K δδδ7.电枢铁心轭部沿磁路计算长度m h ph h D L j ij t i i 2111110064.2)21(2)2(-⨯=+-⨯++=απ8.槽面积2410272.0m S -⨯=电枢铁芯材料确定从数据库中读取电枢冲片材料DW540-50电枢冲片叠片系数96.01=Fe K 电枢冲片材料密度331/1075.7m j ⨯=ρ电枢冲片比损耗kg W p s /16.2)50/10(=四.转子结构1. 转子结构类型:瓦片磁钢径向冲磁2. 永磁体外径m D D i m 211026.12-⨯=-=δ3. 永磁体内径m H D D m m mi 21086.02-⨯=-=4. 永磁体极弧系数8.0=m α5. 紧圈外经D 2=m 21032.1-⨯6. 永磁材料磁化方向截面积24221043.421026.114.3108.28.02m p D L S mm m m ---⨯=⨯⨯⨯⨯⨯==πα7. 永磁材料的选取永磁体材料:钕铁硼 剩磁r B :矫顽力c H :796 kA/m 永磁体材料密度m ρ:cm 38. r B 对应的磁通Wb S B m r r 41087676.4-⨯=⋅=φ 9.c H 对应的磁势A D D H F mim c c 3200)2(2=-= 10. 转子轭材料选择由于转子较细,故转轴、磁轭为一体,选用10号钢 11.转子磁轭等效宽度 m D D D D b i mi i e j 22222221033.02102.01086.022---⨯=⨯-⨯=-=-=12.转子磁轭沿磁路方向长度瓦片m pD D b L mii e j j 222221083.0)21(4)(-⨯=-++=απ五、磁路计算1. 漏磁系数2.1=σ2. 气隙磁通δδδταB L B i 926.4==Φ3.空载电枢齿磁密δδδB B K b t B B Fe t t 588.296.010295.010733.022=⨯⨯⨯⨯==-- 4. 空载电枢轭磁密δδδB B L K h B Fe j j 819.28.296.0325..02926.4211=⨯⨯⨯=Φ=5. 空载转子轭磁密δδδσB B L b B j j 198.38.233.02926.42.1222=⨯⨯⨯=Φ= 6. 气隙磁势A B B B K F 462610127.010135.11007.06.1106.1⨯=⨯⨯⨯⨯⨯=⨯=-δδδδδδ7. 定子齿磁势A H H h H F t t t t t 22109.01045.022--⨯=⨯⨯== 8. 定子轭部磁势A H L H F j j j j 211110064.2-⨯== 9. 转子轭部磁势A H L H F j j j j 222221083.0-⨯== 10. 总磁势∑+++=21j j t F F F F F δ 11. 总磁通Wb B m 410926.42.1-⨯⨯=Φ=Φδδσ12.空载特性曲线计算见表;因为表面磁钢永磁电机电动机负载时气隙的合成磁场与空载时差不多;六.电路计算1. 绕组形式及电子开关形式:两相导通星形三相六状态 2. 绕组系数采用单层集中整距绕组,即 第一节距)(31槽==τy 每极每相槽数12pmZq ==m 是相数;p 为极对数 故绕组系数1=w K3. 预取空载转速m in /120000r n =' 4. 每相绕组串联匝数φW '0.7V U 24.8025.700为管子压降,取匝,∆=Φ'∆-='δφαpn UU W i取匝82W =φ5. 电枢总导体数根4922==φmW N6. 实际每槽导体数N s =N/Z=82根7. 实际空载转速0nmin /11742109039.28217.02488.05.725.7400r pW U U n i=⨯⨯⨯⨯-⨯⨯=Φ∆-=-δφα8. 计算绕组端部长度m pD D pDav l i b 211101.42)2)(2.122.1-⨯=+=='ππ 9. 计算电枢绕组每匝平均长度m l L L bav 2108.13)(2-⨯='+= 10. 预估导线截面积2661007086.01101463.04830m a J U P S aN N c-⨯=⨯⨯⨯⨯=''='η 式中26'/1014m A J a⨯=为预取导线电流密度 1=a 为每相绕组支路数 11. 导线选取选择F 级绝缘导线QZY-2 导线计算截面积26210066.04m d S c c -⨯==π导线最大截面积262max max 10092.04m d S c c -⨯==π导线直径md m d c c 3max 310342.01029.0--⨯=⨯=12. 槽满率计算公式选择35.01042max=⨯⋅=-S c s s S S N K π13. 实际导线电流密度26'/1015m A aS U P J c N Na ⨯==η 14. 每相电枢绕组电阻Ω==⨯=Φ-31022)20(62)20(20cavcava S a l W S ma Nl r ρρ式中)/(0157.02)20(m mm ⋅Ω=ρ为导线的电阻率 设电机绕组的工作温度t 为75C 0,则导线工作温度电阻Ω=⨯-+=65.3])20(1[20t a at p t r r 式中00395.0=t p 为导线的电阻温度系数七.电枢反应计算1. 起动电流 A r UU I atst 77.722=∆-=2. 起动时每极直轴电枢反应最大值A K W I F w st sdm 27643==φ 3. 额定工作时的反电动势 V n W pC N ie 5.39152'==δφφα 4. 额定工作时电枢电流 A r EU U I ata 97.022=-∆-=5. 额定工作时最大直轴去磁磁势A K W I F W a adm 3443==φ 6. 负载工作点:根据sdm F 和adm F ,可在空载永磁体工作图上作出负载和起动时的特性曲线2、3,求负载特性曲线与永磁体去磁曲线的交点,得负载工作点:负载气隙磁感应强度T B 5872.0=δ 负载气隙磁通Wb 4108925.2-⨯=Φδ负载电枢齿磁感应强度t B = 负载电枢轭磁感应强度j B =7. 额定工作时电磁转矩m N I W pT a iem .0366.04==δφφπα8. 起动电磁转矩 m N I C T st T st .293.0=Φ=δ 八. 性能计算1. 电枢铜损W r I p at a Cu 87.622== 2. 电枢铁损W G B G B f p K p j j t t a Fe 11.4)()50)(50/10(12123.1=+= 式中a K ------铁损工艺系数,取2=a K1j G ------定子轭重kg L h D D G j s j 05816.010])2([43211211=⨯--=-πρt G ------定子齿重kg ZL h b G t t s t 0173.0103=⨯=-ρ3. 轴承摩擦损耗W n G K p N p mp mpn 05.1103=⨯=-Kmp=3,p G 为磁钢重 转子轭重 转轴重 传感器转子重的和 3=mp K 为默认情况,可让用户自己指定kg G G G G r g m p 035.0=++=4. 风损W L n D p N mpb 13.01026332=⨯=-5. 机械损耗和铁损W p p p p mpb mpn Fe 29.5=++='6. 考虑到附加损耗后的机械损耗和铁损 W p p 877.63.1='=系数可选 7. 开关管损耗W U I p a 358.12=∆⨯=∆8. 电机总损耗W p p p p Cu 1.15=++=∆∑9. 输入功率W I U P a N 56.461==10. 输出功率W p P P N 46.311=-=∑ 11. 效率%57.67%1001=⨯=P P N η 12. 摩擦转距m N n p T N.00657.056.90== 13. 额定输出转距 m N T T T em .03.002=-=。
汽车直流启动电动机正反转控制器硬件电路设计

汽车直流启动电动机正反转控制器硬件电路设计一、引言直流电动机广泛应用于汽车领域,而其正反转控制是实现汽车启动、停止以及转向等功能的基础。
本文将详细介绍汽车直流启动电动机正反转控制器硬件电路设计的相关内容。
二、背景知识2.1 直流电动机工作原理直流电动机的工作原理是基于电磁感应现象,通过电流在磁场中产生力矩,从而驱动电动机转动。
其正反转即通过改变电流的方向和大小来实现。
2.2 控制器的功能汽车直流启动电动机正反转控制器是电动机驱动的核心部件之一,其作用主要有以下几个方面:1.实现电动机的正反转控制;2.控制电动机的启动、停止;3.调节电动机的转速;4.检测电动机的工作状态和保护电动机。
三、汽车直流启动电动机正反转控制器硬件电路设计方案3.1 控制器整体设计思路汽车直流启动电动机正反转控制器主要由以下模块组成:1.信号输入模块:负责接收外部信号,包括启动、停止、转向等信号;2.电源模块:为各个模块提供电源;3.信号处理模块:对输入信号进行处理,生成相应的控制信号;4.驱动电路模块:根据控制信号驱动电动机;5.保护模块:监测电动机的运行状态,当出现异常情况时进行保护。
3.2 信号输入模块设计信号输入模块主要包括启动、停止和转向信号的接收。
这些信号可以通过按钮、踏板等方式产生。
接收到信号后,经过滤波和放大等处理,送至信号处理模块。
3.3 电源模块设计电源模块负责为各个模块提供稳定的电源。
一般情况下,汽车的电池可以用作电源,并通过电源管理电路进行稳压和滤波等处理,以确保各模块正常工作。
3.4 信号处理模块设计信号处理模块主要对输入信号进行处理,生成相应的控制信号。
例如,当接收到启动信号时,信号处理模块将对应的控制信号发送至驱动电路模块,从而驱动电动机启动。
3.5 驱动电路模块设计驱动电路模块负责根据信号处理模块的控制信号,对电动机进行控制。
一般情况下,采用功率晶体管作为开关元件,通过控制其导通和关闭,实现电动机的正反转控制。
直流电动机课程设计

直流电动机课程设计一、课程目标知识目标:1. 理解直流电动机的基本原理,掌握其构造和分类;2. 掌握直流电动机的启动、调速和制动方法;3. 了解直流电动机在实际应用中的优缺点及改进措施。
技能目标:1. 能够正确组装和拆卸直流电动机,并进行简单的故障排查;2. 能够运用所学知识,完成对直流电动机启动、调速和制动的实际操作;3. 能够分析直流电动机在实际应用中的问题,并提出合理的解决方案。
情感态度价值观目标:1. 培养学生对物理学科的兴趣,激发学习热情;2. 培养学生的团队合作意识,学会与他人共同解决问题;3. 培养学生的创新思维,敢于提出不同的观点和看法;4. 增强学生对我国电动机产业的了解,树立民族自豪感。
本课程针对八年级学生,结合课程性质、学生特点和教学要求,将目标分解为具体的学习成果。
在教学过程中,注重理论与实践相结合,提高学生的实践操作能力。
同时,关注学生情感态度的培养,使他们在掌握知识技能的同时,形成正确的价值观。
为后续的教学设计和评估提供明确依据。
二、教学内容1. 直流电动机的基本原理与构造- 课本章节:第三章第三节- 内容:磁场对电流的作用、直流电动机的构造与分类2. 直流电动机的工作原理与启动方法- 课本章节:第三章第四节- 内容:直流电动机的工作原理、启动方法(直接启动、降压启动)3. 直流电动机的调速与制动- 课本章节:第三章第五节- 内容:调速方法(变电阻调速、变电压调速、变频调速)、制动方法(能耗制动、反接制动)4. 直流电动机在实际应用中的优缺点及改进措施- 课本章节:第三章第六节- 内容:直流电动机在实际应用中的优点与局限、改进措施(如采用无刷直流电动机)5. 直流电动机的组装与故障排查- 课本章节:第三章实验- 内容:组装与拆卸直流电动机、观察电动机运行状态,进行简单故障排查教学内容按照以上大纲进行安排,共计5个部分,每部分的教学时间为2课时。
在教学过程中,注重理论与实践相结合,让学生在掌握理论知识的基础上,提高实践操作能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直流电动机设计方案第1章前沿1.1 课题研究的背景及意义直流电动机以其良好的起动、制动性能,较宽范围内平滑调速的优点,在许多调速要求较高、要求快速正反向、以蓄电池为电源的电力拖动领域中得到了广泛的应用。
近年来,虽然高性能交流调速技术得到了很快的发展,在某些领域交流调速系统已逐步取代直流调速系统。
然而直流调速系统系统不仅在理论上和实践上都比较成熟,目前还在应用,比如轧钢机、电气机车等都还有用直流电机;而且从控制规律的角度来看,交流拖动控制系统的控制方式是建立在直流拖动控制系统的基础之上的,从某种意义上说有相似的地方。
因此,掌握和了解直流拖动控制系统的控制规律和方法是非常必要的。
从生产机械的要求的角度看,电力拖动控制系统分为调速系统、伺服系统、多电动机同步控制系统、张力控制系统等多种类型。
而各种系统大多都是通过控制转速来实现的,因此调速系统是电力拖动控制系统最基本的系统[1]。
从直流电机在国民生产生活中所占位置的角度来看,直流电机目前依旧应用于工业生产中,并广泛应用于人们的生活中。
因此直流电机的控制技术的发展很大程度上影响着国民经济的增长,影响着人们的生产生活水平,因此,对直流电机调速系统的研究还是很有必要的。
1.2 课题发展历程及趋势在很长的一段时间里直流电动机作为最主要的电力拖动工具,其应用已经渗透到人们的工作、学习、生活的各个方面。
早期电动机调速控制器主要由模拟器件构成,由于模拟器件存在的固有缺点,比如存在温漂,零漂电压等,使系统控制精度和可靠性降低。
后来,随着可编程控制器比如AT89C51,PLC等和IGBT、GTR等电力电子开关器件,传感器技术等的发展使得直流电机调速系统进入了数字控制的阶段,这使得直流电机调速系统的发展突飞猛进,从而出现了各种控制算法,比如比较经典的PID调节算法和后来的模糊控制算法等,这些领域的发展使得直流电机调速的精度和可靠性能大大提高,它取代了常规的模拟检测、显示等单元,基本上实现了智能化,使被控对象的动态过程按照规定的方式运行,已经能够满足绝大部分的工作要求,这使得以微控制器为核心的控制系统成为工业生产中控制系统的主流。
90年代由于计算机技术的飞速发展,利用PC机的软硬件资源开发出来的控制系统具有更高的精度和可靠性,处理速度更高,需要的外围单元更少,这使得直流电机调速系统向着更加智能化、网络化发展。
目前,国内外主要电气公司,如瑞典ABB公司,日本三菱,德国西门子,AEG公司,美国GE公司均已开发出数字式直流调速装置,开发出各种各样的系列化,模块化,标准化的应用产品供选用,使得直流电机调速系统的设计更加方便,更加简单,精度更高,可靠性更好。
在今后的时间里,直流电机调速系统会朝着更高的精度,更好的可靠性,更加智能化,网络化发展。
本次课题正是结合实际生产要求,以直流电机电机为被控对象,以自动控制理论为基础,结合大学所学知识,通过软件程序的编写来实现直流电机的调速系统。
1.3 本章小结本章主要介绍了从多个方面研究直流电机调速系统的目的和意义,并且介绍了直流电机调速系统国内外的发展状况,以及直流电机调速系统今后的发展方向及前景。
从而确定了本次课题研究的意义和目的。
第2章 设计方案的选择本次设计以STC89C52为核心,自动控制原理为基础,PWM 调速为方法,实现直流电机的闭环调速,用键盘设定一个一定范围内的速度,直流电机会按照给定速度运行,并最终达到稳定运行,并能够对电机的电枢电流进行检测显示并能够对电机进行电流保护。
2.1 直流调速系统调速方式的选择直流电机的稳定转速为:Φ-=e K IR U n (2-1) 由上式可知,直流电机调节转速的方案有:方案一:调节电枢两端电压U ;方案二:减弱励磁磁通Φ;方案三:改变电枢回路电阻R ;改变电枢回路电阻的方法只能实现有级调速,减弱磁通虽然能够实现无级调速,但是调速范围不大,因此直流电机调速最好的方法是调节电枢两端的电压,能够在一定范围内实现无级调速,且调速范围宽[2]。
因此,根据本次设计的要求要实现无级平滑调速,选择方案一调节电枢两端电压的方式来进行电机的调速。
2.2 直流调速系统可控直流电源的选择直流电机所用的电源为直流电源,而如何得到直流电源有以下方法:方案一:采用晶闸管整流器-电动机调速系统,通过调节可控触发装置晶闸管的控制电压来移动触发脉冲的相位,从而改变整流器输出的平均电压,即电枢两端电压,以实现直流电动机的平滑调速;方案二:脉宽调制变换器-直流电动机调速系统,用脉冲宽度调制的方法把给定的恒定的直流电压调制成频率一定,宽度可变的脉冲电压序列,从而改变电枢两端的平均电压,以实现直流电机的平滑调速;方案一中的晶闸管是单向导电的,给电动机的可逆运行带来极大的困难,在可逆运行中,需要采用正反两组可控整流电路;晶闸管对过电压和过电流以及过高dtdu/和dtdi/十分敏感,任何一项指标超过其允许值都会使晶闸管烧坏;当电动机在低速运行时,晶闸管的导通角很小,系统功率因数变小,在交流侧产生较大谐波电流,引起电网电压畸变,因此要在电网中增设无功补偿装置;由于电压波形的脉动,使得电流波形也会脉动,因此要设置一个电感量足够大的平波电抗器;电路比较复杂。
方案二中开关频率高,电流容易连续,谐波少,电动机损耗和发热都较少;直流电源采用不控整流时,电网功率因数比相控整流器高;变换器的开关频率高,电流脉动幅值不大,再影响到反电动势和转速,波动就更小了;具有低速性能好,稳速精度高,调速范围宽的优点;电路比较简单。
综合考虑,本次设计采用方案二直流PWM调速系统。
2.3 直流电动机驱动模块选择对直流电机驱动有很多种方法,然而根据设计要求选择一个合适的方法很重要:方案一:用继电器来启动和停止电机,通过不断的切换继电器的开和关来对电机调速,这种方案电路简单,但是继电器响应时间较长,只能在开关频率低时使用,机械结构易磨损;方案二:用功率开关器件构成的H桥来驱动直流电机,功率开关器件开关频率高,响应时间短,能够快速响应给定,系统滞后时间短,通过单片机输出PWM波来控制H桥开关器件的开和关,从而改变直流电机电枢电压,达到调速的目的。
考虑到PWM波的频率问题,本次设计采用方案二,应用电机驱动模块L298N来驱动直流电机。
2.4 PWM实现方式PWM波的实现方法主要分为硬件和软件两种实现方法,而硬件和软件的实现方法又是多种多样的,由于条件限制,我们能采取的实现方法主要有:方案一:应用单片机用软件延时的方式产生PWM波,这种方法比较占用处理器的资源,并且精度不高;方案二:采用模拟PWM波形发生器芯片产生PWM波,通过单片机给定来改变输出的PWM波的占空比,这种方法控制简单,精度也比较高,但是需要外围的PWM波发生电路;方案三:应用单片机的定时器来产生PWM波,对定时器赋不同的初始值来改变PWM 波的占空比,从而实现PWM的定频调宽,这种方式精度比较高,单片机内部带有定时器,使用方便简单。
通过对三种方案的比较,本次设计最终选择方案三来产生PWM波。
2.5 H桥可逆斩波调速系统调制方式H桥可逆斩波控制的方法有很多种,也各有其优缺点,供我们选择的方案有:方案一:单极性脉宽调制方式,通过控制直流电压的极性来改变输出电压的极性,这种控制方式要求直流电压极性控制和脉宽调制信号配合使用比较麻烦,并且要进行电机正反转时要求外加直流电源极性变化;方案二:双极性脉宽调制方式,这种方式通过改变控制信号的占空比来进行电机的正反转控制,当占空比大于2/T时,T时,电机正转,小于2/T时,电机反转,等于2/电机停止,这种调制方式电机电流一定连续;可以使电机在四象限运行;电机停止时有微震电流,恩能够消除静摩擦死区;低速平稳性好,系统调速范围宽可以达到1:20000左右;低速时,每个开关器件的驱动脉冲仍较宽,有利于保证器件的可靠导通,但是这种调速方式在工作过程中4个开关器件可能都处于开关状态,开关损耗大;在切换时可能发生上、下桥臂直通的事故[3]。
通过综合考虑,本次设计最终采用方案二双极性脉宽调制方式,虽然双极性有其自身的缺点,但在一定程度上不影响直流电机的调速,并且对于上、下桥臂直通的事故,可以通过软件的编程来避免,在本次设计中,主要通过对L298使能端的控制来达到防止上、下桥臂直通事故。
2.6 显示模块的选择在现在的生活中,用来显示的东西也是各种各样,基本的显示器件如下:方案一:采用LED数码管动态扫描显示,价格相对便宜,亮度高,显示数字简单,但是显示字母就不是很方便,并且连线复杂,驱动电路复杂;方案二:采用点阵进行显示,点阵是由发光二极管组成,显示字母,汉字比较方便,但是显示数字浪费资源,并且价格相对较高;方案三:用LCD 进行显示,LCD 显示程序简单,无需驱动电路,功能强大,可以显示字符,数字以及各种图形,亮度比较高,连线很方便。
通过比较,根据对各种方案熟悉程度和设计要求选择方案三,用LCD1602进行显示。
2.7键盘的方案选择键盘作为输入设备,是大多电子产品的辅助物品,然而键盘的实现方案有两种:方案一:应用独立键盘,这种在键盘数量大于四的时候会占用较多的I/O 口,但是其编程简单;方案二:应用矩阵键盘,这种键盘的优点在于当键盘数量多的时候,应用矩阵键盘可以大大节省I/O 口,但是编程比较复杂;综合考虑,本次设计只选用6个按键,采用独立键盘得用6个I/O 口,采用矩阵键盘只需5个I/O 口,因此本次设计选用2*3矩阵键盘。
2.8 调节器的实现方式选择根据所学知识,提供给我们实现调节器的方式有两种:方案一:选择模拟器件搭建的模拟调节器,这种调节器由于模拟器件本身的缺陷比如存在温漂、零漂电压等,使得控制精度和控制的可靠性能大大降低,并且电路复杂,需要更多的元器件,但是这种调节器对程序要求不高,程序简单;方案二:用单片机来进行调节器的设计,采用数字调节器,这种调节器能够克服模拟器件的缺点,使得控制精度和可靠性提高,并且不需要外围电路,电路简单,对调节器的输出限幅等都很方便。
本次设计综合考虑方案一和方案二的优缺点,最终选择方案二来进行调节器的设计。
2.9 数字PI 调节器算法的实现方式用单片机通过程序实现PI 调节器有两种方法:方案一:位置式算法,第k 拍的输出为)1()()()(-++=k u k e T K k e K k u i sam i p ,由公式可以看出比例部分只与当前偏差有关,而积分部分则是系统过去所有偏差的积累,这种算法结构清晰,P 和I 两部分作用分明,便于参数调整,但是这种算法在输出需要限幅的情况下必须积分限幅和输出限幅同时进行,两者缺一不可;方案二:增量式算法,第k 拍的输出为)()]1()([)1()(k e T K k e k e K k u k u sam i p +--+-=,由公式可以看出,这种算法只需在程序中保存上一拍的输出即可,当需要限幅时,只需对输出限幅[4]。